当前位置: 仪器信息网 > 行业主题 > >

图像扫描

仪器信息网图像扫描专题为您整合图像扫描相关的最新文章,在图像扫描专题,您不仅可以免费浏览图像扫描的资讯, 同时您还可以浏览图像扫描的相关资料、解决方案,参与社区图像扫描话题讨论。

图像扫描相关的资讯

  • 扫描电镜 | 低电压下如何获取高分辨图像
    随着纳米材料在各个工业领域的应用,推动了超高分辨率的扫描电镜的发展,但这些材料导电性不佳,因此,对低电压下仍具有高分辨率的扫描电镜提出迫切需求。 低电压扫描电镜的主要特点之一是能直接对不导电样品进行观察,同时保持高的分辨率。但是其面临的问题是束流电压降低,信号量会显著下降,同时低电压下扫描电镜像差导致分辨率降低。随着扫描电镜技术的蓬勃发展,这些问题目前都得已大大改善。 为了弥补低电压下信噪比低的问题,赛默飞Apreo 2系列电镜配备了YAG材质背散射探测器(T1)(图1)。YAG(Y3Al5O12:Ce3+)是一种具有高发光效率的闪烁体材料,用掺铈的YAG材料制成的背散射探测器,发光效率更高,亮度更高,更耐离子和电子的轰击,因此几乎不存在随使用时间的累积而导致发光效率下降的问题。Apreo 2系列电镜的T1背散射探测器置于镜筒内靠近极靴下部,这样不仅可以获取大量的信号,而且不会有误操作导致的撞毁风险。同时T1接收的是背散射电子,因此,可以大大改善导电性不佳的样品带来的荷电问题。 图1 Apreo 2 扫描电镜的T1探测器位置示意图 为了减小低电压下像差增加的问题,赛默飞Apreo 2系列电镜发展出了样品台减速模式(图2),以减小透镜色差和提高低电压图像分辨率。减速模式中引入的“着陆电压”的概念,即实际到达样品表面的电压,其计算非常简单,入射电压减去减速电压即为着陆电压。例如,电子束初始加速电压5kV,在样品台上加4kV的减速电压,在样品表面的着陆电压为1kV,采用减速模式后入射到样品上的电压是1kV,在样品内的电子束扩展范围和对样品荷电的减缓同初始加速电压为1kV的情形一致,但其电子束的亮度接近加速电压为5kV的状态。因此,采用减速模式,一方面保持了高加速电压下的亮度和足够的信噪比,以及高分辨率,同时又真正实现了样品表面荷电的有效缓解。减速模式下,还有一个优点,使电子束与样品相互作用产生的信号电子在减速电压的作用下加速,这些信号电子在被探测器探测到时能量更高,从而提高了二次电子或者背散射电子收集效率,增加了信噪比。图2 样品台减速模式工作原理示意图 在实际应用中,我们会将样品台减速模式和T1探测器联合使用,以获取高分辨图像。比如,锂电池隔膜是一种PP或者PE材质的高分子薄膜,其导电性极差,常规的电镜无法解决荷电问题,而使用T1探测器不仅可以解决荷电问题,而且搭配减速模式仪器使用还可以获取高信噪比图像(图3)。稀土氧化物Y2O3粉体是制造微波用磁性材料及军事通讯工程用的重要材料,综合导电性较差,高加速电压容易使表面积累荷电,而且会掩盖颗粒表面细节,因此,我们采用低加速电压搭配减速模式进行高分辨成像(图4)。 图3 锂电池隔膜(加速电压:500V,放大倍数:30000,探测器:T1,减速电压:1kV) 图4 Y2O3粉末颗粒(加速电压:500V,放大倍数:100000,探测器:T1)
  • 苏州医工所关于图像扫描显微成像技术最新研究进展
    p   激光扫描共聚焦显微镜(Laser Scanning Confocal Microscopy,LSCM)是研究亚微米细微结构的有效手段,广泛应用于生物医学、材料检测等领域,是从事生物医学和材料科学研究的科技工作者必备的研究工具。然而,在共聚焦显微镜中,其分辨率与信噪比相互矛盾,不能同时实现高分辨率和高信噪比。近年来出现的基于共聚焦显微成像的图像扫描显微成像技术解决了这一问题,可以同时实现高信噪比、高分辨率成像。由于显微成像的分辨率与入射光偏振态有关,因此对入射光的偏振调制仍可以进一步提高图像扫描显微技术的分辨率。 /p p   近期,中国科学院苏州生物医学工程技术研究所张运海课题组的肖昀等研究人员,对入射光进行偏振调制,得到尺寸较小的径向偏振光纵向分量的聚焦光斑,成功提高了现有图像扫描显微成像技术的分辨率,获得了高信噪比且更高分辨率的图像。该技术利用径向偏振光的纵向分量具有紧凑型光斑的特性,获得了较小的照明光斑,并进行图像扫描显微成像,与普通图像扫描成像相比,其分辨率提高了7%。 /p p   研究结果表明,径向偏振光的图像扫描成像的分辨率优于圆偏振光,其分辨率是1AU针孔下共聚焦成像的1.54倍,同时径向偏振光纵向分量的图像扫描成像信号强度是1AU针孔下共聚焦成像的1.54倍,优于圆偏振光的图像扫描成像。在高分辨显微成像中,当背景噪声不变时,信号强度越强,信噪比越好。尤其是在探测微弱的荧光信号时,信号强度增加,信噪比改善比较明显。该研究结果有助于径向偏振光在图像扫描显微成像中的应用。 /p p   以上成果已经在Optics Communications上发表。该工作得到了国家重大科研装备研制项目(超分辨显微光学关键部件及系统)、江苏省六大人才高峰资助项目、江苏省自然科学青年基金以及苏州应用基础研究计划项目的支持。 /p p   文章链接 /p p    center img width=" 500" height=" 331" alt=" " src=" http://www.cas.cn/syky/201706/W020170614377009851718.png" / /center p /p p & nbsp /p p & nbsp /p p   图1. 25个点阵列图案成像,(a)为25个方形点的阵列图案,每个点的边长为0.06λ,相邻点的间距为0.46λ,(b)、(c)、(d)分别为阵列图案经过1AU针孔下传统共聚焦显微系统、圆偏振光与径向偏振光纵向分量图像扫描成像生成的图像,(e)为(b)、(c)、(d)中绿线位置的光强分布。 /p p    center img width=" 500" height=" 132" alt=" " src=" http://www.cas.cn/syky/201706/W020170614377009864453.png" / /center p /p p & nbsp /p p & nbsp /p p   图2.(a)1AU针孔下传统共聚焦成像(黑色曲线)、0.2AU针孔下传统共聚焦成像(绿色曲线)、1AU针孔下圆偏振光(蓝色曲线)和径向偏振光纵向分量(红色曲线)分别经过图像扫描成像的PSF横向强度曲线,(b)为(a)中PSF所对应的OTF,(c)中黑色曲线、绿色曲线、红色曲线分别为1AU针孔下传统共聚焦成像、0.2AU针孔下传统共聚焦成像、1AU针孔下径向偏振光纵向分量图像扫描成像的PSF横向强度曲线。 /p /p /p
  • 邀请函 | 拉曼图像-扫描电子显微镜联用技术论坛
    电镜-拉曼的联用概念并不新鲜,早在十年多前,就有拉曼厂商开始在扫描电镜上安装拉曼光谱仪,实现SEM-Raman的初步联用。不过由于技术和适用性的限制,拉曼联用技术未能像EDS那样获得成功,在电镜上配备拉曼联用的寥寥无几,甚至很多人都未知晓SEM和拉曼的联用,究其根本原因,还在于传统的拉曼联用技术有着非常严重的技术障碍。TESCAN电镜-拉曼一体化系统(RISE显微镜)是一款革命性的产品,在一个集成的显微镜系统中结合了共焦拉曼成像和扫描电子显微镜技术,是世界上第一台真正实用化的扫描电镜-拉曼光谱仪一体化系统,通过实现原位、快速、方便和高性能的拉曼分析,弥补了传统电镜和能谱的分析能力的不足。尤其是针对有机结构解析、碳结构解析、无机相鉴定、同分异构分析、结晶度分析等领域实现了重大突破,扩展了扫描电镜的分析应用领域(如地质、矿物晶体、高分子聚合物、医学、生命医药、宝玉石鉴定),一下子变成全方位的分析,应用前途豁然开朗。为了向国内用户更好地展示电镜-拉曼一体化系统(RISE)在不同领域的应用和成果,TESCAN公司联合上海交通大学分析测试中心于2021年5月13日于上海交通大学转化医学大楼举办拉曼图像-扫描电子显微镜联用技术论坛,会上邀请到多位相关领域专家在现场进行报告和经验分享,诚邀您参加! 日程安排地点:上海交通大学转化医学大楼 S119室时间:2021年5月13日(星期四) 9:20-16:30关于RISE拉曼图像-扫描电子显微镜联用仪(RISE)是一台集成了扫描电镜、共聚焦显微拉曼和能谱分析的一体化综合成像和分析系统,可以实现样品的微观形貌、元素组成和分布,以及晶体结构、结晶度等性质的原位可视化表征。该仪器采用了创新的平行轴式设计,保证了扫描电镜和共聚焦拉曼分析位置的高度重合,可以快速获得样品的 2D和3D 图像,实现样品的微观形貌、成分和结构表征,以及分子化合物组成和可视化分布结果。其中,电镜和拉曼也可以独立工作,互不影响,使得整个系统获得1 + 1>2 的卓越性能。RISE参数 拉曼光谱分辨率----优于1.5cm-1扫描范围----250μm*250μm*250μm共聚焦分辨率----2 μm(532nm)d图像空间分辨率XY方向----360 nm光谱范围----95-4000 cm-1。应用领域扫描电镜-拉曼联用一体化技术可广泛应用于材料科学、地质学、环境科学、半导体、太阳能电池、锂电池、光刻胶、生命医药和有机高分子等领域。主要包括以下几个方面:(1)碳材料:钻石、石墨、碳纳米管、石墨烯等不同碳材料的结构及质量分析;(2)有机材料:环境科学、食品医药、生命科学等有机物的结构鉴定(官能团信息);(3)无机材料:晶体矿物、宝玉石、锂离子电池电极材料等无机化合物的成分和结构分析;(4)二维材料:石墨烯、过渡金属硫属化合物、MXene等微纳米片的化学性质研究。应用案例更多应用案例,以及本次论坛的相关视频(会议结束后上传),敬请关注TESCAN中国用户之家(www.tescan-china.com.cn)。参会报名联系人:李老师报名邮箱:wei.li@tescan.com
  • 新型红外扫描仪可在毫秒级完成3D立体图像捕捉
