当前位置: 仪器信息网 > 行业主题 > >

吸附模型

仪器信息网吸附模型专题为您整合吸附模型相关的最新文章,在吸附模型专题,您不仅可以免费浏览吸附模型的资讯, 同时您还可以浏览吸附模型的相关资料、解决方案,参与社区吸附模型话题讨论。

吸附模型相关的资讯

  • 精微高博成功研发JW-SEL200型特种气体选择性吸附仪
    北京精微高博科学技术有限公司与北京化工大学通过艰苦努力,已经成功研发出当今国内外最新技术JW-SEL200型选择性气体吸附仪,与2016年4月正式上市,它是目前国内外应用了最多新技术,新理念的全新仪器,相信一定会引领此类产品的潮流和方向。  (JW-SEL200型特种气体选择吸附仪)  当前,市场上所有的吸附仪均只能测量多孔材料对纯组分气体的吸附等温线,而无法测量混合气体的选择性吸附性能。实际上,我们接触到的都是气体的混合物例如大气,工业尾气等,它们都不是纯组分气体,而是多种气体的混合物,如图1 所示。  图1 工业尾气常常是包含CO2/N2,CO2/Nox等的混合气体  研究发现,单纯通过纯组分气体的吸附量来判断纳微多孔材料的环保性能是不够的,因为多孔材料对混合气体中的不同组分常常产生选择性吸附,即喜好吸附某一种气体,而不喜欢吸附另外一种气体,表明该多孔材料对某种气体具有特殊的优先吸附,只有在得到选择性吸附特性之后,才可能对吸附剂在净化环境方面的作用有一个更准确可靠的判断。如何得到气体的选择性吸附特性参数,国内外尚无确定的方法。为此,北京化工大学曹达鹏教授根据分子模拟的方法,成功的解决了这一问题,提出了DIH理论模型,并得到了学术界的认可。北京精微高博通过和北京化工大学合作,创制了首台JW-SEL200“选择性气体吸附仪”,成功引进了DIH理论模型,实现了纳微多孔材料对混合气体选择性的预测。一旦测量了混合气中两个纯组分的吸附等温线及其吸附热,就能一键式获得不同组成的混合气体的选择性吸附特性,为材料科学家、化学家、环境及化工科学家提供了快捷方便的工具,为气体环境净化领域提供了非常有意义的测试分析方法。
  • 【标准解读】氩气吸附静态容量法测定石墨烯粉体比表面积
    氩气吸附静态容量法是用氩气(Ar)作为吸附质,在液氩温度下用物理吸附仪测试粉体样品BET吸附比表面积,并采用多点法对检测数据进行分析处理的测量方法。氮气吸附BET法是测试固态物质比表面积的常用方法,用氮气(N2)作为吸附质,当N2在固态吸附剂表面的吸附行为符合理想的经典物理吸附模型时适用。若被测样品对N2分子存在特定吸附,则会造成比表面积测试结果的准确性、可靠性差。石墨烯是一类典型的二维碳纳米材料,具有优异的电、热和机械性能,在锂离子电池、集成电路、5G通信、新型显示等电热应用领域展现出广阔的产业应用前景。石墨烯粉体是我国商业化石墨烯产品的主要类型,由大量“石墨烯纳米片”组成,在锂离子电池电极材料、导电液、导热膜、重防腐涂料等产业领域已实现规模应用。石墨烯粉体的比表面积是影响其应用性能的关键特性参数之一,比表面积的准确可靠测定有利于石墨烯粉体的生产控制,进行应用性能调控。本标准给出了用氩气吸附静态容量法对产业化石墨烯粉体的比表面积进行准确测定的标准化测试分析方法,从很大程度上完善和补充国内现有石墨烯粉体测试方法标准的不足,可用于产业化石墨烯粉体的规格评价和质量控制,为推动石墨烯产业的高质量发展提供了标准技术支撑,具有重要的实用价值。一、背景对于固态样品比表面积的测定,业内通常依据国家标准GB/T 19587-2017/ISO 9277:2010《气体吸附BET方法测定固态物质比表面积》,但产业领域内根据此标准以N2作为吸附质测定石墨烯粉体的比表面积时,不同检测实验室间无法获得良好一致的检测结果,甚至在同一实验室对同一样品进行检测时,结果重复性也较差。国家标准指导性技术文件GB/Z 38062-2019《纳米技术 石墨烯材料比表面积的测试 亚甲基蓝吸附法》是针对石墨烯粉体的比表面积测试而制定的标准测定方法,但此文件中给出的测试样品需在液体中分散制样,试样处理过程复杂,影响因素繁多,从而造成实验过程的可控性及检测结果的重复性、复现性较差。本标准采用氩气吸附静态容量法来测定石墨烯粉体的比表面积,该方法具有简单、快速、准确的特点,能够有效地评估石墨烯粉体的表面性质。二、制定过程本标准涉及的技术和产业领域广泛,因此集合了国内相关领域的一批权威代表性的科研院所、检测分析平台、石墨烯粉体生产/应用企业、分析仪器厂家等产、学、研、用机构通力合作完成。牵头单位为国家纳米科学中心,共同起草单位有中国计量科学研究院、广州特种承压设备检测研究院、贝士德仪器科技(北京)有限公司、北京石墨烯研究院、青岛华高墨烯科技股份有限公司、冶金工业信息标准研究院、北京低碳清洁能源研究院、浙江师范大学、泰州飞荣达新材料科技有限公司、中国科学院山西煤炭化学研究所。起草工作组历时3年对标准技术内容的可靠性进行了充分的实验验证,深入考察了不同类型石墨烯粉体的均匀性、稳定性,样品预处理方式、准确称重和转移、脱气处理温度和时间、吸附气体选择、测试程序、石墨烯粉体是否含有微孔及如何处理、测试数据选取和分析处理等关键技术点,确保标准的技术内容具备科学性、可操作性和广泛适用性。三、适用范围本标准适用于具有Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm~50 nm之间)吸附等温线的石墨烯粉体的比表面积测定。含有少量微孔、吸附等温线呈现出Ⅱ型和Ⅰ型相结合或Ⅳ型和Ⅰ型相结合的石墨烯粉体比表面积测定也适用。本标准描述的方法,其他类型的碳基纳米材料,如碳纳米管、碳纤维、多孔炭等比表面积的测定也可参照使用。四、主要内容本标准技术内容涵盖氩气吸附静态容量法测定石墨烯粉体比表面积的全流程,针对石墨烯粉体比表面积测定过程中的取样、称重、样品脱气处理温度和时间、测试程序设置以及比表面积计算给出了指引和规定,并在附录中给出了不同气体吸附质、不同类型石墨烯的比表面积测试实例及吸附热研究。术语和定义:包括不同类型石墨烯粉体、比表面积、气体吸附技术核心术语。一般原理:扼要介绍了氩气吸附静态容量法测量原理:以氩气为吸附质,在液氩温度(87.3 K)下通过静态容量法测量平衡状态下氩气分子的吸附等温线,采用BET多点法进行数据分析,获得石墨烯粉体样品的吸附量与比表面积。本文件应用范围包括Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm~50 nm之间)吸附等温线以及II型和I型相结合或Ⅳ型和I型相结合的吸附等温线。氩气吸附静态容量法检测示意图(图1)、不同类型的吸附等温线图(图2)附下。取样和称重:取样量应大于样品的最小取样量,并根据仪器说明书综合考虑取样量。取样量宜使总表面积处于10 m2~120 m2范围。表观密度较大的样品可直接取样;表观密度小、易飘洒的样品,宜震实后取样,且选用较大体积的测试样品管。称重时需对精密电子天平进行校准,并注意气体回填、环境温度变化等因素的影响。标准中给出了如何称取不同类型石墨烯粉体的推荐操作。脱气条件和测试程序:测定前,应通过脱气除去样品表面的物理吸附物质,同时要避免表面发生不可逆的变化。脱气温度应低于样品的热分解温度,用热重分析法确定合适脱气温度。脱气时间由样品管内的真空度决定,推荐在脱气温度下样品管内的真空度最终达到≤1 Pa。标准中给出了如何确定脱气温度和时间、详细的测试程序和应满足的要求,以及不同类型测试样品的数据点选取原则和注意事项等。实验数据处理:详细给出了基于BET多点物理吸附法计算比表面积的方法和要求,及测试样品分别在含微孔、不含微孔情况时,如何对测试数据进行处理和分析。检测报告:基于测试过程和测试结果,安全要求给出检测报告并对测试结果进行不确定度分析。测试实例:附录中详尽给出了具有典型代表性的不同类型石墨烯粉体的测试实例,并展示了用不同吸附质气体(氩气、氮气、氧气、二氧化碳、氪气)顺序进行吸附时,测试样品所表现出的吸附行为差异,实验数据明确表明某些石墨烯粉体测试样品对N2分子存在特定吸附情况。通过研究不同类型石墨烯粉体吸附N2和Ar时的吸附热差异,进一步验证了石墨烯粉体存在对氮气的特异性吸附行为的存在,表明了选择Ar作为吸附质采取氩气吸附静态容量法测定石墨烯粉体比表面积的必要性。五、理论依据浅释在石墨烯粉体测试样品均匀性、稳定性满足测试要求的前提下,用氮气吸附BET法测量石墨烯粉体比表面积的准确性、可靠性较差的原因在于N2存在特定吸附行为:由不同生产厂家、不同生产工艺的产业化石墨烯粉体,通常不可避免的含有片层内缺陷、片径边缘位错、晶界等,从而造成处于特定位点上的碳原子活跃程度存在明显差异。此外不同表面改性生产工艺也会造成石墨烯粉体样品表面功能基团(如-OH)的差异。用具有四极矩的N2分子作为吸附质,会与石墨烯粉体中的活跃碳原子或极性吸附基团间形成特定吸附,使得形成不符合理想经典物理吸附模型的分子排列取向,造成多点吸附曲线的线性相关性较差,导致比表面积测试结果的准确性、可靠性也较差。氩气分子是单原子气体分子,电子已完全配对且不存在任何成键轨道,通常认为其不具有化学活性。氩气分子不存在四极矩,作为吸附质在石墨烯粉体材料表面吸附时,对样品表面结构或官能团的敏感性低,其吸附行为符合理想经典物理吸附模型,所以在液氩温度下进行比表面积测定时,可用经典BET理论进行计算。由于氩气与氮气的极化率和分子尺寸极为相似,他们的非特定吸附性质也极为相似,在非极性吸附剂上,氮的吸附热和氩的吸附热几乎相等。本标准用不同类型、不同表面修饰、不同极性的石墨烯粉体样品进行详细的试验验证,证实了采用Ar作为吸附质测定石墨烯粉体比表面积的科学性和合理性。本文作者: 刘忍肖 教授级高工;国家纳米科学中心 中科院纳米标准与检测重点实验室Email: liurx@nanoctr.cn 闫晓英 工程师; 国家纳米科学中心 技术发展部Email:yanxy@nanoctr.cn
  • 吸附等温线及典型吸附理论浅析
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong 本文对气体吸附研究中最常用到的概念——吸附等温线进行了科普和分类,并对Langmuir吸附等温理论、BET理论给出了自己的分析和见解,深入浅出的专业文章即将到来,以飨读者。 /p p style=" text-align: justify text-indent: 2em " strong 吸附等温线小科普 /strong /p p style=" text-align: justify text-indent: 2em " 对于给定的固体-气体体系,在温度一定时,可以认为吸附作用势一定,这时候,吸附量是压力的函数,这个关系叫做吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体在固体表面的吸附状态多种多样,目前,把等温线分为六类,实际的各种吸附等温线大多是这六类等温线的不同组合。设固体表面与第一层(单分子层)吸附分子的吸附作用能为E1,第n层与第n+1层的作用能为En。 /p p style=" text-align: justify text-indent: 2em " (1)I型等温线 /p p style=" text-align: justify text-indent: 2em " I-A型(E1& gt & gt En) /p p style=" text-align: justify text-indent: 2em " 由于单分子层的吸附作用力很大,表面吸附位的反应活性高,属电子转移型吸附互相作用,这时候的吸附大多数不可逆,我们认为是化学吸附。在金属与氧气、金属与一氧化碳、金属与氢气的表面反应体系中常见,这种等温线是由Langmuir研究,所以也叫做Langmuir型。等温线如下图所示。 span style=" text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/91952d99-a96e-444f-b86b-f98a78a8e437.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " I-B型 /p p style=" text-align: justify text-indent: 2em " 活性炭和沸石常呈现这种类型,这些固体具有微孔,外表面积比孔内表面积小很多。在相对压力较低时,吸附曲线迅速上升,发生微孔内吸附。如上图所示。 /p p style=" text-align: justify text-indent: 2em " (2)II型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线一般为非多孔性固体表面发生多分子层吸附,比如非多孔性金属氧化物粒子吸附氮气或者水蒸气,此外,发生亲液性表面相互作用时也为此类型。在相对压力约为0.3时,第一层吸附大致完成,随着相对压力增大,开始形成第二层,在饱和蒸气压时,吸附层数无限大。Brunauer、Emmet和Teller从理论导出这种等温线,故这种类型的等温线也被称作BET等温线。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/11476386-c8ca-4d9f-a9b2-bd2c87e56d2c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " (3)III型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 在憎液性表面发生多分子层吸附,或者固体和吸附质的吸附相互作用小于吸附质之间的相互作用时呈现这种类型。比如,水蒸气在石墨表面上吸附,或者,水蒸气在进行过憎水处理的非多孔性金属氧化物上的吸附。因此,这种吸附在低压区的吸附量较少,相对压力越大,吸附量越多。如下图。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/931c7ce4-fbdd-4933-bf7a-3a53890d9de5.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " (4)IV型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 氮气、有机蒸汽和水蒸气在硅胶上吸附属于这一类型。在相对压力约为0.4时,吸附质发生毛细凝聚,等温线迅速上升,脱附等温线与吸附等温线不重合,脱附等温线在吸附等温线的上方,产生吸附滞后,形成一个“吸附滞后环”。在相对压力较大时,由于中孔内的吸附已经结束,吸附只在外表面上发生,曲线平坦,在相对压力接近1时,在大孔上吸附,曲线上升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/f555414b-be52-465d-9be6-977a773a7321.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify text-indent: 2em " (5)V型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 发生在多孔固体上,表面相互作用同III型,例如水蒸气在活性炭或憎水化处理过的硅胶上的吸附。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2900e13b-5186-4bfc-90dc-13e79adb4bdd.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: justify text-indent: 2em " (6)VI型等温线 /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线又称为阶梯型等温线。非极性的吸附质在化学性质均匀的非多孔固体上吸附时较为常见。如将炭在2700℃以上进行石墨化处理后,再吸附氮气、氩气、氪气。这种阶梯型等温线是先形成第一层二维有序的分子层后,再吸附第二层,第二层显然受第一层的影响,因此成为阶梯型。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2f1b1b14-d591-4786-98e0-0eef916902cd.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 典型吸附理论浅析 /strong /p p style=" text-align: justify text-indent: 2em " 不同的固体表面与吸附质组合得到各种不同的吸附等温线,这些等温线的形状反映了固体表面结构、孔结构和固体-吸附质的相互作用,通过解析这些等温线就能知道吸附相互作用和表征固体表面。对于常见的等温线,提出许多吸附相互作用的理论。下面仅介绍目前具有代表性的理论。 /p p style=" text-align: justify text-indent: 2em " Langmuir方程是常用的吸附等温线方程之一,是由物理化学家朗格缪尔于1916年根据分子运动理论和一些假定提出的。这个理论认为,在固体表面的分子或原子存在向外的剩余价力,可以吸附分子,吸附位可以均匀的分布在整个表面,但是只是吸附在表面的特定位置,称之为特异吸附。 /p p style=" text-align: justify text-indent: 2em " Langmuir吸附等温方程如下式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/81e08f48-a1ad-4e98-9589-7ca91cac2197.jpg" title=" a.png" alt=" a.png" / /p p style=" text-align: justify text-indent: 2em " 其中,P为氮气压力、V为实际吸附量、Vm为单层饱和吸附量、b为与吸附热相关的常数。在不同的氮气压力P下测出氮气的实际吸附量V,用Langmuir方程作图得到一条直线,该直线的斜率的倒数即为单层吸附量Vm,进而计算出比表面,称为Langmuir比表面,Langmuir比表面对于微孔具有重要的意义。 /p p style=" text-align: justify text-indent: 2em " 布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在Langmuir方程基础上提出的描述多分子层吸附理论,通过对气体吸附过程的热力学与动力学分析,推出氮吸附量随氮气分压而变的BET方程: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/e4e4e5d7-cb69-473d-84f0-ceda0cf74951.jpg" title=" b.png" alt=" b.png" / /p p style=" text-align: justify text-indent: 2em " 分析得出,P/P0在0.05~0.35范围中,BET是一个线性方程,该直线的斜率与截距之和的倒数是单层饱和吸附量,从而算出比表面积。通过BET方程求出比表面积成为目前国际通用的方法,被称为BET比表面。 /p p style=" text-align: justify text-indent: 2em " 根据材料不同,特别是微孔材料,由于在很低的压力下就完成了单层吸附,因此,BET方程的线性范围会向低压方向移动。对于孔径极小的分子筛,线性范围应取0.005~0.01;微孔材料的线性范围应取0.005~0.1;介、微孔复合材料线性范围应取0.01~0.2;介孔、大孔材料的线性范围取0.05~0.35。但是根据实际材料的不同,线性范围的取点应根据实际情况进行调整,使BET直线的线性良好才具有一定的参考价值。对于微孔材料,更接近于单层吸附的特征,Langmuir比表面值应具有更大的参考意义。 /p p style=" text-align: right " strong 作者:精微高博 /strong /p p style=" text-align: justify text-indent: 2em " (本文由精微高博团队供稿,不代表仪器信息网本网观点) /p
