当前位置: 仪器信息网 > 行业主题 > >

微观物质

仪器信息网微观物质专题为您整合微观物质相关的最新文章,在微观物质专题,您不仅可以免费浏览微观物质的资讯, 同时您还可以浏览微观物质的相关资料、解决方案,参与社区微观物质话题讨论。

微观物质相关的资讯

  • OPTON的微观世界|第8期 从宏观到微观:向自然界学习压力物质运输的最优化法则——默里定律
    序 言自然界中的所有动物和植物都具有类似的网格状等级结构,比如叶子的叶脉、植物的根茎系统、人体的血管系统等等,这些结构的存在不仅仅是为了保证自身结构的稳定,同时还确保了生命体在进行新陈代谢与物质能量传递过程中所受的阻力最小、运输的效率最高。一、默里定律在自然界的应用我们都知道根据流量与流速的关系,当液体从一个比较粗的管道流进一个比较细的管道时,液体的流速会增加,同时细管的所受的液体压力相对于粗管所承受的压力来说也更大。但是通过对我们生物界的血液系统进行观察可以发现生物体内不管是粗的血管还是细的血管,所受的压力都不会太大。科学家默里通过观察发现在人体中很多小血管从一个大血管分叉出去,所有小血管的横截面积的总和大于大血管的横截面,通过精确计算可以知道在一个最佳血液循环网络中,大血管半径的立方,大约等于小血管半径的立方的总和。图1. 人体血管与叶片脉络的电镜显微图如上图所示,在自然界中不管是动物还是植物,涉及到物质运输时,其运输管道都会遵循默里定律(血管、气管、根系、叶脉等),以使物质传输效率达到最优化,同时也使构造力学结构最优化。二、通过向自然界学习默里定律的应用示例2.1 锂离子电池图2. 根据默里定律设计的多等级孔道电极材料示意图 依据默里定律发现的自然界中动植物物质运输的最优化法则,科学家们设计了上图2所示的多等级孔隙电极材料,电极材料中的大孔、小孔、微孔的孔隙比率遵循了默里定律的最优比。有这种结构的电极材料由于锂离子在其内脱锂嵌锂的效率非常高,其充放电的倍率性能及比容量都比常规的氧化锌电极材料高出很多,下图是其充放电的性能示意图:充放电倍率性能、循环稳定性能、比容量性能示意图2.2 天然气、水、石油运输图3. 管道运输示意图西气东输、南水北调这些石油、天然气、水的大量运输过程中管道的粗细与运输速度和所承受的压力要经过严格的计算才能保证安全高效的运输工作,这里也体现了默里定律的重要性。后 记“实践是检验真理的唯一标准”,先人们通过模仿大自然的运行规律,总结出来了很多可以被我们后人来学习和使用的规则与定律,通过对这些规则与定律的应用,我们的生活水平与科技水平得到了飞速的提高。但是碍于之前我们的观察能力,仅仅能对肉眼或者光学显微镜能够看到的世界来进行学习与模仿。而现如今电子显微镜的存在极大的提高了我们观察身边的微观世界,更有效的学习自然法则,研究微观形貌结构与宏观材料性能的关系,制造出更先进更优异的材料及工具来改善我们现今的生活。
  • 我国首台“超级显微镜”散裂中子源建成 用于研究物质微观结构
    p   3月25日,中国散裂中子源25日通过了中国科学院组织的工艺鉴定和验收。建成后的中国散裂中子源成为中国首台、世界第四台脉冲型散裂中子源,填补了国内脉冲中子应用领域的空白,为我国材料科学技术、生命科学、资源环境、新能源等方面的基础研究和高新技术开发提供强有力的研究手段,对满足国家重大战略需求、解决前沿科学问题具有重要意义。 /p p   中国散裂中子源建在广东省东莞市,是我国“十一五”国家重大科技基础设施。工艺鉴定验收专家委员会评价:中国散裂中子源性能全部达到或优于国家发展和改革委员会批复的验收指标。装置整体设计科学合理,研制设备质量精良,调试速度快于国外的散裂中子源。靶站最高中子效率达到国际先进水平。 /p p   中国散裂中子源就像一台“超级显微镜”,用于研究物质微观结构,在材料科学技术、生命科学、物理学、化学化工、资源环境、新能源等诸多领域具有广泛应用前景。 /p p   通过自主创新和集成创新,中国散裂中子源在加速器、靶站、谱仪方面取得了一系列重大技术成果。设备国产化率超过90%,显著提升了我国在磁铁、电源、探测器及电子学等领域相关产业技术水平和自主创新能力,使我国在强流质子加速器和中子散射领域实现了重大跨越,技术和综合性能进入国际同类装置先进行列。例如:国内首次研制成功25Hz交流谐振励磁的大型二极和四极磁铁及电源,交流磁场精度达到同类装置国际领先水平 自主研制成功液氢慢化器,通过靶—慢化器 —反射体紧凑耦合的物理和工程设计,保证靶站高中子效率等。 /p p   中国散裂中子源由中国科学院高能物理研究所承建,共建单位为物理研究所,于 2011年9月开工建设,工期6.5年,总投资约23亿元,主要建设内容包括一台直线加速器、一台快循环同步加速器、一个靶站,以及一期三台供中子散射实验用的中子谱仪,是各种高、精、尖设备组成的整体。 /p p   此前,中国散裂中子源已经获得了一些阶段性成果。如,2017年8月,中国散裂中子源首次打靶成功并获得中子束流。首期三台中子谱仪,即通用粉末衍射仪、小角散射仪和多功能反射仪,都顺利完成样品实验。通用粉末衍射仪已经完成了两个高水平的用户实验。 /p p   中国散裂中子源建成后,将充分发挥一期三台谱仪在材料科学、生命科学、凝聚态物理和化学等领域的作用,为用户提供国际先进的研究平台。 /p
  • 微观世界|第4期 食物中的力学知识 不同品质大米的微观力学分析
    一、前期回顾 上期我们发现纸币防伪条之所以呈现不同色彩和形貌是因为特殊的微观结构所导致(详细情形见第三期文章),材料的微观结构对宏观的光学性能巨大的改变。由于大部分读者在上期投票中选择【B选项:1元/斤的大米和10元/斤的大米在显微镜下有何区别。】 那么今天笔者带领大家来一起探索优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上有什么不一样。二、序 言金属的强度、韧性、脆性与它的微观组织结构有很大的联系:韧性强的金属材料会发生韧性断裂,在断口的断面会观察到有典型“韧窝”特征的韧性断裂区;脆性大的金属会发生脆性断裂,在断口的断面会观察到有典型“台阶”特征的解理断裂区。这些不同的断口形貌是由微小的热处理工艺或材料成分的微小差别所引起的,不同的微观组织形貌代表了不同的金属材料生产工艺。那么我们猜想:是否可以通过显微形貌分析来判断生长周期不一样、或者营养成分/化学物质不一样的农作物呢?三、大米断面显微形貌分析,大米淀粉形貌及淀粉复粒形貌本期选择同种大米的两个不同时期(新米10元/斤、存放半年的陈米6元/斤)的样本进行微观形貌的拍摄,来研究放置时间长的大米除了靠气味和口感上的差异来区分外,是否可以通过材料显微分析的手段来进行辨别。 1. 大米断口分析 大米断口显微形貌图 如上图A所示,我们把大米粒掰断后可以看到大米粒断口是有形貌特征的。放大到100倍下如图B我们可以看到有类似金属沿晶断口及窝韧形貌特征的存在。图C是窝韧特征的细节放大图,可以发现是由10μm左右的一粒粒大米淀粉微粒组成的、断口高低起伏且小一点的淀粉微粒棱角分明。图D是大米内部淀粉复粒组成的,大米复粒表面比较光滑,复粒淀粉之间的交界面都很平滑,且复粒内不光有淀粉微粒,微粒之间还会有蛋白质存在(表面黑色条纹部位)。 从上图我们可以看出大米颗粒是由一粒粒淀粉微粒所组成的复粒淀粉粒所组成,当断裂部位是沿复粒淀粉截面扩展时,断口呈现平滑的沿晶裂纹特征;当断裂部位穿过复粒淀粉而扩展时,断口呈现穿晶断裂。 不同大米由于生长周期及成分都有差别,导致了淀粉微粒、淀粉复粒的形貌及它们之间的结合力各不相同,因此不同大米的断口形貌也完全不一样。 2. 复粒淀粉沿晶/穿晶断口形貌分析 复粒淀粉穿晶断裂(左)和沿晶断裂(右)形貌差异对比 上图左是复粒淀粉断裂时的断口形貌,可以发现中间的淀粉微粒周围暗色的部分是大米内部的蛋白质,一个个淀粉微粒是由蛋白质连接起来的,其中画红圈的部分是大米内部的脂质颗粒,该颗粒在新大米断口处几乎没有,而在陈旧大米内部有很多,推测该脂质的析出导致了连接淀粉微粒的蛋白质发生了变化,导致大米复粒内部黏合力发生改变。上图右是大米淀粉复粒表明断口图,可以看出断口处非常平滑,正常情况下淀粉复粒间的结合能是远低于淀粉粒间内部结合能的,所以断裂一般都发生在淀粉复粒平滑处。 3. 新米与陈米断口微观形貌结构对比陈米(左)与新米(右)断口显微形貌差别 在显微镜下我们可以看到陈米断口(上图左)相较于新米断口(上图右)呈现更多的“窝韧”形貌特征,断裂面穿过了大米复粒淀粉。而新米大部分断口为“沿晶”解理,断裂面沿淀粉复粒扩展。拍摄结果表明正常新米内部的结合是复粒淀粉内部大于复粒淀粉边界的。随着大米放置时间的增长,米粒内部的化学物质发生了变化,导致复粒淀粉内部的微粒间键合减弱结合力变差,断裂裂纹面主要由从复粒淀粉边界扩展变为从复粒淀粉穿过后断裂。 四、后 记 “天空没有翅膀的痕迹,但是鸟儿却飞过”。不同于鸟儿在天空飞过没留下痕迹,任何材料的生产和合成所经过的工艺都会在材料内部留下显微痕迹,通过显微技术来辨别材料的显微形貌/结构的特征,可以轻易的判断出材料的生产工艺及历程。例如现阶段人们已经开始利用显微镜来鉴别区分不同植物、动物的品种,从而为原材料把控、溯源、生产过程质控提供了重要指导依据。 下期主题(动物)三选一: A、蝴蝶翅膀在阳光下产生绚丽颜色的原因。B、年轻人及老年人头发表面及断面的形貌差异。C、过期变质食物中的细菌。
  • 从宏观到微观:汽车要”瘦身”更要安全
    导读随着“2020年第七届中国汽车轻量化国际峰会”的日益临近及《国家第六阶段机动车污染物排放标准》的发布与实施,在环境保护和节能降耗法规要求日趋严格的当下,轻量化已成为中国汽车产业发展的重要方向和必然趋势。 其中对车身的轻量化更是提高汽车动力性、降低油耗、保护环境的关键。车身轻量化与使用材料密切相关,如镁合金、铝合金等金属结构材料、工程塑料及其复合材料在轻量化中起到重要作用。采用工程塑料及其复合材料可减轻汽车零部件约40%的质量,可降低成本40%,因此开发工程塑料和复合新材料是车身轻量化发展的趋势,其中PP(聚丙烯)和PMMA(聚甲基丙烯酸甲酯)应用最为广泛。 塑料及其复合材料的应用场景 为什么在汽车材料轻量化中大量应用PP、PMMA?今天,我们要对PP、PMMA做两个有趣的试验: 1. 宏观视界下的拉伸 PP、PMMA在常规的静态测试外,可能会受到动态变形的影响,例如,在涉及运输设备的碰撞和产品掉落时。因此,为了保证可靠性,还必须进行冲击试验。特别是,由于聚合物塑料具有粘弹性,(既有粘性又有弹性),其力学特性表现出对环境温度、时间和变形速率的依赖性。 采用岛津AGX-V电子万能试验机和HITS-TX高速拉伸试验机可以研究PMMA/PP与试验速度关系。 应力-行程曲线 试验结果 高速拉伸试验中PMMA和PP的拉伸强度均高于静态拉伸试验,证实了这两种塑料材料拉伸强度的试验速度依赖性。 2. 微观视界下的断口 当发生损坏、故障事故或劣化时,我们通常迫切需要调查原因和提出对策。塑料的失效形式多种多样,包括静态断裂、冲击断裂、疲劳断裂、蠕变断裂、环境引起的断裂等。根据分析不同类型的断裂原因,可以观察到具有不同特征的断裂面,这表明可以通过断口观察来确定损伤的原因,并研究解决损伤的方法。拉伸试验后,我们选择对PP试样的断口进行镀金,并用光学显微镜和EPMA进行观察。 电子探针EMPA8050G 在PP断裂表面镀金,并用光学显微镜和EPMA进行观察。静态拉伸试验和高速拉伸试验后的聚丙烯断裂表面分别如下图所示。(a)为光学显微镜图像,(b)-(d)为电子探针二次电子像。 对比PP静态拉伸微观图(a)与PP动态拉伸微观图(a)可见,与高速拉伸试验的断口面积相比,静态拉伸试验的断口面积明显较小,这应该是由于静态拉伸断裂时,塑性变形伴随着颈缩而导致的。 静态拉伸微观图 在PP静态拉伸微观图(b)中的断裂面中部,可见纤维断裂面以韧性方式伸长。对 PP静态拉伸微观图(b)的中心区域及其左侧区域进一步放大,结果见PP静态拉伸微观图(c)及(d)。由PP静态拉伸微观图(c)可见树脂纤维伸长的情况。PP静态拉伸微观图(d)显示断面上有许多孔,这是由树脂(如低分子量物质)或杂质等微观缺陷等形核长大而导致的。 高速拉伸微观图 在高速拉伸试验中,断裂处没有出现颈缩现象,整个断口呈扁平、粗糙的片状。对断面中心及边部进一步放大,结果见PP动态拉伸微观图(c)及PP动态拉伸微观图(d),可见,中部和边部的断口形貌无明显差异。据此可推断,随着试验速度的提高会导致无塑性变形的脆性断裂。 结 论 岛津具有丰富的产品线,在宏观方面:拥有各种静态试验机与动态试验机,可以提供力学测试,并进行定制化夹具设计;从微观方面:拥有电子探针EMPA等各种微观测试仪器,可以提供表面分析数据,为客户提供一整套服务与方案。岛津为汽车改性塑料的快速发展提供帮助,在汽车安全性的基础之上实现汽车轻量化,为营造和谐绿色的环境做出贡献,创造崭新的明天。
  • 让微观变得直观——岛津原子力显微镜
    对极限微观的不断探索源于人们原始的求知欲。国际度量衡制度的确立为我们指引了探索的方向。从米到毫米,从毫米到微米,从微米到纳米。当物质被我们不断地“劈碎”。越来越多新性质,新现象,新功能被发现。人们对自然的认识越来越深刻,对物质的操纵也越来越得心应手。 从二十世纪末开始,人类对微观的探索延伸到了纳米领域。在这个从仅比原子高一个层级的尺度范围内,物质展现了一种和宏观截然不同的状态和性质。表面效应、小尺寸效应和宏观量子隧道效应带来的是超高强度、超高导电性、超流动性、超高催化活性等等无与伦比的属性。 碳纳米管作为第一种人工合成的纳米材料,甫一问世,其超高强度就惊艳世人。它的质量是相同体积钢的六分之一,强度却是铁的10倍。 单壁碳纳米管高度(直径)测量在碳纳米管被研制出来以后,双壁碳纳米管、掺杂碳纳米管、复合碳纳米管等多种材料被源源不断制作出来。极小的尺度和样品多样性,迫切需要一种合适的检测工具。 在纳米尺度下,光学显微镜的分辨率早已鞭长莫及,电子显微镜则因为严格复杂的制样过程使测试门槛令人高不可攀,激光粒度仪对长径比过大的样品测试误差极大也不适合。这时,较合适的观测工具就是原子力显微镜。 原子力显微镜作为专门的纳米材料表征工具,天然具有高分辨率、高环境兼容性、多属性分析种种优势。 原子力显微镜观察的不同碳纳米管形态在生产中,因工艺不同,会产生长短粗细不同的碳纤维。如何有效对这些样品进行归类分析是个大问题。 不同工艺下碳纳米管分散状态借助岛津原子力显微镜配备的颗粒分析软件,则可以自动分析筛选,并对纤维的各种尺度进行统计分析。 极长和极短碳纳米管的自动分类统计同样,对于常见到的纳米材料——纳米颗粒而言,也可以依靠该软件进行统计分析。 纳米颗粒的粒径统计而且,利用原子力显微镜,还可以有效观察同样粒径下颗粒的不同形貌。例如以下两个颗粒,粒径均在100nm左右,如果用激光粒度仪测试,会被归为一类。但是用原子力显微观察,则可以发现很大的不同。 粒径近似的纳米颗粒聚集形态左侧的颗粒是单个粒子,二右侧的则是多个颗粒聚集形成的,在原子力显微镜的小范围观察图像中可以清晰分辨二者的不同。 但是,通常的原子力显微镜很难兼顾大视野和高分辨。要想同时观察统计大量颗粒,就需要用大范围观察,这样一来每个颗粒的细节分辨就难以看清。如果聚焦到一个颗粒上细致观察,则无法从整体上评估样品。 解决的办法就是提高原子力显微镜图像的分辨率。岛津推出了8192*8192点阵的高扫描能力。可以在大范围观察的同时又看清每一个小细节。 兼顾大视野和小细节的超大点阵扫描图像原子力显微镜作为人类眼睛的延伸,像一个精细的触手,细致地捕获纳米材料的形貌、机械性能、电磁学性能等等属性,使这个微乎其微的领域直观地展现在我们眼前,为我们更深更广地认识纳米材料提供了有力帮助。 文中相关仪器介绍详见以下链接:https://www.shimadzu.com.cn/an/surface/spm/index.html 本文内容非商业广告,仅供专业人士参考。
