当前位置: 仪器信息网 > 行业主题 > >

探针材料

仪器信息网探针材料专题为您整合探针材料相关的最新文章,在探针材料专题,您不仅可以免费浏览探针材料的资讯, 同时您还可以浏览探针材料的相关资料、解决方案,参与社区探针材料话题讨论。

探针材料相关的资讯

  • 我国研究者成功合成荧光探针新材料 可用于金属定量检测
    记者日前从广东医科大学药学院获悉,该学院通过国际合作,成功合成了2个罕见的纳米孔稀土金属—有机骨架材料,该材料可作为荧光探针高效检测铁离子等金属离子浓度,可为皮肤病和贫血症等疾病中Fe3+的定量分析以及环境中Fe3+的监测提供简单、高效的检测方法。  “传统荧光探针存在荧光信号不强、选择性差、灵敏度低、回收困难等问题,而金属—有机骨架荧光探针在用于金属离子检测方面,具有方法简单、灵敏度高、选择性好及响应速度快等优点。”刘建强说。  刘建强说,该研究以分子工程学为依据,通过简单的溶剂热方法合成了2个罕见的纳米孔稀土金属—有机骨架材料,该新型材料对不同浓度的离子进行探测后,对于铁离子和重铬酸根离子表现出了特殊的敏感性,荧光强度出现了快速的降低,并对二氧化碳有选择性吸附作用。  在探索合成纳米孔稀土金属—有机骨架材料规律的基础上,该团队将该材料应用于荧光探针领域,对金属离子可进行高效检测。“检测极限值越低代表灵敏度越高,检测效果也越好。以铁离子的检测而言,纳米孔稀土金属—有机骨架材料做成的荧光探针检测限度,远优于传统材料。”刘建强说。  “纳米孔稀土金属—有机骨架材料作为探针材料,表现出对铁离子良好的选择性和灵敏性,在荧光探针和生物标记等领域具有广泛的应用前景和发展空间。”广东医科大学药学院院长李宝红说。  此研究由该学院博士刘建强和西北大学博士侯磊、澳大利亚莫纳什大学博士斯图尔特巴顿等完成。相关科研成果近期发表在国际期刊《ChemPlusChem》上。
  • 宁波材料所SERS探针肿瘤体外诊断研究进展
    恶性肿瘤严重威胁人类生命健康,“早诊、早治”是根治肿瘤的最佳途径。目前临床肿瘤诊断方法主要依赖手术和穿刺活检,是侵入性检查手段,给患者带来了生理痛苦和心理负担。因此开发一种非入侵式、高检测灵敏度的谱学/图像分析引导技术应用于实体肿瘤的前期诊断和术后评估是实现肿瘤精准诊断的关键,也已成为材料科学和生物学科等多学科交叉领域共同关注的重要科学问题。纳米材料表面增强拉曼散射(SERS)光谱/图像具有高检测灵敏度、选择性增强特性、稳定性高、可提供组分指纹信息等检测优势,可高效应用于肿瘤的液体活检,实现外周血样中肿瘤细胞的精准诊断。中国科学院宁波材料技术与工程研究所纳米生物材料团队在SERS生物探针材料设计及应用研究方面取得了系列进展。纳米生物材料团队开发了基于表面增强拉曼散射(SERS)光谱和磁共振造影(MRI)增强的Fe3O4双模态成像生物探针,研究发现超小粒径Fe3O4纳米粒子具有显著的SERS活性(5×10-9 M检测极限)。Fe3O4纳米粒子具有高效的光诱导电荷转移(PICT)效应归因于Fe元素的多个价态能级促进电子跃迁。密度泛函理论计算进一步揭示了超小粒径Fe3O4纳米粒子的窄带隙和高电子态密度能够明显提高SERS-目标分子体系中的振动耦合共振效应。通过构建具有高灵敏度和肿瘤靶向特异性的Fe3O4生物探针,可以实现不同亚型三阴乳腺癌肿瘤细胞的体外SERS信号/成像区分鉴定。同时,Fe3O4的生物探针也展现出对荷瘤小鼠体内肿瘤的主动靶向MRI造影特性,实现了半导体生物探针的SERS-MRI双模态成像分别用于体外和体内肿瘤成像,不仅在肿瘤早期诊断中具有优势,而且在影像引导肿瘤治疗方面具有巨大潜力(图1)。相关成果以“Multiple Valence States of Fe Boosting SERS Activity of Fe3O4 Nanoparticles and Enabling Effective SERS-MRI Bimodal Cancer Imaging”为题发表在国家自然科学基金委主办的综合性英文学术期刊Fundamental Research上。进一步,为了高效提取外周血样中的肿瘤细胞,提高SERS纳米生物探针对肿瘤细胞的靶向检测能力。纳米生物材料团队联合宁波诺丁汉大学任勇副教授团队,合作开发了微流控富集分离与拉曼光谱快速检测肿瘤细胞技术,开发出一种新型的基于微筛分离手段和肿瘤靶向特性的黑色氧化钛(B-TiO2)SERS生物探针用于循环肿瘤细胞(CTC)原位检测。该研究先利用微筛芯片对人体血液中目标细胞进行纯化分离,以排除大部分血液细胞的干扰,再利用叶酸修饰的SERS生物探针识别芯片上捕获的肿瘤细胞,从而实现外周血样中单个肿瘤细胞筛选和原位检测,实验结果具有高检测灵敏度、特异性和准确性。更重要的是,该研究工作设计的微流控-SERS生物探针能够有效应用于临床肿瘤样本的有效检测,有望为循环肿瘤细胞的检测提供新的策略(图2)。相关成果以“TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter“为题发表在Biosensors and Bioelectronics,2022,210:114305(https://doi.org/10.1016/j.bios.2022.114305)。此外,纳米生物材料团队开发了生物相容性较好、具有选择性增强特性、光谱稳定性强的半导体氧化银SERS纳米生物探针,应用于外周血样的循环肿瘤细胞检测。该研究先利用淋巴细胞分离液对外周血样中的血细胞进行分离,排除红细胞和白细胞对SERS检测的干扰,再通过叶酸修饰的SERS生物探针靶向识别血样中的肿瘤细胞,从而实现外周血样中单个循环肿瘤细胞的原位精准检测。肺癌患者外周血样的有效准确检测也证明了Ag2O基SERS生物探针具有优异的临床应用前景(图3)。相关成果以”Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells”为题发表在Science China life science,2022,65: 561-571(https://doi.org/10.1007/s11427-020-1931-9)。图3 Ag2O基SERS生物探针用于肿瘤细胞检测为了进一步研发高SERS活性的半导体纳米材料,纳米生物材料团队联合北京航空航天大学郭林教授团队,通过制备多孔ZnO纳米片,在材料表面引入大量缺陷态,提高了ZnO材料的SERS增强因子,并发现一种低温增强半导体SERS活性的方法,低温可以有效削弱晶格的热振动,从而减少声子相关的非辐射跃迁复合,能够有效促进表面缺陷态能级相关的电子跃迁,展现出了低温SERS生物传感的应用潜力(图4)。相关成果以”Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets”为题发表在Chemical Science,2020, 11, 9414(https://doi.org/10.1039/d0sc02712j)。图4 半导体材料低温SERS效应基于上述开发的系列SERS纳米生物探针,通过与浙江省肿瘤医院邵国良主任医师团队合作,SERS探针能够有效用于临床病人外周血样中的乳腺癌、肝癌和肺癌循环肿瘤细胞的准确检测,已完成180例不同癌种临床样本有效检测,检测灵敏度可以达到单细胞水平,检测准确度可达90%以上。进一步的研究发现,SERS生物探针可有效区分不同亚型的乳腺癌肿瘤细胞,实现乳腺癌分子分型鉴定检测(专利申请号:202110745849.1、202210148829.0、202210425260.8)。
  • 广东医科大学合成新型探针材料可快速检测贫血症
    日前从广东医科大学药学院获悉,该学院通过国际合作,成功合成了2个罕见的纳米孔稀土金属—有机骨架材料,该材料可作为荧光探针高效检测铁离子等金属离子浓度,可为皮肤病和贫血症等疾病中Fe3+的定量分析以及环境中Fe3+的监测提供简单、高效的检测方法。  “传统荧光探针存在荧光信号不强、选择性差、灵敏度低、回收困难等问题,而金属—有机骨架荧光探针在用于金属离子检测方面,具有方法简单、灵敏度高、选择性好及响应速度快等优点。”刘建强说。  刘建强说,该研究以分子工程学为依据,通过简单的溶剂热方法合成了2个罕见的纳米孔稀土金属—有机骨架材料,该新型材料对不同浓度的离子进行探测后,对于铁离子和重铬酸根离子表现出了特殊的敏感性,荧光强度出现了快速的降低,并对二氧化碳有选择性吸附作用。  在探索合成纳米孔稀土金属—有机骨架材料规律的基础上,该团队将该材料应用于荧光探针领域,对金属离子可进行高效检测。“检测极限值越低代表灵敏度越高,检测效果也越好。以铁离子的检测而言,纳米孔稀土金属—有机骨架材料做成的荧光探针检测限度,远优于传统材料。”刘建强说。  “纳米孔稀土金属—有机骨架材料作为探针材料,表现出对铁离子良好的选择性和灵敏性,在荧光探针和生物标记等领域具有广泛的应用前景和发展空间。”广东医科大学药学院院长李宝红说。  此研究由该学院博士刘建强和西北大学博士侯磊、澳大利亚莫纳什大学博士斯图尔特巴顿等完成。相关科研成果近期发表在国际期刊《ChemPlusChem》上。
  • 辽宁材料实验室首台大型仪器——三维原子探针开始安装调试