    p   3D传感器能够更好的创建真实世界物体的3D模型,但是消费级的设备通常只能处理小型设备,或者以较低的分辨率进行扫描。现在德国的科研机构Fraunhofer透露了全新的3D传感器,能够使用远红外光更清晰的捕捉对象和人物,每秒能够拍摄36张三维图片。 /p p style=" text-align: center " img title=" be0a50c8c076eef_meitu_1.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/723ffa07-63fa-4a93-9bbb-8723b9e3d053.jpg" / p   相比较其他3D传感器,Fraunhofer的设备功能更像是微软的Kinect,能够在扫描区域投影出一个看不见的近红外图形,所开发的近红外投影仪能够在不同图形中进行切换,从而测量图形点到近红外投影仪的距离。然后通过软件能够对其进行分析从而创建三维图像,整个转换过程在毫秒时间完成。 /p p   捕捉的每张图片都有1000*1000像素,彩色相机拍摄的数张照片通过整合形成彩色的物体轮廓。每秒能够捕捉36张这种3D帧,这款设备能够迅速创建移动、彩色三维的图片,意味着设备能够很好的在扫描质量和速度上平衡。 /p /p
  • 创新领航丨拉曼图像一体化在扫描显微分析上的应用
    形貌、成分和结构信息的表征是科研和检测工作最重要的部分,电子显微镜作为“科学之眼”是微观分析中最重要的工具之一,自然也被广大科技工作者寄予了越来越高的期望。10月18日,2017年全国电子显微学学术年会在成都星宸皇家金煦酒店隆重开幕,这是一年一度电子显微领域从业者共襄的盛会,行业专家、学者、仪器厂商共同交流电子显微学及相关仪器技术的前沿发展,以及基础与应用研究的最新进展。本届学术年会在会议规模、参会人数、报告数量和质量等各方面又有了新的提升,共吸引了来自高等院校、科研院所及企业的900多人参会,共计288个特邀报告。 随着电镜技术的快速发展以及科研分析日益复杂,目前电子显微镜的发展方向主要是在:高分辨能力、原位观测能力和分析能力三个方面。TESCAN作为全球知名的电镜显微分析仪器的制造商,在产品设计上提出了“All In One 综合显微分析平台”的理念,并给出了完善的解决方案。10月18日下午,TESCAN公司技术专家在学术年会分会场分享了拉曼图像一体化在扫描显微分析上的最新应用进展。扫描电镜与共聚焦拉曼成像一体化系统通过实现原位、快速、方便和高性能的拉曼分析,弥补了传统电镜和能谱的分析能力的不足。尤其是针对有机结构解析、碳结构解析、无机相鉴定、同分异构分析、结晶度分析等领域作了重大突破,使得扫描电镜在以前一些分析较弱的应用领域,如地质、矿物晶体、高分子聚合物、医学、生命医药、宝玉石鉴定等方面的应用得到拓展,真正实现全方位的综合分析。TESCAN电镜-拉曼一体化系统的新技术应用,引起了参会老师的极大兴趣!报告分享结束后,会场的老师纷纷来到TESCAN展台咨询,和应用专家针对性沟通了电镜-拉曼联用技术在橡胶中的共混物分析检测以及生物方向等相关应用解决方案。更多电镜-拉曼一体化系统的应用案例,请关注“TESCAN公司”官方微信平台查看: “拉曼-电镜-能谱 +”,SEM Plus带你玩转无机材料分析“高碳材料带来低碳生活,TESCAN带你了解 “神器”的神奇有机结构解析难?RISE显微镜给你新方法 如果您对于电镜-拉曼联用技术、双束电镜-飞行时间二次离子质谱等最新联用技术及TESCAN综合显微分析解决方案感兴趣,想深入了解相关信息,请关注:2017年10月17-20日2017年全国电子显微学术年会二楼TESCAN展位与现场专业人员深入沟通,现场还有“幸运大转盘”现场抽奖活动,礼品丰厚。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN新微信,更多精彩资讯
  • 彩色图像的扫描电镜?赛默飞发布新的ColorSEM技术
    p style=" text-indent: 2em text-align: justify margin-top: 10px " 5月7日,赛默飞世尔发布ColorSEM技术,让研究人员可以使用扫描型电子显微镜(SEM),通过颜色直接区分不同元素的含量。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 赛默飞的ColorSEM技术是第一个集成元素分析和独特彩色成像技术的商业解决方案。它直接在简化的SEM用户界面内生成实时彩色图像,无需切换到传统的能量色散X射线光谱(EDS)分析或其他用户界面。这种新技术可以让用户从他们的样本中获取更完整的信息,对于没有经验的用户也很容易上手,与现有技术相比可以提高效率。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " “就像从黑白转向彩色电视一样,这种解决方案将使灰度SEM图像成为历史。” 赛默飞世尔科技公司材料和结构分析总裁Mike Shafer说:“获取彩色元素信息意味着我们的客户可以看到他们在常规SEM成像中一些无法获取的信息,它为不同经验水平的用户提供更直观的信息,从而推动他们的研究。” /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 赛默飞ColorSEM技术解决了两个用户问题: /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 它将SEM和EDS集于一体。研究人员经常使用SEM成像和EDS分析来确定样品的元素组成,这对于没有经验的用户来说可能即耗时又难以上手。通过将SEM和EDS集成到一种成像技术中,使得效率得到提高,并且无需从一个界面切换到另一个界面。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 它能使用户即时查看真实的元素信息,并通过颜色区分。使用SEM的研究人员需要观察样品的差异,但灰度SEM成像缺乏元素组成信息。使用新的ColorSEM技术可以自动生成不同颜色的元素信息,让用户可以立即分辨样本中的元素。 /p p br/ /p
  • 无需机械扫描即可获得图像 科学家研发新荧光显微镜
    新显微镜艺术图 图片来源:日本德岛大学在最近发表在《科学进展》上的一项研究中,科学家开发了一种不需要机械扫描就能获得荧光寿命图像的新方法。荧光显微镜广泛用于生物化学和生命科学,因为它允许科学家直接观察细胞及其内部和周围的某些化合物。荧光分子能吸收特定波长范围内的光,然后在较长的波长范围内重新发射。然而,传统荧光显微技术的主要局限性是其结果难以定量评价,而且荧光强度受实验条件和荧光物质浓度的显著影响。现在,日本科学家的这项新研究将彻底改变荧光寿命显微镜领域。该方法的主要支柱之一是使用光学频率梳作为样品的激发光。一个光学频率梳本质上是一个光信号,是许多离散的光学频率的和,它们之间的间隔是恒定的。在这里,“梳子”指的是信号与光频率的关系:从光频率轴上升起密集且等距“尖刺”,类似于梳子。利用专用的光学设备,将一对激发频率梳信号分解为具有不同强度调制频率的单个光拍信号(双梳光拍),每个光拍携带单个调制频率,辐照到目标样品上。这里的关键是,每束光束都在一个不同的空间位置击中样本,在样本二维表面的每个点和双梳光拍的每个调制频率之间形成一一对应的关系。由于其荧光特性,样品能重新发射部分捕获的辐射,同时仍然保持上述频率—位置对应关系。然后,样品发出的荧光被简单地聚焦在高速单点光电探测器上。最后,研究人员用数学方法将测量信号转换为频域信号,根据调制频率处的激发信号与测量信号之间存在的相对相位延迟,很容易计算出每个像素处的荧光寿命。新方法除了提供对生物过程的更深入的了解外,这种新方法还可以用于多个样本的同时成像,用于抗原检测,并有望开发出新的治疗方法来治疗顽固性疾病,提高预期寿命,从而造福全人类。相关论文信息:http://dx.doi.org/10.1126/sciadv.abd2102
  • Analytical Chemistry封面文章 I 扫描电化学显微镜实现纳米级高分辨图像测试
    “根”本不一样的精彩——扫描电化学显微镜实现纳米级高分辨图像测试近日,天津大学纳米中心(TICNN)马雷教授课题组的在读博士生刘根利用自主研制的~50 nm探针和最小化应用电压方案,实现了扫描电化学纳米级别的成像,有效的解决了SECCM高分辨成像中液滴针尖的稳定性问题。其论文Topography Mapping with Scanning Electrochemical Cell Microscopy作为封面文章发表在Analytical Chemistry期刊上。△SECCM 纳米级高分辨图像扫描电化学显微镜能够能够同时实现样本被研究表面局部形貌和电化学信息获取,扫描探针与样本通过半月形微液滴接触,对样本形貌无损伤,无需脱水,固化、金属喷涂等复杂的预处理。还可以通过移液管向材料表面进行定量物质传送,因此SECCM在纳米材料沉积、电化学微传感器和电催化等方面有广泛的应用前景。△图为2022年帕克AFM奖学金获得者刘根与Park NX10原子力显微镜合照经过反复的测试与实验,该课题组利用自主研制的~50 nm直径探针及SECCM测试方案,最终得到了纳米级别的的高分辨率图像。同时也成功得到了~45 nm自组装单层金纳米颗粒的形貌和电化学产氢反应的活性图像。这项研究成果不仅能够在纳米尺度实现了SECCM的常规化测试,还能同时得到样品的形貌和电化学活性信息。该项研究成果为真正意义上的常规化测试迈出了坚实重要的一步,并极大扩展了SECCM在不同领域的应用。工欲善其事,必先利其器。Park NX 10在该研究起到了重要作用。“SECCM测试中使用的是50 nm左右的小探针,这意味着pA级别的小电流。而且多数时候,这一数值会小于1.0 pA。这对体系的稳定性有着极高的要求。而Park NX 10体系则很好的满足了这一需求。此外,Park AFM体系的z-方向位移台,可以稳定地运行0.1 μm/s的进针速度,提供0.1 nm的高分辨率,这均满足了SECCM测量中对硬件的极高要求,极大地增加了测试的可行性和成功率。”刘根同学介绍道。△2022年帕克AFM奖学金证书在此,Park表示将竭心为用户推出易于操作、测量精准、升级创新的AFM,助力科研。并预祝马雷教授及其课题组在未来可期的日子里取得更多优异的科研成果,为国家的纳米科技增光添彩!