  • OPTON的微观世界|第4期 食物中的力学知识 不同品质大米的微观力学分析
    一、前期回顾 上期我们发现纸币防伪条之所以呈现不同色彩和形貌是因为特殊的微观结构所导致(详细情形见第三期文章),材料的微观结构对宏观的光学性能巨大的改变。由于大部分读者在上期投票中选择【B选项:1元/斤的大米和10元/斤的大米在显微镜下有何区别。】 那么今天笔者带领大家来一起探索优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上有什么不一样。二、序 言金属的强度、韧性、脆性与它的微观组织结构有很大的联系:韧性强的金属材料会发生韧性断裂,在断口的断面会观察到有典型“韧窝”特征的韧性断裂区;脆性大的金属会发生脆性断裂,在断口的断面会观察到有典型“台阶”特征的解理断裂区。这些不同的断口形貌是由微小的热处理工艺或材料成分的微小差别所引起的,不同的微观组织形貌代表了不同的金属材料生产工艺。那么我们猜想:是否可以通过显微形貌分析来判断生长周期不一样、或者营养成分/化学物质不一样的农作物呢?三、大米断面显微形貌分析,大米淀粉形貌及淀粉复粒形貌本期选择同种大米的两个不同时期(新米10元/斤、存放半年的陈米6元/斤)的样本进行微观形貌的拍摄,来研究放置时间长的大米除了靠气味和口感上的差异来区分外,是否可以通过材料显微分析的手段来进行辨别。 1. 大米断口分析大米断口显微形貌图 如上图A所示,我们把大米粒掰断后可以看到大米粒断口是有形貌特征的。放大到100倍下如图B我们可以看到有类似金属沿晶断口及窝韧形貌特征的存在。图C是窝韧特征的细节放大图,可以发现是由10μm左右的一粒粒大米淀粉微粒组成的、断口高低起伏且小一点的淀粉微粒棱角分明。图D是大米内部淀粉复粒组成的,大米复粒表面比较光滑,复粒淀粉之间的交界面都很平滑,且复粒内不光有淀粉微粒,微粒之间还会有蛋白质存在(表面黑色条纹部位)。 从上图我们可以看出大米颗粒是由一粒粒淀粉微粒所组成的复粒淀粉粒所组成,当断裂部位是沿复粒淀粉截面扩展时,断口呈现平滑的沿晶裂纹特征;当断裂部位穿过复粒淀粉而扩展时,断口呈现穿晶断裂。 不同大米由于生长周期及成分都有差别,导致了淀粉微粒、淀粉复粒的形貌及它们之间的结合力各不相同,因此不同大米的断口形貌也完全不一样。 2. 复粒淀粉沿晶/穿晶断口形貌分析复粒淀粉穿晶断裂(左)和沿晶断裂(右)形貌差异对比 上图左是复粒淀粉断裂时的断口形貌,可以发现中间的淀粉微粒周围暗色的部分是大米内部的蛋白质,一个个淀粉微粒是由蛋白质连接起来的,其中画红圈的部分是大米内部的脂质颗粒,该颗粒在新大米断口处几乎没有,而在陈旧大米内部有很多,推测该脂质的析出导致了连接淀粉微粒的蛋白质发生了变化,导致大米复粒内部黏合力发生改变。上图右是大米淀粉复粒表明断口图,可以看出断口处非常平滑,正常情况下淀粉复粒间的结合能是远低于淀粉粒间内部结合能的,所以断裂一般都发生在淀粉复粒平滑处。 3. 新米与陈米断口微观形貌结构对比陈米(左)与新米(右)断口显微形貌差别 在显微镜下我们可以看到陈米断口(上图左)相较于新米断口(上图右)呈现更多的“窝韧”形貌特征,断裂面穿过了大米复粒淀粉。而新米大部分断口为“沿晶”解理,断裂面沿淀粉复粒扩展。拍摄结果表明正常新米内部的结合是复粒淀粉内部大于复粒淀粉边界的。随着大米放置时间的增长,米粒内部的化学物质发生了变化,导致复粒淀粉内部的微粒间键合减弱结合力变差,断裂裂纹面主要由从复粒淀粉边界扩展变为从复粒淀粉穿过后断裂。 四、后 记 “天空没有翅膀的痕迹,但是鸟儿却飞过”。不同于鸟儿在天空飞过没留下痕迹,任何材料的生产和合成所经过的工艺都会在材料内部留下显微痕迹,通过显微技术来辨别材料的显微形貌/结构的特征,可以轻易的判断出材料的生产工艺及历程。例如现阶段人们已经开始利用显微镜来鉴别区分不同植物、动物的品种,从而为原材料把控、溯源、生产过程质控提供了重要指导依据。 下期主题(动物)三选一: A、蝴蝶翅膀在阳光下产生绚丽颜色的原因。B、年轻人及老年人头发表面及断面的形貌差异。C、过期变质食物中的细菌。
  • 微观世界|第3期 揭开“财富”之谜
    ——显微技术在钞票防伪中的应用 前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。 新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。 一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。 1. 2009版100元美刀的制样及观察范围2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。 2. 微观形貌结构对比蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。 3. 高倍形貌-元素分析有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。 二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。 三、后记蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等。。。极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。 下期主题(食品)三选一: A、不同种类淀粉在显微镜下的形貌特征。B、1元/斤的大米和10元/斤的大米在显微镜下有何区别。C、转基因大豆与非转基因大豆的微观形貌观察。
  • 揭秘“大连光源”:人类探测微观世界的利器
    1月15日,辽宁省大连市,中国科学院研制的“大连光源”发出了世界上最强的极紫外自由电子激光脉冲。视觉中国供图  冬日的辽东半岛,海风凛冽刺骨。位于大连这座滨海城市西侧的长兴岛,因四面环海,人口稀少,更显得肃杀、冷清。但就在这里,一项新的世界纪录刚刚诞生。  1月15日,我国最新一代光源“极紫外自由电子激光装置”,即“大连光源”,发出了世界最强的极紫外自由电子激光脉冲,单个皮秒激光脉冲产生140万亿个光子,成为世界上最亮且波长完全可调的极紫外自由电子激光光源。  中国科学院副院长王恩哥评价这一成果时说,这是该院乃至我国又一项具有极高显示度的重大科技成果。“大连光源”中90%的仪器设备由我国自主研发,标志着我国在这一领域占据了世界领先地位。  更值得一提的是,该装置由中科院大连化学物理研究所和中科院上海应用物理研究所联合研制,开创了我国科学研究专家与大科学装置研制专家成功合作的先例。近日,中国青年报中青在线记者走进“大连光源”,采访有关专家进行揭秘。  看不见的“光”:人类探测微观世界的利器  在大连长兴岛,“大连光源”躺在一个长达100多米的隧道里。在这里,最常见的就是各种灯光闪烁的实验仪器,以及各类如同爬山虎般顺着架子连接着仪器的线缆,当然,还有各种看不见的“光”。  现实中,人们接触最多的“光”,怕是手机屏幕、电脑电视屏幕发出的光,还有白炽灯、霓虹灯的光,白天的太阳光,夜里的月光,以及大自然中水母、萤火虫发出的光,等等。那么,光的本质究竟是什么?  电磁波。  ——近代物理已经证明了这一点,并且发现光这种“电磁波”,还是人类认识和感知物质世界,探测原子和分子等微观世界的最重要工具。  比如,对于声音和图像,人类可以通过麦克风和摄像头转换成“电”信号,然后进行处理和传输。同样地,对于物质世界中的原子和分子,如果要“看到”它们,也只需要将其转换成易于识别和处理的“电”信号。  一个最直接的方法,就是将原子或分子中的电子“打”出来,让原子、分子变成带有正电荷的离子,带正电的离子击打在探测器上,就会形成“电”信号。如此,科学家就可以灵敏地探测即“看到”微观世界。  这其中的关键点,即将原子或分子中的电子“打”出来。不过,并非所有的“光”都能实现这一点。“极紫外光”是其中一种。  根据中科院大连化物所研究员戴东旭的说法,光(电磁波)本身带有能量,其波长越短,能量就越高。也因此,它分为可见光和不可见光,后者包括紫外光、红外光、X光,即人们通常所说的紫外线、红外线、X射线。  可见光的能量算是小的。其波长大致处于400~700纳米之间,可以刺激人的视觉细胞产生信号。  波长小于可见光的紫外光,因为能量高,会对人体产生危害,比如320~400纳米和270~320纳米之间的紫外光。  不过,当波长短到100纳米附近时,光所具备的能量,足以电离一个原子或分子而又不会把分子打碎,这个波段的光,被科学家称为“极紫外光”。  “大连光源”就是要造出这种“光”。一旦造出,就是人类探测微观世界的一把利器。  最新一代光源是“拍电影”,上一代是“拍照片”  “大连光源”总负责人、中科院大连化物所副所长杨学明院士讲了一个故事:19世纪末有人问,马在奔跑时,究竟有没有四蹄同时离地的瞬间?一时间众说纷纭,因为仅靠人眼观察,实在无法判断。直到有人设计出一套连续拍照的装置,将马连续奔跑的过程“分解”为一帧帧照片,才得出了结论。  杨学明说,要研究物质是如何变化、运动的,最好的方式就是将过程“记录”下来,能够让人们清楚地“看到”。如今,随着人类对自然界的认识不断深入,科学家已经知道,与人类生活息息相关的很多物理和化学过程,在本质上都是原子和分子过程。  而要控制或利用这些物理和化学过程,在杨学明看来,就需要在实验室里,研究这些过程所涉及的原子和分子的反应机制,因此,就需要精确并且高灵敏度地“探测”所涉及的原子和分子。  事实上,为了“看到”微观世界,人类制造出了各种各样的工具,这类工具统称为“光源”,其中一类在科学上广泛使用的光源,利用了粒子加速器获得高能粒子,高能粒子在磁铁阵列中震荡产生的高亮度的光被称为同步辐射光。  物理学家斯蒂芬霍金曾经说过,粒子加速器,是人类拥有的最接近时间机器的设备。而人类所能达到的最高温度记录,也是在粒子加速器中创造的。  从上世纪40年代,美国在加州大学伯克利分校发展了第一代高能电子束同步加速器之后,高亮度的同步辐射光源,已经成为当代科学研究最为重要的实验工具之一。世界各国先后建立了几十台第三代光源,我国也有北京正负电子对撞机、合肥光源、广东散裂中子源、兰州重离子装置、上海光源等。其中合肥光源和上海光源属于第三代光源。  如今建成的“大连光源”,则是第四代,也是最新一代的光源,即自由电子激光装置。中科院上海应用物理研究所所长赵振堂研究员说,这是当今世界上唯一运行在极紫外波段的自由电子激光装置,也是世界上最亮的极紫外光源。  那么,第三代同步辐射光源和第四代自由电子激光装置究竟有何区别?  赵振堂打了一个比方,上一代是“拍照片”的,而最新一代光源是“拍电影”的,进一步说,即第三代光源只能“看到”微观世界物质的结构,而第四代光源则能记录下微观世界物质的动态过程。  杨学明以雾霾为例,从现有的研究来看,霾是一个从分子结构聚集起来的团簇,包括水、污染物等,那么在研究雾霾时,不仅要知道它是什么结构,即由什么组成,还要搞清楚这些组成部分,是如何聚集在一起的,这就需要科学家不仅要看到静态的结构,还要看到动态的过程。  比如,在空气潮湿的时候,空气中霾的成分通常会有一个明显的增长,为什么会这样,这就需要对其发展过程进行研究。也因此,杨学明将“大连光源”这个第四代光源,称为观察原子、分子反应过程的摄像机,在原子、分子层次上探索物质世界的奥秘。  科学研究专家与大科学装置研制专家首次携手  第四代光源还有一个特点:足够亮。  赵振堂给出一组对比:比起一般家用的白炽灯,太阳的亮度是其1万倍 比起太阳,第三代光源则要亮100亿倍 那么,比起第三代光源,第四代光源还要再亮100亿倍。这里的亮度,是一个科学的概念,也称为峰值亮度,定义是单位时间内、单位立体角内、单位面积上、单位波长范围内所发射的光子数量。  在这般光源的照射下,几乎所有的原子和分子都“无处遁形”。戴东旭说,如今建成的“大连光源”,就是当今世界上在极紫外波段最强的自由电子激光,因此是研究与原子分子过程相关的物理和化学科学问题的强有力的利器。  事实上,在越来越强调协同创新,而非“单打独斗”的大科学时代,像“大连光源”这样的大科学工程,越来越为科学界所重视。  如今,“大连光源”的建成出光,在王恩哥看来,也将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国的科技事业注入新的活力。  杨学明也告诉记者,新的仪器发展,是学术研究发展最为重要的基础,没有新的科学仪器,在物理化学领域可以说是寸步难行。他还记得,当初之所以提出建设“大连光源”,正是因为科研工作多年受困于反应中间体的探测难题。  当时,他找到赵振堂,双方一拍即合:这是我国打造新一代光源的绝佳契机。更为重要的是,双方都意识到,这一项目将是科学研究专家与大科学装置研制专家的首次携手,而这,对于未来加快推动大科学装置在科学研究中的应用,具有重要的现实意义。  很快,“大连光源”得到国家自然科学基金委国家重大仪器专项的资助,于2012年年初正式启动,2014年10月正式在大连长兴岛开工建设。仅两年时间,就完成了基建工程以及主体光源装置研制。  去年9月24日22时50分,超过300兆伏的电子束流,依次通过自由电子激光放大器的各个元件。终于,总长18米的波荡器阵列,发出了第一束极紫外光。  如今,经过调试后的“大连光源”,早已能发出更为强大的光束。但科学家并不会止步于此,中科院大连化物所研究员张未卿透露,国内未来很有可能进军X射线波段的第四代光源。