    日前,辽宁材料实验室首台大型仪器设备——三维原子探针开始进场安装调试。作为国内首台安装的最新型号LEAP 6000 XR三维原子探针,该设备最新使用了深紫外激光光源(Deep UV),并实现同时向样品施加激光脉冲和电压脉冲,从而为材料晶界、相界、位错等复杂结构的三维元素分布研究提供更高灵敏度、更高通量的信号探测和技术支持。  首台大型仪器的进场安装,标志着辽宁材料实验室重点打造的高端分析检测设备运行环境保障工程建设基本完成,具备了设备入场安装的条件,实验室分析测试中心即将进入“边建设、边运行”的新阶段。分析测试中心在为实验室各类科研活动提供体系完备、设施先进、运行可靠的分析测试服务的同时,还将面向政府、企事业单位、高等院校和科研机构等提供开放共享服务。
  • 6大应用案例全析|电子探针如何为汽车材料拨云开雾?
    p style=" text-align: justify text-indent: 2em " 用于汽车制造的材料不仅有金属、陶瓷等无机材料,还包括塑料等有机材料。而且金属材料也要经过喷涂、热处理等多种不同的表面处理方法。电子产品也需要在耐热耐震等安全方面的可靠性保证。近年来随着环境保护意识的提高,也引起了汽车尾气催化剂、混合动力车的锂离子二次电池等的研发热潮。因此汽车行业是一个涉及多种材料的综合产业,不仅在研发过程,而且在品质管理(投诉问题解析)中也会用到多种多样的分析仪器。其中EPMA(电子探针)通过在数μm级的微小区域到最大90× 90mm的广域范围中可进行精准分析的自身特点,巩固了在汽车行业分析中的地位,成为必不可少的一部分。 /p p style=" text-align: justify text-indent: 2em " 例如在以下领域中会利用到EPMA: /p p style=" text-align: justify text-indent: 2em " ■金属涂装膜,以及热处理等表面处理的解析 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 动力系统等的金属部件解析 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 材料中的异物解析 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 电子产品的可靠性评价 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 尾气催化剂的研究 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 燃料电池等研究 /p p style=" text-align: justify text-indent: 2em " 除此之外,可以做很多其他多领域的解析。 /p p style=" text-align: justify text-indent: 2em " EPMA的原理是什么呢?EPMA(Electron Probe Micro Analyzer)可以将电子束照射到样品,通过样品发出的电子信号进行样品细微结构的观察(SEM观察)。首先在前面得到的样品表面放大图像中确定分析位置,通过检测上述分析区域发出的元素特征波长(能量)的X射线可以进行所含元素的定性等多种分析。EPMA可以做以下分析。 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 定性分析:微小区域所含元素的定性(B-U) /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 定量分析:测定所含元素的含量(wt%) /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 线分析:测定样品中1次元方向的任意元素含量分布 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 面分析(元素分布):测定样品中2次元方向的含量分布 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 状态分析:通过测量价带电子带相关的X射线光谱解析化学结构 /p p style=" text-align: justify text-indent: 2em " 下面本文将用几个案例来解析EPMA的应用: /p p style=" text-align: justify text-indent: 2em " strong 1.& nbsp 齿轮热处理效果解析 喷碳处理 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c96f8ee0-5f95-4368-9e4b-83b14ce97e96.jpg" title=" 电子探针如何为汽车材料分析拨云开雾.png" alt=" 电子探针如何为汽车材料分析拨云开雾.png" / /p p style=" text-align: left text-indent: 2em " 在齿轮断面利用元素面分析法测定C(碳元素)的分布情况, span style=" text-indent: 2em " 可以发现合格品(右侧)的齿轮从外到里方向的热处理效果是很好的(红色部分表示C含量高的部分)。 /span /p p style=" text-align: justify text-indent: 2em " strong 2.& nbsp 金属材料中夹杂物的解析 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/b851f0ec-4f97-4228-b42c-4b7b110ca18c.jpg" title=" 电子探针如何为汽车材料分析拨云开雾2.png" alt=" 电子探针如何为汽车材料分析拨云开雾2.png" / /p p style=" text-align: left text-indent: 2em " 通过金属断面的分析确定夹杂物(MnS)的存在。 span style=" text-align: center text-indent: 0em " (右上:Fe分布、左下:Mn分布、右下:S分布) /span /p p style=" text-align: justify text-indent: 2em " strong 3.& nbsp 刹车制动试验解析 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/f9c9ac67-2fae-45c2-82d6-1eb87a877a12.jpg" title=" 电子探针如何为汽车材料分析拨云开雾3.png" alt=" 电子探针如何为汽车材料分析拨云开雾3.png" / /p p style=" text-align: left text-indent: 2em " span style=" text-indent: 0em " 刹车制动试验后,通过制动盘上的Si分布,分析与闸片的接触部分。 /span /p p style=" text-align: justify text-indent: 2em " strong 4.涂装膜中的异物解析 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/9c31c621-9786-4a97-a41b-1a3952126df0.jpg" title=" 电子探针如何为汽车材料分析拨云开雾4.png" alt=" 电子探针如何为汽车材料分析拨云开雾4.png" / /strong /p p style=" text-align: left text-indent: 2em " 涂装膜中的异物解析例。因为是C主体的样品,可以判断是有机性异物。 /p p style=" text-align: justify text-indent: 2em " strong 5.固体高分子燃料电池(PEFC)的研究 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/7cf72076-c845-4cf1-abd5-40b7d1154a87.jpg" title=" 电子探针如何为汽车材料分析拨云开雾5.png" alt=" 电子探针如何为汽车材料分析拨云开雾5.png" / /p p style=" text-align: left text-indent: 2em " MEA(Membrane-Electrode-Assembry)的面分析结果。 span style=" text-align: center text-indent: 2em " 通过观察电解质、催化剂层区域中多个元素的变化,判断解释催化剂反应,以及劣化等过程。 /span /p p style=" text-align: justify text-indent: 2em " strong 6.接口接触面的接触不良解析 /strong /p p style=" text-align:center" span style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% " src=" https://img1.17img.cn/17img/images/202003/uepic/754b71c9-2f3a-4b05-b541-0691c3bbcd41.jpg" title=" 电子探针如何为汽车材料分析拨云开雾6.png" alt=" 电子探针如何为汽车材料分析拨云开雾6.png" / /span /p p style=" text-align: left text-indent: 2em " span style=" text-align: center text-indent: 0em " 汽车上装配有大量的电子产品, /span span style=" text-align: center text-indent: 0em " 电子产品连接接口的接触不良等的分析中EPMA也是有效的分析手段。 /span span style=" text-align: center text-indent: 0em " 上面这个分析例中可以发现是接触面形成的氧化物导致了接触不良。 /span /p p style=" text-align: justify text-indent: 2em " 综上所述,EPMA在汽车行业中使用涉及多种材料、以及零部件层面的研究开发,是问题解析等过程中必不可少的分析仪器。 /p p style=" text-align: right text-indent: 2em " strong 作者:赵同新 /strong /p p style=" text-align: right text-indent: 2em " strong 岛津企业管理(中国)有限公司上海分析中心应用工程师 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " (注:以上文章为赵同新工程师的个人原创,文章内容不代表仪器信息网本网观点) /p
  • 宁波材料所杭州湾研究院168.00万元采购扫描探针
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 宁波材料所杭州湾研究院采购扫描探针显微镜项目的采购公告 浙江省-宁波市-鄞州区 状态:公告 更新时间: 2022-05-12 宁波材料所杭州湾研究院采购扫描探针显微镜项目的采购公告 发布日期:2022-05-12 项目概况宁波材料所杭州湾研究院采购扫描探针显微镜项目招标项目的潜在投标人应在宁波中基国际招标有限公司在线购买链接(https://dwz.cn/BzVsB93Q)获取招标文件,并于2022年6月2日14点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:CBNB-20222086G项目名称:宁波材料所杭州湾研究院采购扫描探针显微镜项目预算金额(元):1,680,000.00最高限价(元):1,680,000.00采购需求: 采购内容 数量 简要技术需求 是否允许采购进口产品 扫描探针显微镜 1套 扫描系统:三轴闭环扫描器:X,Y方向闭环扫描范围:≥90μm;Z方向闭环扫描范围:≥10μm。 是 合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单【以投标截止日当天采购代理机在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料。】。2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:无三、获取招标文件时间:2022年5月12日-2022年5月19日(北京时间,下同)地点(网址):https://dwz.cn/BzVsB93Q方式:在线购买售价:500元/份注:本项目招标文件实行“宁波中基国际招标有限公司”在线获取,不提供招标文件纸质版。招标文件发售联系人:李小姐,联系电话:0574-88090098,电子邮箱:719126619@qq.com。四、提交投标文件截止时间、开标时间和地点1.提交投标文件截止时间:2022年6月2日14点00分(北京时间)2.投标地点:中基招标会议中心(宁波市鄞州区天童南路666号中基大厦1楼)开标室3.开标时间:2022年6月2日14点00分(北京时间) 4.开标地点:中基招标会议中心(宁波市鄞州区天童南路666号中基大厦1楼)开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向采购人上级监督管理部门投诉。供应商可到浙江政府采购网自行下载财政部《质疑函范本》。2.采购项目需要落实的政府采购政策:(1)对小微企业的产品给予价格优惠(监狱企业、残疾人福利性单位视同小微企业;残疾人福利性单位属于小型、微型企业的,不重复享受政策);(2)扶持少数民族地区和不发达地区政策;(3)优先采购节能环保产品(注:所采购的货物在政府采购节能产品、环境标志产品实施品目清单范围内,且具有国家确定的认证机构出具的、处于有效期之内的节能产品、环境标志产品认证证书)。3.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一标项的投标。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人,不得再参加本项目的投标。4.本次政府采购活动有关信息在宁波政府采购网公布,视同送达所有潜在投标人。5.疫情期间特别提醒事项:5.1.供应商递交投标文件方式:5.1.1采用邮寄方式递交投标文件,需按以下要求递交:供应商须在2022年6月1日16:00前将投标文件邮寄至规定地点,由招标代理工作人员进行签收。各供应商自行考虑邮寄在途时间,邮寄过程中无论何种因素导致投标文件未按时递交的后果,均由供应商自行负责。投标文件递交时间以招标代理实际收到投标文件的时间为准。迟到的投标文件将被拒收。请各供应商确保密封包装在邮寄过程密封包装完好,并在邮寄包裹上注明项目名称,因邮寄过程的密封破损造成不符合开标要求的,本招标代理及招标人概不负责。投标文件邮寄地址为:宁波市鄞州区天童南路666号中基大厦19楼。收件人:陈冲 联系方式:130819286865.1.2采用现场递交方式递交投标文件,在投标当天投标人员需持绿色“健康码”、“行程码”,佩戴口罩且体温测量正常后方可进入开标现场(以开标当日测量体温为准)递交投标文件(如遇防疫政策变化,按最新防疫政策执行)。若供应商因未按上述要求办理而导致无法准时进入开标现场的,由供应商自行负责。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:宁波材料所杭州湾研究院地址:宁波杭州湾新区众创园众创一路联系方式:范老师0574-86324529(商务)2.采购代理机构信息名称:宁波中基国际招标有限公司地址:宁波市鄞州区天童南路666号19楼联系方式:陈冲、方巧飞0574-87425731、874253833.项目联系人(询问):陈冲项目联系方式(询问):0574-87425731书面质疑联系人:方芸书面质疑联系方式:0574-88090063 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:扫描探针 开标时间:2022-06-02 14:00 预算金额:168.00万元 采购单位:宁波材料所杭州湾研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:宁波中基国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 宁波材料所杭州湾研究院采购扫描探针显微镜项目的采购公告 浙江省-宁波市-鄞州区 状态:公告 更新时间: 2022-05-12 宁波材料所杭州湾研究院采购扫描探针显微镜项目的采购公告 发布日期:2022-05-12 项目概况宁波材料所杭州湾研究院采购扫描探针显微镜项目招标项目的潜在投标人应在宁波中基国际招标有限公司在线购买链接(https://dwz.cn/BzVsB93Q)获取招标文件,并于2022年6月2日14点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:CBNB-20222086G项目名称:宁波材料所杭州湾研究院采购扫描探针显微镜项目预算金额(元):1,680,000.00最高限价(元):1,680,000.00采购需求: 采购内容 数量 简要技术需求 是否允许采购进口产品 扫描探针显微镜 1套 扫描系统:三轴闭环扫描器:X,Y方向闭环扫描范围:≥90μm;Z方向闭环扫描范围:≥10μm。 是 合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单【以投标截止日当天采购代理机在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料。】。2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:无三、获取招标文件时间:2022年5月12日-2022年5月19日(北京时间,下同)地点(网址):https://dwz.cn/BzVsB93Q方式:在线购买售价:500元/份注:本项目招标文件实行“宁波中基国际招标有限公司”在线获取,不提供招标文件纸质版。招标文件发售联系人:李小姐,联系电话:0574-88090098,电子邮箱:719126619@qq.com。四、提交投标文件截止时间、开标时间和地点1.提交投标文件截止时间:2022年6月2日14点00分(北京时间)2.投标地点:中基招标会议中心(宁波市鄞州区天童南路666号中基大厦1楼)开标室3.开标时间:2022年6月2日14点00分(北京时间) 4.开标地点:中基招标会议中心(宁波市鄞州区天童南路666号中基大厦1楼)开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向采购人上级监督管理部门投诉。