  • 一文带你走入物理吸附的天地
    p style=" text-align: justify text-indent: 2em " 在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。 /p p style=" text-align: justify text-indent: 2em " 影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 325px " src=" https://img1.17img.cn/17img/images/201906/uepic/d35f3ecb-de71-46ec-ad8f-94fe24a2882c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 325" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。 /p p style=" text-align: justify text-indent: 2em " 在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。 /p p br/ /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/184f6781-8d9a-4823-94c9-62247baceeb6.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " 根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。 /p p style=" text-align: justify text-indent: 2em " 在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。& nbsp 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。 /p p style=" text-align: justify text-indent: 2em " 多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。 /p p style=" text-align: justify text-indent: 2em " 物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。 /p p style=" text-align: justify text-indent: 2em " 下面是静态体积法的物理吸附仪器示意图:真空泵、一个或多个气源、连接样品管的金属或玻璃歧管、冷却剂杜瓦、样品管、饱和压力测定管、压力测量装置(压力传感器)。其中歧管的体积经过校准,并含有温度传感器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0a23586e-b60b-4eb0-bb98-11447a4bcf39.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " 1 :样品管 & nbsp 2:低温杜瓦 & nbsp 3:真空泵 & nbsp 4:压力传感器 & nbsp 5: 歧管 /p p style=" text-align: center text-indent: 2em " 6: 饱和蒸汽压测定管 & nbsp 7 : 吸附气体 & nbsp 8 :死体积测定气体He /p p style=" text-align: justify text-indent: 2em " 静态体积法测试主要流程(以氮气吸附为例):首先将样品进行脱气净化处理,之后测量死体积(样品池)空间,然后将样品冷却到液氮温度,将氮气注入到已知体积的歧管中,记录压力与温度,之后样品池与歧管之间的阀门打开,氮气扩散到样品池,由于空间体积增大和样品对氮气的吸附作用,压力下降,通过压力的下降来计算气体吸附量。计算过程基于克拉柏龙方程:PV = nRT。其中P是气体的压强,V为气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度; R为理想气体常数。吸附量由下面公式得到: /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/81d0c349-bbb5-414a-ad42-095759c73754.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 如果温度和压力恒定,气体(吸附质)和表面(吸附剂)的作用能是不变的,在一个特定表面的吸附量也是不变的,因此在恒定温度下,可以用平衡压力对单位重量吸附剂的吸附量作图。而这种在恒定温度下,吸附量对压力变化的曲线就是特定气-固界面的吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体是作为吸附探针来分析材料比表面积和孔径分布的,它应该满足几个条件: 1) 气体相对惰性,不与吸附剂发生化学反应; 2) 物理吸附一般是弱的可逆吸附,为了使足够气体吸附到固体表面,测量时固体须冷却到吸附气体的沸点; 3) 符合或满足理想气体方程的使用条件。 /p p style=" text-align: justify text-indent: 2em " N2(77 K)是最常见的吸附气体,可满足常规分析;Ar(87 K)为微孔分析提供更准确的分析结果、更快的分析速度、更高的起始压力;CO2(273 K)对微孔碳材料具备最快的分析速度,分析孔径可低至0.35 nm;Kr (77 K)适用于超低比表面积分析;Kr(87 K)适用于薄膜样品的孔径分析。我们可根据样品特点来选择最合适的吸附气体。 /p p style=" text-align: justify text-indent: 2em " 在进行比表面积分析时,我们经常会用到Langmuir 和BET方程,其中Langmuir 方程是基于单分子层吸附理论,而BET 方程式基于多层分子吸附理论,也是目前最流行的比表面分析方法,适合于大部分样品。 /p p style=" text-align: justify text-indent: 2em " 在进行孔径孔容分析时,可选择的理论模型会更多,不同的理论模型假设条件不同,给出的计算结果也是不同的,所以我们应选择最适合样品性质的理论模型。根据经验,BJH、DH模型适用于介孔材料分析, DA、DR、 HK、SF模型适用于微孔材料分析,NLDFT、QSDFT适用于微孔/介孔材料分析。NLDFT 是非定域密度泛函理论,研究表明,NLDFT 计算出的比表面值最接近真实值,并且该理论适用于微孔和介孔材料。 /p p style=" text-align: right text-indent: 2em " strong 作者:安东帕研发团队 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由安东帕供稿,不代表仪器信息网本网观点) /p
  • iPoreDFT正式发布,国产高端吸附仪迎来重大利好
    近日,理化联科(北京)仪器科技有限公司发布其首款基于非定域密度函数理论(NLDFT)的物理吸附等温线数据处理软件,结束了国外吸附分析软件在这一领域的长达20年的主导地位,填补了国内这一科研领域的空白,并取得了突破性的进展。基于统计力学发展起来的NLDFT吸附分析法,在微观分子结构层面上描述吸附剂的吸附现象,是目前最先进的微介孔分析方法。这种方法具有获得微介孔材料真实比表面及孔径的能力,并且可以在微介孔全范围内区分微孔面积和外表面积。在科研领域,该方法已被公认为最流行的物理吸附分析方法,并得到广泛的应用。iPoreDFT具有自主知识产权,弥补了现有国外分析软件将孔径分布模型人为划区组合的缺陷,可以在吸附等温线全域范围内找到相应孔型,并确定其含量比例。本次发布的iPoreDFT1.0版本拥有6个基础模型:1. 基于碳材料,氮气在77K温度下的裂隙孔模型2. 基于碳材料,氮气在77K温度下的柱状孔模型3. 基于碳材料,氮气在77K温度下的球形孔模型4. 基于分子筛,氩气在87K温度下的裂隙孔模型5. 基于分子筛,氩气在87K温度下的柱状孔模型6. 基于分子筛,氩气在87K温度下的球形孔模型上述模型提供任意两种或三种基础模型的混合模型,如氮气在77K温度下的裂隙孔+柱状孔混合模型。混合模型的加入可以大大减小拟合误差,获取更加真实的孔径分布及比表面值。因此,这些基础模型实际可组合出至少16种孔径分布模型。上图:生物碳材料选取裂隙孔+筒形孔复合模型拟合曲线,拟合误差小于1%上图:上述生物碳材料选取裂隙孔+筒形孔复合模型下的孔径分布图上图:一种氧化物材料选取裂隙孔+筒形孔+球形孔复合模型拟合曲线,拟合误差小于1%上图:上述氧化物材料选取裂隙孔+筒形孔+球形孔复合模型下的孔径分布图理化联科(北京)仪器科技有限公司拥有近30年气体吸附分析仪器领域的专业团队,通过国际合作及自主创新,以革命性的新一代iPore系列物理吸附分析仪为先导,工以匠心,追求极致,引领比表面分析的重复性和准确性达到崭新的高度。理化联科将不断开发新的DFT模型,以满足沸石分子筛和MOF/COF孔径分布研究的需要。
  • 基于超高效液相色谱-质谱法的肽段分析中非特异性吸附评估及通用型最小化策略
    近年来,蛋白质组学技术在肽和蛋白质类新型治疗药物的蓬勃发展以及临床新型大分子生物标志物的深入发掘中被日益广泛应用。应用方式的迭代对生物大分子的分析技术提出了更高的要求。基于蛋白质特征肽段检测的自下而上的蛋白质组学技术(bottom up proteomics)是现有研究中具有较高灵敏度与分辨率的蛋白质定性定量方法。开发多肽的生物分析方法是极具挑战的,除了所需的低检出限外,多肽的非特异性吸附性质,使其极易在接触到的材料表面发生吸附,进而导致分析全流程中待测物的丢失或干扰,给定性和定量分析引入巨大风险。例如在蛋白组学研究的质谱数据库搜索中,即使系统中微量肽段的损失或残留亦可能导致假阳性或假阴性结果。而在高灵敏度的多肽定量方法的开发中,肽段的非特异吸附对定量分析的线性、准确度和精密度均有负面影响。低浓度肽段溶液的吸附性质会更加明显,表现形式为标准曲线的非线性,最终导致定量限的不必要升高以及方法的重复性差。已有一些研究在分子水平上解释这种吸附行为,然而目前对其潜在的机制和相互作用仍然知之甚少。Eeltink等基于分子动力学模拟,提出了一种三相分子机制解释肽段从溶液吸附到强相互作用不带电固定相上的原理。Kristensen等研究了样品容器对阳离子多肽吸附的影响,当1 μmoL/L肽溶液在硼硅酸盐或聚丙烯瓶中存储1 h后,肽段的回收率仅有10%~20%。也有研究通过在溶剂中添加有机试剂、酸/碱性溶液、表面活性剂、吸附竞争剂或调整流动相组成等方法减少这类吸附。这些研究论文大多对一组特定的多肽和/或表面材料进行研究,但均未给出可用来预测多肽吸附特性的规律,也未给出通用的解决吸附的方法。本研究选择牛血清白蛋白(BSA)作为模型蛋白质,以其酶解后的肽段作为包含亲水性和疏水性多肽的“典型”多肽组样本。首先通过超高效液相色谱-高分辨质谱(UPLC-HRMS)的测定,分析常见多肽理化参数与上述多肽组的非特异吸附程度的关联性。然后基于超高效液相色谱-三重四极杆质谱(UPLC-QQQ-MS/MS)建立对强吸附肽段吸附程度的评估方法,从样品制备至分析测定建立全过程试验设计,考察不同材质的制备、储存耗材对肽段吸附的影响,以及考察不同色谱条件对肽段残留的影响,最终提出多肽全流程分析中减少非特异性吸附的通用型策略。01样品制备方法取10 mg BSA溶于10 mL水中,制得1 mg/mL蛋白储备液,进一步以水稀释为100 μg/mL的工作液。取200 μL上述工作液于蛋白质低吸附离心管中 加入65 μL 500 mmol/L碳酸氢铵和60 μL 50 mmol/L二硫苏糖醇,于60 ℃水浴加热60 min对蛋白质进行还原 放冷至室温后加入120 μL 50 mmol/L碘代乙酰胺,于暗处反应30 min进行烷基化 加入100 μg/mL的胰蛋白酶5 μL,于37 ℃水浴中酶解8 h,加入甲酸20 μL终止反应,12000 g离心15 min后,取200 μL上清置于蛋白质低吸附的进样瓶中作为混合肽段溶液待测。02超高效液相色谱-高分辨质谱方法参数色谱条件:色谱柱采用Waters Acquity Premier Peptide CSH C18(100 mm×2.1 mm, 1.7 μm) 柱温为40 ℃ 流速为0.25 mL/min 流动相A、B两相分别为0.1%甲酸水溶液和0.1%甲酸乙腈溶液。洗脱梯度为0~1 min, 1%B 1~13 min, 1%B~40%B 13~13.1 min, 40%B~90%B 13.1~16 min, 90%B 16~16.1 min, 90%B~1%B 16.1~20 min, 1%B。进样器温度10 ℃ 进样量5 μL。质谱条件:毛细管电压3 kV,锥孔电压30 V,离子源温度120 ℃,脱溶剂气温度450 ℃,锥孔气流速25 L/h,脱溶剂气流速800 L/h。电喷雾电离(ESI)源、正离子模式下测定,MSE模式采集,扫描范围m/z 50~2000 数据采集时使用亮氨酸脑啡肽校正液进行实时质量校正,以保证采集质量数的准确性与重复性。采集后的数据使用Unifi软件处理。03相对残留量的测定和肽段分级策略将上述混合肽段溶液经上述条件采集、Unifi软件分析后,可得BSA酶解后肽段组的实际肽段组成和每个肽段的响应值Area(供试品溶液)。在进样上述供试品溶液后连续进样3针空白溶剂,以3针空白溶剂中检测到的对应肽段响应之和Area(Blank 1+Blank 2+Blank 3)计为该肽段的残留总量,该肽段的相对残留量为肽段的残留总量与肽段响应值的比值。基于肽段的响应与相对残留量,可将BSA酶解后的肽段组分为如下四类:Class Ⅰ,响应高且无残留的肽段 Class Ⅱ,响应高但有残留的肽段 Class Ⅲ、Class Ⅳ分别为响应低,无吸附和有吸附的肽段。响应的高低以是否大于中位数计,有无残留以Area(Blank 1+Blank 2+Blank 3)是否有检出判断。04超高效液相色谱-三重四极杆质谱方法参数色谱条件:色谱柱采用Waters ACQUITY UPLC BEH C8(100 mm×2.1 mm, 1.7 μm) 柱温30 ℃ 流速0.4 mL/min 流动相A、B两相分别为0.2%甲酸水溶液和0.2%甲酸乙腈溶液。洗脱梯度为0~2 min, 2%B 2~5 min, 2%B~60%B 5~5.1 min, 60%B~90%B 5.1~8 min, 90%B 8~8.1 min, 90%B~2%B 8.1~11 min, 2%B。进样器温度10 ℃ 进样量5 μL。洗针液为90%乙腈水溶液(含0.2%甲酸)。质谱条件:离子化电压5500 V 气帘气压力0.14 MPa 离子源温度500 ℃ 喷雾气、辅助加热气压力0.38 MPa。ESI源正离子模式下测定,多反应监测(MRM)模式采集,12条Class Ⅱ类肽段的离子对、碰撞能量(CE)、去簇电压(DP)值经Skyline软件协助优化后结果如原文表1所示。文章信息色谱, 2022, 40(7): 616-624 DOI: 10.3724/SP.J.1123.2021.12012张莹1,2, 杨静1,2, 马跃新1,2, 曹玲2*, 黄青2*1.南京中医药大学药学院, 江苏 南京 2100232.江苏省食品药品监督检验研究院, 国家药品监督管理局化学药杂质谱研究重点实验室, 江苏 南京 210019
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew.Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • 许人良:气体吸附测量孔径分布中的密度函数理论
