当前位置: 仪器信息网 > 行业主题 > >

提取工艺

仪器信息网提取工艺专题为您整合提取工艺相关的最新文章,在提取工艺专题,您不仅可以免费浏览提取工艺的资讯, 同时您还可以浏览提取工艺的相关资料、解决方案,参与社区提取工艺话题讨论。

提取工艺相关的论坛

  • 中药提取工艺资料

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31221]中药提取工艺资料[/url]

  • 【资料】枇杷叶中熊果酸的提取工艺研究

    对超声波辅助提取枇杷叶中的熊果酸进行较为系统的研究。选择乙醇体积分数、提取时间、液固比、提取次数、物料的粒子大小5 个影响因素,运用均匀设计法安排实验,以高效液相色谱测定熊果酸的含量。以提取率为实验指标,用自主提出的可视分析方法对多维空间实验数据进行分析,并且以20 倍原料量进行了尚佳工艺放大实验。最终确定最佳工艺范围为乙醇体积分数80%~100%、提取时间50~65min 和80~100min,提取次数1 次。此类提取中,液固比和物料的粒子大小对提取率影响复杂。

  • 【转帖】中药提取液浓缩新工艺和新技术进展

    中药提取液浓缩新工艺和新技术进展中药提取液的浓缩是中药制药的重要工序之一。目前存在着浓缩温度高,浓缩时间长,有效成分及挥发性成分有损失,一步浓缩难以实现高相对密度的质量要求,设备易结垢,废液排放等问题。为了解决这些问题,开发了一系列先进的中药提取液浓缩新工艺和新技术,主要包括:悬浮冷冻浓缩、渐进冷冻浓缩、自然外循环两相流浓缩、在线防挂壁三相流浓缩、反渗透、膜蒸馏、渗透蒸馏、大孔吸附树脂分离浓缩等。因为中药提取液体系非常复杂,有水提取液和醇提取液等 提取液除含有效成分外,还含有一定量的鞣质、蛋白、胶类、糖类和树脂等杂质,所以需要对这些浓缩新工艺和新技术各自的特点、适应性、工艺和技术成熟度等加以了解,从而选择保持中医药特色,具有很强的适应性,不存在各种浓缩问题,技术成熟度高的浓缩新工艺和新技术。分析了近年来出现的中药提取液浓缩新工艺和新技术的特点及应用价值,并提出了进一步努力的方向,以期为中药制药企业等选择合适的浓缩新工艺和新技术提供参考和借鉴。   [关键词]  中药 提取液 浓缩 进展 冷冻浓缩 蒸发浓缩 膜浓缩 树脂吸附   [中图分类号] R 283  [文献标识码] A  [文章编号] 100125302 (2006) 0320184204    中药制药一般包括提取、浓缩、纯化、干燥和制剂等。其中,提取液的浓缩是现代中药制药的关键单元操作之一。 为了提高浓缩效果和药品质量,近年来开发了许多有价值的中药浓缩新工艺和新技术。合理引进这些先进实用的共性技术和装置,可以提升中药制药业的科技含量和整体制造水平。对主要的浓缩新工艺和新技术进行分析和述评,以供选择参考。涉及的浓缩新方法有蒸发浓缩、冷冻浓缩、膜浓缩和吸附树脂分离浓缩等。

  • 【资料】微波辅助提取猕猴桃根多糖工艺优化

    以猕猴桃根为原料,研究其多糖的微波辅助提取工艺条件。采用单因素试验和正交试验,探讨料液比(猕猴桃根粉:蒸馏水)、提取温度、提取时间、微波功率等对猕猴桃根多糖提取率的影响,并以提取率为评价指标,优化提取工艺。实验结果表明:微波辅助提取猕猴桃根多糖的最佳工艺条件为料液比1:20(g/mL)、提取温度60℃、提取时间15min、微波功率600W,在此条件下猕猴桃根多糖的提取率为11.34%。

  • 中药提取物灭菌工艺研究

    在检测含糖量较高的提取物以及中草药粗提物时,常会发生菌落总数超标的问题,因此有必要在实验室引进简单易操作的灭菌技术。预期技术成果: ①灭菌工艺可以使含糖量较高的提取物或者粗提物的微生物标准符合《中国药典》一般要求。②程序简单且容易操作。■ 合作对接请站短联系。

  • 54.9 综合评分法优化樟帮炮制白芍饮片提取工艺

    54.9 综合评分法优化樟帮炮制白芍饮片提取工艺

    作者:罗晶;张凌;关媛媛;江雁; (江西中医学院药学院;)摘要:目的:探讨樟帮炮制白芍饮片中芍药苷和芍药内酯苷最佳提取工艺。方法:通过考察不同因素对芍药苷的影响,选定正交设计因素,以芍药苷、芍药内酯苷含量为指标,采用正交试验综合评分法优化樟帮炮制白芍饮片中芍药苷和芍药内酯苷提取工艺;通过反相高效液相色谱法进行含量测定,Diamonsil C18色谱柱(250 mm×4.6mm,5μm),流动相:乙腈-0.05%磷酸水梯度洗脱,流速1ml/min ,检测波长230 nm,柱温为25 ℃。结果:最佳提取条件为50ml乙醇(50%)、超声、白芍粉末(40目),30min。结论:本实验引入了综合指标隶属度的概念,将不同考察指标转变成具体数据,使之能综合出最优的提取工艺参数。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208201353_384659_1606903_3.jpg

  • 【求助】求书《天然药物提取及生产工艺》

    作 者】陈玉昆,汤华钊主编 【丛书名】 【形态项】 1005 【出版项】 科学出版社 , 2005 【ISBN号】 7-03-016396-6 / TQ464R977 【原书定价】 CNY648.00(上、中、下三卷) 【主题词】生物制品 药物 生产工艺 生物制品 药物 概况 【参考文献格式】陈玉昆,汤华钊主编. 天然药物提取及生产工艺 上卷. 科学出版社, 2005

  • 发酵、提取设备产品生产技术工艺应用现状、发展趋势及投资前景研究

    核心提示:简 介  技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国发酵简 介  技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国发酵、提取设备市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外发酵、提取设备生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高市场竞争力十分关键。  本报告通过参考大量专利文献对发酵、提取设备的工艺技术进展做了系统介绍,通过详细的调查和权威技术资料及相关情报的收集,为客户提供了发酵、提取设备产品核心技术应用现状、技术研发、工艺设备配套、高端技术应用等多方面的信息,对于企业了解各类发酵、提取设备产品生产技术及其发展状况十分有益。  本报告商业应用前景部分从发酵、提取设备产品的应用领域、下游产品、国内外生产现状、国内潜在生产厂家、国外生产厂家及规模、国内外产量走势、市场状况及预测、供需状况分析及预测、国内需求厂家及联系方式等诸多方面对发酵、提取设备产品市场状况及发展方向做了详细论述,可作为发酵、提取设备产品深加工技术发展趋势导向的重要决策参考。目 录第一章 发酵、提取设备产品简介  第一节 发酵、提取设备产品概述  第二节 发酵、提取设备产品特点  第三节 发酵、提取设备产品应用  第四节 发酵、提取设备产品技术指标第二章 中国发酵、提取设备产品发展现状分析  第一节 发酵、提取设备行业发展现状    一、2008年国内发酵、提取设备行业发展概况 年份产量增幅 2003年 2004年 2005年 2006年 2007年 2008年 2009年     二、发酵、提取设备行业发展历程三、国内发酵、提取设备行业企业竞争格局序号地区产量1**企业 2**企业 3**企业 4**企业 5**企业 ………… http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-70-1.gif  第二节 发酵、提取设备行业产业政策    一、产业政策    二、技术壁垒    三、产品进出口标准与认证  第三节 发酵、提取设备产品供求格局    一、2008年国内发酵、提取设备产销量对比http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-89-1.gif    二、2009年我国发酵、提取设备市场供求格局http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-41-1.gif  第四节 发酵、提取设备行业产业链构成模型分析    一、发酵、提取设备行业产业链构成      产业链分析,上下游状况,相关行业…    二、发酵、提取设备行业产业链模型分析第三章 2008-2009年发酵、提取设备产品生产技术应用现状分析  第一节 发酵、提取设备产品构成    一、发酵、提取设备行业产品分类标准    二、发酵、提取设备产品主要市场份额http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-41-1.gif  第二节 国内发酵、提取设备产品生产技术应用现状  第三节 国外发酵、提取设备产品生产技术应用现状    一、美国    二、日本    三、欧盟  第四节 我国发酵、提取设备产品技术应用成熟度分析  第五节 发酵、提取设备产品生产技术与应用市场关系  第六节 不同生产工艺优缺点比较分析第四章 2008-2009年发酵、提取设备产品生产工艺与研发分析  第一节 发酵、提取设备生产工艺介绍  第二节 国外发酵、提取设备生产工艺发展阶段比较  第三节 我国发酵、提取设备生产工艺创新路径  第四节 国内发酵、提取设备生产设备介绍  第五节 国内发酵、提取设备生产设备应用分析  第六节 我国发酵、提取设备技术研发分析第五章 国内外发酵、提取设备产品技术工艺研发动态与发展趋势分析  第一节 国内发酵、提取设备产品技术工艺研发动态  第二节 国外发酵、提取设备产品技术工艺研发动态    一、美国    二、日本    三、欧盟  第三节 2007-2008年国内外发酵、提取设备技术工艺研发成果回顾  第四节 2009-2012年发酵、提取设备国内外技术工艺研发趋势分析  第五节 发酵、提取设备产品现行技术同类替代技术发展

  • 【分享】金花茶叶多糖超声波辅助提取工艺优化和含量测定

    采用超声波辅助提取金花茶叶多糖(PCCT),在单因素试验的基础上,采用响应面分析法对PCCT 提取工艺进行优化研究,以多糖提取率为考察指标,使用苯酚- 硫酸法测定PCCT 含量。结果表明,最佳提取工艺条件为水料比46:1(mL/g)、温度87℃、提取时间54min、共提3 次,测得PCCT 的提取率4.39%,鲜叶PCCT 含量66.8mg/g。