供应商可到浙江政府采购网自行下载财政部《质疑函范本》。2.采购项目需要落实的政府采购政策:(1)对小微企业的产品给予价格优惠(监狱企业、残疾人福利性单位视同小微企业;残疾人福利性单位属于小型、微型企业的,不重复享受政策);(2)扶持少数民族地区和不发达地区政策;(3)优先采购节能环保产品(注:所采购的货物在政府采购节能产品、环境标志产品实施品目清单范围内,且具有国家确定的认证机构出具的、处于有效期之内的节能产品、环境标志产品认证证书)。3.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一标项的投标。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人,不得再参加本项目的投标。4.本次政府采购活动有关信息在宁波政府采购网公布,视同送达所有潜在投标人。5.疫情期间特别提醒事项:5.1.供应商递交投标文件方式:5.1.1采用邮寄方式递交投标文件,需按以下要求递交:供应商须在2022年6月1日16:00前将投标文件邮寄至规定地点,由招标代理工作人员进行签收。各供应商自行考虑邮寄在途时间,邮寄过程中无论何种因素导致投标文件未按时递交的后果,均由供应商自行负责。投标文件递交时间以招标代理实际收到投标文件的时间为准。迟到的投标文件将被拒收。请各供应商确保密封包装在邮寄过程密封包装完好,并在邮寄包裹上注明项目名称,因邮寄过程的密封破损造成不符合开标要求的,本招标代理及招标人概不负责。投标文件邮寄地址为:宁波市鄞州区天童南路666号中基大厦19楼。收件人:陈冲 联系方式:130819286865.1.2采用现场递交方式递交投标文件,在投标当天投标人员需持绿色“健康码”、“行程码”,佩戴口罩且体温测量正常后方可进入开标现场(以开标当日测量体温为准)递交投标文件(如遇防疫政策变化,按最新防疫政策执行)。若供应商因未按上述要求办理而导致无法准时进入开标现场的,由供应商自行负责。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:宁波材料所杭州湾研究院地址:宁波杭州湾新区众创园众创一路联系方式:范老师0574-86324529(商务)2.采购代理机构信息名称:宁波中基国际招标有限公司地址:宁波市鄞州区天童南路666号19楼联系方式:陈冲、方巧飞0574-87425731、874253833.项目联系人(询问):陈冲项目联系方式(询问):0574-87425731书面质疑联系人:方芸书面质疑联系方式:0574-88090063
  • 上海交大团队基于表面增强拉曼的纳米探针技术为分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。 该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。 另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。 该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • 热扫描探针光刻技术消除二维半导体材料-金属肖特基势垒——不止于操作便捷,更在于特性提升
    二维半导体材料,比如二硫化钼(MoS2),表现出了诸多新奇的特性,从而使其具有应用于新型电子器件领域的潜力。目前,研究人员常用电子束光刻的方法,在此类仅若干原子层厚的材料表面定域制备图形化电,从而研究其电学特性。然而,采用此类方法常遇到的问题之一是二维半导体材料与金属电之间为非欧姆接触,且具有较高的肖特基势垒。近期,刊载在Nature Electronics上的Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography一文(Nature Electronics volume 2, pages17–25 (2019)),针对以上问题展开了研究。文中,Zheng等人采用热扫描探针光刻(thermal scanning probe lithography,t-SPL)的方法,在二维原子晶体表面成功制备了图形化电。此方法具有高的可重复性,并且具有小于10 nm的分辨率,以及可观的产率(单根针达到105?μm2?h?1)。相较于电子束光刻方法而言,此方法可以同时进行图形化工艺并原位对图形化工艺后的结果进行成像表征,而且不需要真空腔体以及高能电子束。采用这一技术方案,Zheng等人在单层MoS2上制备了具有栅和背栅结构的场效应晶体管。在未采用负电容或异质堆叠等方案的前提下,Zheng等人制备的器件中的二维半导体材料与金属电之间的肖特基势垒趋于0 meV,开关比达到1010,且亚阈值摆幅低至64 mV/dec,大大优于此前诸多其他方案所制得的类似器件的电学特性。 图1 器件制备流程及主要步骤后的样品形貌表征表1 采用两种不同方法(热扫描探针光刻与电子束光刻)制备的基于MoS2的FET的电学特性对比 值得指出的是,文中Zheng等人实现图形化掩膜制备所用的设备,是由瑞士Swisslitho公司所研发的NanoFrazor 3D纳米结构高速直写机,该系统实现图形化工艺主要是基于前文所述的热扫描探针光刻技术。热扫描探针光刻技术的核心,是利用高温纳米针与一种热解胶(PPA)作用,热解胶在高温作用下会挥发,从而使热针“画”过的区域没有热解胶而热针没有“画”过的区域留存有热解胶,从而实现对热解胶的图形化处理。工艺过程中,图形的刻写精度与针的曲率半径以及针的温度控制水平息息相关。依托成熟的微加工工艺以及微系统设计经验,Swisslitho设计并制备了具有纳米曲率半径的针的悬臂梁,并且在悬臂梁上集成了用于控制及反馈针温度的电学系统,可以在室温至1100 ℃的范围内对针的温度进行准确地控制及监测,从而使得NanoFrazor的图形加工精度可以达到10 nm量的水平,且工艺具有佳的稳定性和重复性。图2 针处于加热状态下的悬臂梁图像另一方面,从工作原理不难看出,热扫描探针光刻不需要额外的显影操作。只要是用高温纳米探针在热解胶表面一“画”,热解胶表面相应区域就会挥发掉,从而在表面留下痕迹。着眼于这一特点,Swisslitho的研发人员巧妙地在悬臂梁上集成了轮廓探测器,可以原位对热解胶表面留下的痕迹进行形貌表征,从而实现闭环图形加工功能。NanoFrazor使用户可以实时了解图形加工的情况,并进行修正,大大缩减了图形化工艺所用的时间,提升了效率。 此外,由于NanoFrazor特殊的结构特点,使得NanoFrazor在进行套刻工艺时,可以方便快捷地直接定位到样品表面的目标区域并进行套刻工艺,无须预先在样品表面制备对准标记,亦可省去进行传统光学光刻或电子束光刻对准过程中的繁琐步骤。 为重要的是,由于工艺过程中用针的热与热解胶作用替代了电子束或光束与光刻胶作用,可以有效减少图形化工艺过程中对样品中介质材料的电荷注入所引起的损伤,从而提升微纳结构电学特性的可靠性,亦可有效提升器件的电学特性。
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • 250万!松山湖材料实验室高分辨扫描探针显微镜(AFM)采购项目
    项目编号:OITC-G220DY0089项目名称:松山湖材料实验室高分辨扫描探针显微镜(AFM)采购项目采购方式:公开招标预算金额:2,500,000.00元采购需求:合同包1(高分辨扫描探针显微镜(AFM)):合同包预算金额:2,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他货物高分辨扫描探针显微镜(AFM)1(套)详见采购文件2,500,000.00-本合同包不接受联合体投标合同履行期限:合同签订后6个月内
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • 网络讲座:二维材料界面结构与性质的原子力探针显微学研究(4)- 界面插层结构
    Interfacial Structures and Properties of 2D Materials with Atomic Force Microscopy(4)- Intercalated Structures讲座内容简介: 近年来,由于其潜在的巨大应用价值,关于二维层状材料的基础和应用研究方兴未艾,核心工作是理解和控制其多种多样的有趣性质。之前的研究工作主要集中在二维材料的面内结构,多种多样的层间相互作用在调控其力学、电学、热学以及光学等性质方面也有重要作用。虽然已有许多实验和理论研究工作来表征和理解这些界面结构,但对于界面行为是如何影响其物理与化学行为的仍然不是特别清楚。一个重要原因是,内部界面结构的直接微观成像和性质研究在实验技术上是相对比较困难的。石墨烯内部界面水分子插层的高分辨成像研究 在之前,报告人已经针对的AFM的基础知识、基本模式以及功能化AFM探测模式进行了介绍。本系列报告,将基于我们在原子力显微术的技术研究工作,利用多种先进原子力显微术针对二维材料的本征界面、异质界面以及材料/基底界面开展的研究工作。在每次报告中,我们首先将在较为详细地介绍主要使用的先进AFM模式的基本原理、技术实现及其相关应用。在此基础上,介绍我们利用该AFM模式所开展的关于二维材料界面结构与性质方面的研究工作。希望通过本系列报告有助于相关AFM使用者能够利用比较复杂的AFM功能模式开展研究工作。 本次报告是《二维材料界面结构与性质的原子力探针显微学研究》系列的第四次报告。在本次报告中,将介绍我们通过发展和利用多频原子力显微术,针对二维材料体系的内部界面插层结构等的高分辨成像表征和力学性质探测开展的一些工作。 #主讲人介绍 程志海,中国人民大学物理学系教授,博士生导师,基金委优青,中国仪器仪表学会显微仪器分会理事,中国硅酸盐学会微纳米分会理事。2007年,在中国科学院物理研究所纳米物理与器件实验室获凝聚态物理博士学位。2011年8月-2017年8月,国家纳米科学中心(中科院纳米标准与检测重点实验室),任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”(技术百人计划)和首届“卓越青年科学家”,卢嘉锡青年人才奖获得者,青年创新促进会会员并获首届“学科交叉与创新奖”等。目前,主要工作集中在先进原子力探针显微分析技术方法及其在低维材料与表界面物理等领域的应用基础研究。网络讲座时间:北京时间 2021年11月29日 上午10:00-上午11:00申请方法:请关注“Park原子力显微镜”公众号查看首页内容,即可参与。