    在气体吸附实验中,一定重量的粉体材料在样品管中通过真空或惰性气体净化加热和脱气以去除吸附的外来分子后,在超低温下被抽至真空,然后引入设定剂量的吸附气体,达到平衡后测量系统中的压力,然后根据气体方程计算出所吸附的量。这个加气过程反复进行直至达到实验所预定最高压力,每一个压力以及单位样品重量所吸附的气体量为一数据点,最后以相对压力(试验压力P与饱和蒸汽压Po之比)对吸附量作图得到吸附等温线。然后从到达最高压力后抽出一定量的气体,达到平衡后测量压力,直到一定的真空度,以同样方法做图,得到脱附等温线。实验的相对压力范围P/Po可从10-8或更高的真空度至1,根据吸附分子的面积σ,使用不同的吸附模型,例如Langmuir或BET公式,即可算出材料的比表面积。然而,从气体吸附得出材料的孔径分布就不那么简单了。当代颗粒表征技术可分为群体法与非群体法。在非群体法中,与某个物理特性有关的测量信号来自于与此物理特性有关的单个“个体”。例如用库尔特计数仪测量颗粒体积时,信号来自于通过小孔的单一颗粒;用显微镜测量膜上的孔径时,测量的数据来自于视场中众多的单个孔。由于这些物理特性源自于单个个体,最后的统计数据具有最高的分辨率,从测量信号(数据)得出物理特性值的过程不存在模型拟合;知道校正常数后,一般有一一对应关系。而在群体法中,测量信号往往来自于众多源。例如用激光粒度法测量颗粒粒度,某一角度测到的散射光来自于光束中所有颗粒在该角度的散射;用气体吸附法表征粉体表面与孔径时,所测到的吸附等温线与样品中所有颗粒的各类孔有关。群体法由此一般需要通过设立模型来得到所测的物理特性值及其分布。群体法表征技术得到的结果除了与数据的质量(所含噪声、精确度等)外,还与模型的正确性、与实际样品的吻合性以及从此模型得到结果的过程有关。几十年前,当计算能力很弱时,或采用某一已知的双参数分布函数(往往其中一个参数与分布的平均值有关,另一个参数与分布的宽度有关),或通过理论分析,建立一个多参数方程,然后调整参数拟合实验数据来得到结果(粒径分布或孔径分布),而不管(或无法验证)此分布是否符合实际。在粒度测量中,常用的有对数正态分布函数、Rosin-Rammler-Sperling-Bennet(RRSB)分布函数、Schulz-Zimm(SZ)分布函数等;在孔径分布中,常用的有Barrett-Joyner-Halenda(BJH)方法,Dubinin-Radushkevich(DR)方法、Dubinin-Astakhov(DA)方法、Horwath-Kawazoe(HK)方法等。随着计算能力的提高,函数拟合过程在群体法粒径测量中已基本被淘汰,而是被基于某一模型的矩阵反演所代替。在激光粒度法中,这个进步能实现的主要原因是球体模型(一百多年前就提出的Mie光散射理论或更为简单的,应用于大颗粒的Fraunhofer圆盘衍射理论)相当成熟,也能代表很多实际样品,除了长宽比很大的非球状颗粒以外。在孔径分析中,尽管函数拟合还是很多商用气体吸附仪器采用的分析方法,但矩阵反演法随着计算机能力的提高,以及基于密度函数理论(DFT)的孔径模型的不断建立与反演过程的不断完善而越来越普及,结果也越来越多地被使用者所接受。在孔径测量方面的DFT一般理论源自于1985年一篇有关刚性球与壁作用的论文[ⅰ]。基于气体吸附数据使用DFT求解孔径分布的实际应用开始于1989年的一篇论文[ⅱ],此论文摘要声称:“开发了一种新的分析方法,用于通过氮吸附测量测定多孔碳的孔径分布。该方法基于氮在多孔碳中吸附的分子模型,首次允许使用单一分析方法在微孔和介孔尺寸范围内确定孔径的分布。除碳外,该方法也适用于二氧化硅和氧化铝等一系列吸附剂。” 该方法从吸附质与气体的物理作用力出发,根据线性Fredholm第一类积分方程从实验等温线数据直接进行矩阵反演的方法算出孔径分布。所建立的密度函数理论针对狭窄孔中的流体结构,以流体-流体之间和流体-固体之间相互作用的分子间势能为基础,对特定孔径与形态的空隙计算气态或液态流体密度在一定压力下作为离孔壁距离的函数,对不同孔径的孔进行类似计算,得出一系列特定压力特定孔径下单位孔容的吸附量。基于这个模型,可以计算某个孔径分布在不同压力下的理论吸附等温线,然后通过矩阵反演过程,以非负最小二乘法拟合实际测量得到的等温线,从而计算出孔径分布的离散数据点。上述文章所用的模型是较简单的均匀、定域的、两端开口的无限长狭缝。自此,随着计算机能力的不断提高,30多年来这些模型的不断复杂化使得模型与实际孔的状况更加接近:从定域到非定域,从一维到二维,从均匀孔壁到非均匀孔壁;孔的形状从狭缝、有限圆盘、圆柱状、窗状,到两种形状共存;从较窄的孔径范围到涵盖微孔与介孔范围,从通孔到盲孔;吸附气体从氮气、氩气、氢气、氧气、二氧化碳,到其他气体;吸附壁从炭黑、纳米碳管、分子筛,到二氧化硅及其他材料[ⅲ];总的模型种类已达四、五十种。矩阵反演的算法也越来越多、越来越完善,同时采用了很多在光散射实验数据矩阵反演中应用的技巧,如正则化、平滑位移等。当前,于谷歌学者搜索“DFT adsorption”,论文数量则高达56万篇,其中包含各类专著与综述文章 [ⅳ] 。相信随着计算技术的不断发展与计算速度的不断提高,DFT在处理气体吸附数据中的应用一定会如光散射实验数据处理一样取代函数拟合法,成为计算粉体材料孔径分布的标准方法。而商用仪器的先进性,也必然会从传统的硬件指标如真空度、测量站、测量时间与参数,过渡到重点衡量经过其他方法核实验证的DFT模型的种类以及矩阵反演算法的稳定性与正确性。参考文献【i】Tarazona, P., Free-energy Density Functional for Hard Spheres, Phys Rev A, 1985, 31, 2672 –2679.【ⅱ】Seaton, N.A., Walton, J.P.R.B., Quirke, N., A New Analysis Method for the Determination of the Pore Size Distribution of Porous Carbons from Nitrogen Adsorption Measurements, Carbon, 1989, 27(6), 853-861.【iii】Jagiello, J., Kenvin, J., NLDFT adsorption models for zeolite porosity analysis with particular focus on ultra-microporous zeolites using O2 and H2, J Colloid Interf Sci, 2022, 625, 178-186.【iv】 Shi, K., Santiso, E.E., Gubbins, K.E., Current Advances in Characterization of Nano-porous Materials: Pore Size Distribution and Surface Area, In Porous Materials: Theory and Its Application for Environmental Remediation, Eds. Moreno-Piraján, J.C., Giraldo-Gutierrez, L., Gómez-Granados, F., Springer International Publishing, 2021, pp 315– 340.作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及近期由化学工业出版社出版的《颗粒表征的光学技术及其应用》。扫码购买《颗粒表征的光学技术及其应用》
  • BET是比表面及孔径吸附的缩写吗
    BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。1983年,三位科学家对Langmuir 理论进行修正,提出著名的BET理论,其正式名称是多分子层吸附理论,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。多分子层吸附理论所采用的模型的基本假设是:一、固体表面是均匀的,发生多层吸附;二、除第一层的吸附热外其余各层的吸附热等于吸附质的液化热。该理论放弃了单分子吸附层的观点,认为在物理吸附中,固体与气体间的吸附是依靠分子间引力而发生的;而且已被吸附的分子仍有引力,因此在第一吸附层之上还可以吸附第二层,第三层,… … 也就是多分子层吸附。从多分子层吸附理论得到的BET吸附等温式,可用于测试颗粒的比表面积、孔容、孔径分布以及氮气吸附脱附曲线。运用 BET方法的物理吸附等温线对吸附表面积进行测定,主要包含两个步骤:第一步,做出BET图,从中导出单层吸附量;第二步,根据单层吸附量计算比表面积。由于BET 法适合大部分样品,被广泛应用于许多多孔及无孔材料BET面积α的确定。其最大优势是考虑到了由样品吸附能力不同带来的吸附层数之间的差异,这是与以往标样对比法最大的区别。BET吸附等温式是行业中应用最广泛,测试结果可靠性最强的方法,几乎所由国内外的相关标准都是依据BET吸附等温式建立起来的。但BET 法并不适用于所有样品,因此按介孔材料的分析方法分析微孔材料时,由物理吸附分析仪自动生成的BET 比表面值是错误的。ISO9277-2010 和 IUPAC都对含微孔材料的BET比表面分析方法及判断BET 结果的方法做出了规定。
  • 使用原代细胞3D生物打印皮肤组织模型
    导读皮肤是我们与外部环境的第一个主要接口,是一个非常有吸引力的再生器官,在过去40年里,科学家们对它进行了大量的探索(Loai, 2019 Tarassoli, 2017)。皮肤组织模型的广泛应用领域,从药物筛选到化妆品测试和伤口愈合研究,部分原因是因为皮肤组织的组成相对简单,可以描述为两个主要层,每层都具有一种主要细胞类型。在过去已经建立了2D模型和培养系统。然而,这些模型并不能完全重述原生皮肤,也缺乏3D模型提供的空间组织(Loai,2019 Singh,2020 Vijayavenkataraman,2016)。为了增加物理相关性,提高体外结果与体内条件的可译性,迫切需要3D皮肤组织模型。仪器:CELLINK BIOX墨水:GelXA Skin生物墨水和Col MA生物墨水细胞:人真皮成纤维细胞、表皮角质形成细胞过程:❶设计皮肤模型❷打印真皮层和表皮层❸3D生物打印皮肤组织模型转移到transwell板中,皮肤组织模型从液体培养到气液界面培养。结果:该皮肤组织模型的构建方法创建了一个完整且坚固的结构,可保持它在整个实验过程中的形状。样品横切面的H&E染色初步表明,6天时真皮和表皮这两个隔室之间的连接很弱。但在第14天,两层已经合并(图4)。在第14天,可以看到表皮平滑地跟随真皮的轮廓,真皮和角质形成细胞开始重组。进一步观察表皮发育,免疫荧光图像显示角蛋白14的表达在整个培养过程中保持不变,而角蛋白10和聚丝蛋白的表达在第14天增加。角蛋白10作为分化角质细胞的标记物,位于表皮的中间部分,而角化层的标记物聚丝蛋白应位于表皮的最外层。角蛋白10和聚丝蛋白表达的明显增加表明角质细胞已经开始分化。在第14天,聚丝蛋白的表达向结构的顶部,朝向气-液界面,显示了细胞在生物打印模型内的重组能力。总结:这项研究举例说明了如何使用原代细胞培养系统和CELLINK的3D生物打印平台进行全厚度皮肤组织模型的3D生物打印。★ GelXA SKIN生物墨水为皮肤发育提供了良好的环境,ColMA表皮生物墨水支持皮肤组织模型内表皮的形成。★ 该皮肤模型设计为表皮和真皮的发育形成了一个稳定的平台,在14天的培养期间保持稳定,但它可以培养更长时间,以允许其他真皮和表皮标记物进一步成熟。
  • 崂应发布崂应3038型 智能吸附管法VOCs采样仪新品
    崂应3038型 智能吸附管法VOCs采样仪 本仪器是按照固定污染源废气和环境空气挥发性有机物的测定标准设计,应用三大核心系统,对固定污染源废气和环境空气中的VOCs(挥发性有机化合物)进行固相吸附法采样,利用含有合适吸附剂的吸附管采集固定污染源废气和环境空气中所排放的挥发性有机物,可供环保、卫生、劳动、安监、军事、科研、教育等部门用于各种固定污染源或者环境空气中VOCs的测定。 执行标准 n HJ644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法n HJ734-2014 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法 主要特点 控制系统n 独特的LOCS系统设计,利用吸附管采集环境空气和固定污染源中所排放的挥发性有机物n 采用新型高精度质量流量控制器,精确控制微小流量,确保微小流量的稳定性与准确性n 自动计算累计采样体积,并同时根据气压、温度换算标况采样体积n 可设定采样时间和体积两种方式进行采样,满足不同用户需求动力系统n 精密DS.采样泵,大大提高了负载能力,增强了稳定性和使用寿命 操控系统n 外观采用L-Ergo设计,符合人体工程学原理,手持更舒适n 宽温高亮TC-OLED显示屏,适用于高寒地区,通俗软件显示界面,实现良好人机交互n 预留蓝牙模块,可连接便携式蓝牙打印机轻松掌握实时数据n 提供USB接口,可将采样数据文件导出,同时支持升级仪器主板程序n 预留物联网模块接口,可拓展联网功能OTHERn 体积小主机轻、携带方便、适合野外工作n 内置大容量锂电池,可在无外部供电情况下支持长时间采样标准配置 n 主机n 电源适配器n 干燥筒n 连接管n 三脚支架n 转接丝 可选配置 n 崂应1086F型 吸附管法废气VOCs取样管n 蓝牙模块n 蓝牙打印机*说明:以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:本产品采用固相吸附法,将环境空气和固定污染源排放中挥发性有机物采集到填充了合适吸附剂的吸附管中。与市场上其他同类产品相比,微小流量能够更加精准的采样,且整机小巧便携,一手即可掌控! 1、小巧便携:170mm× 210mm× 80mm(长× 宽× 高),主机重量约1.5kg。 2、固相吸附法:采样仪采用固相吸附法,将环境空气和固定污染源排放中挥发性有机物采集到填充了合适吸附剂的吸附管中。 3、内置锂电池:采用进口无刷隔膜泵,负载能力强,使用寿命长。 4、功能多样:适用于环境空气和固定污染源多种工况采样,兼容多种规格长度吸附管。 5、微流量,精掌控:高精度质量流量控制器,确保微小流量精确控制。采样流量10~200mL/min 崂应3038型 智能吸附管法VOCs采样仪
  • 华璞恒创物理吸附仪开年入驻四川大学
    2023年开年1月,华璞恒创全自动物理吸附仪PM7240入驻四川大学,助力高校科研。四川大学是教育部直属全国重点大学,是国家布局在中国西部的重点建设的高水平研究型综合大学,是国家“双一流”建设高校(A类)。四川大学地处中国历史文化名城——“天府之国”的成都。是中华人民共和国教育部直属、中央直管副部级的全国重点大学;位列国家“双一流”、 “211工程”、“985工程”,入选“珠峰计划”、“2011计划”、“111计划”、“强基计划”、卓越工程师教育培养计划、卓越医生教育培养计划、卓越法律人才教育培养计划、国家建设高水平大学公派研究生项目、全国深化创新创业教育改革示范高校,为学位授权自主审核单位、中国研究生院院长联席会会员、医学“双一流”建设联盟成员、自主划线高校,是国家布局在中国西部重点建设的高水平研究型综合大学。PM7240系列全自动物理吸附仪是一款多站快速比表面及孔分布分析仪器,仪器配有可以独立使用的8站式脱气站,触摸屏程序升温控制,仪器提供4站式分析站,具有性价比高、空间占用小、升级简易、分析过程全自动、各种意外情况处理安全有效等特点,测试软件支持用户自定义压力点文件(吸、脱附压力点个数可多至1000个),并提供多种数据处理模型。
  • 康塔仪器与中科院过程所交流IUPAC物理吸附新规范
    2015年11月30日,美国康塔仪器中国区总经理杨正红造访中国科学院过程工程研究所,与五十多位专家学者、研究人员一起,就“气体吸附法测定比表面及孔径分布技术进展”进行了技术交流。杨总详细阐述了8月份国际化学领域权威的国际纯粹与应用化学联合会(IUPAC)所公布的物理吸附分析新规范。 IUPAC物理吸附新规范将是随后制定新的比表面积、孔径分析的ISO、ASTM标准的最重要的科学基础。美国康塔仪器公司的首席科学家Matthias Thommes博士作为第一起草人,在这份规范的制定中做出了主要贡献。中科院过程工程研究所研究方向为多相反应与分离过程中的新理论、新技术、新方法,重点解决生化、资源环境、材料、能源等领域中的共性、关键性问题,开发新材料、新工艺和新设备,使之工程化、工业化。结合新规范,双方就气体吸附法比表面及孔径分布技术从理论到应用进行了深入交流。 在研讨会上,杨总提出“分析的关键是测得准、算得准,那么,如何做到呢?”这个命题。算得准,要求透彻掌握理论,并了解其工作原理;测得准,需要选择最合适的设备,并熟练操控。不同的吸附理论,都有其适用范围。BET理论的适用范围如何?含微孔样品的BET比表面计算需要注意什么?气体吸附法测量孔径分布测试,经典方法的局限在哪儿?氩吸附和CO2吸附的各自的用武之地何在?为什么评估微孔材料比表面的气体探针推荐选择氩气?如何选择恰当的孔分布计算模型?为什么越来越多的人开始青睐NLDFT和QSDFT方法? 本次交流会,杨总和各位专家针对上述问题畅所欲言、交流心得,彼此都获益良多。 IUPAC新规范 简介:近30年来,随着新的材料如各种有序介孔分子筛、微孔分子筛、金属-有机框架(MOFs)等不断地被合成得到,原有的规范已经不能满足现今科研的要求。新规范中,吸附等温线的类型由原来的6类增加了2种亚分支、现在共有8种吸附等温线,完善了微孔和介孔的类型;脱附迟滞环的类型也增加了2种。 图2 新的吸附等温线和脱附迟滞类型 对于孔道吸附的表征,Ar(87K)的分析条件被确立为表面有活性基团的微孔分子筛、金属-有机框架材料、微孔氧化物的唯一推荐方法,因为Ar分子具备下列好处:1. 球形分子,截面积确定,比表面积分析比N2更加准确;2. Ar没有四级矩,吸附起始压力高,有利于气体分子在微孔中的扩散,分析速度大大加快。 该规范还推荐了CO2(273 K)方法分析碳材料的微孔孔径分布、Kr(77 K)方法分析超低比表面积样品的比表面积值的方法等。此外,DFT方法被推荐于分析微孔、介孔材料的孔径分布。 美国康塔仪器已经对此规范推出了相应的解决方案,各种配置可以全方位的支持N2(77 K)、Ar(87 K)、CO2 (273 K)、Kr(77 K)等条件的分析,完善的DFT模型可以对应各种分析条件的微孔、介孔孔径分析。
  • 我国首个渔业大模型“范蠡大模型1.0”发布