  • 【原创大赛】泽泻多糖的提取工艺的优化

    【原创大赛】泽泻多糖的提取工艺的优化

    [b]摘要:目的:[/b][color=#000000]探索提取温度、液固比和提取时间对泽泻多糖产率的影响,得到提取泽泻[/color][color=#000000]多糖最优工艺条件。[/color][b]方法:[/b][color=#000000]用均匀设计实验优化泽泻[/color][color=#000000]多糖的提取工艺,用苯酚硫酸法测出每次实验所得多糖的纯度,再求得每次实验纯多糖的得率,然后应用回归分析的方法分析实验得出的数据,以纯多糖的得率为指标,对提取温度、液固比、提取次数和提取时间3个因素进行分析,得出最佳工艺条件,并进行验证。[/color][b]结果:[/b][color=#000000]实验得出茵陈多糖的最佳提取条件是:提取温度100℃、提取时间135 min、提取液固比40:1。[/color][b]结论:[/b][color=#000000]验证实[/color][color=#000000]验平均得率为8.83%,预测值是8.28%,二者很接近,说明我们得到的最佳工艺条件是可靠的。[/color]1前言[color=#000000]泽泻为泽泻科植物泽泻[i]Alsima orientalis(sam.)Juzep.[/i]的干燥块茎,分布在中国、韩国和日本等国。性味甘、淡、寒,归肾、膀胱经[sup][/sup]。作为常用中药,是六味地黄丸、龙胆泻肝丸、五苓散等临床常用重要方剂的主要组成[sup][/sup]。具有利水渗湿,泄热,化浊降脂等功效,用于治疗小便不利,水肿胀满,泄泻尿少,痰饮眩晕,热淋涩痛,高脂血症等症[sup][/sup]。1.1泽泻的化学成分泽泻中的三萜类化合物主要有:泽泻醇A、泽泻醇A-24-乙酸酯、泽泻醇B-23-乙酸酯、表泽泻醇A、11-去氧泽泻醇A、泽泻醇C、泽泻醇C-23-乙酸酯、16,23-氧化泽泻醇E、泽泻醇F、阿里泽泻醇A和阿里泽泻醇B等原萜烷型四环三萜[sup][/sup]。从生物途径归纳,三萜类都是由 23- 泽泻醇 B 衍生而来[sup][/sup]。中药泽泻中获得的倍半萜类化合物多数为愈创木烷型。现分离到的倍半萜化合物主要有:泽泻醇,环氧泽泻烯,Orientalol A,B,C,Sulfooriental A,B,C,D[sup][/sup]。Yamaguchi等首次从泽泻鲜品中分离出一个贝壳杉烷型四环二萜类化合物,并最终确定了绝对构型为(-)-16R-ent-kauranre-2,12-doine[sup][/sup]。彭国平等从泽泻中分离出两个新的贝壳杉烷型四环二萜类化合物:泽泻二萜醇(Oriediterpenol)及泽泻二萜醇苷 (Oriediter-penoside)[sup] [/sup]。泽泻除了萜类成分外,此外,泽泻还含挥发油、多糖、蒽醌、磷脂、蛋白质及淀粉等成分[sup][/sup]。如胡萝卜素-6-硬酸脂、β-谷甾醇、三十烷、正二十烷、卫矛醇、挥发油(内含糖醛)、少量生物碱、天门冬素、脂肪酸、树脂、植物凝集素、大黄素、酸性多糖,胆碱,以及大量淀粉、蛋白质、氨基酸和钾、钙、镁等金属元素[sup][/sup]。1.2 泽泻的药理作用现代研究表明,泽泻有明显的利尿,抑制肾结石形成,降血压,降血脂及抗动脉粥样硬化,抗脂肪肝,抗肾炎活性和调节免疫等作用[sup][/sup]。1.3立题依据多糖具有多种生物活性, 具有提高免疫, 降血糖,抗肿瘤, 抗病毒等功能, 被认为是构成生命的四大基本物质之一。由于其独特功能和较低的毒性, 多糖类化合物在抗衰老、 抗病毒和肿瘤治疗、 糖尿病治疗等方面有良好的应用前景。另外,多糖可以改善食品的食用品质、加工特性和外观特性, 可用于抑制脂质氧化, 稳定酸性饮料, 也可作为乳化剂等, 在食品中的用途十分广泛[sup][/sup]。目前已发现的天然多糖有几百种,其中植物多糖对肿瘤治疗及调节机体免疫力效果显著,同时还有治疗肝炎、抗衰老等药理作用,且毒副作用很小[sup][/sup]。由于泽泻的药理作用显著,而关于泽泻多糖研究的文献很少,因此对于泽泻多糖的研究也具有很大的意义。开发泽泻多糖产品,首先需要把多糖从泽泻中提取出来。笔者决定对泽泻多糖的提取工艺进行研究,对其提取条件进行优化,从而为泽泻多糖的深入开发利用提供实验依据。本课题我们就重点探讨泽泻多糖的最佳提取条件,通过对泽泻多糖提取过程中影响泽泻多糖产率、纯度的因素进行单因素实验,然后进行均匀设计实验,用线性回归的分析方法分析实验得出的数据,寻找泽泻多糖的最优化工艺条件。1.4提取方法的确定提取植物多糖的方法有多种,一般是采用水提醇沉法,采用水提醇沉法提取,可防止引起糖苷键的断裂[sup][/sup]。李小凤等[sup][/sup]通过单纯的水提醇沉法对泽泻多糖进行了提取和含量测定。此外,很多研究对多糖的水提醇沉工艺做了优化,如朱秀灵等[sup][/sup]采用超声波辅助提取银杏叶多糖;缪建等[sup][/sup]采用酶法结合水提醇沉法提取银杏叶多糖;金汝城等[sup][/sup]采用均匀设计优化超声波法提取黄芪多糖。由于实验设备有限,本实验采用水提醇沉法对泽泻多糖进行提取。[/color][color=#000000]2  实验材料2.1实验仪器FA2104N型电子分析天平(上海民桥精密科学仪器有限公司)HH-1数显恒温水浴锅(金坛市晶玻实验仪器厂)80-2离心机(上海荣泰生化工程有限公司)RE-52A旋转蒸发仪(上海亚荣生化仪器厂)GZX-9070电热恒温鼓风干燥箱(上海博讯实业有限公司医疗设备厂)DZF-6050真空干燥箱(巩义市予华仪器责任有限责任公司)SHD-Ⅲ型循环水式多用真空泵(保定市新区阳光科教仪器厂)BCD-223MT冰箱(河南新飞电器有限公司)722可见分光光度计(上海菁华科技仪器有限公司)24目,100目标准筛(浙江上虞市华丰五金仪器有限公司)2.2实验材料和试剂泽泻(河北省安国药材市场)无水乙醇(分析纯,天津市美琳工贸有限公司)蒸馏水(实验室自制)葡萄糖(分析纯,天津市科密欧化学试剂有限公司)苯酚(分析纯,天津市福晨化学试剂厂)浓硫酸(分析纯,北京化工厂)[/color][color=#000000]3实验方法3.1泽泻粗多糖的提取流程将预备好的泽泻放入70℃真空烘箱中干燥2h,粉碎取过24目筛,不可过100目筛的粉末,装在密封袋中置于干燥器中备用。泽泻多糖提取的实验流程如下:精密称定已制备的泽泻粉末5.000g于500mL圆底烧瓶中,加入规定液固比的蒸馏水,用恒温水浴锅T℃水浴加热不同时间,先用脱脂棉过滤得粗滤液,然后用布氏漏斗抽滤粗滤液,通过旋蒸仪旋转蒸发将所得滤液浓缩至约10mL,加95%乙醇30mL,置具塞锥形瓶中,冰箱4℃放置约18h,然后用10mL试管离心(3000rpm,10min),弃去上清液,得沉淀,于50℃、0.099MPa真空干燥箱中放置3.5h后,关闭电源,真空放置过夜。然后,将所得沉淀与离心管一起称重,通过差量法计算多糖产率。其中,液固比、水浴温度T、提取时间t及提取次数根据实验过程中考察因素的改变,作相应更改。粗多糖产率=粗多糖质量/泽泻样品质量×100%3.2 泽泻纯多糖含量的测定本课题中,泽泻提取工艺最佳条件分析中所用的是纯多糖含量,粗多糖的数值只是作为参考数值。本实验中是通过苯酚-浓硫酸反应使多糖显色,在紫外可见分光光度计490nm处测得吸光度,然后通过将数据代入当天测得的标准曲线中,计算出相应多糖浓度,从而计算出不同提取条件下泽泻中纯多糖的含量。3.2.1 标准曲线的绘制标准液的配制:称取葡萄糖0.1259g于100mL容量瓶中,加蒸馏水至刻度,摇匀得1.259g/L的储备液,分别精密量取储备液1.0mL、0.8mL、0.6mL、0.4mL、0.2mL,置于25mL的容量瓶中,加水至刻度,摇匀。则得五个不同浓度的标准液。配制5%苯酚溶液:称取苯酚1.2508g于烧杯中,用加热至约50℃的蒸馏水溶解,转移至25mL的容量瓶中,加水至刻度,摇匀,避光保存以备用。标准曲线的绘制:取2mL移液管,分别取2mL蒸馏水和五个标准溶液于六根具塞试管中,再用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]移取1mL5%的苯酚溶液,快速加入上述具塞试管中,充分混匀,用5mL移液管取5mL浓硫酸快速加入上述试管中,盖好试管塞,充分摇匀。从放入沸水浴中计时,沸水浴15min,冷水浴10min,室温放置5min(六个溶液之间间隔3min加硫酸)。将上述反应30min后的溶液分别在490nm处测定吸光度,以吸光度A为纵坐标,以葡萄糖标准溶液C(Co=50.36)为横坐标,绘制标准曲线。(见图1-1)标准曲线的线性范围为:0.10072×10[sup]-4[/sup]g/mL ~0.50360×10[sup]-4[/sup]g/mL曲线方程:A=0.0165C-0.0216,相关系数:r=0.9998[/color][align=center][img=,619,343]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261725042952_9256_3237657_3.png!w619x343.jpg[/img][/align][align=center]图1-1 标准曲线[/align][align=center] [/align]3.2.2 苯酚-浓硫酸法测多糖含量分别取不同提取条件下所得粗多糖0.040g于小烧杯中,加少量温水搅拌使其溶解,转移至250mL容量瓶中,加蒸馏水至刻度,摇匀。使用前用布氏漏斗抽滤,滤去不溶物,得澄清滤液。然后用2mL移液管分别移取2mL上述滤液于具塞试管中,再用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]移取1mL 5%的苯酚溶液,快速加入上述具塞试管中,充分混匀,用5mL移液管取5mL浓硫酸快速加入上述试管中,充分摇匀,盖好试管塞。沸水浴15min,冷水浴10min,室温放置5min,反应完全后在490nm处测定其吸光度,每次需配制空白对照用来校正可见分光光度计。将测得的吸光度带入标准曲线方程中计算出所配溶液的多糖浓度,进而可计算出纯多糖的产率。3.2.3 纯多糖产率的计算纯多糖产率=(纯多糖浓度×体积×粗多糖质量)/(粗多糖测样量×泽泻质量)×100%3.3 单因素实验3.3.1 液固比对泽泻多糖提取率的影响考察液固比,是为了能够在使用较少溶剂的情况下提取出最多的多糖,这不光能够减少工业生产中单位产量水的使用量,同样也为多糖提取液后期处理减少了时间和成本,具有重要的经济和生态效益。在结合前人相关中药材多糖提取实验的基础上,确定考察液固比为10:1、20:1、30:1、40:1、50:1。纯多糖产率见表3-1。[align=center] 表3-1  液固比对多糖提取率的影响 [/align] [table=582][tr][td]提取温度[/td][td] [align=center]80℃[/align] [/td][td=2,1] 提取时间[/td][td] [align=center]2.5h[/align] [/td][td=2,1] [align=center]提取次数[/align] [/td][td]1[/td][/tr][tr][td] [align=center]液固比(mL/g)[/align] [/td][td=2,1] 10:1[/td][td=2,1] 20:1[/td][td]30:1[/td][td]40:1[/td][td] [align=center]50:1[/align] [/td][/tr][tr][td]多糖产率(%)[/td][td=2,1] 3.38[/td][td=2,1] 3.46[/td][td]5.43[/td][td]7.87[/td][td]6.81[/td][/tr][/table]3.3.2 提取温度对泽泻多糖提取率的影响中药材提取过程中,温度是极其重要的条件。通过查阅文献及综合各方面考虑,确定提取温度为60℃、70℃、80℃、90℃、100℃。多糖产率见表3-2。[align=center]表3-2  提取温度对多糖提取率影响[/align] [table=640][tr][td]液固比[/td][td] [align=center]20:1[/align] [/td][td=2,1] [align=center]提取时间[/align] [/td][td] [align=center]2.5h[/align] [/td][td=2,1] [align=center]提取次数[/align] [/td][td=2,1] [align=center]1次[/align] [/td][/tr][tr][td]提取温度[/td][td=2,1] [align=center]60℃[/align] [/td][td=2,1] [align=center]70℃[/align] [/td][td] [align=center]80℃[/align] [/td][td=2,1] [align=center]90℃[/align] [/td][td] [align=center]100℃[/align] [/td][/tr][tr][td]多糖产率(%)[/td][td=2,1] [align=center]1.81[/align] [/td][td=2,1] [align=center]2.87[/align] [/td][td] [align=center]4.55[/align] [/td][td=2,1] [align=center]5.75[/align] [/td][td] [align=center]9.57[/align] [/td][/tr][/table][color=fuchsia] [/color]3.3.3 提取时间对泽泻多糖提取率的影响通过查阅文献,本实验确定考察时间为0.5h、1h、1.5h、2h、2.5h、3h、3.5h。多糖产率见表3-3。[align=center]表3-3 提取时间对多糖提取率的影响[/align] [table=653][tr][td]液固比[/td][td] [align=center]20:1[/align] [/td][td=2,1] [align=center]提取温度[/align] [/td][td] [align=center]80℃[/align] [/td][td=3,1] [align=center]提取次数[/align] [/td][td=2,1] [align=center]1次[/align] [/td][/tr][tr][td] [align=center]提取时间(h)[/align] [/td][td=2,1] 0.5[/td][td=2,1] 1[/td][td] [align=center]1.5[/align] [/td][td]2[/td][td] [align=center]2.5[/align] [/td][td]3[/td][td] [align=center]3.5[/align] [/td][/tr][tr][td] [align=center]多糖产率(%)[/align] [/td][td=2,1] [align=center]3.57[/align] [/td][td=2,1] 3.38[/td][td] [align=center]4.75[/align] [/td][td] [align=center]5.04[/align] [/td][td] [align=center]5.00[/align] [/td][td] [align=center]4.55[/align] [/td][td] [align=center]5.15[/align] [/td][/tr][/table]3.3.4 提取次数对泽泻多糖提取率的影响众所周知,在最合适的料液比、提取温度、提取时间条件下,提取次数越多,药物的有效成分在中药材中溶出的就会越多,提取率相应就会越高,但提取次数决定操作成本,提取次数越多,成本越高,且工艺用水量大。所以根据前人提取数据,将提取次数定为1次、2次、3次。多糖产率见表3-4。[align=center]表3-4 提取次数对多糖提取率的影响[/align] [table=582][tr][td]提取温度[/td][td] [align=center]80℃[/align] [/td][td=2,1] [align=center]提取时间[/align] [/td][td] [align=center]2.5h[/align] [/td][td] [align=center]液固比[/align] [/td][td] [align=center]20:1[/align] [/td][/tr][tr][td]提取次数[/td][td=2,1] [align=center]1[/align] [/td][td=2,1] [align=center]2[/align] [/td][td=2,1] [align=center]3[/align] [/td][/tr][tr][td]多糖产率(%)[/td][td=2,1] [align=center]3.46[/align] [/td][td=2,1] [align=center]5.71[/align] [/td][td=2,1] [align=center]8.68[/align] [/td][/tr][/table]3.4 均匀设计实验3.4.1 均匀设计实验方案在泽泻(均为5g干粉)多糖提取工艺中,我们要考察的主要因素有:提取温度、料液比及提取时间三个因素。根据单因素实验结果确定各因素的取值范围:提取温度X[sub]1[/sub] :55℃~100℃;料液比X[sub]2[/sub]:1:15~1:60:提取时间X[sub]3[/sub]:1.5h~3.75h。再根据各种因素的取值范围、试验精度要求,按提取温度间隔5℃,液料比间隔5,提取时间间隔0.25h,设计出一个3因素10水平的均匀设计表。根据均匀设计表中所列的提取条件,按照泽泻粗多糖的提取流程,对泽泻粗多糖进行提取,并计算其产率。(见表4-1)提取得到粗多糖并测定多糖纯度,进而求得纯多糖产率。