  • 岛津推出《电子探针在汽车材料中的应用》数据集
    汽车行业是一个涉及多种材料的综合性产业,材料应用的多元化是其突出的特点,虽然钢铁材料仍占主导地位,更安全、更节能、更环保的发展趋势要求,使得汽车轻量化设计越来越受到重视,高强合金、轻金属和非金属材料的应用发展前景广阔。 轻量化是汽车的发展趋势,在更安全的前提下,资源友好和环境友好的可持续发展战略使命也对汽车材料的应用和发展提出了更高的挑战。世界各国都在努力改进和研发新的汽车材料,提高材料的比强度、降低构件的重量、减少制造的成本和耗能。 主要涉及以下几个关键性材料: 一、高强度钢和超高强度钢的开发:可用于车身车架、横纵梁等关键部位。世界各国和各大车企都在大力参与开发各种高强度钢板,如冷轧含磷板、双相钢(DP 钢)板以及目前最先进的相变诱发塑性钢(TRIP 钢)板等。 二、轻金属包括镁合金、铝合金和钛合金等的应用呈现出越来越广的趋势。 (1)铝合金:密度约是钢铁的三分之一,现已广泛用于汽车发动机、变速器、差速器壳体、铝轮毂、转向节及各种换热器等部位,是汽车上应用最多的轻质金属材料。而且随着铸锻焊、冲压等制造技术的发展,会有更多的部件采用铝合金制造。(2)镁合金:镁合金的密度仅相当于铝合金材料的 66%左右,但在比强度和刚度等机械性能要明显优于钢铁和铝合金,而且在成型效率和尺寸稳定性方面也有很大的优势。目前镁合金在汽车上一般可用于发动机气缸体、壳体、进气歧管、方向盘、转向器、轮毂等零部件。由于镁元素化学特性特别活波,工艺难以控制这在一定程度上限制了镁合金的应用。 (3)钛合金:具有密度小、质量轻、比强度高、耐腐蚀及高低温性能优异等特点,使之可以在一些恶劣的工作条件中保障汽车的性能。但由于钛合金原材料获取困难,加工成本较高。在汽车制造中,一般将高强耐热钛合金用来生产发动机配气系统、曲轴连杆机构和底盘零件,例如气门、气门弹簧、凸轮轴、连杆、涡轮转子和紧固件等。 三、非金属材料在整车占比也在不断扩大。 其中塑料占很大比例,塑料在汽车上的应用有密度低,成形性好,耐腐蚀,弹性形变可吸收冲击能量,除常规的热塑性和热固性塑料外,也包括塑料纤维增强的复合材料。另外,陶瓷、复合材料和功能材料在车用材料领域也占有重要地位。 岛津公司作为全球著名的分析仪器厂商,自 1875 年创业以来,始终坚持创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。早在上世纪 60 年代岛津公司就开始研制和生产电子探针,独有的 52.5°高检出角及兼顾高灵敏度和高分辨率的全聚焦晶体,可在微米级的微小区域到最大 90×90mm 的广域范围中可进行精准分析。电子探针 EPMA(Electron Probe Micro Analyzer)是将聚焦电子束照射到样品,通过激发样品发出的电子信号进行细微结构的观察,通过检测指定区域内发出的元素特征 X 射线进行定性、定量及面分析等多种测试分析。 为了更好的服务于岛津电子探针 EPMA 客户,岛津公司分析中心也开展了汽车行业多种材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津推出扫描探针显微镜在新能源及高分子材料中的应用文集
    纵观人类发展的历史,我们不难发现,生产技术每一次的革新都离不开材料的突破,材料决定了社会发展的进程。在这材料中,新能源材料与功能材料扮演着重要的角色。随着科技的发展,传统的不可再生能源已不能满足需求,需要发展像太阳能、氢能、核能、风能等新能源;单一功能的材料也不能满足发展的要求了,需要开发出具有特殊、多功能性的新材料,如万能材料石墨烯、碳纳米管以及具有无限可能的高分子材料。 扫描探针显微镜(Scanning Probe Microscopy,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜、静电力显微镜、磁力显微镜、扫描离子电导显微镜、扫描电化学显微镜等)的统称。它可以实现材料表面的结构与性质的测量,如对材料表面的形貌、粗糙度、电流电势分布以及磁畴分布情况进行测量,可以说它是材料科学领域中一个不可或缺的表征仪器。 岛津公司作为全球著名的分析仪器厂商,自1875年创业以来,始终坚持 “以科学技术向社会做贡献”的创业宗旨、努力实现“为了人类和地球的健康”之愿望,不断钻研领先时代、满足社会需求的科学技术。扫描探针显微镜具有纳米级的分辨率,在生物、医学、材料、微电子等应用学科均有它的用武之地,它在新材料的应用以及今后的新材料发展中发挥着重要作用。为了更好的服务于岛津SPM客户,岛津公司分析中心也开展了新能源及高分子材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。
  • 【视频】2020年半导体材料与器件微观尺度显微表征报告集锦(含扫描探针、透射电镜、缺陷表征)
    半导体材料与器件的微尺度显微表征对于其性能研究具有重要的意义,仪器信息网整理了三位报告专家从扫描探针技术、透射电镜、缺陷表征等方面对于半导体研究的精彩内容。《扫描探针技术在半导体材料及器件表界面分析中的应用》视频选自2020年半导体材料与器件研究与应用网络会议(报告人:暨南大学教授 谢伟广)《半导体纳米材料原子尺度结构性能关系的透射电子显微学研究》视频选自2020年半导体材料与器件研究与应用网络会议(报告人:华中科技大学武汉光电国家研究中心副教授 李露颖)《硅基III-V族光电器件及其缺陷的表征》视频选自2020年半导体材料与器件研究与应用网络会议(报告人:中科院苏州纳米技术与纳米仿生研究所项目研究员 樊士钊)
  • 哈医大发明成像分子诊断探针 癌症靶向治疗效果可视化
    p   日前,《科学》子刊《科学· 转化医学》杂志刊载论文,报道我国哈尔滨医科大学申宝忠团队成功构建了一种PET(正电子发射计算机断层显像)成像的分子探针——18F-MPG。通过该探针能够实时、动态、精准识别肺癌EGFR(表皮生长因子受体)分型,指导临床靶向药物治疗的决策,预测并评价癌症靶向治疗效果。 /p p   研究团队发明了能与肺癌细胞内的特定蛋白结合的分子成像探针18F-MPG,利用探针,研究者们可以通过PET成像手段,在活体状态下捕捉到探针结合位置、数量,从而判断肺癌的EGFR分型状态以及动态变化,无创地筛选出能够接受EGFR分子靶向治疗的患者群。 /p p   “分子探针筛选出的靶向治疗敏感患者群治疗后平均肿瘤无进展生存时间是348天,而未筛选的患者群平均肿瘤无进展生存期是183天。”申宝忠教授介绍,数据表明,探针敏感的肺癌患者群有更好的治疗效果,更长的肿瘤无进展生存期及更佳预后,探针可用于靶向癌症治疗效果的预测。 /p p   “如果肺癌患者发生了颅内转移,目前常规的PET成像判断是不敏感的,而新探针18F-MPG在正常脑组织内无摄取,在EGFR 突变的转移瘤内高摄取,可以实现颅内转移的精确诊断。”申宝忠教授表示,安全性方面,受试者中无一例发生副反应。 /p
  • “荧光探针”点亮细胞世界
