当前位置: 仪器信息网 > 行业主题 > >

甜菊糖苷

仪器信息网甜菊糖苷专题为您整合甜菊糖苷相关的最新文章,在甜菊糖苷专题,您不仅可以免费浏览甜菊糖苷的资讯, 同时您还可以浏览甜菊糖苷的相关资料、解决方案,参与社区甜菊糖苷话题讨论。

甜菊糖苷相关的资讯

  • 【瑞士步琦】通过 SFC(超临界流体色谱)分离纯化甜叶菊提取物中甜菊苷的方法
    分离纯化甜叶菊提取物中甜菊苷甜菊糖苷(结构式见图1 (b))属于甜菊醇糖苷,甜菊糖苷是甜菊属植物的甜味来源。甜菊糖的增甜能力比蔗糖的甜度高许多倍,因此是一种糖的替代品。自 2011 年以来,甜菊糖苷已被欧盟批准为食品添加剂 E960。甜叶菊本身还没有被批准作为一种食品。本文介绍了一种使用 BUCHI Sepiatec SFC 设备从甜叶菊提取物当中分离得到甜菊糖苷的方法。分离过程所使用食品级CO2、乙醇和水作为添加剂。 1实验条件设备Sepiatec SFC-50色谱柱prep HPLC column Nucleodur Si 5um 250 x 4.0m流动相种类A=CO2(100%)B=乙醇/水(95/5)流动相条件0-2min:95%A/5%B2-25min:5-35%B25-31min:35%B样品200mg/mL 乙醇甜叶菊提取物以 95%A/5%B,4mL/min流速条件对色谱柱平衡 5min。通过自动进样器进样并开始运行分离程序,UV检测波长设定为 210nm,背压调节阀设定为 150bar,柱温箱温度为 40℃,得到如下分离图谱:▲ 图1:(a)甜叶菊提取物的纯化以及(b)对 24 号组分进行 HPLC 纯化分析 2结果与讨论图1(a)展示了甜叶菊提取物的色谱图,通过乙醇对甜叶菊进行提取得到了很多化合物,甜菊糖苷作为极性分子与色谱柱的极性固定相(Slica)发生了强烈的相互作用。因此,当流动相的整体梯度极性增加是,甜菊糖苷得以被洗脱。图1(a)表明其纯度非常高。除此之外,甜菊糖苷也是提取物中甜度最高的化合物,并且可从甜菊糖总甙中的甜菊双糖苷中分离得到。食品性质的物质提纯一般更偏向于使用乙醇。反相色谱所使用的典型溶剂甲醇或乙腈往往与食品特性不太符合的。由于流动相整体极性的增加,所以水作为添加剂可以有效改善待测分析物的峰型。 3结论使用制备型 SFC 可以有效地将甜菊糖苷从甜叶菊提取物中分离得到。通过 SFC 以及符合食品要求的溶剂可以对食品提取物进行纯化。
  • 法国提高食品中添加剂甜菊甜味剂的限量
    2010年1月19日,据欧盟食品导航网站消息,法国政府目前已经批准将甜菊糖苷(Rebaudioside A,简称Reb-A)作为一种高级甜味剂,并于上周五在法国官方公报上公布了提高其在一系列不含糖食品和饮料产品内的使用限量。   据悉,去年8月法国政府成为欧盟第一个批准在食品和饮料产品内使用高纯度(97%)甜菊甜味剂Reb-A的国家,而新的提高Reb-A的使用限量将为糖果、甜点等产品减少40%的卡路里,为企业提供相当大的市场灵活性。   Reb-A是在甜菊植物叶中发现的一个主要甜菊糖苷。它比蔗糖甜,且没有热量,可满足低含糖量或不含糖食品和饮料市场的需要。目前可以在饮品、甜点、冰淇淋中使用的最高限量分别为600毫克/升,1000毫克/千克以及800毫克/千克。在口气清新糖果内的上限为10000毫克/千克,口香糖为5500毫克/千克,咽喉糖、可可粉或干果以及淀粉糖内的上限为2000毫克/千克,在其他不含糖的糖果内的最高限量为1000毫克/千克。
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。   大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。   成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 欧盟通过“禁止果汁中添加糖类成分”新规定
    近日,欧盟理事会通过了一项新规定:“在果汁中添加糖类成分属于非法行为”。该规定将适用于所有欧盟国家、所有产品,并将与欧盟现有果汁相关法规及法典委员会(CAC)现有果汁标准内容进行统一。在此之前,欧盟相关法规允许在果汁中加入糖成分,但须通过产品标示内容“不添加糖成分”来对添加外源糖成分或不添加外源糖成分情况进行区分。实施新规定后,标示中将不允许使用上述表示,市场销售果汁产品将禁止添加糖成分。   另外,番茄汁的管理将从目前的通用食品法律管理首次转为果汁管理。新规定再次确认用于生产果汁产品的每种水果名称都必须列在果汁产品说明中。对于由3种以上水果生产的果汁产品,标注中可以使用“几种水果”代替各种水果名称。对于4种水果(黑醋栗、番石榴、芒果、百香果)果汁需要在标注可溶性固形物数值的同时,还应按照食品法典标准要求进行标注。   新规定的实施确定了过渡期,在过渡期内允许企业继续在其产品中使用旧标示。“产品中不添加糖成分”新标示过渡期为36个月,即转化期18个月、旧标示结束期18个月。新规定生效后,所有成员国须在18个月内将该指令转化为本国法律。   此举将对整个果汁饮料行业产生不小的影响,对生产商来说,必须研发新口味的果汁饮料或者找到适合的替代甜味剂,才能满足消费者对果汁饮料口感的要求。因此,新法规正式实施以后,果汁饮料产品格局可能会重新洗牌。   检验检疫部门建议相关出口企业:一是要持续关注欧盟新法规,并认真搜集和掌握相关出口国的法规信息,利用“过渡期”提前做好准备,以减少新法规实施后因产品不合格而带来的退货风险。二是按照法规要求,寻找合适的替代甜味剂,如天然零热量甜菊糖苷等。在确保产品符合进口国法规要求的情况下,又不影响产品本身的口感和质量。三是以此为契机促进产品转型升级,加大投入研发营养、健康、口味好的新型果汁、果蔬汁饮料,开拓新市场,打造新品牌。
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • 沃特世超高性能色谱柱应对氨基糖苷类抗生素药物分析监测难点
    氨基糖苷类抗生素分析难点: 氨基糖苷类抗生素是一类含有氨基糖苷键的抗生素,抗菌谱广,对需氧革兰阴性杆菌具有强大的抗菌活性,临床应用广泛。该类抗生素由氨基糖与碱性1,3-二氨基肌醇以苷键结合而成,1,3-二氨基肌醇为碱性多元环己醇结构,因此氨基糖苷类抗生素均具有碱性强,极性大的特性。目前大多数氨基糖苷类化合物的液相色谱检测时均使用了高比例的三氟乙酸作为流动相,当采用这些溶剂作为流动相时色谱工作者经常发现色谱柱柱效下降非常厉害,色谱峰重现性差,柱寿命短等方面问题。 2010年版《中国药典》方法摘录: 硫酸依替米星:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 硫酸庆大霉素C组分: 0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min 硫酸卡那霉素:0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min 硫酸西索米星:0.3mol/L三氟乙酸-甲醇-乙腈 96:3:1;流速0.5mL/min 硫酸奈替米星有关物质:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 沃特世公司解决方案: 沃特世(Waters® )公司第二代杂化颗粒XBridgeTM系列色谱柱产品,通过在硅胶颗粒合成过程中引入有机的亚乙基桥结构,使其具有行业领先的化学稳定性,pH范围1~12,同时提高了色谱柱产品的耐受性及机械强度,使用该系列色谱柱产品的可以帮您解决氨基糖苷类抗生素的色谱分析问题 利用沃特世XBridge C18 色谱柱分析硫酸庆大霉素C组分所得色谱图及检测结果:
  • 氨基糖苷类抗生素检测新方案 样本富集净化新选择——AGs免疫亲和柱!