  • Analytical Chemistry封面文章 - 扫描电化学显微镜实现纳米级高分辨图像测试
    “根”本不一样的精彩——扫描电化学显微镜实现纳米级高分辨图像测试 近日,天津大学纳米中心(TICNN)马雷教授课题组的在读博士生刘根利用自主研制的~50 nm探针和最小化应用电压方案,实现了50 nm的电化学图像分辨率,从而解决了SECCM高分辨测试中液滴针尖的稳定性问题。其论文Topography Mapping with Scanning Electrochemical Cell Microscopy作为封面文章发表在Analytical Chemistry期刊上,原文链接:https://pubs.acs.org/doi/10.1021/acs.analchem.1c04692。SECCM纳米级高分辨率图像扫描电化学显微镜能够能够同时实现样本被研究表面局部形貌和电化学信息获取,扫描探针与样本通过半月形微液滴接触,对样本形貌无损伤,无需脱水,固化、金属喷涂等复杂的预处理。还可以通过移液管向材料表面进行定量物质传送,因此SECCM在纳米材料沉积、电化学微传感器和电催化等方面有广泛的应用前景。△图为2022年帕克AFM奖学金获得者刘根与Park NX10原子力显微镜合照 经过反复的测试与实验,该课题组利用自主研制的~50 nm直径探针及SECCM测试方案,最终得到了纳米级别的的高分辨率图像。同时也成功得到了~45 nm自组装单层金纳米颗粒的形貌和电化学产氢反应的活性图像。这项研究成果不仅能够在纳米尺度实现了SECCM的常规化测试,还能同时得到样品的形貌和电化学活性信息。该项研究成果为真正意义上的常规化测试迈出了坚实重要的一步,并极大扩展了SECCM在不同领域的应用。 工欲善其事,必先利其器。Park NX 10在该研究起到了重要作用。“SECCM测试中使用的是50 nm左右的小探针,这意味着pA级别的小电流。而且多数时候,这一数值会小于1.0 pA。这对体系的稳定性有着极高的要求。而Park NX 10体系则很好的满足了这一需求。此外,Park AFM体系的z-方向位移台,可以稳定地运行0.1 μm/s的进针速度,提供0.1 nm的高分辨率,这均满足了SECCM测量中对硬件的极高要求,极大地增加了测试的可行性和成功率。”刘根同学介绍道。在此,Park表示将竭心为用户推出易于操作、测量精准、升级创新的AFM,助力科研。并预祝马雷教授课题组能够取得更多优异的科研成果,为国家的纳米科技增光添彩!
  • 240万!山东省千佛山医院染色体全自动扫描显微镜和图像分析系统采购项目
    项目编号:SDGP370000000202202006132 项目名称:山东第一医科大学第一附属医院(山东省千佛山医院)染色体全自动扫描显微镜和图像分析系统采购项目 预算金额:240.0万元 最高限价:240.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A染色体全自动扫描显微镜和图像分析系统 1 详见附件 240.000000 合同履行期限:详见招标文件 本项目不接受联合体投标。
  • 北大江颖团队:利用自研的国产qPlus型扫描探针显微镜,首获六角冰表面的原子级分辨图像
    从北京大学获悉,北京大学江颖教授、徐莉梅教授、王恩哥院士联合研究团队利用自主研发的国产qPlus型扫描探针显微镜,首次获得了六角冰(自然界最常见的冰)表面的原子级分辨图像。该成果5月22日发表于《自然》杂志。团队用进口设备进行了前期探索性工作(上排两张), 后期用自主研制设备得到了更高质量数据(下排两张)。图片来源:北京大学江颖团队研究人员提供的一组对比图显示,同样是冰表面成像,一张棱角分明,可以清晰展示微观视界中的氢键;而另一张的边界相对模糊,难以分辨细节。“利用我们的国产设备,可以获得更加清晰的成像。”江颖介绍,图中冰表面的五边形、八边形轮廓清晰,而进口设备的成像图较难区分其边数。据介绍,江颖团队长期致力于高分辨扫描探针显微镜的自主研发和应用,创新性地发展出了基于高阶静电力的qPlus扫描探针技术,此前已在国际上率先实现氢核成像。为了突破绝缘体成像难,团队此次开发了一种通用的一氧化碳分子修饰针尖技术,可对各种绝缘体表面实现稳定的原子级分辨成像,并得到比进口设备更高质量的数据。图片来源:北京大学江颖团队《自然》杂志审稿人评价,采用qPlus型扫描探针显微镜对冰表面进行原子级成像是一项重大技术创新;所获得的分辨率在冰表面成像中是前所未有的;该发现将对大气科学、材料科学等多个领域产生深远影响。
  • 1220万!上海市儿童医院计划采购液相色谱串联质谱检测系统 、自动扫描显微镜和图像分析仪 等仪器设备
    一、项目基本情况项目编号:SHXM-00-20220721-1156项目名称:上海市儿童医院液相色谱串联质谱检测系统等设备预算编号: 0022-W11320,0022-W11328,0022-W11325,0022-W11326,0022-W11324,0022-W11321 预算金额(元): 12200000元(国库资金:0元;自筹资金:12200000元)最高限价(元): 包1-2000000.00元,包2-1600000.00元,包3-1300000.00元,包4-2000000.00元,包5-3000000.00元,包6-2300000.00元 采购需求: 标项一 包名称:液相色谱串联质谱检测系统 数量:1 预算金额(元):2000000.00 简要规格描述或项目基本概况介绍、用途:主要适用于有机小分子化合物定量分析和研究。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项二 包名称:激光显微切割系统 数量:1 预算金额(元):1600000.00 简要规格描述或项目基本概况介绍、用途:对显微镜下的细胞或组织进行切割,分离并弹射至收集管内,用于后期分子生物学实验。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项三 包名称:快速切片扫描仪 数量:1 预算金额(元):1300000.00 简要规格描述或项目基本概况介绍、用途:该设备是用于将传统的玻璃切片扫描存储成动态的数字切片,通过计算机可以浏览数字切片的任意位置,并对切片进行诊断标记和给出诊断报告。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项四 包名称:自动扫描显微镜和图像分析仪 数量:1 预算金额(元):2000000.00 简要规格描述或项目基本概况介绍、用途:通过自动样品搜索及自动对焦显微系统,对获得的所有数据进行包括细胞、RNA、DNA、蛋白质的定量分析。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项五 包名称:小分子荧光成像示踪系统 数量:1 预算金额(元):3000000.00 简要规格描述或项目基本概况介绍、用途:通过自动样品搜索及自动对焦显微系统,对获得的所有数据进行包括细胞、RNA、DNA、蛋白质的定量分析。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 标项六 包名称:高通量样本处理系统 数量:1 预算金额(元):2300000.00 简要规格描述或项目基本概况介绍、用途:用于高质量标准化的的大量测序文库样本的制备,文库构建及实现检测结果的重现性及可信度,提高样品制备成功率。具体项目内容及采购要求以招标文件“第四章招标需求”为准。 合同履约期限: 合同签订后90天内交货 本项目( 否 )接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小微企业、监狱企业、残疾人福利性单位采购的项目。3.本项目的特定资格要求: 1、符合《中华人民共和国政府采购法》第二十二条的规定2、未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单3.3 投标产品为进口产品的,投标人应提供开标日在有效期内的投标产品生产厂家授权书或合法获得投标产品的其他证明。3.4投标人自开展经营活动以来,未有过行贿犯罪记录。 三、获取招标文件时间:2022年07月25日至2022年08月01日,每天上午00:00:00-12:00:00,下午12:00:00-23:59:59(北京时间,法定节假日除外)地点:上海市政府采购网(http://www.zfcg.sh.gov.cn)方式: 网上获取 售价(元): 0 四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月15日 10:00(北京时间)投标地点:投标人在上海市政府采购云平台(网址:http://www.zfcg.sh.gov.cn)网上投标,并将纸质版投标文件密封递交至上海市宁波路1号10楼1001会议室开标时间: 2022年08月15日 10:00 开标地点:投标人在上海市宁波路1号10楼1001会议室进行网上开标。网络地点:上海市政府采购云平台(网址:http://www.zfcg.sh.gov.cn)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、项目属性:货物类。2、本项目接受进口产品投标。3、采购项目需要落实的政府采购政策情况:推行节能产品、环境标志产品政府采购,促进中小企业、监狱企业、残疾人福利性单位发展,扶持不发达地区和少数民族地区等相关政策。规范进口产品采购政策。4、获取招标文件其他说明:4.1 凡愿参加投标的合格供应商需在政采云平台(网址:http://www.zfcg.sh.gov.cn)成功报名,并在上述获取招标文件规定的时间内关注微信公众号“东松投标”进行报名信息完善或购买纸质招标文件。4.2 本项目采用电子化采购方式,合格供应商可在上海市政府采购网免费获取电子招标文件。供应商如需纸质招标文件可自行打印,也可向代理机构购买,纸质招标文件售价¥500.0元,售后不退。5、开标所需携带其他材料:5.1 投标人需在网上投标同时递交纸质版投标文件;5.2 开标时请投标人代表持可无线上网并可登录上海市政府采购云平台进行投标的笔记本电脑、投标时所使用的数字证书(CA证书)参加开标;七、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海市儿童医院地 址:上海市泸定路355号联系方式:021-529740322.采购代理机构信息名 称:上海东松医疗科技股份有限公司地 址:上海市宁波路1号11楼联系方式:021-63230480转8605、86133.项目联系方式项目联系人:徐旭东、王弈璐电 话:021-63230480转8605、8613