  • 微观世界|第6期 烫发、染发对发质的影响
    ——不同头发在SEM下的微观分析 前期回顾上期我们探索了优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上的差别。随着大米放置时间的增长,米粒内部的化学物质发生了变化,复粒淀粉内部的微粒间键合减弱结合力变弱。本期我们借助扫描电子显微镜以及能谱研究烫发、染发对发质的影响。 序 言爱美之心、人皆有之。随着社会的进步和社交的不断扩展,人们越来越注重自身的外表,女性则更甚之。改革开放以来,做头发作为一种潮流从年轻人群逐渐扩散到各个年龄阶段的人群。很多人频繁出入理发店,做各类各式的头发。在理发过程中,理发师会极力给客户推荐烫发、染发等各种服务。人们通过做头发,改善了自身的外在形象,提高了自我的精神面貌。那么,做头发是否会对发质有不好的影响?这个影响程度有多大?带着这几个问题,小编通过扫描电子显微镜下自然的头发、烫发、染发的显微观察,揭开烫发、染发对发质的影响。本期所选取的头发来自三位健康成人。其中一人的头发自然,未有后天的人为加工;其中一人的头发经过离子烫处理;第三人的头发经过染发的处理。 健康成人的自然头发的显微分析——形貌分析以及成分分析从图1可以看出,健康成人的自然头发结构排列紧密。在较大的放大倍数下,可以看出头发表面主要由片层状的结构组成。这些片层状的结构如鱼鳞一般分布,且“鱼鳞”之间间隔约为11um-15um。图1 健康成人的自然头发形貌图从图2可以看出,健康成人的自然头发的成分。头发的成分主要含有Ca、O、Na、S、K等元素。健康成人的自然头发富有弹性,这与氨基酸链间连接的双硫键和数量更多的氢键密切相关。头发的角蛋白由一种颇长的氨基酸链组成,其中大多数是胱氨酸。每条链皆为螺旋形,然后再成束卷或绳索样。每个胱氨酸单位有两个半胱氨酸,邻近的两条链中的半胱氨酸通过二硫键形成强的化学结构。众多的双硫键的连接使角蛋白象一只长梯。双硫键的结合很牢固,远大于氢键的结合力,只有用化学的方法才能使其断开。图2 健康成人的自然头发成分图 烫发、染发对头发的微观形貌的影响——形貌分析 从图3可以看出,经过离子烫以及染过的头发与自然的头发在形貌上有一定的区别。自然的头发表面平整,密布着大量的鱼鳞状结构。经过离子烫的头发的表面不平整,有一定的鱼鳞状结构的分布,且有一定量的较大的颗粒状物质分布。这些物质是由于头发经历离子烫的过程中产生的。经过染发处理的头发表面较平整,几乎没有鱼鳞状结构的分布,且有少量的较小的颗粒状物质分布。图3 健康成人的自然头发(a)、烫发(b)、染发(c)的低倍形貌图 从图4可以看出,烫发和染发对头发有一定的损伤。自然的头发表面的鱼鳞状结构有序排列。经过离子烫的头发表面的鱼鳞状结构受到了一定程度的损伤,这些损伤后形成的物质构成了前文中颗粒物的一部分。经过染发的头发表面几乎没有鱼鳞状的结构,只能在头发的局部发现少量未损伤完全的鱼鳞状结构。图4 健康成人的自然头发(a)、烫发(b)、染发(c)的高倍形貌图? 烫发、染发对头发的成分的影响——成分分析 从图5可以看出,烫发和染发对头发有一定的影响。经过烫发和染发处理的头发的S元素的含量较少、Na元素的含量较多。烫发和染发时,卷发器将头发的角蛋白中的多肽链拉长,这时还原剂很容易使二硫键切断,而氧化剂则在拉长后的位置上形成新的二硫键,理论上头发因而形成和维持新的形态。但实际上仍有相当部分二硫键断开,因而降低发质。图5 健康成人的烫发(a)、染发(b)的成分图? 后记 通过扫描电镜显微观察以及能谱的成分分析,可以看出染发和烫发对发质有一定的损害。人们在追求外在美的同时,更因该追求内在美。热爱祖国、团结邻舍、爱岗敬业,锻炼自己的体魄和提高自身的修养。古人说修心养性。只要有健康的人生态度和体魄,即使不做头发也可以很美。
  • OPTON的微观世界|第3期 揭开“财富”之谜
    ——显微技术在钞票防伪中的应用前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。 一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。 1. 2009版100元美刀的制样及观察范围2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。 2. 微观形貌结构对比蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。 3. 高倍形貌-元素分析有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。 三、后记蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等。。。极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。 下期主题(食品)三选一: A、不同种类淀粉在显微镜下的形貌特征。B、1元/斤的大米和10元/斤的大米在显微镜下有何区别。C、转基因大豆与非转基因大豆的微观形貌观察。
  • 高能同步辐射光源:照亮微观世界的结构奥秘
    这里是北京雁栖湖畔的怀柔科学城。群山环绕中,一个圆环状的大科学装置静静矗立其间。它是被公众亲切地称为“放大镜”的高能同步辐射光源(High Energy Photon Source,简称HEPS)。提起光源,你的脑海中会浮现出灯泡的画面吧,于是把HEPS想象成一个“大型灯泡”。其实不然。这里的“高能”可不是“前方高能”里的那个“高能”,而是指物理学中探索微观世界物质探针所具有的高能量。据HEPS工程总指挥潘卫民研究员介绍,从高空俯瞰,HEPS整体建筑形似一个放大镜,设计寓意为“探索微观世界的利器”。“通俗地讲,你可以把HEPS视为一个具有超精密、超快、超穿透能力的巨型X光机。”潘卫民说。作为国家“十三五”重大科技基础设施,HEPS由加速器、光束线站及配套设施等组成,总建筑面积约12.5万平方米。周长约1.5千米的主体环形建筑,如同放大镜的镜框,里面安装有储存环加速器、光学元件、衍射仪等科学仪器。其中的储存环里,分布着2400多块磁铁及各类高精尖设备。“同步辐射是指接近光速的带电粒子在做曲线运动时沿切线方向发出的电磁辐射,也叫作同步光。为了研究材料内部结构与变化的过程,科研人员需要借助强力的科研装置进行探测解析。”中科院高能物理研究所副所长、HEPS工程常务副总指挥董宇辉研究员说,作为研究物质内部结构的平台,HEPS能对物质内部进行多维度扫描,“HEPS运行的首要目标,就是提供高能、高亮度的硬X射线。”产生X射线的常见方式有两种:一是用加速后的电子轰击金属靶,产生X射线;二是在同步辐射装置中,当电子以接近光速的速度“飞行”时,会在磁场作用下发生曲线运动,沿着弯转轨道切线方向发射连续的电磁辐射。“这就像下雨时,我们快速转动雨伞,沿着雨伞边缘的切线方向会飞出一簇簇水珠。”董宇辉说,与常规X射线相比,同步辐射光源产生的同步辐射光频谱更宽、亮度更高、相干性和准直性更好。同步辐射光源根据加速器中电子的能量,可以分为低、中、高三种,各有侧重。董宇辉介绍,HEPS侧重于对微观结构及演变的多维度、实时、原位表征,可用于航空发动机单晶叶片等工程材料结构的多维度表征和1微米量级蛋白质分子结构演变表征等。“作为探测物质结构的探针,X射线的光源亮度是最为关键的指标——更高的亮度能将物质内部的微观结构‘看’得更清楚。因此,获得更高亮度的X射线源一直是科学家孜孜以求的目标。”多年来,我国持续发展同步辐射光源,有力支撑了国内基础科学的发展。但我国目前所拥有的同步辐射装置均处于中、低能区,能区地域分布、光谱亮度等还满足不了经济发展和国家战略需求。建设更高亮度的第四代高能同步辐射光源,成为潘卫民、董宇辉等我国当代“追光人”的一大愿望。2008年,HEPS科研团队就开始对我国建设HEPS的必要性和可行性进行论证。此后经过近十年攻关,科研人员成功完成关键技术攻关和样机研制任务,具备了建设先进高能同步辐射光源的能力。2019年6月,HEPS开工启动,建设周期6.5年,预计将于2025年12月底竣工。建成后,它将在材料科学、化学工程、能源环境、生物医学、航空航天等众多领域大显身手。2021年6月28日,HEPS首套科研设备——电子枪(直线加速器端头,即加速电子产生的源头)安装完成,标志着HEPS工程正式进入设备安装阶段。目前,HEPS各建筑单体已陆续交付设备安装。可以预见,3年后,全球“最亮”的光源将照亮微观世界物质的结构奥秘。(光明日报记者 张亚雄)HEPS效果图(人视图)HEPS效果图(白天)HEPS存储环周期单元mockup模型(HEPS-TF项目支持)
  • 用显微镜带您看微观奇妙世界——生活中的仪器分析
    【生活中的仪器分析】开始于2011年,这个活动的宗旨是让实验室人员利用分析仪器,检测人们生活中最常见、最易接触到的物质,让仪器分析走进生活。不仅可以让坛友们相互交流分析仪器的使用技术,还可以提高对仪器分析的兴趣。   2013年10月一起论坛举办了一期【生活中的仪器分析】之【显微镜观察微观世界】活动,网友对此次活动产生了浓厚的兴趣,在短短的半个月时间里就有多篇作品发表到了论坛上,大家用各类型的显微镜观察了多种物质。   坛友们利用显微镜分别观察了蚊子、蜈蚣、蚂蚁。   上图只是&ldquo 冰山一角&rdquo 高清大图请点:http://bbs.instrument.com.cn/shtml/20131022/5021741/   除了直接用显微镜观察物质,还有坛友分享了基于显微镜的&ldquo 刻画&rdquo 技术:   这几张图片看似简单,其实是应用扫描探针显微镜的纳米蚀刻技术做出来的!   本期【微观看世界】截至到2013年11月18日,目前活动还在火热进行中,如果您也对此有兴趣,请赶快来参与吧!并且可同时参加【第六届原创大赛】,双重大奖等您来拿!   参与活动:http://bbs.instrument.com.cn/shtml/20131014/5009273/   十一月好戏不断!以下活动全部进行中!如有意向,素来参与!全部有奖!   1.【生活中的仪器分析】&mdash &mdash 办公用品中的有害物质检测之【纸张】篇   活动地址http://bbs.instrument.com.cn/shtml/20131104/5044097/   2.【生活中的仪器分析】食品安全&mdash &mdash 饮品卫生大检测   活动地址http://bbs.instrument.com.cn/shtml/20131102/5041701/   3. 【生活中的仪器分析】食品安全&mdash &mdash &ldquo 菜&rdquo 米油盐酱醋茶大检测   活动地址http://bbs.instrument.com.cn/shtml/20131102/5041900/   4. 【生活中的仪器分析】奶嘴中的化学物质检测   活动地址http://bbs.instrument.com.cn/shtml/20131012/5006229/   仪器论坛介绍:   仪器论坛(bbs.instrument.com.cn)是仪器信息网最早的一个栏目,也是仪器行业内从业人员最多的在线交流平台,每天都会接纳近30000用户访问。目前有40个版区,170多个版面,有近800的兼职队伍。在这里,无论您是提问还是学习,都可以得到满意的答案。目前论坛还有大量版面空缺版主,诚邀您的加盟(http://bbs.instrument.com.cn/resume/)
  • OPTON的微观世界|第6期 烫发、染发对发质的影响
    ——不同头发在SEM下的微观分析 前期回顾上期内容我们通过显微分析技术,探究了色彩斑斓的蝴蝶之美,本期在女神节到来之际,我们借助扫描电子显微镜以及能谱研究烫发、染发对发质的影响。序 言3月8日是普天同庆的女神节,爱美之心、人皆有之。随着社会的进步和社交的不断扩展,人们越来越注重自身的外表,女性则更甚之。改革开放以来,做头发作为一种潮流从年轻人群逐渐扩散到各个年龄阶段的人群。很多人频繁出入理发店,做各类各式的头发。在理发过程中,理发师会极力给客户推荐烫发、染发等各种服务。人们通过做头发,改善了自身的外在形象,提高了自我的精神面貌。那么,做头发是否会对发质有不好的影响?这个影响程度有多大?带着这几个问题,小编通过扫描电子显微镜下自然的头发、烫发、染发的显微观察,揭开烫发、染发对发质的影响。本期所选取的头发来自三位健康成人。其中一人的头发自然,未有后天的人为加工;其中一人的头发经过离子烫处理;第三人的头发经过染发的处理。健康成人的自然头发的显微分析——形貌分析以及成分分析从图1可以看出,健康成人的自然头发结构排列紧密。在较大的放大倍数下,可以看出头发表面主要由片层状的结构组成。这些片层状的结构如鱼鳞一般分布,且“鱼鳞”之间间隔约为11um-15um。图1 健康成人的自然头发形貌图从图2可以看出,健康成人的自然头发的成分。头发的成分主要含有Ca、O、Na、S、K等元素。健康成人的自然头发富有弹性,这与氨基酸链间连接的双硫键和数量更多的氢键密切相关。头发的角蛋白由一种颇长的氨基酸链组成,其中大多数是胱氨酸。每条链皆为螺旋形,然后再成束卷或绳索样。每个胱氨酸单位有两个半胱氨酸,邻近的两条链中的半胱氨酸通过二硫键形成强的化学结构。众多的双硫键的连接使角蛋白象一只长梯。双硫键的结合很牢固,远大于氢键的结合力,只有用化学的方法才能使其断开。图2 健康成人的自然头发成分图烫发、染发对头发的微观形貌的影响——形貌分析 从图3可以看出,经过离子烫以及染过的头发与自然的头发在形貌上有一定的区别。自然的头发表面平整,密布着大量的鱼鳞状结构。经过离子烫的头发的表面不平整,有一定的鱼鳞状结构的分布,且有一定量的较大的颗粒状物质分布。这些物质是由于头发经历离子烫的过程中产生的。经过染发处理的头发表面较平整,几乎没有鱼鳞状结构的分布,且有少量的较小的颗粒状物质分布。图3 健康成人的自然头发(a)、烫发(b)、染发(c)的低倍形貌图 从图4可以看出,烫发和染发对头发有一定的损伤。自然的头发表面的鱼鳞状结构有序排列。经过离子烫的头发表面的鱼鳞状结构受到了一定程度的损伤,这些损伤后形成的物质构成了前文中颗粒物的一部分。经过染发的头发表面几乎没有鱼鳞状的结构,只能在头发的局部发现少量未损伤完全的鱼鳞状结构。图4 健康成人的自然头发(a)、烫发(b)、染发(c)的高倍形貌图烫发、染发对头发的成分的影响——成分分析 从图5可以看出,烫发和染发对头发有一定的影响。经过烫发和染发处理的头发的S元素的含量较少、Na元素的含量较多。烫发和染发时,卷发器将头发的角蛋白中的多肽链拉长,这时还原剂很容易使二硫键切断,而氧化剂则在拉长后的位置上形成新的二硫键,理论上头发因而形成和维持新的形态。但实际上仍有相当部分二硫键断开,因而降低发质。图5 健康成人的烫发(a)、染发(b)的成分图后记 通过扫描电镜显微观察以及能谱的成分分析,可以看出染发和烫发对发质有一定的损害。人们在追求外在美的同时,更因该追求内在美。热爱祖国、团结邻舍、爱岗敬业,锻炼自己的体魄和提高自身的修养。古人说修心养性。只要有健康的人生态度和体魄,即使不做头发也可以很美。