    氨基糖苷类化合物(AGs)是由两个或两个以上氨基糖通过糖苷键与氨基环醇骨架连接而成的碱性低聚糖抗生素。这类抗生素包括:链霉素、新霉素、卡那霉素、庆大霉素、壮观霉素等。他们共同特点是水溶性好、性质稳定、抗菌谱较广,又因其价格低廉,在兽药领域应用广泛。AGs存在一定程度的耳毒性、肾毒性和神经肌肉阻滞作用。目前世界多个国家和组织建立了AGs在动物源食品中的相关限量标准,我国GB 31650-2019规定AGs在动物源食品中的限量如下所示:AGs检测方法及制约因素AGs分子中因富含氨基和羟基而呈强极性,其分子中缺少发色团和荧光团,反相色谱保留较差,因此动物源食品中 AGs的检测比其他抗生素更为复杂。目前 AGs的检测方法主要有免疫分析法、高效液相色谱-质谱/质谱法(HPLC-MS/MS)、液相色谱-串联质谱法(LC-MS-MS),其中免疫分析法方便快速更适合定性筛查检测,HPLC-MS/MS、LC-MS-MS定量准确、灵敏度高更适合确证检测。在乳及乳制品中,GB/T 22969-2008《奶粉和牛奶中链霉素、双氢链霉素和卡那霉素残留量》,虽然只规定了链霉素、双氢链霉素和卡那霉素3种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法,但GB 31650-2019《食品中兽药最大残留限量》中还规定了其他氨基糖苷类药物包含大观霉素、安普霉素、庆大霉素、新霉素等,这些项目也是实验室对乳及乳制品安全检测过程的必检项目。目前HPLC-MS/MS、LC-MS-MS方法可对多种AGs进行同时检测,但是一次性不能对多种氨基糖苷类药物富集净化是提高检测效率的主要制约因素之一!在动物组织中,GB/T 21323-2007《动物组织中氨基糖苷类药物残留量的测定 高效液相色谱-质谱/质谱法》规定了动物组织中大观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素和新霉素10种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法。但此检测AGs的方法前处理过程使用C18富集净化,检测限仅为20-100μg/kg。美正氨基糖苷类免疫亲和柱美正通过多年的积累,开发出一种使用氨基糖苷类免疫亲和柱前处理的方法,解决了动物源性食品中氨基糖苷类抗生素检测过程中前处理富集净化的难点。使用氨基糖苷类免疫亲和柱的前处理方法,可以将动物源食品中11种氨基糖苷类抗生素进行一次性特异性富集净化,能够更好地消除基质干扰,既提高了前处理富集净化效率又提高了分析的准确度和灵敏度。药物种类壮观霉素潮霉素B双氢链霉素链霉素丁胺卡那霉素卡那霉素安普霉素妥布霉素庆大霉素新霉素巴龙霉素产品特点特异性强:免疫学原理,对样本中AGs选择性高、特异性结合能力强;操作简单:可穿透式柱塞,使用便捷;性能优异:AGs加标回收率80-120%,准确度高样本类型动物源性食品,包括乳制品、动物组织及水产品等。药物残留类免疫亲和柱免费试用!美正在药物残留检测领域有更多的前处理富集净化方法,值美正十五周年之际,意向用户可对我司药物残留类免疫亲和柱进行免费试用。
  • 线上讲座:《从糖精到甜菊:甜味剂分析的进展》
    线上讲座:《从糖精到甜菊:甜味剂分析的进展》 2011年9月27日,星期二,美国东部时间上午8时格林威治时间15:00 网络讲堂概述: 天然或人造甜味剂,是一种用于复制糖的味道的化合物,通常包含一部分热量。特别是那些来自碳水化合物或含碳水化合物亚基的甜味剂,由于缺乏高效液相色谱紫外检测的声色团,因而灵敏度很低。此外,天然的甜味剂,如甜叶菊,包含许多结构类似的化合物,这使得分析起来很困难。而使用一根具有三种分离机理的色谱柱配合气溶胶检测器,就可以轻松的解决这个问题。甜菊苷,罗汉果皂苷V,从罗韩郭水果派生的甜味剂,都可以检测。 网络讲堂适用对象: 1. 新型甜味剂研发人员。 2. 开发新的更灵敏的检测技术,用于人工和天然甜味剂的分析人员。 3. 了解如何使用一根色谱柱分析天然甜味剂。 4. 了解提高灵敏度对于监测纯化甜菊糖甜味剂净化副产品的重要性。 5. 找到10分钟以内分析苷的方法。 Register Today! 报告人:Deepali Mohindra 赛默飞世尔科技戴安产品全球市场开发经理。 Deepali自2007年以来,一直负责戴安产品在食品,饮料和保健品行业全球业务发展。同时,她也是分析化学协会(AOAC)的成员。 Deepali具有生物科学学士学位和工商管理硕士学位。 报告人:Christopher Crafts Christopher Crafts目前赛默飞世尔科技戴安产品和应用工程师,研究重点是带电气溶胶检测技术和最新的高效液相色谱技术的方法开发。具有Merrimack College化学系的科学学士学位。毕业后的几年时间里,它主要从事监控同位素标记的化学品。他曾合作撰写论文,同时撰写APIs和反离子一书的其中一章。 报告人:Deanna Hurum Deanna Hurum是赛默飞世尔科技的一名化学家,在原戴安应用实验室从事离子色谱法和高效液相色谱法的分析工作经验超过3年。Deanna Hurum是20年的美国化学学会成员,具有罗切斯特大学获得博士学位,在来到赛默飞世尔科技之前从事环境和制药相关工作十几年。 Register Today! 赛默飞世尔科技戴安产品市场部
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 征求26种食品添加剂检测标准意见
    国家卫生计生委办公厅关于征求《食品添加剂 甜菊糖苷》等25项食品安全国家标准(征求意见稿) 及《食品添加剂 天门冬氨酸钙》第1号修改单意见的函     国卫办食品函〔2014〕61号   工业和信息化部、农业部、商务部、工商总局、质检总局、食品药品监管总局(国务院食品安全办)办公厅,粮食局、标准委、认监委办公室,各有关单位:   根据《食品安全法》及其实施条例的规定,我委组织起草了《食品添加剂甜菊糖苷》等25项食品安全国家标准(征求意见稿)以及《食品添加剂 天门冬氨酸钙》(GB29226-2012)的1项修改单(见附件1-2)。现征求你单位意见并向社会公开征求意见,请于2014年3月25日前将意见反馈表(附件3)以传真或电子邮件形式反馈我委。   食品添加剂标准(附件1)反馈意见联系方式:   传  真:010-52165424   电子信箱:zqyj@cfsa.net.cn   《腌腊肉制品》等3项标准(附件2)反馈意见联系方式:   传  真:010-52165414   电子信箱:spbz@cfsa.net.cn   附件:1.食品添加剂标准22项.rar   2.《腌腊肉制品》等3项标准.rar   3.食品安全国家标准征求意见反馈表.doc    国家卫生计生委办公厅    2014年1月21日
  • 零糖也不健康?Nature论文:常用人工甜味剂或抑制免疫系统
    随着经济发展和生活水平的提高,在全世界范围内,肥胖已经成为了一个主要公共健康问题。据世界卫生组织(WHO)统计,全球有近20亿人超重或肥胖,从1975到2016年,全球肥胖率翻了近3倍,每年因超重或肥胖导致的死亡高达280万。全球范围内肥胖率的快速增加很大程度上是因为高糖饮食等生活因素的影响,为了减少糖对健康及肥胖的影响,越来越多的人开始使用人工甜味剂代替正常糖类(代糖),这些人工甜味剂具有糖类的甜味,但通常不能被人体转化,因此不产生热量。人们认为其可作为一种健康的饮食方式,已被广泛应用于食品和饮料中,以降低糖和热量摄入。三氯蔗糖是许多食品中的常用代糖,它没有热量,并且比蔗糖甜600倍。三氯蔗糖通常被认为是安全的,但也有人对长期食用包括三氯蔗糖在内的人工甜味剂提出了担忧。2023年3月15日,英国弗朗西斯克里克研究所的研究人员在Nature期刊发表了题为: The dietary sweetener sucralose is a negative modulator of T cell-mediated responses 的研究论文。该研究发现, 高剂量的人工甜味剂三氯蔗糖会降低小鼠免疫反应 。这些发现没有提供证据表明正常剂量的三氯蔗糖摄入可能产生免疫抑制性。但该研究强调了高剂量三氯蔗糖对免疫反应和小鼠机能的一个意外影响。研究团队认为,三氯蔗糖对免疫系统中T细胞的影响可能是可逆的,这意味着我们将来可能使用三氯蔗糖来治疗T细胞过度活跃导致的自身免疫疾病。为了调查过量食用三氯蔗糖的影响,研究团队给小鼠服食了高剂量的三氯蔗糖。这一剂量同比高于正常人类饮食中的三氯蔗糖摄入,接近该甜味剂的每日可摄入最大剂量(欧洲食品安全局为15mg/Kg,美国食品药品监督管理局为5mg/Kg)。小鼠表现出了T细胞增殖和分化水平下降,表明其免疫系统受到调节。三氯蔗糖被发现影响T细胞的细胞膜,降低其有效释放信号的能力。喂食三氯蔗糖的小鼠还表现出在感染、肿瘤和免疫模型中功能性T细胞反应的不同程度下降。这些发现表明,高剂量三氯蔗糖会改变小鼠的免疫响应。三氯蔗糖治疗限制体内T细胞特异性反应总的来说,这项研究显示,大量摄入 常见 的人造 甜味剂三氯蔗糖会降低小鼠T细胞活性 ,还需要更多研究来确定三氯蔗糖对小鼠的影响是否可以在人体中重现。研究团队表示,三氯蔗糖对小鼠T细胞的影响似乎是可逆的,如果在人体内也是如此,那么我们就 可以利用三氯蔗糖来改善过度活跃的T细胞导致的自身免疫疾病。2023年2月27日,美国克利夫兰医学中心的研究人员在国际顶尖医学期刊Nature Medicine上发表了题为:The artificial sweetener erythritol and cardiovascular event risk 的研究论文。这项研究表明,常用的人工甜味剂赤藓糖醇可能与心脏病事件相关。赤藓糖醇是一种天然物质,一些蔬菜和水果中也少量含有,我们的身体难以代谢这种物质,因为其具有甜味,而被用作人工甜味剂。近年来一些爆火的主打零糖零脂零卡的饮料,实际上就是大量添加了赤藓糖醇。监管机构一般也认为赤藓糖醇等人工甜味剂是安全的,人们也常建议将其作为代谢疾病(例如糖尿病和心脏病)患者的代糖,但很少有研究调查过其长期健康影响。这些人工甜味剂对人体到底有没有影响?它们真的是健康的吗?研究团队在1157名经过心脏病风险评估、有3年结局数据的人群中进行了初步研究。通过分析血液中的化学物质,研究团队观察到多种看似人工甜味剂(尤其是赤藓糖醇)的化合物水平在三年随访中与未来心脏病和中风风险增加有关。这一相关性在独立阵列研究中得到证实,该阵列研究在美国(n=2149)和欧洲(n=833)进行了选择性心脏评估。研究团队进一步发现,全血或血小板中的赤藓糖醇导致了血栓形成加速,这在动物模型研究中得到了确认。