    6月15日,我国首个渔业大模型“范蠡大模型1.0”在中国农业大学发布,据悉,该模型可以实现渔业多模态数据采集、清洗、萃取和整合等,将为渔业养殖工人、管理经营者和政府决策部门提供全面、精准的智能化支持。“范蠡大模型1.0”发布现场(中国农业大学供图)渔业大国,面临转型的需求我国是水产养殖大国,数据显示,2023年,我国水产养殖产量达5812万吨,约占世界水产养殖总产量的60%以上,为城乡居民提供了1/3优质动物蛋白。但同时,我国不是养殖强国,水产养殖资源利用率、劳动生产率低,水产养殖产业发展面临多种转型需求。范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮介绍,“我国水产养殖品种繁多,包括鱼、虾、蟹、贝、参、藻等,养殖模式多样,建立完整养殖品种的生产模型是极其困难的;同时,劳动力出现了普遍老龄化现象,有调查数据显示,我国水产养殖中,劳动力成本占70%左右,劳动者平均年龄达到55岁。新一代缺乏养殖经验,也不愿意从事传统的养殖生产,需要人工智能技术的支持。”范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮(中国农业大学供图)随着现代技术的发展,水产养殖已经从1.0时代发展到4.0时代。李道亮介绍,“渔业1.0时代主要以小农生产为主,特征是依靠人力、手工工具、经验等养殖。2.0时代,水产养殖逐渐实现机械化、装备化,主要依靠机械动力和电力进行生产。3.0时代,自动化和计算机技术成为核心,生产装备出现数字化、网络化、自动化特征。到4.0时代,物联网、大数据、人工智能、机器人等技术普遍应用在生产中,无人化生产逐渐实现。”随着人工智能、机器人学习等技术的逐渐出现和成熟,越来越多的农业场景开始应用这些技术,但作为水产养殖大国,我国当前的水产养殖中,相关技术的应用还较为缺乏。渔业模型,从小到大的升级如何在水产养殖中应用现代技术,甚至打造未来的无人渔场?李道亮介绍,我国水产养殖品种繁多,养殖环境差异较大,而机理模型的构建,需考虑鱼类品种、饵料、病害、环境变化等一系列因素,面对众多的品种和养殖模式以及地区气候差异,逐个养殖品种建立像发达国家的养殖机理模型是不现实的。所谓大模型,是指具有大规模参数和复杂计算结构的机器学习模型,参数数量动辄数十亿甚至数千亿。在渔业中,大模型可以利用深度学习和数据驱动的方法,能够分析海量的养殖数据,揭示其中的规律和关联性。“它们不仅能够模拟和预测水质、饵料、疾病等因素对养殖效果的影响,还能够优化养殖方案,提高生产效率和经济效益。”李道亮说。智能池塘养鱼场景(中国农业大学供图)随着社会发展和水产养殖业转型,渔业大模型越来越成为产业发展的重要助力,为此,李道亮带领团队联合中国联通、中国电信、中国移动三家运营商、全国主要水产院校和科研机构,以鱼、虾、蟹、贝等27种我国主养品种水产文本语料为主,辅以文本、图像、视频、音频等多模态数据,形成大规模渔业专业知识语料库,通过深度学习架构,通过预训练和微调、参数共享与注意力机制、提示工程等技术,实现渔业多模态数据采集、清洗、萃取和整合等。“这一模型,不仅实现了丰富的渔业养殖知识生成,还包括水、饵、病、管等多方面多元化的预测、分析和决策。”李道亮说。范蠡为名,改变未来的渔业大模型构建成功后,命名为“范蠡大模型1.0”。李道亮介绍,范蠡是春秋末期越国大夫,众所周知的是,他是著名的政治家、军事家,也是商家鼻祖,但他同时也是我国最早的水产养殖专家,早在2500年前的春秋时期,他就写了一部《养鱼经》,并流传至今,“所以我们以范蠡为名,希望它能够在新时代中,为我国水产养殖带来的新的气象。”据介绍,范蠡大模型1.0分为请问我、请听我、请看我、请决策四个模块,分别代表文本、语音、视频、物联网决策四大场景,用户可以查询渔业的不同应用。而针对准确监测和评估鱼类的健康状况和体重异常耗时费力,且可能对鱼类造成伤害的问题,国家数字渔业创新中心开发了基于计算机视觉技术的鱼类体重估计模型,基于机器视觉实时捕捉水下鱼类图像和优化构建的深度神经网络算法,自动完成图像中鱼类目标的检测和定位,通过提取形状、颜色、纹理等多维度特征,以非接触方式实现对鱼类体重的实时、准确估算,同步完成生长及健康状态监测和计算,为投饵决策、水环境、能耗优化控制提供数据支撑。范蠡大模型利用了多种现代技术,以此实现水产养殖的数字化、无人化。图为鱼的种类识别模型(中国农业大学供图)“当前,范蠡大模型还是1.0,未来还会不断进化,人工智能在智慧渔业中的应用,是多元化且深远的、长期的,不可能一蹴而就。未来,范蠡大模型还有很长的路要走,必须充分发挥通信、科研、水产养殖企业、养殖户等各种不同领域的优势力量,以产学研用协同推进大模型的开发与应用,人工智能才能真正落地。”李道亮说。
  • Digital WB在基因治疗眼部疾病细胞和类器官模型中应用
    遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。在非临床研究和临床研究中,检测转基因目的蛋白表达是基因疗法开发的一个关键方面。 目前,有多种技术可实现目的蛋白表达定量检测包括配体结合法(Ligand binding assay,LBA)如酶联免疫吸附方法(ELISA)、液相色谱-质谱(LC-MS)、流式细胞术、蛋白质免疫印迹(Western Blot)和组织染色技术。每种技术都有各自优势和局限,如目的蛋白为分泌性表达,可采用ELISA方法检测细胞培养上清液或体液系统中目标蛋白含量;如目的蛋白不能分泌表达,可采用Western Blot或质谱方法;如需要检测细胞膜蛋白,可采用流式细胞术;如要确定蛋白质在细胞和组织内分布,可采用免疫荧光检测。 在体内和体外模型中研究基因治疗产物与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。眼部疾病细胞模型案例1:iPSC衍生视网膜色素上皮细胞(RPE)中低丰度大分子量蛋白质表达检测 从三名Stargardt病人皮肤活检样本产生多个iPS细胞系,这些患者都携带一个致病性ABCA4基因变异。采用RNA-Sep和Digital WB分析正常对照和患者细胞衍生的RPE。这个细胞模型与活检组织相比,可用于评估难以检测的非表达变异体,患者来源的细胞可能更密切地反映患者体内发生的剪接和编辑事件,可用于病人药物敏感性研究,指导临床试验。采用全自动Digital WB技术分析pABCA4蛋白质表达,制备了20 μg 总蛋白 dRPE 细胞匀浆,阳性和阴性对照分别是20 μg野生型和 ABCA4 敲除小鼠视网膜匀浆。参考下图,小鼠视网膜(Mouse ret)在野生型(WT)中pABCA4表达丰度很高,敲除(KO)小鼠没有表达。人类对照(NHDF)具有比WT小鼠视网膜更高表观分子量,同时有更高的表达丰度。与对照相比,所有患者细胞系(H、J和S)中均可检测到pABCA4 ,但这些低丰度pABCA4蛋白可能被降解,作为截短蛋白或降解产品形式存在(除S2外)。与mRNA表达谱结果一致,S2细胞系具有相对正常的pABCA4表达水平和修饰后成熟膜蛋白的分子量。本研究利用了Digital WB对低丰度和大分子量蛋白质分析检测能力。案例2:眼角膜内皮细胞信号通路中多重蛋白质表达检测 本研究采用人源和鼠源细胞,分别是敲低了SLC4A11表达水平的原代人角膜内皮细胞(primary human corneal endothelial cells, pHCEnC),即SLC4A11 (SLC4A11 KD pHCEnC);还有Slc4a11+/+和Slc4a11-/-鼠角膜内皮细胞系(murine corneal endothelial cells, MCEnC),即 Slc4a11-/- MCEnC和Slc4a11+/+ MCEnC。比较转录组学分析揭示了SLC4A11 KD pHCEnC和Slc4a11-/- MCEnC中细胞代谢和离子转运功能抑制以及线粒体功能障碍,导致ATP生产减少。AMPK-p53/ULK1通路激活也表明线粒体功能障碍和线粒体自噬。稳态 ATP 水平降低和随后 AMPK-p53 通路激活提供了代谢功能缺陷和转录组改变之间的联系,以及 ATP 不足以维持 Na+/K+-ATPase角膜内皮泵的证据,这是 SLC4A11 相关角膜内皮营养不良特征性水肿的原因。所以SLC4A11缺陷角膜内皮中分子作用导致内皮功能障碍,是先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED) 和Fuchs 角膜内皮营养不良的主要特征。 下图结果表明SLC4A11缺陷角膜内皮中AMPK-p53 通路激活,采用Digital WB检测信号通路中各蛋白质表达水平。图B说明与 scRNA pHCEnC 对照相比,SLC4A11 KD pHCEnC 中 p53 Ser15 磷酸化水平增加,表明p53转录翻译后激活。图C在Slc4a11-/- MCEnC晚期传代中观察到相似结果(p53 Ser18磷酸化增加,对应于人p53 Ser15)。图C和D结果表明在Slc4a11-/- MCEnC 早期和晚期传代中总 p53 水平增加,代表p53转录激活。进一步研究磷酸化和p53转录激活的激酶,根据报道AMPK介导 Ser15(小鼠中Ser18)磷酸化和p53转录激活,图B和C实验结果也说明AMPKα的Thr172磷酸化增加,AMPKβ1的Ser182磷酸化没有变化。图E和F,与 scRNA pHCEnC 相比,AMPK 另一种下游底物 Unc-51 样自噬激活激酶 1 (ULK1) 在SLC4A11 KD pHCEnC中磷酸化水平(Ser555)增加。综合这些结果表明,ATP水平下降导致AMPK及其下游底物p53 和 ULK1 激活,分别导致转录组改变和线粒体自噬增加。同样,鉴于 SLC4A11 在预防氧化损伤中的作用,SLC4A11 缺失导致线粒体 ROS 产生增加,随后线粒体功能障碍和线粒体自噬增加。此发病机制支持使用Slc4a11-/-小鼠作为SLC4A11相关角膜内皮营养不良的模型,评估各种治疗方法的转化潜力。 基于Digital WB技术的全自动蛋白质表达分析系统Jess可实现化学发光和荧光两种检测模式,是多重蛋白质表达分析有力工具。2022年,ProteinSimple发布了Stellar全自动双色荧光蛋白质表达检测方案,特别适合同步分析细胞信号通路磷酸化蛋白和总蛋白表达,将细胞信号通路研究工具带到一个新高度。iPSC衍生视网膜类器官模型案例1:Digital WB检测iPSC衍生的视网膜类器官中视紫红质表达含量 美国NIH研究人员利用成纤维细胞重编程获得诱导多能干细胞(iPSC),再分化产生视网膜类器官。通过转录组学分析,确定了视网膜类器官发育过程中调节信号,在体外生成了更成熟视网膜,可促进疾病建模和基因治疗研究。本研究采用Digital WB技术揭示了不同培养条件下类器官培养物种视紫红质(Rhodopsin)表达差异。下图结果表明,DHA处理的类器官在32天时视紫红质表达增加了30%,而亚油酸(LA)处理类器官视紫红质表达降低,这表明DHA处理的类器官中视紫红质表达增加不是脂肪酸添加带来的。案例2:AAV基因治疗的RetGC-GUCY2D视网膜类器官疾病模型 Leber先天性黑蒙可由多种不同突变基因导致包括RPE65、CEP29、GUCY2D和CRX等。其中Leber先天性黑蒙1型由GUCY2D基因突变导致,可导致严重视力损害或失明。GUCY2D基因正常拷贝编码了一种鸟苷酸环化酶(RetGC),其是感光器生理学中关键酶之一,视网膜中光敏杆状细胞和视锥细胞使用该酶将光转换为电化学信号。 英国MeiraGTx公司研究人员利用CRISPR/CAS9 技术生成 RetGC 敲除 (RetGC KO) 视网膜类器官,iPSC衍生视网膜类器官分化后,将RetGC KO 视网膜类器官与同一细胞系的野生型类器官进行对比研究。总共设计了四种 AAV 载体来测试RetGC 蛋白在光感受器中的恢复情况,所有载体采用AAV7递送。CMV 和视紫红质激酶 (RK) 两个启动子,并评估了WoodChuck肝炎病毒翻译后调控元件 (WPRE) 影响。采用Digital WB检测6组类器官中RetGC蛋白表达水平。实验结果揭示,与非转导样本组比,所有载体设计均以不同效率产生RetGC蛋白。加入WPRE似乎显示出效力降低趋势,通过其他量化指标验证了这个趋势。 Digital WB相比传统Western blot,只需要几十分之一样本量就可实现类器官等珍贵样本中蛋白质定量检测,而且重复性更高和速度更快,非常适合眼部疾病类器官模型的转基因目的蛋白及相关通路蛋白表达分析。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料参考文献:
  • 大连化物所微型固态吸附棒萃取器和热解吸装置通过项目验收
    日前,大连化物所承担的“十五”科技攻关项目专题“微型固态吸附棒萃取器和热解吸装置”通过科技部组织的专家验收。专家组认为:该课题主要针对茶叶、烟草、乳制品、软饮料和水样等样品中农药残留分析的样品处理,攻关目标明确,立项合理,具有广阔的应用前景;微型固态吸附棒采用溶胶-凝胶法制备吸附涂层,耐温高,使用寿命长。   大连化物所于2001年开始进行该专题攻关,从实验室原理样机开始,尝试了多种技术路线,在两年的时间里完成了整套微型固态吸附棒和热解吸装置的研制与开发工作。本项目所研究的萃取棒萃取相的制作工艺及原理与其它商品化的萃取棒有着很大的区别,本项目中采用的制膜技术为溶胶凝胶法,制得的萃取相耐溶剂冲洗且在高温下不发生热解吸。微搅拌吸附棒可以实现批量生产。热解吸装置设计巧妙,体积小,容易与气相色谱仪联用,与国外同类仪器相比,本装置借助气相色谱进样口完成样品传输线加热,在分析过程中采用保留间隙技术而避免了由于使用冷阱需对样品聚焦,因此设备简化、可靠并大大降低制造成本。所制得的萃取棒耐用、成本较低,解吸器设计合理,结构简单,适合大规模工业化生产,设备适合我国的国情。   该装置可广泛应用于芳香烃、多环芳烃、多氯联苯、农药、香味物质、酚类等挥发性半挥发性物质的分析,同时实现对非挥发性物质的分析检测。我国有1万多个农科所/站、卫生防疫站、产品质量监督检验所/站,进出口商品检验检疫局,其中的绝大多数需要对农产品和食品的农残进行分析,所以在这些领域推广应用该项技术,对提高我国农副产品的进出口监测水平有重要意义。
  • 塞塔拉姆——流动脉冲吸附微量热系统用于材料原位表征
    p    strong 仪器信息网讯 /strong 量热法是一种直接测量吸附热的方法,该方法不依赖于物理模型的建立。然而,想要获取精确的吸附热数据,量热测量要求有足够高的灵敏度。塞塔拉姆建立的流动脉冲吸附微量热系统不仅测量的灵敏度高,而且能够与比表面积分析仪(BET)联用,实现物质吸附热的原位测量。 /p p   目前,塞塔拉姆已经与合肥微尺度物质科学国家实验室合作,并将流动脉冲吸附微量热系统应用于粉末催化剂吸附过程的研究,并发表题为《A flow-pulse adsorption-microcalorimetry system for studies of adsorption processes on powder catalysts》的文章。 /p p   在视频中,塞塔拉姆曾洪宇对塞塔拉姆的Sensys Evo DSC和独有的卡尔文3D量热技术进行了介绍,并阐述了Sensys Evo原位联用流动脉冲吸附微量热系统在实验分析、质量控制等方面的应用。 /p p   具体视频如下: /p p script src=" https://p.bokecc.com/player?vid=D3422C9E99F8CFE89C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p
  • 清明节追思:深切缅怀中国氮吸附仪开拓者钟家湘教授
    2021年3月26日下午,北京理工大学教授、中国知名材料科学家、精微高博科学技术有限公司创始人钟家湘先生因病医治无效,与世长辞,享年83岁。钟家湘教授开拓了国产仪器的新领域并成功产业化,改变了我国微纳米材料表面测试仪器完全依赖进口的局面。近日,仪器信息网通过采访钟教授生前挚友、精微高博另一位创始人古燕玲女士,回顾其退休后的创业奋斗史。20世纪90年代末,因纳米材料科研工作的需要,钟教授联合北京橡胶研究院葛雄章等人,开启了国产氮吸附仪的研制工作,在老一代科技工作者打下的基础上,于2000年主持完成了新型动态氮吸附仪的改造升级工作。该动态比表面仪样机很快引起了当时的焦作冰晶石厂的极大兴趣,随即被其购买。接下来其团队调研发现,随着超细粉体,尤其是纳米材料的发展,粉体材料表面特性的表征与测量越来越重要,比表面及孔径分布分析测试仪的需求日益增大,而当时国内比表面仪市场还是一片空白,只能依赖国外进口仪器,且价格昂贵。为填补国内市场空白,让科技工作者可以用上国产比表面仪,钟家湘教授决定承担起这份重任,将自主研发的产品推向市场。历经两年多的技术积累,2003年新一代动态比表面仪成品进入市场,开启了中国氮吸附仪产业化的新里程;2004年,钟家湘带领仅5人的团队,租用一间约20平方的办公室,成立了北京精微高博科技开发中心(现北京精微高博科学技术有限公司),同年推出动态BET比表面仪,在测试方法上开始与国际接轨;2005年,研制成功动态常压单气路孔径分析仪,至此形成了具有我国特色的动态氮吸附仪的系列产品,产业化速度快速提高,打破了国外氮吸附仪在中国一统天下的局面。相比动态比表面仪,静态比表面仪技术门槛要高很多,当国外不断推出静态比表面仪产品时,国内还未起步。为了追赶国际先进水平,钟家湘带领团队在努力研发动态氮吸附仪的同时,又致力于研发静态比表面仪,经过近两年千百次的实验,攻克一个又一个的技术难关,于2007年研发成功静态介孔分析仪;之后陆续推出静态微孔分析仪、静态超微孔分析仪,推动中国氮吸附仪的技术向国际先进水平靠近。由于市场的空白,没有成熟的产品和现成技术可供参考,钟教授经常到国家图书馆查阅资料,只能从基础原理开始不断尝试、完善,最终凭借其深厚的学识基础、丰富的实践经验与严密的科学精神,带领精微高博屡创佳绩。在研发过程中,钟教授坚持走产学研道路,积极同高校密切合作,组建该领域权威的专家顾问团队,为公司良好持续发展打下坚实基础。2013年与国内知名教授合作,成功将非定域密度函数(NLDFT)理论应用于国产孔径分析仪,取得可喜的突破;2014年,又研发成功高压吸附仪、真密度仪等。为了帮助用户理解仪器理论模型和技术参数背后的物理意义,以便将仪器的作用发挥到最大化,钟教授还对这些理论模型逐个进行深入研究,多次到国内多所高等院校深入浅出地介绍比表面及孔径分析的原理、方法和应用,为提高中国微纳米材料表面测试水平,推动国产仪器产业化做出了突出贡献,被誉为中国氮吸附仪的开拓者。2015年4月,钟教授荣获第二届“科学仪器行业研发特别贡献奖”。2017年,80岁高龄的钟教授壮心不已,仍身处一线岗位,本是功成身退的年纪,又为何仍在坚持?80大寿之日,钟教授接受仪器信息网采访并给出了自己的答案,“第一,我是为了真正解决国产仪器在这个领域的问题,推动国产仪器发展,我是把它当成事业来做,而不是为了挣钱;第二,科学仪器是一个跨学科的产物,需要团队共同发挥智慧,就我本人来讲,我年纪比较大一点,知识面更广一些,研究的思路方法更丰富一些,能为团队提供帮助,最重要的是我要保持团队的凝聚力。”为进一步提升公司综合实力,更快、更好地与国外仪器竞争,2017年10月,精微高博进行了融资改组,开启了新的征程。至此,钟教授为我国氮吸附仪产业化所做的贡献有目共睹,其创业史代表了中国氮吸附仪技术的发展轨迹,国外同行也给予高度评价,“用十年走过了国外该类仪器五十年的发展道路”。当故人远去,留给后人的是无尽的伤感与思念。在这吹面不寒杨柳风的清明时节,谨以此文纪念刚刚逝去的钟家湘先生。清明将至,行业纷纷表达缅怀之情精微高博总经理马志远:我和钟老师于三年前相识,有幸可以合作,将精微高博品牌传承下去。我非常喜欢精微高博这四个字,也赋予了新的“精深微妙,高远博大”之意,老先生的愿景是:创中国知名品牌,争世界一流产品。这个愿景没有变,被完整继承下来,我们所有人都认可并且为之努力。去年十一月探望老先生时,我说两年多来,精微高博已经有10%多的销售额来自海外了。海外布局已经初具规模,我们这么积极开拓海外,就是希望把这个品牌从中国知名创成国际知名,从中国品质塑造成世界品质。老先生很高兴,这是他老人家的心愿,是我接手时给我的任务。在给老先生的挽联中我是这样写的:工匠精神永存精微,科学素养铸就高博。老先生做科研跟随特种合金泰斗师昌绪先生13年,为国家军事力量的强大贡献了青春。在理工大学带着实践经验,做学术培养人才,理论突出,桃李满园,16年兢兢业业。60岁创业,一次创业做纳米材料研发生产,历时五年,以失败告终,然斗志不减,二次创业成立精微高博,发展至今,开拓了氮吸附仪器之先河。可以说老先生一生奋斗,科研有成、治学有果、创业有功,80年奋斗不止,人虽年迈,壮心不已,实为我辈楷模,当之无愧的榜样。斯人已逝,精神永存!原精微高博员工:钟老师专注认真、待人平和、友善关爱,拥有老一辈科学家坚韧、执着、奉献的精神,是我遇到过的最接近我心目中大师模样的人。他教会我的、带给我的影响,就像是一束光,像一个方向,温暖又清晰地告诉我就应该如此做事,这样去活。谢谢钟老师,您带给这个世界的都正在发扬光大。仪器信息网编辑:仪海钩沉,科匠情更笃;桃李馥郁,木铎声尤闻。三年前得闻教诲,受益不尽,您是那么和蔼乐观,眼神那么明亮,充满了对世间万物最诚挚的热爱,如今念兹,音容笑貌仿佛昨昔。愿钟老一路走好,在彼岸仍是一派锦绣天地。美国麦克仪器许人良博士:科研半世创建精微业,勤奋一生增辉国仪楼。