[align=center]表4-1  均匀设计实验数据[/align] [table=638][tr][td] [table][tr][td] [table=100%][tr][td] 条件 编号[/td][/tr][/table] [/td][/tr][/table][img=,98,65]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,84,52]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][td] [align=center]温度(℃)[/align] [/td][td] [align=center]料液比[/align] [align=center](g/mL)[/align] [/td][td] [align=center]时间(min)[/align] [/td][td] [align=center]粗多糖产率(%)[/align] [/td][td] [align=center]纯多糖产率(%)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]55[/align] [/td][td] [align=center]1:35[/align] [/td][td] [align=center]180[/align] [/td][td] [align=center]14.24[/align] [/td][td] [align=center]1.22[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]1:60[/align] [/td][td] [align=center]120[/align] [/td][td] [align=center]15.44[/align] [/td][td] [align=center]1.67[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]65[/align] [/td][td] [align=center]1:30[/align] [/td][td] [align=center]225[/align] [/td][td] [align=center]12.72[/align] [/td][td] [align=center]1.27[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]70[/align] [/td][td] [align=center]1:55[/align] [/td][td] [align=center]165[/align] [/td][td] [align=center]14.94[/align] [/td][td] [align=center]2.50[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]75[/align] [/td][td] [align=center]1:25[/align] [/td][td] [align=center]105[/align] [/td][td] [align=center]13.62[/align] [/td][td] [align=center]3.74[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]80[/align] [/td][td] [align=center]1:50[/align] [/td][td] [align=center]210[/align] [/td][td] [align=center]23.82[/align] [/td][td] [align=center]6.55[/align] [/td][/tr][tr][td] [align=center]7[/align] [/td][td] [align=center]85[/align] [/td][td] [align=center]1:20[/align] [/td][td] [align=center]150[/align] [/td][td] [align=center]23.19[/align] [/td][td] [align=center]5.98[/align] [/td][/tr][tr][td] [align=center]8[/align] [/td][td] [align=center]90[/align] [/td][td] [align=center]1:45[/align] [/td][td] [align=center]90[/align] [/td][td] [align=center]23.05[/align] [/td][td] [align=center]5.71[/align] [/td][/tr][tr][td] [align=center]9[/align] [/td][td] [align=center]95[/align] [/td][td] [align=center]1:15[/align] [/td][td] [align=center]195[/align] [/td][td] [align=center]16.52[/align] [/td][td] [align=center]4.92[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]1:40[/align] [/td][td] [align=center]135[/align] [/td][td] [align=center]39.93[/align] [/td][td] [align=center]8.74[/align] [/td][/tr][/table]3.4.2 最优提取条件的选择用SPSS 19.0统计软件,以纯多糖得率为评价指标对各因素进行线性回归分析,模型的优度通过复相关系数和方差分析来判定。结果如表4-2。[align=center]表4-2  回归方程[/align] [table=638][tr][td] [align=center] [/align] [/td][td] [align=center]回归方程式[/align] [/td][td] [align=center]R[/align] [/td][td] [align=center]P[/align] [/td][/tr][tr][td] [align=center]回归方程1[/align] [align=center]回归方程2[/align] [align=center]回归方程3[/align] [/td][td] [align=center]Y=-9.850+0.164X[sub]1[/sub]+0.033X[sub]2[/sub]+0.001X[sub]3[/sub][/align] [align=center]Y=-7.595+0.153X[sub]1[/sub][/align] [align=center]Y=3.780-0.002X[sub]2[/sub] X[sub]3[/sub]+3.004E-5 X[sub]1[/sub]X[sub]2[/sub] X[sub]3[/sub] [/align] [/td][td] [align=center]0.919[/align] [align=center]0.902[/align] [align=center]0.960[/align] [/td][td] [align=center]0.008[/align] [align=center]0.000[/align] [align=center]0.000[/align] [/td][/tr][/table]表4-2中,Y为纯多糖得率,X1为提取温度,X2为液固比,X3为提取时间。方程1,R[sup]2[/sup]= 0.844,P值为0.008,回归非常显著,常数项和X1项P值分别0.041和0.002小于0.05 ,回归显著,有统计意义,而X2,X3均回归不显著,方程1多糖产率预测值为7.98%;方程2为将各项及其交叉乘积项全部纳入进行逐步回归的结果,我们发现,最后的方程中只保留了X1项,方程2的 R[sup]2[/sup]= 0.813,常数项和X1项P值分别为0.006和0.000,均小于0.01,回归亦非常显著有效,其预测值为7.66%。方程3为全体向后回归分析结果,R[sup]2[/sup]= 0.922,P值为0.000,常数项乘积项P值分别为0.001,0.000和0.000,均小于0.01 。故回归非常显著,其预测值为8.28%。3.4.3 最优提取条件的验证综合上述三方程的回归结果,及均匀设计和单项实验的结果,我们采取提取温度100℃、提取时间为135 min、提取料液比为40,即第10组的条件为最佳条件,并重复3次进行实验验证。结果见表4-3。[align=center]表4-3  最优提取条件测得的多糖含量[/align] [table][tr][td] [align=center]实验编号[/align] [/td][td] [align=center]提取条件[/align] [/td][td] [align=center]粗多糖得率(%)[/align] [/td][td] [align=center]纯多糖得率(%)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td=1,4] [align=center]提取温度:100℃[/align] [align=center]料液比:1:40[/align] [align=center]提取时间:135 min[/align] [/td][td] [align=center]32.24[/align] [/td][td] [align=center]8.57[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]28.64[/align] [/td][td] [align=center]8.99[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]28.99[/align] [/td][td] [align=center]8.92[/align] [/td][/tr][tr][td] [align=center]平均值[/align] [/td][td] [align=center]29.96[/align] [/td][td] [align=center]8.83[/align] [/td][/tr][/table]4  实验结果4.1 单因素实验结果4.1.1  液固比采用提取温度80 ℃,加热2.5h,提取1次,考察了液固比对提取收率的影响。图4-1表明,固液比从10:1增到20:1多糖产率并无太大变化,液固比从20:1增到30:1纯多糖产率提高了56.94 %,同样,从30:1到40:1纯多糖产率又提高了44.94%。而在40:1到50:1之间,反而下降。主要是由于开始增加提取液体积有利于细胞内容物的溶出,而液固比到达40:1之后,多糖成分已基本溶出,故多糖产率并没有提高,反倒降低。考虑到工业生产中水的用量和多糖产率的综合因素,可以得出40:1应为最佳提取液固比。[align=center][img=,542,271]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261726359481_8405_3237657_3.png!w542x271.jpg[/img][/align][align=center]图4-1  液固比对泽泻粗多糖得率的影响[/align][align=center] [/align]4.1.2  提取温度采用液固比为20:1,提取时间2.5h,提取1次,考察了提取温度对多糖产率的影响,结果见图4-2。由图中可以看出,当温度从60 ℃上升到70 ℃时,粗多糖得率共提高了58.56%,从70℃到80℃,提高了58.54%,80℃到90℃,提高了26.37%,从90℃到100℃,提高了66.43%。随着温度的上升,多糖产率一直在增加,说明温度的提高对多糖的溶出有显著影响。显然,从60℃到90℃,多糖产率几乎呈线性上升,从90℃到100℃,较60℃到90℃上升更快,且产率最高。过低的温度会造成提取物溶出少甚至不溶出,而较高温度会显著提高多糖产率。所以,即使较高的温度会略微增加能源上的成本,但是却使多糖产率增加数倍,提高药材利用率,大大降低总生产成本。综合以上各方面因素考虑,得出多糖的最佳提取温度为100 ℃。[align=center][img=,556,281]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261727189034_3165_3237657_3.png!w556x281.jpg[/img][/align][align=center]图4-2  提取温度对泽泻多糖得率的影响[/align][align=center] [/align]4.1.3  提取时间中药材有效药物成分溶出需要一定的时间,较短会造成药物有效成分无法最大限度地溶出,过长的提取时间则会导致有效成分分解。采用提取温度80 ℃,液固比20:1,提取1次,考察了提取时间对多糖得率的影响,结果见图4-3。可以看出,提取时间超过2h后多糖得率并未继续增加,反而下降;而2h之前,多糖得率增加显著,从1h到2h增加了49.11%。虽然在3.5h处总产率较2h增加了0.11%,但是提取时间却较2h多出将近一倍,大大增加了生产成本,故2h为最佳提取时间。[align=center][img=,560,260]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261727397775_5830_3237657_3.png!w560x260.jpg[/img][/align][align=center]图4-3  提取时间对泽泻多糖得率的影响[/align]4.1.4  提取次数采用提取温度80 ℃,提取时间2.5h,液固比20:1,考察了提取次数对多糖得率的影响,结果见图4-4。结果发现:提取3次时多糖得率最高,比1次提取提高了1.5倍,差别显著。而提取两次较提取一次,也提高了65.03%,提高显著。提取三次的多糖产率是提取一次的2.5倍。因此,从约成本,提高药材利用率的角度考虑,确定最佳提取次数为3次。[align=center][img=,548,269]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261727581933_5743_3237657_3.png!w548x269.jpg[/img][/align][align=center]图4-4  提取次数对泽泻多糖得率的影响[/align][align=center] [/align]4 . 2 均匀设计实验结果本实验采用水提醇沉法提取泽泻多糖,通过对料液比、提取时间、提取温度等三个可控条件进行均匀设计实验,结合实验及生产实际,确定了泽泻多糖提取的最优条件,并利用该最优条件测定了泽泻多糖的含量,计算出了纯多糖的得率。结果见表4-4。[align=center]表4-4  泽泻多糖提取最优条件及多糖含量[/align] [table][tr][td=4,1] [align=center]最优提取条件[/align] [/td][td=1,2] [align=center]粗多糖得率[/align] [align=center](%)[/align] [/td][td=1,2] [align=center]纯多糖得率[/align] [align=center](%)[/align] [/td][/tr][tr][td] [align=center]提取温度[/align] [/td][td] [align=center]提取料液比[/align] [/td][td] [align=center]提取时间[/align] [/td][td] [align=center]提取次数[/align] [/td][/tr][tr][td] [align=center]100℃[/align] [/td][td] [align=center]1:40[/align] [/td][td] [align=center]135 min[/align] [/td][td] [align=center]1次[/align] [/td][td] [align=center]29.96[/align] [/td][td] [align=center]8.83[/align] [/td][/tr][/table]所得纯多糖实际产率8.83%与理论得率8.28%十分接近。[color=#000000]5  讨论5 . 1多糖提取与含量测定过程(1)在多糖提取过程中,除待测因素温度、料液比、提取时间按要求改变外,其他条件均应保持一致,以减少系统误差,增加数据的准确性。(2)在转移多糖溶液的过程中要尽可能的减少损失及其操作的一致,如粗过滤完抽滤时滤渣滤棉中残余多糖成分的转移,旋蒸浓缩提取液后的转移和离心过程中多糖的转移应最大程度减少多糖损失量,并保持操作的一致性。(3)在绘制标准曲线及用苯酚-硫酸法测多糖含量时,加入苯酚后一定要混匀,以防止硫酸直接氧化苯酚,导致糖类反应不完全。此外,苯酚须现用现配,避光保存。(4)在硫酸与糖反应时,一般方法是加入苯酚和硫酸后摇匀,直接室温放置30min后测其吸光度,为了保证反应完全,本实验在加入硫酸并摇匀后,先沸水浴15min,再冷水浴10min,再室温放置5min后测量吸光度。并在测量时保证每组的反应时间一致。(5)纯多糖含量的测定过程,为了保证数据的准确性,单因素实验中同一组的最好同时测,均匀设计实验的十组最好同一天测完。(6)由于实验时间有限,对于泽泻多糖测定时,采用的是以往经验的可见光范围490nm进行测定,这是实验中不完善的地方,准确的操作应通过实验找到多糖吸光度最大的波长进行测定。5 . 2 单因素实验由于单因素只是考虑单个提取条件对产率的影响,不能考虑到多种因素共同的影响,所以只是作为参考结果,对于单因素对多糖提取的影响具有参考价值,但是从总的生产上来说,均匀设计具有更加实用的价值。本实验中,单因素最优条件为:液固比40:1,提取温度100℃,提取时间2h,提取次数3次。单因素中提取次数的结果中提取两次较提取一次产率的增长值,还没有提取三次较提取两次的增长值大。可能是因为提取温度不够高,多糖溶出较慢所致。单从单因素的角度来看提取三次为最佳条件。但是从生产过程考虑,提取次数的增加会增加很大工作量,一般会选择一次就能提取完全的条件。而均匀设计实验中也证明,在100℃,40:1,135min条件下多糖的产率就可以达到8.74%,比单因素实验中提取三次的量还要高,故选择一次为最佳提取次数。5 . 3 均匀设计实验均匀设计实验结果8.83%同实验分析的理论结果8.28%较为接近,这也证明了实验数据的准确性,并通过回归分析确定了实验的最佳提取条件。均匀设计是在单因素的基础上进行的,综合两个实验的数据结果,不难发现提取的最佳条件为:提取温度100℃、提取时间为135 min、提取料液比为40、提取一次。5 . 4 整体结果讨论单因素实验中,我们可以得到以下关于单因素对多糖提取率的影响。提取次数与多糖产率呈正相关,提取时间也是呈正相关。提取时间与多糖产率的关系是到一定时间就达到稳定,即超过这个时间显著性不过。液固比与多糖产率的关系是存在一个峰值,低于此值,产率随液固比增加而增加,超过此值则随液固比增加而产率降低。这也给我们一些启发,对于这些植物药中似多糖类水溶性物质的提取条件也应存在此种规律,可作为以后研究的参考。均匀设计实验是在单因素的基础上,综合考虑了提取时间、温度和液固比对多糖产率的影响,是较符合实际生产条件的一项实验,具有较高的应用参考价值。当然,除了本课题中考虑到的因素,可能还有其他未被考虑到的一些因素。均匀设计只是以线性回归的方式对实验数据进行分析,而现在有更为先进的如响应面分析法等。这都说明多糖的提取工艺有很大的提升空间。参考文献  中药大辞典.上海:上海科学技术出版社,2006:2067Xie Min.Phmaracology of traditional Chinese medical formulas.Beijing:The People’s Public Health Publish House,2007  国家药典委员会编.中国药典(一部).中国医药出版社,2010:213  黄珍,刘咏松.泽泻降血脂药理作用及物质基础研究进展.山西中医学院学报,2008,9(5):55~56  陈曦.泽泻的研究现状与进展.中国民族民间医药,2011,20(9):50~51,53  臧萍.泽泻的研究现状及展望.中国中医药现代远程教育,2009,07(6):180~182Yamaguchi K.Akauurane derivative isolated from Alisma orientale Acta Crystallogr SectC Cryst. Struct .医药导报,2003,22(5):295Peng GP,LouFC.Isolation and indentification of diterpenoids fromAlisma orientalis .Actapharmaceutica sinica,2002,37:950~954  丁霞,吴水生.泽泻的研究进展.中医药信息,2008,25(5):19~21  王建平,傅旭春,泽泻的药理作用和临床研究进展.2011年浙江省医学会临床药学分会学术年会论文汇编,2011  冯欣煜,姚志凌.泽泻药理研究与临床新用.中国医药指南,2007,S1:37~38  尹艳,高文宏,于淑娟,等.多糖提取技术的研究进展.食品工业科技,2007,28(2):248~250  吴华振.植物多糖的药理作用及应用进展.实用医技杂志,2005,12(7):1803~1804  杨艳,徐应淑.川、黔地区金钗石斛多糖的含量测定.中国药房,2010,21(27):2552~2554  李小凤,韦庆宁,史柳芝,等.泽泻多糖的提取及含量测定.山东化工,2012,41(7):26~28  朱秀灵,戴清源,冯宏波.超声波辅助提取银杏叶多糖工艺研究. 安徽工程科技学院学报,2010,25(3):6~8  缪建,杨文革,周彬.银杏叶多糖提取工艺的优化. 中国食品添加剂,2007,12(2):153~156  金汝城,周术涛,张东博,等.均匀设计优化超声波法提取黄芪多糖的研究. 安徽农业科学,2009,37(12):5498~5499[/color][align=center] [/align]