赤藓糖醇促进体内血栓形成研究团队还在8名健康志愿者中进行了一个前瞻性干预研究。在志愿者摄入30克赤藓糖醇饮料后检验其血浆水平,发现所有志愿者赤藓糖醇水平持续增加,在2-3天里超过了凝血风险增加的阈值。研究团队认为,这项研究或表明赤藓糖醇水平提高与血栓风险升高相关。但他们也指出,因为他们研究的阵列中心血管风险因子发生率偏高,仍需确认对明显健康的受试者进行更长期随访中是否能观察到类似结果。值得一提的是,一项近期的研究显示,人工甜味剂(例如糖精、三氯蔗糖) 会显著影响人体肠道菌群,进而改变人体血糖水平。2022年8月,魏茨曼科学研究所的研究人员在国际顶尖学术期刊Cell上发表了题为:Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance 的研究论文。该研究证实,长期以来被认为是健康的并得到广泛使用的人工甜味剂在人体内并不是惰性的,它们会显著影响人体肠道菌群,从而改变人体血糖水平。早在2014 年,魏茨曼科学研究所的Eran Elinav团队就发现,人工甜味剂会影响小鼠的肠道微生物组,从而影响它们的血糖反应。而这一次,他们进一步探索了人工甜味剂对人类的影响。研究团队仔细筛选了1300多名在日常生活中严格避免使用人工甜味剂的人,并从中确定了120人参与后续实验。这些参与者被分成六组:两组对照组和四组实验组,四组实验组分别摄入糖精(Saccharin)、三氯蔗糖(Sucralose)、甜菊糖苷(stevia)和阿斯巴甜(Aspartame),这些摄入量低于FDA允许的每日摄入量标准。两组对照组分别摄入等量葡萄糖或不额外摄入。结果显示,在食用人工甜味剂的参与者中,可以很容易观察到他们的肠道微生物组成和功能以及分泌到外周血中的分子出现了非常明显的变化。这似乎表明了人体内的肠道微生物对这些甜味剂中的每一种都相当敏感。在这几种人工甜味剂中,糖精和三氯蔗糖能够更显著地影响健康成年人的葡萄糖耐量。而且,肠道微生物组的变化与人们血糖反应的变化是高度相关的。这些研究提示我们,人工甜味剂并不像我们之前认为的那样安全,有必要通过进一步研究评估人工甜味剂的长期安全性。论文链接:1. https://www.nature.com/articles/s41586-023-05801-62. https://www.nature.com/articles/s41591-023-02223-93. https://www.cell.com/cell/fulltext/S0092-8674(22)00919-9
  • 欧盟修订部分果蔬酱中甜味剂使用限量规定
    2013 年 9 月 24 日,《欧盟官方公报》发布了 No 913/2013 号委员会条例,修订了 No 1333/2008 号条例的附录 II,对某些果蔬调味酱中甜味剂的使用做了新规定。该条例自发布之日起第20日生效。   具体修订内容如下: 甜味剂代码 甜味剂名称 最大使用限量(mg/kg) 使用范围 E950 安赛蜜 1000 低热量果蔬调味酱以 及低热量或不添加糖 的干果三明治调味酱 中 E952 甜蜜素 500 E954 糖精及其钠盐钾盐钙盐 200 E955 三氯蔗糖 400 E959 新橙皮苷二氢查尔酮 50 E960 甜菊糖苷 200
  • 关于甜味剂的是是非非
    夏日炎炎,没有什么能比得上一杯甜甜的冰饮更让人心旷神怡啦!如今市面上出现了很多“0蔗糖”的饮料,这些饮料号称0糖0卡,却可以让人们满足味蕾,同时还免除了长胖的困扰,一上市便深受消费者的欢迎。“0蔗糖”的饮料为什么甜甜的呢?那便是甜味剂的功劳了。甜味剂的种类有很多,以下这些甜味剂你听说过几种呢?- 甜菊糖苷- 罗汉果糖苷- 糖醇类甜味剂- 阿斯巴甜- 安赛蜜- 三氯蔗糖- 甜蜜素- 糖精钠举个例子,从配料表上看,经典可乐和无糖可乐的区别在于使用了不同的甜味剂。● 经典可乐:果葡糖浆,白砂糖● 无糖可乐:阿斯巴甜,安赛蜜,蔗糖素甜味剂虽说对人体无害,但是它作为一种食品添加剂,其浓度还是需要严格控制的。我们选取了市面上的几种常见的甜味剂样品进行了实验。实验步骤本实验对比了不同浓度的7种甜味剂的比旋度。以复合甜味剂1为例:1,精密称取复合甜味剂1,纯水溶解并定容至100ML,逐级稀释至3个浓度梯度。2,标准石英管检查仪器。3,选择比旋度测量方法,采用589nm波长, 在温度20℃下,对3个浓度的复合甜味剂1进行测试。得到结果如下:按上述操作对复合甜味剂2、复合甜味剂3、纽甜1、纽甜2、三氯蔗糖1、三氯蔗糖2进行测试。得到7种甜味剂的比旋度。比旋度可用以对食品饮料中所添加的甜味剂种类进行鉴别,或者对其进行定量分析。实验所用到的仪器安东帕模块化高精度智能旋光仪:MCP 5300MCP 系列旋光仪配备的独特技术特点可确保较高程度的可追溯性和可靠性。帕尔贴自动温控系统 为了确保精确测量旋光度,MCP系列旋光仪都配有帕尔贴温度控制系统,保证较佳热接触,样品温度在样品池内部测量,控温精度精度高达0.01 °C。 帕尔帖温控系统无线 Toolmaster™ 技术MCP仪器运用了安东帕独特的ToolmasterTM技术,自动传输调节和测量所需的数据,有助于消除操作中的人为误差。 MCP仪器的校准和调节不再需要温度值的列表或手工输入。标准石英管上ToolmasterTM技术存储芯片包含所有的校正数据。通过MCP屏幕上的程序引导用户按步骤操作,几分钟内即可完成。小编有话讲这里小编要提醒大家,甜味剂虽然可以像普通甜食一样带给我们一份生活的小确幸,但是也要适量摄入,不要因为没有真正的糖,就纵容自己吃甜食、喝饮料哦!
  • 许国旺课题组提出基于液相色谱-高分辨串联质谱的糖苷类化合物规模化注释新方法
    近日,中科院大连化学物理研究所许国旺课题组在糖苷类化合物规模化注释方面取得新进展。通过构建in silico苷元库和糖基/酰基-糖基碎裂模式库,以及发展利于苷元离子检出的LC-HR MS/MS分析条件,建立了苷元离子的高通量识别方法以及高效去除假阳性候选结果的方法,并开发了相应的糖苷类化合物规模化注释程序plantMS2(https://github.com/zhengfj1994/plantMS2)。 糖苷类化合物是一类重要的次生代谢产物,在植物生长发育过程中起着关键作用,全景注释植物中已知和未知糖苷类化合物具有重要的研究意义。由于市售标准品和数据库收录的二级质谱规模有限,现有的基于液相色谱-高分辨质谱(HRMS)的糖苷类成分注释方法难以有效地对糖苷类化合物进行注释、定性。研究团队发展了一种基于液相色谱-HRMS/MS的糖苷类化合物规模化定性新方法。构建了具有植物种属特异性的in silico苷元库以及糖基/酰基-糖基的in silico碎裂模式库。优化出利于苷元离子检出率的LC-HR MS/MS分析条件,并建立了苷元离子的高通量识别方法。最后,通过候选糖苷-苷元质谱相似性发展了高效去除假阳性候选结果的方法。方法评估表明,该注释流程适用于多种类型的HRMS仪器不同碎裂模式(HCD和CID等)下建立的方法,定性准确性和特异性均优于现有注释方法。将该方法应用于玉米叶片,种子和花丝中糖苷类成分的注释,共注释出274个糖苷类成分。相关研究成果以“Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics”为题,发表在Analytical Chemistry上。该工作的第一作者是我组博士研究生张秀琼,通讯作者为路鑫和许国旺。上述工作得到了国家重点研发计划、国家自然科学基金等项目的资助。文章链接:https://pubs.acs.org/doi/10.1021/acs.analchem.2c02362(文/图 张秀琼)
  • 黑龙江某食品厂因超范围使用食品添加剂遭罚
    据黑龙江省食品药品监督管理局官网2月26日发布的(黑)食药监食罚[2017]2106002号行政处罚决定书,北安市北源蓝莓饮品有限公司生产的蓝莓原浆(生产日期为2017年01月02日,规格为450ml/瓶),经黑龙江省华测检测技术有限公司检验“甜蜜素”项目不符合国家标准要求。处以罚款,没收违法所得。 甜蜜素的概述:在各类食品中,为改善其品质及其香、色、味,人们往其加入食品添加剂,甜味剂就是其中的一种。甜味剂包括天然提取和人工合成,天然提取包括糖类和非糖类糖类包括糖和糖醇,糖类包括蔗糖、果糖、葡萄糖、麦芽糖,糖醇有山梨 糖醇、乳糖醇、甘露糖醇、麦芽糖醇、异麦芽酮糖醇;非糖类有甘草、甘草酸、甘 草酸氨、罗汉果甜苷、甜菊糖苷;人工合成有甜蜜素、糖精钠和三氯蔗糖等,因为 甜度高、价格相对较低,甜蜜素成为最受欢迎的甜味剂之一。甜蜜素用途及使限量:甜蜜素可加在配制酒,糕点,饼干,面包,雪糕,蜜饯。话梅谅果,酱菜等食品中。我国强制性国标 GB2760996《食品添加剂使用卫生标准》中明确规定配制酒,糕点等最大添加量小于等于0.65g/L,蜜饯小于等于1.0g/L 等。同时GB2760——1996规定,甜蜜素用于特殊营养品必须获得中央主管机关核准,一个正常人以70kg体重为例,每人每天最大允许摄入量为770mg。 CT-1Plus电位滴定仪技术参数:测定范围及示值精度:电位:±1024mV ,精度: 0.01mV;PH: 0 -14pH,精度:0.001pH;温度:0-100℃,精度:0. 1℃;滴定控制精度:20ml高精度计量管(标配):0.001ml 10ml高精度计量管(选配):0.0005ml 滴定类型:酸碱滴定,氧化还原滴定,极化滴定,PH值滴定,卡尔费休滴定,机器视觉识别、颜色滴定;数据存储:方法数量不限,数据结果数量不限;GLP/GMP规范:电极的校正设置,校正周期记录;U盘存储防伪PDF实验报告;滴定管校正功能,校正记录;用户组及用户权限设置,及用户操作记录;
  • 卫生部扩大部分食品中添加剂使用量