  • 微观世界|第5期 ‘蝶’影重重
    引子 各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾 书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)。扫描电镜下图像 绿色部分 图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。 黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。 所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 图|44张显微镜下生物图片,走进令人惊叹的微观世界
    作者:Erin Kelly微观世界是一个无穷无尽的迷人之地,基于过去 90余 年的技术进步,我们现在可以通过电子显微镜等照片以极高的放大倍率去观察事物。扫描电子显微镜 (SEM) 通过组合各种信号向我们展示了微生物的微观世界,通过高能电子束对样品进行扫描,这种电子相互作用为我们提供了诸如形貌、纹理、化学成分等信息。这些信息信号组合成一张图像,可以提供二维的黑白照片,也可以通过后期人工渲染着色。一般放大倍率范围为 10 倍至 300,000 倍,甚至放大高达 500,000 倍。放大31倍的蚕蛾毛虫/Science Source来自各种常见植物的花粉,着色并放大 500 倍/Flickr一只黄螨/Wikimedia Commons螺旋虫蝇幼虫的尖端/Wikimedia Commons拟南芥叶子的图像,它在植物生物学研究中被用作模型生物,是第一种拥有完整基因组测序的植物/Wikimedia Commons蜜蜂天线的特写/Zeiss Microscopy/Flickr小鼠肺中巨噬细胞血细胞的薄切片,巨噬细胞是一种有助于消除异物的白细胞/Dartmouth.edu一种缓步动物或水熊,被广泛认为是地球上最顽强的生命形式/Imgur另一张感染霉菌孢子的小鼠肺部巨噬细胞的照片/Dartmouth.edu攻击细菌 MRSA 的白细胞/NIH/Wikimedia Commons苍蝇的腿/Wikimedia Commons显微幼虫头部/Wikimedia Commons苍蝇眼睛的内部结构/Wikimedia Commons衬在橡子壳内部的纤维可放大 300 倍/Wikimedia Commons热液蠕虫嘴上的特写/Photo Science Library/Twitter墨鱼皮肤的细节/Flickr鼠疫耶尔森菌,一种引起鼠疫的细菌,位于跳蚤的刺上/Wikimedia Commons图为臭虫的近距离照片/Centers for Disease control, via Wikimedia Commons蒲公英泡芙球,146 倍放大/Flickr藻类/Wikimedia CommonsEupolybothrus cavernicolus是一种蜈蚣,仅在克罗地亚希贝尼克-克宁县 Kistanje 村附近的两个洞穴中发现,图为它的生殖器/Wikimedia Commons果蝇的产卵器/Wikimedia Commons果蝇眼/Wikimedia Commons刚刚分裂的 HeLa 细胞,这是约翰霍普金斯大学研究员 George Gey 博士于 1951 年在治疗Henrietta Lacks 的癌症期间有争议地获得的一种耐用、多产的细胞/Wikimedia Commons人类红细胞和淋巴细胞/Dartmouth.edu青蝇的蛆或幼虫/Eye of Science/SPL/Barcroft Media花边虫的扫描电子显微镜图像/Wikimedia Commons如图所示,有孔虫是微观的单细胞生物,其化石记录跨越了过去 5 亿年,每个有孔虫都只是一个细胞,但它们用海水矿物质在自己周围建造复杂的贝壳,并在海底下方的沉积物层中积聚/Wikimedia Commons更多的 MRSA 细胞和一个曾经属于人类的死白细胞/Wikimedia Commons蜜蜂没有真正的眼睑,但这是欧洲蜜蜂眼睛与皮肤相遇的地方——放大倍数为 2856 倍/Flickr黑色氧化纳米花。纳米花是某些元素的化合物,这些元素在显微镜下看起来像花/Wikimedia Commons扁平的恒星状新雪/Dartmouth.edu从患者样本中分离出的被 SARS-COV-2 病毒颗粒(黄色)严重感染的细胞(红色)/Wikimedia Commons牵牛花中的一粒花粉/Dartmouth.edu高放大率图像显示花粉储存在花中的空腔内的花粉/Dartmouth.edu西番莲、平百合和雏菊花粉标本/Wikimedia Commons月见草的花粉/Wikimedia Commons飞蛾的轮廓/Wikimedia Commons彩色增强扫描电子显微照片显示鼠伤寒沙门氏菌(红色)侵入培养的人体细胞/Wikimedia Commons一种盐晶体/Flickr以 4,348 倍的放大倍数重新增长一美元/Flickr闪亮的花甲虫的 SEM 图像/Wikimedia Commons番茄植物叶子上的气孔(气体交换的孔)的彩色电子显微镜图像/Wikimedia Commons叶甲虫的爪子/Wikimedia Commons
  • 上海光源:照亮科研课题 参透微观世界的希望之光
    自2009年建成,这个位于上海张江的巨大&ldquo 鹦鹉螺&rdquo ,5年间稳定释放&ldquo 创新之光&rdquo ,为1590个研究组,9225位慕名而来的科技人员照亮未知的微观世界,将百余篇科研论文送上包括《科学》《自然》等在内的国际著名学术杂志。奇迹的创造者&mdash &mdash 上海光源,这个我国迄今建成的规模最大的大科学装置和大科学平台,&ldquo 照亮&rdquo 5000多个科研课题,攒足劲儿孕育着参透微观世界之光!   开启中国科研新生代   &ldquo 它其实就是一台超级显微镜,或说高品质的巨型X光机,能观测到以前我们看不到的物质内部结构和变化过程。上海光源是目前世界上第三代同步辐射光源中性能最好的之一。&rdquo 上海光源国家科学中心(筹)(以下简称&ldquo 中心&rdquo )主任赵振堂对上海光源的介绍中,透出一股豪气。这是一个触探世界科技前沿的&ldquo 俱乐部&rdquo ,如果没有&ldquo 会员资格&rdquo ,就只能借助别国的设施,去参与最前沿的科技竞争,这令中国科学家难以大展身手。一大批以往无法在国内开展的实验,现在有了一个大有可为的研究平台。   清华大学的年轻结构生物学家颜宁体会颇深:解析蛋白质结构,离不开同步辐射光源。以前,她和学生要去日本光源收数据,样品运送就是大麻烦,而现在她们只需坐几个小时的高铁来上海就行了。最近,她的课题组解析了人体葡萄糖转运蛋白GLUT1的三维晶体结构,成果震动了世界结构生物界。&ldquo 若没有上海光源,这个成果问世至少拖延几个月。&rdquo   中国科学技术大学研究员李良彬重点研究软物质的材料结构、性能,大部分实验需要用到同步辐射光设备。2005年李良彬从荷兰国家原子和分子物理研究所读完博士后打算回国之际,就四处打听中国是否建设类似的设备和平台。当听说上海光源在建时,他欣然归国成为上海光源的第一批也是忠实的用户。&ldquo 经过五年多的发展,这里绝对可以和欧洲的同类平台相媲美!&rdquo 李良彬赞不绝口地说道,&ldquo 我回国的第一篇文章就借助于此,五年来我百分之八九十的文章都是依托于上海光源。&rdquo   生物大分子晶体学线站的工作人员汪启胜在一旁说:&ldquo 通过我们的平台对一个蛋白质分子做360度解析需要16分钟。&rdquo 怕记者不明白其中&ldquo 厉害&rdquo ,他又解释道:&ldquo 可能16分钟你们没概念,要知道利用传统X线,这样做下来可要整整两天,而且清晰度和可信度都相差很远呢!&rdquo   清华施一公教授在《科学》杂志发表的转录激活样效应蛋白特异性识别DNA的结构机理研究,被选为2012年&ldquo 中国科学十大进展&rdquo 哈尔滨工业大学黄志伟研究组对艾滋病病毒重要组成元件的解析 中科院物理所赵忠贤院士研究组发现了新型铁基硫族化合物超导体在高压下重新出现超导的新现象&hellip &hellip 这些世界重大科学研究成果的出现,离不开&ldquo 上海光源&rdquo 这个幕后英雄的协助。   每引出一束同步辐射光,就可照亮一个学科领域。5年多来,上海光源几乎每年都提供5000多小时的高质量同步辐射光,服务于生命、材料、环境、能源等众多学科。上海光源的实验用户,涵盖了国内结构生物学95%以上的相关研究组。目前,中国结构生物学已跨入世界一流水平,利用上海光源先后发表论文620多篇,包括《科学》《自然》《细胞》杂志论文33篇,《自然》和《细胞》子刊论文近60篇。   除了科学家在学科前沿取得重大突破,35家企业也在利用上海光源进行高技术研发。从美国回国创业的维亚生物科技有限公司总裁毛晨笑称,与包括诺华、罗氏、葛兰素史克在内的世界100多个制药公司开展外包合同服务,公司每年要做数百个药物靶标的研究,要解析1300个结构,一年产值达到两三亿元。维亚利用上海光源取得的癌症一期临床的大量结构技术数据,帮助了三家与其合作的新药研发企业在美国纳斯达克上市。上海美迪西生物医药有限公司利用上海光源每年不超过100个机时,却可以创造上千万人民币的经济效益,目前公司已有两种化合物进入新药临床试验阶段。   &ldquo 好钢用在刀刃上&rdquo   &ldquo 好钢用在刀刃上&rdquo ,如何提高设备使用效率成为建设管理者们的难题。造价14亿元人民币的上海光源,目前共有7个线站8个实验站,首批线站已通过专家评审的课题申请5406个。&ldquo 这8个实验站,每天的实验都安排得满满的,还有许多课题组在排队等候实验。今年下半年的机时安排表早在上半年就全部安排了。&rdquo 中心副主任何建华说。   瞄准世界同类装置前列,建立整套严格而灵活的运行机制和规章制度,让大型仪器设备使用公平、公正、高效。在每年的三月和九月有两次申请时间,使用者可以集中统一网上申请,上海光源为此成立了由约七十位一线专家组成的各线站用户专家工作组、三十位科学家组成的用户专家委员会,负责对申请者课题的评审和运行状态监督,进行课题分级,实现了&ldquo 课题申请&mdash 专家评审&mdash 机时分配&mdash 成果反馈&rdquo 的良性循环,保证重点课题有保障 普通课题不落下 管理有序可循,有章可依。   上海光源的机时管理在注重程序和秩序的同时,也有一定的灵活性,对于紧急突发事件,设有&ldquo 紧急课题机时&rdquo ,保证实验正常开展。中科院高福院士就是利用了&ldquo 紧急课题机时&rdquo ,对去年春天突发于江浙沪的禽流感毒株进行了结构分析,确立了这一鸟类流感其感染人的机制,为防控禽流感提供了理论基础。对于获得重大科技成果的研究人员,奖励约40个小时机时。这可是一件人人垂涎的&ldquo 奖励&rdquo 。何建华举例说,&ldquo 专注于蛋白质结构与功能研究的施一公教授,课题组曾经一年要去日本24次,现在一年只去3、4次,比以前方便太多了!&rdquo   最近,我国第三代同步辐射装置上海光源正在扩容:建成了专供蛋白质研究使用的5条光束线,并配套了6个实验站。与此同时,紧邻上海光源,又一个国家级科研中心&mdash &mdash 国家蛋白质科学中心· 上海也即将竣工。国家光子科学中心也同时在筹建中。另一大科学装置&ldquo X射线自由电子激光&rdquo 正在按计划实施推进,如果说上海光源能为人们拍摄分子照片,那么自由电子激光则能为人们拍摄分子电影&mdash &mdash 帮助科学家更原位、实时地看清微观世界的变化。   赵振堂说,上海光源一期建成时,仅有7条光束线站,到2020年,上海光源将有近40条光束线站向用户开放,届时每年可汇聚上万名科学家,基于光源开展科研工作,实验大厅、专业实验室、食堂、咖啡吧,随处都可能碰撞出学科交融的火花。&ldquo 我们的总体目标是:瞄准能源、环境、材料、凝聚态物理、地球科学、化学和生命科学等领域,解决前瞻性、关键科学技术问题,建设一批高性能光束线站,争取每年接待用户超过5千人,用户实验超过1万人次。&rdquo 相信,未来的上海光源会成为我国科技界热追的实验站。一个学科碰撞交融的科研新生态圈,将在&ldquo 鹦鹉螺&rdquo 的孕育下,逐步成形。
  • OPTON的微观世界第5期 ‘蝶’影重重
    引子各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下图像偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)扫描电镜下图像绿色部分图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 国标计划溶液聚合丁苯橡胶微观结构测定红外ATR法拟立项