  • 色谱法化学吸附仪在催化剂行业中的应用
    摘自石油化工科学研究院《色谱法多功能催化研究装置》 在以往工作的基础上,提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。根据要求,可以使用脉冲法、连续流动法、迎头法,以及程序升温脱附技术,在一套设备上逐个测定催化剂的反应速度、金属分散性或其它活性中心、表面酸碱度和质量传递性能等,以便参照催化全过程的多种原位数据,有效地改进催化剂的活性、选择性及寿命。一、序言 在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在近代,虽然有着各种能谱,光谱,磁学方法,场发射技术等应用于催化精细结构的研究,但由于各自在仪器和理论方面的限制,它们存在以下主要缺点:1、由于价格昂贵,不是所有的研究者都能得到所希望的仪器设备;2、由于催化材料的多样性,不是每种仪器都能获得所希望的数据;3、多数物理方法在“非原位“条件下所得到的数据,很难与催化行为直接关联。 近十多年来,随着色谱理论和技术的日臻成熟,并且由于它没有以上缺点和具有简便、快速、定量准确等优点,因而在催化研究中得到了广泛的应用。则是在接近于反应的条件下,研究固体催化剂的大多数表面化学性质,并在同时测定他们的催化性能,以便关联这些数据,加深对某特定过程催化作用本质的了解,并控制它的最佳催化剂的选择。为此,在综合以前工作的基础上,笔者提出了利用气相色谱技术,对催化行为进行联合研究的设计,并建立了可以作为定型化仪器的示范装置。现将该方法的基本原理和操作要点介绍如下。二、在催化研究中的应用GC技术通常按两种方式用在催化研究中,一种是将催化剂直接填充在色谱柱中,另一种是附加一个微型反应器与GC。用此可以测定物理表面积,传递参数,化学吸附和表面行为,反应速度等催化过程所需要的几乎全部数据。由于使用物理吸附法进行总表面积和孔分布的测定熟为人知,因而将不予涉及。在此,仅介绍笔者及其同事曾经进行和较感兴趣的几个方面。应用GC技术研制的程序升温化学吸附仪PCA-1000系列可进行以下催化剂性能分析:1. 催化剂活性表面积或金属分散性 催化剂的活性表面积仅占物理总表面积的一小部分。这一数据对于考虑催化反应的结构敏感性行为和计算转换数是不必可少的。通常,它也可以用在催化剂上的活性中心数目来表示。并且,通过用用脉冲色谱技术测定不可逆化学吸附,能够获得这一结果。金属和负载的金属催化剂,是研究的最多的对象。我们曾对重整过程中的各种催化剂和双金属催化剂进行研究。吸附质可以使用氢气、氧气、一氧化碳等。最优越的是化学吸附氧的氢脉冲滴定法。吸附体积的测量,按催化剂上消耗的吸附质数量来计算2. 程序升温脱附(TPD)技术 当吸附的质点被提供的热能活化,以至能够克服为了它的逸出所需越过的势垒时,便产生脱附。由于脱附速度随着温度的升高而指数地增加,同时,又因覆盖度的减小而减小,因此,正比于脱附物质浓度的信号,即脱附速度曲线呈TPD谱。 我们曾用氢气的TPD法,对国内外工业和实验室重整催化剂,发现在以Pt为主要组分,以氧化铝为载体的单、多金属催化剂上,存在着两类主要的活性中心。其低能中心是Pt的某种结构所特有的,它主要与加氢-脱氢反应活性有关;而第二或第三组元的引入,则只改变了高能中心的结构特征,它主要与异构化和环化反应有关。两类中心的相对数量和谱图的形状,决定着各基元反应的选择性;而催化剂的稳定性,则可由谱图的值估价。由此向我们提供了改进催化剂活性、选择性,以及使用寿命的方向。3. 固体材料表面酸碱性能的研究 在多相酸碱催化或双功能催化反应中,催化剂或者在体表面的酸碱度、酸碱中心类型,以及强度,对其活性、选择性、甚至寿命,都有着十分重要的作用。田部浩三曾系统的介绍了这一催化现象和对其进行实验测定的各种方法。特别是应用GC技术的气相酸碱物质的化学吸附法,在快速、准确、简便等方面,具有明显的优越性。 例如,当气体碱在酸性中心上吸附时,与强酸的结合将较在弱酸中心上更稳定,因此,随着温度的上升,吸附在后者上的碱性物质将优先的因热能激发而逸出。于是,在各种温度下逸出的吸附碱的份数,能够作为酸强度的量度;而从气相中所吸附的碱量,则作为表面酸度的量度;如果选择适当的吸附质,也有可能对表面Bronsted酸和 Lewis酸中心加以区分。4. 微型催化反应器技术 将微型催化反应器与GC相结合,提供了一个节省催化反应性能、动力学参数。特别是研究起始速度。中毒效应、催化剂失活等缓慢现象的手段。而且,它也容许方便地获得有关反应机律的情报。 笔者所给出的这种实验设计,可以按两种方式操作:一种是所谓的尾气技术,它与一般的连续流动法没有什么区别;一种是脉冲技术,它更能体现出GC法的优点。特别适合于在各种条件之下快速筛选和评价催化剂的情形。结合选择加氢催化剂的研制,我们曾有效地使用了环己烯、噻吩、异戊二烯模型化合物的微型脉冲催化反应研究法。考察了在许多催化剂上的活性、选择性,以及在某些工业催化剂上的吸附竞争性、反应机理,并计算了主要过程的反应活化能。在本文报道的装置上,还用类似方法研究了环戊二烯在各种类型催化剂上的选择加氢行为。 在非稳态脉冲条件下反应动力学的理论研究指出,只有在一级反应的情形中,或者在脉冲宽度远大于床层高度的条件之下,才能得到与连续流动法反应一致的结果。因此在进行动力学测量时,仔细的把握这一条件是十分重要的。5. 催化剂有效扩散系数的测定 质量传递作用,即扩散效应在使用多孔固体催化剂的工业过程中,对于产品的生产率有着巨大的影响。因此关于催化剂有效扩散性的测定是十分重要的。利用我们给出的装置,还可以按照另外一种途径进行这方面的研究。方法的基本点是在各种流速上,用测定非化学作用气体脉冲加宽的办法,来计算有效扩散系数。
  • Nature重磅:用透射电子显微镜追踪液体中单个吸附原子!
    表面上的单个原子或离子,影响从成核到电化学反应以及多相催化的多个过程。透射电子显微镜(TEM)是一种主要的方法,可用来可视化的各种衬底上的单个原子。它通常需要高真空条件,但已被开发用于液体和气体环境中的原位成像,其结合的空间和时间分辨率是任何其他方法所无法比拟的,尽管有电子束对样品的影响。当使用商业技术在液体中成像时,包裹样品的窗口和液体中的电子散射,通常将可达到的分辨率限制在几个纳米。另一方面,石墨烯液体电池,实现了液体中金属纳米颗粒的原子分辨率成像。在此,来自英国曼彻斯特大学的Roman Gorbachev&Sarah J. Haigh等研究者展示了一个双石墨烯液体电池,其由中心的二硫化钼单分子层组成,再用六方氮化硼间隔层与两个封闭的石墨烯窗口隔开,这使得在盐溶液中以原子分辨率监测单分子层上铂吸附原子的动力学成为可能。相关论文以题为“Tracking single adatoms in liquid in a Transmission Electron Microscope”于2022年07月27日发表在Nature上。石墨烯,具有极薄、高机械强度、低原子序数、化学惰性、不渗透性和清除侵略性自由基的能力,是原位TEM电池的理想窗口材料。初始的石墨烯液体电池(GLC)设计,依赖于两个石墨烯薄片之间液体囊的随机形成,因此,在长时间的电子暴露下,其产率较低,稳定性较差。更先进的设计,包括了SiNx或六方氮化硼(hBN)的图案间隔层来定义液体袋,从而改善了GLC几何形状和实验条件的控制。在此,研究者开发了一种双石墨烯液体电池(DGLC),用于在透射电镜中研究原子薄膜上单个溶剂化金属原子的运动。这是由于非原位STEM研究表明,液体环境的选择,可以改变金属原子从纳米团簇到单个原子的分布,但原位实验探测这种行为是不可行的,甚至在早期的研究中,单个原子在液体中的成像被证明是难以捉摸的。研究者的重点是MoS2上的Pt,已有的丰富数据使其成为探索原子分辨率液体电池显微镜的局限性和潜力的理想模型系统。DGLC如图1a所示,由两个hBN间隔层组成,每层数十纳米厚,中间夹有二硫化钼(MoS2)单层。两种hBN间隔都包含用电子束光刻和随后的反应离子蚀刻预图纹的空洞。利用堆栈顶部和底部的几层石墨烯(FLG)将液体样品困在空隙中。原子平面的hBN晶体与石墨烯和MoS2形成密封;如果电池局部破裂,这可以防止渗漏,单个细胞之间的液体转移和液体的完全损失。研究表明,通过对70000多个单吸附原子吸附位点的成像,研究者比较了吸附原子在完全水合和真空状态下的位置偏好和动态运动。研究发现,与真空相比,吸附原子在液相中的吸附位分布有所改变,扩散系数也有所提高。这种方法,为单原子精度的化学过程原位液相成像铺平了道路。图1. 双液电池的设计图2. 水溶液环境中单Pt吸附原子在MoS2上的吸附位点图3. 在液槽和真空中的首选吸附位点图4. 使用最近邻链接的单原子跟踪综上所述,尽管强调了理解电子束效应和对复杂水合体系中原子行为进行补充理论研究的重要性,但本文的结果表明了测量固液界面上吸附原子运动的能力。该实验技术广泛适用于不同的材料系统,并提供了一种在不同环境中获得以前无法获得的原子解析、动态、结构信息的途径,适用于物理科学中的许多不同系统。文献信息Clark, N., Kelly, D.J., Zhou, M. et al. Tracking single adatoms in liquid in a Transmission Electron Microscope. Nature (2022). https://doi.org/10.1038/s41586-022-05130-0
  • 贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据
    北京蛋白质组研究中心/蛋白质组学国家重点实验室朱云平研究员课题组张纪阳博士等通过建立贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据,大幅提升蛋白质组质谱数据的利用率。相关论文发表在最新一期国际蛋白质组学权威杂志:《分子与细胞蛋白质组学》(Molecular & Cellular Proteomics, MCP)上面,同期杂志还发表了该所姜颖副研究员课题组、钱小红研究员课题组的两篇研究论文,创该刊单期同一单位发文数之最。   大规模、高通量的蛋白质组研究产生了海量的数据,其中包含了大量的噪声,而高可靠的数据是进一步生物学分析的基础,故目前的分析方法均采用了过严的标准,但在降低假阳性的同时也人为地造成了数据较高的假阴性及较低的利用率。因此,"在保证高可信度的前提下,最大限度地利用实验数据"一直是蛋白质组学界的追求。"鸟枪法"是目前蛋白质组鉴定中地位最重要、应用最广泛的技术策略。他们基于随机数据库策略、非参概率密度模型和贝叶斯公式,建立了串联质谱数据过滤的多元贝叶斯非参模型。通过标准蛋白和复杂样品的严格考核,表明该模型具有良好的灵敏性和普适性,可将质谱数据的利用率提高10~40%,创本领域最好水平。   原始出处:   Molecular & Cellular Proteomics 8:547-557, 2009.doi:10.1074/mcp.M700558-MCP200
  • 膜分离或变压吸附?氮气发生器的原理对比
    克里斯.哈维,总经理-毕克气体仪器贸易(上海)有限公司众所周知,毕克科技拥有当前市场上最广泛的氮气发生器种类,同时,我们不断地研发出新的产品满足日新月异的氮气的需求,来给新的应用设备供气。我们不仅仅有市面上种类最多的氮气发生器来满足液质联用仪的用气需求,同时,我们给气相色谱仪,总有机碳分析仪,傅里叶红外光谱仪,样品蒸发仪,通风橱,手套式操作箱,电感耦合等离子体光谱仪,核磁共振仪,蒸发光散射检测仪等实验室设备供气的气体发生器种类也很全面和广泛-实际上,你实验室里几乎是所有需要用气的设备,都可以让我们的气体发生器来供气。为什么我们的气体发生器能够覆盖您的实验室里大部分应用设备?因为,我们二十年如一日,专注于实验室里气体发生器的研发和生产,专心于给您提供稳定可靠的实验室气源。另外一个广为人知的事实就是:我们所采用的气体分离技术成熟可靠。在我们的氮气发生器上,我们用膜分离技术和变压吸附技术来生产氮气,如果我们的顾客对某一种技术青睐有加,我们可以根据客户的喜好来推荐合适的型号。但是,对于某些特定的应用设备,使用其中的一种分离技术比另一种更有优势。膜分离技术让压缩空气通过中空纤维膜,当空气通过膜的时候,空气中的氧气,二氧化碳,一氧化碳和水蒸汽 会通过中空纤维膜管道上的小孔,进而排到大气中去。在膜的出口,大尺寸的氮气分子和惰性气体氩气都收集起来,输送到应用设备。这种氮气分离提取技术简单有效,无需任何移动部件。分离提取出来的氮气最高纯度能达到99.5%,不含任何杂质。变压吸附技术是通过固体介质来分离气体混合物中的单一组分,用变压吸附技术来分离空气中的氮气,所需的固体介质是碳分子筛,碳分子筛对空气中的氧气选择性吸附,从而在加压的情况下分离了空气中的氮气和氧气。 碳分子筛其实就是多孔疏松的棒状碳颗粒,当对填充满了碳分子筛颗粒的氮气纯化密封柱中充入压缩空气(主要成分是氮气,氧气和惰性气体氩气和少量水汽)时,碳分子筛会吸附水汽,氧气,但是,氮气不会被吸附。这主要是因为氮气和氧气的分子尺寸不一样,碳分子筛颗粒上的小孔能让分子尺寸小的氧气进入,却不能让氮气进入,因为氮气的分子尺寸大于氧气;从而,氮气和氧气被分离开了。变压吸附这一过程包含两个步骤和阶段:1.吸附阶段,压缩空气中氧气,水汽,二氧化碳被碳分子筛柱子吸附,氮气被收集起和储藏起来。2.重生阶段,将碳分子筛柱的压力释放到大气中去,吸附了氧气,二氧化碳,水汽的碳分子筛颗粒释放掉吸附的氧气,二氧化碳和水汽,从而为下一次吸附做好准备。变压吸附这一个过程需要维持一个稳定的温度,这个温度通常情况下和实验室的环境温度接近(20-25℃)。变压吸附技术生产出来的氮气,纯度最高能达到99.999%,纯度越高,生产过程中需要消耗的空气就越多。变压吸附技术和膜分离技术来生产氮气,各有利弊。具体使用哪种方法来生产氮气要取决于应用和流速要求。在市面上,某些人说氮气膜和碳分子筛是消耗品,需要定期更换,这是不对的。如果用户的除油和除水过滤器效果不佳,碳分子筛和氮气膜的分离效果会随着使用年限的增加而慢慢失效。液质联用仪应用对于液质联用仪而言,氮气纯度高于95%就可以大多数的质谱仪的用气要求了,即使一些非常高端和灵敏的质谱仪也没有问题。关键是气体里面不能含有任何粉尘,水汽和碳氢化合物及油滴,所以,高性能的过滤系统尤为重要,过滤系统的除尘规格要小于0.01微米,同时,油滴和水汽也必须除掉。由于过滤系统一旦饱和,它们的过滤吸附效果也会大打折扣,所以,每年对过滤器进行维护也十分有必要。对于液质联用仪而言,分别利用膜分离技术和变压吸附技术来生产氮气的产品我们都有,但是,对于一些小型和中型的实验室而言,选用膜分离的氮气发生器有一些非常明显的优势维护和服务膜分离技术涉及到很少的移动部件,通常情况下,一台氮气发生器里面的氮气膜重3公斤(而变压吸附模块的重量能达到100公斤),这就让维护变得十分简单。目前,毕克中国的服务团队能保证在48小时内97%的首次修复率。一旦发生器出了问题,小而轻的氮气膜占用空间小,让发生器的维护以及零配件的更换都非常方便,同时,也降低了维护和维修成本,节约了时间。氮气膜的工作无需很多电子部件的管理和控制,那么,我们可以将更多的电子部件用于监控核心技术参数,同时,让我们的工程师在维修时可以更快找到症结。尺寸和重量由于氮气膜尺寸小,重量轻,这也就意味着我们能设计出更轻盈小巧,结构更紧凑的气体发生器,同时,让发生器能放在标准实验台下,发生器机底脚轮设计,方便移动。这些气体发生器对于那些空间很有限的实验室而言,无疑是完美的选择。噪音水平膜分离技术不产生任何噪音,变压吸附技术在碳分子筛柱泄压放气的时候,会有很大的放气的声音产生,这也就意味着膜分离氮气发生器能放在应用仪器旁边,安静地工作。无需将发生器放在另外一个房间,从而增加了管道延长所产生的额外费用。变压吸附技术对于大型实验室而言,优势十分明显,在我们的iFlow产品里,我们应用变压吸附技术,它能:生产出更高流速的氮气在一些拥有20-30台质谱仪的大型实验室里,我们已经安装了一些利用变压吸附技术来生产氮气的发生器。一台氮气发生器就足够给整个实验室来供气了。将成本降至最低由于一台氮气发生器的氮气流速就足够给实验室里所有的应用设备来供气,这种集中供气方案无疑比单台小流量气体发生器给单台应用设备来供气的性价比要高很多。气相色谱仪应用利用变压吸附技术所生产出来的氮气,非常适合给气相色谱仪来供应载气。给气相色谱仪做载气,不仅要求氮气的纯度特别高,还要求氮气中的碳氢化合物含量特别低。利用碳分子筛变压吸附技术来生产氮气是唯一的选择,在空气进入到碳分子筛之前,空气经过过滤,然后再经过催化裂解炉将所有的微量碳氢化合物催化氧化除掉。所生产出来的氮气纯度特别高,能给所有的气相色谱仪做载气,包括电子捕捉检测器所需要用到的载气。这不是变压吸附技术应用的典型案例,我们所采用的碳分子筛变压吸附技术,能将移动部件的数量降到最低,同时,变压吸附柱在工作时没有噪音,在发生器出现故障时,维修也很方便。毕克在全世界各地售出的气体发生器超过5万台,有4000台在实验室。我们所有的气体发生器都经过知名质谱仪和气相色谱仪生产商的检验和认证,同时,OEM供应商可以销售我们的气体发生器。基于我们对气体发生器的专注和丰富的经验,我们开发出来了很多优秀的产品,诸如NM32LA,NM3G, AB3G,Precision 系列氢气发生器,零级空气和氮气发生器,以及IFlow系列产品。若您想了解与您的应用相匹配的气体发生器和实验室集中供气,欢迎联系我们。
  • MFA-140多功能吸附仪在金城石化集团完美运行一周年
    北京彼奥德电子技术有限公司是继老北分(即北分集团)后,国内首家物理吸附仪的研发、生产企业,成立于2003年1月9日。十多年的发展进程中,公司先后组建了专业的技术研发团队,建立了完善的售后服务体系。以连续流动法比表面积分析设备为先端,连续拓展了包括真空静态容量法设备在内的8大系列、十几个型号的产品线,SSA3000系列(动态法)、SSA4000系列(静态法)、SSA7000系列(静态法)和MFA100系列(静态法)四大系列产品完全遵循国家标准及国际标准。彼奥德集合多年的研发、生产、客户体验经验和多位中科院资深学家的技术积累,共同攻克种种科学难关。多年来,彼奥德产品质量及服务赢得了良好的客户口碑。 山东金诚石化集团是以石油炼制为主的现代企业集团,是中国500强企业。先后荣获 “中国石油和化工优秀民营企业”、“全国节能减排先进单位”、“山东省文明单位”、“山东省诚信企业”、“山东省纳税先进企业”、“省级守合同重信用企业”、“山东省第九届消费者满意单位”等荣誉称号。 2012年12月,集团旗下的山东金城重油化工有限公司采购彼奥德MFA-140多功能吸附仪一台,用于催化剂比表面积、孔容积、孔径分布测试。该产品上市于2012年10月,是一款应用于微孔领域的高性能、多功能物理吸附仪。产品一经上市,引起了各界人士的关注及好评。MFA-140突破原有的技术,在仪器结构及产品性能等方面有很大提高,取得了多项独有技术专利。例如:独有压力探测B-ST技术(专利号:ZL 2012 2 0407947.0)、独有液氮实时添加技术(专利号:ZL 2012 2 0407948.5) MFA-140多功能吸附仪是一款可应用于微孔领域的高性能、多功能物理吸附分析仪;拥有先进的技术、卓越的品质、更全面的理论模型及优良的测试精度,满足科研、学术探讨等多方面应用需求 仪器性能优势 (一)拥有4个独立分析站(二)比表面积在1m2/g以下的样品可准确测量,精确到0.0005m2/g(三)断电数据保护功能(四)触屏控制,并配备强大的计算机端分析软件(五)领先的气路结构设计,实现了物理吸附分析技术的完美超越(六)配置分子泵及高真空电磁阀与集成气路组成高真空系统 先进技术应用 (一)全新的集成气路结构和工艺(二)死体积引入液面高度校准(自由空间温差动态校准技术)(三)高精度冷却液液面定位系统(四)配置1torr、10torr低量程压力传感器,可分析微孔(五)真空抽气的动态调速(I-PID) (六)冷却液注入装置与死体积双向定位系统(七)独有的压力测试B-ST技术(八)先进的触屏控制显示系统