    2012年 第1号   根据《中华人民共和国食品安全法》和《食品添加剂新品种管理办法》的规定,经审核,现批准苯甲酸及其钠盐等17种食品添加剂和酪蛋白磷酸肽等4种营养强化剂扩大使用范围及用量,批准食品工业用加工助剂珍珠岩可作为助滤剂用于淀粉糖工艺。   特此公告。   二○一二年一月十日   附件1:苯甲酸及其钠盐等17种扩大使用范围及用量的食品添加剂 名称 类别 食品分类号 食品名称/分类 最大使用量(g/kg) 备注 1. 苯甲酸及其钠盐 防腐剂 14.04.02.01 特殊用途饮料(包括运动饮料、营养素饮料等) 0.2 以苯甲酸计 2. 番茄红素(合成) 着色剂 01.01.03 调制乳 0.015 以纯番茄红素计。 01.02.01 发酵乳 0.01506.06 即食谷物 ,包括碾轧燕麦(片) 0.05 07.0 焙烤食品 0.05 16.01 果冻 0.05 以纯番茄红素计。 如用于果冻粉,按冲调倍数增加使用量。 3. 环己基氨基磺酸钠(又名甜蜜素),环己基氨基磺酸钙 甜味剂 07.01 面包 1.6 以环己基氨基磺酸计 07.02 糕点 1.6 4. 焦磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 5. 焦糖色(苛性硫酸盐法) 着色剂 15.01.04 威士忌 按生产需要适量使用 6. 焦糖色(亚硫酸铵法) 着色剂 14.05.03 植物饮料类(包括可可饮料、谷物饮料等) 0.1 7. 可可壳色 着色剂 07.01 面包 0.5 8. 磷酸三钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 9. 六偏磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 10. 麦芽糖醇和麦芽糖醇液 甜味剂 04.01.02 加工水果 按生产需要适量使用 06.10 粮食制品馅料 12.10.02 半固体复合调味料 11. 日落黄及其铝色淀 着色剂 14.04 水基调味饮料类 0.1 以日落黄计 12. 氢氧化钙 酸度调节剂 01.01.03 调制乳 按生产需要适量使用 13. 三氯蔗糖 甜味剂 04.05.02 加工坚果与籽类 1.0 14. 山梨酸及其钾盐 防腐剂 09.04 熟制水产品(可直接食用) 1.0 以山梨酸计 09.06 其他水产品及其制品 15. 山梨糖醇和山梨糖醇液 甜味剂 04.01.02.05 果酱 按生产需要适量使用 07.04 焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料) 按生产需要适量使用 16. 甜菊糖苷 甜味剂 03.0 冷冻饮品 0.5 16.01 果冻 17. 辛烯基琥珀酸淀粉钠 其他 13.01.01 婴儿配方食品 1 作为DHA/ARA 载体,以即食食品计。 13.01.02 较大婴儿和幼儿配方食品 50   附件2:酪蛋白磷酸肽等4种扩大使用范围及用量的营养强化剂 名 称 类别 食品分类号 食品名称/分类 使用量 备注 1. 酪蛋白磷酸肽 营养强化剂 01.01.03 调制乳 ≤1.6 g/kg 01.02.02 风味发酵乳 2. 聚葡萄糖 营养强化剂 13.01 婴幼儿配方食品 15.6-31.25 g/kg 3. 维生素D 营养强化剂 14.02.03 果蔬汁(肉)饮料(包括发酵型产品) 2-10 μg/kg 4. 左旋肉碱(L-肉碱) 营养强化剂 14.06 固体饮料类 6-30 g/kg
  • 全国兽药残留专家委员会发布《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等20项兽药残留标准征求意见稿
    各相关单位:依据《食品安全国家标准审评委员会章程》有关要求,我办组织起草了《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等16项兽药残留国家标准、《食品安全国家标准 水产品中27种性激素残留量的测定 液相色谱-串联质谱法》(GB 31656.14-2022)等4项标准修改单,现公开向社会征求意见,请提出具体修改意见和理由,并通过电子邮件形式反馈。征询截止日期2024年5月15日。联系人:张玉洁电 话:010-62103930邮 箱:syclyny@163.com附 件:1.食品安全国家标准兽药残留标准征求意见表2.《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》3.《水产品中苯甲酰脲类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》4.《鱼可食性组织中水杨酸残留量的测定 液相色谱-串联质谱法(征求意见稿)》5.《河鲀、鳗鱼和烤鳗中18种β-受体激动剂残留量的测定 液相色谱-串联质谱法(征求意见稿)》6.《蜂产品中克百威残留量的测定 液相色谱-串联质谱法(征求意见稿)》7.《动物性食品中四环素类、磺胺类和喹诺酮类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》8.《动物性食品中氨基糖苷类药物残留量的测定液相色谱-串联质谱法(征求意见稿)》9.《动物性食品中吩噻嗪类药物残留量测定 液相色谱-串联质谱法(征求意见稿)》10.《动物性食品中异丙嗪残留量的测定 液相色谱-串联质谱法(征求意见稿)》11.《动物性食品中碘醚柳胺残留量的测定 液相色谱-串联质谱法(征求意见稿)》12.《动物性食品中甲氧苄啶、二甲氧苄啶和二甲氧甲基苄啶残留量的测定 液相色谱-串联质谱法(征求意见稿)》13.《动物性食品中氮哌酮及其代谢物残留量的测定液相色谱-串联质谱法(征求意见稿)》14.《动物性食品中地克珠利和托曲珠利砜残留量的测定 高效液相色谱法(征求意见稿)》15.《动物性食品及尿液中同化激素类药物多残留的测定 液相色谱-串联质谱法(征求意见稿)》16.《奶及奶粉中吩噻嗪类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》17.《动物尿液中23种β-受体激动剂残留量的测定液相色谱-串联质谱法(征求意见稿)》18.《食品安全国家标准 水产品中27种性激素残留量的测定液相色谱 串联质谱法》(GB31656.14-2022)修改单19.《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》(GB31658.8-2021)修改单20.《食品安全国家标准 动物性食品中氨基甲酸酯类杀虫剂残留量的测定 液相色谱-串联质谱法》(GB31658.10-2021)修改单21.《食品安全国家标准 动物性食品中β-受体激动剂残留量的测定 液相色谱-串联质谱法》(GB31658.22-2022)修改单
  • 默克生命科学植物提取标准物质突破2千种
    https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news生姜“七步之内必有芳草” 传说中神农尝百草以辨药性,一天神农误食毒蘑菇昏迷,醒来时发现自己躺倒的地方有一丛尖叶子青草,散发着香气。神农拔了这株草,连同它的根茎放在嘴里嚼。过后竟然中毒的症状全没了。神农姓姜,于是给这株救命草取名为“生姜”,意思是使自己起死回生。而今,生姜成为中国人餐桌上重要的调料。 青蒿“呦呦鹿鸣,食野之蒿。我有嘉宾,德音孔昭。”东晋葛洪所著的《肘后备急方》即有“青蒿方”用于治疗疟疾的记录。现代中国女药学家屠呦呦因开创性地从中草药中分离出青蒿素用于疟疾治疗而获得2015年诺贝尔生理学奖和医学奖。屠老师数十年的研究,成功研发出青蒿素和双氢青蒿素,挽救了全球数百万人的生命。草本植物-青蒿跨越千年而又熠熠生辉。 不断发展的现代科技,使人们能够不断了解、开发和利用植物的奥秘。植物提取物作为膳食补充剂、中草药品以及日化补充剂的良好来源,也在全球范围内越来越受欢迎。 神农尝百草的年代已经不复存在,可靠的标准物质在植物化学品成分的准确鉴定和定量测定中越发重要,成为了安全和质量的保障基石。 目前,默克生命科学可提供超过2,000种植物提取标准品及认证参考物质, 200多种不同植物属别,均已通过详尽测试,以确定其特性和色谱纯度,用于植物提取物的定性/定量分析检测和质量控制。此外,今年新增约200种植物提取标准品,包括Cerilliant® 植物提取物单标和混标CRM、分析标准品。同时我们和PhytoLab、HWI Analytik杰出的植物提取标准品生产商全球合作,极大地丰富了植物提取标准品产品线。选择植物提取标准品,选择默克Supelco。 HPTLC测定甜菊糖苷类提取物如下是经过样品前处理,根据USP 方法使用Merck HPTLC(高效薄层板) 分别在UV 366nm 和白光下分别对瑞鲍迪苷D、A、C、甜菊糖苷、瑞鲍迪苷B、杜尔可苷A、甜菊双糖苷和甜叶菊提取物标准品(HWI),以及甜叶菊叶1、甜叶菊叶2测定。更多分析细节及应用方案,欢迎随时联系我们。 产品描述包装货号生姜中6种姜辣素和姜烯酮混标1mLG-027绿茶8种儿茶素混标1mLG-016卡瓦胡椒9种混标1mLK-0076种大麻酚混标1mLC-218青蒿素10mg69532双氢青蒿素50mgD7439叶绿素A1mg96145对-香豆素50mg55823矢车菊素葡萄糖苷氯化物10mgPHL89616瑞鲍迪苷 A20mgPHL80067全缘千里光碱5mgPHL83968滨蓟黄苷10mgPHL85726柽柳黄素10mgPHL85778苦艾素10mgPHL84170积雪草苷 B10mgPHL84263蜂斗菜酸10mgPHL84767富马原岛衣酸5mgPHL82266 点击此处,了解更多植物提取标准品。https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news
  • 广东省农业标准化协会发布《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》等2项团体标准征求意见稿
    各有关单位及专家:由广东省农业科学院农业质量标准与监测技术研究所等单位提出的《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》《兽药产品中8种药物含量的同时测定 高效液相色谱-二极管阵列法》等2项团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿(见附件1)进行审查和把关,提出宝贵意见建议,并将意见反馈表(见附件2)于2023年8月23前以邮件或传真的形式反馈至协会秘书处,逾期未回复按无意见处理。感谢您对协会工作的大力支持!附件1:《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》征求意见稿《兽药产品中 8 种药物含量的同时测定 高效液相色谱-二极管阵列法》征求意见稿附件2:团体标准征求意见反馈表(联系人:钱波;电话/传真:020-85161829;邮箱:gdnybzh@163.com) 广东省农业标准化协会2023年7月24日附件1:兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法-征求意见稿.pdf兽药产品中8种药物含量的同时测定 高效液相色谱-二极管阵列法-征求意见稿.pdf附件2: 团体标准征求意见反馈表.doc
  • 原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」
