当前位置: 仪器信息网 > 行业主题 > >

体外检测

仪器信息网体外检测专题为您整合体外检测相关的最新文章,在体外检测专题,您不仅可以免费浏览体外检测的资讯, 同时您还可以浏览体外检测的相关资料、解决方案,参与社区体外检测话题讨论。

体外检测相关的仪器

  • Maestro Edge/Pro 高通量微电极阵列系统-早发性帕金森体外模型研究 帕金森病 (PD) 的发病机制已被证实是由遗传和非遗传因素共同影响的。该研究者利用同卵双胞胎的iPSC进行PD疾病体外建模,并使用了Maestro MEA系统评估了健康组和患病组多巴胺能神经元的电生理功能表型特征。 Day30:正常组样本显示出频繁的神经元放电,帕金森病人样本则放电稀疏。Day52:正常组样本有清晰的同步性簇放电,表明其已经发展出有功能的神经网络。疾病样本放电率虽较Day30有所增加,但未发展出网络功能。 以上的结果提示我们PD可能与细胞自身可兴奋性缺陷或者缺乏来自周围细胞的突触驱动有关。神经网络功能实时检测攻略◆ ◆ ◆ ◆PART I 原理介绍为什么要检测神经电活动?研究证明构建体外神经元疾病模型是研究神经元功能和神经系统复杂疾病的一个有效策略。细胞成像、基因表达分析或者蛋白印迹这些方法能够全面地反应神经疾病模型的复杂性吗?神经网络功能又是怎样的?科学家们很难得到一个完整的答案。而使用Maestro MEA技术,任何科学家都能够快速简单地高通量检测活细胞的网络电活动。 什么是高通量微电极阵列? Axion的MEA板底部紧密嵌合了呈网格状的电极阵列。科学家们可以在电极上贴附培养神经元等可兴奋性细胞,它们会逐渐成熟并形成网络,并最终生成网络功能。这样MEA板上每个电极就都可以捕捉到毫秒级的神经元自发放电,为您在时间和空间两个维度提供精准的实验数据。您还可以通过电刺激或者光刺激进一步拓展实验设计。适用样本原代神经元细胞,iPSC衍生神经元,脑片,iPSC衍生神经球/类器官/迷你大脑三个层面了解神经网络功能神经细胞(橙色)经培养覆盖于固定在MEA板底部的电极(灰色)上。Maestro MEA系统检测神经网络的功能,包括电活动、同步性和网络震荡。Activity 电活动 如何判断神经元有没有功能?动作电位是一个重要标志。动作电位发放频率高表明其放电频繁;发放频率低意味着神经元电生理功能可能已受损。Synchrony 同步性 如何评判神经元间突触的功能?突触的存在使得神经元之间的联系成为可能。一个神经元的动作电位藉此得以影响到另一个神经元发放的可能性。同步性检测能够反映出突触连接的强弱,及不同的神经元在毫秒级别时间范围内产生同步放电的可能。Oscillation 网络震荡 如何确定样本的网络功能?有功能的神经网络是由兴奋性和抑制性神经元共同构成的。它的一个重要特征就是神经震荡,即不断变化中的神经活动高潮-低谷周期。而一个MEA孔内检测到的所有神经元电发放在时间轴上的规律就是该样本的震荡数据。PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。仅需三步:A将神经元培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地从三个层面(电活动、突触功能、网络震荡)定量分析神经元电活动。配套的其他分析软件,还能自动计算出多于25种类别的二级参数,供您进行数据深度挖掘。Maestro平台优势提供关键答案 与常规方法间接检测可兴奋性不同,Maestro MEA系统的测试直接反映神经元的动作电位。比较常见的间接技术如钙成像,无法捕获微小却重要的神经网络信号变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪细胞的可兴奋性,您才能回答这个关键问题:样本是否在以您期待的方式放电?无标记分析 Maestro MEA系统无创地检测神经元群落的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获神经元细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录神经元电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介神经疾病细胞模型,药物神经毒性筛选,神经细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控,神经球、脑类器官研究帕金森神经肌肉接头病脆性X综合症智障癫痫化合物神经毒理检测星形胶质细胞对神经元功能的影响精神分裂孤独症/自闭症脑瘫偏头痛蛇毒腺类器官前额叶痴呆精神类药物滥用/成瘾神经元代谢干细胞治疗/修复注意缺陷多动障碍/多动症高通量微电极阵列+光遗传的强大组合Axion公司创新的高通量光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • Maestro Edge/Pro 高通量微电极阵列系统-LQTS体外模型电生理检测 Long QT间期延长综合征也称为LQTS,该疾病可导致心室延迟复极,在心电图中表现为QT间期的延长。一个长的QT间期可扰乱心跳的速率,并引发心率失常,从而导致晕厥或猝死。 hERG钾通道对心脏复极至关重要。该通道基因突变会导致其外向电流降低,并导致心脏动作电位延长。 Vincenzo Macri 博士利用Axion的Maestro MEA系统对分化得到的两组iPSC-CM(对照组和hERG基因突变组)进行了场电位检测。 上图可以观察到hERG突变组的场电位时程(FPD)与搏动周期的延长。 在上图45s的MEA记录中,可以看到对照组(左)的心肌细胞展现出稳定且一致的场电位。而hERG突变组(右)的心肌细胞除了表现出符合预期的复极延迟和搏动周期不稳定外,还发生了类似于TdP的自发性快速搏动。