    p   日前,国家标准委发布201项拟立项推荐性国家标准项目征求意见的通知,其中国家标准计划《溶液聚合丁苯橡胶(SSBR)微观结构的测定 第2部分:红外光谱ATR 法》由TC35(全国橡胶与橡胶制品标准化技术委员会)归口上报,TC35SC6(全国橡胶与橡胶制品标准化技术委员会合成橡胶分会)执行,主管部门为中国石油和化学工业联合会。主要起草单位 中国石油天然气股份有限公司石油化工研究院 、中国石油天然气股份有限公司独山子石化研究院 、国家合成橡胶质量监督检验中心 、怡维怡橡胶研究院有限公司 。项目周期24个月。 /p p   SSBR的微观结构含量直接影响着抗湿滑性,滚动阻力、冲击强度、软化温度和硫化特性等重要性能,因此SSBR微观结构含量的控制在SSBR工艺技术研究、新产品开发、产品质量控制等工作中具有重要意义。目前,测定SSBR微观结构含量的方法有核磁共振法与红外光谱法。 /p p   核磁共振法需要配备核磁共振仪,因该仪器价格昂贵,维护、运行成本很高,不是通用型仪器,运用不广泛,很少用于常规检测,多用于标准物质定值。 /p p   红外光谱法是测定SSBR微观结构含量的通用方法。测定SSBR微观结构的红外光谱法包括红外光谱溶液涂膜方法和红外光谱ATR方法。GB/T 28728—2012规定了采用核磁法和红外光谱溶液涂膜法,对SSBR中微观结构含量进行定量测定的分析方法。但红外光谱溶液涂膜法需要将样品溶解再涂膜,溶解过程需要5个小时以上。且涂膜法直接读取吸光度,没有采取通常的扣除基线法,因此,基线对测定结果的影响很大。而且溶解的完全性和膜片的光滑、平整性都会影响基线,从而对测定结果产生较大的影响,测定结果的重复性不是很好。同时,该方法需要将样品溶解,对环境和实验人员健康有一定的不良影响。 /p p   ATR(衰减全反射)技术通过样品表面反射的光信号获得样品表层有机成分的结构信息。该技术由于无需溶解样品,也不需要制备样品盐片及设置透射池,并无损样品表面,完成1次测定只需要1分钟,且不消耗任何原材料和备品备件,方便、环保、快速,因此被广泛用于物质成分的定性和定量分析。 /p p   目前国内尚没有测定SSBR微观结构含量的红外光谱ATR法的相关标准,为了与国际标准接轨,扩大国际交流,同时也为SSBR的科研、生产、外贸提供一个统一、方便快捷、环保的微观结构测定方法,因此制定该标准十分必要。 /p p   本标准规定了采用红外光谱衰减全反射(ATR)法,对溶液聚合丁苯橡胶(SSBR)中丁二烯单体的微观结构和苯乙烯单体的含量进行定量测定的分析方法。 适用于溶液聚合丁苯橡胶,不适用于乳液聚合丁苯橡胶。 /p p   主要技术内容如下: 1)获得ATR谱图的步骤。 2)丁二烯微观结构和苯乙烯含量的测定:每个微观结构组分相应吸光度的测定 微观结构的计算( 每一个吸收谱峰的基线校正、吸光度的比值、二阶项、苯乙烯和微观结构的质量百分含量通过回归方程得到、微观结构的质量百分含量) 3)精密度。 4) 微观结构回归方程的获得。 5)核磁法测定微观结构。 /p p br/ /p
  • 《景德镇元明瓷微观特征初探》古陶瓷微观采集专用仪器
    p style=" text-indent: 2em " 近年来,古陶瓷微观鉴定成为陶瓷鉴定新思路,其科学、实用、便捷、廉价的优势,在广大收藏爱好者中得到了普遍运用,并且在陶瓷鉴定上,已经发挥出不可代替的作用。但由于古陶瓷微观鉴定方法刚刚起步,理论研究和样本系统尚未跟上,致使不少应用者不得其法,走入误区 文物界和目鉴行家也往往对之持怀疑态度。 /p p style=" text-indent: 2em " 因此,严肃、认真、系统地对古陶瓷微观鉴定进行理论研究、经验总结和样本数据库的创建就十分迫切了。5月30日,中国收藏家协会“华源上手”培训部、景德镇陶瓷考古研究所与3R北京深入合作出版发行的古陶瓷微观鉴定学术专著——《景德镇元明瓷微观特征初探》一书出版上市,为陶瓷微观鉴定提供有效资料参考。 /p p style=" text-indent: 2em " 该书介绍了古陶瓷微观鉴定的发展现状和基本方法,报告了景德镇元明瓷的微观现象和特征 集纳了景德镇考古研究所出土的约200件元明瓷标本的宏、微观图录,书中对权威标本微观特征的客观展示最具价值,是未来微观数据库的一块基石。 /p p style=" text-indent: 2em " 有了古陶瓷微观鉴定权威书籍参考,最重要的环节就是要有古陶瓷微观采集专用仪器。《景德镇元明瓷微观特征初探》一书所采用的微观拍摄仪器为国内数码显微镜的领军品牌3R Anyty(艾尼提),运用无线200倍便携式显微镜深入到古陶瓷的釉、胎微观层面,按朝代、种类系统排列,并做了深入的比对、统计、研究,成为陶瓷微观鉴定标准仪器。 /p p style=" text-indent: 2em " Anyty(艾尼提)便携式无线显微镜是自带WiFi热点,可随时随地的与手机、平板等移动设备进行连接,突破传统显微镜的使用环境的局限性 另外Anyty(艾尼提)无线显微镜画面清晰、无色差,可使陶瓷微观数据更加精准 无线传输速度快,画面无延迟,以优质体验收到陶瓷研究领域用户的充分认可和好评,是陶瓷微观鉴定标准仪器。 /p p style=" text-indent: 2em " Anyty(艾尼提)便携式无线显微镜是陶瓷微观鉴定标准仪器,由3R国际集团北京爱迪泰克科技有限公司隆重出品,欢迎广大文博单位、拍卖公司、考古所以及个人收藏家咨询合作,为古陶瓷等微观鉴定、备案提供强有力支持。 /p
  • 天津大学首届“走进材料微观世界”微观摄影大赛作品集锦
    在我们肉眼看不到的纳米世界可能隐藏着意想不到的精彩一群天大学子用严谨的科学态度和鲜活的艺术创造力透过显微镜发现世界之美通过少许着色呈现自然之美在纳米的天地这些微小的结构有如美轮美奂的画作不禁让人感叹科学的奇妙腊 梅作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。采用水热法制备了泡沫镍上负载的Ni-Zn-S用于电催化水分解。棕色的泡沫镍像是梅花的树干,上面生长的一颗颗几微米的合金,像一朵朵鲜红的梅花。在寒冷的冬天,树叶还未见长出来几片,一朵朵鲜红的梅花却不畏寒冬,争先绽放,为败落稀零单调的寒冬,增添了闪亮的色彩。晴空樱花作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。该样品是采用水热法制备的泡沫镍上负载的Ni-Zn-S,用于电催化水分解。春暖花开,站在樱花树下,抬头仰望天空,樱花像一只粉色的蝴蝶在蔚蓝的天空下飞翔。泡沫镍像一棵树干,反应釜里的溶液像大地的养分,一直保持的溶液温度像太阳的光照,经历了十几个小时的保温,泡沫镍上不断的长出绽放的花朵。秋菊作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。采用水热法制备了泡沫镍上负载的Zn-Co-S用于电催化水分解。世间万物,息息相关。如果不看下面的标尺,以为这就是一朵完美绽放的菊花。不禁感叹,在微观的世界,也存在着这么精致的花朵。它们在自己的小天地下静静地绽放。七彩作者:王禹轩拍摄仪器:冷场发射扫描电镜 s4800样品材料:本样品是通过1300度高温快速灼烧1分钟的纯钼,作为制备氧化物弥散强化合金(ODS)的第二相弥散体。ODS由于其优异的抗蠕变性能、良好的高温组织稳定性和良好的抗辐照性能,其常被应用于高温涡轮发动机叶片以及换热器管道等应用中。艺术处理:通过本方法处理纯钼展现出规整的微观结构,以此为基础通过后期处理试图描绘一幅彩虹色宝石原石的照片。通过不同颜色配色及灰色底色的映衬展现出整体的色彩丰富度。三维多孔碳材料作者:杨浩然样品材料为三维多孔碳材料,使用蔡司热场扫描电镜Sigma 300拍摄。样品以氯化钠为结构模板,葡萄糖为碳源,经过冻干和热处理后获得碳包覆氯化钠颗粒结构,水洗去除氯化钠模板后,获得完美的三维多孔结构。新颖性在于以氯化钠为模板,后续可以水洗去除,可以应用于能源转换与存储领域如锂电池钠电池及电催化方向。胭脂海棠闹春浓作者:眭思密应用背景:钠离子电池电极材料仪器信息:TEM JEM-2100f样品制备:样品为溶剂热法制备的MoS2/CNTs复合薄膜。纳米花状的MoS2附着于CNTs外壁,单壁CNTs管束交织形成网络,层层网络重叠形成薄膜。拍照难点:溶剂热反应中,MoS2随机分散于CNT外壁,该照片准确捕捉了二者之间的空间相对关系,并且单壁CNTs管束、MoS2片层边缘都清晰可见。图片描述:“海棠不惜胭脂色,独立蒙蒙细雨中”,图片好似一朵盛开在两个枝杈间的海棠花,像胭脂带妆的少女,是青春、活力、娇美的象征。作为报春的使者,她让大地回春、春意渐浓,从图片中可以看出其蓬勃的生命力。碳纳米管森林作者:张睿&李乐应用背景:单壁碳纳米管垂直阵列具有巨大的比表面积、优异的导电性、良好的化学稳定性以及有序的结构,被认为是电极材料的理想候选材料。仪器名称及型号:蔡司热场扫描电镜(sigma 300)样品制备过程的难度、新颖性:本实验开发了新型纳米颗粒催化剂,可以在二维、三维基底上负载催化剂,并能够利用CVD法在基底上合成碳纳米管阵列材料,具有普适性,便于进行材料的宏量制备。层峦叠翠作者:李乐仪器:原子力显微镜AFM5500作品介绍:氧化铝碳纳米管阵列。锂金属负极的体积变化是实现金属锂电池实际应用需克服的障碍。氧化铝-碳纳米管阵列可以有效降低局部电流密度、缓解锂在充放电过程的体积膨胀。利用原子层沉积法,实现氧化铝在阵列内的均匀沉积。难度点:材料顶部仍应满足均匀的高度差,证实沉积后样品结构的稳定性。艺术处理:样品三维图显示出均匀的高度差,展现出重峦叠翠的景象。五彩斑斓的石头作者:李乐仪器:透射电镜JEM-2100F作品介绍:氧化铝包覆四氧化三铁纳米颗粒,三维基体上生长高有序度碳纳米管阵列可以作为优良电极材料应用于锂、钠、钾离子电池。然而传统电子束蒸发镀膜法沉积用于生长碳纳米管阵列的催化剂,难以实现其在三维基体上的均匀负载。本实验制备的均匀分散的氧化铝包覆四氧化三铁催化剂能够实现在三维基体上的均匀负载,并在基体上生长高有序度碳纳米管阵列。难度点:氧化铝包覆四氧化三铁纳米颗粒应满足粒径均匀、高面密度,以实现高有序度碳纳米管阵列的生长。白珊瑚的深海家园作者:白翔仁作品说明:材料为原位合成氧化镁纳米颗粒团簇的SEM图片,使用S4800扫描电镜拍摄。纳米氧化镁颗粒单个粒径约为5-10 nm,成团簇状分布,单个团簇粒径为300 nm左右,附着在基底上。纳米颗粒导电性差,且粒径细小,通过调整拍摄参数,得到衬度良好、分辨率高的团聚形貌图。图片说明:经过上色处理的作品名为《白珊瑚的深海家园》,将图片灰度调整为绿度,将纳米氧化镁图案侧构建为海底礁石上分布的白珊瑚球的意象。幽暗的海底,一块礁石上,一个个白色的珊瑚球附着在上面,融入静谧的海底世界中。五彩池作者:白翔仁作品说明:材料为纳米颗粒增强铝基复合材料晶粒的STEM图片,使用F200透射电镜拍摄。材料呈现纳米晶组织,晶粒约为200 nm左右。样品通过打磨、Gatan离子减薄仪减薄,得到块体透射样品,通过拍摄参数,得出取向衬度良好、分辨率高的微观组织图片。图片描述:经过处理的作品名为《五彩池》,通过色谱上色及水波微处理,将不同程度的晶粒构建为水底卵石的意象。阳光照射下,水波微微荡漾,掩映着水底的卵石时隐时现,像传说中的五彩池一般。为进一步激发学生们的科研兴趣和创新意识,提升实验技能水平,由天津大学材料学院主办,材料科学与工程国家级实验教学示范中心承办的天津大学首届“走进材料微观世界”—微观摄影大赛于近日成功举办。此次大赛受到了天津大学资产处、天津大学分析测试中心和化工学院大型仪器测试平台的大力支持和积极参与。经历一个月的征稿,共收到来自材料学院、化工学院、理学院、建工学院等全校118名学生的161幅作品。天津大学资产与实验室管理处副处长张为对本次大赛给予了高度肯定,他认为大赛顺应了国家加强高等学校实践教学、实践育人的要求,加强了不同专业、不同领域学科的交流和进步,展现了参赛学生们的科学素养和创新精神。材料学院院长胡文彬向本次大赛中的工作人员和评委老师以及各支持单位表示衷心的感谢,寄语同学们能永葆初心,在科研路上砥砺前行,真正认识到科学和材料的魅力所在!微观纳米世界藏匿着许多美丽与惊喜,等待着与有心人的相遇
  • OPTON的微观世界|第14期 蔡司电镜下的硒化锡
    概 述硒化锡是一种非常稳定和简单的化合物,并且地球表面有丰富的Sn和Se元素。硒化锡作为一个大家比较熟悉的半导体,主要研究方向是在太阳能电池以及箱变记忆合金材料方面。现今作为热电能源材料硒化锡应用方面有重大突破性研究成果。然而硒化锡可形成多种化学计量的硒锡化合物,如SnSe,SnSe2和SnSe3,其中SnSe和SnSe2有广泛的应用前景。此时就要借助SEM确定产物形貌成分,借此更好的完成制备过程的优化,指导大规模生产。现在就让我们用蔡司热场发射电镜sigma500来看一看硒化锡的结构。一、样品准备和SEM图像获取 首先让我们看一看样品。此样品邮寄之前已经分散在铝箔表面,而铝箔则固定在一角硬币之上。所以我们制备样品只需用碳导电胶把样品固定好即可。并且因为蔡司场发射电镜优秀的低电压成像性能能有效的抑制放电,所以样品无需喷金。下面就轮到我们的主角登场了。看看它超大的样品仓,样品多大都不成问题。现在我们只要把样品放入即可。最后我们应用蔡司电镜低电压成像技术,即使在1kv的条件下,也可得到清晰的SEM图片。以下4张图为前2张为样品1的SEM图片,后2张为样品2的SEM图片。二、SEM分析首先看样品1,在低倍放大像种,可以看出产物的主要形貌为花瓣状薄片结构。在较高倍率放大像中可以看出花瓣状纳米片边缘较规整,叶片厚度不到30nm。此时对其做能谱分析可知Se和Sn所占原子分数之比大致为2:1,说明花瓣状纳米片成分可能是SnSe2。再看样品2,在SEM图像上可以看出产物为多层片状结构,其产生原因可能为较长的反应时间使花瓣状结构生长。后 记胡克曾在《显微图谱》中说过,关于感官,接下来需要关注的是通过工具弥补感官的不足。我们现在所做的就是通过电子扫描显微镜了解物质的微观结构,因为微观结构决定了物质的性质。对于硒化锡来说,由于具有低热传导、储量丰富、环境友好等特质,是一种颇具潜力的热电能源材料,但其硬伤在于导电性能较弱。经试验发现其层状晶体结构在其层面内具有不错的导电性能。所以为了更佳的导电性能,在制备的过程中我们需要更长的时间以形成更多的片状结构。只有这样我们才能使其有更好的导电性能,使其作为热电能源材料有更好的应用前景。下期有什么精彩内容呢?敬请期待吧!