  • 【推荐讲座】:7月14日 过滤工艺中的可提取物和浸出物研究-默克制药工艺基础课堂十九

    【网络讲座】:过滤工艺中的可提取物和浸出物研究-默克制药工艺基础课堂十九【讲座时间】:2016年07月14日 14:00【主讲人】:盖群 毕业于华东理工大学分析化学专业硕士学位,于2013年加入默克公司从事过滤工艺验证中的可提取物(Extractable)和浸出物(Leachable)研究工作。现任默克Provantage Lab分析实验室主管,主要负责过滤器产品中可提取物研究及方法学验证。【会议简介】概念介绍,法规要求及风险评估;可提取物及浸出物的产生及影响因素;可提取物试验条件选择;可提取物及浸出物的检测方法-NVR,TOC,HPLC,FTIR,GC-MS,LC-MS etc.;评价工具-TTC及安全评估。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年07月14日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/20085、报名及参会咨询:QQ群—290101720,扫码入群“仪器大讲堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667972_2507958_3.gif

  • 23.10钩藤碱提取工艺和质量标准建立、初步药效学研究

    23.10钩藤碱提取工艺和质量标准建立、初步药效学研究

    作者】 刘明; 【导师】 汤建林;【作者基本信息】 第三军医大学, 药物分析学, 2011, 硕士【摘要】 钩藤为我国传统中药,其药材中所含吲哚类生物碱为主要药效成分,现代药理研究表明,钩藤生物碱除具有降压、抗癫痫作用外,还有一定抗焦虑作用,应用价值较高。为了进一步研究钩藤活性成分,特别是钩藤生物碱的药用价值,如何从钩藤药材中获得钩藤生物碱有效成分成为进一步研究的关键。现有提取工艺主要针对钩藤粗提物及总生物碱,针对有效成分的提取研究较少。本课题对钩藤碱提取纯化工艺、质量标准及抗焦虑药效学进行研究,确定最佳提取纯化工艺,考察质量标准,并对其抗焦虑药效进行初步评价。1.定性定量方法建立建立薄层色谱定性分析钩藤碱的方法,以丙酮-石油醚-氨水(1:2:0.2)为展开剂,钩藤碱在GF254硅胶板(规格:厚度0.20.25mm,25×40mm)上能与其它生物碱及杂质有效分离,在5分钟内即可完成钩藤碱的鉴别。建立高效液相色谱外标法定量分析钩藤碱的方法,采用Platisil ODS(150 mm×4.6 mm,5μm)色谱柱,以乙腈:0.01mol/L磷酸二氢钾(KOH调pH8.0)为流动相,梯度洗脱,在40 min内乙腈与0.01mol/L磷酸二氢钾比例由30:70线性递增至60:4... http://ng1.17img.cn/bbsfiles/images/2012/07/201207311344_380867_2379123_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/07/201207311346_380868_2379123_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/07/201207311347_380869_2379123_3.jpg

  • 酸枣仁提取工艺优化

    1 [b][font=宋体]酸枣仁中总皂苷和总黄酮定量分析方法的建立[/font][/b][font=宋体]酸枣仁总皂苷定量分析方法的建立[/font][font=宋体]取酸枣仁皂苷[/font]A[font=宋体]对照品和[/font][font=宋体]样品液[/font][font=宋体]适量[/font][font=宋体],[/font][font=宋体]置[/font][font=宋体]具塞试管[/font][font=宋体]中[/font][font=宋体],挥干溶剂,[/font][font=宋体]加入新鲜配置的[/font]5 %[font=宋体]香草醛-冰醋酸溶液[/font]0.2 mL[font=宋体],高氯酸[/font]0.8 mL[font=宋体],加塞,[/font]60 [font=宋体]℃[/font][font=宋体]水浴中反应[/font]15 min[font=宋体],取出,冷却至室温[/font][font=宋体],加[/font]5 mL[font=宋体]冰醋酸,摇匀,外标两点法于[/font]592 nm[font=宋体]下测定吸光度,计算[/font][font=宋体]含量。[/font][font=宋体]酸枣仁总黄酮定量分析方法的建立[/font][font=宋体]取芦丁对照品和[/font][font=宋体]样品液[/font][font=宋体]适量[/font][font=宋体],[/font][font=宋体]置[/font]25 mL[font=宋体]量瓶中[/font][font=宋体],加入浓度为[/font]0.2 moL L[sup]-1[/sup][font=宋体]的三氯化铝溶液[/font]2.5 mL[font=宋体],再加浓度为[/font]1 moL L[sup]-1[/sup][font=宋体]的醋酸钾溶液[/font]5.0 mL[font=宋体],用水定容至[/font]25 mL[font=宋体],外标两点法[/font][font=宋体]在[/font]272 nm[font=宋体]处测定吸光度[/font][font=宋体],[/font][font=宋体]计算含量。[/font]2 [b][font=宋体]溶液的制备[/font][font=宋体]对照品溶液的制备[/font][/b][font=宋体]取酸枣仁皂苷[/font]A[font=宋体]对照品[/font][font=宋体]适量,[/font][font=宋体]精密称定,置[/font]5 mL[font=宋体]量瓶中,加甲醇溶解,并稀释至刻度,摇匀,[/font][font=宋体]制成浓度为[/font]0.45 mg mL[sup]-1[/sup][font=宋体]酸枣仁皂苷[/font]A[font=宋体]对照品储备液[/font][font=宋体]。[/font][font=宋体]取芦丁对照品适量[/font][font=宋体],[/font][font=宋体]精密称定,置[/font]25 mL[font=宋体]量瓶中,加甲醇溶解,并稀释至刻度,摇匀,制成浓度为[/font]0.19 mg mL[sup]-1[/sup][font=宋体]芦丁对照品储备液[/font][font=宋体]。[/font][b][font=宋体]供试品溶液的制备[/font][/b][font=宋体]称取酸枣仁药材约1[/font]5 g[font=宋体],精密称定,置圆底烧瓶中,[/font][font=宋体]石油醚回流提取[/font]2[font=宋体]次,每次[/font]2 h[font=宋体],弃去石油醚,挥干药渣,根据正交设计的工艺采用加热[/font][font=宋体]回流提取,放冷至室温,提取液过滤,润洗残渣,合并滤液,蒸干溶剂,[/font][font=宋体]残渣全部转移至[/font]50 mL[font=宋体]量瓶中,用[/font]70 %[font=宋体]乙醇[/font][font=宋体]稀释至刻度,摇匀,[/font][font=宋体]即得。[/font]3 [b][font=宋体]标准曲线的绘制[/font][/b][font=宋体]酸枣仁总皂苷标准曲线[/font][font=宋体]精密量取酸枣仁皂苷[/font]A[font=宋体]对照品溶液[/font]0[font=宋体],[/font]0.1[font=宋体],[/font]0.2[font=宋体],[/font]0.4[font=宋体],[/font]0.6[font=宋体],[/font]1.0 mL[font=宋体],按“[/font]1”[font=宋体]项下 “置具塞试管中”中操作,在[/font]595 nm[font=宋体]波长处测定吸光度,[/font][font=宋体]以吸光度为纵坐标,质量为横坐标,绘制标准曲线。得到回归方程为 [/font]Y =1.992X - 0.0002[font=宋体],[/font]r = 0.9998[font=宋体],线性范围为[/font]45.0 [font=宋体]~[/font]450.0μg[font=宋体]。[/font][font=宋体]酸枣仁总黄酮标准曲线[/font][font=宋体]精密量取芦丁对照品溶液[/font]0[font=宋体],[/font]0.1[font=宋体],[/font]0.2[font=宋体],[/font]0.4[font=宋体],[/font]0.6[font=宋体],[/font]0.8 mL[font=宋体]分别[/font][font=宋体]置[/font]25 mL[font=宋体]量瓶中[/font][font=宋体],按“[/font]1[font=宋体]”项下“[/font][font=宋体]加入浓度为[/font]0.2 moL L[sup]-1[/sup][font=宋体]的三氯化铝溶液[/font][font=宋体]”操作[/font][font=宋体],[/font][font=宋体]在[/font]272 nm[font=宋体]处测定吸光度[/font][font=宋体],[/font][font=宋体]以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。得到回归方程为[/font]Y = 0.2255 X +0.0003[font=宋体],[/font]r = 0.9997[font=宋体],线性范围为[/font]0.76 [font=宋体]~[/font]6.08 μg 4[b][font=宋体]提取工艺参数的优化[/font][font=宋体]正交试验设计[/font][/b] [font=宋体]在确定提取方法和提取溶剂的基础上,选取主要影响提取效率的因素:溶剂倍量[/font](A)[font=宋体]、提取时间[/font](B)[font=宋体]、提取次数[/font](C)[font=宋体],每个因素选择[/font]3[font=宋体]个水平,按[/font]L[sub]9[/sub][font=宋体]([/font]3[sup]4[/sup][font=宋体])正交表安排实验(表[/font]2-1[font=宋体])。以溶液中[/font][font=宋体]总黄酮和总皂苷[/font][font=宋体]含量为考察指标,通过多指标综合评分法,全面分析,筛选最佳提取工艺参数。[/font] [table][tr][td] [align=center]Levels[/align] [/td][td] [align=center]Quant. of solvent[/align] [/td][td] [align=center]Extrn. Durationh[sup]-1[/sup][/align] [/td][td] [align=center]Extrn. time[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]1.0[/align] [/td][td] [align=center]1[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]8[/align] [/td][td] [align=center]1.5[/align] [/td][td] [align=center]2[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][/tr][/table][align=center]Table 2-1. The factors and levels selected[/align][b][font=宋体]正交试验结果[/font][/b][font=宋体]以酸枣仁中总皂苷和总黄酮含量为指标,进行多指标综合评分,评分时以各指标最大值为参照将数据进行归一化,给出不同的权重系数。因总皂苷和总黄酮是酸枣仁药材的主要活性成分,且两因素对综合评分的数值贡献相同,故将总皂苷和总黄酮权重系数各定为[/font]0.5[font=宋体]。[/font][font=宋体]综合评分([/font]Y[font=宋体])[/font]=0.5 ×[font=宋体](总皂苷含量[/font]/[font=宋体]最大值[/font][font=宋体])[/font]× 100 + 0.5 × ([font=宋体]总黄酮含量[/font]/[font=宋体]最大值[/font]) × 100[font=宋体]。以综合值进行统计分析,直观分析见表[/font]2-2[font=宋体],方差分析见表[/font]2-3[font=宋体]。[/font][font=宋体]由直观分析结果(表[/font]2-2[font=宋体])和方差分析结果(表[/font]2-3[font=宋体])可见,以综合评分为标准,在所选因素水平范围内,影响其提取效率各因素的主次关系为:[/font]C[font=宋体]>[/font]A[font=宋体]>[/font]B[font=宋体],即提取次数对提取过程有显著影响,溶剂倍量影响较小,提取时间影响最小。故最佳提取工艺为[/font]A[sub]2[/sub]B[sub]3[/sub]C[sub]3[/sub][font=宋体],即[/font]8[font=宋体]倍量[/font]70%[font=宋体]乙醇提取[/font]3[font=宋体]次[/font][font=宋体],[/font][font=宋体]每次[/font]2 h[font=宋体]。[/font][align=center]Table 2-2. Resultof L[sub]9[/sub](3[sup]4[/sup])orthogonal test[/align] [table=100%][tr][td] [align=center]NO.[/align] [/td][td] [align=center]A[/align] [/td][td] [align=center]B[/align] [/td][td] [align=center]C[/align] [/td][td] [align=center]total saponins content (mgg[sup]-1[/sup])[/align] [/td][td] [align=center]total flavonoids content (mgg[sup]-1[/sup])[/align] [/td][td] [align=center][color=black]grading method[/color][/align] [/td][td] [/td][/tr][tr][td] [align=center]1[/align] [align=center]2[/align] [align=center]3[/align] [align=center]4[/align] [align=center]5[/align] [align=center]6[/align] [align=center]7[/align] [align=center]8[/align] [align=center]9[/align] [/td][td] [align=center]6[/align] [align=center]6[/align] [align=center]6[/align] [align=center]8[/align] [align=center]8[/align] [align=center]8[/align] [align=center]10[/align] [align=center]10[/align] [align=center]10[/align] [/td][td] [align=center]1[/align] [align=center]1.5[/align] [align=center]2[/align] [align=center]1[/align] [align=center]1.5[/align] [align=center]2[/align] [align=center]1[/align] [align=center]1.5[/align] [align=center]2[/align] [/td][td] [align=center]1[/align] [align=center]2[/align] [align=center]3[/align] [align=center]2[/align] [align=center]3[/align] [align=center]1[/align] [align=center]3[/align] [align=center]2[/align] [align=center]1[/align] [/td][td] [align=center]17.38[/align] [align=center]33.15[/align] [align=center]38.05[/align] [align=center]41.86[/align] [align=center]46.37[/align] [align=center]26.62[/align] [align=center]44.01[/align] [align=center]23.16[/align] [align=center]32.32[/align] [/td][td] [align=center]15.68[/align] [align=center]21.71[/align] [align=center]26.27[/align] [align=center]25.29[/align] [align=center]24.77[/align] [align=center]20.37[/align] [align=center]23.91[/align] [align=center]17.09[/align] [align=center]25.37[/align] [/td][td] [align=center]48.58[/align] [align=center]77.07[/align] [align=center]91.0[/align] [align=center]93.3[/align] [align=center]97.1[/align] [align=center]67.49[/align] [align=center]93.0[/align] [align=center]57.49[/align] [align=center]83.1[/align] [/td][td] [/td][/tr][tr][td] [align=center]K1[/align] [align=center]K2[/align] [align=center]K3[/align] [align=center]R[/align] [/td][td] [align=center]72.22[/align] [align=center]86.0[/align] [align=center]77.86[/align] [align=center]13.75[/align] [/td][td] [align=center]78.29[/align] [align=center]77.22[/align] [align=center]80.5[/align] [align=center]3.310[/align] [/td][td] [align=center]57.85[/align] [align=center]84.5[/align] [align=center]93.7[/align] [align=center]35.85[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td=2,1] [align=center] [/align] [/td][/tr][/table][align=center]Table2-3. Results of analysis of variance[/align] [table=100%][tr][td] [align=center]Factor[/align] [/td][td] [align=center]SS[/align] [/td][td] [align=center]df[/align] [/td][td] [align=center]MS[/align] [/td][td] [align=center]F value[/align] [/td][td] [align=center]Significance P[/align] [/td][/tr][tr][td] [align=center]A[/align] [align=center]B[/align] [align=center]C[/align] [/td][td] [align=center]286.5[/align] [align=center]17.11[/align] [align=center]2079[/align] [/td][td] [align=center]2[/align] [align=center]2[/align] [align=center]2[/align] [/td][td] [align=center]143.2[/align] [align=center]8.56[/align] [align=center]1039[/align] [/td][td] [align=center]9.76[/align] [align=center]0.5830[/align] [align=center]70.82[/align] [/td][td] [align=center] [/align] [align=center] [/align] [align=center][font=宋体]<[/font]0.05[/align] [/td][/tr][/table]F[sub]0.01[/sub] (2,2) = 99.00[font=宋体],[/font] F[sub]0.05[/sub] (2,2) = 19.002.1.5[b][font=宋体]验证试验[/font][/b][font=宋体]为进一步考察优选工艺的可靠性及稳定性,取[/font]3[font=宋体]份药材按上述最佳提取工艺进行验证实验,测得实验结果见表[/font]2-4[font=宋体]。[/font][align=center]Table2-4. Results of repeated experiments on optimized extraction technology ([i]n[/i] =3)[/align] [table][tr][td] [align=center]NO.[/align] [/td][td] [align=center]Total saponins content(mgg[sup]-1[/sup])[/align] [/td][td] [align=center]Total flavonoids content(mgg[sup]-1[/sup])[/align] [/td][/tr][tr][td] [align=center]1[/align] [align=center]2[/align] [align=center]3[/align] [align=center]Mean[/align] [/td][td] [align=center]45.51[/align] [align=center]46.20[/align] [align=center]46.76[/align] [align=center]46.16[/align] [/td][td] [align=center]24.91[/align] [align=center]25.50[/align] [align=center]24.34[/align] [align=center]24.92[/align] [/td][/tr][/table][font=宋体]结果表明,该工艺重复性好,结果稳定。用所选条件提取酸枣仁皂苷和黄酮含量均较高,其总皂苷含量为[/font]46.16 mg g[sup]-1[/sup][font=宋体],总黄酮含量为[/font]24.92mg g[sup]-1[/sup][font=宋体]。[/font]