  • 气体吸附仪“世界杯”你会pick谁?3Flex三管齐下, 引领全功能豪门盛宴
    世界杯已烽烟过半,法国、比利时神佛难挡,英格兰、克罗地亚力挽狂澜̷̷比赛精彩纷呈,球迷如痴如醉,激情盛夏,哪只球队最能撩拨心弦,捧得你心中的大力神杯?确认过眼神,要遇见对的人, 不止是足球世界杯,对于从事材料表征等研究的科研人员来说,如何在气体吸附仪“世界杯”上pick最合适的帮手,才是最重要的选择。而美国麦克仪器公司的3Flex三站全功能型多用气体吸附仪可满足你对高性能、全功能气体吸附仪的所有想象,选择它,就是选择了品质和冠军。美国麦克仪器公司(以下简称“麦克仪器”)成立于1962年,始终保持着细微颗粒分析仪器领域的世界领先地位,堪称该领域的“豪门球队”。公司于2011年成立了独资公司-麦克默瑞提克(上海)仪器有限公司,总部设在上海,并在北京、广州等地分设办事处。麦克仪器在比表面与孔隙度分析、压汞分析技术、密度测试和化学吸附等众多领域的技术研究极具前沿性及创新性,在全球享有盛誉。此外,在自动样品传递、TPD/TPR化学吸附、表面积吸附平衡、DFT数据处理等领域也保持着前沿地位,拥有大量专利。值得一提的是, 今年6月,美国麦克仪器公司正式收购了英国富瑞曼科技有限公司,进一步丰富了自身的产品线。富瑞曼科技有限公司是一家专注于提供粉体流动性及其他物性检测仪器的公司。麦克仪器的业务也将百尺竿头,更进一步。 作为麦克仪器产品的佼佼者, 3Flex三站全功能多用吸附仪正是麦克仪器植根半个世纪技术与经验,自主研发的多年心血结晶,是一款真正的“全能型”气体吸附仪。利用分子间作用力进行物理吸附分析,get √;利用化学键力进行化学分析,get √;且两者之间的切换在几十秒内即可完成,同时3Flex也可实现蒸汽吸附功能。买来测微孔还是测介孔?3Flex可实现从微孔到介孔的全范围孔径分析。先测样品1还是样品2、3?不必纠结,3Flex具有三个独立分析站, 可组合配置介孔分析、微孔分析、氪气吸附功能,并针对三个样品同时进行三种不同气体的吸附,这一技术为全球首创。 3Flex三站全功能型多用气体吸附仪气体吸附法研究微孔信息,低压力下的高精度等温吸附线是关键,3Flex可测量相对压力低至10-9的等温吸附线。新的超净歧管设计抗化学腐蚀性极强,排气性和密封性都远胜同类仪器,与嵌入式的操作系统相配合,为压力和温度的测试提供了稳定的环境,其等温夹套技术则保证了分析过程中样品管和P0管的热稳定性。独立的多级传感器与麦克仪器专利的伺服控制真空技术交相辉映,再加上最先进的金属膜片-PCTFE(聚三氟氯乙烯)阀座焊接技术,使得3Flex在进行化学吸附时,能够在高真空环境下提供原位活化。多种新技术、新工艺共同塑造了3Flex—一款高性能、高分辨率、高重复性的多功能吸附仪,更值得称道的是,3Flex功能全面而强大,体积却十分小巧,对节省用户实验室宝贵的空间大有裨益。 除了硬件性能的更新换代,3Flex的软件系统也可谓锦上添花。创新的控制面板只需轻轻一点,便能实时显示一系列运行状态。先进的自诊断功能对仪器动态和记录实时监控,并能提供及时的记录和提示功能。3Flex的进气模式也十分先进,可支持用户自主组合定压和定体积增量模式,该仪器拥有一个常用气体以及蒸汽的流体性质数据库,获得等温线数据轻而易举。 除此之外,MicroActive交互式数据处理软件也是麦克仪器产品的一大亮点,具有分析速度快、性能强、模型多、个性化操作等特点。速度快:简单移动计算条,即可快速选择/排除实验数据,对话框数量大大降低;性能强:能够将压汞法得到的孔隙分布与气体吸附等温线得到的孔径分布图叠加,最多可叠加25个数据文件进行对比;模型多:可通过图形界面直接在BET、t-plot、Langmuir、DFT等模型中选择数据范围,另外还包含了NLDFT双等温线拟合模型计算孔径分布;个性化操作:软件支持用户使用python语言编写自己所需要的报告。MicroActive交互式数据处理软件不仅如此, 麦克默瑞提克(上海)仪器有限公司也在全国各地配备了专业的服务工程师队伍,为广大用户提供多渠道的及时安装与维护支持。公司总部在上海、在北京、广州等地设有办事处,并辐射全国,对用户需求进行及时的快速响应,热线电话、应用支持邮箱、在线留言、上门服务,总有一款适合您。另外,公司专业资深的服务工程师进行定期回访,对用户进行培训和答疑。美国麦克仪器公司总部与麦克默瑞提克(上海)仪器有限公司提供的操作培训与各类短期理论课程是用户理解仪器操作细节与获得最佳实验结果必不可少的。除培训课程以外,公司的资深科学家与应用技术人员随时与广大用户讨论研究中与仪器使用过程中遇到的各类问题。公司也经常发表应用文章、简讯、介绍业内最新进展, 并于今年隆重推出了“麦克讲堂”系列讲座, 我公司会不定期地在微信公众号、官方微博、官网等平台发布理论知识、常见问题、操作技巧、数据处理等方面的知识分享、小问答与讲座视频内容等,增强与用户间的技术沟通与交流。 高性能、全功能的特点,及时、专业的服务,让3Flex驰骋于广阔的应用领域,也在业内享有盛誉。该款仪器满足多项ASTM标准和药典标准,在制药、化妆品、陶瓷、涂料、燃料电池、航空航天等领域都有广泛应用。3Flex的用户群体也遍布全球,不仅得到了中国科学院金属研究所、浙江大学、大连理工大学、天津大学、北京化工大学等著名高校和科研院所的垂青,更是在麻省理工大学、爱荷华州立大学等全球知名学府发光发热。“3Flex性能优良,样品测试通量高,具有极高的可靠性和准确性。”诺丁汉大学实验室主任Matthew Hall在谈到3Flex时赞不绝口,其观点也在用户中颇为具有代表性。 绿茵场上,球员的球鞋合不合适只有脚知道,而在科研和检测工作领域, 高性能全功能仪器也是必不可少的。沉浸于材料表征分析领域的你或许无法预测下一场的获胜球队,但有了3Flex三站全功能型多用吸附仪,你的科研之路定会如虎添翼,划出美丽的弧线,直中鹄的! 如果您对我公司的3Flex系列三站全功能型多用吸附仪感兴趣,请浏览详情:http://www.instrument.com.cn/netshow/C154445.htm。
  • 【高校设备更新实施方案】来了!焕新国产—气体吸附仪器助力科研
    【高校设备更新实施方案】来了!焕新国产—气体吸附仪器助力科研点击填写【高校设备更新】采购需求市面上的气体吸附产品庞杂,如何挑选更适合您的仪器1. 产品功能稳定,数年间持续为您提供准确数据2. 产品自动化程度高,方便操作3. 售前售后为您排忧解难,有问题随时解决4. 线上丰富资料库,学习机器使用技巧,了解更多应用发展静态法产品优势:介孔系列的一体化集装式真空管路系统,有效提高系统极限真空度和测试精度微孔系列的高真空不锈钢微焊管路系统配套 VCR 接口和气动阀,系统内壁电抛光处理,可以保证系统的低漏气率,配合分子泵,达到更高真空度高精度数字化压力测量及数据采集系统,抗干扰能力强,可扩展性高,多量程压力传感器分段测量确保微孔低压力测量准确性采用国际同类知名品牌一致的仪器检测及验收标准,确保测试数据与国际接轨。测试数据经多家权威国家级计量院计量认证,获得计量认可证书动态法产品优势:优质的不锈钢管路系统,密封性更好,可靠性更强,降低热导池温漂误差,提高仪器使用寿命实时调节 P/P0 在 0.03~0.35 范围内任何比例的混合气体可满足客户不同的测试需求多样品测试速度快,同时对于小表面积测试结果准确度高、重复性好真密度产品优势:大热容量的集装式恒温系统,确保全程温度的均匀性和缓变性,针对特殊样品可以按需进行控温,满足不同测试需求高精度数字量采集系统,抗干扰能力更强,可扩展性高。采用高精度计算模型,提高测试精度样品仓底部安装过滤装置,有效防止样品吸入管路系统。测试腔体底部进气方式,有效防止样品飞溅高温高压气体吸附仪产品优势:高压及真空通用的不锈钢微焊管路系统,确保高压和高真空下极低的漏气率,提高仪器稳定性和使用寿命可定制的防飞溅不锈钢微焊样品管,确保高压测试安全,提高仪器使用寿命及可靠性微型标准腔体(参考腔体),结合高密封性管路系统,少量样品量(毫克级至几克级)可达到传统仪器采用几十克样品量测试结果同等精度测试完成后无任何数据二次误差消除操作,确保测试结果的一致性和可靠性
  • 日开发吸附土壤放射性物质新方法
    新华社东京7月14日电 人工沸石在水质净化和土壤改良等领域早有应用,它还有吸附放射性铯的功能。日本研究人员日前宣布,他们在人工沸石的这一性能基础上,通过化学合成使其带有磁性,这一技术可在清除土壤放射性物质时派上用场。   据日本《每日新闻》报道,人工沸石可由火电站发电副产品粉煤灰制成,原料价廉易得。爱媛大学农学部教授逸见彰男等研究人员在人工沸石的合成过程中混入铁化合物,成功地获得了带有磁性的人工沸石。将这种沸石铺敷在被放射性物质污染的土壤上,沸石会吸附放射性物质,由于这种沸石带有磁性,最后可用磁铁将吸附了放射性物质的沸石与土壤分离。   据介绍,这一技术可以将每千克被污染土壤中的放射物污染程度从数千至1万贝克勒尔降低到每千克500贝克勒尔以下。他们期望两年内将这一技术实用化。
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • 关于物理吸附行业“吸附速度”与“吸附速率”的区别
    在物理吸附行业,经常有不少学生、老师甚至业内的专家,不确定自己要测试的物理量该叫“吸附速度、脱附速度、解吸速度”还是“吸附速率、脱附速率、解吸速率”;不少硕士、博士论文中,甚至较专业的一些技术文章,也经常出现不统一的叫法。由于“速度”相对“速率”偏口语化,”速率“比”速度“更显“学术”,因此经常发现不少专业的人,把本该叫“吸附速度、脱附速度、解吸速度”等的参数,叫成了“吸附速率、脱附速率、解吸速率”。要搞清楚到底该叫“吸附速度”还是“吸附速率”,首先要搞清楚“速度”和“速率”的区别。速度为矢量,有方向和大小;速率为标量,只有大小,没有方向。举例说明:对于位于边长为100m的等边三角形3个角的A、B、C 3点,某物体以匀速10m/秒的速度大小从A经C到达B点,耗时20秒;对于这个情况,该物体从A到B的速度为5m/秒,整个过程其移动速率为10m/秒。再例如,对于悬浮于气体中一个做布朗运动的气体分子或灰尘,其不规则运动的即时速度大小或速率是很大的,但是,在我们我们讨论其从A点运动到B点的速度时,我们是用AB的直线距离除以时间来表示,而速率就不需要考虑其方向性,“只看大小”。在我们讨论吸附质在吸附剂表面的物理吸附现象中,由于吸附和脱附时同时并存发生的两种现象。大家都知道,当处于吸附平衡状态,吸附速率和脱附速率都不是零,只是相等,但吸附速度和脱附速度是零。再比如,对于其它所有条件都相同只是温度不同的两个吸附平衡状态下,温度高的状态的吸附速率或脱附速率有可能相对温度低的都大,但是吸附速度或脱附速度都是零。“吸附速率”或“脱附速率”,更多的偏向于表征吸附质分子单纯聚集于吸附剂表面或单纯离开固体表面的速度大小;而“吸附速度”或“脱附速度”,则更多的偏向于表征在一定时间内由于吸附速率和脱附速率差造成的“净聚集”或“净离开”吸附剂表面的吸附质的量,由于有“方向性”,偏向于表征“效果”。在目前市面的大多数涉及“吸附速度、解吸速度”测试的仪器,测试的其实是一段时间内吸附剂表面吸附质的增加量或减少量,那么,此类仪器就应该叫做吸附速度测试仪或解吸速度测试仪是更恰当的,而不应该叫做吸附速率测试仪或解吸速率测试仪、分析仪等,因为其分析的不是“速率大小”。其实,关于类似这些“专有”名词或概念的普及,主要一方面来自课本,也有不小一部分来自于相关商家或研究单位。假若理解不对的人过多,且一时没有权威单位给予纠正和说明时,商家就有可能从商业利益出发,跟随“潮流”而“被迫”舍弃“严谨”;像“吸附速度”这个词,可能不少国内外商家其实是明白应该怎么个叫法,但是从商业角度考虑,为了更好的可接受性和被认识被发现,而跟随大众。尤其在网络搜索占主要推广方式的当下,这种情况更明显。不少通俗易懂但又不严谨的词语,就是这么产生的。贝士德仪器作为从事气体吸附、蒸汽吸附类分析仪器的制造商和研究单位,有责任给出科学的说明,并倡导正确使用“吸附速度”和“吸附速率”等此类名词。
  • 聚光重大专项“光栅型近红外分析仪及其共用模型开发和应用”正式启动
    2015年4月15日,由聚光科技(杭州)股份有限公司牵头的“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”开题报告会在杭州成功召开。来自浙江省科技厅、国家粮食局质量标准中心、中国药品食品检验研究院、广东出入境检验检疫局技术中心、河南省粮油饲料产品质量监督检验站、浙江大学、杭州电子科技大学的专家和领导,东华大学、三维集团和大北农集团等单位的用户代表,以及项目课题组的代表共50余人参加会议。 开题会现场 会议由陈训龙主持,浙江省科技厅领导发表讲话,聚光科技董事长兼CTO王健发表讲话,聚光科技实验室业务部总经理韩双来汇报项目实施方案。开题报告会紧紧围绕高精度光栅光谱仪研制及工程化、高维形象几何分析的NIR技术研究与软件开发、便携和实验室及在线近红外分析仪器研制及工程化、近红外光谱在粮食(饲料、种子、生鲜猪肉及肉制品)检测应用研究及专用仪器开发、近红外光谱纺织纤维成分无损和药物快速检测应用研究等几个议题展开。 与会专家认真听取了项目组的汇报,并经过质询与专家讨论,专家组一致认为:项目拟研制的科学仪器以需求为牵引,以应用为导向,应用面广,能有效促进经济社会发展和民生改善,带动我国近红外分析技术的发展;该项目所选用技术路线符合量大面广的近红外应用需求,是贴合我国当前国情的合适的技术的路线,经过本项目研究,将形成粮食、饲料、种子、肉类、药品、纺织品等大宗农副产品的综合性检测技术,能够有效的提升整体产业竞争力。与会专家和领导合影 作为此专项的牵头单位,我们是满满的收获和重任,我们有能力有信心推出更适合用户的光栅型近红外分析仪及共用模型尽快面世。 相关产品简介: 关于“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”更多信息 请关注聚光科技官网www.fpi-inc.com 微信或行业媒体
  • 中国科学技术大学理化科学实验中心热分析与吸附组在用设备简介
    p    strong 本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。 /strong /p p   目前热分析与吸附组在用的分析仪器主要包括热分析仪、吸附仪和粒度粒形分析仪,这些仪器与常规的结构和成分分析仪器不同,主要侧重于材料的性质表征。热分析仪是在程序控温和一定气氛下测量材料的物理性质(主要包括质量、热量、尺寸、电学性质、光学性质、磁学性质等)随温度或时间连续变化关系的一大类仪器,而吸附仪则通过测量材料在不同条件下(主要指压力、浓度、温度、时间等)对于某种或某几种气体的吸附能力来获得材料的结构、性质等方面的信息的一类仪器,主要分为物理吸附仪和化学吸附仪两大类,粒度粒形分析系统可以得到材料的粒径分布、粒形和Zeta电位等信息。和以下将分类进行介绍。 br/ /p p style=" text-align: center "    strong I热分析仪 /strong /p p    a href=" https://www.instrument.com.cn/zc/62.html" target=" _self" strong 1.热重仪 /strong /a /p p   热重仪(Thermogravimeter),是一种利用热重法检测物质温度-质量变化关系的仪器。按其结构形式可以分为下皿式(即吊篮式)、上皿式和水平式三大类。目前的商品化仪器中,上皿式和水平式结构的热重仪通常与差热分析和差示扫描量热技术联用,通常称为同步热分析仪(SimultaneousThermal Analyzer)。下皿式结构的仪器通常为单一的热重仪。在用的热重仪主要有日本岛津公司TGA-50H热重仪(图1)、美国TA公司Q5000IRTGA热重仪(图2)、美国TA公司DiscoveryTGA热重仪(图3)和德国Netzsch公司TGA209F1四台仪器。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7cc54975-2e83-4193-afbe-9362093fddab.jpg" title=" 图1 Shimadzu TGA-50H热重仪.png" alt=" 图1 Shimadzu TGA-50H热重仪.png" / /p p style=" text-align: center " 图1 Shimadzu TGA-50H热重仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/60fcd219-634a-4501-b236-0c8383beb3f5.jpg" title=" 图2 TA Q5000IR TGA热重仪.png" alt=" 图2 TA Q5000IR TGA热重仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图2 TA Q5000IR TGA热重仪   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3cc6fee1-5c9e-42d8-b072-1cf2aa19198b.jpg" title=" 图3 TA Discovery TGA热重仪.png" alt=" 图3 TA Discovery TGA热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" 图3 TA Discovery TGA热重仪 /a    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/62aaf285-e5ee-4ded-9d8f-68c63487286c.jpg" title=" 图4 德国Netzsch公司TGA209F1热重仪.png" alt=" 图4 德国Netzsch公司TGA209F1热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" 图4 德国Netzsch公司TGA209F1热重仪 /a /p p   其中,TGA-50H热重仪购于1993年,经过多次的加热炉、热电偶、吊篮以及软件的升级改造,这台仪器至今各项指标都可以满足检测要求。