    原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼郭藤 史碧云 高立红原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 低聚糖春节刚刚过去,忙碌了一年的你,放假在家面对各种美食糖果是否自控力显得不够了?在工作和生活中我们时常会看到“寡糖”或者“低聚糖”这个词,加了低聚糖的饮品、食品,牛奶本身也含有非常多种低聚糖,营养师给出的饮食指南中常常提到用富含功能性低聚糖的食物代替蔗糖的建议,许多保健品中也宣称添加了低聚糖,生病去医院也会经常输葡萄糖,那么,今天我们就了解一下低聚糖吧。寡糖(Oligosaccharide),又称低聚糖,为2-10个单糖分子通过糖苷键聚合而成的碳水化合物。低聚糖集营养、保健、食疗于一体,广泛应用于食品、保健品、饮料、医药、饲料添加剂等领域,因此糖类化合物的分离分析是糖学研究的热点之一,同时具有很大的挑战性,主要是由于糖类化合物结构的“微观不均一性”,存在大量的位置异构体和差向异构体,使其分离极其困难。由于寡糖分子的极性非常大,在很多类型的色谱柱上,保留表现都不是很理想,色谱峰形差强人意,尤其寡糖有非常多同分异构体存,难以实现较好分离。今天我们就给大家介绍一套非常适合寡糖的分析方法和流程: 基于目标物的化学特征可知,离子色谱对糖类物质很好的保留和分离效果,国内外相关文献报道已有很多,一些糖测定标准方法也是使用离子色谱法,结合质谱具有高灵敏度、高通量和高选择性等优势,将离子色谱与质谱联用,二者强强联合,可以解决寡糖等强极性化合物分析诸多难题,目前尚属于较新的应用技术,本实验建立了基于ICS 5000+-TSQ Altis分析不同聚合度寡糖样本的方法和流程,并且取得了非常好的结果,该方案可一次进样同时检测1~10不同聚合度的寡糖,线性范围跨越5个数量级,回归曲线的可决系数(R2)达到0.9999,并且有you秀的重复性,相关传统方法具有不可比拟的优势,是一种更可靠、前沿的分析方法。图1. ICS-5000+离子色谱-TSQ Altis三重四极杆质谱仪联用示意图下面,我们就以某样品为例展示寡糖的检测结果,该样品为不同聚合度寡糖混合物,M1/G1~M10/G10代表聚合度为1~10:图2.聚合度1~10寡糖样本离子流图(点击查看大图) 表1. M1/G1~M10/G10寡糖重复进样5次的RSD图3. 代表性化合物(M1/G1)的标准曲线及回归方程(点击查看大图)总结看完之后是不是对ICMS在寡糖研究中的表现十分惊叹呢?赶快扫码获得应用笔记,使用起来吧!糖类是一类结构复杂的生物分子,它不仅是生物体储存和释放能量的关键物质,更在生理和病理过程中扮演重要的角色,对于更多其它单糖或者低聚糖以及它们在生物样本中的检测,飞飞也可以帮你实现,精彩下期继续哦~扫二维码获得应用笔记
  • 《中国药典》国家药品标准升级:多种中药新增特征图谱检测项
    近日,药典委发布了多项国家药品标准草案的公示,在标准草案公示修订稿中能够发现有多种中药新增了特征图谱检测项,其中包括有桂林西瓜霜、刺五加胶囊、芪参益气滴丸以及复方丹参滴丸等。以下是上述四种中药修订的主要内容:关于桂林西瓜霜国家药品标准草案的公示此次修订稿拟修订桂林西瓜霜国家药品标准,标准编号:《中国药典》2020版一部。此次公示为期一个月,相关人员可在线对草案进行反馈。该修订稿由桂林三金药业股份有限公司和广西壮族自治区药品检验研究院共同起草,山东省食品药品检验研究院进行复核。以下为公示原文:https://www.chp.org.cn/?#/business/standardDetail?id=66a06334bd8c456ae3a1c8ff以下为本次修订的主要内容有(具体可见文末附件1):1.【制法】将辅料甜菊素的名称规范为甜菊糖苷。 2.【特征图谱】新增了特征图谱检测项关于刺五加胶囊国家药品标准草案的公示此次修订稿拟修订刺五加胶囊国家药品标准,标准编号:《中国药典》2020版一部。此次公示为期两个月,相关人员可在线对草案进行反馈。以下为公示原文:https://www.chp.org.cn/?#/business/standardDetail?id=6690ef36bd8c456ae3a1bf0c以下为本次修订的主要内容有(具体可见文末附件2):1.增加制订了【特征图谱】项。2.修订了【含量测定】项含量限度。将本品每粒含紫丁香苷(C17H24O9)不得少于0.60mg 修订为0.68mg;刺五加苷E(C34H46O18)不得少于 0.36mg 修订为 0.40mg。关于芪参益气滴丸国家药品标准草案的公示此次修订稿拟修订芪参益气滴丸国家药品标准,标准编号:《中国药典》2020版一部。此次公示为期三个月,相关人员可在线对草案进行反馈。以下为公示原文:https://www.chp.org.cn/?#/business/standardDetail?id=6642fe88bd8cb5ee2118a612以下为本次修订的主要内容有(具体可见文末附件3):1.【鉴别】项,拟修订三七、降香油的薄层鉴别方法。2. 拟新增【指纹图谱】项,方法同丹参含量测定。3.【含量测定】项,拟修订丹参的含量测定方法,修订了色谱条件、对照品及供试品溶液的制备等。4.【规格】项,拟按照中成药规格表述技术指导原则规范。5.拟修订后附降香油标准中的折光率。关于复方丹参滴丸国家药品标准草案的公示此次修订稿拟修订复方丹参滴丸国家药品标准,标准编号:《中国药典》2020版一部。此次公示为期三个月,相关人员可在线对草案进行反馈。以下为公示原文:https://www.chp.org.cn/?#/business/standardDetail?id=6645b613bd8cb5ee2118a9b4以下为本次修订的主要内容有(具体可见文末附件4):1. 新增了三七的指纹图谱。2. 修订了丹参的指纹图谱。3. 修订了三七的鉴别方法。(见原文)4. 修订了冰片的鉴别方法。(见原文)附件1:桂林西瓜霜公示稿.pdf附件2:刺五加胶囊公示稿.pdf附件3:芪参益气滴丸国家药品标准草案公示稿.pdf附件4:复方丹参滴丸公示稿.pdf
  • 12月30日有36项食品安全国家标准将实施 ——含GB 8538-2022标准
    12月30日将有36项食品安全国家标准将实施——含GB 8538-2022标准由国家卫生健康委员会、国家市场监管总局发布的“《食品安全国家标准 食品添加剂 丁香酚》(GB 1886.129-2022)等36项食品安全国家标准和3项修改单的公告(2022年 第3号)”,在2022年12月30日将有36项食品安全国家标准和3项修改单将实施。在将要实施的标准中水和饮品有4项标准,以GB 8538-2022 食品安全国家标准 饮用天然矿泉水检验方法典型代表;食品添加剂和食品营养强化剂类的标准分别有11项和9项标准将实施,除此之外还有食品中的污染物、微生物、接触材料等标准也将实施。具体实施的食品安全国家标准如下:需要相关标准的,点击链接即可下载收藏↓食品标准(36个)GB 2762-2022 食品安全国家标准 食品中污染物限量 GB 1886.129-2022 食品安全国家标准 食品添加剂 丁香酚 GB 1886.355-2022 食品安全国家标准 食品添加剂 甜菊糖苷 GB 1886.356-2022 食品安全国家标准 食品添加剂 丙酸钙 GB 1886.357-2022 食品安全国家标准 食品添加剂 靛蓝铝色淀 GB 1886.358-2022 食品安全国家标准 食品添加剂 磷脂 GB 1886.359-2022 食品安全国家标准 食品添加剂 胶基及其配料 GB 1886.360-2022 食品安全国家标准 食品添加剂 茶多酚棕榈酸酯 GB 1886.361-2022 食品安全国家标准 食品添加剂 叶绿素铜 GB 1886.362-2022 食品安全国家标准 食品添加剂 ε-聚赖氨酸 GB 1886.363-2022 食品安全国家标准 食品添加剂 植物活性炭(稻壳活性炭) GB 1886.364-2022 食品安全国家标准 食品添加剂 越橘红 GB 1903.26-2022 食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(金枪鱼油) GB 1903.27-2022 食品安全国家标准 食品营养强化剂 低聚半乳糖 GB 1903.30-2022 食品安全国家标准 食品营养强化剂 多聚果糖 GB 1903.33-2022 食品安全国家标准 食品营养强化剂 5'-单磷酸胞苷(5'-CMP) GB 1903.40-2022 食品安全国家标准 食品营养强化剂 低聚果糖 GB 1903.55-2022 食品安全国家标准 食品营养强化剂 L-抗坏血酸钾 GB 1903.56-2022 食品安全国家标准 食品营养强化剂 硒酸钠 GB 1903.57-2022 食品安全国家标准 食品营养强化剂 柠檬酸锰 GB 1903.58-2022 食品安全国家标准 食品营养强化剂 碳酸锰 GB 4789.2-2022 食品安全国家标准 食品微生物学检验 菌落总数测定 GB 4806.8-2022 食品安全国家标准 食品接触用纸和纸板材料及制品 GB 4806.12-2022 食品安全国家标准 食品接触用竹木材料及制品 GB 5009.34-2022 食品安全国家标准 食品中二氧化硫的测定 GB 5009.211-2022 食品安全国家标准 食品中叶酸的测定 GB 5009.285-2022 食品安全国家标准 食品中维生素B12的测定 GB 5009.286-2022 食品安全国家标准 食品中纳他霉素的测定 GB 5009.287-2022 食品安全国家标准 食品中胭脂树橙的测定 GB 5413.20-2022 食品安全国家标准 婴幼儿食品和乳品中胆碱的测定 GB 7101-2022 食品安全国家标准 饮料 GB 8538-2022 食品安全国家标准 饮用天然矿泉水检验方法 GB 13102-2022 食品安全国家标准 浓缩乳制品 GB 14930.1-2022 食品安全国家标准 洗涤剂 GB 25192-2022 食品安全国家标准 再制干酪和干酪制品 GB 31604.53-2022 食品安全国家标准 食品接触材料及制品 5-亚乙基-2-降冰片烯迁移量的测定 GB 1886.87-2015 《食品安全国家标准 食品添加剂 蜂蜡》第1号修改单 GB 1886.92-2016 《食品安全国家标准 食品添加剂 硬脂酰乳酸钠》第1号修改单 GB 1886.179-2016 《食品安全国家标准 食品添加剂 硬脂酰乳酸钙》第1号修改单 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 聚焦学术前沿,2021年全国糖科学与糖工程学术会议暨产业论坛圆满闭幕!