◆ ◆ ◆ ◆CARDIAC ACTIVITY ASSAY心肌细胞功能实时监测秘籍◆ ◆ ◆ ◆PART I 原理介绍监测心肌细胞电活动有用吗?使用体外细胞模型已被证明是人类心脏疾病研究的一个有效且强大的策略。心肌细胞在可兴奋性或者(和)收缩性方面的细微变化正是导致很多这类疾病的根本原因。Maestro平台可实时捕获活细胞(如心肌细胞)的电活动,并提供重要的细胞功能性数据。为您的研究在众多竞争者中脱颖而出助一臂之力。 什么是高通量微电极阵列? 在微孔板底部的培养表面下方,Axion植入了紧致排列的电极网格阵列,创造出全球首款多孔微电极阵列测试板。那些具有电活性的细胞,如心肌细胞等,可以被培养生长在电极表面。它们会逐渐成熟并形成跳动的合胞体。使用Maestro技术,您就可以轻松地记录每个样本中每个电极检测到的自发或诱发的电活动,精度可以达到毫秒级别。由此,系统配套软件就能在时间和空间两个维度为您提供精准且丰富的实验数据。适用样本原代心肌细胞、iPSC衍生心肌细胞、iPSC衍生心脏类器官、心肌细胞球心肌功能‘全景’测试作为下一代高通量电生理记录系统,Maestro Edge和Pro能够对心肌细胞的四项最重要的生理功能进行分析,且全程实时无标记。现在只需一台设备,您就能同时‘看透’6/24/48/96个样本,全景无死角!PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。A将心肌细胞培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地分析心肌细胞电活动。Maestro平台优势一次实验,四项检测 仅需一次细胞培养,即可无创、实时地记录MEA板上每孔的数据,进行心肌细胞的四个方面键功能分析:[1] 动作电位, [2] 场电位, [3] 传播,[4] 收缩。提供关键答案 间接检测方法经常被用来推断心肌细胞功能。例如钙成像,该技术无法捕获微小却重要的钠离子通道功能的变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪心肌细胞的可兴奋性,您才能回答功能相关的关键问题。无标记分析 Maestro MEA系统无创地检测心肌细胞群体的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获心肌细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录心肌细胞电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介药物心脏毒性筛选,药物心脏安全评价(CiPA),心脏细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控。心肌缺血心脏脂肪酸氧化障碍长Q-T间期综合征(复极延迟综合征)评估iPSC-CMs功能变化临床前药物心脏安全评估(CiPA)长Q-T间期综合征(别称复极延迟综合征)心律不齐Maestro多孔微电极阵列+Lumos光遗传的强大组合 Axion公司创新的多孔板光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • 体外模拟消化系统(In Vitro Simulated Digestive System)是基于人(动物)体胃肠道生理过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、营养成分释放动力学特性及结构变化等研究的体外模型。体外模拟消化系统(In Vitro Simulated Digestion System)具有降低成本和时间,提高实验重复性和准确性,可人工监控、定点取样等优点,能够部分或完全替代活体实验,因而没有伦理限制,也避免了活体实验中较大的个体差异性。体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,动物营养及饲料研究等。特点:一台真正意义上的体外模拟消化系统o 形态学仿生o 运动学仿生o 胃肠环境仿生o 结果接近真实体内实验“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。产品优势: 1、一台真正意义上的消化系统:从物理动力学、化学消化性和生物形态全方位模拟生物体消化 系统,实现真正体外消化; 2、软件全程控制,无人值守工作; 3、重复性好,取样方便,在线测量; 4、可在消化道系统的不同部分、任意运转时间取出目标消化产物,用于检测; 5、个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口 腔、胃、小肠、大肠、十二指肠。 售后支持:全套体外模拟消化系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。实验结果示例:1.模拟消化过程中的物理变化体外消化-小肠消化产物微结构图示例(扫描式电子显微镜结果图)2. 模拟消化过程中的化学变化示例:体外消化-淀粉水解率随消化时间变化曲线3. DIVRS-II+的有效性实验由图可知,体外消化系统DIVRS-II+已接近体内实验(蛋白质颗粒实验)。实验结果可靠性高。 合作客户:The University of Queensland(昆士兰大学)、 Monash University(蒙纳什大学)、INRA(法国农业科学研究院) 、The University of Auckland(奥克兰大学)、苏州大学、 南昌大学 、南京农业大学、 江苏大学、浙江工商大学 、中国农业科学院 、福建农林大学 、天津科技大学 、中粮营养健康研究院、华东理工大学、华中农业大学参数:1、触屏操作,PLC控制系统。2、温度控制系统:温度在室温到40℃范围可调,控制精度为±1℃。3、鼠胃的压缩和蠕动频率为1-15 cpm 连续可调。4、十二指肠的蠕动频率为 1-40 cpm 连续可调。5、胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。 6、鼠胃的倾速度由0.1°/min 至12°/min 连续可调,倾斜范围0°至45°(逆时针)。 7、鼠胃模型:内容积为8-10 mL,平均厚度约为2 mm,抗拉强度约为475 psi,胃壁收缩 频率在1-15 cpm范围可调。 8、十二指肠模型:长度20 - 40 cm可选,外管径4-6 mm可选,壁厚约0.5 mm。