  • “空气知了”便携检测设备 微观空气不再雾里看花
    我国目前已初步建立较完善的大气环境监测体系,但室内空气质量状况过于微观、琐碎,并没有统一数据网络和标准,清天朗日应运而生。登陆APP,空气质量一查便知。清天朗日编织大数据监测网,打造物联智能生活。 图为&ldquo 清天朗日指数&rdquo 微环境监测网手机App界面 图为&ldquo 空气知了&rdquo 监测界面   打开手机,登录清天朗日App,点击监测网,选择位置中关村,屏幕显示13日下午5时,PM2.5指数为193,PM10为298,温度为24摄氏度,湿度为29%。家住北京市海淀区的李女士每次带孩子去人口密集的公共场所都会对这些地方的空气质量进行查看。&ldquo 孩子对空气质量特别敏感,以前带孩子去人多的密闭空间回来经常咳嗽,最近我无意中发现了这个室内空气监测网,可以查询到室内的空气质量,大大消除了我的困扰。&rdquo 李女士说。   李女士口中的空气监测网就是前不久上线的国内首个&ldquo 微环境实时监测网络&rdquo &mdash &mdash &ldquo 清天朗日指数&rdquo 。这一微环境实时监测网络由北京睦合达信息技术有限公司开发,清华大学建筑环境检测中心验证,美国斯坦福大学提供大数据算法支持。   如今,进地铁站时或逛街前,可通过提示牌看到地铁站内或商场内的细颗粒物PM2.5的实时数值 上班前,可先了解办公楼、办公室内的空气质量状况 开车前,先了解车内空气质量如何,各项指标是否达标&hellip &hellip 这已经或者正在成为人们生活的常态。随着生活水平的提高,人们不仅关注整体生存的&ldquo 大环境&rdquo ,也逐步开始关注与自身健康密切相关的&ldquo 小环境&rdquo 。世卫组织提醒,大部分公众每天要在室内工作生活20个小时以上,即80%以上的时间都是在室内空间度过,也就是说真正对每位个体产生直接影响的,不是室外空气质量,而是居所、汽车、学校、写字楼等&ldquo 微环境&rdquo 的空气质量。   室内空气对人体健康的影响有多大?   据去年世界卫生组织11月份发布的《世卫组织室内空气质量指南》统计,每年因室内污染而致命者,达到430万人,占到了每年全球死亡人口总数的1/13。   中国标准化协会调查也显示,68%的疾病是由于室内污染造成的。美国也有专家检测发现,室内空气中存在500多种挥发性有机物,其中致癌物质就有20多种,致病病毒200多种,危害较大的主要有氡、甲醛、苯、氨以及酯、三氯乙烯等。室内空气的污染程度要比室外严重2倍~5倍,有时可达到100倍。   相关人士做了一个小检测,1月14日下午3时,北京市环境保护监测中心公布的实时空气质量PM2.5浓度值为287,而专业设备在室内测得的PM2.5数值为232,由此可见室内室外的PM2.5并没有很大的差别。下午6时,在有油烟的情况下测量室内空气质量,PM2.5值一度达到了500,远远高于同一时间的室外空气质量数值。室内空气污染不容小觑。   清天朗日应运而生未来将扩展监测范围   据了解,我国目前已初步建立较完善的大气环境监测体系,但室内空气质量状况过于微观、琐碎,并没有统一数据网络和标准,&ldquo 正是基于此,我们想构建一个可以收集和反映写字楼、学校、幼儿园、车站等公共场所,以及车内、居所等个人&lsquo 微观环境&rsquo 空气质量的监测网。&rdquo 睦合达总裁孙翯说,&ldquo 清天朗日指数便诞生了。&rdquo   那么,清天朗日指数究竟可以监测到什么?   孙翯展示了这一微环境实时监测网,在一张地图上,随便点击地图上的任何&ldquo 红点&rdquo ,便可以获得相应点位的空气质量数据、空气净化器综合评价指数和空气质量的健康影响评价指数。记者随手点击一个点,地图上便显示出这一点位的位置是中国科技新馆,PM2.5浓度为40,PM10为66,温度为22摄氏度,湿度为28%,健康影响评价显示为轻污染。   这些室内的空气质量信息来自于哪里?   其实,这些红点的数据都来自于一个叫&ldquo 空气知了&rdquo 的便携式空气质量检测设备。这一设备可以检测PM2.5、PM10、温度、湿度,在有无线网络的地方,数据可以直接上传到云端,经过后台处理,数据就会在地图上呈现。不仅如此,&ldquo 空气知了&rdquo 还可以与手机绑定,只要用手机下载清天朗日指数App,与设备的WIFI模块实现智能连接后,手机便可随时随地监测这一空间的空气质量,并且还可以查看其他地区的室内空气质量。   当前,清天朗日指数尚存在一些问题,&ldquo 比如设备和监测网上线后,我们发现认知度还不够,监测数据类型有限,数据量不够,设备在没有无线网络的情况下无法传输数据,地图点位的位置不够准确等。&rdquo 孙翯表示。   针对这些问题,清天朗日团队将在下一阶段对这些问题进行修复,比如在机器内部内置2G或者3G的芯片,使得&ldquo 空气知了&rdquo 在没有无线网络的条件下依然可以正常传输数据。&ldquo 空气知了&rdquo 也将扩大监测范围,不仅将增加对CO2、VOC、甲醛的监测,还将对心律、血压等可穿戴设备产生的数据进行收集。   大数据编织监测网打造物联智能生活   &ldquo 我们未来的目标就是收集室内环境和个人健康的数据,做大数据产品。&rdquo 孙翯告诉记者。   那么,微环境的大数据可以做什么?   只要手中有一台&ldquo 空气知了&rdquo ,联网后不仅可上传周边的环境数据,每个人还可以在清天朗日指数上查看自己关注地的环境数据,一张&ldquo 人人为我,我为人人&rdquo 的民间实时&ldquo 微雾霾监测网&rdquo 便可织成。   &ldquo 以往的宏观空气质量数据像是一款&lsquo 单机游戏&rsquo ,&lsquo 清天朗日&rsquo 则像一款可以随时互动的&lsquo 网络游戏&rsquo ,将颠覆传统的空气质量监测网络,使得民众人人成为&lsquo 私家雾霾分析师&rsquo 。&rdquo 美国斯坦福大学访问学者、浙江大学博士纪俊形象地比喻到。   为构建更大的&ldquo 雾霾监测网&rdquo ,睦合达联手北大、清华、中国科学院、美国斯坦福等国内外多所高校,和政府有关部门及NGO组织等各界共同发起成立&ldquo 清天朗日联盟&rdquo 。联盟秘书长黎佳林称,未来3年,这一联盟将斥资两亿元,无偿将&ldquo 空气知了&rdquo 布局全国各地20万个公共网点,并提供软硬件支持,建立全国统一的&ldquo 清天朗日指数&rdquo 。目前北京地区已铺设500多个终端监测点位。   孙翯透露,微雾霾监测网对公众生活尤其是老人和孩子有直接的指导意义,&ldquo 我们下一步还要根据长时间搜集的数据出具针对行业、家庭、单位的有针对性的健康报告和健康指导。&rdquo 孙翯说。除此之外,微雾霾监测网还可以为室内污染情况和成因机理研究提供数据支持。   北京安贞医院副院长周生来认为,利用微雾霾监测网收集的民众健康数据,可以助力医疗机构,为治疗雾霾后遗症提供数据支持。   除了微雾霾监测网,大数据还可以为公众提供更智能的生活。孙翯简单举例说:&ldquo 比如通过对个体样本空气质量数据的长期监测,可以发现每个空间的生活习惯,比如PM2.5长期是一个比较稳定的数值,这个空间有可能做饭少,我们就可以给用户推荐附近可送外卖的商户,供用户选择 如果发现某个空间长期空气质量比较好,可以推断这个空间长期有净化器,并可以判断这个空间的人比较重视空气质量,可能拥有一定的经济能力,结合这些,我们还可以给用户推荐车用空调滤芯等空气净化产品。&rdquo   未来,微环境监测网将接入更多的传感器,收集更多的数据,将公众的生活物联起来,从而实现智能生活。&ldquo 我们希望可以给公众提供更智能的生活,现在已经部分实现了,在任何地方可以查看家里空气质量,并可以随意控制空气净化器。未来,我们希望可以延伸到智能家居,比如接入CO2和甲醛模块后,可以与通风系统实现&lsquo 联动&rsquo 。&rdquo
  • Nanoscribe微纳加工技术应用于3D中空光波导微观结构研究
    光波导是集成光子电路的关键元素,影响了光子学的许多领域,包括电信,医学,环境科学等。对于小型几何尺寸结构而言,低折射率介质内部的高效波导对于各种需要光与物质间的强相互作用的应用都至关重最近,一个国际研究团队提出了一种全新的限制并引导厘米范围内无衍射光的芯片光笼概念。通过使用Nanoscribe的3D打印系统,科学家们实现了直接在硅基光子芯片上制作中空3D光波导的微观结构,即集成于芯片的用细条排列并围绕成中空的双环结构(见下图)。这项新颖的光笼研究成果能展现光与物质的强相互作用,并开辟全新的应用,例如基于气体和液体的检测以及生物分析和量子技术等。集成光子设备中光与气体、液体或者生物制剂之间的强相互作用能有效应用于环境监测和生物传感器中,而这依赖于先进的光学传感元件来增强光与物质的相互作用。为此,来自于布莱尼兹光子技术研究所(Leibniz Institute of Photonic Technology), LMU慕尼黑大学 (Ludwig-Maximilians-Universit?t Munich), 伦敦帝国理工学院(Imperial College London)以及德国耶拿大学奥托肖特材料研究所(Otto Schott Institute of Materials Research of theFriedrich Schiller University of Jena)的科学家们开创了一种新的3D光笼波导概念。该实验是通过波导借助微观细条捕获光,并借助光子带隙效应将其引导到数毫米距离上。光笼的开放式设计有利于光与物质(例如液体或气体分子)之间的强相互作用。SEM图片来源:Bumjoon Jang, Leibniz Institute of Photonic Technology微纳加工技术应用于3D光波导研究科学家们将细条排列成内外两个六边形结构,其中的中空芯用来引导光束。细条直径仅3.6 μm且细条之间的间距为7 μm,长度为5毫米,纵横比超过1000。该复杂的双环体系光笼微观结构需要直接能打印在硅芯片上。这个十分具有挑战性的制作通过使用德国Nanoscribe公司的3D打印系统成功得以实现。这个3D微观结构的设计能够通过细条之间的空间横向进入波导的核心区域。因此,分子可以从侧面进入中空芯并与核心区域的光进行相互作用。独特的侧面通过方式可将气体扩散时间至少缩短了10000倍。性能测试表明,通过3D光笼的波导效率很高,并且研究证明波导长度可达到3cm,纵横比超过8000。集成芯片使得光笼概念在诸如生物分析或量子技术等众多领域都有很好的应用前景。凭借着拥有极其复杂和超高精度的3D打印技术,Nanoscribe公司的3D微纳加工技术推动着光子电路的研究和创新。三维光子晶体,光子互联以及复合透镜系统和自由曲面耦合器的实现都得益于Nanoscribe的3D打印系统。相关文献:Light guidance in photonic band gap guiding dual-ring lightcages implemented by direct laser writing网址:https://pubs.acs.org/doi/10.1021/acsphotonics.8b01428HollowCore Light Cage: Trapping Light Behind Bars网址:https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-16-4016 更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印系统 Quantum X 双光子灰度光刻微纳打印系统
  • 微观丈量,“膜”力无限——马尔文帕纳科薄膜测量专题网络研讨会成功举办