    仪器信息网讯 7月11日,2021年全国糖科学与糖工程学术会议暨产业论坛在重庆圆满闭幕。大会为期两天,吸引了全国近千名代表参会,仪器信息网作为大会独家直播合作媒体进行了全程报道。11日,大会进入第二天日程,上午3个分会场同时进行,分别为糖链/糖蛋白生物合成与表达体系分会、蛋白质糖基化修饰分会、多糖/寡糖结构功能与应用技术分会,共邀请40位专家、学者阐述糖科学前沿最新研究成果,分享糖工程技术的最新进展。糖链/糖蛋白生物合成与表达体系分会现场蛋白质糖基化修饰分会现场多糖/寡糖结构功能与应用技术分会现场11日下午,中国科学院院士饶子和、中国科学院微生物研究所研究员金城担任大会主持。中国科学院院士、中国生物工程学会理事长高福作了题为:《蛋白糖基化在病毒感染与免疫识别中的作用》大会开场报告。大会报告现场中国科学院院士饶子和视频主持中国科学院微生物研究所研究员金城主持中国科学院院士、中国生物工程学会理事长高福报告题目:《蛋白糖基化在病毒感染与免疫识别中的作用》高福院士在报告中指出,人类的生命活动离不开糖,并讲述了糖生物学的重要性,蛋白翻译后修饰(PTM)、糖基化修饰对肿瘤免疫治疗的影响、SARS病毒S蛋白的N糖、O糖研究现状,重点介绍了和病毒感染相关的高度糖基化免疫球蛋白PD-1,从不同表达系统PD-1蛋白的稳定性差异等方面研究,总结出保守的N糖结构导致其特异性降低、PD-1抗体药研发要尽量避开糖基化修饰位点。高福院士在会上对本次会议给予高度的肯定,同时强调了糖科学与糖工程在生命科学研究中的关键作用以及在大健康产业应用中的广阔前景和迫切需求,呼吁更多的专家学者和产业界人士关注糖科学研究与糖工程产业。此外,中国科学院上海有机化学研究所研究员俞飚、东北师范大学教授周义发等特邀嘉宾分别作了精彩的大会报告。中国科学院上海有机化学研究所研究员俞飚报告题目:《Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus》细菌表面的脂多糖,是革兰氏阴性菌细胞壁的重要成分,其多糖大都具有显著的诱导炎症的效应,是细菌内毒素的主要成分。俞飚研究员在二糖水平上解决了其中难以构建的β-D-甘露糖苷键的大量合成,把正交保护的二糖砌块制备成给体和受体,通过较易控制的α-鼠李糖糖苷化反应得到四糖,通过迭代组装得到了全保护的8糖、16糖、32糖、64糖和128糖,并详细介绍了线性最长的128聚糖化学合成方法、表征方法和对免疫的影响。东北师范大学教授周义发报告题目:《天然活性多糖的构效关系研究策略》天然活性多糖构效关系的核心问题和研究策略在糖类研究中十分重要。周义发教授从建立组合法分离纯化多糖/寡糖的技术体系、综合分析方法、糖降解酶库等方面介绍了多糖构效关系的研究策略。以人参多糖为例,建立了系统纯化人参多糖的方法,得到了人参多糖的各种级分,将国内外人参多糖的研究工作关联起来。随后,张树政糖科学获奖者南方科技大学教授王鹏、西北大学教授关锋、浙江大学教授易文、中国科学院上海药物研究所研究员黄蔚作大会报告。南方科技大学教授王鹏报告题目:《为糖生物学提供工具》王鹏教授介绍了核心化学合成/酶促扩增(CSEE) 方法。从5个简单的单糖出发, 通过化学合成的方法得到8种末端含GlcNAc的N-Glycan核心结构, 然后 使用糖基转移酶通过遵循多种不同的生物合成途径来延长核心,以产生具有高度 多样性的含5-15单糖的寡糖化合物, 使用CSEE方法最终生产了含73个糖的N-糖文库(Chemical Science, 2015, 6, 5652) 。此外,王鹏教授还分享了在寡糖和糖肽合成的自动化 、合成糖组学、糖基化抗肿瘤药物等方面的研究成果。西北大学教授关锋报告题目:《基于组学的肿瘤糖生物学研究》在异常糖基化修饰与肿瘤特征的关系中,肿瘤细胞有自给自足生长信号、抗生长信号的不敏感、抵抗细胞死亡、潜力无限的复制能力、持续的血管生成、组织浸润和转移、避免免疫摧毁、促进肿瘤的炎症、细胞能量异常、基因组不稳定和突变等十大特征。关锋教授讲解了基于MALDI-TOF技术解析细胞/组织模型中糖链的表达差异,建立化学衍生结合质谱鉴别不同键型唾液酸链接的方法、乳腺癌中FUT8的分子调控机制、癌细胞平分糖链变化等。浙江大学教授易文报告题目:《乙酰葡萄糖胺修饰(O-GlcNAc)的研究》O-GlcNAc修饰在生物体内极其重要,具有单糖、可逆修饰、对环境敏感、修饰丰度低等特点。修饰协调胚胎发育、免疫应答及细胞分化。而修饰异常则会导致肿瘤病变、发育缺陷、代谢失衡。易文教授从如何捕捉O-GlcNAc修饰、如何确定O-GlcNAc修饰的蛋白、O-GlcNAc如何调控蛋白的功能等三个关键问题,介绍团队对O-GlcNAc的研究。中国科学院上海药物研究所研究员黄蔚报告题目:《蛋白糖基化调控方法及其在糖类药物研究中的应用》蛋白质糖基化可以提高药物治疗效果和降低毒副作用,但蛋白结构复杂多样,通过表达体系调控N-糖基化具有一定挑战性。黄蔚研究员建立和发展了细胞表面受体糖链编辑方法与技术,利用各类Endo糖苷酶及其突变体的底物选择性,分别对细胞表面糖链进行亚型选择性“删除”和“插入”操作,实现对膜蛋白糖基化的结构编辑。此外,黄蔚研究员还分享了在抗体药物糖基化的调控策略、基于糖基化的药物受体分子模型、GPCR等药物受体糖基化的研究。报告结束后,中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持产业论坛。本次论坛聚焦大健康背景下糖工程产业的机遇与挑战、糖科学研究转化中存在的问题以及未来糖工程产业的发展方向等。中国生物物理学会糖生物学分会会长王鹏、中科院微生物生理与代谢工程重点实验室主任陶勇、华熙生物科技股份有限公司首席科学家郭学平、东北师范大学生命科学学院院长周义发、北京同仁堂股份有限公司科学研究院部长范国强、国家糖工程技术研究中心副主任肖敏、澳门国际中草药糖科学研究学会会长赵宁、先正达集团(中国)生物农药产品线经理宋荣,共同上台参与论坛的讨论。中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持糖工程产业论坛现场论坛围绕糖科学研究如何与大健康产业的需求紧密结合、中医药多糖的发展趋势、在大健康背景下,企业未来的发展方向和糖工程的关系、糖工程技术转化的要点痛点与难点、糖工程产业未来3-5年的风口和高潜力发展地区、中国需要糖工程产业,年轻人创业如何选择,如何开始等问题展开热烈的讨论。为奖励做出优秀科研工作的研究生和博士后,大会特设“优秀墙报奖”颁奖环节。经过评审委员会的严格评选,共选出十名优秀墙报奖获奖者,分别是丁亚琦(中国科学院上海药物所)、程汉超(南方科技大学)、邓陶(上海交通大学)、闫振鑫(山东大学)、张念竹(大连医科大学)、项梦海(江南大学)、吴金澎(西北大学)、宋淑淑(复旦大学)、李瑞莲(中国科学院过程工程研究所)、刘思思(江南大学)。(排名不分先后)优秀墙报奖获奖者合影部分参展商后记糖工程技术是我国高新技术及新产业革命支柱之一,这次会议的召开推动了糖科学科研与产业的交流,加速了糖工程产业化的进程。为期两天的大会中,国内外糖化学、糖生物学及糖工程等领域知名的专家、学者和业界人士等在本次学术会议暨产业论坛上围绕“糖科学与糖工程产业”,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域的最新研究进展和成果,并就我国糖生物工程产业的现状及产业结构升级展开了多视角、跨学科的交流。内容丰富的学术报告和讨论热烈的产业论坛都让参会代表受益匪浅,让我们见识到糖科学领域的高水平发展和糖工程产业的蓬勃生机,相信通过糖科学与糖工程领域的众研究学者与产业同仁的共同努力,糖科学与糖工程的未来会绽放出更璀璨的光芒,让我们共同期待下一届将在珠海横琴举办的会议!