    留言咨询
  • 体外模拟消化,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 模拟体外消化,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。模拟体外消化原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外消化模拟,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外消化模拟原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外消化实验 400-860-5168转3662
    体外消化实验,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外消化实验测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外仿生消化 400-860-5168转3662
    体外仿生消化,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外仿生消化测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外消化模型 400-860-5168转3662
    体外消化模型,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外消化模型测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 模拟体外消化 400-860-5168转3662
    模拟体外消化,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 模拟体外消化测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外消化模拟 400-860-5168转3662
    体外消化模拟,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外消化模拟测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外仿生消化系统 400-860-5168转3662
    体外仿生消化系统,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外仿生消化系统测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外消化系统设备 400-860-5168转3662
    体外消化系统设备,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外消化系统设备测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外消化系统设备 400-860-5168转3662
    体外消化系统设备,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外消化系统设备测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外模拟消化 400-860-5168转3662
    体外模拟消化,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外模拟消化测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外消化模型 400-860-5168转3662
    体外消化模型,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外消化模型测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外仿生消化系统 400-860-5168转3662
    体外仿生消化系统,在体外条件下模拟体内消化吸收情况,可用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。体外消化系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,动物营养及饲料研究等领域。 其原理:认为不同物种消化系统的规模,特点不一样,同一种“小白鼠”不可能达到不同生物实验的要求;准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境;“准真实”的体外模拟胃肠道消化不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 该产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务。 该产品应用体外消化系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,药品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域:脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等动物营养 技术参数(部分)1、 触屏操作,PLC控制系统。2、 胃压缩和蠕动频率连续可调。3、 十二指肠的蠕动频率为1-40 cpm 连续可调。4、 胃液、肠液、胆汁的输入速率在20 μL/min -10 mL/min可调。5、 胃模型:内容积、胃壁收缩频率范围可调。6、 十二指肠模型:外管径4-6 mm可选,壁厚约0.5 mm。 体外仿生消化系统测试案例如下:1、新型大米和常规大米饭的体外胃肠道消化特性的比较研究2、富含膳食纤维的面条和馒头的体外胃肠消化特性3、燕麦和早餐粉的体外胃肠消化特性研究4、植物花粉体外消化过程中活性成分的生物可及性研究5、西藏特色食物在模拟成人和老人胃生理条件下的消化特性6、基于动态体外消化系统的食物GI指数测定7红富士苹果在成人和老人动态胃肠消化条件下的体外消化特性差异8、存储条件对酸奶和纯牛奶体外胃肠道消化特性的影响9、新型蛋白原料的体外胃肠道消化特性10、不同儿童乳制品的体外胃肠道消化特性评价11、不同婴儿配方奶粉和老年奶粉的体外胃肠道消化特性研究12、不同酪蛋白和乳清蛋白配比的再制奶酪和儿童牛奶的体外胃肠消化特性研究13、不同添加物对鱼肉制品营养品质的影响 14、不同鱼肉蛋白凝胶的体外胃肠道消化特性研究15、鱼糜制品的体外消化和胃排空特性研究16、不同海产品的体外胃肠道消化特性研究17、干燥处理方式对牛肉的体外消化和胃排空特性的影响18、肉制品经胃、肠消化后唾液酸含量的变化19、婴幼儿配方奶粉和老年奶粉的体外胃肠消化特性20、高内向乳液的体外胃肠道消化特性研究21、直链淀粉对W/O乳液在模拟胃肠消化过程中微观结构、流变学和脂肪酶解的影响22、纤维素醚对W/O乳液在体外消化过程中粘度、微观结构和脂肪分解的影响123、基于仿生胃肠道模型的发酵乳中益生菌存活率评价24、体外胃肠道消化过程中微胶囊益生菌的释放和存活特性研究25、益生菌固体饮料在动态体外胃肠消化过程中的存活特性研究26、溶出介质对某固体药物制剂溶出特性的影响27、不同剂型的口服固体药物制剂溶出曲线测定28、不同食物对某固体药物制剂胃肠溶出特性的影响29、不同营养餐的体外吸收特性研究30、DHA微胶囊消化产物的体外吸收特性31、奶酪的体外胃排空特性研究32、基于胃排空速度的不同食物的饱腹感指数测定
    留言咨询
  • 体外肠道模拟消化系统 MC-ABSF-II(高校实验室/科研专用/食品营养/动科/生命科学/人猪鼠单胃动物研究) 产品简介: 体外模拟消化系统SHIME普遍适用于高校、科研院所以及企业的肠道微生物实验室、营养学实验室,是体外肠道模型SHIME包括批量培养模型、连续发酵培养系统(升结肠、横结肠和降结肠)、人类肠道微生态模拟器(胃、小肠、升结肠、横结肠、降结肠)试验的理想工具。用于预测或评估化合物的可消化性、生物利用率、营养成分释放动力学特性及结构变化等研究的体外模型。可应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,动物营养及饲料研究等;肠道微生态内细菌功能和多样性的研究、体外模拟肠道抗生素对肠道菌群变化的药效研究、微生态制剂和益生素生产研究。本体外消化模拟装置可以对肠道环境的真实模拟及工艺参数的优化筛选以及肠道动力学过程各参数的在线监测及控制。具有降低成本和时间,提高实验重复性和准确性,可人工监控、定点取样等优点,能够部分或完全替代活体实验,因而没有伦理限制,也避免了活体实验中较大的个体差异性。应用领域:1、食品营养学领域:开发新的功能性食品或保健品,需要进行单胃动物(人、猪、鼠等)体外消化实验,测试 其消化及吸收情况、升糖指数以及对单胃动物肠道菌群的影响等;同时监测食物在日常进食中,与食物之间的消化相互影响;2、医药学领域,用来测试中药提取物或合成药物在单胃动物胃肠道消化吸收实验。对中药在单胃动物体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、单胃动物消化道疾病研究领域。 单胃动物体外消化模拟系统主要功能:1、控制“肠胃”恒温;温度30~40℃之间可控;精度:±0.1℃;智能PID控温;采用全新的半导体无水控温;2、控制肠胃内物理化学环境;蠕动,酸性,微正压,无氧环境;3、控制不同模拟部位酸性不同进行自动检测及控制;4、进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;5、检测消化过程中“食物”的化学变化情况;6、模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供单胃动物肠胃内多种微生物生长的环境;7、实现多种吸收方式模拟,根据不同部位吸收特点,进行主动吸收和被动吸收;8、消化液和分泌液的分泌量和速率可调控,范围0-150ml/min;参数可自行设定修改;9、实验重复率偏差<1%;吸收偏差<2%;10、操作组装简单,程序可自动分析数据,并绘制曲线,系统自带多种模拟工艺配方;11、服务端采用WFC远程通讯模式;12、客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;13、设备采用双屏数据同步显示,直观方便;14、云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;