  • 定义“最快”扫描速度,滨松首秀最新数字病理切片扫描技术
    2018年5月4日,滨松中国NanoZoomer新技术北京交流会成功举办,最新数字病理切片扫描仪NanoZoomer S360完成了其中国首秀。 滨松中国NanoZoomer新技术北京交流会S360具有“高速、高通量”的突出特点,一小时可完成82片切片的扫描,即一张切片(15mm*15mm)仅需30秒就可完成扫描。这也打破了其上一代产品XR保持的35秒/张的速度记录。且实现了20倍和40倍的扫描速度一致,即使在需求更高图片质量的40倍扫描时,也不需要更多的等待时间。此外其采用了转轮式的设置,共12组切片槽,每一组槽内可载入30片切片,一次性可装入360片切片。结合其高速扫描、高速数据传输的性能,在满载的情况下(360片),也只需4.5小时就能全部完成任务。即在一天的工作中,只需设置3次,最多可完成1080片切片的扫描!独立唯一的二维码也可实现对卡槽的管理,及数据分类。这对于有大量切片扫描需求的大型医院和第三方检测中心来讲,是十分便利的。软件方面,其可通过Focus score和rescan support来减轻繁重的图像检查工作。系统将智能的判断出需要检查和扫描失败的切片,进行明确提示和排列,并在切片中标记出需要检查的部分。整体的软件工作流程也十分简便,很大程度上可以提高扫描结果把控的效率。与会者也在会议现场进行了NanoZoomer S360的样机实操,体验了从硬件和软件两方面带来的全新切片扫描技术的风采。滨松NanoZoomer S360实操介绍会中,滨松技术人员还向与会者们介绍了滨松数字化组织学解决方案。滨松致力于在成像领域的新技术和新应用开发,除了在数字切片扫描仪的硬件性能上不断提升之外,还与国际领先的数字病理图像分析公司进行深度合作,帮助病理医生和科研工作者从病理图像中获得形态学之外的更丰富更客观的信息。滨松数字化组织学解决方案分享此外,针对用户们提出的常见问题,技术人员也为与会者们分享了扫描切片的常见问题解决办法,以及扫描的技巧。帮助用户更好地利用数字病理切片扫描仪。 会后,与会者们亦参观了滨松中国产品展厅,滨松的光电技术有着60余年的发展历史,一直以来都秉承通过不断淬炼基础技术,来促进应用的发展。在病理领域亦是如此,滨松也将继续发挥光电领域的技术优势,将数字病理扫描技术不断地带至更高的水平。与会者参观滨松中国产品展厅
  • 轻松扫描成像 手持3D扫描仪器问世
    基于现实的数字对象以及3D打印越来越受到关注,无论是视觉效果工作室,还是游戏工作室,抑或是想将艺术品以数码形式保存的博物馆,都在期待着这方面的技术革新。加拿大Creaform(格瑞方姆 音译)公司正是看到了这一商机,推出了名为“Go!SCAN 3D(去!3D扫描)”的三维扫描设备。   该扫描仪的重量仅为1.1公斤,能用单手轻松握住。Creaform公司总部位于加拿大魁北克省,在美国、法国、德国、中国、日本和印度设有办事处。据称,这款扫描仪扫描速度相当于其他竞争对手的10倍。它的大小与无绳电钻相当,安装有环绕着白色LED灯的摄像头,任何人无需经验都可以扣动开关对物体表面进行扫描。该扫描仪还能根据物体的几何形状,有无定位目标点均可扫描。扫描获得的图像可以通过该公司的软件进行分析,生成精度达0.1毫米的三维几何图像,所以可用于保存珍贵的建筑遗产。
  • 扫描电镜能谱技巧分享|4种方法提高扫描电镜能谱的准确性
    扫描电镜能谱技巧分享|4种方法提高扫描电镜能谱的准确性能谱(EDS)结合扫描电镜使用,能进行材料微区元素种类与含量的分析。其工作原理是:各种元素具有自己的 X 射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量 E,能谱仪就是利用不同元素 X 射线光子特征能量不同这一特点来进行成分分析的。 能谱定量分析的准确性与样品的制样过程,样品的导电性,元素的含量以及元素的原子序数有关。因此,在定量分析的过程中既有一些原理上的误差(数据库及标准),我们无法消除,也有一些人为因素产生的误差(操作方法),这些因素都会导致能谱定量不准确。 飞纳能谱面扫01 根据衬度变化判断元素的富集程度 利用能谱分析能够根据衬度变化判断元素在不同位置的富集程度。 如图 1,我们获得了材料的背散射图像以及能谱面扫 Si 的分布图,其中 Si 含量为20.38%。在背散射图及面扫图中,可以看到不同区域衬度不同,这是不同区域 Si 含量不同造成的。我们选取了点 2-7,其点扫结果 Si 含量分别为 19.26%、36.37%、18.06%、1.54%、20.17%、35.57%。 这种通过衬度判断元素含量的方法在合金(通过含量进而推断合金中含有金相的种类,不同的金相含有的某种元素有固定的含量区间),地质(通过含量判断矿石等的种类)等行业有广泛的应用。 图1. 左图为材料背散射图及能谱点扫位置,右图为能谱面扫 Si 含量的分布 02 判断微量元素的分布 利用能谱,可以寻找极微量元素在材料中分布的具体位置,先通过面扫进行微量元素分布位置的判断,然后通过点扫确定。 如下图,左边为背散射图像,右边分别对应 Al、Cr、Fe、Mg、Si、Ca、Ti、P,它们的含量如表 1,通过能谱面扫描分析得到各元素含量,其中 P 的含量为 0.09%。 图2. 材料的背散射图及 Al、Cr、Fe、Mg、Si、Ca、Ti、P 元素的分布 表1. 图 2 中 Al、Cr、Fe、Mg、Si、Ca、Ti、P 元素含量 工程师对样品进行点扫确认,位置 7 是面扫结果P元素富集区,其各元素分布如表 2,这个位置的P含量高达 14.56%,局部含量比整体含量高 160 倍。 图3. 背散射图像及样品点扫位置 表2. 样品点扫位置 7 各元素的含量飞纳台式扫描电镜获得高质量面扫结果的原因1. 灯丝亮度决定能谱信号的强度,飞纳电镜采用 CeB6 灯丝,具有高亮度,可以获得高强度的能谱信号。 2. 采用新型 SDD 窗口材料 Si3N4,提高了穿透率,透过率由 30% 提高到 60%。比传统聚合物超薄窗透过率提高 35% 以上。 3. 采用 Cube 技术提高响应速度(计数率)并降低了噪音(分辨率提高),是国际上处理速度最高的能谱系统,解决了计数率与分辨率的冲突。 如图 4 所示,飞纳电镜能谱一体机可以获得更高计数率与更高分辨率的能谱结果。 图4. 飞纳能谱结果 飞纳电镜能谱一体机 Phenom ProX 不需要液氮、制冷速度快、信号强度大、分辨率高、体积和重量小,真空密封性高,可以使用更少的能量获得更低的温度。尺寸更为紧凑,适用于不同环境需求。小技巧 - 如何提高能谱的准确性能谱使用前要校准保证样品平整保证分析区域均质、无污染保证样品导电性、导热性良好
  • 中型扫描电镜“SU3800”与大型扫描电镜“SU3900”全面上市
    2019年4月3日,日立正式推出中型扫描电镜“SU3800”与大型扫描电镜“SU3900”。上述机型在支持超大/超重样品测试的同时,还通过自动化操作和大视野相机导航功能,大幅提升了操作性能。   在以纳米技术和生物技术为主的产业领域里,从物质的微细结构到组成成分,SEM在多种多样的观察与分析中得到了灵活应用。SEM用途日益扩大,但对于钢铁等工业材料和汽车零配件等超大/超重样品,由于电镜样品台能对应的样品尺寸和重量受到限制,所以观察时需要进行切割等加工。因此,对超大样品不施以加工处理,便可直接观察表面微细形貌和进行各种分析则成为重要的课题。  近年来为了实现各种材料的高功能化和高性能化,需要观察并优化材料的微细结构。目前SEM的应用除了以往的研究开发以外,已扩展到质量和生产管理方面,使用频率日益高涨。同时市场也对仪器的操作性能提出了更高的要求,以进一步减轻操作人员的负担。   此次发售的“SU3800”与“SU3900”,支持超大/超重样品的观察,特别是大型扫描电镜“SU3900”,可选配最大直径300mm *1、最大承重5kg样品(比前代机型提高2.5倍*2)的样品台,即使是超大样品也无需切割加工即可观察。  同时操作性能也得到了全面升级。样品安装完成后,通过自动光路调整及各种自动功能调整图像,随后可立即获得样品图像,真正实现了快速观察。  前代机型是仅仅通过CCD导航相机的单一彩色图像寻找视野*3。新机型则通过旋转样品台,分别拍摄样品各个部分,再将各个图像拼接成1张大图像,实现了大视野的相机导航观察,十分适用于超大样品的大范围观察。 *1直径为300mm的样品台,与前代机型“S-3700N”一样*2指与前代机型 “S-3700N”的比较。但比较的内容仅限于样品台平面移动时的限制重量*3寻找视野:指测量开始时,确认当前测量样品位置的操作 主要特点:1. 支持超大/超重样品测试  可搭载的最大样品尺寸:“SU3800” 标配可搭载直径200mm样品的样品仓,可应对最大高度为80mm、重量为2kg的样品。 “SU3900”作为日立高新技术的大型扫描电镜,标配可搭载最大直径300mm样品的样品仓,可应对最大高度为130mm、重量为5kg(比前代机型提高2.5倍*2)的样品2. 支持大视野观察  “SU3800”与“SU3900”的最大观察范围分别是:直径130mm、直径200mm安装有“SEM MAP”导航功能,只需在导航画面上指定观察目标位置,即可移动视野安装有“Multi Zigzag”系统,可在不同的视野自动拍摄多张高倍率图像,并将取得的图像拼接在一起,生成大视野高像素图像3. 通过自动化功能提高操作性能  通过自动光路调整和各种自动化功能,样品设置完后立即可以开始观察。关于图像调整,自动功能执行时的等待时间比前代机型*4缩短了三分之一以下安装有“Intelligent Filament Technology(IFT)”软件,自动监控钨灯丝*5的状况,显示预计的更换时期。在长时间的连续观察和颗粒度解析等大视野分析时,也可避免长时间测试过程中因钨灯丝使用寿命到期所造成的中断观察。*4指与前代机型 “S-3700N”的比较。*5钨灯丝:在真空中,通电加热后产生热电子的钨灯丝作为电子源的核心部件,起到光源作用。 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 扫描电镜在生物分类中的应用