  • 【原创】求助中压制备液相在罗汉果甜苷提取工艺的应用

    求助中压制备液相在罗汉果甜苷提取工艺的应用 我想通过中低压制备提取罗汉果中的罗汉果甜苷,现在在找适合的方法,用填C18 还是氨基填料?据说是用氨基填料更好。两种填料在分离提取罗汉果甜苷各有什么特性?如果成行,用什么规格的填料更好?要求纯度能达到百分之98以上的纯度。

  • 【原创大赛】藤青泡腾片提取工艺研究

    【原创大赛】藤青泡腾片提取工艺研究

    [color=black][b]藤青泡腾片提取工艺研究[/b][/color]藤青泡腾片是以闽产药食资源为基础制成的复方制剂,处方由藤茶、青果、葛花、甘草[font=times new roman]4[/font]味药材组成,具有调节血脂,保护化学性肝损伤的作用。传统中药煎煮繁琐,携带不便,气味较苦,将其制成泡腾片,携带、服用方便,崩解速度快,提高其生物利用度、临床疗效。本处方中各味药的主要有效成份为黄酮,水溶性较好,且二氢杨梅素等在热水中的溶解度大,因此采用水为提取溶液进行加热提取,成本低、实验条件简单。采用正交试验的方法考察各因素对总黄酮、浸膏得率的影响,获得最佳提取工艺。1.1[font=宋体][b]仪器与试药[/b][/font](1)实验仪器[font=times new roman] [/font][table][tr][td]电子分析天平[font=times new roman]XS105[/font][/td][td]METTLER TOLEDO[/td][/tr][tr][td]电子调温电热套[font=times new roman]98-1-B[/font]型[/td][td]天津市泰斯特仪器有限公司[/td][/tr][tr][td]电热恒温水浴锅[font=times new roman]HWS24[/font][/td][td]上海一恒科学仪器有限公司[/td][/tr][tr][td]常压恒温干燥箱[font=times new roman]XMTD-822[/font][/td][td]上海精宏实验设备有限公司[/td][/tr][tr][td]紫外分光光度计[font=times new roman]UV9100[/font][/td][td]北京瑞利分析仪器公司[/td][/tr][tr][td][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]([font=times new roman]200 μL[/font]、[font=times new roman]1000 μL[/font])[/td][td]GILSON[/td][/tr][/table](2)实验试药葛花[font=times new roman] [/font]产地:安徽[font=times new roman] [/font]北京三和药业有限公司[font=times new roman] [/font]藤茶(产地:广西)、青果(产地:广东)、甘草(产地:甘肃)[table][tr][td]芦丁对照品[/td][td]批号:[font=times new roman]100080-20708[/font]中国[font=宋体]食品[/font]药品[font=宋体]检[/font]定[font=宋体]研究院[/font][/td][/tr][tr][td]甲醇[font=times new roman] (AR)[/font][/td][td]国药集团化学试剂有限公司[/td][/tr][tr][td]亚硝酸钠[font=times new roman](AR)[/font][/td][td]上海联试化工试剂有限公司[/td][/tr][tr][td]硝酸铝[font=times new roman](AR)[/font][/td][td]上海展云化工有限公司[/td][/tr][tr][td]氢氧化钠[font=times new roman](AR)[/font][/td][td]上海联试化工试剂有限公司[/td][/tr][/table] [font=times new roman][size=13px]1.2 [/size][/font][size=13px]泡腾片提取工艺条件的研究[/size]1.2.1[font=宋体][b]正交试验筛选[/b][/font]称取藤茶、葛花、青果、甘草各[font=times new roman]0.5[/font]倍处方量为[font=times new roman]1[/font]份,共[font=times new roman]9[/font]份,以加水量([font=times new roman]A[/font]),提取时间([font=times new roman]B[/font]),提取次数([font=times new roman]C[/font])为考察因素,按表[font=times new roman]1[/font]的因素水平进行[font=times new roman]L9[/font][font=times new roman][size=21px]([/size][/font][font=times new roman]3[/font][font=times new roman]4[/font][font=times new roman][size=21px])[/size][/font]正交试验,根据总黄酮含量、浸膏得率进行评价,考察最佳提取工艺条件。1.2.1.1[font=宋体][b]水提取液浸膏得率的测定[/b][/font]吸取1.2.1项下提取的每份药液[font=times new roman]15 ml[/font],转移到干燥蒸发皿内,置于水浴锅内蒸发水份至流浸膏后,放入烘箱于[font=times new roman]100[/font]℃烘干到恒重,称重,记录结果并计算,结果见表[font=times new roman]2[/font]1.2.1.2[font=宋体][b]水提取液总黄酮的含量测定[/b][/font]对照品溶液的制备:称芦丁对照品适量,精密称定,加甲醇溶解并定量稀释至每1 ml含[font=times new roman]0.2 mg[/font]的芦丁溶液,制得对照品溶液。供试品溶液的制备:取上述[font=times new roman]9[/font]份提取物各[font=times new roman]1[/font] [font=times new roman]ml[/font],于[font=times new roman]50[/font] [font=times new roman]ml[/font]容量瓶中,并用水稀释至刻度。芦丁对照品标准曲线制备:精密吸取芦丁对照品溶液[font=times new roman]0.0[/font],[font=times new roman]1.0[/font],[font=times new roman]2.0[/font],[font=times new roman]3.0[/font],[font=times new roman]4.0[/font],[font=times new roman]5.0[/font],[font=times new roman]6.0[/font] [font=times new roman]ml[/font],分别置[font=times new roman]25 ml[/font]([font=times new roman]V[/font][font=times new roman]3[/font])量瓶中,加水至[font=times new roman]6 ml[/font],加入1 ml的[font=times new roman]5%[/font] NaNO2,混匀,放置[font=times new roman]6min[/font],往容量瓶里加入1 ml的[font=times new roman]10%A[/font]l[font=times new roman](NO[/font][font=times new roman]3[/font][font=times new roman])[/font][font=times new roman]3[/font],混匀后静置[font=times new roman]6min[/font],加入[font=times new roman]10[/font] ml NaOH试液,混匀,加蒸馏水至刻度,混匀,静置[font=times new roman]15[/font]分钟,以[font=times new roman]0.0 ml[/font]对照品溶液制备的溶剂为空白对照,在[font=times new roman]510nm[/font]波长下测定各组的吸光度值。以吸光度为纵坐标[font=times new roman]([/font][font=times new roman][i]A[/i][/font][font=times new roman])[/font],浓度为横坐标([font=times new roman]mg/ml[/font]),绘制标准曲线,结果见图[font=times new roman]1[/font]。样品测定:吸取待测溶液[font=times new roman]10 ml[/font]([font=times new roman]V[/font][font=times new roman]2[/font])于[font=times new roman]25 ml[/font]容量瓶中,照芦丁对照品标准曲线制备自“加入[font=times new roman]1 ml[/font]的[font=times new roman]5%[/font] NaNO2”起,在波长[font=times new roman]510nm[/font]下测定样品的吸光度,([font=times new roman][i]X[/i][/font])。根据标准曲线求出样品中总黄酮的含量[img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009212136303003_5694_2166779_3.png[/img][color=black]结果计算:[/color][color=black] [/color][color=black] [/color][color=black]X—[/color][font=宋体][color=black]试样中总黄酮百分含量,以芦丁[/color][/font][color=black](C[/color][color=black]27[/color][color=black]H[/color][color=black]30[/color][color=black]O[/color][color=black]16[/color][color=black])[/color][font=宋体][color=black]计, [/color][/font][color=black]g/100g[/color][font=宋体][color=black]([/color][/font][color=black]ml[/color][font=宋体][color=black]);[/color][/font][color=black]C—[/color][font=宋体][color=black]标准曲线上读出供试品溶液中总黄酮的浓度,[/color][/font][color=black]mg/ml[/color][font=宋体][color=black];[/color][/font][color=black]V[/color][color=black]1[/color][color=black]—[/color][font=宋体][color=black]试样定容体积,[/color][/font][color=black]ml[/color][font=宋体][color=black];[/color][/font][color=black]V[/color][color=black]2[/color][color=black]—[/color][font=宋体][color=black]吸取供试液体积,[/color][/font][color=black]ml[/color][font=宋体][color=black];[/color][/font][color=black]V[/color][color=black]3[/color][color=black]—[/color][font=宋体][color=black]显色定容体积,[/color][/font][color=black]ml[/color][font=宋体][color=black];[/color][/font][color=black]M—[/color][font=宋体][color=black]试样取样量,[/color][/font][color=black]g(ml)[/color][font=宋体][color=black]。[/color][/font][color=black]结果见表[/color][font=times new roman][color=black]2[/color][/font][color=black],表[/color][font=times new roman][color=black]3. [/color][/font][font=times new roman][color=red] [/color][/font][align=center]表[font=times new roman]1 [/font]提取正交试验因素水平表[/align][table][tr][td=1,2][align=center]水平[/align][/td][td=3,1][align=center]因素[/align][/td][/tr][tr][td][align=center]A[font=宋体]加水量[/font]([font=宋体]倍[/font])[/align][/td][td][align=center]B[font=宋体]提取时间[/font](h)[/align][/td][td][align=center]C[font=宋体]提取次数[/font][/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]10[/align][/td][td][align=center]0.5[/align][/td][td][align=center]1[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]15[/align][/td][td][align=center]1.0[/align][/td][td][align=center]2[/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]20[/align][/td][td][align=center]1.5[/align][/td][td][align=center]3[/align][/td][/tr][/table]注:以[font=times new roman]D[/font]因素为误差项[color=black]图[/color][font=times new roman][color=black]1[/color][/font][color=black]芦丁标准品标准曲线 [/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009212136306476_9524_2166779_3.png[/img][size=16px] [/size][/align]采用加权平均法对浸膏得率、总黄酮含量进行综合评估,由于含量对泡腾片疗效的影响较大,因此,分别给予浸膏得率、总黄酮含量[font=times new roman]40%[/font]、[font=times new roman]60%[/font]的权重进行分配。浸膏的率越高,患者最终单次的给药量越多,较低较好,以最低得率[font=times new roman]19.808%[/font]为最高得分,而总黄酮为主要有效成份,宜越高越好,故以[font=times new roman]1.969[/font]为最高得分。以序号[font=times new roman]1[/font]为例计算综合评分:[font=times new roman](19.808/19.808)*0.4+(0.796/1.969)*0.6=0.643[/font],同理,可求得其余各综合评分,结果见表[font=times new roman]2.[/font] 表[font=times new roman]2[/font]提取正交试验结果([font=times new roman][i]n[/i][/font][font=times new roman]=9[/font])[table][tr][td][align=center]序号[/align][/td][td][align=center]A[/align][/td][td][align=center]B[/align][/td][td][align=center]C[/align][/td][td][align=center]D[/align][/td][td][align=center]浸膏得率[font=times new roman](%)[/font][/align][/td][td][align=center]总黄酮含量[font=times new roman](g)[/font][/align][/td][td][align=center]综合评分[/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]1[/align][/td][td][align=center]1[/align][/td][td][align=center]1[/align][/td][td][align=center]1[/align][/td][td][align=center]19.808 [/align][/td][td][align=center]0.796 [/align][/td][td][align=center]0.643 [/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]2[/align][/td][td][align=center]2[/align][/td][td][align=center]29.159 [/align][/td][td][align=center]1.109 [/align][/td][td][align=center]0.610 [/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]1[/align][/td][td][align=center]3[/align][/td][td][align=center]3[/align][/td][td][align=center]3[/align][/td][td][align=center]34.835 [/align][/td][td][align=center]1.499 [/align][/td][td][align=center]0.684 [/align][/td][/tr][tr][td][align=center]4[/align][/td][td][align=center]2[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]33.656 [/align][/td][td][align=center]1.490 [/align][/td][td][align=center]0.689 [/align][/td][/tr][tr][td][align=center]5[/align][/td][td][align=center]2[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]1[/align][/td][td][align=center]37.467 [/align][/td][td][align=center]1.854 [/align][/td][td][align=center]0.776 [/align][/td][/tr][tr][td][align=center]6[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]23.851 [/align][/td][td][align=center]0.978 [/align][/td][td][align=center]0.630 [/align][/td][/tr][tr][td][align=center]7[/align][/td][td][align=center]3[/align][/td][td][align=center]1[/align][/td][td][align=center]3[/align][/td][td][align=center]2[/align][/td][td][align=center]40.161 [/align][/td][td][align=center]1.969 [/align][/td][td][align=center]0.797 [/align][/td][/tr][tr][td][align=center]8[/align][/td][td][align=center]3[/align][/td][td][align=center]2[/align][/td][td][align=center]1[/align][/td][td][align=center]3[/align][/td][td][align=center]26.402 [/align][/td][td][align=center]1.099 [/align][/td][td][align=center]0.635 [/align][/td][/tr][tr][td][align=center]9[/align][/td][td][align=center]3[/align][/td][td][align=center]3[/align][/td][td][align=center]2[/align][/td][td][align=center]1[/align][/td][td][align=center]34.196 [/align][/td][td][align=center]1.544 [/align][/td][td][align=center]0.702 [/align][/td][/tr][tr][td][align=center]K1[/align][/td][td][align=center]1.94 [/align][/td][td][align=center]2.13 [/align][/td][td][align=center]1.91 [/align][/td][td][align=center]2.12 [/align][/td][td] [/td][td] [/td][td] [/td][/tr][tr][td][align=center]K2 [/align][/td][td][align=center]2.10 [/align][/td][td][align=center]2.02 [/align][/td][td][align=center]2.00 [/align][/td][td][align=center]2.04 [/align][/td][td] [/td][td] [/td][td] [/td][/tr][tr][td][align=center]K3[/align][/td][td][align=center]2.13 [/align][/td][td][align=center]2.02 [/align][/td][td][align=center]2.26 [/align][/td][td][align=center]2.01 [/align][/td][td] [/td][td] [/td][td] [/td][/tr][tr][td][align=center]R[/align][/td][td][align=center]0.07 [/align][/td][td][align=center]0.04 [/align][/td][td][align=center]0.12 [/align][/td][td][align=center]0.04 [/align][/td][td][align=center] [/align][/td][td][align=center] [/align][/td][td][align=center] [/align][/td][/tr][/table][align=center]表[font=times new roman]3[/font]提取正交试验方差分析[/align][table][tr][td][align=center]方差来源[/align][/td][td][align=center]离差平方和[/align][/td][td][align=center]自由度[/align][/td][td][align=center]F[font=宋体]值[/font][/align][/td][td][align=center]均方[/align][/td][td][align=center]显著性[/align][/td][/tr][tr][td][align=center]加水量[/align][/td][td][align=center]0.007349[/align][/td][td][align=center]2[/align][/td][td][align=center]3.2139[/align][/td][td][align=center]0.003675[/align][/td][td] [/td][/tr][tr][td][align=center]提取时间[/align][/td][td][align=center]0.002731[/align][/td][td][align=center]2[/align][/td][td][align=center]1.1945[/align][/td][td][align=center]0.001366[/align][/td][td] [/td][/tr][tr][td][align=center]提取次数[/align][/td][td][align=center]0.02189[/align][/td][td][align=center]2[/align][/td][td][align=center]9.5733[/align][/td][td][align=center]0.01095[/align][/td][td][align=center]**[/align][/td][/tr][tr][td][align=center]误差[/align][/td][td][align=center]0.002287[/align][/td][td][align=center]2[/align][/td][td][align=center]1.0000 [/align][/td][td][align=center]0.001143[/align][/td][td] [/td][/tr][/table]由表[font=times new roman]3[/font]可知,根据水提取液中总黄酮含量与浸膏得率进行评估,各因素对结果的影响大小:提取次数[font=times new roman][/font]加水量[font=times new roman][/font]提取时间,即主要影响因素是提取次数,其次是加水量,提取时间影响最小。以实验结果为参考,结合实际生产情况,最终确定提取工艺为:加水[font=times new roman]20[/font]倍量,每次提取[font=times new roman]0.5h[/font],提取[font=times new roman]3[/font]次。1.2.2[font=宋体][b]提取正交验证实验[/b][/font]根据以上所选最佳提取工艺条件,加水[font=times new roman]20[/font]倍量,每次提取[font=times new roman]0.5h[/font],提取[font=times new roman]3[/font]次,平行[font=times new roman]3[/font]份,对水提取液的浸膏得率与总黄酮含量进行测定,按[font=times new roman]1.2.1.2[/font]项下的方法计算综合评分后,求平均得分,结果见表[font=times new roman]4.[/font][align=center]表[font=times new roman]4[/font]提取正交实验验证结果([font=times new roman][i]n[/i][/font][font=times new roman]=3[/font])[/align][table][tr][td][align=center]编号[/align][/td][td][align=center]浸膏得率(%)[/align][/td][td][align=center]总黄酮含量(g)[/align][/td][td][align=center]综合评分[/align][/td][td][align=center]平均得分[/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]37.3[/align][/td][td][align=center]2.036[/align][/td][td][align=center]0.833[/align][/td][td=1,3][align=center]0.830[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]38.1[/align][/td][td][align=center]2.038[/align][/td][td][align=center]0.829[/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]37.4[/align][/td][td][align=center]2.021[/align][/td][td][align=center]0.828[/align][/td][/tr][/table]由表[font=times new roman]4[/font]可知,[font=times new roman]3[/font]份平行实验最终的平均得分为[font=times new roman]0.830[/font],接近于正交设计中的[font=times new roman]A3B1C3[/font]综合评分,且评分最高,有良好的重复性和较高的准确率,所筛选的提取工艺条件基本稳定,可作为藤青泡腾片的提取方法。小结与讨论在提取工艺的探讨过程中,用正交试验的方法研究加水量、提取时间、提取次数对药液浸膏得率和总黄酮含量的影响,获得最适提取条件为:[font=times new roman]20[/font]倍量水,提取[font=times new roman]3[/font]次,每次提取[font=times new roman]0.5h[/font]。试验中发现,青果为橄榄的干燥果实,本处方中用量较少,为方便称取,同时提高没食子酸等有效成份的提取率,宜先将其进行粉碎;藤茶、葛花密度小,提取过程中浮于水面,应将其充分润湿,使其浸没于水中,以免影响各成份的提取率;若直接加热煎煮,提取过程中水分蒸发严重,实验结果重现性差,宜采用冷凝回流的方法进行提取。

  • 发酵液中透明质酸提取纯化工艺的研究

    【序号】:2【作者】:宋磊孟国庆郭燕风【题名】:发酵液中透明质酸提取纯化工艺的研究【期刊】:山东农业科学. 【年、卷、期、起止页码】:2017,49(03)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iAEhECQAQ9aTiC5BjCgn0RuvaCO5y_ujfIj_U2lrF2sJMqLLz4KNFK027DeDBjoPN&uniplatform=NZKPT