    留言咨询
  • 体外肠道模拟消化系统 MC-ABSF-II(高校实验室/科研专用/食品营养/动科/生命科学/人猪鼠单胃动物研究) 产品简介: 体外模拟消化系统SHIME普遍适用于高校、科研院所以及企业的肠道微生物实验室、营养学实验室,是体外肠道模型SHIME包括批量培养模型、连续发酵培养系统(升结肠、横结肠和降结肠)、人类肠道微生态模拟器(胃、小肠、升结肠、横结肠、降结肠)试验的理想工具。用于预测或评估化合物的可消化性、生物利用率、营养成分释放动力学特性及结构变化等研究的体外模型。可应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,动物营养及饲料研究等;肠道微生态内细菌功能和多样性的研究、体外模拟肠道抗生素对肠道菌群变化的药效研究、微生态制剂和益生素生产研究。本体外消化模拟装置可以对肠道环境的真实模拟及工艺参数的优化筛选以及肠道动力学过程各参数的在线监测及控制。具有降低成本和时间,提高实验重复性和准确性,可人工监控、定点取样等优点,能够部分或完全替代活体实验,因而没有伦理限制,也避免了活体实验中较大的个体差异性。应用领域:1、食品营养学领域:开发新的功能性食品或保健品,需要进行单胃动物(人、猪、鼠等)体外消化实验,测试 其消化及吸收情况、升糖指数以及对单胃动物肠道菌群的影响等;同时监测食物在日常进食中,与食物之间的消化相互影响;2、医药学领域,用来测试中药提取物或合成药物在单胃动物胃肠道消化吸收实验。对中药在单胃动物体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、单胃动物消化道疾病研究领域。 单胃动物体外消化模拟系统主要功能:1、控制“肠胃”恒温;温度30~40℃之间可控;精度:±0.1℃;智能PID控温;采用全新的半导体无水控温;2、控制肠胃内物理化学环境;蠕动,酸性,微正压,无氧环境;3、控制不同模拟部位酸性不同进行自动检测及控制;4、进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;5、检测消化过程中“食物”的化学变化情况;6、模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供单胃动物肠胃内多种微生物生长的环境;7、实现多种吸收方式模拟,根据不同部位吸收特点,进行主动吸收和被动吸收;8、消化液和分泌液的分泌量和速率可调控,范围0-150ml/min;参数可自行设定修改;9、实验重复率偏差<1%;吸收偏差<2%;10、操作组装简单,程序可自动分析数据,并绘制曲线,系统自带多种模拟工艺配方;11、服务端采用WFC远程通讯模式;12、客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;13、设备采用双屏数据同步显示,直观方便;14、云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;
    留言咨询
  • 体外肠道模拟消化系统 (高校实验室/科研专用/食品营养/动科/生命科学/人猪鼠单胃动物研究) 产品简介: 体外模拟消化系统SHIME普遍适用于高校、科研院所以及企业的肠道微生物实验室、营养学实验室,是体外肠道模型SHIME包括批量培养模型、连续发酵培养系统(升结肠、横结肠和降结肠)、人类肠道微生态模拟器(胃、小肠、升结肠、横结肠、降结肠)试验的理想工具。用于预测或评估化合物的可消化性、生物利用率、营养成分释放动力学特性及结构变化等研究的体外模型。可应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,动物营养及饲料研究等;肠道微生态内细菌功能和多样性的研究、体外模拟肠道抗生素对肠道菌群变化的药效研究、微生态制剂和益生素生产研究。本体外消化模拟装置可以对肠道环境的真实模拟及工艺参数的优化筛选以及肠道动力学过程各参数的在线监测及控制。具有降低成本和时间,提高实验重复性和准确性,可人工监控、定点取样等优点,能够部分或完全替代活体实验,因而没有伦理限制,也避免了活体实验中较大的个体差异性。应用领域:1、食品营养学领域:开发新的功能性食品或保健品,需要进行单胃动物(人、猪、鼠等)体外消化实验,测试 其消化及吸收情况、升糖指数以及对单胃动物肠道菌群的影响等;同时监测食物在日常进食中,与食物之间的消化相互影响;2、医药学领域,用来测试中药提取物或合成药物在单胃动物胃肠道消化吸收实验。对中药在单胃动物体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、单胃动物消化道疾病研究领域。 单胃动物体外消化模拟系统主要功能:1、控制“肠胃”恒温;温度30~40℃之间可控;精度:±0.1℃;智能PID控温;采用全新的半导体无水控温;2、控制肠胃内物理化学环境;蠕动,酸性,微正压,无氧环境;3、控制不同模拟部位酸性不同进行自动检测及控制;4、进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;5、检测消化过程中“食物”的化学变化情况;6、模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供单胃动物肠胃内多种微生物生长的环境;7、实现多种吸收方式模拟,根据不同部位吸收特点,进行主动吸收和被动吸收;8、消化液和分泌液的分泌量和速率可调控,范围0-150ml/min;参数可自行设定修改;9、实验重复率偏差<1%;吸收偏差<2%;10、操作组装简单,程序可自动分析数据,并绘制曲线,系统自带多种模拟工艺配方;11、服务端采用WFC远程通讯模式;12、客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;13、设备采用双屏数据同步显示,直观方便;14、云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;