  • 惹争议!阿斯巴甜致癌?世卫组织7月14日将回应
    据媒体报道,世界卫生组织下属的国际癌症研究机构7月将宣布阿斯巴甜为“可能致癌物”,这将使该机构与食品行业和监管机构形成对立。消息人士说,阿斯巴甜将于今年7月首次被世界卫生组织(WHO)的癌症研究机构——国际癌症研究机构(IARC)列为“可能对人类致癌的物质”。市面上销售的诸多打上“无糖”标签的食品饮料中,实际上都使用了阿斯巴甜等甜味剂。阿斯巴甜是什么?什么产品中含有阿斯巴甜?阿斯巴甜安全吗?阿斯巴甜是一种人工甜味剂,多用于无糖饮料、口香糖、酸奶等。它的化学名称为天门冬酰苯丙胺酸甲酯,由化学家在1965年研制溃疡药物时发现,甜度是普通蔗糖的约200倍。阿斯巴甜尽管有强烈甜味,但热量几乎为零,而且没有糖精那样的苦味,因此被食品工业视为代替蔗糖的甜味剂。阿斯巴甜于1974年被美国食品和药物管理局批准用作甜味剂以及多种食品的添加剂。在欧洲,阿斯巴甜1994年获准作为蔗糖的替代物添加到食品中。迄今,阿斯巴甜在食品中的使用已在英国、西班牙、法国、意大利、丹麦、德国、澳大利亚和新西兰等近100个国家获得许可。世卫组织和联合国粮农组织食品添加剂联合专家委员会(JECFA)建议的阿斯巴甜日容许摄入量为每公斤体重40毫克以内。但围绕阿斯巴甜对健康的影响,数十年来争议不断。在致癌性方面,美国“公众利益科学中心”2013年发表声明说,动物实验发现阿斯巴甜可能导致白血病、淋巴癌等癌症,它不应出现在食品供应体系中。然而,尽管一些动物实验称阿斯巴甜有诱发肿瘤的作用,但JECFA、美国食品和药物管理局等此前评估认为阿斯巴甜对动物无致癌作用。美国癌症学会此前指出,多项人体研究表明,阿斯巴甜与癌症风险增加之间没有关联。世卫组织正在调查,下月出结果目前,IARC依据患癌几率的高低将致癌因素分为五类:1类:对人类有确认的致癌性2A类:对人类很可能有致癌性2B类:有可能对人类致癌3类:尚不能确定其是否对人体致癌4类:对人体基本无致癌作用根据媒体披露的信息,IARC将把阿斯巴甜列为“2B类”,即有可能对人类致癌。就在不久前,联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)也在调查阿斯巴甜对人体健康的影响,该机构于6月底召开会议,并且也将于7月14日宣布其调查结果。早在今年5月,世界卫生组织发布了一份关于非糖甜味剂的新指南,建议大多数人应避免食用安赛蜜、阿斯巴甜、糖精、三氯蔗糖、甜菊糖等非糖甜味剂。世卫组织在指南中表示,有证据表明,使用非糖甜味剂对减少成人或儿童的体脂没有任何长期益处。此外,长期使用非糖甜味剂可能会产生潜在的不良影响,例如导致成人患2型糖尿病、心血管疾病和死亡率的风险增加。据了解,上述指南所指的非糖甜味剂主要包括安赛蜜、阿斯巴甜、安美、甜蜜素、纽甜、糖精、三氯蔗糖、甜菊糖和甜菊糖衍生物等等。倘若世卫组织该篇指南中的结论最终被全面证实,主打非糖甜味剂的无糖饮料行业或将面临逻辑被颠覆的风险。为规范阿斯巴甜行业发展,我国出台了食品添加剂国家标准GB2760-2014对其应用范围和剂量进行了规定。根据该标准规定,阿斯巴甜可在胶基糖果、蜜饯、甜点、酸奶、风味饮料、冷冻饮品、面包、预制水产品、水产品罐头等共计41种食品中使用。同时我国也出台了以下检测标准,进一步管理阿斯巴甜。1、GB 1886.47-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)2、GB 22367-2008 食品添加剂 天门冬酰苯丙氨酸甲酯(阿斯巴甜)3、GB/T 22254-2008 食品中阿斯巴甜的测定4、NY/T 3473-2019 饲料中纽甜、阿力甜、阿斯巴甜、甜蜜素、安塞蜜、糖精钠的测定 液相色谱-串联质谱法5、GOST EN 12856-2015 食品. 采用高效液相色谱法测定安赛蜜, 阿斯巴甜和糖精
  • 韩国拟修订33种食品添加剂标准规格
    2010年9月3日,韩国食品药物管理局发布第2010-189号预告通知:食品添加剂标准和规范拟定修改案。   该拟定法规修订“食品添加剂一般标准”及33种食品添加剂使用标准。   (1)、婴幼儿配方及配方辅助食品使用食品添加剂的重新分类名单。   (2)、修订以下33种食品添加剂使用标准:亚硒酸钠Sodium selenite 钼酸铵ammonium molybdate 氯化铬chromic chloride 葡萄糖酸锌zinc gluconate 葡萄糖酸铜copper gluconate 腺苷-5'-单磷酸5'-adenylic acid 5-胞苷酸5'-cytidylic acid 5'-胞苷酸二钠disodium 5'-cytidylate disodium 5'-uridylate 硫酸铜cupric sulfate 硫酸锌zinc sulfate 萄糖酸亚铁ferrous gluconate 叶绿醌phylloquinone 葡萄糖酸锰manganese gluconate L-抗坏血酸硬脂酸L-ascorbyl stearate 甜菊甙steviol glycoside 酶改性甜菊糖enzymatically modified stevia 柠檬黄(其铝湖色) tartrazine (其铝湖色) 日落黄FCF (其铝湖色) 蓝光酸性红(其铝湖色) 赤藓红erythrosine 胭脂红 ponceau 4R 艳红(其铝湖色) 固绿。
  • “史上最严格的农药残留国家标准”2014年8月1日正式实施
    被称为&ldquo 最严格的农药残留国家标准&rdquo 《食品中农药最大残留限量》(GB2763-2014)将于明天(2014年8月1日)正式实施。《食品中农药最大残留限量》(GB2763-2012)同时废止。据悉,新标准规定了387种农药在284种(类)食品中3650项限量指标,较2012年颁布实施的标准新增加了65种农药、43种(类)、1357项限量指标,比以往更加严谨,基本与国际标准接轨。   农业部表示,新标准为387种农药规定了最大残留限量,基本覆盖了目前的常用农药品种,今后,覆盖面还会进一步扩大。   另外,还有91项食品检测标准将于8月1日起实施,这些行业标准中涉及到了气相色谱-质谱法、液相色谱-质谱/质谱法、PCR-DHPLC法、离子色谱法等多种检测方法。   具体表格参见如下: 序号 标准编号及标准名称 替代标准号 实施日期 1 SN/T 1738-2014 出口食品中虫酰肼残留量的测定 SN/T 1770-2006、SN/T 1738-2006 2014-08-01 2 SN/T 0152-2014 出口水果中2,4-滴残留量检验方法 SN/T 0152-1992 2014-08-01 3 SN/T 0183-2014 出口商品运输包装提把式集装袋检验规程 SN/T 0183-1993 2014-08-014 SN/T 0217-2014 出口植物源性食品中多种菊脂残留量的检测方法 气相色谱-质谱法 SN 0217-1993、SN 0219-1993、SN/T 0932-2000 2014-08-01 5 SN/T 0218-2014 出口粮谷中天然除虫菊素残留总量的检测方法 气相色谱-质谱法 SN 0218-1993 2014-08-01 6 SN/T 0273-2014 出口商品运输包装木箱检验检疫规程 SN/T 0273-2002 2014-08-01 7 SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法 SN 0293-1993 2014-08-01 8 SN/T 0645-2014 出口肉及肉制品中敌草隆残留量的测定 液相色谱法 SN 0645-1997 2014-08-01 9 SN/T 0683-2014 出口粮谷中三环唑残留量的测定 液相色谱-质谱/质谱法 SN 0683-1997 2014-08-01 10 SN/T 0707-2014 出口食品中二硝甲酚残留量的测定 液相色谱-质谱/质谱法 SN 0707-19972014-08-01 11 SN/T 1071-2014 出口食品中厌氧亚硫酸盐还原梭状芽孢杆菌检测方法 SN/T 1071-2002 2014-08-01 12 SN/T 1265-2014 国境口岸饮食、服务行业从业人员健康检查规程 SN/T 1265-2003 2014-08-01 13 SN/T 1504.1-2014 食品容器、包装用塑料原料 第1部分:聚丙烯均聚物中酚类抗氧剂和芥酰胺爽滑剂的测定方法 液相色谱法 SN/T 1504.1-2005 2014-08-01 14 SN/T 1504.3-2014 食品容器、包装用塑料原料 第3部分:乙烯聚合物和乙烯-醋酸乙烯酯(EVA)共聚物中丁基-羟基甲苯(BHT)的测定 气相色谱法 SN/T 1504.3-2005 2014-08-01 15 SN/T 3767.1-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第1部分:通用要求和定义 2014-08-01 16 SN/T 3767.2-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第2部分:筛选方法 2014-08-01 17 SN/T 3767.3-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第3部分:玉米Bt-11品系 2014-08-01 18 SN/T 3767.4-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第4部分:玉米Bt176品系 2014-08-01 19 SN/T 3767.5-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第5部分:玉米GA21品系 2014-08-01 20 SN/T 3767.6-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第6部分:玉米MIR162品系 2014-08-01 21 SN/T 3767.7-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第7部分:玉米MIR604品系 2014-08-01 22 SN/T 3767.8-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第8部分:玉米MON810品系 2014-08-01 23 SN/T 3767.9-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第9部分:玉米MON863品系 2014-08-01 24 SN/T 3767.10-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第10部分:玉米MON88017品系 2014-08-01 25 SN/T 3767.11-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第11部分:玉米MON89034品系 2014-08-01 26 SN/T 3767.12-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第12部分:玉米T-25品系 2014-08-01 27 SN/T 3767.13-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第13部分:玉米3272品系 2014-08-01 28 SN/T 