  • 【原创大赛】均匀设计实验优化茵陈多糖的提取工艺

    【原创大赛】均匀设计实验优化茵陈多糖的提取工艺

    [align=center]均匀设计实验优化茵陈多糖的提取工艺[/align][align=center]摘 要[/align][align=center] [/align][b]目的:[/b]探索提取温度、液固比和提取时间对茵陈多糖产率的影响,得到提取茵陈多糖最优工艺条件。[b]方法:[/b]用均匀设计实验优化茵陈多糖的提取工艺,用苯酚硫酸法测出每次实验所得多糖的纯度,再求得每次实验纯多糖的得率,然后应用回归分析的方法分析实验得出的数据,以纯多糖的得率为指标,对提取温度、液固比和提取时间3个因素进行分析,得出最佳工艺条件,并进行验证。[b]结果:[/b]实验得出茵陈多糖的最佳提取条件是:提取温度100℃、提取时间80 min、提取液固比55:1。[b]结论:[/b]验证实验平均得率为1.96%,预测值是2.00%,二者很接近,说明我们得到的最佳工艺条件是可靠的。关键词:茵陈多糖;提取工艺;均匀设计Optimize the ExtractionProcess of Herba artemisiae polysaccharide by Uniform Design ExperimentsABSTRACT[b]Objective: [/b]Study the effect of extraction temperature, liquid-solidratio and extraction time on the yield of Herba artemisiae polysaccharide, andthen get the optimal process conditions of extraction. [b]Methods:[/b] optimize the extraction process of Herba artemisiae polysaccharideby uniform design experiments, measure the purity of polysaccharide obtained ineach experiment by the phenol-sulfuric acid method, and calculate the yield of purepolysaccharide in each experiment, then use the regression analysis to analyzethe experimental data, the yield of pure polysaccharides as the indicators, getthe conclusion and verify it.[b] Result: [/b]thebest extraction condition of Herba artemisiae polysaccharide is: 100℃ as the extraction temperature, 80 min asthe extraction time and 55:1 as the extraction liquid-solid ratio.[b]Conclusion: [/b]the result of verification test is 1.96%, and the predictedvalues is 2.00%.They are very close. So the technological conditions isreliable.[b]Key words:[/b]Herba artemisiae polysaccharide Extraction process Uniform design[color=windowtext][/color][align=center]1 前言[/align]多糖,又称为多聚糖,是由十个以上的单糖通过苷键连接而成的聚合物[sup][/sup]。多项研究表明,多糖具有增强免疫功能、抗肿瘤、降血糖、抗衰老、抗病毒等功能[sup][/sup]。具有生物学功能的多糖被称为“生物应答效应物”或活性多糖[sup][/sup],事实上大多数多糖为活性多糖,主要存在于菌类、藻类、根茎类药材中[sup][/sup],本实验所探究的多糖为茵陈多糖,茵陈属于全草类药材。茵陈为菊科植物滨蒿[i]Artemisia scoparia Waldst.et Kit.[/i]或茵陈蒿[i]Artemisia capillariesThumb.[/i]的干燥地上部分[sup][/sup]。应在春季幼苗高6-10cm时采收或秋季花蕾长成花初开采割,除去杂质和老茎,晒干[sup][/sup],采摘的季节不同,茵陈可分为绵茵陈和花茵陈两种,春季采摘的名为绵茵陈,秋季采摘的名为花茵陈[sup] [/sup]。茵陈生产地在我国分布广泛,不同生产地生产的茵陈质量不同,优良的茵陈性状应为多卷曲成松散的团状,灰白色或灰绿色,全体密被白色茸毛,绵软如绒,气清香,味微苦[sup][/sup]。味苦、辛、微寒、无毒,归脾、胃、肝、胆经[sup][/sup]。结合古时和现代医学研究,茵陈多糖具有利胆、护肝、调脂降压、抗菌、抗肿瘤、抗动脉粥样硬化、抗氧化、清热解毒等功效[sup][/sup]。多糖的提取方法很多,大体上包括溶剂浸提法、酶法、超声波辅助提取法、微波辅助提取法和超临界流体萃取法[sup][/sup]。本实验采用水提醇沉法对茵陈多糖进行提取,虽然该方法提取工艺中要求要控制温度、时间、加水量等,但该方法工艺简单,适合在实验室操作。本实验采用的方法为均匀设计法,在条件范围变化大而需要进行多水平实验的情况下,它能够极大的减少实验的次数,只需要与因素水平数相等次数的q,本实验即可获得正交设计的至少做q[sup]2[/sup]组实验所能获得的实验结果。[align=center]2 实验部分[/align]2.1 实验仪器和试剂752型紫外可见分光光度计(上海恒平科学仪器公司)CPJ1003型电子天平(上海奥豪斯仪器有限公司)HH-1型恒温水浴锅(金坛市晶玻实验仪器厂)80-2离心机(上海荣泰生化工程有限公司)RE-52A旋转蒸发仪(上海亚荣生化仪器厂)GZX-9070数显鼓风干燥箱(上海博讯实业有限公司医疗设备厂)ZKXF-1型真空干燥箱(郑州南北仪器设备有限公司)SHD-Ⅲ型循环水式多用真空泵(保定市新区阳光科教仪器厂)20目,100目标准筛(浙江上虞市华丰五金仪器有限公司)[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url](上海佳安分析仪器厂)茵陈(河北省安国药材市场,经本考研室徐红欣老师鉴定)无水乙醇(分析纯,天津市富宇精细化工有限公司)蒸馏水(实验室自制)葡萄糖(分析纯,天津市科密欧化学试剂有限公司)苯酚(分析纯,天津市福晨化学试剂厂)浓硫酸(分析纯,北京化工厂)2.2 茵陈粗多糖提取1、将茵陈在70℃真空干燥3h,然后用粉碎机粉碎,取20目~100目的粉末,置于干燥器中,备用。[img=,72,4]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]2、精密称取2.5g的茵陈,加入规定液固比的蒸馏水,在设定温度下水浴加热回流t小时。3、先用脱脂棉过滤,再用布氏漏斗抽滤,滤液旋转蒸发直至滤液浓缩至约10mL。4、将浓缩的滤液置具塞锥形瓶中,再加30mL的无水乙醇,放入冰箱中,4℃放置24小时。5、将溶液转移至离心管内,并在3000rpm下离心10min,弃去上清液,取沉淀。6、50℃真空干燥3.5h后,过夜,取出,放凉,称重,计算产率。其中,液固比、提取时间t根据实验过程中考察因素的改变,作相应的更改,其他条件保持一致。2.3 均匀设计实验 本实验依据之前单因素实验结果,确定了温度、液固比和提取时间这三个因素的取值范围,在这个基础上,用茵陈的粗多糖的提取率作为指标,初步确定茵陈多糖的提取条件,再以纯糖的最终收率确定茵陈多糖最优提取条件。首先在茵陈质量一定的前提下,分别设定不同的提取温度、提取时间及料液比,探索它们对茵陈粗多糖提取率的影响。提取完粗多糖,得到茵陈多糖的提取条件,进而再以苯酚-硫酸法测定每组实验的纯糖含量,计算纯糖的收率,并以其作为标准得到茵陈多糖提取的最优条件,最后对最优条件进行验证。2.3.1 设计实验方案依据之前单因素实验结果,我们确定了温度、液固比和提取时间这3个因素的取值范围:提取温度X[sub]1[/sub] :55℃~100℃;液固比X[sub]2[/sub]:30:1~75:1提取时间X[sub]3[/sub]:50min~140min。设计实验方案。每小组均先称量2.5克茵陈,按照设计好的条件对茵陈进行粗多糖的提取,并测定多糖纯度,求得纯多糖产率,方案及结果见表1。[color=red] [/color][align=center]表1 均匀设计实验方案及结果[/align] [table][tr][td] [table][tr][td] [table=100%][tr][td] 条件 编号[/td][/tr][/table] [/td][/tr][/table][img=,98,65]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,84,52]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][td] [align=center]温度(℃)[/align] [/td][td] [align=center]液固比[/align] [align=center](g/mL)[/align] [/td][td] [align=center]时间(min)[/align] [/td][td] [align=center]粗多糖产率(%)[/align] [/td][td] [align=center]纯多糖产率(%)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]55[/align] [/td][td] [align=center]50:1[/align] [/td][td] [align=center]110[/align] [/td][td] [align=center]12.12[/align] [/td][td] [align=center]1.13[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]75:1[/align] [/td][td] [align=center]70[/align] [/td][td] [align=center]11.72[/align] [/td][td] [align=center]1.03[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]65[/align] [/td][td] [align=center]45:1[/align] [/td][td] [align=center]140[/align] [/td][td] [align=center]13.57[/align] [/td][td] [align=center]1.14[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]70[/align] [/td][td] [align=center]70:1[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]14.93[/align] [/td][td] [align=center]1.35[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]75[/align] [/td][td] [align=center]40:1[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]14.39[/align] [/td][td] [align=center]1.29[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]80[/align] [/td][td] [align=center]65:1[/align] [/td][td] [align=center]130[/align] [/td][td] [align=center]13.22[/align] [/td][td] [align=center]1.54[/align] [/td][/tr][tr][td] [align=center]7[/align] [/td][td] [align=center]85[/align] [/td][td] [align=center]35:1[/align] [/td][td] [align=center]90[/align] [/td][td] [align=center]13.64[/align] [/td][td] [align=center]1.74[/align] [/td][/tr][tr][td] [align=center]8[/align] [/td][td] [align=center]90[/align] [/td][td] [align=center]60:1[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13.24[/align] [/td][td] [align=center]1.28[/align] [/td][/tr][tr][td] [align=center]9[/align] [/td][td] [align=center]95[/align] [/td][td] [align=center]30:1[/align] [/td][td] [align=center]120[/align] [/td][td] [align=center]16.32[/align] [/td][td] [align=center]2.36[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]55:1[/align] [/td][td] [align=center]80[/align] [/td][td] [align=center]21.59[/align] [/td][td] [align=center]2.42[/align] [/td][/tr][/table]2.3.2 标准曲线的绘制储备液的制备:精密称取葡萄糖0.1246g,加蒸馏水溶解,转移于100mL容量瓶中,再加蒸馏水至刻度,最后摇匀得124.6mg/L的储备液,备用。标准液的制备:准备5个25mL容量瓶,分别标注1.0mL、0.8mL、0.6mL、0.4 mL、0.2 mL,再分别精密量取储备液1.0 mL、0.8 mL、0.6 mL、0.4 mL、0.2 mL,相应置于25 mL的容量瓶中,加水至刻度,摇匀,则得5个不同浓度的标准液,备用。5%苯酚溶液的制备:称取苯酚1.2512g于烧杯中,用约50℃的蒸馏水溶解,转移至25mL的容量瓶中,加水至刻度,摇匀,备用。标准曲线的绘制:准备6个具塞试管,分别标注1、2、3、4、5、6,先用蒸馏水润洗过的2mL移液管移取2mL蒸馏水于1号具塞试管,然后用相对应的标准溶液润洗过的2 mL移液管分别取2 mL标准溶液于具塞试管中(0.2 mL的标准液对应2号管,0.4 mL的标准液对应3号管,以此类推)。接着用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]移取1 mL 5%的苯酚溶液,快速加入上述具塞试管中,充分混匀,再用5 mL移液管移取5 mL浓硫酸快速加入上述试管中,充分摇匀,盖好试管塞(6个试管之间加硫酸间隔5min)。沸水浴15min,冷水浴10min,室温放置5min,最后分别在490nm处测定吸光度,以吸光度A为纵坐标,以葡萄糖标准溶液C为横坐标,绘制标准曲线。(见图1)标准曲线的线性范围为:0.10072×10[sup]-4[/sup]mg/mL ~ 0.50360×10[sup]-4[/sup]mg/mL曲线方程:A=0.0146C+0.074,相关系数:r[sup]2[/sup]=0.9992[align=center][img=,475,288]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261745237707_581_3237657_3.png!w475x288.jpg[/img][/align]图1 标准曲线[align=center] [/align]2.3.3 苯酚-硫酸法测多糖含量1、分别取上述实验所得粗多糖约0.0600g于小烧杯中,加少量60℃蒸馏水搅拌使其溶解,转移至250mL容量瓶中,加蒸馏水至刻度,摇匀。2、分别用布氏漏斗抽滤,取部分滤液,然后用该滤液润洗2mL移液管,移取2mL上述溶液于具塞试管中。3、再分别用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]移取1mL 5%的苯酚溶液,快速加入上述具塞试管中,充分混匀。4、接着用5mL移液管取5mL浓硫酸快速加入上述试管中,充分摇匀,盖好试管塞(两管加入浓硫酸时间间隔为5min)。紧接着放入沸水浴15min,冷水浴10min,室温放置5min。5、在490nm处测定其吸光度。(备注:每次测多糖的吸光度需配制空白对照用来校正可见分光光度计。)将测得的吸光度带入标准曲线方程中计算出所配溶液的多糖浓度,进而得到纯多糖的质量,再除以所称茵陈样品的质量,即为纯多糖得率,结果见表1。2.4 最优提取条件的确定用SPSS 19.0统计软件,以纯多糖得率为评价指标对各因素进行线性回归分析,模型的优度通过复相关系数和方差分析来判定。结果如表2。表2 回归方程 [table=638][tr][td] [align=center] [/align] [/td][td] [align=center]回归方程式[/align] [/td][td] [align=center]R[/align] [/td][td] [align=center]P[/align] [/td][/tr][tr][td] [align=center]回归方程1[/align] [/td][td] [align=center]Y=0.023X[sub]1[/sub]-0.008X[sub]2[/sub]+0.002X[sub]3[/sub][/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]0.000[/align] [/td][/tr][tr][td] [align=center]回归方程2[/align] [/td][td] [align=center]Y=0.020X[sub]1[/sub][/align] [/td][td] [align=center]0.985[/align] [/td][td] [align=center]0.000[/align] [/td][/tr][/table]表2中,Y为纯多糖得率,X1为提取温度,X2为液固比,X3为提取时间。方程1,R[sup]2[/sup]= 0.971,P值为0.000,回归非常显著, X1项P值为0.000小于0.01,回归非常显著,有统计意义,而X2,X3均回归不显著,方程1多糖产率预测值为2.17%;方程2为将各项及其交叉乘积项全部纳入进行逐步回归的结果,我们发现,最后的方程中只保留了X1项,方程2的 R[sup]2[/sup]= 0.976,X1项P值为0.000,小于0.01,回归亦非常显著有效,其预测值为2.00%。 综合上述两方程的回归结果,及均匀设计和单项实验的结果,我们采取提取温度100℃、提取时间为80 min、提取液固比为55:1,即第10组的条件为最佳条件。2.5 最优提取条件的验证均匀设计实验优选出了茵陈多糖提取的最佳条件,即提取温度为100℃、提取时间为80 min、提取液固比为55:1。按照上述茵陈多糖的提取及苯酚-硫酸法测多糖含量测定的实验流程,对最优条件进行3次重复实验,粗多糖及纯多糖的产率均列于表3中。[align=center]表3 最优提取条件测得的多糖含量[/align] [table][tr][td] [align=center]实验编号[/align] [/td][td] [align=center]粗多糖得率(%)[/align] [/td][td] [align=center]纯多糖得率(%)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]22.61[/align] [/td][td] [align=center]1.95[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]21.24[/align] [/td][td] [align=center]2.04[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]18.55[/align] [/td][td] [align=center]1.88[/align] [/td][/tr][tr][td] [align=center]平均值[/align] [/td][td] [align=center]20.80[/align] [/td][td] [align=center]1.96[/align] [/td][/tr][/table][align=center]3 结果与讨论[/align]3.1 实验结果本实验采用水提醇沉法对茵陈多糖进行提取,在单因素实验结果基础上,通过对液固比、提取时间、提取温度等3个可控条件进行均匀设计实验,结合实验结果得出来的数据,确定了茵陈多糖提取的最优条件,并利用该最优条件测定了茵陈多糖的含量,计算出了纯多糖的得率。结果如下:[align=center]表4 茵陈多糖提取最优条件及多糖含量[/align] [table][tr][td=4,1] [align=center]最优提取条件[/align] [/td][td=1,2] [align=center]粗多糖得率[/align] [align=center](%)[/align] [/td][td=1,2] [align=center]纯多糖得率[/align] [align=center](%)[/align] [/td][/tr][tr][td] [align=center]提取温度[/align] [/td][td] [align=center]提取液固比[/align] [/td][td] [align=center]提取时间[/align] [/td][td] [align=center]提取次数[/align] [/td][/tr][tr][td] [align=center]100℃[/align] [/td][td] [align=center]55:1[/align] [/td][td] [align=center]80 min[/align] [/td][td] [align=center]1次[/align] [/td][td] [align=center]20.80[/align] [/td][td] [align=center]1.96[/align] [/td][/tr][/table]3.2 讨论(1)本实验采取的是水提醇沉法,所以在提取粗多糖时,除被考察因素温度、液固比、提取时间按要求改变外,其他条件均应保持一致,如旋蒸时的温度、水浴水位高度、干燥时的真空度,离心时的转速和时间等。若条件不一致,可能造成实验结果的误差。(2)粗多糖在真空干燥时,温度不宜过高,应在50~60℃之间,过低的温度不能将粗多糖干燥彻底,过高的温度则容易使粗多糖碳化,造成误差。(3)在旋转蒸发时,除要保证水位大致一样时,旋转时还要注意避免溶液爆沸,导致溶液进入,造成实验误差。(4)在绘制标准曲线时需注意以下几点:1、配制溶液过程中,需要将溶液转移至容量瓶时,一定得精确至刻度,并且摇匀。2、在移液时要准确迅速,用同一移液管,并且在转移之前要用相对应的溶液润洗。3、再加苯酚和浓硫酸后,要迅速充分摇匀,加浓硫酸的间隔时间个人建议为5分钟,因为间隔时间过短容易手忙脚乱导致误差。参考文献 娜日苏.天然植物多糖及复合多糖的研究进展.赤峰学院学报,2009,25(1):68~68 王超,康立源.中药多糖的药理研究进展.世界科学技术—中医药现代化,2008,10(3):82~82 刘占峰,孙汉文.多糖的化学修饰研究进展 .河北大学学报,2005,25(1):104~104 韩伟,黄兮,张玲玲,等.中药多糖的提取、分离纯化及分析方法的研究进展.工程工艺与设备,2012,332(14):19 王茜.茵陈的药理作用及其主要化学成分药物代谢动力学研究进展 .安徽中医学院学报,2012,31(4):88~88 孙涛,陈炜.茵陈药理作用研究进展.中药与临床,2010,1(3):59~59 姜波,焦文霞.茵陈的古今临床应用.中国名族民间医药,2011,21(3):36~36 温俊达,张水寒,凌翔,等.道地药材绵茵陈的生药学鉴别.时针国医国药,2007,18(3):555~556 温建炫,沈歆,孙晓泽,等.应用“动-定序贯八法”理论对茵陈药性再认识.时珍国医国药,2013,23(1):224~224 孙涛,陈炜.茵陈药理作用研究进展.中药与临床,2010,1(3):59~59 尹艳,高文宏,于淑娟.多糖提取技术的研究进展.食品工业科技,2007,28(2):248~250

  • 中药提取工艺中如何选取合适的流量泵才能实现料液的100%全检?