    留言咨询
  • 体外肠道模拟消化系统 MC-ABSF-II(高校实验室/科研专用/生命科学/人动物研究) 产品简介: 体外模拟消化系统SHIME普遍适用于高校、科研院所以及企业的肠道微生物实验室、营养学实验室,是体外肠道模型SHIME包括批量培养模型、连续发酵培养系统(升结肠、横结肠和降结肠)、人类肠道微生态模拟器(胃、小肠、升结肠、横结肠、降结肠)试验的理想工具。用于预测或评估化合物的可消化性、生物利用率、营养成分释放动力学特性及结构变化等研究的体外模型。可应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,动物营养及饲料研究等;肠道微生态内细菌功能和多样性的研究、体外模拟肠道抗生素对肠道菌群变化的药效研究、微生态制剂和益生素生产研究。本体外消化模拟装置可以对肠道环境的真实模拟及工艺参数的优化筛选以及肠道动力学过程各参数的在线监测及控制。具有降低成本和时间,提高实验重复性和准确性,可人工监控、定点取样等优点,能够部分或完全替代活体实验,因而没有伦理限制,也避免了活体实验中较大的个体差异性。应用领域:1、食品营养学领域:开发新的功能性食品或保健品,需要进行单胃动物(人、猪、鼠等)体外消化实验,测试 其消化及吸收情况、升糖指数以及对单胃动物肠道菌群的影响等;同时监测食物在日常进食中,与食物之间的消化相互影响;2、医药学领域,用来测试中药提取物或合成药物在单胃动物胃肠道消化吸收实验。对中药在单胃动物体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、单胃动物消化道疾病研究领域。 单胃动物体外消化模拟系统主要功能:1、控制“肠胃”恒温;温度30~40℃之间可控;精度:±0.1℃;智能PID控温;采用全新的半导体无水控温;2、控制肠胃内物理化学环境;蠕动,酸性,微正压,无氧环境;3、控制不同模拟部位酸性不同进行自动检测及控制;4、进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;5、检测消化过程中“食物”的化学变化情况;6、模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供单胃动物肠胃内多种微生物生长的环境;7、实现多种吸收方式模拟,根据不同部位吸收特点,进行主动吸收和被动吸收;8、消化液和分泌液的分泌量和速率可调控,范围0-150ml/min;参数可自行设定修改;9、实验重复率偏差<1%;吸收偏差<2%;10、操作组装简单,程序可自动分析数据,并绘制曲线,系统自带多种模拟工艺配方;11、服务端采用WFC远程通讯模式;12、客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;13、设备采用双屏数据同步显示,直观方便;14、云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;
    留言咨询
  • 体外消化系统参数:1. 材质:不锈钢316L,高硼硅玻璃,硅胶管,ABS。选材确保设备经久耐用。2. 温度控制 ; 30~40℃之间可控;精度:±0.1℃;智能PID控温,采用全新的半导体无水控温;胃系统:模拟胃,完全模拟体内物理环境。全自动智能控制肠胃内物理化学环境;酸性,微正压,无氧环境;3. 进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;4. 模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供人体(动物)肠胃内多种微生物生长的环境;5. 模拟小肠吸收功能,可模拟小分子主动吸收功能。吸收物质<1000kDa;6. 消化液和分泌液的分泌量和速率可调控,范围0-1500ml/min;参数可自行设定修改;7. 胃蛋白酶的平均酶活浓度:252ug tyrosine.eq/ml.min8. 实验重复率偏差<1%;吸收偏差<2%。9. 各部位吸排方式:挤压和蠕动,模拟肠壁的蠕动收缩并促进“食物”进入和排出。10. 液体加入方式:采用高精度蠕动泵,分别控制模拟胃液、肠液、胆汁的输入速率及食糜排出速率。11. 客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;采用C#.net以 Framework 4.0框架开发。12. 设备采用双屏数据同步显示,直观方便。13. 云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;设备配置明细配置1体外肠道模拟设备控制系统 1台配置21000ml反应器 5套配置3补料瓶 15套配置4废液瓶 2套配置5配件 全套产品简介:为了满足各个科院院所和企事业单位对人体或家畜的模拟消化系统设备的需求,北京佳德精密科技有限公司联合各高校院所,一起谈论、设计、开发了体外肠胃消化模拟系统。该设备主要从“真实模拟”着手,全方面模拟人体(动物)体外肠胃的消化模拟过程。包含物理消化环境的仿真模拟,化学消化环境的仿真模拟,以及微生物消化过程的仿真模拟。通过各种高精度传感器和控制器,来检测及控制各种物理化学参数,同时提供肠胃微生物生长的“真实肠胃”条件。该设备的主要应用领域包含:食品、药品、功能性成分的消化代谢过程分析,病理学以及肠道益生菌等研究。