    生物分类是研究生物的一种基本方法。生物分类主要是根据生物的相似程度(包括形态结构和生理功能等),把生物划分为种和属等不同的等级,并对每一类群的形态结构和生理功能等特征进行科学的描述,以弄清不同类群之间的亲缘关系和进化关系。了解生物的多样性,保护生物的多样性,都需要对生物进行分类。 聊城大学生命学院主要从事植物学和生态学的研究工作,专长于海洋线虫及地衣植被的分类和多样性研究。 物种分类的依据是生物在形态结构和生理功能等方面的特征,其中利用生物的形态分类是最直接、最快速和最常用的方法。线虫一般呈现透明状,可以利用光学显微镜观察虫体结构来进行分类,有时为了便于观察,往往需要对线虫进行染色。 由于光学显微镜分辨率的限制,虫体表面细节很难在光镜下观察清楚,给线虫分类带来了较大困难。扫描电镜具有较大的放大倍数和分辨率,可以对样品表面进行观察,生物类样品经过前期固定、脱水、喷金等处理后,可以放入电镜中进行观察。 飞纳台式扫描电镜具有操作简单、成像速度快、寻找样品视野方便等特点,受到客户的青睐。聊城大学的师生利用飞纳台式扫描电镜,可以通过观察线虫表面角质层的形态进行分类,环纹的粗细程度、侧区是否有网纹、侧区外是否有纵脊或纵线等特征都是重要分类依据。 同时线虫的头部、尾部结构,侧器、唇区形态也是分类的重要依据。飞纳台式扫描电镜能清晰地将这些结构展现在研究人员的面前,为线虫的分类和研究提供重要图像。利用扫描电镜观察叶片表面硅藻利用扫描电镜观察线虫的头部细节 通过飞纳中国工程师的培训,聊城大学的师生很快熟悉了飞纳台式扫描电镜的操作,切身体会到飞纳台式扫描电镜操作简单,成像速度快的特点,并且高分辨率的图像成为了他们重要的研究资料。
  • Pittcon新品扫描:物性测试类
    背景  为期一周的Pittcon 2011展览会已经落下帷幕,今年Pittcon展会上有哪些重要的仪器?有哪些厂商推出了最新产品?仪器信息网编辑特将Pittcon展会上所了解到的重要仪器及最新产品信息按照类别进行整理,编辑成有机质谱及色谱类新品、光谱类新品、X射线类、物性测试类等,以飨网友。  (注:新仪器的研发周期较长,文中介绍的产品大部分是最近1-2年内推出的产品。而且本次Pittcon展会有超过2000个展位,由于时间关系不排除有一些最重要的新产品没有列进来。敬请见谅!)   从本次Pittcon展会上厂商展示的各类物性测试类仪器,我们可以发现如下发展趋势:粒度测量方面,厂商都对粒度形貌方面分析以更大的关注 多家扫描电镜厂商相继推出小型化、台式化产品 热分析发展趋势则主要表现在提高温度控制精度、升降温速率以及与其它仪器的联用方面。   粒度表征   马尔文Morphologi G3 自动颗粒形态表征系统   Morphologi G3将高质量图像和具有统计意义的颗粒形状、大小测量方法组合在一起。使用不同的放大倍数确保对整个颗粒大小范围 (0.5微米–3000微米) 的高分辨率 可计算各种颗粒形状参数,例如延伸度、圆度和凸起度等,这些参数可识别和量化样本间的细微差别。对每个单一颗粒图像都能进行观察和记录,从而可目视验证破裂颗粒、凝聚物、精细颗粒和杂质颗粒等的存在。   美国麦克颗粒粒形分析仪(Particle Insight)   Particle Insight使用多个预选形状模型对每个颗粒样品的大小和形状进行分析。统计直方图的计数随着每个粒子被识别和测量而不断更新。统计点和统计值在运行的同时显示在屏幕上,并实时更新。   电子显微镜   Phenom-World台式扫描电镜G2 pro   G2 pro体积与台式电脑几乎一般大小,桌面上的旋钮通过USB线与主机箱链接,调节旋钮可以改变图像放大倍数,自动调节清晰度 将光学显微和SEM技术巧妙地结合在一起。灯丝是采用高亮度的CeB6。   抬起前面的面板可以看到样品槽,进样非常简单。     尼康台式扫描电子显微镜JCM-5000 NeoScope   尼康JCM-5000型 NeoScope台式扫描电子显微镜补充和发展了光学显微镜和传统扫描电子显微镜 可以自动对焦、自动衬比和自动亮度控制等操作都 有高真空和低真空两种操作模式以及15 kV, 10 kV, 5 kV三种加速电压设置,能放大10X–20,000X的倍,最高解析度达5nm。   蔡司EVO® HD扫描电镜   蔡司公司最新发布的EVO® HD扫描电镜采用新的高亮度光源,在低电压下也能获得很高的分辨率,在30KV的时候,其分辨率提高30%。提高低电压电镜的分辨率使其在非导电生物纳米结构以及与生物相关的纳米结构分析方面广受关注。   热分析   耐驰MMC 274 Nexus   耐驰MMC 274 Nexus是DSC和ARC(accelerating rate calorimeter)结合在一起的一台热分析仪器,得到的是热容热压与温度的函数关系提供的高质量数据 支持在测量过程进行混合、注入和抽出,是研究反应过程安全、跟踪热反应压力变化方面的有力工具。   美国TA差示扫描量热仪DISCOVERY   DISCOVERY采用了金属扩散熔合原理制造全新的热电偶,该技术提供了高测量灵敏度、分辨率和精确性。   梅特勒-托利多Flash DSC   梅特勒-托利多Flash DSC基于功率补偿测试原理,传感器有16对热电偶,试样面和参比面各8对 升温速率达到2,400,000K/min,降温速率达到240,000K/min。
  • 扫描电镜拍摄技巧|消除像散,提高样品成像质量
    像散对扫描电镜成像质量的影响通过之前的文章,大家了解了 “加速电压” 与 “束流强度” 对图像的成像质量有非常大的影响。其实除了加速电压、样品的导电性、电镜的束流强度,像散、图像的亮度对比度等都会影响扫描电镜图像的成像质量。 今天,这一篇文章将教大家了解消除像散的重要性,提高样品的成像质量。 像散的定义可能会比较抽像,所以,小编用近视的散光来进行对比。 当近视看月亮时,月亮会比较模糊,但仍是一个圆形。 当近视有散光看月亮时,看到的月亮会出现变形。 扫描电镜的像散就如同散光,当图像有像散时,在聚焦的过程中会发现图像拉伸变形,失去原本的形状,这也是判断像散的依据。如果在聚焦的过程中,没有发现图像出现拉伸变形,仅仅只是图像虚化,那便说明没有像散。 像散是影响图像清晰度的重要因素。尤其是高倍图片——在用高加速电压、低束流拍摄高倍率图片时,一般都需要进行消像散。下面,通过几组图片,让大家更好的理解消像散对高倍率图像的重要性。 锡球,扫描电镜放大倍数是 79000 倍,左边图像无像散,右边图像有像散 电极材料,扫描电镜放大倍数 50000 倍,左边图像无像散,右边图片有像散 炭材料,扫描电镜放大倍数 20000 倍,左边图像无像散,右边图片有像散 当扫描电镜图像出现像散时,对其进行聚焦,图像会出现拉伸感,如下图所示,消像散需要实验员具有丰富的操作经验,才能准确识别并消除象散。 飞纳电镜 Rel 4.6 的自动消像散功能可以轻松解决扫描电镜初级操作者无法熟练消像散的问题。
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 新品发布|蔡司扫描电镜原位解决方案
    扫描电镜原位技术已经广泛应用于材料科学研究的各个领域,它可以将材料宏观性能与微观结构联系起来,这对研发高性能新型材料非常有帮助。但电镜原位实验从来都不是一个简单的工作,有的时候甚至还需要一些运气。 为了让电镜原位实验变得更加智能高效,蔡司最新推出了扫描电镜原位解决方案。今天就让我们一起看看,蔡司这套原位解决方案拥有哪些黑科技吧! l 高度集成化:告别手忙脚乱▲ 蔡司扫描电镜原位解决方案 蔡司扫描电镜原位解决方案将扫描电镜、原位样品台、ebsd和eds控制软件深度整合,在单台pc的一个软件中就可以控制所有硬件,实现成像、分析以及原位样品台参数设定的高度集成。 l 开创性自动化实验流程:节省时间+解放双手 ▲ 在原位拉伸过程中的不锈钢样品不同roi的se和bse图像(asb探测器),观察到滑移带形成。 蔡司原位电镜解决方案可实现自动化原位实验工作流程,集成化软件不仅可以自动控制样品台应力加载,还可以设定多个感兴趣区域(roi),并对不同roi进行自动追踪、自动聚焦、自动获取图像。不同roi的成像参数可以独立设定,系统还可以识别样品断裂状态并自动终止实验。 从此原位实验将变得自动智能,减少人工操作时间,大幅提升测试效率,并且可实现长达24小时的无人值守自动化测试,这样就可以充分利用夜晚时间,使电镜利用率大大提升。 l 自动获取ebsd和eds数据:获取样品全面信息▲ 800°c下加热17 小时的钢铁样品自动采集到一系列ebsd图像,展示了晶界和晶粒取向的变化。 该套新解决方案的处理软件不仅可以自动获取图像,还加入了ebsd和eds自动获取功能,可追踪并获取样品同一位置的ebsd和eds分析结果,全面分析材料变化过程。 l 数据获取和处理:高通量、高质量、高效率▲ 表面抛光的低碳钢样品 (s235jrc)。样品表面上的小颗粒用作 dic(数字图像相关)的标记。se 图像被导入 gom关联软件进行 dic 分析。图像中可以显示主要应变的幅度和方向。 自动化高效测试意味着可以得到大量实验数据,不放过样品每一个变化细节,获取具有统计意义的结果,而人工干预因素的减少也可以大大提升实验可重复性和数据可靠性。 当然,蔡司场发射扫描电镜gemini技术也是获取高质量、高分辨数据的强有力保证。该方案还配置有zeiss-gom关联软件,可对数据进行数字图像相关(dic)处理,研究样品表面应变分布。 蔡司扫描电镜原位解决方案整合了电镜、原位台、ebsd与eds软件控制,在进行原位加热和拉伸实验过程中加入高度自动化功能,使得在动态绘制应力应变曲线的同时,能够自动观察金属、合金、聚合物、塑料、复合材料和陶瓷等材料在高温和外力下的变化情况。 解放你的双手,让原位实验从此变得简单高效!来“蔡司显微镜”(zeissmik)微信公众号留言获取更多及时有效的详细信息,持续关注我们,关于蔡司扫描电镜原位解决方案,蔡司君还有更多猛料将陆续放出噢~