    p style=" text-indent: 2em text-align: justify " 走进山东师范大学化学化工与材料科学学院实验室,在激光显微镜下,“荧光探针”使细胞呈现出色彩斑斓的效果,形态各异的图案仿佛将人带入鲜花与极光交融的海洋。然而,你能想象这不起眼的“荧光探针”通过成像监测,便能实现尽早地发现和预防重大疾病吗? /p p style=" text-indent: 2em text-align: justify " 山东师范大学化学化工与材料科学学院唐波、董育斌、李平、王鹏、李娜等领衔的科研团队,经过近二十年的刻苦攻关,有效地解决了细胞成像这一难题,极大地推动了该领域的国际研究步伐,他们完成的“细胞稳态调控活性分子的荧光成像研究”项目于近日获得2018年度国家自然科学二等奖,成为首个以第一完成单位获得国家自然科学奖的山东省省属高校。 /p p style=" text-indent: 2em text-align: justify " 早在2000年前后,当时国内的生命科学和光学成像等研究领域刚刚兴起,团队领头人唐波教授便敏锐地意识到分析化学和生命科学的紧密结合,必将推动一个新型交叉研究领域的兴起。从此,一个以化学、生物学、医学等多学科为支撑,以揭示重大疾病的发现和治疗为使命的团队应运而生。 /p p style=" text-indent: 2em text-align: justify " 2013年初,以山东师范大学为项目牵头单位、唐波为首席科学家的国家重大科学研究计划(973)项目“重大疾病相关的若干重要难检活性小分子细胞内纳米传感研究”正式启动。“一定要把目光瞄准国际科研领域的最前沿,只有站位高、视野宽、反应快,才能把握住科研领域的时代脉搏,产出高质量的研究成果。”唐波不仅自己以此为标杆,还将这一理念植入了全体科研团队的“基因”之中。 /p p style=" text-indent: 2em text-align: justify " 自然科学奖评审的核心指标就是原创性,而这正是“细胞稳态调控活性分子的荧光成像研究”项目的“撒手锏”。该项目在国际上率先构建成多种新型发光材料,解决了材料量子产率低与波长不可调的关键问题,为研制具有高灵敏度与光谱空间可分辨探针的筛选、设计、构建奠定了重要的理论基础。 /p p style=" text-indent: 2em text-align: justify " “在原有的检测方法中,荧光信号灵敏度差、转换效率较低,会直接影响成像质量,从而会导致医生对病人的病情错判。我们的成果创新性地运用特异性识别活性分子的机理与能量转移、电子转移等光信号转换机制,成功实现了对糖蛋白、葡萄糖、microRNA等活性分子的高选择性识别,检测速度和准确性都得到了极大提高。”长江学者董育斌教授说。 /p p style=" text-indent: 2em text-align: justify " “在疾病发生之前,我们可以通过细胞内特定指标的变化来作出预警,从而尽早地预防和治疗。而这种指标变化,需要找到特殊的化合物即‘探针’,注入活体细胞后,用高能荧光显微镜来检测‘探针’光学信号的改变来确定。”为团队作出重要贡献的徐克花教授介绍说,他们的工作就是寻找化合物、研发新材料“探针”,实现高准确度和超高灵敏检测的突破。 /p p style=" text-indent: 2em text-align: justify " “这与现阶段医学临床上采用的肿瘤检测方式不同。传统的血液检测,可能因样本离开人体而导致准确性下降,假阳性比例很高,比如前列腺癌的假阳性比例最高达60%。而使用CT检查,当发现病灶时,病情一般已进入中晚期。”青年长江学者李娜教授说,“因此,使用荧光成像方法,通过新材料‘探针’在活细胞里面检测活性物质,且是在体外保真环境进行,无创伤,无伤害。” /p p style=" text-indent: 2em text-align: justify " 目前,团队师生所在的化学学科近十年来稳居ESI全球前1%,团队成员均有稳定的国家级课题作为依托,堪称精兵强将。“我们研究团队,不仅有化学专家,还引进了生物、医学、物理等方面的人才。大家学术背景非常多元,团队在开拓新的研究领域和方向时也非常方便。”泰山学者青年专家高雯说。 /p
  • 化学所在新型细胞原位荧光探针研究中取得进展
    荧光探针具有敏感性高、选择性好、响应时间短、易于直接观测、便于实时监测等优点,可以在一些特殊的应用体系和生物活性物质的检测等方面发挥重要作用,其基础研究和应用开发受到了广泛关注,特别是新原理的开发和新型探针材料的设计、合成,成为了近年来光功能材料的研究热点之一。   在科技部、国家自然科学基金委和中国科学院的支持下,中国科学院化学研究所光化学院重点实验室的课题组多年来致力于荧光传感材料的设计合成及其新型器件的研究,他们设计、合成了一系列高效的新型荧光探针分子,包括ESIPT类化合物、分子内电荷转移化合物和一类新型的三芳基硼类发光分子,并应用于纯水体系中氟离子和汞离子的检测(Angew. Chem. Int. Ed. 2010, 49 (29), 4915-4918, Anal. Chem. 2013, 85 (8), 4113-4119.)、宽范围温度的检测等领域(Angew. Chem. Int. Ed. 2011, 50 (35), 8072-8076 Adv. Funct. Mater. 2013, 23 (3), 340-345 Chem. Comm. 2014, 50, 2778-2780.)和细胞内的pH值检测等(Chem. Comm. 2014,50, 8787&mdash 8790)。   最近,在前期对三芳基硼化合物的特性研究基础上,研究人员通过分子设计,合成了一种含有咪唑盐和醚链的水溶性三芳基硼化合物。该化合物遇ATP后可发生有限的聚集,导致三芳基硼基团周围的环境极性发生显著降低,使三芳基硼的荧光大大增强。该化合物对ATP选择性好、细胞毒性小、渗透细胞膜能力强,并且在细胞内的分散性好,因此可作为活细胞内的ATP探针,对ATP的分布及示踪开展研究。通过荧光显微成像及荧光寿命显微成像等技术,研究人员利用该荧光探针研究了NIH/3T3细胞中ATP的分布及浓度。相关研究结果发表于近期的《德国应用化学》(Angew. Chem. Int. Ed. 2014, 53 (30), 7809-7813.)。   图1 利用荧光探针进行ATP 检测原理示意图   图2 共聚焦显微荧光成像,检测细胞内ATP的分布
  • 《自然—通讯》:中国团队开发出新型荧光探针
    论文截图9月12日,中国科学院深圳先进技术研究院医工所生物医学光学与分子影像研究中心储军课题组的最新成果发表于《自然—通讯》。研究人员研发了在活细胞内具有12倍荧光变化的高性能基因编码的cAMP绿色荧光探针(命名为G-Flamp1)。该研究结合显微成像和光纤记录等技术,实时高灵敏监测了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号时空动力学变化,探索了cAMP动力学与动物行为之间的内在关联。Nature Methods的审稿人在审稿过程中对该成果给予了高度评价,认为G-Flamp1探针具有非常棒的性质,在荧光探针的性能上具有很大的提升,该探针打开了很多有趣的cAMP信号研究的大门,是非常及时和高质量的研究成果。深圳先进院储军研究员为该论文的通讯作者,深圳先进院助理研究员王亮博士及北京大学邬春灵博士为该论文的共同第一作者。细胞是包括人类在内的绝大部分生命体结构和功能的基本单位。细胞不断地接受周围环境的信号,并将其转变为细胞内相应分子(如蛋白质、有机小分子、离子、DNA和RNA等)的数量、分布和活性状态的变化,从而改变细胞的形态和生物学功能等。该过程的异常则与疾病的发生发展相关。因此,科学家们往往通过检测上述关键分子的时空变化来理解细胞的功能,并阐明相关疾病的发生机制。在该研究中,研究人员选取细胞内重要的第二信使分子环磷酸腺苷(cAMP)作为研究目标。cAMP可传递细胞表面多种G蛋白偶联受体(GPCR)的信息,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。“活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。”论文通讯作者储军研究员表示。与非基因编码探针(染料和材料类)相比,基因编码探针像正常蛋白质一样,可以定位到生物体特定细胞或特定细胞亚结构,具有低毒性、低背景、可遗传等优点,在生命科学基础研究中具有无可比拟的优势。然而,现有的50多个基因编码的cAMP荧光探针要么灵敏度低(荧光变化最大只有1.5倍),要么荧光亮度较暗,很难监测活体中微弱的内源性cAMP变化,极大地限制了生理和病理状态下cAMP分子调控机理和功能的研究。为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道蛋白的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针G-Flamp1。特别的,该探针在活细胞中的荧光变化可达12倍,是目前少数几个在10倍以上的荧光探针之一。随后,研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究人员首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,然后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化,暗示不同子区域可能在联想性学习中起着相对独立的作用。为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。最后,研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明,随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高;该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。因此,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。综上所述,该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步理解cAMP信号的调控和功能奠定了基础。“与广泛使用的钙离子探针GCaMP相比,G-Flamp1才仅仅只是开始,目前已有几十家国内外实验室在使用G-Flamp1,未来将会有更多实验室利用G-Flamp1来研究复杂的生物学问题。”论文通讯作者储军研究员表示。在未来研究中,研究团队将进一步提高探针性能,开发适用于不同应用场景的下一代高灵敏cAMP探针,并利用其揭示活细胞和活体中cAMP信号的规律、调控机制及生物学功能。与此同时,结合高内涵药物筛选平台,研究团队开发的新型探针也将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。