产品开发的应用和意义:1、食品营养学领域,开发新的功能性食品或保健品,需要进行人体(动物)消化反应实验,测试其代谢情况以及对人体(动物)肠胃菌群的影响等;食物在人(动物)日常进食中,与食物之间的消化相互影响;2、医药学领域,可以测试中药提取物或合成药物消化反应实验。对中药在人体(动物)体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、人(动物)消化道疾病研究领域;动物饲料的开发研究等。科研人员通常通过活体动物进行上述领域的研究。不仅费用高昂,可重复性差,同时有悖伦理。 北京佳德精密科技有限公司研发人员们共同努力下,创新研发出人体体外肠道模拟系统,可完全替代活体动物实验。在多种高精度传感器和精密的执行单元功能控制下,可高度仿真人体肠胃消化吸收过程。降低实验成本,实验可重复性高。同时避免对动物的伤害。
    留言咨询
  • 体外消化模拟系统,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外消化模拟系统原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化系统,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化系统原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外消化模拟实验,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外消化模拟实验原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化系统设备,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化系统设备原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化实验步骤,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化实验步骤原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化实验,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化实验原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • ALI细胞体外暴露系统 400-860-5168转4586
    产品描述 ALI细胞体外暴露系统 当前,吸入毒理学研究仍以传统的在体动物试验为主,应用实验动物进行口鼻式吸入染毒或整体暴露染毒。然而动物试验操作复杂、周期长、成本较高,而且动物与人体之间存在种属差异、呼吸道结构功能差异等问题。随着 3R 原则的倡导及体外替代方法的发展,细胞体外暴露试验在吸入毒理学研究中的应用越来越多,在欧盟,细胞体外暴露试验已应用于替代化学品及化妆品领域的动物试验研究,进而在细胞水平了解毒理、生理及药理上的变化影响。细胞体外暴露试验用于毒性评估的体外替代试验用时短,试验条件和因素较为可控,试验设计相对方便;通过对离体细胞或组织的培养,可以对受试物毒性或其他相关特性进行准确、定量的研究。传统细胞体外暴露方法是需要暴露的物质溶于培养液,然后到达细胞表面,通过细胞与培养液相互作用的方式进行进行染毒实验。对于一些细胞,如肺内上皮细胞,这种方式有别于真实的气液界面暴露环境,且暴露效率较低。特别是对于含颗粒物的气体来说,无法通过这种方式进行体外暴露。由于浸没式体外暴露方式的不足,科学家们开始探索一种新的能够更加真实模拟体内生物效应的体外暴露染毒技术。早在1975年,Voisin等人提出的气液界面体外暴露染毒(ALI, air/liquid interface)的描述,这一描述为体外培养肺细胞的气液界面暴露(ALI)提供了依据。这一理论中细胞既可以通过底膜获取培养基,保证了细胞的体外存活率,又可实现与顶部与气体(含受试物质气溶胶)直接暴露。塔望科技可以为客户提供全面ALI细胞暴露系统,用以评估颗粒或气态污染物、气溶胶等对细胞毒性的影响。细胞通过 Transwell 膜技术进行 ALI 气液界面培养,继而应用暴露系统将其暴露于可吸入物质进行染毒。由于染毒时细胞表面暴露于染毒物质,膜基底面处于培养基中,因此该方式模拟了可吸入物质进入人体内的过程。几种暴露培养方式的对比:ALI气液界面培养、Transwell培养暴露、细胞培养皿培养暴露气/液界面培养与暴露,模拟真实的暴露环境,更好气溶胶分布和沉积 主要系统组成 ALI细胞体外暴露系统染毒物质的发生器:液体气溶胶发生器、干粉气溶胶发生器、香烟烟雾发生器、纳米粒子气溶胶发生器、PM2.5、气瓶(臭氧、H2S、SO2等)。气溶胶或气体的调理:监测并控制气溶胶的浓度和染毒剂量,系统能准确控制样品稀释与暴露流量;各孔道流量分配均匀。细胞恒温培养模块:Transwell小室安装方便,培养液可以动态循环供给,以保证细胞良好的生长。具有恒温功能,温控范围室温~50℃,控制精度:±0.1℃。每个模块,包含6个细胞培养小室。细胞培养模块采用金属材质,可完全高温高压消毒灭菌。废气处理系统:完善的废气处理,确保实验室安全,废气排放达到国家安全排放标准。可选择气溶胶浓度检测功能:气溶胶的浓度通过进口检测器实时监控,可通过液晶屏直接读取数据,也可通过电脑软件读取,数据可保存。软件监控系统:通过软件,对整体实验进行监测和控制。*我公司可以根据客户的特殊应用、特殊需求提供功能定制服务,也可以提供相关的实验服务,详情请来电咨询,电话:021-51537683.