  • 倒置扫描微波显微镜——生物样品的应用与展望
    Siti Nur Afifa Azman , Eleonora Pavoni , Marco Farina扫描微波显微镜(SMM)在提供亚表面结构的成像和允许样品的局部定量表征方面是突出的。一种被称为反向扫描微波显微镜(iSMM)的新技术是最近开发的,旨在扩大该应用,超出当前对表面物理和半导体技术的关注。通过一个简单的金属探针,iSMM可以从现有的原子力显微镜(AFM)或扫描隧道显微镜(STM)转换而成,从而在带宽、灵敏度和动态范围方面形成传统的SMM。iSMM主要用于分析生物样品,因为它可以在液体中工作。扫描微波显微镜(SMM)[1]是扫描探针显微镜(SPM)[2]家族中的一种仪器,该家族包括众所周知的原子力显微镜(AFM)和扫描隧道显微镜(STM)。在SMM中,用作天线的探头在表面附近进行光栅扫描,在扫描过程中,记录微波信号的局部反射系数,提供关于表面和亚表面阻抗的信息。SMM的一个基本优点是它能够通过利用纳米探针和样品本身之间的近场电磁相互作用来定量表征样品的电磁特性。在一些实施方式中,矢量网络分析仪(VNA)被用作微波信号的源和检测器,通过导电探针辐射和感测微波信号。通常,SMM与一些其他SPM技术(例如AFM或STM)协同工作,提供了一种控制和保持探针和样品之间距离恒定的机制。基于SPM的SMM显微镜的使用最近在生物和生物医学领域获得了更多的关注,这是由于该技术能够测量与生理病理条件密切相关的电磁参数。然而,在极端环境(如用于保持细胞健康的生理缓冲液)中喂养SPM探针已被证明极具挑战性。作者于2019年引入的一种称为倒置SMM(iSMM)的新设置[3]克服了原始SMM与生理环境相关的大多数限制:倒置SMM的结构成本低、易于获得,并且与生理环境兼容,这也使得SMM能够应用于生物生活系统。其想法是将进料从探头移动到样品架;在iSMM中,样品保持器是一条传输线,通过该传输线测量反射和透射,而SPM探头(交流接地)仅干扰通过样品的传输线。因此,任何现有的SPM都可以创建iSMM,只需提供适当的样本保持器,当然,还可以使用软件同步传输线上的测量和SPM扫描。需要强调的是,所提出的系统是宽带的,能够实现频谱分析、时域分析和微波层析成像。到目前为止,SMM已被用于表征活的生物细胞,尽管在生理缓冲液中操作存在挑战[4,5]。除此之外,它还被用于负责细胞呼吸和能量生产的亚细胞细胞器,如线粒体[6]。iSMM已证明能够克服液体操作的局限性,这是首次在生理缓冲液中成功地对活细胞进行微波成像[3]。仪器开发几年来,研究活动一直基于一种自制的STM辅助SMM,该SMM是通过将Imtiaz[7]的系统的一些特性与Keysight[8]开发的系统混合而构建的。在这里,特别是结合了标准隧道显微镜,其反馈电路用于将探针与样品保持在给定距离,并在反射计设置中使用微波信号。然而,与Keysight仪器和其他可用设备不同,该仪器没有谐振器;因此,显微镜可以在VNA允许的整个频率范围内记录数据。具体而言,该系统利用并控制一台商用STM显微镜、NT-MDT的Solver P47和一台Agilent矢量网络分析仪PNA E8361,其带宽为67 GHz,动态范围为120 dB。例如,该技术被应用于线粒体成像[9],以评估干燥的癌细胞,并被特意处理以确定掺入的富勒烯的存在[10]。通过利用在多个相近频率下获得的图像的相关性,并使用一种权宜之计,即时域反射法[11-13],提高了系统灵敏度,这可以通过使用尖端/样本相互作用对微波信号进行“扩频”调制来理解;在频谱上传播的信息通过傅里叶逆变换在单个时间瞬间折叠来恢复。STM辅助的SMM提供了非常高质量的图像,减少了由于地形“串扰”而产生的伪影,即由于扫描期间探针电容的变化而产生的地形副本。然而,STM在处理导电性较差的样品(如生物样品)时极具挑战性,在液体中使用时更为困难。图1A)中所示的传统SMM通常是从AFM(或STM)获得的,其中微波信号被注入并由反射测量系统感测:反射信号和注入信号之间的比率,即所谓的反射系数(S11),可用于确定样品的扩展阻抗或介电常数,经过适当的校准和分析。这种单端口反射测量通常具有40-60dB的动态范围,这受到定向耦合器的限制。在图1(B)所示的iSMM配置中,导电扫描探针(AFM或STM)始终接地,微波信号通过传输线(例如共面波导、槽线)注入,以这种方式,传输线成为样品保持器。传输线的输入和输出连接到VNA,从而可以测量反射和传输信号(分别为S11和S21)[3,14,15]。这种双端口测量通常具有120−140 dB,这使得当接地探头扫描样品时更容易感测到接地探头引起的微小扰动。图1:(A)基于AFM的传统SMM和(B)倒置SMM的示意图。图2:干燥Jurkat细胞的同时(A)AFM和(B)iSMM|S11|图像。Jurkat细胞和L6细胞的iSMM表征最初,在干燥的Jurkat细胞以及干燥的和活的L6细胞上证明了iSMM[3]。图2显示了干燥Jurkat细胞的AFM和iSMM S 11图像的比较。同时,图3比较了盐水溶液中活L6细胞的AFM和iSMM S 21图像。iSMM S 11和S 21信号分别在4 GHz和3.4 GHz下滤波。干燥Jurkat细胞的iSMM S 11图像显示出与AFM相同的质量,而活L6细胞的iSMMS 21显示出由双端口SMM在液体条件下测量的透射系数形成的最佳质量。在这项工作中,透射模式测量的校准程序[16]应用于干燥L6电池的iSMM S21。图4说明了校准的效果,显示了AFM形貌图像、被样品形貌破坏的iSMM S21电容图像以及在6.2 GHz下去除了干燥L6电池的形貌效应的iSMM S 21介电常数图像。正如预期的那样,在干燥电池的外围附近出现了脊,但整个电池的介电常数为2.8±0.7。本质上,该值与电解质溶液中脂质双层的值相当[17],但低于干燥大肠杆菌的值[18]。随后,对干燥的Jurkat细胞进行了iSMM反射模式测量的定量表征[19]。图3:盐水溶液中活L6细胞的同时(A)AFM和(B)iSMM|S21|图像。图4:干燥的L6电池的(A)AFM形貌、(B)iSMM|S21|电容和(V)iSMM| S21|介电常数图像。图5:(A)AFM形貌,(B)iSMM|S11|,(C)iSMMφ11,和(D)干燥Jurkat电池的介电常数图像。图6:(A)AFM形貌,(B)iSMM|S11|,(C)iSMM| S21|,(D)时间门控iSMM|S 11|,和(E) 葡萄糖等渗溶液中相同线粒体的时间门控iSMM|S21|图像。图5显示了AFM形貌、原始iSMM S11的大小以及在4GHz下同时获得的相位。该图显示了带样品和不带样品的区域之间的良好对比,揭示了与表面和亚表面区域中不同的电特性相关的其他特性。按照已经描述的算法校准原始iSMM S11图像[20]。图5(D)显示了干燥的Jurkat电池的提取介电常数图像,其约为2.6±0.3,并且在电池上均匀。该值与传统SMM在干燥的L6细胞上获得的先前数据一致[21]。生活环境中线粒体的iSMM表征iSMM的最新工作是在完全浸入液体中的线粒体上进行的,以非接触模式操作,最大限度地减少了对样品的损伤[22]。图6(A)、图6(B)和图6(C)显示了AFM形貌图像,其中iSMM图像S11和S21在直径约为1µm的同一线粒体上同时采集。在1.6-1.8GHz的频带上对iSMM信号进行滤波和平均。显然,|S11|和|S21|图像质量相当,并且都揭示了AFM图像中不存在的细节。由于线粒体是不导电的,所以从周围的CPW电极可以很容易地看到对比。与大多数SMM不同,iSMM能够进行宽带测量。因此,它使iSMM从1.6GHz到1.8GHz测量的S11和S21信号能够通过傅里叶逆变换变换到时域。随后,可以门控掉不需要的信号,以进一步提高SNR[13,20]。最后,图6(D)和图6(E)显示了时间门控iSMM S11和S21图像,显示了更精细的细节。iSMM探针和线粒体之间的相互作用阻抗可以从S11和S21测量中获得。反过来,可以提取线粒体介电性质的局部变化,正如SMM对活细胞所做的那样[3]。总结iSMM能够对生物样本的细胞内结构进行无创和无标记成像。iSMM可以通过任何现有的扫描探针技术轻松获得,只需使用合适的样品夹,为大多数实验室提供了利用该技术的机会。Jurkat细胞、L6细胞和线粒体的iSMM图像显示出良好的灵敏度和质量,显示了AFM形貌中无法看到的细节。通过实施为传统SMM开发的校准算法,分别对干燥的Jurkat细胞和L6细胞进行透射和反射模式测量的定量表征。Jurkat细胞的介电常数被确定为约2.6±0.3,而L6细胞显示为约2.8±0.7。时域分析定性地改进了iSMM,并提供了对样品(如线粒体)的更多了解。致谢我们要感谢我们的研究小组和所有为本报告的科学结果做出贡献的人。这项工作的一部分获得了欧洲项目“纳米材料实现下一代物联网智能能源收集”(NANO-EH)(第951761号赠款协议)(FETPROACT-EIC-05-2019)的资助。我们还要感谢来自意大利SOMACIS的Francesco Bigelli博士和Paolo Scalmati博士在实现样品架原型方面的帮助。附属机构:1 Department of Information Engineering, Marche Polytechnic University, Ancona, Italy联系;Prof. Dr. Marco Farina Department of Information Engineering Marche Polytechnic University Ancona, Italy m.farina@staff.univpm.it 参考文献:https://bit.ly/IM-Farina 原载:Imaging & Microscopy 4/2022. Inverted Scanning Microwave Microscopy—— Application and Perspective on Biological Samples供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • GRUNDIUM发布数字切片扫描仪新品