3767.14-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第14部分:玉米59122品系 2014-08-01 29 SN/T 3767.15-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第15部分:大豆A2704-12品系 2014-08-01 30 SN/T 3767.16-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第16部分:大豆A5547-127品系 2014-08-01 31 SN/T 3767.17-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第17部分:大豆DP356043品系 2014-08-01 32 SN/T 3767.18-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第18部分:大豆 GTS40-3-2品系 2014-08-01 33 SN/T 3767.19-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第19部分:大豆MON89788品系 2014-08-01 34 SN/T 3767.20-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第20部分:水稻Bt-63品系 2014-08-01 35 SN/T 3767.21-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第21部分:水稻KF6品系 2014-08-01 36 SN/T 3767.22-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第22部分:水稻KF8品系 2014-08-01 37 SN/T 3767.23-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第23部分:水稻KMD品系 2014-08-01 38 SN/T 3767.24-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第24部分:水稻LLrice62品系 2014-08-0139 SN/T 3767.25-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第25部分:水稻M12品系 2014-08-01 40 SN/T 3767.26-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第26部分:水稻T1C-19品系 2014-08-01 41 SN/T 3767.27-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第27部分:水稻T2A-1品系 2014-08-01 42 SN/T 3767.28-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第28部分:小麦B73-6-1品系 2014-08-01 43 SN/T 3767.29-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第29部分:甜菜H7-1品系 2014-08-01 44 SN/T 3767.30-2014 出口食品中转基因成分环介导等温扩增(LAMP)检测方法 第30部分:油菜RT-73品系 2014-08-01 45 SN/T 3768-2014 出口粮谷中多种有机磷农药残留量测定方法气相色谱-质谱法 SN 0133-1992、SN 0136-1992、SN 0137-1992、SN 0144-1992、SN 0209-1993、SN 0351-1995、SN 0493-1995、SN 0495-1995、SN 0522-1996、SN 0585-1996、SN 0591-1996、SN 0651-1997、SN/T 1017.2-20012014-08-01 46 SN/T 3769-2014 出口粮谷中敌百虫、辛硫磷残留量测定方法 液相色谱-质谱/质谱法 SN 0209-1993、SN 0493-1995 2014-08-01 47 SN/T 3772-2014 进境宠物食品检验检疫监管规程 2014-08-01 48 SN/T 3774-2014 牛的饲养、运输、屠宰动物福利规范 2014-08-01 49 SN/T 3841-2014 出口贝类中诺如病毒和星状病毒的快速检测 反转录-环介导恒温核酸扩增(RT-LAMP)法 2014-08-01 50 SN/T 3844-2014 出口果汁中熊果苷的测定 2014-08-01 51 SN/T 3845-2014 出口火锅底料中多种合成色素的测定 2014-08-01 52 SN/T 3846-2014 出口苹果和浓缩苹果汁中碳同位素比值的测定 2014-08-0153 SN/T 3729.11-2014 出口食品及饮料中常见水果品种的鉴定方法 第11部分:橘、橙成分检测 PCR-DHPLC法 2014-08-01 54 SN/T 3847-2014 出口食品中苯二氮卓类药物的测定 液相色谱-质谱/质谱法 2014-08-01 55 SN/T 3848-2014 出口食品中茶多酚的检测方法 高效液相色谱法 2014-08-01 56 SN/T 3849-2014 出口食品中多种抗氧化剂的测定 2014-08-01 57 SN/T 3850.1-2014 出口食品中多种糖醇类甜味剂的测定 第1部分:液相色谱串联质谱法和离子色谱法 2014-08-01 58 SN/T 3850.2-2014 出口食品中多种糖醇类甜味剂的测定 第2部分:气相色谱法 2014-08-01 59 SN/T 3842-2014 出口食品中桂醛的液相色谱法 2014-08-01 60 SN/T 3843-2014 出口食品中红曲色素的测定 2014-08-01 61 SN/T 3851-2014 出口食品中磷脂的测定 比色法 2014-08-01 62 SN/T 3852-2014 出口食品中氰氟虫腙残留量的测定 液相色谱-质谱/质谱法 2014-08-01 63 SN/T 3853-2014 出口食品中曲酸的测定 液相色谱-质谱/质谱法 2014-08-01 64 SN/T 3854-2014 出口食品中天然甜味剂甜菊糖苷、甜菊双糖苷、甘草酸、甘草次酸的测定 高效液相色谱法 2014-08-01 65 SN/T 3855-2014 出口食品中乙二胺四乙酸二钠的测定 2014-08-01 66 SN/T 3856-2014 出口食品中乙氧基喹残留量的测定 2014-08-01 67 SN/T 3857-2014 出口食品中异恶唑草酮及代谢物的测定 液相色谱-质谱/质谱法 2014-08-01 68 SN/T 3858-2014 出口食品中异抗坏血酸的测定 2014-08-01 69 SN/T 3859-2014 出口食品中仲丁灵农药残留量的测定 2014-08-01 70 SN/T 3860-2014 出口食品中吡蚜酮残留量的测定 液相色谱-质谱/质谱法 2014-08-01 71 SN/T 3861-2014 出口食品中六氯对二甲苯残留量的检测方法 2014-08-01 72 SN/T 3862-2014 出口食品中沙蚕毒素类农药残留量的筛查测定 气相色谱法 2014-08-01 73 SN/T 3863-2014 出口食品中水溶性碱性着色剂的测定 液相色谱-质谱/质谱法 2014-08-01 74 SN/T 3864-2014 出口保健食品中二甲双胍、苯乙双胍的测定 2014-08-01 75 SN/T 3865-2014 出口保健食品中番茄红素的测定 液相色谱-质谱/质谱法 2014-08-01 76 SN/T 3866-2014 出口保健食品中酚酞和大黄素的测定 液相色谱-质谱/质谱法 2014-08-01 77 SN/T 3867-2014 出口保健食品中利莫那班的测定 液相色谱-质谱/质谱法 2014-08-01 78 SN/T 3868-2014 出口植物油中黄曲霉毒素B1、B2、G1、G2的检测-免疫亲和柱净化高效液相色谱法 2014-08-01 79 SN/T 3869-2014 出口水产品中雪卡毒素的测定 2014-08-01 80 SN/T 3870-2014 出口饮料和酒中一氯乙酸含量的测定 气相色谱法 2014-08-01 81SN/T 3872-2014 出口食品中四种致病菌检测方法 MALDI-TOF-MS法 2014-08-01 82 SN/T 3873-2014 出口药用植物中总汞的测定 2014-08-01 83 SN/T 3874-2014 出口药用植物中总砷的测定 2014-08-01 84 SN/T 3481.2-2014 食品接触材料 高分子材料 六溴环十二烷的测定 第2部分:气相色谱-质谱法 2014-08-01 85 SN/T 3875-2014 食品接触材料 高分子材料 偶氮二甲酰含量的测定 高效液相色谱法 2014-08-01 86 SN/T 3876-2014 食品接触材料 高分子材料 食品模拟物中2,4-二氨基-6-羟基嘧啶的测定 高效液相色谱法 2014-08-01 87 SN/T 3877-2014 食品接触材料 高分子材料 食品模拟物中2-氨基苯甲酰胺的测定 高效液相色谱法 2014-08-01 88 SN/T 3878-2014 食品接触材料 高分子材料 食品模拟物中偶氮二甲酰胺的测定 高效液相色谱法 2014-08-01 89 SN/T 3881-2014 进出口包装材料中砷、钡、镉、铬、汞、铅、硒、锑的检测 ICP-MS法 2014-08-01 90 SN/T 3880-2014 进出口气溶胶标签规则 2014-08-01 91 SN/T 4021-2014 出口鱼油和鱼饲料中毒杀芬残留量的检测方法 2014-08-01
  • 凝胶过滤层析中的葡聚糖凝胶
    葡聚糖凝胶简介月旭科技的交联葡聚糖产品名是Tandex,Tandex不溶于水,但有较强的亲水性,能迅速在水和电解质溶液中吸水膨胀,而且在碱性环境中比较稳定,所以用适当浓度的碱液(一般为0.2mol/L)可除去吸附在凝胶上的污染物。Tandex G是由葡聚糖和3-氯-1,2-环氧丙烷(交联剂)以醚键交联形成的具有三维多孔网状结构的高聚物,其交联度由交联剂的百分比决定。Tandex G的种类主要有:G10、G15、G25。G后面的阿拉伯数字表示每克干胶吸水量(g水/g干胶)的10倍。例如:Tandex G25表示该凝胶在吸水膨胀时每克干胶能吸水2.5g。G反映凝胶的洗水量、排阻极限及分离范围。例如:Tandex G10的网孔结构紧密,孔径小,吸水率低,排阻极限小,只能分离分子量较小的物质;而Tandex G25的孔径大,吸水率高,可分离分子量较大的物质。因强氧化剂和强酸可使Tandex中起交联作用的糖苷键水解断裂,所以在使用时要防止其与强氧化剂和强酸接触。在中性条件下,Tandex悬浮液可进行高温煮沸溶胀和消毒,其性质不受影响。在Tandex G25中加入亲脂性的羟丙基基团,形成烷基化葡聚糖凝胶Tandex LH型。它是一种同时具备吸附性和分子筛功能的独特凝胶介质,型号是Tandex LH-20,适用于有机溶剂洗脱,分离脂溶性物质,具有高处理量,可分离结构非常相近的分子,而且分离效果好。Tandex G系列葡聚糖凝胶产品性能Tandex LH-20产品性能
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制