目前该仪器主要用于完成一些特殊条件下(主要指耗时特别长、水蒸气、还原气氛等可能会对仪器带来潜在损害的实验)的热重实验。美国TA公司的Q5000IRTGA和DiscoveryTGA可以实现温度调制(MTTGA)和速率超解析(HRTGA)实验。德国Netzsch公司TGA209F1带有200位自动进样器,可以实现真空条件下的TG实验。Q5000IR TGA和DiscoveryTGA主要用于常规测试,这两台仪器均带有25位自动进样器,可以高效率地完成各种常规测试需求。另外,由于其红外加热的优势,可以实现快速的升降温和准确的等温,可以用来研究高加热速率和等温下的热解行为。 /p p    a href=" https://www.instrument.com.cn/zc/469.html" target=" _self" strong 2.同步热分析仪 /strong /a /p p   同步热分析仪是在程序控温和一定气氛下,对一个试样同时采用两种或多种热分析技术,是一种常见的热分析技术。通常特指热重-差热分析仪或热重-差示扫描量热仪。在用的热重仪主要有日本岛津公司DTG-60H热重-差热分析仪(图5)、美国TA公司SDTQ600热重-差热分析仪(图6)、美国PE公司STA-6000同步热分析仪(图7)、美国PE公司STA-8000同步热分析仪(图8)和德国耐驰公司STA449F3同步热分析仪(图9)。这五台仪器中除STA-8000最高温度为1000℃外,其余四台仪器的最高温度均为1500℃。其中,STA-6000和STA449F3带有自动进样器,可以高效率地完成各种常规测试需求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9bf825ec-6e41-4322-a420-e5f38d3601ee.jpg" title=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图5 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/2892e4a4-5470-4edf-a2fe-9dd437fd5c40.jpg" title=" 图6 TA SDT Q600热重-差热分析仪.png" alt=" 图6 TA SDT Q600热重-差热分析仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图6 TA SDT Q600热重-差热分析仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/97dabaf9-0bbb-4f90-afb6-2f726f88a4c9.jpg" title=" 图7 PerkinElmer STA-6000同步热分析仪.png" alt=" 图7 PerkinElmer STA-6000同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" 图7 PerkinElmer STA-6000同步热分析仪 /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f7d5b2c6-6263-4064-a733-1ef18dbaa4d3.jpg" title=" 图8 PerkinElmer STA-8000同步热分析仪.png" alt=" 图8 PerkinElmer STA-8000同步热分析仪.png" / /p p style=" text-align: center " 图8 PerkinElmer STA-8000同步热分析仪 br/ /p p    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9831667e-4650-43cb-97bf-36dc8d2341dd.jpg" title=" 图9 Netzsch STA 449F3同步热分析仪.png" alt=" 图9 Netzsch STA 449F3同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" 图9 Netzsch STA 449F3同步热分析仪 /a /p p    a href=" https://www.instrument.com.cn/zc/68.html" target=" _self" strong 3.热重/红外光谱/(气相色谱/质谱联用)联用仪 /strong /a /p p   在用的两台热重/红外光谱/(气相色谱/质谱联用)联用仪(图10)分别购于2012年(热重部分为Pyris1TGA、红外光谱部分为Frontier红外光谱仪、GC为Clarus680、MS为ClarusSQ 8T)和2018年(热重部分为TGA8000、红外光谱部分为Frontier红外光谱仪、GC为Clarus690、MS为ClarusSQ 8T),主要用来研究材料随着温度的变化材料由于分解等引起的质量减少产生的气体的种类和含量的信息,是一种常用的联用技术。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/66e27249-e41c-489f-aff5-843ec2e531a7.jpg" title=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" alt=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" style=" max-width: 100% max-height: 100% " / br/ /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" 图10 PerkinElmer TL-9000热重/红外光谱/(气相色谱/质谱联用)联用仪 /a /p p   该仪器可以实现热重/红外光谱联用、热重/红外光谱/质谱联用、热重/红外光谱/(气相色谱/质谱联用)联用等实验,是研究材料的热解机理的一种很强大的分析手段。另外,这两套联用系统分别配置了捕集阱顶空(型号为TurboMatrix40 Trap)和热脱附(型号为TurboMatrix300)附件,通过切换,可以实现室温~300℃下的逸出气体的组成分析。 /p p    a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" strong 4.差示扫描量热仪 /strong /a /p p   差示扫描量热仪(differential scanning calorimeter,简称DSC仪)是在程序控温和一定气氛下,测量输给试样和参比物的热流速率或加热功率(差)与温度或时间关系的仪器。DSC仪通过测量试样端和参比端的热流速率或加热功率(差)随温度或时间的变化过程来获取试样在一定程序控制温度下的热效应信息。与DTA仪相比,DSC仪具有较高的灵敏度和精确度。常用的DSC仪主要有热流式和功率补偿式两种类型。在用的差示扫描量热仪主要有日本岛津公司DSC-60差示扫描量热仪(图11)、美国TA公司Q2000差示扫描量热仪(图12)、美国PE公司DSC8500差示扫描量热仪(图13)、美国TA公司MC-DSC多池差示扫描量热仪(图14)和德国耐驰公司DSC204F1差示扫描量热仪(图15)。其中DSC-60、Q2000、DSC204F1和MC-DSC属于热流型DSC仪,DSC8500属于功率补偿型DSC仪。除MC-DSC外,仪器的工作温度范围为-180℃-725℃(DSC8500的最高温度为750℃)。Q2000带有紫外光源,可以用来研究光照条件下的热效应的变化。Q2000和DSC8500还可以分别实现MTDSC和DynamicDSC的功能。另外,Q2000和DSC8500带有自动进样器,可以高效率地完成各种常规测试需求。与常规DSC不同,MC-DSC可以用来测量大尺寸样品(通常可以用来测试的样品的体积在1mL以上)的热效应,该仪器可以同时测量三个样品。但工作温度范围比较有限,在-40-150℃范围内。该仪器还可以用来测量高压、混合等条件下的热效应变化。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/85f4eb27-c25a-4c14-9101-0d2911440760.jpg" title=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图11 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/066e1243-684f-422e-b8fb-9ee60db94cfd.jpg" title=" 图12 TA Q2000 DSC 差示扫描量热仪.png" alt=" 图12 TA Q2000 DSC 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图12 TA Q2000 DSC 差示扫描量热仪  a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/2b5272a7-b5f4-448f-b74e-9cd33c5f9447.jpg" title=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" alt=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" 图13 Perkin Elmer DSC 8500 差示扫描量热仪 /a br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/63c667fb-8897-4c0f-b75f-4b728311c955.jpg" title=" 图14 TA MC-DSC 差示扫描量热仪.png" alt=" 图14 TA MC-DSC 差示扫描量热仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图14 TA MC-DSC 差示扫描量热仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/30fa6369-9982-48be-bdb6-bf29b1f1f914.jpg" title=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" alt=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" 图15 Netzsch DSC 204F1差示扫描量热仪 /a br/ /p p    strong 5.微量差示扫描量热仪 /strong /p p   与常规的DSC仪相比,微量差示扫描量热仪(microDSC)具有更高的灵敏度。其工作原理属于功率补偿型。我组在用的microDSC主要有美国Microcal公司(现已并入美国马尔文公司)的VP-DSC微量差示扫描量热仪(图16)和美国TA公司的NanoDSC微量差示扫描量热仪(图17)。由于该仪器的研究对象主要为大分子溶液体系,其工作温度范围为-5℃-130℃。与常规DSC实验中样品加入可移动的坩埚中不同,microDSC的样品池为固定池。实验时溶液通过进样器加入具有一定体积的固定池中,实验结束后再将待测溶液移除,然后清洗样品池。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d2ed8ad-c2d8-470e-9794-3029a265cd3f.jpg" title=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" alt=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" 图16 Microcal VP-DSC微量差示扫描量热仪  /a   /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5d86b323-37aa-4a09-903b-0e4c5912c60f.jpg" title=" 图17 TA Nano DSC微量差示扫描量热仪.png" alt=" 图17 TA Nano DSC微量差示扫描量热仪.png" / /p p style=" text-align: center " 图17 TA Nano DSC微量差示扫描量热仪 /p p    strong 6.闪速差示扫描量热仪 /strong /p p   闪速差示扫描量热仪(FlashDSC 2+)(图18)可以用来研究许多亚稳态材料如半结晶聚合物、多晶型材料、复合材料以及合金等的结构变化过程,可以实现常规的DSC无法实现的超高加热/降温速率下的实验。借助其UFS1传感器可以实现最高加热速率为3000000K/min(300万度每分钟)和最快加热速率为2400000K/min(即240万度每分钟)的超高温度扫描速率下的实验,实验温度范围为-100-1000℃。仪器采用嵌于陶瓷基体之上的微型芯片式传感器。该传感器基于MEMS 技术并且像常规DSC 一样拥有两个独立的量热组件(样品池及参比池)。两个量热组件所在的传感器主体由两个相同的正方形氮化硅薄膜构成。薄膜边长为1.6mm、厚度为2μm,嵌于300μm厚的硅框架内。用于闪速DSC 的典型样品为薄膜、块状材料或者粉末。块状材料在制样时首先从基体材料上切下一些小圆片。然后在显微镜下用刀片在传感器的附件将小圆片切成更小的小片。利用尖端带有一根细毛的专用毛笔将制备成的样品直接放置于传感器上。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/79f58b82-4ab2-44d7-9216-fb9b56bdde39.jpg" title=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" alt=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" 图18 闪速差示扫描量热仪(FlashDSC 2+) /a br/ /p p    strong 7.等温微量量热仪 /strong /p p   在用的美国TA公司的TAMIV等温微量热仪(图19)是一种非常灵敏、稳定和灵活的微量热系统,能够直接测量所有的热信号、从而定量得到一个过程热力学和动力学信息。四个独立的量热通道可以在相同的实验条件下同时进行不同样品的实验,目前该仪器配置了等温滴定量热计、溶解热量热计、气体灌注量热计和六通道微瓦级量热计和纳瓦级量热计。可用于反应过程中向系统内添加反应试剂或是精确控制添加试剂的时间及用量。该系统可用来测量反应热,材料稳定性,材料寿命预测,工艺安全性评价,配方筛选等。通过等温滴定量热检测,可以对含有不同基团分子的两者液体材料在相互滴加时,根据产生测量产热情况,计算两种基团的结合情况,从而评估两者物质的相容情况 通过气体灌注/吸附热量检测,可以在一定温度下,得到材料对气体吸附过程的吸/放热测量 可以实现材料体与不同气氛(或湿度)作用下的吸/放热测量 通过溶解量热检测,可以在实际应用中,需要检测固体材料溶解到液体或者两者液体混合时所产生的溶解热。如含能材料溶解于水时的热量检测。通过纳瓦级量热计可以很容易实现此应用 通过多通道量热检测,可以在实际应用中用于同种样品材料的目标性筛选,极大地提高工作效率。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4f50435-e361-4d77-8f17-b10c95be8972.jpg" title=" 图19 美国TA公司TAMIV等温微量热仪.png" alt=" 图19 美国TA公司TAMIV等温微量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" 图19 美国TA公司TAMIV等温微量热仪 /a br/ /p p    strong 8.等温滴定量热仪 /strong /p p   等温滴定量热仪为生物分子结合的研究提供了最高的灵敏度和灵活性。仪器采用固态热电偶加热和冷却系统,实现了精确的温度控制,同时具有同样灵活性的注射器附件可确保准确有效地输送滴定剂。在用的美国TA公司的NanoITC等温滴定量热仪(图20)的工作温度范围为2℃~80℃,注射针筒体积为50µ L 和250µ L,检测热量范围是0.1µ J~5000µ J。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/f44de75d-a260-4a1c-b0c1-3aff5dcf91a5.jpg" title=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" alt=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" 图20 美国TA公司的NanoITC等温滴定量热仪 /a /p p    a href=" https://www.instrument.com.cn/zc/66.html" target=" _self" strong 9.热膨胀仪 /strong /a /p p   热膨胀仪是在程序控温和一定气氛下,负载力接近于零的条件下测量材料的尺寸(通常为长度)随温度和时间变化关系的一类技术。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。通过材料的尺寸变化可以测量与研究材料的线膨胀与收缩、玻璃化温度、致密化和烧结过程、热处理工艺优化、软化点检测、相转变过程、添加剂和原材料影响、反应动力学研究等方面的信息。在用的热膨胀仪为德国耐驰公司的DIL-402C热膨胀仪(图21),该仪器可以用来测量材料在室温-1600℃范围内的尺寸变化信息。  /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/35f4cc01-6a98-4340-a275-1bf96127b13b.jpg" title=" 图21 Netzsch DIL-402C热膨胀仪.png" alt=" 图21 Netzsch DIL-402C热膨胀仪.png" / /p p style=" text-align: center " 图21 Netzsch DIL-402C热膨胀仪 /p p   strong   a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" 10.