    留言咨询
  • 体外消化系统参数:1. 材质:不锈钢316L,高硼硅玻璃,硅胶管,ABS。选材确保设备经久耐用。2. 温度控制 ; 30~40℃之间可控;精度:±0.1℃;智能PID控温,采用全新的半导体无水控温;胃系统:模拟胃,完全模拟体内物理环境。全自动智能控制肠胃内物理化学环境;酸性,微正压,无氧环境;3. 进行酶解反应,在“肠胃”内进行消化酶的分泌模拟;4. 模拟小肠内分泌消化酶,底物进一步消化降解;同时,提供人体(动物)肠胃内多种微生物生长的环境;5. 模拟小肠吸收功能,可模拟小分子主动吸收功能。吸收物质<1000kDa;6. 消化液和分泌液的分泌量和速率可调控,范围0-1500ml/min;参数可自行设定修改;7. 胃蛋白酶的平均酶活浓度:252ug tyrosine.eq/ml.min8. 实验重复率偏差<1%;吸收偏差<2%。9. 各部位吸排方式:挤压和蠕动,模拟肠壁的蠕动收缩并促进“食物”进入和排出。10. 液体加入方式:采用高精度蠕动泵,分别控制模拟胃液、肠液、胆汁的输入速率及食糜排出速率。11. 客户端开发采用西门子可编程现场控制+上位机电脑端双重监测及控制;采用C#.net以 Framework 4.0框架开发。12. 设备采用双屏数据同步显示,直观方便。13. 云端开发系统,同时可在移动端通过 APP 进行操作,以及云数据存储;方便使用;设备配置明细配置1体外肠道模拟设备控制系统 1台配置21000ml反应器 5套配置3补料瓶 15套配置4废液瓶 2套配置5配件 全套产品简介:为了满足各个科院院所和企事业单位对人体或家畜的模拟消化系统设备的需求,北京佳德精密科技有限公司联合各高校院所,一起谈论、设计、开发了体外肠胃消化模拟系统。该设备主要从“真实模拟”着手,全方面模拟人体(动物)体外肠胃的消化模拟过程。包含物理消化环境的仿真模拟,化学消化环境的仿真模拟,以及微生物消化过程的仿真模拟。通过各种高精度传感器和控制器,来检测及控制各种物理化学参数,同时提供肠胃微生物生长的“真实肠胃”条件。该设备的主要应用领域包含:食品、药品、功能性成分的消化代谢过程分析,病理学以及肠道益生菌等研究。产品开发的应用和意义:1、食品营养学领域,开发新的功能性食品或保健品,需要进行人体(动物)消化反应实验,测试其代谢情况以及对人体(动物)肠胃菌群的影响等;食物在人(动物)日常进食中,与食物之间的消化相互影响;2、医药学领域,可以测试中药提取物或合成药物消化反应实验。对中药在人体(动物)体内消化过程中药物成分的化学变化进行监测。同时,也可以测试中药主要成分对人体(动物)肠胃菌群的影响。3、人(动物)消化道疾病研究领域;动物饲料的开发研究等。科研人员通常通过活体动物进行上述领域的研究。不仅费用高昂,可重复性差,同时有悖伦理。 北京佳德精密科技有限公司研发人员们共同努力下,创新研发出人体体外肠道模拟系统,可完全替代活体动物实验。在多种高精度传感器和精密的执行单元功能控制下,可高度仿真人体肠胃消化吸收过程。降低实验成本,实验可重复性高。同时避免对动物的伤害。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制