    [font='Times New Roman'][font=宋体]对于[/font][/font][font=宋体]中药[/font][font='Times New Roman'][font=宋体]提取工艺,需要增加多个附件,包括流量泵、过滤器、电磁阀等[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]见图[/font]6-17[font=宋体]示意[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]但是要实现[/font]100%[font=宋体]检测,还需要将多个参数进行匹配。例如:选择旁路检测方式,如果选择流量泵参数为:流量[/font][font=Times New Roman]5 T/h[/font][font=宋体],扬程[/font][font=Times New Roman]24[/font][font=宋体]米,功率[/font][font=Times New Roman]1.5Kw[/font][font=宋体],进出口[/font][font=Times New Roman]DN25[/font][font=宋体]。按照管道内容量为[/font][font=Times New Roman]20L[/font][font=宋体]计算,旁路循环一次需要时间为:[/font][font=Times New Roman]20L/[/font][font=宋体]流量[/font][font=Times New Roman]=14.4 [/font][font=宋体]秒,如果提取罐药液量为[/font][font=Times New Roman]4.5[/font][font=宋体]吨计算,提取罐内药液全部循环[/font][font=Times New Roman]1[/font][font=宋体]次需要的时间为:[/font][font=Times New Roman]4.5[/font][font=宋体]吨[/font][font=Times New Roman]/[/font][font=宋体]流量 [/font][font=Times New Roman]= 54 min 60min[/font][font=宋体],一个提取工艺需要[/font][font=Times New Roman]60min[/font][font=宋体],完全符合[/font][font=Times New Roman]100%[/font][font=宋体]检测要求。[/font][/font][align=center][img=,295,370]https://ng1.17img.cn/bbsfiles/images/2024/06/202406211925384189_1658_6418678_3.png!w434x544.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]6-17 [font=宋体]流量泵取样在线近红外分析示意图[/font][/font][/align][align=center][font=宋体][font=Times New Roman][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]-[/font][font=宋体]近红外在线流通池;[/font][font=Times New Roman]K-[/font][font=宋体]取样阀门;[/font][font=Times New Roman]S1.S2.S3.S4-[/font][font=宋体]手动隔膜阀;[/font][/font][/align][align=center][font=宋体][font=Times New Roman]D1.D2-[/font][font=宋体]防爆电磁流量计;[/font][font=Times New Roman]B-[/font][font=宋体]卫生级防爆离心泵[/font][/font][/align]

  • 【原创大赛】拳参多糖的提取工艺的优化

    【原创大赛】拳参多糖的提取工艺的优化

    [b]摘要:目的:[/b]探索提取温度、液固比和提取时间对拳参多糖产率的影响,得到提取[color=#000000]拳参[/color]多糖最优工艺条件。[b]方法:[/b]用均匀设计实验优化[color=#000000]拳参[/color]多糖的提取工艺,用苯酚硫酸法测出每次实验所得多糖的纯度,再求得每次实验纯多糖的得率,然后应用回归分析的方法分析实验得出的数据,以纯多糖的得率为指标,对提取温度、液固比、提取次数和提取时间3个因素进行分析,得出最佳工艺条件,并进行验证。[b]结果:[/b]实验得出茵陈多糖的最佳提取条件是:提取温度100℃、提取时间135 min、提取液固比55:1。[b]结论:[/b]验证实验平均得率纯多糖实际产率5.95%与理论得率5.79%十分接近,说明我们得到的最佳工艺条件是可靠的。[align=center]1  前言[/align]拳参又名紫参,草河车,为蓼科蓼属多年生草本植物拳参[i]Polygonum bistirta[/i] L.的干燥根茎。拳参一名最早出现在《本草图经》中,其性状呈扁圆形而弯曲,两端钝圆或稍尖,质硬脆,易折断,断面棕红或赤褐色,无嗅,其性苦、涩、微寒,具有清热解毒,凉肝熄风,消肿止血的功效。临床上用于赤痢,热泻,肺热,咳嗽,痈肿,瘰疬,口舌生疮,吐血,痔疮出血,毒蛇咬伤的治疗[sup][/sup]。近十几年来研究表明,拳参的化学成分多样,主要有绿原酸、丁二酸、没食子酸、儿茶素及鞣质等。刘晓秋等[sup][/sup]从拳参的乙醇提取物中得到9个化合物,经理化常数和光谱分析,确定为没食子酸、丁二酸、槲皮素、槲皮素-5-O-β-D-吡喃葡萄糖苷、原儿茶酸[sup][/sup]、丁香苷、(+)-儿茶素、芦丁及mururin A。孙晓白[sup][/sup]对拳参根茎的化学成分进行了系统的研究,干燥根茎粉碎后用95%甲醇浸泡提取3次,减压浓缩后,依次用石油醚,乙酸乙酯,正丁醇萃取,再通过硅胶柱层析,葡聚糖柱层析,制备薄层层析和重结晶等手段,得到了20个化合物,并确定了其中的3β-acetoxy-dammara-20、24-diene、Ferenemone等17个化合物结构。肖凯等[sup][/sup]用60%的丙酮对拳参根茎进行提取,并用反向层析的方法进行分离纯化,得到10个化合物,最终确定为没食子酸、色氨酸、2,6-二羟基苯甲酸等。现代药理研究表明拳参有抗菌作用、镇痛作用、中枢抑制作用、心肌保护作用等,临床用于治疗菌痢、肠炎、肺结核、婴幼儿秋冬腹泻、湿热型痢疾等[sup][/sup]。曾靖等[sup][/sup]通过实验表明拳参的镇痛作用与氨基比林相当。刘晓秋等[sup][/sup]通过采用斜面法测定拳参各提取物和单体化合物的最低抑菌浓度,研究了拳参根茎中得到的5种不同溶剂提取物及4种单体化合物的体外抑菌活性。刘春棋等[sup][/sup]过滤纸片对拳参提取物进行了抑菌试验,结果发现不同浓度的拳参提取物对金黄色葡萄球菌和大肠杆菌有一定的抑菌效果。eepak Mittal[sup][/sup] 研究了拳参提取了拳参及其活性成分对四氯化碳和扑热息痛所造成的肝损伤的保护作用。李洪亮在首届全国方剂组成原理高峰论坛上发表的论文[sup][/sup]研究发现拳参-413本身对正常血管无明显作用,在NA致血管收缩的前提下,拳参-413对大鼠离体胸动脉环具有显著的剂量依赖性舒张作用。曾纪荣、曾庆磊等[sup][/sup]研究了拳参提取物在大鼠视网膜缺血再灌注损伤时抗氧化作用的影响。曾昭毅、王敏等[sup][/sup]用昆明小鼠证明拳参水提物有与氨基比林、吗啡相当的镇痛作用,并认为其镇痛作用并非通过阿片受体而发挥。李珂珂、栾希英等[sup][/sup]探讨了拳参水提物对正常小鼠免疫功能的影响。李珂珂、栾希英[sup][/sup]研究了拳参乙醇提取物(BRE)的免疫调节作用。近年来国内外对拳参的研究日趋深入,有关其化学成分和药理活性方面的研究已进行了一定量的工作,但通过查阅资料,关于拳参多糖的文献较少,说明目前对于拳参多糖的研究鲜有报道。因此,本课题拟对拳参多糖的提取工艺进行研究,对拳参多糖的提取条件进行优化,从而为拳参多糖的深入开发利用提供实验依据。本课题我们就重点探讨拳参多糖的最佳提取条件,通过对拳参多糖提取过程中影响拳参多糖产率、纯度的因素进行单因素实验,单因素实验包括提取时间、提取温度、液固比及提取次数,最终确定最优提取时间为2.5h,提取温度为100℃,液固比为20:1。然后根据单因素最优条件进行均匀设计实验,用线性回归的分析方法分析实验得出的数据,找出拳参多糖的最佳提取条件。[align=center]2 实验材料与方法[/align]2.1 实验仪器CPJ1003型电子天平(上海奥豪斯仪器有限公司)HH-1数显恒温水浴锅(金坛市晶玻实验仪器厂)80-2离心机(上海荣泰生化工程有限公司)RE-52A旋转蒸发仪(上海亚荣生化仪器厂)GZX-9070电热恒温鼓风干燥箱(上海博讯实业有限公司医疗设备厂)ZKXF-1型真空干燥箱(河北荣昌试验仪器厂)SHD-Ⅲ型循环水式多用真空泵(保定市新区阳光科教仪器厂)BCD-223MT冰箱(河南新飞电器有限公司)752型紫外可见分光光度计(上海恒平科学仪器公司)24目,100目标准筛(浙江上虞市华丰五金仪器有限公司)2.2 实验材料和试剂拳参(河北省安国药材市场)无水乙醇(分析纯,天津市富宇精细化工有限公司)蒸馏水(实验室自制)葡萄糖(分析纯,天津市科密欧化学试剂有限公司)苯酚(分析纯,天津市福晨化学试剂厂)浓硫酸(分析纯,北京化工厂)2.3 实验方法步骤2.3.1拳参的前处理拳参粉碎,放入真空烘箱中,70℃干燥2h,过24目筛得到拳参粉,备用。2.3.2粗多糖的提取流程拳参粗多糖提取的实验流程如下:精确称取拳参粉约5.0g于500mL圆底烧瓶中,加入规定液固比的蒸馏水,用恒温水浴锅T℃加热不同时间,先用脱脂棉过滤,然后用布氏漏斗抽滤,将滤液浓缩(旋转蒸发)至约10mL,加95%乙醇30mL,置具塞锥形瓶中,冰箱4℃放置24mL,然后用10mL试管离心(4000rpm,20min),弃去上清液,取沉淀,于50℃真空干燥箱干燥过夜,然后将所得沉淀称重,并计算粗多糖产率。其中,液固比、提取温度T、提取时间t及提取次数根据实验过程中考察因素的改变,作相应更改。2.3.3粗多糖产率的计算实验提取出的拳参粗多糖,经过烘干后,置于电子分析天平称重,得出的数据除以样品重量,即可得出拳参粗多糖的产率。2.3.4单因素实验2.3.4.1 液固比对拳参粗多糖提取率的影响采用提取温度80 ℃,加热2.5h,提取1次,考察了液固比对提取收率的影响。在结合前人相关中药材实验的基础上,确定考察液固比为10:1、20:1、30:1、40:1。粗多糖产率见表2-1。 表2-1  液固比对粗多糖提取率的影响 [table][tr][td] [align=center] 液固比(mL/g)[/align] [/td][td] [align=center]10:1[/align] [/td][td] [align=center]20:1[/align] [/td][td] [align=center]30:1[/align] [/td][td] [align=center]40:1[/align] [/td][/tr][tr][td] 粗多糖产率(%)[/td][td] [align=center]7.61[/align] [/td][td] [align=center]10.86[/align] [/td][td] [align=center]10.14[/align] [/td][td] [align=center]9.18[/align] [/td][/tr][/table]2.3.4.2 提取温度对拳参粗多糖提取率的影响采用液固比为20:1,提取时间2.5h,提取1次,考察了提取温度对粗多糖得率的影响。本实验确定考察温度为60℃、70℃、80℃、90℃、100℃。粗多糖产率见表2-2。[align=center]表2-2  提取温度对粗多糖提取率影响[/align] [table][tr][td] [align=center]提取温度[/align] [/td][td] [align=center]60℃[/align] [/td][td] [align=center]70℃[/align] [/td][td] [align=center]80℃[/align] [/td][td] [align=center]90℃[/align] [/td][td] [align=center]100℃[/align] [/td][/tr][tr][td]粗多糖产率(%)[/td][td] [align=center]6.42[/align] [/td][td] [align=center]9.24[/align] [/td][td] [align=center]10.67[/align] [/td][td] [align=center]12.11[/align] [/td][td] [align=center]17.83[/align] [/td][/tr][/table]2.3.4.3 提取时间对拳参粗多糖提取率的影响采用提取温度80 ℃,液固比20:1,提取1次,考察了提取时间对粗多糖得率的影响。通过查阅文献,本实验确定考察时间为1.5h、2h、2.5h、3h、3.5h。粗多糖产率见表2-3。[align=center]表2-3 提取时间对粗多糖提取率的影响[/align] [table][tr][td] [align=center]提取时间(h)[/align] [/td][td] [align=center]1.5[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]2.5[/align] [/td][td] [align=center]3[/align] [/td][td]3.5[/td][/tr][tr][td]粗多糖产率(%)[/td][td] [align=center]8.25[/align] [/td][td] [align=center]8.85[/align] [/td][td] [align=center]11.14[/align] [/td][td] [align=center]9.90[/align] [/td][td]8.92[/td][/tr][/table]2.3.4.4 提取次数对拳参粗多糖提取率的影响采用提取温度80 ℃,提取时间2.5h,液固比20:1,考察了提取次数对粗多糖得率的影响。根据前人提取数据,将提取次数定为1次、2次、3次、4次。粗多糖产率见表2-4。[align=center]表2-4 提取次数对粗多糖提取率的影响[/align] [table][tr][td] [align=center]提取次数[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][/tr][tr][td]粗多糖产率(%)[/td][td] [align=center]11.27[/align] [/td][td] [align=center]13.08[/align] [/td][td] [align=center]16.49[/align] [/td][td] [align=center]16.83[/align] [/td][/tr][/table]2.3.5均匀设计实验2.3.5.1 均匀设计实验方案根据单因素实验结果确定各因素的取值范围:提取温度X[sub]1[/sub] :55℃~100℃;料液比X[sub]2[/sub]:1:10~1:37:提取时间X[sub]3[/sub]:1.5h~3.75h,设计出一个3因素10水平的均匀设计表。根据均匀设计表中所列的提取条件,按照拳参粗多糖的提取流程,提取拳参粗多糖,用苯酚硫酸法测定各次实验所得粗多糖含量,计算纯多糖产率,结果见表2-5。[align=center] [/align][align=center]表2-5 均匀设计实验表及结果[/align] [table=519][tr][td] [table][tr][td] [table=100%][tr][td] 条件 编号[/td][/tr][/table] [/td][/tr][/table][img=,98,65]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,84,52]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][td] [align=center]提取温度(℃)[/align] [/td][td] [align=center]液固比[/align] [align=center](mL/g)[/align] [/td][td] [align=center]提取时间(min)[/align] [/td][td] [align=center]纯多糖产率[/align] [align=center](%)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]55[/align] [/td][td] [align=center]22[/align] [/td][td] [align=center]180[/align] [/td][td] [align=center]1.819[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]60[/align] [/td][td] [align=center]37[/align] [/td][td] [align=center]120[/align] [/td][td] [align=center]2.209[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]65[/align] [/td][td] [align=center]19[/align] [/td][td] [align=center]225[/align] [/td][td] [align=center]1.610[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]70[/align] [/td][td] [align=center]34[/align] [/td][td] [align=center]165[/align] [/td][td] [align=center]1.947[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]75[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]105[/align] [/td][td] [align=center]2.007[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]80[/align] [/td][td] [align=center]31[/align] [/td][td] [align=center]210[/align] [/td][td] [align=center]3.647[/align] [/td][/tr][tr][td] [align=center]7[/align] [/td][td] [align=center]85[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]150[/align] [/td][td] [align=center]3.616[/align] [/td][/tr][tr][td] [align=center]8[/align] [/td][td] [align=center]90[/align] [/td][td] [align=center]28[/align] [/td][td] [align=center]90[/align] [/td][td] [align=center]4.717[/align] [/td][/tr][tr][td] [align=center]9[/align] [/td][td] [align=center]95[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]195[/align] [/td][td] [align=center]4.852[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]25[/align] [/td][td] [align=center]135[/align] [/td][td] [align=center]6.595[/align] [/td][/tr][/table]2.3.5.2 标准曲线的绘制标准液的配制:称取葡萄糖0.1246g于100mL容量瓶中,加蒸馏水至刻度,摇匀得124.6mg/L的储备液,分别精密量取储备液1.0mL、0.8mL、0.6mL、0.4mL、0.2mL,置于25mL的容量瓶中,加水至刻度,摇匀。则得5个不同浓度的标准液。配制5%苯酚溶液:称取苯酚1.2512g于烧杯中,用加热至约50℃的蒸馏水溶解,转移至25mL的容量瓶中,加水至刻度,摇匀。标准曲线的绘制:用干燥的2mL移液管取2mL标准溶液于具塞试管中,再用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]移取1mL5%的苯酚溶液,快速加入上述具塞试管中,充分混匀,用5mL移液管取5mL浓硫酸快速加入上述试管中,充分摇匀,盖好试管塞。沸水浴15min,冷水浴10min,室温放置5min(5个储备液之间间隔5min加硫酸)。再将标准液换成蒸馏水,其他操作不变配成空白待测溶液。将上述反应30min后的溶液分别在490nm处测定吸光度,以吸光度A为纵坐标,以葡萄糖标准溶液C为横坐标,绘制标准曲线。(见图2-6)标准曲线的线性范围为:0.10072×10[sup]-1[/sup] mg/mL ~0.50360×10[sup]-1[/sup]mg/mL。曲线方程:A=0.015C+0.0502,相关系数:R[sup]2[/sup]= 0.9997 [align=center] [img=,654,351]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261738563747_2538_3237657_3.png!w654x351.jpg[/img][/align][align=center]图2-6 标准曲线[/align][align=center] [/align]2.3.5.3 苯酚-硫酸法测纯多糖含量分别取均匀设计实验所得粗多糖0.0201g于小烧杯中,加少量水搅拌使其溶解,转移至500mL容量瓶中,加蒸馏水至刻度,摇匀。用2mL移液管移取2mL上述溶液于具塞试管中,再用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]移取1mL5%的苯酚溶液,快速加入上述具塞试管中,充分混匀,用5mL移液管取5mL浓硫酸快速加入上述试管中,充分摇匀,盖好试管塞。沸水浴15min,冷水浴10min,室温放置5min,反应完全后在490nm处测定其吸光度,每次需配制空白对照用来校正可见分光光度计。将测得的吸光度带入标准曲线方程中计算出所配溶液的多糖浓度,进而得到纯多糖的质量,再除以所称拳参样品的质量,即为纯多糖得率,结果见表2-5。 [table][tr][td=1,2][img=,232,45]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][tr][td=1,2] [table=100%][tr][td][b]×[/b]100%[/td][/tr][/table] [/td][/tr][/table][align=center]3  实验结果[/align]3.1 单因素实验结果3.1.1液固比图3-1表明,液固比在10:1和20:1之间粗多糖得率共提高42.76 %,在20:1到30:1之间以及30:1到40:1之间,反而下降。主要是由于开始增加提取液体积有利于细胞内容物的溶出,而液固比到达20:1之后,多糖成分已基本溶出,故粗多糖得率没有太大增加,并且考虑到工业生产中水的用量,所以液固比20:1最为合适。[align=center][img=,679,328]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261739157427_7789_3237657_3.png!w679x328.jpg[/img][/align][align=center]图3-1  液固比对拳参粗多糖得率的影响[/align]3.1.2提取温度结果见图3-2。由图中可以看出,当温度从60 ℃上升到70 ℃时,粗多糖得率共提高了64.59%,从70℃到80℃,提高了21.40%,80℃到90℃,提高了8.55%,从90℃到100℃,提高了54.77%。随着温度的上升,粗多糖产率一直在增加,说明温度的提高对粗多糖的溶出有帮助。显然,从60℃到70℃时,粗多糖产率上升得最快,从70℃到100℃,产率仍然在上升, 100℃时粗多糖产率达到最高得出粗多糖的最佳提取温度为100 ℃。[align=center][img=,690,332]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261739334261_7804_3237657_3.png!w690x332.jpg[/img][/align][align=center]图3-2  提取温度对拳参粗多糖得率的影响[/align][align=center] [/align]3.1.3提取时间中药材有效药物成分溶出需要一定的时间,较短会造成药物有效成分无法最大限度地溶出,过长的提取时间则会导致有效成分分解。结果见图3-3。可以看出,提取时间超过2.5h后粗多糖得率并未继续增加,反而下降;而2.5h之前,粗多糖得率增加显著,从1.5h到2.5h增加了 35.03%,故2.5h为最佳提取时间。[align=center][img=,690,354]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261739498948_3879_3237657_3.png!w690x354.jpg[/img][/align][align=center]图3-3  提取时间对拳参粗多糖得率的影响[/align]3.1.4提取次数结果见图3-4。结果发现:提取4次时粗多糖得率最高,比1次提取提高了49.33%,差别显著,提取三次较之提取一次,提高了46.32%,而提取两次较提取一次,仅提高了16.06%,提高有限,确定最佳提取次数为3次。[align=center][img=,684,350]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261740048693_1694_3237657_3.png!w684x350.jpg[/img][/align][align=center]图3-4  提取次数对拳参粗多糖得率的影响[/align][align=center] [/align]3.2 均匀设计实验结果最优提取条件的选择:用SPSS 19.0统计软件,以纯多糖得率为评价指标对各因素进行线性回归分析,模型的优度通过复相关系数和方差分析来判定。结果如表3-5。表3-5 回归方程 [table=638][tr][td] [align=center] [/align] [/td][td] [align=center]回归方程式[/align] [/td][td] [align=center]R[/align] [/td][td] [align=center]P[/align] [/td][/tr][tr][td] [align=center]回归方程1[/align] [/td][td] [align=center]Y=-6.090+0.109X[sub]1[/sub]+0.035X[sub]2[/sub]+0.001X[sub]3[/sub][/align] [/td][td] [align=center]0.933[/align] [/td][td] [align=center]0.005[/align] [/td][/tr][tr][td] [align=center]回归方程2[/align] [/td][td] [align=center]Y=-4.559+0.101X[sub]1[/sub][/align] [/td][td] [align=center]0.917[/align] [/td][td] [align=center]0.000[/align] [/td][/tr][/table]表3-5中,Y为纯多糖得率,X[sub]1[/sub]为提取温度,X[sub]2[/sub]为液固比,X[sub]3[/sub]为提取时间。方程1,R[sup]2[/sup]= 0.870,P值为0.005,回归非常显著,常数项与X[sub]1[/sub]项P值分别0.037和0.001,均小于0.05 ,回归显著,有统计意义,而X[sub]2[/sub],X[sub]3[/sub]均回归不显著,方程1多糖产率预测值为5.59%;方程2为将各项及其交叉乘积项全部纳入进行逐步回归的结果,我们发现,最后的方程中只保留了X[sub]1[/sub]项,方程2的 R[sup]2[/sup]= 0.841,常数项与X[sub]1[/sub]项P值分别为0.037和0.001,均小于0.05,回归亦显著有效,其预测值为5.79%,因第二个方程更为有效,故我们采用预测值5.79%。 综合上述两方程的回归结果,及均匀设计和单因素实验结果,我们采取提取温度100℃、提取时间为135 min、提取液固比为25:1,即第10组的条件为最佳条件,并重复3次进行实验验证。结果如下:[align=center]表3-6  均匀设计最优条件验证[/align] [table][tr][td]实验编号[/td][td]1[/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][/tr][tr][td]纯多糖产率(%)[/td][td] [align=center]6.07[/align] [/td][td] [align=center]5.80[/align] [/td][td] [align=center]5.97[/align] [/td][/tr][tr][td]平均(%)[/td][td=3,1] [align=center]5.95[/align] [/td][/tr][/table]所得纯多糖实际产率5.95%与理论得率5.79%十分接近。[align=center]4 讨论[/align](1)在研究粗多糖提取过程中单因素变量时,要保证单一变量,其他操作平行一致,若无法保证单一变量,则可能造成实验结果的误差。(2)在绘制标准曲线及用苯酚-硫酸法测多糖含量时,加硫酸时应均匀快速加入,并用力摇匀,若震摇过慢,硫酸会直接氧化苯酚,导致硫酸不能与糖类反应完全,造成误差。并在测量时保证每组的反应时间一致。(3)用苯酚-硫酸法测多糖含量时,为使测得的吸光度在标准曲线的吸光度范围之内,使其能用该标准曲线进行计算。(4)拳参多糖提取次数虽然提取3次比提取1次粗多糖产率高,但所用提取溶剂较多,且粗多糖提取量较所用时间及用料性价比不高,故采用提取1次。均匀设计法通过提高实验点均匀分散程度,使实验点具有更好的代表性,可通过较少的实验获得较多的信息,使实验结果更准确。实验得到的数据对于今后的实验研究、生产活动具有很强的指导意义。参考文献 国家药典委员会.中华人民共和国药典(一部). 北京: 化学工业出版社, 2000:239 刘晓秋, 陈发奎, 吴立军, 等.拳参的化学成分.沈阳药科大学学报, 2004, 21(5): 187~189 刘晓秋, 李维维, 生可心, 等.拳参正丁醇提取物的化学成分.沈阳药科大学学报, 2006, 1(23): 15~17 孙晓白.拳参和黄帚橐吾化学成分研究.兰州大学研究生学位论文, 2007, 5 肖凯, 宣立江, 徐亚明, 等.拳参的DNA裂解活性成分研究.中草药 2003, 34(3): 203~206 李兴玉, 李兴奎.中药拳参的研究进展.国际中医中药杂志, 2008, 30(6): 471~473 曾靖, 单热爱, 钟声, 等.拳参水提取物镇痛作用的实验观察.中国临床康复, 2005, 9(6): 80~81 刘晓秋, 李维维, 李晓丹, 等.拳参提取物及单体化合物的体外抑菌活性初步研究.中药材,2006, 9(1): 51~53 刘春棋, 王小丽, 曾靖.拳参提取物抑茵活性的初步研究.赣南医学院学报, 2006, 26(4): 489~450 Mittal Deepak Kumar*, Joshi Deepmala,Shukla Sangeeta. Hepatoprotective effects of Polygonum bistorta and activeprinciples on albino rats intoxicated with carbon tetrachloride and paracetamol. Toxicology Letters 2009, 189(1): 226~233 李洪亮, 贺方兴, 孙立波, 等.拳参-413对大鼠离体胸主动脉环的舒张作用机制研究.安徽农业科学, 2012, 40(24):12005~12006 曾纪荣, 曾庆磊, 谢明红, 等.视网膜缺血再灌注损伤后拳参提取物对大鼠抗氧化作用的影响.2011, 31(3): 332~333 曾昭毅, 王敏, 叶和扬, 等.拳参水提物的镇痛作用.中国临床康复, 2006, 10(47): 199~201 李珂珂, 栾希英, 刘现兵, 等.拳参水提物对小鼠免疫功能的影响.中药材, 2010, 33(8):1302~1306 李珂珂, 栾希英.拳参乙醇提取物的免疫调节作用.中国现代应用药学, 2011, 28(1): 21~25