静态热机械分析仪 /a /strong /p p   静态热机械分析仪(ThermalMechanical Analyzer,简称TMA仪)是在程序温度控制下(等速升温、降温、恒温或循环温度),测量物质在受非振荡性的负荷(如恒定负荷)时所产生的形变随温度变化的一种技术。热机械分析虽然涉及的材料对象非常广泛,包括金属、陶瓷、无机、有机等材料,但用它来研究高分子材料的玻璃化温度Tg、流动温度Tf、相转变点、杨氏模量、应力松弛等更具有特殊的意义。在用的热机械分析仪为美国TA公司的Q400TMA 热机械分析仪(图22),该仪器可以用来测量材料在-150-1000℃范围内的尺寸变化信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/d5b4ef1a-0f74-4262-909d-c4255d0aa8e7.jpg" title=" 图22 TA Q400 TMA热机械分析仪.png" alt=" 图22 TA Q400 TMA热机械分析仪.png" / /p p style=" text-align: center " 图22 TA Q400 TMA热机械分析仪 br/ /p p    a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" strong 11. 动态热机械分析仪 /strong /a /p p   与TMA相比,动态热机械分析仪(DynamicMechanical Analyzer,简称DMA仪)是在程序温度控制下测量物质在承受振荡件负荷(如正弦负荷)时模量和力学阻尼随温度变化的一类仪器。它在测量分子结构单元的运动,特别在低温时比其他分析方法更为灵敏、更为有用。在用的DMA仪为美国TA公司DMAQ800动态热机械分析仪(图23)和DiscoveryDMA Q850动态热机械分析仪(图24)。该仪器可以用来研究材料在拉伸、压缩、单/双悬、三点弯曲、剪切条件下的动态受力下的形变,工作温度范围为-160~600℃。最大力为18N,频率范围0.001~200Hz。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9d52c1f2-8b54-4933-bf5f-3a948bfe6abc.jpg" title=" 图23TA Q800 DMA热机械分析仪.png" alt=" 图23TA Q800 DMA热机械分析仪.png" / /p p style=" text-align: center " 图23TA Q800 DMA热机械分析仪 br/ /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ca2ea5ba-9a29-4ff3-8766-fd29bb8c78d1.jpg" title=" 图24TA Discovery DMA 850热机械分析仪.png" alt=" 图24TA Discovery DMA 850热机械分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" 图24 TA Discovery DMA 850热机械分析仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/84.html" target=" _self" strong 12.流变仪 /strong /a /p p   流变仪(rheometer),即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。分为旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。在用美国TA公司的DiscoveryDHR-2 流变仪(图25)属于旋转流变仪。通过改变不同的外界调节(如温度,压力,频率,应变,时间等)作用于材料,得到材料的回馈信号分析出其工艺过程和结构特性,研究材料或样品的性能(如零剪切粘度,凝胶点,固化点等等),计算材料的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪测量时将样品置于特定的上下测量夹具之间,夹具的一端对样品施加一个力或变形,相应的传感器测量样品回馈对所施加的力或变形的响应,通过对该响应分析就得到样品粘弹性的总和特性曲线(如零剪切黏度,凝胶点,固化点等),计算样品的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪的测试模式包括:流动(稳态测量)、振荡(动态测试)、蠕变和应力松弛(瞬态测量)等模式。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d195ae8-9c9a-4152-af09-be48efbe3c42.jpg" title=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" alt=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" 图25 美国TA公司DiscoveryDHR-2 流变仪 /a br/ /p p   strong   a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" 13.热流法导热仪 /a /strong /p p   导热仪广泛应用于包括石墨、金属、陶瓷、聚合物、复合材料等领域,具有样品制备简易,测量速度快,测量精度高等众多优点。在用的热流法导热仪为德国耐驰公司的HFM446热流法导热仪(图26),平板温度范围:-20~90℃,可用于直接测量低导热与绝热材料的导热系数,如膨胀聚苯乙烯(EPS)、挤出聚苯乙烯(XPS)、PU坚硬泡沫、矿物棉、膨胀珍珠岩、泡沫玻璃、软木塞、羊毛、天然纤维材料,包含相变材料、气凝胶、混凝土、石膏或聚合物的建筑材料等。测试时将待测材料置于两块平板之间,平板间维持一定的温度梯度。通过平板上两个高精度的热流传感器,测量进入与穿出材料的热流。在系统达到平衡状态的情况下,热流功率为常数,在样品的测量面积与厚度已知的情况下,使用傅立叶传热方程可以计算导热系数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bb1690a8-cac7-4943-b3b8-a2c41658a514.jpg" title=" 图26 德国耐驰公司HFM446热流法导热仪.png" alt=" 图26 德国耐驰公司HFM446热流法导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" 图26 德国耐驰公司HFM446热流法导热仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" strong 14.激光导热仪 /strong /a /p p   激光热导法直接测量的是材料的热扩散系数,其基本原理为:在炉体控制的一定温度下,由激光源发射光脉冲均匀照射在样品下表面,使试样均匀加热,通过红外检测器连续测量样品上表面相应温升过程,得到温度(检测器信号)升高和时间的关系曲线。应用计算机软件的数学模型对理论曲线和试验温度上升曲线进行计算修正,从而测出样品的热扩散系数,再测出比热已知的标样的热扩散系数,利用数学模型计算出样品的比热,系统根据计算公式自动计算出样品的导热系数。在用的德国耐驰公司的LFA467 HyperFlash 闪射法激光导热仪(图27),工作温度范围:-100~500℃,可在整个温度范围内连续测量16 个样品 德国耐驰公司的LFA467 HT HyperFlash 闪射法激光导热仪(图28),工作温度范围:室温~1250℃,这两款仪器都拥有极高的采样频率2MHz,特别适合于薄膜样品和高导热材料。  /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5ef34d77-68dd-4c81-8f7f-00ebd4b8e95a.jpg" title=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" alt=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪  /a   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e96ba5b-542f-4218-b48a-3e3625c3ed0f.jpg" title=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" alt=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪 /a /p p br/ /p p style=" text-align: center "    strong II 吸附仪 /strong /p p   在用的吸附仪主要有以下几种: /p p    strong 15.物理吸附仪(比表面积介孔分析仪) /strong /p p   在用的比表面积和介孔分析仪为美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪(图29)。该仪器可同时实现三个样品的测试,得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(BJH、DFT等模型)、孔容积等信息。采用脱气站与分析站分离的工作模式。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/614b0dc7-11e4-4252-9812-9630ab61d87b.jpg" title=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" alt=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" / /p p br/ /p p style=" text-align: center " 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪 /p p    strong 16. 物理吸附仪(比表面积和微孔、介孔分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国QuantachromeAutisorb iQ3M全自动气体吸附仪(图30)和美国Micromeritics2460全自动物理吸附仪(图31)。 /p p   该仪器可同时实现三个样品的测试(可以同时进行两个微孔或三个介孔的分析),得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(HK、BJH、DFT等模型)、孔容积等信息。仪器同时带有4个脱气站和3个分析站。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/fc642a87-dad4-4e50-9127-7f5177ae6865.jpg" title=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" alt=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" / /p p style=" text-align: center " 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/50880f2e-b073-4094-8018-74727f86a979.jpg" title=" 图31 美国Micromeritics2460全自动物理吸附仪.png" alt=" 图31 美国Micromeritics2460全自动物理吸附仪.png" style=" max-width: 100% max-height: 100% " / br/ /p p style=" text-align: center " 图31 美国Micromeritics2460全自动物理吸附仪 /p p    strong 17.物理化学吸附仪(比表面积、微孔、介孔和静态化学吸附分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪(图32)。该仪器可以实现对材料的物理吸附(得到比表面积、孔径分布、孔容积等信息)和静态化学吸附实验。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/07938ed4-1570-479c-ad92-01e2921cd925.jpg" title=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" alt=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" / /p p style=" text-align: center " 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪 br/ /p p    strong 18.化学吸附仪(静态和动态化学吸附分析仪) /strong /p p   在用的美国QuantachromeAutosorb iQ3MVC全自动气体吸附仪(图33)除了可测比表面积、介孔、微孔等,还可以测量蒸汽吸附、静/动态化学吸附,全方位表征样品的催化特性。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4367c8af-bc74-4539-b2a7-1f2200dabd17.jpg" title=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" alt=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" / /p p style=" text-align: center " 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪 /p p    strong 19.压汞仪 /strong /p p   在用的压汞仪为美国康塔公司的PoreMaster60GT全自动压汞仪(图34),可同时分析2个高压样品。可用于介孔和大孔的总孔体积、孔体积分布、孔表面积及其分布测定,也可用于测定空心玻璃微珠的压碎强度和防水材料的水侵入研究。该仪器利用汞对材料不浸润的特性,采用人工加压的方式使汞进入材料内部孔隙,通过高精度压力传感器和标准体积膨胀计测量样品的注汞和退汞曲线,结合相关模型计算样品的孔径结构、孔隙度及真密度等参数。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4e82d57e-86b9-49c2-a473-686d65fa88f7.jpg" title=" 图34 PoreMaster 60GT全自动压汞仪.png" alt=" 图34 PoreMaster 60GT全自动压汞仪.png" / /p p style=" text-align: center " 图34 PoreMaster 60GT全自动压汞仪 br/ /p p br/ /p p style=" text-align: center " strong III 粒度粒形分析仪 /strong /p p   目前,常用的颗粒粒度表征方法主要有筛分法、沉降法、电阻法、颗粒跟踪法、激光衍射法、动态光散射法、静态图像法、动态图像法等。其中,激光衍射法因为准确性高、重复性好、测试速度快、自动化程度高、大量成熟的测试方法标准,成为微米级颗粒粒度的主流方法。动态光散射法对于纳米级颗粒具有准确、快速、可重复性好等优点,还具有测量Zeta电位等能力,已经为纳米材料中非常常规的一种表征方法。动态图像法采样数据多、无取向误差、颗粒分散度高、无粘连重叠现象,在粒形分析方面得到了广泛应用,除了给出30多种颗粒的粒形参数,还能对测试颗粒的分散情况进行分析。在用的Microtrac粒度粒形测量系统可以实现颗粒以上的表征,该测量系统在催化剂、能源、环境、化工、金属粉体、工业矿物、陶瓷、玻璃珠、油气、涂料/颜料、制药、涂层、水泥、3D打印等领域中有着广泛的应用。颗粒的粒度和粒形与材料的性能密切相关,例如药品颗粒的粒度决定着人体的吸收程度,水泥颗粒的粒度决定了水泥的凝结时间,调色剂颗粒的球形度决定了其在打印材料上的粘附力等等。通过测量这些颗粒的粒度粒形参数(如粒径、球形度、长宽比、周长、面积等),可以优化材料的相关特性。该测量系统主要包括测量范围为0.01-4000µ m的Sync测量单元(图35)和测量范围为0.8nm-6.5µ m的NanoTrac测量单元(图36)。其中,Sync测量单元除可以实现粒度分布测量功能外,还可以得到粒形信息 NanoTrac测量单元除可以实现粒度分布测量功能外,还可以得到Zeta电位信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b4fe743a-36c8-4df3-9ef2-dea228d3cac9.jpg" title=" 图35 Sync测量单元.png" alt=" 图35 Sync测量单元.png" / /p p style=" text-align: center " 图35 Sync测量单元 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7b0f6ad0-04c2-428a-bba6-87bb587dd984.jpg" title=" 图36 NanoTrac测量单元.png" alt=" 图36 NanoTrac测量单元.png" / /p p style=" text-align: center " 图36 NanoTrac测量单元 /p p   Sync测量单元由2个镜头、2块检测系统(共151个检测单元)和三个激光系统组成,可以实现高效、准确的颗粒度表征。其采用静态激光衍射技术测量微米级粒度,采用动态图像分析技术测量粒形数据,可以使用多于30种大小和形态的参数。仪器可以实现湿法和干法测量模式,满足多种样品的各种测量要求。由Sync的动态图像分析功能可以得到的散点图,由此可以得到不同尺寸范围的不同形状的颗粒的分布信息。NanoTrac测量系统采用采用先进的动态光背散射技术,180° 检测异相多普勒频率的变化,稳定性好、重现性高。采用电泳法技术测量Zeta电位数据。通过温控装置可以实现0-80℃范围内的粒度和Zeta电位测量。 br/ /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制