    卓越的数字显微镜●显微视野实时同步●全玻片扫描成像●个人或多人联合使用智能化和可联网●支持WLAN/以太网联机或离线工作●强大的内置电脑,内部完成数据处理●支持通用图片格式和工作流程独具匠心的便携式设计●可放入手提箱●支持移动终端浏览器进行远程或本地访问●500G内置硬盘或云存储易于使用和维护●简洁直观的用户界面●远程客户支持●开放式设计,容易清洁玻片通量 1对焦扫描过程自动对焦,实时成像模式下,可以软件精确微调或手动调焦物镜/图像分辨率20倍物镜: 0.48um /pix,1倍全景镜头: 10um /pix载物台自动载物台 玻片规格75mm x 25mm扫描区域 可自由选择扫描速度15x15mm,~2 min存储容量 内存500GB,可通过USB接口扩容网络连接 1GigE, 802.11ac WLAN电脑内置Nvidia visual电脑 图片格式 TIFF, SVS, MRX用户界面 兼容主流浏览器,支持触摸屏 尺寸(W×D×H) 18cm x 18cm x 19cm图像浏览器 自带浏览器,兼容第三方浏览器 重量 (kg) 3.5 kg光源 Koehler LED 图像传感器 6M pixel创新点:高灵敏度,高通量,非常便携,可以在野外使用;全自动扫描自动调焦内置电脑,存储空间大,可远程操作,机身小巧可随身携带;扫片时长短。 数字切片扫描仪
  • JEOL钨灯丝扫描电镜升级
    日本电子株式会社(JEOL)2021年11月8日全球同步发布钨灯丝扫描电镜升级,升级后的型号为JSM-IT510。主要特点如下: 1.最新简易功能 最新简易功能可帮助用户简单获取观测条件和区域,然后自动财经扫描图像,电镜操作变得更为高效。2.最新型低真空二次电子探头 (LHSED)" 低真空下可同时采集电子和光子信号获得性噪比更好的形貌像。3.扫描电镜图像和能谱的一体化 可提供观察区域的实时成份面分布。4.实时立体三维图像 三维图像(3D)可观察区域提供不平表面的深度的信息。5.实时分析功能 一体化能谱仪提供观察区域实时的能谱谱图。6.新的导航放大功能 新的导航放大功能可提供光镜下4倍的图像,方便寻找视野。7.0 倍放大 使用0被放大功能,可以选择多个区域从光镜下直接切换到电镜倍数。8.显示X射线产生区域 帮助快速理解样品的分析深度。T9.SMILE VIEW™ Lab管理软件 快速生成包含图像和成分分析的报告书。详情请咨询捷欧路(北京)科贸有限公司各分公司。
  • 日立发布SU3500新型扫描电镜 实现低压高分辨
    仪器信息网讯 2012年12月6日,由天美(中国)科学仪器有限公司与日立高新技术公司共同举办的“日立新一代钨灯丝扫描电镜SU3500(以下简称‘SU3500’)研讨会”在北京举办。来自国内各大高校和科研院所约30余位专家参加了此次新品研讨会。天美公司副总裁赵薇、日立高新技术公司中国事业集团先端分析仪器部部长Imada Yoshinori在研讨会上进行了致辞。日立高新电子显微镜全球应用工程师振木 昌成与日立高新技术公司电镜营业部马玉娥经理对SU3500新型扫描电镜最新功能和应用进行了详细讲解,并且进行了现场实际操作演示。    左至右:天美公司副总裁赵薇,日立高新技术公司中国事业集团先端分析仪器部部长Imada Yoshinori,日立高新电子显微镜全球应用工程师振木昌成   扫描电镜是利用电子束“照射”样品表面,通过产生的二次电子信号成像来观察样品的表面形态。根据电子枪产生电子束的机理不同,扫描电镜主要有场发射、钨灯丝 此次推出的新品SU3500属于应用最广泛、使用最经济的钨灯丝扫描电镜。扫描电镜在低加速电压下工作具有减少或消除样品的荷电效应、增强样品的表面衬度和成分衬度以及减少样品辐照损伤等优点 因此,提高电子显微镜在低加速电压和低真空下的分辨率是扫描电镜的研究热点。   低加速电压下实现高分辨。通常加速电压降低,灯丝的发射电流会按比例减少,图像的亮度也会正常衰减。SU3500采用了最新开发的自动多级电子枪偏压设计,能够在特定的加速电压条件下,实现高的发射电流。与日立S-3400相比,SU3500的信噪比增强,成像质量更加优越。在加速电压为3kV时,二次电子图像分辨率可达7nm 在加速电压为5kV时,电子背散射图像的分辨率可达10nm。   低真空下实现不导电样品的直接观察。新设计的SU3500真空程序使真空度可达到650Pa,实时真空反馈允许在用户设定的特定压力下,保持样品室快速的真空稳定性。SU3500可变压力模式允许对处于自然状态下的潮湿、油腻和非导电样品进行观察 电子束与空气分子相撞产生的正电荷可消除样品表面的多余电荷,因此不需要进行传统的样品前处理,如干燥和镀膜。   SU3500的操作软件也有多项改进,使科研人员的工作效率大幅提高。例如:多模式多用途观察显示功能可以通过菜单操作选择单幅图像、双幅图像、四幅图像以及全屏图像显示 双幅图像及四幅图像显示模式可以同时显示由两种不同的探测器观察到的图像,或者为了多用途观察而合成图像。信号混合功能可以将富有样品表面细微结构信息的二次电子像和富有丰富成分信息的背散射电子像在一幅画里面叠加显示,更易于评价与分析。   低电压、低真空下获得极高的分辨率是SU3500最大亮点。天美公司副总裁赵薇表示,SU3500扫描电镜在加速电压为3kV时,二次电子图像分辨率达7nm 先进的3D技术以及非常便利的可视化操作,使SU3500成为目前全球最高端的钨灯丝扫描电镜。 专家现场体验SU3500新型扫描电镜功能    SU3500新型扫描电镜   相关新闻:   天美(中国)北京总部乔迁庆典及答谢晚宴   看清“不一样”的天美——访天美控股有限公司董事长劳逸强
  • 扫描电镜的使用注意事项!
    扫描电镜通过用聚焦电子束扫描样品的表面而产生样品表面的图像。它由电子光学系统、信号收集及显示系统、真空系统和电源系统组成,应用于生物、医学、材料和化学等领域。扫描电镜作为一种精密仪器,为延长其使用寿命,在使用时应需要以下事项:1、将试样置于载物台垫片,调整粗/微调旋钮进行调焦,直到观察到的图像清晰为止;2、调整载物台位置,找到要观察的视野,进行分析;3、扫描电镜调焦时注意不要使物镜碰到试样,以免划伤物镜;4、当载物台垫片圆孔中心的位置远离物镜中心位置时不要切换物镜,以免划伤物镜;5、在做切换动作时,动作要轻,要到位,关机时要将亮度调到小;6、亮度调整切忌忽大忽小,也不要过亮,影响灯泡的使用寿命,同时也有损视力;7、非专业人员不要调整显微镜照明系统(灯丝位置灯),以免影响成像质量;8、更换卤素灯时要注意高温,以免灼伤;注意不要用手直接接触卤素灯的玻璃体;9、设备不使用时及时关掉电源。
  • 2010年度扫描电镜技术讲座在京举办
    2010年度扫描电子显微镜最新技术与实验技术讲座在京举办   仪器信息网讯 为了提高首都科技条件平台电镜实验人员的仪器操作水平和电镜分析水平,2010年11月23日,由北京科学仪器装备协作服务中心和北京理化分析测试学会电镜分会共同主办的“2010年度扫描电子显微镜最新技术与实验技术讲座”在北京北科大厦隆重举行。来自全国高等院校、科研机构、企事业单位的近130位从事扫描电子显微镜研究及其应用的专家学者参加了此次会议,仪器信息网亦应邀参会。 北京市电镜学会理事长张德添教授主持会议 北京科学仪器装备协作服务中心张晓强主任致辞   张晓强主任在致辞中说到:非常荣幸能有机会与北京市电镜学会共同举办此次电镜会议。北京科学仪器装备协作服务中心是一个实现北京地区科学仪器装备共享共用的科技平台,是北京市科学技术委员会授权的“首都科技条件平台”的总体支撑建设和运营单位。通过该平台举办一些技术交流活动,能够促进科技资源与创新需求的宣传与对接,发挥北京地区科学仪器装备资源优势,提高科学仪器装备的协作水平。最后,张晓强主任预祝此次会议能够取得圆满成功。 北京大学徐军高工 报告题目:钨灯丝、场发射SEM、FIB等应用技术技巧   徐军高工说到:提高扫描电子显微镜的分辨率最重要的措施之一是提高电子枪的亮度。其中,关键是要寻找电流密度很高、发射角分布非常集中且能量分散很小的电子源。目前,常用的电子枪(工作方式)主要有钨灯丝(热发射)、LaB6(肖特基发射)、单晶钨丝(冷场发射)以及附有氧化锆的钨灯丝(扩展的肖特基发射)。此外,影响扫描电镜图像分辨率的因素主要有样品的潜在衬度、电子探针的电子光学性能、电子和样品的相互作用区以及外部环境。   最后,徐军高工着重介绍了聚焦离子束(FIB)的四大基本功能:离子束成像、刻蚀各种图形、离子束诱导沉积、辅助气体选择刻蚀。 日立高新技术公司罗琴女士 报告题目:正确使用扫描电镜的若干技巧分享   罗琴女士提到:若要获得良好的扫描电镜解析,所需包括加速电压、工作距离、电子束流、样品前处理、外界干扰、图像调整以及仪器保养等诸多因素。随着加速电压的升高,图像分辨率会升高,但样品损伤、污染程度也会加大 电子信号主要包括二次电子、背散射电子、透射电子等,根据不同的样品检测要求,选择不同的电子信号 而探针电流的升高,图像信噪比也会升高,分辨率会略受影响,但样品损伤、污染程度亦会增大 适当降低探针电流、加速电压或者以背散射电子成像可降低荷电效应 样品的前处理则需考虑样品材质、形态以及观察目的。   同时,罗琴女士在报告中还介绍了日立公司IM-3000平面样品抛光仪以及E-3500离子抛光仪在样品前处理过程中的应用。 清华大学杨文言高级实验师 报告题目:环境扫描电子显微术在生物学和材料科学研究中的应用   杨文言老师在报告中指出:理想中的扫描电镜分析是指样品保持原来形态,以最简单的处理过程,实时观测样品的变化过程,得到样品真正的表面形貌。