    仪器信息网讯 2022年10月14日,由马尔文帕纳科携手仪器信息网联合主办的“微观丈量,‘膜’力无限——X 射线分析技术应用于薄膜测量专题网络研讨会”成功举办。本次活动吸引500余人报名参加,直播间气氛活跃,提问不断。马尔文帕纳科先进材料行业销售经理程伟为活动致开场词。程伟讲到,马尔文帕纳科隶属于英国思百吉集团,为微观领域材料表征技术专家,聚焦基础材料、先进材料、医药与食品三大市场,致力于释放微观世界的力量,促进宏观世界的改变。马尔文帕纳科的XRD、XRF产品可以为薄膜材料分析提供全面解决方案,帮助客户获得薄膜材料的元素构成、物相、厚度、取向、残余应力等关键信息。会议特邀高校资深应用专家及马尔文帕纳科技术专家分享精彩报告。同济大学朱京涛教授作《X射线衍射仪在纳米多层薄膜表征中的应用》主题报告,系统介绍国内外多层薄膜研究进展,并结合其团队研究实例,围绕X射线衍射仪在纳米多层薄膜表征中的应用开展探讨,采用掠入射X射线反射、X射线衍射、X射线面内散射等测试方法,表征周期、非周期、梯度多层膜,以及膜层厚度、界面宽度、薄膜均匀性、结晶特性、粗糙度等信息。从1954年飞利浦第一台用于薄膜分析的X射线衍射仪诞生以来,马尔文帕纳科X射线分析技术应用于半导体薄膜材料测量已有非常悠久的历史,目前可为世界各地的半导体制造商提供完整的物理、化学和结构分析解决方案,从薄膜厚度和晶向到组分、应力、结晶度、密度和界面形态等。马尔文帕纳科亚太区半导体销售经理钟明光详细介绍了公司X射线衍射及X射线荧光分析技术在半导体薄膜领域的整体解决方案,包括新一代X'Pert3 MRD(XL)高分辨X射线衍射仪、2830ZT波长色散X射线荧光圆晶分析仪等。多晶薄膜材料的晶型、残余应力和织构影响着薄膜的物理和力学性能,对这些参数进行测量和分析可以为薄膜沉积工艺的调整和优化提供依据。在衍射仪中构建适合薄膜分析的光路,在常规的晶型分析外,还可以对薄膜材料进行无损的残余应力和织构分析。马尔文帕纳科中国区XRD产品经理王林带来题为《多晶薄膜应力和织构分析》的报告,结合多晶薄膜分析示例,分享了马尔文帕纳科X射线衍射技术在多晶薄膜的物相、应力、织构表征方面的应用。Aeris台式衍射仪的演示短片通常,X射线衍射仪分析薄膜材料,都是在大型落地式的XRD上实现的,但马尔文帕纳科在2021年推出了新一代的Aeris台式XRD,可以通过增加掠入射功能附件,实现在占地面积更小的台式衍射仪上进行薄膜的物相和掠入射残余应力分析。报告间隙,特插播Aeris台式衍射仪演示短片,让用户更直观了解这款“一机多能”的多功能型台式X射线衍射仪。X射线荧光光谱通常被认为是一种成分分析技术,广泛应用于各类工业过程控制。追本溯源,其分析原理来自于X射线与物质的相互作用,因此该技术的应用也被延伸至各类薄层样品的表征,获取涂层和镀层中的层厚和薄层成分信息。在薄层样品的分析上,XRF具有无损分析、测量速度快、层间界面要求较低、样品尺寸灵活和适用多层分析的特点,被广泛用于半导体、金属、电子等领域。报告中,马尔文帕纳科中国区XRF产品经理熊佳星先生分享了X射线荧光技术用于涂层镀层分析的原理、方案及典型应用,并演示了实际样品的测量过程;视频中,Epsilon4台式XRF搭配专用的薄膜分析软件Stratos可以实现对涂层和镀层的快速、准确的无损分析。台式荧光仪镀层分析演示视频本次专题活动,马尔文帕纳科还为用户准备了丰富的礼品,随着第三轮抽奖活动的结束,会议进入尾声。未来仪器信息网和马尔文帕纳科也将一如既往为薄膜材料等先进材料用户提供更多更优质的服务。更多活动详情请点击下方专题。
  • OPTON微观世界|电镜下的净水器滤芯
    随着全民健康消费理念的日益普及,健康类家电需求升温,其中净化类型的家电,如家用净水器等。近年来呈现爆发式增长。虽然净水器进入我国只有短短二十余年的历史,但是其发展速度却非常惊人。净水器最主要的作用就是改善自来水,能够生饮、替代桶装水、更廉价、更卫生。净水器的关键部件就是滤芯。不论是什么品牌的净水器,其功效皆由滤芯的种类和品质决定。另外很多小区周围水站的桶装水,也是由自来水经过滤芯过滤得到的。客户订A品牌的水,水站就用A品牌的的滤芯过滤水,订B品牌的水,就用B品牌的滤芯过滤。所以滤芯是净水的关键。那么市场上不同类型的净水器太多了,要怎样区分怎样选择呢?这里小编带大家梳理一下,关于净水器滤芯的小知识!其实呢,净水器的主要滤芯主要有这几种类型:PP棉,活性炭,微滤MF/超滤UF/纳NF滤膜,反渗透膜(RO)。其中PP棉滤芯主要拦截大颗粒污染物,活性炭可以吸附异味,而更关键的技术则在于滤膜类的滤芯。不同分离膜滤芯的孔径大小和可透过的物质,如下图所示:小编特地采购了PP棉滤芯、中空纤维滤芯以及反渗透滤芯,将他们剖开,用电镜来解析他们的微观形貌。PP棉空隙尺寸较大,所以只能拦截较大的颗粒物,如泥沙、隐孢子虫、毛发、红虫和一些悬浮物。 接下来流经活性炭,吸附水中异色异味,祛除余氯。之后流经下一级滤芯---微滤或超滤膜滤芯。根据膜组件的结构,这类膜有中空纤维状式、管式和平板式等,小编买到了是中空纤维膜,一般净水器中多用这种结构。
  • 【电镜视频大赛】中科科仪电镜科普视频,带你探索微观世界
    电镜被誉为“人类的第三只眼睛”,经过近百年的发展,已成为物质微观结构分析的重要手段。为帮助更多用户了解电镜这一技术,以及电镜的应用场景、电镜厂商及品牌等,仪器信息网特发起此次【电镜视频征集】有奖征集活动,广大电镜用户及厂商均可免费参与。点击查看活动详情及更多投稿作品↑↑↑本次为大家介绍的是来自中科科仪的投稿视频。视频从科普的角度为我们描述了扫描电镜的原理,及其与光学显微镜的区别,并展示了扫描电镜在新能源、新材料、半导体、生物医药、冶金矿业、建筑、化工、陶瓷等领域中的应用案例。同时,也为我们展示了中科科仪KYKY-EM8100场发射扫描电镜的整体构造,仪器性能、使用操作等。该仪器还可提供多样化的定制方案,如扫描电镜联用系统:镀膜机、飞秒激光、原子力显微镜等。一起来观看视频,了解一下吧~~~电镜科普视频:探索微观世界——中科科仪↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8056359KYKY-EM8100场发射枪扫描电子显微镜——中科科仪↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8056349点击视频链接,为TA打call吧,点赞/留言/收藏,助TA赢取活动大奖~ 公司简介:北京中科科仪股份有限公司(简称中科科仪),始建于1958年。六十余年的发展历程中,曾参与“两弹一星”、正负电子对撞机、江门中微子实验室、高能同步辐射光源(HEPS)等国家重大工程和科研项目,成功研制出我国第一台扫描电子显微镜、第一台涡轮分子泵、第一台商用氦质谱检漏仪。中科科仪坚持创新引领,是2014年中宣部七家“创新驱动发展典型”之一。凭借雄厚的技术创新实力,2014年,被评为国家级企业技术中心,也是首批通过的国家级高新技术企业。2021年,获评国家级与北京市“专精特新”小巨人企业,并获重点支持。中科科仪是国内尖端科学仪器设备及真空技术领军者。新产品研发成果始终代表中国高端电子光学仪器和真空技术最高水平,业务领域覆盖扫描电子显微镜、氦质谱检漏仪等科学仪器和分子泵、真空应用设备等产业设备及核心零部件。══════════════════════════════▼▼▼══════════════════════════════电镜视频征集活动“火热”进行中参赛方式:1、点击链接https://bbs.instrument.com.cn/forum_89.htm ,进入发帖页面,在该版面发布新帖 ,如下图所示。2、按照下图中格式填写,并上传视频,发布。待后台审核通过(约2-3h)后,即可在电镜版面展示,并同步更新至专题作品展示模块。奖项设置:本次活动面向广大用户及厂商均可免费参与,更有多重好礼(环球影城门票、百元京东卡)及热门广告位等你来拿!点击下方图片了解活动详情↓↓↓
  • OPTON微观世界 | 扫描电镜助力彩妆事业-散粉的世界
    夏天的脚步越来越近,各位小仙女们终于可以冲出家门,穿上时髦的裙子、短裤放飞自我。要想有高贵优雅的气质,除了时髦的服装外,大家特别关注的就是精致的妆容了,而底妆的精致、持久和完美,一直是彩妆达人最极致的追求。但是夏季,太阳暴晒、温度骤升,脸部特别容易出油,对于要求极致完美的各位仙女们,是绝对不允许的,所以,定妆粉便在此刻发挥了作用。定妆粉又称散粉或者蜜粉,其主要作用是吸收面部多余油脂、减少面部油光,同时可以全面调整肤色,使妆容柔滑细致,防止脱妆。相信在小仙女们的梳妆台、化妆包里,散粉总是占得很重要的一席之地,今天小编就带大家走进散粉的世界。本文选取4种目前非常流行的散粉品牌做测试,分别是:Innis*free,戴C林,纪F希和花X子,散粉型号如图1所示。该测试采用蔡司Sigma500扫描电子显微镜和牛津能谱仪分别进行微观形貌和成分的分析,结果如图2、3所示。 图1. 4种散粉的型号:(a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子从结果中可以看到,Innis*free散粉主要由块状、片状和球状颗粒组成,且以球状颗粒为主,戴C林主要由块状和片状颗粒组成,纪F希和花X子从形貌上看非常相似,主要是由球状和片状颗粒组成,且片状颗粒占主要成分。图2. 4种散粉微观形貌像 (a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子结合图3的能谱结果,可以看到Innis*free中块状颗粒以C元素为主,球状颗粒以Si和O元素为主,片状颗粒以Al、Mg、K、Si、O元素为主,分析为白云母;戴C林散粉中片状颗粒以Mg、Si、O元素为主,分析为滑石,块状以Mg、Ca、C、O为主,分析为白云石;纪F希片状颗粒成分主要为Mg、Si、O,分析为滑石,球状颗粒以Si和O元素为主;花X子片状颗粒以Al、Mg、K、Si、O元素为主,分析为白云母,球状颗粒以Si和O元素为主。 图3. 4种散粉能谱谱图 (a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子由此可以得出,Innis*free主要由SiO小球、块状碳和少量白云母组成,戴C林主要由滑石和白云石组成,纪F希主要由SiO小球和滑石组成,花X子虽然和纪F希形貌非常类似,但是其组成是不同的,其主要由SiO小球和白云母组成。其中化妆级滑石粉非常软,具有珍珠光泽和滑腻的手感,主要用于美容粉或者润肤粉中,同时硅元素具有散光、阻隔红外线的作用;妆品级云母具有丝绢光泽和柔滑质感,使化妆品粉质轻盈细腻,且具有珠光效果。我们的皮肤很娇贵,选择化妆品的时候要谨慎,适合自己的才是最好的,夏天来啦,爱出油的小仙女们记得用散粉哦!Zeiss Sigma系列场发射扫描电镜基于Zeiss经典的Gemini系统平台设计,成像效果、分析能力、应用拓展并举,是进行材料科学研究、工业生产检测的有力工具。√ 纳米材料高质量成像√ 非导电性材料直接观察√ 高灵感度检测器还原材料表面最真实形态√ 大尺寸容纳空间√ 高效率元素检测√ 高通量分析能力,兼具大视场和高分辨率属性√ 磁性物质高分辨率成像√ 多维应用拓展,精确且高效关联光学显微镜
  • 行进中的科学|在高精尖实验室,窥见“危机四伏”的微观世界