  • 【原创大赛】从黄芩中提取黄酮类化合物的工艺研究

    【原创大赛】从黄芩中提取黄酮类化合物的工艺研究

    [align=center]从黄芩中提取黄酮类化合物的工艺研究[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]食品事业部:李灿[/align][b]摘要:[/b]探讨超声波辅助法提取黄芩中总黄酮的最佳提取条件及对提取物的抗氧化性活性研究,这为黄芩作为天然抗氧化剂和功能性食品的开发利用提供理论基础和实验依据。[b][/b] 通过设计正交试验,采用超声波辅助法提取黄芩中总黄酮的最佳工艺条件条件,并通过对羟自由基、超氧自由基和DPPH自由基的清除效果研究其抗氧化活性。[b][/b]超声波辅助提取黄芩中总黄酮的最佳条件为:乙醇浓度为50%,时间为25min,料液比为1∶10,温度为30℃,黄芩总黄酮的提取率为3.25%。并且研究了黄芩提取物中的黄酮类物质对O[sub]2[/sub]-• 、• OH和DPPH自由基的抗氧化性能。研究结果表明洋葱提取物中黄酮类物质的抗氧化性较VC强。在浓度为0.0125mg/ml下,对羟基自由基的清除率为88.30%,对超氧基自由基的清除率为90.01%,对DPPH自由基的清除率为93.87%。[b]关键词[/b]:黄芩;超声波提取;总黄酮;抗氧化活性 [align=center][b] Study on extraction technology of flavonoids from Scutellaria[/b][/align][align=center]Li Can[/align][align=center] (Department of Chemistry and Chemical Engineering, Xi′an University of [/align][align=center]Arts and Science, Xi′an 710065)[/align][b]Abstract: [/b]To investigate the ultrasonic assisted extraction optimum extraction conditions of total flavonoids from Scutellaria and to extract antioxidant activity, which is a skullcap as a natural antioxidant and functional food development and utilization of theoretical and experimental evidence provided . [b][/b] Through orthogonal experiment, the optimum conditions using ultrasonic assisted extraction conditions of total flavonoids from Scutellaria, and to study its antioxidant activity by hydroxyl radicals, superoxide radicals and DPPH radical scavenging effect. Optimal conditions . [b] [/b]Ultrasonic assisted extraction of total flavonoids from Scutellaria: ethanol concentration of 50%, the time is 25min, solid-liquid ratio of 1:10, the temperature is 30 ℃, extraction of total flavonoids was 3.25%. And studied the extract of Scutellaria flavonoids on O2-• , • OH and DPPH radical antioxidant properties. The results show that the onion extract antioxidant flavonoids than VC strong. At a concentration of under 0.0125mg/ml, hydroxyl radical scavenging rate of 88.30% for super-group was 90.01% scavenging of DPPH radical scavenging rate was 93.87%.[b][color=#2b2b2b]Key Words[/color][/b][color=#2b2b2b]:[/color][color=#2b2b2b] [/color][color=#2b2b2b]Skullcap [/color][color=#2b2b2b]U[/color][color=#2b2b2b]ltrasonic extraction [/color][color=#2b2b2b]T[/color][color=#2b2b2b]otal flavonoids [/color][color=#2b2b2b]A[/color][color=#2b2b2b]ntioxidant activity[/color][b]1 前言[/b]黄岑主要生长在陕西秦岭,为常用中草药之一,性寒,味苦。具有清热燥湿,泻火解毒,止血安胎[sup][/sup]等功效,它的主要成分为黄酮类化合物[sup][/sup],黄酮类化合物主要存在于双子叶及裸子植物的叶、果、实、根、皮中,在植物中主要与糖结合成苷的形式存在[sup][/sup]。目前从黄酮类物质有很多种,黄酮类化合物的结构特点是具有 C[sub]6[/sub]- C[sub]3[/sub]- C[sub]6[/sub]的基本骨架,根据中间三碳链的氧化程度、B 环( 苯基) 连接位置( 2-或3-位) 以及三碳链是否呈环状等特点,主要有黄酮醇,二氢黄酮,二氢黄酮醇,黄烷,黄烷醇,异黄酮等,被广泛应用在医药、功能食品添加剂、兽药和农药等领域。在医药方面,根据其在心血管系统、内分泌系统、抗肿瘤方面的药理作用,很多以黄酮类成分为主的制剂已作为成药上市[sup][/sup]。在食品中它们应用于功能性食品添加剂,如天然甜味剂、天然抗氧化剂、天然色素等;应用于功能食品,如生物类黄酮口香糖、银杏叶袋泡茶等防衰、抗癌、提高免疫力食品;在兽药、农药等领域,现已开发出些具有特效功能的含有黄酮类化合物药品和驱虫、杀虫剂等[sup][/sup]。目前国内侧重于对黄酮类化合物的研究,但他们常被当作残渣而扔掉,因而就造成了黄芩的浪费,没有使黄芩得到充分利用,本文主要针对黄芩总黄酮的提取方法及其抗氧化能力测定方法进行研究,以期为黄芩黄酮类成分的进一步开发利用从黄岑中提取黄酮类化合物的方法有很多种,传统提取方法有煎煮法[sup][/sup]、有机溶剂提取法[sup][/sup]、浸渍法、渗漉法、回流提取法[sup][/sup]、水提法等,新的提取方法有超声波提取法、微波提取法、索氏提取法、超临界萃取法、大孔树脂吸附法、酶解法提取[sup][/sup]。黄芩黄酮的提取主要为溶剂萃取法,包括无机溶剂萃取法和有机溶剂萃取法。其主要原理是利用黄芩黄酮能溶于碱水或甲醇等有机溶剂的特性来提取黄芩中的黄酮[sup][/sup],考虑到该法提取时间长,提取率较低的缺点,我们采用超声波辅助提取法。因为超声波提取法是一种新型方法,它具有能耗低、效率高、不破坏有效成分的特点,在低温下可以强化水浸提效率,达到省时高效节能的目的,而且是目前广泛使用的方法。超声提取的主要理论依据是超声的空化效应、热效应和机械作用。当大能量的超声波作用于介质时,介质被撕裂成许多小空穴,这些小空穴瞬时闭合,并产生高达几千个大气压的瞬间压力,即空化现象。超声空化中微小气泡的爆裂会产生极大的压力,使植物细胞壁及整个生物体的破裂在瞬间完成,缩短了破碎时间,同时超声波产生的振动作用加强了胞内物质的释放、扩散和溶解,从而显著提高提取效率。因此本实验拟决定用超声波提取法来提取黄酮类化合物。黄酮类化合物的测定方法也多种多样,目前有薄层扫描法、紫外分光光度法、液相色谱法等[sup][/sup]。但是以上方法测定黄芩提取液中总黄酮的含量都比较繁琐,非黄酮类物质干扰比较大。由于Al[sup]3+[/sup]仅与黄酮类物质有特征反应,使用这种显色方法可以使黄酮类化合物溶液在510nm左右出现吸收峰,采用紫外分光光度法测定黄芩提取液中总黄酮含量,方法简单快速[sup][/sup]。对于黄酮类化合物的抗氧化性研究,国内外所做研究也比较多。方法可分为体外抗氧化与体内抗氧化,其中体外抗氧化运用较为广泛,体外抗氧化还可分为直接清除活性氧自由基、抑制油脂过氧化反应[sup][/sup]等;体内抗氧化是用受试物连续喂饲大鼠或小鼠1个月~3个月,然后处死动物,测定其血或组织(如肝、脑)中各物质的含量,同对照组进行比较,间接地说明受试物的抗氧化活性。采用体外抗氧化性研究,常用到的自由基有OH[sup] [/sup],O[sub]2[/sub][sup]-[/sup], DPPH等,由于直接清除活性自由基的方法易行且效果直观,本次实验采用该种方法。本实验将从两个方面研究黄芩黄酮类化合物。第一部分为黄芩总黄酮最佳提取方法的研究。本环节采取超声辅助提取法,采用料液比(A),乙醇浓度(B), 超声时间(C),超声温度(D)作为研究因素,采用四因素三水平,选择L[sub]9[/sub](3[sup]4[/sup])设计正交试验。用芦丁做标准曲线测定黄芩提取液中总黄酮的含量。第二部分为总黄酮类化合物抗氧化性的研究,采用对OH,O[sub]2[/sub][sup]-[/sup]自由基和DPPH自由基的清除作用研究其抗氧化性。[b]2 实验部分2.1 材料与仪器2.1.1 材料和试剂[/b] 黄芩(购于西安同仁堂大药房),芦丁(分析纯,上海试剂药品厂),亚硝酸钠(分析纯,成都市科龙化工试剂厂),硝酸铝(分析纯,成都市科龙化工试剂厂),氢氧化钠(分析纯,成都市科龙化工试剂厂),邻苯三酚(分析纯,成都市科龙化工试剂厂),盐酸(分析纯,天津市天力化学试剂有限公司),双氧水(天津市天力化学试剂有限公司),硫酸亚铁(分析纯,成都市科龙化工试剂厂),水杨酸(分析纯,天津市天力化学试剂有限公司),无水乙醇(分析纯,天津市天力化学试剂有限公司),三羟基甲基氨基甲烷(分析纯,天津市福晨化学试剂厂),邻二氮菲(分析纯,天津市福晨化学试剂厂),DPPH(购于阿拉丁试剂)。[b]2.1.2 仪器[/b] 高速粉碎机(FW80型,北京中兴伟业仪器有限公司);紫外可见分光光度计(722N,上海精密科学仪器有限公司) 电子天平(YP202W,上海精密科学仪器有限公司);循环水式多用真空泵(SHB-Ⅲ,郑州长城科工贸有限公司);超声波清洗机(11—1404,宁波新芝生物科技股份有限公司);智能型恒温鼓风干燥箱(CMD-20X型,上海琅轩试验设备有限公司);玻璃仪器气流烘干器(TH48SYBQ-1型,北京中兴伟业仪器有限公司)。[b]2.2实验方法2.2.1黄芩样品的制备[/b] 将黄芩在烘箱中60℃干燥8h,干燥后的黄芩用粉碎机粉碎成粉末,用分样筛(40目)筛分黄芩粉末,保证粉末均匀一致,密封保存,待用。[b]2.2.2 总黄酮的测定方法2.2.2.1 芦丁标准曲线的绘制[/b] 准确称取干燥至恒重的芦丁4.0mg 于小烧杯中,用50%乙醇溶解,并定容于25ml的容量瓶,摇匀,得浓度0.16mg/ml的标准液。准确吸取标准应用液0、1.0、2.0、3.0、4.0、5.0ml 于6 个10ml容量瓶中,与上述容量瓶中分别加入5% NaNO[sub]2[/sub]0.3ml,摇匀,放置6min后,分别加入10% Al(NO[sub]3[/sub])[sub]3[/sub] 溶液0.3ml,摇匀,放置6min后,再分别加入4% NaOH 溶液4ml,加50%乙醇定容至10ml,摇匀,以试剂空白为参比,放置10~15min,用紫外可见分光光度计进行全波长扫描,在最大吸收波长510nm处测定吸光度,得到吸光度Y与芦丁浓度X(mg/ml)间标准曲线回归方程。[b]2.2.2.2 提取液总黄酮含量的测定 [/b]准确称取1.00g黄芩粉末,在不同的提取条件下提取黄芩总黄酮,提取液用乙醇稀释定容至50ml。准确吸取提取液1.0ml于25ml容量瓶,按上述方法显色后测定吸光度,代入标准曲线回归方程中可以得到黄芩中黄酮类物质的含量(mg/ml),从而计算出黄芩中黄酮类物质的提取率,即:黄芩中黄酮类物质的提取率= ×100%[b]2.2.3 单因素试验[/b] 主要研究料液比、乙醇浓度、超声波时间、超声波温度4个因素,在保持其他因素相同的条件下分别进行单因素试验,研究各因素对黄芩总黄酮提取效果的影响,筛选最佳的提取条件。 准确称取黄芩粉末,在不同的条件下进行超声提取,提取液冷却后用乙醇定容,按照2.2.2的测定方法,计算黄芩中总黄酮的含量。[b]2.2.4 正交试验[/b]在单因素试验基础上,选择料液比、乙醇浓度、超声时间、超声温度4因素,设计L[sub]9[/sub](3[sup]4[/sup])正交试验,以总黄酮的含量为评价指标,确定黄芩总黄酮超声辅助法的最佳提取工艺。[b]2.2.5 总黄酮体外抗氧化性的研究2.2.5.1 对羟自由基清除作用的研究[sup][/sup][/b]原理:通过反应所产生的羟基自由基可将Fe[sup]2+[/sup]氧化为Fe[sup]3+[/sup], Fe[sup]2+[/sup]和邻二氮菲反应可产生有色络合物,向有色沉淀加入抗氧化剂后,其反应效果会相对减弱。羟基自由基对二价铁离子的氧化作用,会导致吸光值不断变化,从而评价样液消除羟基自由基的能力。步骤:取0.75 mmoL/L邻二氮菲溶液1 mL,加入不同浓度的样液,再加0.75 mmoL/L硫酸亚铁1 mL混匀,加0.75mmol/l的过氧化氢1 mL,于37 ℃ 水浴下,水浴60 min后,在536 nm处测其吸光度,所得吸光度A[sub]b[/sub]。 反应方程式:H[sub]2[/sub]O[sub]2[/sub] + Fe[sup]2+[/sup]=OH[sup]-[/sup] +OH + Fe[sup]3+ [/sup]清除率S(%)=「Ax- A[sub]b[/sub]]/[As- A[sub]b[/sub]] ×100% 其中 A[sub]b[/sub]:标准体系的吸光度 Ax:不含黄芩提取液的吸光度As:不含过氧化氢的标准体系吸光度本底吸光度[b]2.2.5.2 对超氧自由基清除作用的研究 [sup][/sup][/b] 原理:在碱性条件下,邻苯三酚能迅速发生自氧化反应,生成超氧阴离子自由和有色中间产物,且邻苯三酚自氧化速率与生成超氧阴离子自由基的浓度呈正相关,该有色中间产物在300nm处有一特征吸收峰。当加入抗氧化剂能催化超氧阴离子自由基与H[sup]+[/sup]结合生成O[sub]2[/sub]和H[sub]2[/sub]O[sub]2[/sub] ,从而阻止了中间有色产物积累,溶液在320nm 处的吸收减弱。因此可通过测定添加试样前后吸光度[i]A[/i]的变化来表示抗氧化剂对超氧阴离子自由基的清除效果。步骤:取0.05mol/L三羟甲基氨基甲烷盐酸缓冲液(pH =8.2)4.5mL,置于25℃水浴中预热20min,分别加入0.1mL试样和0.4mL2.5mmol/L邻苯三酚溶液,混匀后于25℃水浴中反应4min,加入8mol/L HCl溶液两滴终止反应,于波长299nm处测定吸光度As,空白对照组以相同体积的蒸馏水代替样品,并计算清除率。 清除率计算公式: S(%)=[(1-(As-A[sub]0[/sub] )/A[sub]b[/sub]]×100%其中 A[sub]b[/sub]:不含黄芩提取物的标准体系吸光度 As:标准体系的吸光度值 Ao:不含邻苯三酚的标准体系吸光度[b]2.2.5.3 对DPPH自由基清除作用的研究[sup][/sup] [/b]原理:DPPH 在有机溶液中是一种稳定的自由基,其乙醇溶液呈深紫色,当 DPPH 溶液中加入自由基清除剂时,其孤对电子被配对,溶液颜色变浅,可由此来检测自由基的清楚状况,从而评价物质的抗氧化能力。步骤:将样品储备液适当稀释得到不同浓度的黄芩黄酮溶液。 向一系列 10 mL比色管中加入 3.5 mL 1.0×10[sup]-4[/sup]mol/L 的 DPPH 溶液和 0.5 mL 样品液,摇匀避光反应30 min,与波长517 nm下测定吸光度 A s。空白对照组以无水乙醇代替样品,并计算清除率。清除率计算公式: 清除率S(%)=[(1-(As-A[sub]0[/sub] )/A[sub]b[/sub]]×100% 其中 A[sub]b[/sub]:不含黄芩提取物的标准体系吸光度 A[sub]s[/sub]:标准体系的吸光度值 A[sub]0[/sub]:不含DPPH的标准体系吸光度[b]3. 结果与分析 3.1 芦丁标准曲线[/b]由图可得,芦丁在0.02—0.10mg/ml浓度范围内与吸光度呈良好的线性关系,R[sup]2[/sup]= 0.9998。回归方程为Y= 11.47X+ 0.0554 [align=center]表1 芦丁浓度与吸光度的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]芦丁浓度/(mg/ml)[/align][/td][td][align=center]0.02[/align][/td][td][align=center]0.04[/align][/td][td][align=center]0.06[/align][/td][td][align=center]0.08[/align][/td][td][align=center]0.10[/align][/td][/tr][tr][td][align=center]吸光度(A)[/align][/td][td][align=center]0.288[/align][/td][td][align=center]0.514[/align][/td][td][align=center]0.736[/align][/td][td][align=center]0.976[/align][/td][td][align=center]1.204[/align][/td][/tr][/table][align=center] [/align][align=center] [/align][align=center] [/align][align=center][img=,463,249]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091813421003_7187_2904018_3.png!w463x249.jpg[/img] [/align][align=center]图1 芦丁标准曲[/align]Fig.1 Standard curve of rutin[b]3.2 总黄酮提取条件的优化3.2.1 料液比对黄酮类化合物提取效果的影响[/b]在料液比为1:6,1:8,1:10,1:12,1:14时,50%乙醇作为提取剂,超声波时间为20min,超声波温度为60℃,冷却后采用超声波提取法提取黄芩中黄酮类化合物含量,研究料液比对提取效果的影响。[align=center]表2 料液比与提取率的关系[/align][align=center][img=,394,250]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815178933_5515_2904018_3.png!w394x250.jpg[/img][/align][align=center] 图2 料液比对黄芩黄酮提取的影响[/align][align=center]Fig.2 Solid-liquid ratio on the extraction of flavonoids from Scutellaria impact[/align]由图2可见,随着料液比的增加,黄酮类化合物的提取率也逐渐升高,当料液比为1:10时,黄酮类化合物的提取率达到最高值,继续增加料液比,提取率会有一定的降低。在一定范围内料液比的增加有利于物料中黄酮类物质的溶出,但料液比过大的时候,会导致溶液浓度太小,从而影响到黄酮类物质对超声波能的吸收,导致黄酮得率下降。因此选定料液比在1:10的条件下进行实验。[b]3.2.2 乙醇浓度对黄酮类化合物提取效果的影响[/b]当乙醇浓度为30%,40%,50%,60%,70%时作为提取剂,超声波时间为20min,超声波温度为60℃,料液比为1:10的条件下,冷却后采用超声波提取法提取液中总黄酮含量,研究料液比对提取效果的影响。结果如图2所示[align=center]表3 乙醇浓度与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]乙醇浓度(%)[/align][/td][td][align=center]30[/align][/td][td][align=center]40[/align][/td][td][align=center]50[/align][/td][td][align=center]60[/align][/td][td][align=center]70[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]2.08[/align][/td][td][align=center]2.44[/align][/td][td][align=center]3.18[/align][/td][td][align=center]2.15[/align][/td][td][align=center]1.28[/align][/td][/tr][/table][align=center][img=,457,289]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815413326_3128_2904018_3.png!w457x289.jpg[/img][/align]图3 乙醇浓度对黄芩总黄酮提取的影响[align=center] Fig.3 The effect of ethanol concentration on the extraction of flavonoids from Scutellaria[/align]由图3可见,随着乙醇浓度的增加,黄酮类化合物的提取率逐渐升高,在乙醇浓度为50%时提取率最高,再增加乙醇浓度,提取率逐渐降低。这主要是随着乙醇浓度的增加导致溶液极性的改变,使提取液中杂质含量增加,因此选择50%的乙醇溶液作为提取剂。[b]3.2.3 超声波时间对黄酮类化合物提取效果的影响[/b]当超声波时间为5min,10min,15min,20min,25min,料液比为1:10,乙醇浓度为50%,超声波温度为60℃的条件下,冷却后采用超声波提取法提取液中总黄酮含量,研究料液比对提取效果的影响。[align=center]表4 超声波时间与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]超声波时间(min)[/align][/td][td][align=center]5[/align][/td][td][align=center]10[/align][/td][td][align=center]15[/align][/td][td][align=center]20[/align][/td][td][align=center]25[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]1.67[/align][/td][td][align=center]1.82[/align][/td][td][align=center]1.93[/align][/td][td][align=center]2.19[/align][/td][td][align=center]2.08[/align][/td][/tr][/table][align=center][img=,420,258]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815572952_9256_2904018_3.png!w420x258.jpg[/img][/align]图4 超声时间对黄芩总黄酮提取的影响[align=center]Fig.4 Ultrasonic time of total flavonoids extracted[/align]由图4可见,随着超声波时间的延长,黄酮类化合物提取率逐渐升高,在20min时提取率最高,继续延长超声波提取时间提取率几乎不变,主要是因为在初期,黄芩中黄酮类化合物没有完全浸提到溶剂中,而随着时间的增加,黄酮类化合物逐渐完全溶于提取剂中,因此提取率几乎不变。所以选择超声波时间为20min时进行实验。[b]3.2.4 超声波温度对黄酮类化合物提取效果的影响[/b]当超声波温度为20℃,30℃,40℃,50℃,60℃,料液比为1:10,乙醇浓度为50%,超声波时间为20min的条件下,冷却后采用超声波提取法提取液中总黄酮含,研究料液比对提取效果的影响。[align=center]表5 超声波温度与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]超声波温度(℃)[/align][/td][td][align=center]20[/align][/td][td][align=center]30[/align][/td][td][align=center]40[/align][/td][td][align=center]50[/align][/td][td][align=center]60[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]1.87[/align][/td][td][align=center]2.34[/align][/td][td][align=center]2.44[/align][/td][td][align=center]2.25[/align][/td][td][align=center]2.31[color=#ff0000] [/color][/align][/td][/tr][/table][align=center][img=,360,256]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091816171242_5784_2904018_3.png!w360x256.jpg[/img][/align][align=center] [/align][align=center] [/align]图5 超声温度对黄芩黄酮提取的影响[align=center]Fig.5 Skullcap ultrasonic extraction temperature on impact[/align] 由图5可见,随着超声波温度的升高,黄酮类化合物提取率逐渐升高,在40℃时提取率最高,继续升高超声波提取温度,提取率反而略有下降。高温提取的过程是先使物料升温,保持一定时间后,利用温度使细胞壁破碎,乙醇溶剂溶入细胞内部,黄酮充分溶解,再继续升高温度,反而使更多的杂质释放出来,导致黄酮提取率不再上升。所以选择超声波温度为40℃进行实验。[b]3.3 正交试验确定最佳工艺3.3.1 正交试验结果[/b]通过上述单因素试验,得出各个单因素的最佳条件,其中料液比为1:10,乙醇浓度为50%,超声时间为20min,超声温度为40℃。选择料液比、乙醇浓度、超声波时间、超声波温度4因素3水平,设计L[sub]9[/sub](3[sup]4[/sup])正交试验,因素与水平见表1,试验结果见表2为了进一步判断上述4类因素对试验结果的影响是否存在,将以正交试验数据进行方差分析,找出这些因素中起主导作用的来源。表1 正交试验因素及水平表Tab 1 Factors and levels of the orthogonal tests[table][tr][td=1,2]水平[/td][td] 因素[/td][/tr][tr][td]A B C D料液比(g/ml) 乙醇浓度(%) 超声时间(s) 超声温度(℃)[/td][/tr][tr][td=2,1]1 1:8 40 15 302 1:10 50 20 403 1:12 60 25 50[/td][/tr][/table]表2 正交试验结果及分析 Tab 2 The results and analysis of orthogonal tests [table][tr][td=1,2]试验号[/td][td] 因素[/td][td=1,2]提取量(%)[/td][/tr][tr][td]A B C D料液比(g/ml) 乙醇浓度(%) 超声时间(s) 超声温度(℃)[/td][/tr][tr][td=3,1]1 1:8 40 15 30 2.622 1:8 50 20 40 2.903 1:8 60 25 50 2.764 1:10 50 25 30 3.255 1:10 60 15 40 2.626 1:10 40 20 50 2.507 1:12 60 20 30 2.408 1:12 40 25 40 2.589 1:12 50 15 50 2.85K[sub]1[/sub]/3 2.76 2.57 2.70 2.76K[sub]2[/sub]/3 2.79 3.00 2.60 2.70K[sub]3[/sub]/3 2.61 2.59 2.86 2.70R 0.18 0.43 0.26 0.06[/td][/tr][/table]由表1、2可知,主次因素由极差大小确定:B>C>A>D,即影响黄芩总黄酮提取效率的因素贡献率为乙醇浓度>超声时间>料液比>超声温度。以总黄酮含量为评价指标,得最佳提取工艺条件为A[sub]2[/sub]B[sub]2[/sub]C[sub]3[/sub] D[sub]1[/sub],即乙醇浓度为50%、超声时间为25min、料液比为1∶10、超声温度为30℃。最佳条件为正交表中的第四组,因此测抗氧化性实验选择此组数据。[b]3.4 总黄酮的抗氧化性3.4.1 对羟自由基的清除作用[/b][align=center]表6 提取液浓度对羟基自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]VC清除率(%)[/align][/td][td][align=center]20.54[/align][/td][td][align=center]42.88[/align][/td][td][align=center]59.39[/align][/td][td][align=center]74.44[/align][/td][td][align=center]79.09[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]40.39[/align][/td][td][align=center]67.21[/align][/td][td][align=center]78.42[/align][/td][td][align=center]85.29[/align][/td][td][align=center]88.30[/align][/td][/tr][/table][align=center][img=,360,256]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091816376703_5430_2904018_3.png!w360x256.jpg[/img][/align]图6 黄芩总黄酮对羟自由基的清除Fig.6 Scutellaria Flavonoids on Scavenging of Hydroxyl Radicals黄芩总黄酮对羟自由基的清除作用,结果见图6。由图6可知,黄芩总黄酮对羟基自由基具有一定的清除作用。在相同的浓度范围下,清除能力大小为:提取物VC溶液。在0.0025—0.0125mg/ml浓度下,各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了88.30%。3.4.2 [b]对超氧自由基的清除作用[/b][align=center]表7 提取液浓度对超氧基自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]VC清除率(%)[/align][/td][td][align=center]26.77[/align][/td][td][align=center]43.09[/align][/td][td][align=center]61.73[/align][/td][td][align=center]78.69[/align][/td][td][align=center]80.20[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]49.81[/align][/td][td][align=center]75.29[/align][/td][td][align=center]84.38[/align][/td][td][align=center]89.21[/align][/td][td][align=center]90.01[/align][/td][/tr][/table]黄芩总黄酮对超氧自由基的清除作用,结果见图7。由图7可知,黄芩总黄酮对邻苯三酚自氧化产生的超氧自由基有一定的清除作用,其清除率随浓度的增大而增大。在相同的浓度范围下,清除能力大小为:提取物VC溶液。各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了90.01%。3.4.3 [b]对DPPH自由基的清除作用[/b][align=center]表8 提取液浓度对DPPH自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]Vc清除率(%)[/align][/td][td][align=center]27.36[/align][/td][td][align=center]52.41[/align][/td][td][align=center]79.98[/align][/td][td][align=center]80.49[/align][/td][td][align=center]81.31[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]55.7[/align][/td][td][align=center]82.3[/align][/td][td][align=center]89.78[/align][/td][td][align=center]93.74[/align][/td][td][align=center]93.81[/align][/td][/tr][/table][b] [/b]黄芩总黄酮对DPPH的清除作用,结果见图8。由图8可知,黄芩总黄酮对DPPH有一定的清除作用,其清除率随浓度的增大而增大。相同的浓度范围下,清除能力大小为:提取物VC溶液。各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了93.81%。[b]4.总结[/b]1.通过单因素实验,得出各个单因素的最佳条件,其中料液比为1:10,乙醇浓度为50%,超声时间为20min,超声温度为40℃,为正交试验奠定了基础。然后用设计正交试验,确定了超声辅助法提取黄芩总黄酮的最佳工艺条件:乙醇浓度为50%、超声时间为25min、料液比为1∶10、超声温度为30℃。黄芩总黄酮的提取率为3.25%。2.本实验分别就黄芩提取物对羟基自由基,超氧阴离子自由基和DPPH自由基的抗氧化性进行了测定,并与VC进行了对比实验,得到如下结论:在0.0025—0.0125mg/ml浓度下,提取物对各自由基清除能力为:DPPH O[sub]2[/sub][sup]-[/sup]• • OH ,同浓度黄芩提取物清除能力普遍高于VC溶液,黄芩黄酮提取液和VC溶液对自由基清除率随其浓度的增大而增大。在浓度为0.0125mg/ml下,对羟基自由基的清除率为88.30%,对超氧基自由基的清除率为90.01%,对DPPH自由基的清除率为93.87%,由此可知黄芩总黄酮是一种天然有效的自由基清除剂。黄芩中黄酮类化合物的利用已经有一定的规模,但黄芩中黄酮化合物的提取方法和工艺尚未成熟,所以充分利用黄芩资源是我国药用研究的科学发展方向。基于提取率、成本等因素的影响,通过对各种因素的比较分析,从而探索开发出适合工业化生产应用的方案,提高黄芩利用率,仍是研究工作的重点之一。随着人们对健康的日渐重视,因黄芩中的黄酮化合物有着极高的药用营养及良好的保健作用,具有极为广阔的市场前景[b]。[/b]本文旨在研究黄芩中黄酮类物质的提取工艺及其体外抗氧化活性,为黄芩中黄酮类化合物作为天然抗氧化剂和功能性药品得到开发利用提供理论基础和实验依据。[align=center][b] [/b][/align] 刘雄,高建德.黄芩研究进展.甘肃中医学院,2007,24(2):46-50. 罗小文.黄芩中黄酮类成分提取工艺研究进展.中国现代中药.2010,12(7):5-8. 张睿,徐雅琴,时阳.黄酮类化合物提取工艺研究.食品与机械.2003,15(1):21-22. 梁丹,张保东.黄酮类化合物提取和分离方法研究进展.周口师范学院学报,2007,24(5):87-89. 龙春,高志强,陈凤鸣,等.黄酮类化合物的结构-抗氧化活性研究进展.重庆文理学院学报.2006,5(2):13-15. 刘雄,高建德.黄岑研究进展.甘肃中医学院学报,2007,24(2):46-50. 郭雪峰, 岳永德. 黄酮类化合物的提取-分离纯化和含量测定方法的研究进展. 安徽农业科学. 2007, 35(26): 8083- 8086.. 唐德智.黄酮类化合物的提取、分离、纯化研究进展.中药与天然产物,2009,21(12):101-104.. 张岩, 曹国杰, 张燕,等. 黄酮类化合物的提取以及检测方法的研究进展.天食品研究与开发,2008,29(1):154-157. 韩雅慧,陶宁萍.甘草黄酮提取及其抗氧化能力测定方法研究进展.山西农业科学,2010, 38(11):89- 93. 崔永明,余龙江,等. 甘草总黄酮的提取技术及其抑菌活性研究.中药材,2006, 29(8): 838-840. 孙墨珑, 宋湛谦, 方桂珍. 核桃楸总黄酮的提取工艺.东北林业大学学报, 2006, 34 (1) : 38 - 39. 徐清萍,钟桂,芳孟君. 抗氧化剂抗氧化方法研究进展.食品工程,2007,6(7):23-25. 安卓,贾昌喜.苦苣菜总黄酮提取、纯化工艺优化抗氧化活性研究.食品科学. 赵新淮.大黄醇提取物对三种自由基的清除能力的研究.东北农业大学学报.1998,29(3):284-288 杨立琛,李荣.花椒叶黄酮的微波提取及其成分分析.食品科学. CHI Ru-an,ZHOU Fang,HUANG Kun,ZHANG Yue-fei.Separation of baicalin form Scutellaria Baicalensis Georgi with polyamide.Key Laboratory for Green Chemical Process of Ministry of Education.2008,15(1):606-611.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制