传统的扫描电子显微镜观察样品需要在高真空下进行,并且要求样品表面要有较好的导电性,为此就需要湿样品干燥、非导电样品镀膜处理,而环境扫描电子显微镜除了中和电荷外,还具有保持样品环境0-100%湿度等多种功能,但观察视角与对象有局限性,成本也会增加,应对样品特性事先有所了解。   在生物学研究中,对样品无需任何处理,可直接观察“活”的生物结构,如昆虫复眼、神经束断面、嗜骨细胞等。最后,杨文言老师介绍了环境扫描电镜在研究环保型粮仓杀虫剂、观察生物固沙效果、水泥沥青砂浆水硬化过程等研究中的应用。 上海易微科技有限公司李金树先生 报告题目:扫描电子显微镜主要附件的最新进展   李金树先生用通俗易懂的语言向大家介绍了介绍两款用于扫描电镜高真空环境下的新型纳微操纵仪的工作原理及应用领域。李金树先生谈到:运用扫描电镜纳米操纵仪,实现了在扫描电镜中操纵样品,包括拨动、搬移、旋转,对样品进行多角度观察。其移动范围:轴向0-12mm 水平方向:-120度-+120度 垂直方向:-120度-+120度。可获得力-时间、力-位移曲线,实时测试样品的力学性能。此外,它还可以与微注入功能一起使用,在扫描电镜中进行微区反应的原位观察,与FIB双束仪器一起应用,可以高效和无污染地提取由FIB制备的TEM样品薄片。   最后,李金树先生向大家展示了德国最新推出的Evactron除污仪产品,并介绍了其技术优势与主要应用。 北京工业大学吉元教授 报告题目:电子背散射衍射(EBSD)技术及其应用   吉元教授指出:电子背散射衍射技术是在1980年发展起来的,是一种应用于扫描电镜中的微区晶体学分析技术。EBSD菊池衍射花样可以通过计算晶面、晶带轴指数以及晶粒取向来标定晶体取向,具有分辨率高、菊池花样取向敏感性高、花样应变敏感性高、花样收集角大等特点。近几年,EBSD的技术进展主要集中在高速EBSD探测器、一体化分析系统、软件功能等方面,越来越多的应用到晶体学取向关系测量、晶粒结构测试、晶界测试、相鉴定、应力/应变分析等领域。   最后,吉元教授总结了在EBSD的应用中需要考虑的问题:合理选择和选用SEM-EBSD设备及测试参数、制备好EBSD测试样品、综合利用形貌结构和成分等分析信息、在非导电、纳米材料中的应用难点等。 北京科学仪器装备协作服务中心孙月琴副主任   在会议最后,孙月琴副主任表示:非常感谢各位专家精彩的学术报告,为各位参会者带来了扫描电镜领域最新的技术进展与应用成果。   同时,孙月琴副主任还说到:首都科技条件平台通过支持研发实验服务基地、领域平台、工作站三类主体,整合科学仪器、科技成果、科技人才三类资源,是实力测试对接、研发实验对接、技术对接三种服务。自成立以来,已有423个国家级及市级重点实验室和工程中心、价值109亿元的1.8万台(套)仪器设备资源向社会开放。目前共计6300多家企业享受到了首都科技条件平台的研发实验服务,服务金额高达6.8亿元。 会议现场
  • 三维体扫描大型成像显示器亮相世博
    世博会徽标、招手的海宝、迎客的茶壶……在一个高2.8米、直径1.3米宛若水帘洞的圆柱体空间内,一件件上海世博会标志物栩栩如生地展现在人们眼前。没有观看角度的限制、无须佩戴特制眼镜,人们惊喜地体验到360度全景观看这些三维立体影像的璀璨感受。日前,由华东师大信息科学技术学院教授刘锦高课题组研发的“三维体扫描大型成像显示器”正式亮相,即将在世博会重大活动中使用。这一精准同步的光、机、电一体化高科技产品将引领人们感受真正的三维立体效果。   首创“旋转真三维”显示系统   真正的三维立体效果,是将物体的长度、宽度、深度(厚度)直观地进行再现。由于条件限制,多数三维立体效果在深度的展示上都有所欠缺,即使是观看3D电影,有时还是会受到观察角度的限制,无法完全享受身临其境之感。然而,华东师大研发的这套全新的三维体扫描电子系统的核心部件由数十枚32位CPU组成,它们的运算能力远胜一般的多核计算机。它将立体对象提取出不同的切面、切片进行显示,利用扫描在三维空间的体像素构成了立体图像,展示了一个最接近真实物体的立体画面。这套拥有水平与垂直视角的全角光场立体显示器,满足了水平视差与垂直视差的观看要求,再现人们观察世界的真实感受,并获得高亮璀璨的显示效果,从而带给人们质感的3D影像。   刘锦高课题组此次研制大型体扫描显示器仅用了短短几个月的时间,克服了一系列困难。目前,课题组已成功研制了一套大型显示系统及一套备份系统。显示器的首度公开亮相,标志着一种全新的大型立体显示方式的诞生。它突破了以往裸视三维立体显示技术(例如LCD、PDP技术等)需要借助二维平面来展现三维影像的瓶颈,通过对物体进行旋转扫描,将图像置于一个真实的立体空间,实现了真正意义上的三维立体显示。该研发工作得到了上海市科委的大力支持。   刘锦高表示,此套系统是我国自主研发的产品,属世界首例,拥有完全的自主知识产权。   探索计算机图形学新领域   “目前的计算机图形学主要基于平面光栅扫描理论。而这套新系统的研发为计算机图形学向三维体扫描方向的发展奠定了基础。”刘锦高告诉记者,三维体扫描大型成像显示器的研制成功,突破了传统计算机图形学理论,为图形扫描理论和技术的发展开辟了新的研究方向,并提供了有力的实例论证。   他表示,目前,体扫描计算机图形学还处于探索阶段,仍有许多问题需要进一步细化研究。“这对于我们科技工作者来说,意味着新的一轮挑战。”   力拓技术应用的崭新境界   这套显示系统在军事训练、医疗诊断、数据可视化、工程产品设计、景观建筑、视频游戏、虚拟现实、多媒体教学等方面具有广阔的应用前景。   “就以医疗诊断来说,我们通过CT、核磁共振获取的人体或器官扫描影像本来可以提供三维数据,但由于三维成像显示技术尚未成熟,目前只能以胶片或其他介质的二维形式来显示,需要有经验的医学专家才能判读,增加了诊断的难度。若将这些数据通过三维体扫描显示器来再现,就会有超乎想象的突破。再如,关于航天飞机的设计,我们可以在任何部件的设计改进之后马上显示其整体效果。”刘锦高如数家珍般给出不少例子。
  • 新型无辐射磁粉成像扫描仪面世
    扫描仪体积小、重量轻,可以随身携带,几乎可以在任何地方使用。图片来源:朱利叶斯-马克西米利安-维尔茨堡大学在一项最新研究中,德国物理学家和医生团队成功开发出一种便携式扫描仪,可借助新的无辐射成像技术——磁粉成像,可视化人体内的动态过程,例如血流情况。科学家们表示,这是迈向无辐射干预的重要的一步。相关研究刊发于最新一期《科学报告》杂志。磁粉成像是一种基于对磁性纳米颗粒直接可视化的技术。这种纳米颗粒不是在人体内自然产生的,必须作为标记物给药。最新研究负责人、朱利叶斯-马克西米利安-维尔茨堡大学物理研究所的沃尔克贝尔教授解释道,与依赖放射性物质作为标记物的正电子发射断层扫描一样,他们开发出的磁粉成像技术具有灵敏快速的优势,不会“看到”来自组织或骨骼的干扰背景信号。论文第一作者、物理学家帕特里克沃格尔解释称,纳米颗粒的磁化强度在外部磁场的帮助下被专门操纵,因此不仅可检测到这些纳米颗粒的存在,还可检测到它们在人体内的空间位置。在最新研究中,贝尔等人开发出了一款新的介入磁粉成像扫描仪,其体积小、重量轻,几乎可带到任何地方。他们在逼真的人体血管模型上进行了测量,并拍摄出了第一批图像。研究团队表示,这是迈向无辐射干预的第一个重要步骤,有可能彻底改变这一领域。他们正在进一步提升这款扫描仪的性能,以提高图像质量。
  • 中科院成功研制激光扫描实时立体显微镜
    据中国科学院网站消息,日前,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室(简称:瞬态室)超分辨成像团队研制成功双光子激发激光扫描实时立体显微镜,首次把基于双目视觉的立体显微方法和高分辨率双光子激发激光扫描荧光显微技术结合在一起,实现了对三维荧光样品的高速立体成像,相关研究成果发表在2016年12月刊的PLOS ONE 杂志上,并被授权国家发明专利(专利号ZL201210384895.4)。  当代生命科学研究对光学显微技术提出了越来越高的要求——更高的空间分辨率、更大的成像深度、更快的成像速度。特别是对于生物活体显微成像来说,生物组织对光的散射使得噪声大大增强,严重影响了空间分辨率和成像深度。为了提高成像深度,双光子激发激光扫描荧光显微技术自20世纪90年代提出后被广泛应用于神经成像等领域,但是其逐点扫描的成像方式严重制约了成像速度。因为高分辨率光学显微镜的景深很小,要对样品完成三维成像,通常需要数十层乃至上百层的二维图像进行叠加重建得到,图像采集和处理一般需要数分钟甚至数十分钟,要快速实时地获取和显示三维图像非常困难。  瞬态室超分辨成像团队在研究员姚保利和叶彤的带领下,以双目视觉原理和贝塞尔光束产生扩展焦场为基础,提出了由四个振镜组成的激光束立体扫描装置,实现了对贝塞尔光束的横向位置和倾角共三个维度的控制,突破了只有两个自由度的传统激光扫描不能实时切换视角的限制。通过对四振镜立体扫描装置的优化设计和控制,实现了对贝塞尔光束的三自由度快速扫描,可在毫秒量级进行双视角切换,从而解决了激光扫描立体显微成像系统中双光路同时成像的技术难题,首次实现了基于双视角实时激光扫描的立体显微成像和显示系统。该系统可对样品进行立体动态成像和实时双目立体观测,其三维成像速度比传统的逐点扫描方式提高了一到两个数量级。该双光子立体显微系统为活体生物的三维实时成像和显示提供了一种新的观测工具。  “它可以让我们像观看立体电影一样实时地观测动态的三维微观世界,无需光切片,无需耗时的三维图像重构。”杨延龙如此总结这套系统的特点,他负责设计和完成了其中的立体扫描和成像显示的关键部分。“双目视觉成像是非常高效的三维信息获取方式,但是现有的体视显微镜,空间分辨率和景深互相制约,我们利用三自由度扫描的贝塞尔光束进行非线性荧光激发突破了这种限制。”  这项研究先后在中科院“百人计划”和国家自然科学基金的支持下,从基本原理验证、关键技术突破,到原理样机完成,经历了从基础研究到应用集成的各个环节。目前,课题组正在与国内外相关科研机构开展生物医学应用的合作研究,期望尽快将该项技术应用于生物活体三维快速成像和显示领域。花粉和荧光小球样品的红蓝立体图像(可佩戴红蓝眼镜观看)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制