    提到浙江省农业科学院,很多人都知道,这是浙江一所高大上的农业科研机构,今年已经建院115周年。但或许很多人不知道,这所百年名院还有不少“科普”标签:2018年,省农科院农产品质量安全危害因子与风险防控国家重点实验室公共平台(简称“院公共实验室”)被认定为浙江省科普教育基地;2022年,省农科院科研创新基地被认定为全国科普教育基地,院公共实验室为其中一个板块。孩子们走进高精尖的实验室,学习生命代代相传的奥秘、了解遗传改良的各种技术,从小进行科学意识的启蒙;社区公众开启科普游,在游览中探寻科学的奥秘、提高科学素养,科学粉丝更是有了动手实践的机会;企业技术人员、高校研究生等群体来此培训“充电”……评上科普教育基地之后,昔日神秘的科研院所,如今已经成为了开放的科普资源单位。窥见微观世界,破译基因密码科普活动设计注重增加体验感树林间、绿地上,孩子们捕捉和放生种类各异的昆虫,识别各种花草树木,参观制作标本,还亲自动手操作荧光显微镜和超景深显微镜,观看病原菌玻片,揭开病虫害的“神秘面纱”,窥见奇妙而“危机四伏”的微观世界。近日,杭州市笕弘实验学校的一群好奇宝宝们,来到院公共实验室开展科普活动。看一看户外的生机勃勃,探一探实验室的“科学魔法”,小朋友拉着身穿白大褂的老师们不放手,边玩边学、乐此不疲,“太有意思了,我还想再来一次!”在我们的采访中,翟国伟主任、徐飞博士给我们详细介绍了科普内容的设计。为了更好地点燃孩子的兴趣,从流程设计、环境设计到内容设计,充分考虑了如何增加体验感,“我们不断调整科普活动的内容形式,让活动更适合不同年龄层市民的需求。最受小学生们喜欢的,除了在显微镜下观看各种微生物、昆虫的复眼/肢体外,还能在实验室内亲自动手提取遗传物质与进行营养物质测定等。”徐飞博士在为小学生讲解水稻害虫生态控制技术里的科学知识DNA是绝大部分生命的遗传物质,两条链相互缠绕,形成一个典型的双螺旋结构。它是生命的序列,上面的许多小片段构成了我们常说的“基因”,储存着一个生命孕育、生长、发育、死亡等过程的重要信息,同时也是决定生命健康的内在因素。基因如此重要,亲眼观测真实的DNA,又会是怎样的一种体验呢?在院公共实验室,孩子们可以亲自进行DNA的提取实验。他们戴上棉手套,将自己摘取的叶子放入研钵,在老师的指导下加入-196℃的液氮,然后就开始研磨,捣锤声响成了一片。由于液氮的温度极低,叶片迅速变硬变脆,研磨后就变成了绿色的粉末,看起来有点像平常吃的抹茶粉,一个小朋友认真地提问,“老师,这是涂在蛋糕上的抹茶粉吗?”惹得老师们忍俊不禁,“不是哦,我们将叶片研磨是为了破坏植物细胞的细胞壁,这样可以让DNA释放得更充分。”小学生在做实验在示范操作的工作人员身边,围满了一个个好奇的“小脑袋”。在那些平时很难见到的仪器边上,同学们还观察了进行基因扩增操作和凝胶电泳的机器。“太开心了,这次总算有机会到实验室亲手做实验!”“原来,听起来很“神秘”的DNA提取并没有想像中那么难!”孩子们七嘴八舌地发表着对实验室的热爱,享受着科学探索的无尽乐趣。因为科技含量高、互动性好,院公共实验室的活动一直好评不断,受到追捧。小学生在动手操作显微镜设备价值不菲,研究人员专业科普基地为学生烹制教学盛宴“首先,我们是科研机构。”走进省农科院新区1号楼,说完这句开场白,翟国伟主任、徐飞博士带领着记者开始参观实验室。“这台等离子体质谱仪设备价值300万左右,这套冷冻扫描电镜系统约400万……”在分子生物学、生物信息与人工智能、影像分析、代谢与蛋白组学、理化分析等5个子实验室,记者看到了四五十台大型科研仪器设备。借助这些价值不菲的先进设备,各个子实验室开展着各类技术服务、培训及科研工作。“我们是一个集大型仪器管理、技术服务、培训及科研为一体的综合性开放型实验室。”翟国伟主任介绍说,随着社会的发展,科研机构及实验室承担的社会责任越来越重,但许多机构及实验室都面临着专业人员不足、仪器设备闲置、设备共享不足、共享机制不完善、沟通效率低下等问题。因此,浙江省农科院组建了院公共实验室,以此来实现全院大型仪器设备的管理、技术指导、辅助操作、辅助构思和设计实验方案、主持或参与研究课题等职能。一套价值约五百万的仪器设备实验室的组建,离不开精密仪器,但更值得重视的是人才队伍建设。据悉,省农科院公共实验室现有在编职工12人,博士7人,2人入选省农科院院青年骨干人才项目,成员背景包括遗传学、基因组学、分子生物学、生物信息学、影像分析、理化分析等,熟练掌握各学科所涉及的各种研究方法和技术。专业科研人员想要指导他人操作技术含量较高的仪器,说着简单,实际不容易。翟国伟主任说:“实验室设备资源丰富,科研人员本职工作非常忙碌。大家都有服务社会的心思,所以在做好科研创新、科研服务的同时,科学普及工作也一直没落下。”徐飞博士表示,他和同事们都认为,孩子的好奇心是这个世界上最珍贵的东西之一,每个孩子都有一颗渴求知识的心,“我们提供平台,让小学生来高精尖的实验室里做实验,看着孩子们一双双好奇的大眼睛,一个个沉浸在实验中,理解原本以为很晦涩的科学知识,对我们来说,是一件特别有成就感的事。”据不完全统计,自省科普教育基地授牌以来,院公共实验室分别与杭州启正中学、杭州市丁荷小学签订了联合共建协议。截至目前,已举办20余场次的科普教育活动,这其中包括了杭州德天实验小学、杭州笕弘实验学校、笕桥街道社会工作站、杭州去哪家族少年警校等(个人组织的少先队小队活动不计)。此外,作为省农科院内重要的科研共享平台,院公共实验室每年接待各级领导、科研单位同行参观数十次。科普长廊小小的实验室,折射的是浙江省农科院推动全民科学素质提升的初衷。作为全国科普教育基地的浙江省农科院科研创新基地,除了不定期组织的实验室开放日,还开展了农产品质量安全进社区、农产品质量安全进校园、基地开放日等科普宣讲活动,并制作了《包青天之番茄外篇》《不用植物生长调节剂的葡萄才是好葡萄?!你OUT了!》《草莓长得怪怪的,怪我咯?》《黄瓜也用避孕药?》等科普视频。翟国伟主任表示,为了更好地让科学精神、科学方法、科学思想植根在更多人心中,未来将继续推进科技资源的社会化、科普化,不断提升科普游服务品质,为市民朋友提供更加丰富多彩、生动有趣的科普盛宴。
  • 微观世界显真容:质谱成像助力生物医学研究
    质谱成像(MSI)作为一种新兴的分子成像工具,凭借其高灵敏度、特异性及无需标记等优势,已经在生物医学研究领域展现了巨大潜力。其可以直接获取分子轮廓,并直观地显示每种离子化化合物在样品(尤其是生物组织)中的空间分布。作为探索空间多组学最有前途和最有发展前景的技术之一,MSI 不仅能定位药物和代谢物的分布,还能深入了解疾病进展和药物干预背后的表型变化。本文将结合多种质谱成像技术,包括常压透射式激光解吸/后光电离质谱成像、基质辅助激光解吸电离质谱成像、解吸电喷雾离子化质谱成像、飞秒激光电离成像质谱、离子迁移率分离、飞行时间二次离子质谱、激光剥蚀电感耦合等离子体质谱、成像质谱显微镜等技术,深入探讨了其在肿瘤研究、药物代谢分析和单细胞研究中的突破性成果。◆ 常压透射式激光解吸/后光电离质谱成像技术 由中国科学技术大学国家同步辐射实验室潘洋等的研究团队,共同发展的常压透射式激光解吸/后光电离质谱成像技术(t-AP-LDI/PI-MSI)新方法,能够在无需复杂样品前处理的情况下,实现对生物组织中多种内源性化合物的原位可视化分析。该技术结合了透射式激光解吸电离和紧凑型后紫外光电离装置,显著提高了空间分辨率和灵敏度。在复杂临床样本分析中,t-AP-LDI/PI-MSI被用来分析肿瘤组织的代谢物分布,揭示了黑素瘤微环境的代谢异质性,这为深入了解肿瘤发生的复杂分子机制具有很大的参考价值。点击了解最新进展~◆ 基质辅助激光解吸电离质谱成像技术 (→点击查看相关仪器)基质辅助激光解吸电离质谱成像(MALDI-MSI)是一种经典的技术,通过在样品表面添加基质,使得样品在激光照射下能够能够高效地解吸和电离组织样品中小分子代谢物、脂质和蛋白质。MALDI-MSI在肿瘤标志物发现、药物分布研究等方面应用广泛,为生物内源性化合物的直接鉴定和定位提供了强有力的支持。已有研究使用不同的纳米材料作为衬底,从而显著提高分析物的解吸电离效率和检测灵敏度。此外,MALDI-MSI还被成功应用于单细胞分析,通过优化样品制备和基质选择,能够在单细胞水平上检测代谢物和脂质,这对于细胞异质性研究具有重要意义。例如,杭纬等相继研发出的质谱仪器能够实现单细胞内药物分子的3D成像分析,揭示了抗癌药物诱导癌细胞凋亡的动态过程。蔡宗苇等研发出冰冻3D细胞微球方法用于MSI分析,并结合代谢组学揭示了环境污染物对细胞球增殖的影响。点击了解最新进展~◆ 解吸电喷雾离子化质谱成像技术 解吸电喷雾离子化质谱成像(DESI-MSI)是一种无需样品前处理的即时质谱成像技术,可在大气压下进行快速、直接的化学成分分析。近年来,DESI-MSI在临床诊断中的应用逐渐增多,能够在手术过程中实时识别癌组织边界,为外科医生提供重要的指导信息。此外,DESI-MSI在环境科学中也展现出潜力,尤其是在分析复杂环境基质中的污染物时,DESI-MSI能够快速、准确地检测和定位多种化学物质。贺玖明团队还开发出基于AFADESI-MSI技术的空间分辨代谢组学新方法,揭示肿瘤转移机制,建立了以空间分辨代谢组学技术为特色的代谢研究平台。点击了解最新进展~◆ 飞秒激光电离成像质谱技术 飞秒激光电离成像质谱(fs-Laser Ionization Imaging Mass Spectrometry)技术凭借其超快激光脉冲和精确的电离能力,在质谱成像领域独树一帜。该项技术可高效分析热敏性和易碎性样品,超越了传统光学显微镜的分辨率限制。通过微米级分辨率进行激光烧蚀和质谱仪的软电离源,其能够鉴别和分析生物分子和其他微观物质,在分子水平上揭示样品的化学组成和空间分布,推进了多个研究领域的进展。其已经能够在亚细胞水平上进行高分辨率质谱成像,为细胞生物学、神经科学等领域的研究提供了前所未有的视角。◆ 离子迁移率分离技术 (→点击查看相关仪器)离子迁移率分离技术(IMS)的引入,为质谱成像带来了革命性的变化。IMS通过分离气相中的离子,根据它们在电场中的迁移速度不同来实现分离,这取决于离子的碰撞截面积和电荷状态。离子迁移率质谱成像(IM-MSI)利用IMS的优势,提高了分子特异性和空间分辨率,尤其是在分析小分子异构体方面表现出色。这项技术在药物开发、疾病诊断和生物标志物的发现等领域展现出巨大的潜力,为生物医学研究提供了新的视角。李灵军团队利用离子迁移率分离和双极性电离质谱成像(MSI)技术实现了单细胞脂质组高通量、原位和双极性成像,揭示了小鼠小脑皮质细胞层特异性脂质分布。点击了解最新进展~◆ 飞行时间二次离子质谱技术 (→点击查看相关仪器)飞行时间二次离子质谱(TOF-SIMS)技术是一种仍然处于高速发展中的高分辨率表面分析技术,具有高空间分辨率、高化学专一性、高灵敏度的独特优势,广泛应用于生物组织和单细胞成像等生命科学研究领域。TOF-SIMS是迄今为止,能在亚细胞水平上对生物分子进行无标记2D和3D成像的、为数不多的分析技术之一,为研究细胞膜组成、药物分布和疾病标志物提供了宝贵的信息。汪福意课题组长期致力于TOF-SIMS方法与应用研究,发展了基于TOF-SIMS和荧光共聚焦显微镜联用的成像分析方法,并在单细胞水平上开展了金属抗肿瘤化合物、细胞内生物大分子蛋白质与DNA之间的相互作用等研究。点击了解最新进展~◆ 激光剥蚀电感耦合等离子体质谱技术 (→点击查看相关仪器)激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术通过激光剥蚀样品并结合ICP-MS的高灵敏度检测,实现了对生物组织中金属元素和有机化合物的空间分布分析。该技术在金属组学和元素生物化学研究中,特别是对揭示元素在生物体内的分布和功能方面,提供了强有力的手段。LA-ICP-MS技术能够以高空间分辨率对生物样本进行元素成像,对于研究微量元素与疾病的关系以及药物代谢等领域具有重要价值。中科院高能物理研究所丰伟悦研究团队对LA-ICP-MS在单细胞分析和生物成像方面的研究,为理解生物样本中的元素分布和相互作用提出了新的见解,也为生物医学研究和纳米材料的安全性评估提供了重要的技术支持。◆ 成像质谱显微镜 (→点击查看相关仪器)成像质谱显微镜结合了光学显微镜和质谱成像技术的优势,能够在单细胞甚至亚细胞水平上提供高分辨率的化学信息,并对生物分子进行定量分析。该技术为研究细胞内的分子动态和相互作用提供了可能,对于理解疾病的发生和发展机制具有重要意义。成像质谱显微镜为揭示细胞内复杂的分子网络和相互作用提供了新的研究工具。点击了解最新进展~质谱成像技术的不断创新与发展,极大提升了生物样本化学信息的解析能力,并在细胞、组织及器官层面揭示了样品的复杂化学组成及空间分布。随着技术的发展,质谱成像将在未来生物医学研究中继续发挥重要作用,为疾病诊断、治疗方案优化以及生命科学研究带来新的突破与希望。更多精彩内容↓↓↓上述内容综合了当前质谱成像技术在生物医学研究中的最新研究进展和应用实例。有关更多信息和研究讨论,欢迎大家报名参加2024年9月19日由仪器信息网召开的“第四届质谱成像技术与进展”主题网络研讨会,届时将有来自国内外的顶尖专家分享他们在质谱成像领域的最新研究成果和见解,赶紧点击下方的图片报名吧。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制