  • 我国引进首台纳米离子探针通过验收
    我国引进的第一台NanoSIMS 50L型纳米离子探针验收会于近日在中国科学院地质于地球物理研究所召开。中国科学院地质于地球物理研究所副所长吴福元研究员为组长的专家组认真听取了法国CAMECA公司纳米离子探针设计师、Franç ois Hillion博士所作的验收报告。专家组对仪器的验收指标有关问题进行了提问,一致认为该仪器的技术参数不仅全部达到合同要求,大部分还优于合同要求的验收指标。 纳米离子探针   纳米离子探针具有极高的空间分辨率(Cs+源束斑小于 50nm,O-源束斑小于200nm),与我所已有的CAMECA ims 1280高精度离子探针互补,构成国际上非常先进的的离子探针分析平台。新引进的NanoSIMS 50L型纳米离子探针配置了7个信号检测器(每个配置法拉第杯和电子倍增器),可以同时测量7个同位素(或元素),分析精度好于千分之一。该仪器可以分析除稀有气体以外,元素周期表中从H至U的全部同位素(元素),并能获取同位素分布的高分辨图像。纳米离子探针的引进,为我国比较行星学、地球科学、材料科学、以及生命科学等领域提供了新的大型实验分析平台。
  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 无形“探针”,“洞见”人体
    更精准地实现人体器官和病灶部位无损害可视化,一直是人们追求的目标。  5月10日,在复旦大学庆祝建校118周年系列学术报告中,复旦大学化学系教授、上海市生物医学检测试剂工程中心主任张凡以《透视人体健康的新技术——近红外光化学探针用于生物医学诊断》为题,分享了自己深耕多年的近红外荧光分子“探针”研究,结合近红外光学成像仪器,该技术可隔着皮肤和肌肉监测体内活动,有望为疾病诊断提供新路径。  发光“探针”为手术精准导航  人们很早就有“洞见”自己的需求,梦想能发明一种无创技术,实现对人体健康的可视化监控。  1895年,德国物理学家伦琴发现X射线,开创医学影像技术的先河,目前我们常用的医学影像检查技术,如CT(电子计算机断层扫描)就与此有关。然而,如何实现无辐射、实时动态的活体成像技术一直存在巨大挑战。  研究人员逐渐发现,活体荧光成像技术,相较于已有的CT、MRI(磁共振成像)、PET(正电子发射型计算机断层显像)等,具有无辐射、高时间和空间分辨率、高特异性等检测优势,能够为精准手术导航技术领域提供较好的应用前景。  在对医学检测方法的优化探索中,张凡团队开发了一种新技术,就像打开一扇观察人体内部的窗口——只需静脉注射会发光的近红外荧光分子“探针”,即可自动定位到某个器官、肿瘤或是血管,再通过对人体没有伤害的光学成像仪器,就能隔着皮肤和肌肉组织直观清晰观察到肠道的蠕动、肿瘤的边缘、细胞的游走等  “而且,我们看到的不是静态‘照片’,是动态的‘视频’。”张凡说。  从自然中寻找答案  “活体荧光成像技术也还有许多问题亟待解决。”张凡说,“荧光虽然没有辐射,可以很快实施动态监测,但是其组织穿透深度较浅一直以来都是限制其应用的关键科学问题。”  此前,光学成像多使用可见光区(400纳米至700纳米)和近红外一区(700纳米至900 纳米)的荧光,但由于这一波段在生物组织中具有较高的吸收和散射,其在活体深组织检测中的应用大大受限。张凡团队专注于在近红外二区窗口(1000纳米至1700 纳米)内探索活体深组织成像窗口,并且根据获得的最优窗口开发对应的长波荧光探针和成像仪器。  到目前为止,张凡团队累计开发了30余种系列近红外二区有机小分子探针,相关荧光成像设备和探针试剂已实现应用转化,在多家科研机构和医院用于基础研究和临床前研究。已经成功获取了生物体内部多个待测物的动态监测。  随着研究进一步深入,研究人员发现,荧光成像往往是利用外部激发光源实时激发荧光探针来获取信号,这就不可避免地会产生生物组织背景荧光,从而影响成像的分辨率和信噪比。  如何寻找优化之法?在张凡看来,最好的答案就在自然里。自然界能自主发光的生物很多,比如鱿鱼、水母、萤火虫等。  “与其受背景荧光干扰,不如尝试将其本身的荧光运用起来。前面提到的‘探针’对人体来说都是‘外来的’,注射到体内后容易被代谢,而如果可以实现近红外生物发光成像就可以更好的实现无激发的高信噪比原位成像追踪。”张凡说。  创新在学科交叉处  思路的转变拓展了张凡的研究视野。他发现除生物医学,近红外荧光分子“探针”还能做很多事儿,比如监测微塑料污染。  微塑料是指直径小于5微米的塑料。张凡认为,长期以来由于分析方法的限制,人类大大低估了微塑料暴露的影响,并且对于微塑料在人体内体液和组织的影响的研究仍然非常粗浅。事实上,直径小于2微米的小尺寸微塑料,就可以穿越细胞膜,并在脏器和脑部富集,极有可能引起氧化应激、炎症以及DNA损伤,是人类健康的严重威胁。  人们认为微塑料的影响只是通过由海洋到人类的食物链传播,其实不然。根据最新研究成果,微塑料会随着大气远程传播,并在淡水环境及陆地上沉积,比如美国西部地区每年就会有120吨微塑料会由大气沉积到陆地。  “微塑料比人们想象中更广泛地存在于生活中,甚至存在于婴儿的奶瓶里。”张凡希望,未来能运用好近红外荧光分子“探针”技术,对微塑料进行活体实时动态追踪,为保卫人类健康贡献更多力量。  张凡一直鼓励学生勇于跨界、主动交叉、全面发展。经过多年积累,他带领的团队已成长为一个典型的学科交叉团队,一批批优秀学子毕业后继续从事相关科研工作。  “创新的机会,就在学科交叉之处。”谈及科研的心得,张凡总结说。
  • 暨南大学250.00万元采购扫描探针
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 扫描探针 开标时间: 2021-08-06 09:30 采购金额: 250.00万元 采购单位: 暨南大学 采购联系人: 伍先生 采购联系方式: 立即查看 招标代理机构: 广州顺为招标采购有限公司 代理联系人: 李小姐 代理联系方式: 立即查看 详细信息 暨南大学实验技术中心扫描探针显微镜采购(GZSW21156HG3017)招标公告 广东省-广州市 状态:公告 更新时间:2021-07-16 招标文件: 附件1 暨南大学实验技术中心扫描探针显微镜采购(GZSW21156HG3017)招标公告 2021年07月16日 14:48 公告信息: 采购项目名称 暨南大学实验技术中心扫描探针显微镜采购 品目 货物/专用设备/专用仪器仪表/教学专用仪器 采购单位 暨南大学 行政区域 广东省 公告时间 2021年07月16日 14:48 获取招标文件时间 2021年07月16日至2021年07月23日每日上午:9:00 至 12:00 下午:14:30 至 17:30(北京时间,法定节假日除外) 招标文件售价 ¥310 获取招标文件的地点广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司) 开标时间 2021年08月06日 09:30 开标地点 广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司), 预算金额 ¥250.000000万元(人民币) 联系人及联系方式: 项目联系人 伍先生 项目联系电话 020-83592216-822 采购单位 暨南大学 采购单位地址 广州市黄埔大道西601号 采购单位联系方式 020-85220010 代理机构名称广州顺为招标采购有限公司 代理机构地址 广州市环市中路205号恒生大厦B座501室 代理机构联系方式 李小姐 020-83592216 附件: 附件1 项目概况 暨南大学实验技术中心扫描探针显微镜采购 招标项目的潜在投标人应在广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司)获取招标文件,并于2021年08月06日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:GZSW21156HG3017 项目名称:暨南大学实验技术中心扫描探针显微镜采购 预算金额:250.0000000 万元(人民币) 采购需求: 1、标的名称:扫描探针显微镜 2、标的数量:1套 3、简要技术需求或服务要求:符合招标文件要求4、其他:无 合同履行期限:交货期:国产设备在合同签订后30天内完成交货及安装、调试达验收合格标准;进口设备在合同签订后60天内完成交货及安装、调试达验收合格标准。, 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无(本项目不属于专门面向中小企业的项目) 3.本项目的特定资格要求:1、投标人应具备《政府采购法》第二十二条规定的条件:(1)具有独立承担民事责任的能力(提供法人或者其他组织的营业执照等证明文件,自然人的身份证明);(2)具有良好的商业信誉和健全的财务会计制度(提供2019或2020年度经会计师事务所审计的财务状况报告或提供基本户开户行出具的资信证明);(3)具有履行合同所必需的设备和专业技术能力(提供书面声明(可参照招标文件“第五部分 投标文件格式”《诚信声明函》)或证明材料);(4)有依法缴纳税收和社会保障资金的良好记录(提供投标截止日期前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料(如依法免税或不需要缴纳社会保障资金的,应提供相应证明材料)); (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录(提供书面声明(可参照招标文件“第五部分 投标文件格式”《诚信声明函》));(6)法律、行政法规规定的其他条件(提供书面声明(可参照招标文件“第五部分 投标文件格式”《诚信声明函》))。2、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动(以国家企业信用信息公示系统www.gsxt.gov.cn查询结果为准)。3、为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。4、投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;且不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以采购代理机构于投标截止日当天在“信用中国”网站及中国政府采购网查询结果为准,如相关失信记录已失效,投标人需提供相关证明资料)。5、本项目不接受联合体投标。 三、获取招标文件 时间:2021年07月16日 至 2021年07月23日,每天上午9:00至12:00,下午14:30至17:30。(北京时间,法定节假日除外) 地点:广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司) 方式:1、现场报名;2、邮件报名(请与工作人员联系,联系电话:020-83592216)。 售价:¥310.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年08月06日 09点30分(北京时间) 开标时间:2021年08月06日 09点30分(北京时间) 地点:广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司), 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.符合本项目资格要求的供应商以公开报名方式确认其投标资格。请凭单位法定代表人(或负责人)授权委托书到采购代理机构报名(如需邮寄,请与工作人员联系,标书售后不退,国内邮购须另加 60 元人民币)。 2.采购信息发布及结果公告网站: 中国政府采购网(http://www.ccgp.gov.cn/)、 ____(____)、 广州顺为招标采购有限公司网站(http:// www.gzswbc.com)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:暨南大学 地址:广州市黄埔大道西601号 联系方式:020-85220010 2.采购代理机构信息 名 称:广州顺为招标采购有限公司 地 址:广州市环市中路205号恒生大厦B座501室 联系方式:李小姐 020-83592216 3.项目联系方式 项目联系人:伍先生 电 话: 020-83592216-822 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:扫描探针 开标时间:2021-08-06 09:30 预算金额:250.00万元 采购单位:暨南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广州顺为招标采购有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 暨南大学实验技术中心扫描探针显微镜采购(GZSW21156HG3017)招标公告 广东省-广州市 状态:公告 更新时间: 2021-07-16 招标文件: 附件1 暨南大学实验技术中心扫描探针显微镜采购(GZSW21156HG3017)招标公告 2021年07月16日 14:48 公告信息: 采购项目名称 暨南大学实验技术中心扫描探针显微镜采购 品目 货物/专用设备/专用仪器仪表/教学专用仪器 采购单位 暨南大学 行政区域 广东省 公告时间 2021年07月16日 14:48 获取招标文件时间 2021年07月16日至2021年07月23日每日上午:9:00 至 12:00 下午:14:30 至 17:30(北京时间,法定节假日除外) 招标文件售价 ¥310获取招标文件的地点 广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司) 开标时间 2021年08月06日 09:30 开标地点 广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司), 预算金额 ¥250.000000万元(人民币) 联系人及联系方式: 项目联系人 伍先生 项目联系电话 020-83592216-822 采购单位 暨南大学 采购单位地址 广州市黄埔大道西601号 采购单位联系方式 020-85220010 代理机构名称 广州顺为招标采购有限公司 代理机构地址 广州市环市中路205号恒生大厦B座501室 代理机构联系方式 李小姐 020-83592216 附件: 附件1 项目概况 暨南大学实验技术中心扫描探针显微镜采购 招标项目的潜在投标人应在广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司)获取招标文件,并于2021年08月06日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:GZSW21156HG3017 项目名称:暨南大学实验技术中心扫描探针显微镜采购 预算金额:250.0000000 万元(人民币) 采购需求:1、标的名称:扫描探针显微镜 2、标的数量:1套 3、简要技术需求或服务要求:符合招标文件要求 4、其他:无 合同履行期限:交货期:国产设备在合同签订后30天内完成交货及安装、调试达验收合格标准;进口设备在合同签订后60天内完成交货及安装、调试达验收合格标准。, 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无(本项目不属于专门面向中小企业的项目) 3.本项目的特定资格要求:1、投标人应具备《政府采购法》第二十二条规定的条件:(1)具有独立承担民事责任的能力(提供法人或者其他组织的营业执照等证明文件,自然人的身份证明);(2)具有良好的商业信誉和健全的财务会计制度(提供2019或2020年度经会计师事务所审计的财务状况报告或提供基本户开户行出具的资信证明);(3)具有履行合同所必需的设备和专业技术能力(提供书面声明(可参照招标文件“第五部分 投标文件格式”《诚信声明函》)或证明材料);(4)有依法缴纳税收和社会保障资金的良好记录(提供投标截止日期前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料(如依法免税或不需要缴纳社会保障资金的,应提供相应证明材料)); (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录(提供书面声明(可参照招标文件“第五部分 投标文件格式”《诚信声明函》));(6)法律、行政法规规定的其他条件(提供书面声明(可参照招标文件“第五部分 投标文件格式”《诚信声明函》))。2、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动(以国家企业信用信息公示系统www.gsxt.gov.cn查询结果为准)。3、为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。4、投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;且不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以采购代理机构于投标截止日当天在“信用中国”网站及中国政府采购网查询结果为准,如相关失信记录已失效,投标人需提供相关证明资料)。5、本项目不接受联合体投标。 三、获取招标文件 时间:2021年07月16日 至 2021年07月23日,每天上午9:00至12:00,下午14:30至17:30。(北京时间,法定节假日除外) 地点:广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司) 方式:1、现场报名;2、邮件报名(请与工作人员联系,联系电话:020-83592216)。 售价:¥310.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年08月06日 09点30分(北京时间) 开标时间:2021年08月06日 09点30分(北京时间) 地点:广州市环市中路205号恒生大厦B座501室(广州顺为招标采购有限公司), 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.符合本项目资格要求的供应商以公开报名方式确认其投标资格。请凭单位法定代表人(或负责人)授权委托书到采购代理机构报名(如需邮寄,请与工作人员联系,标书售后不退,国内邮购须另加 60 元人民币)。 2.采购信息发布及结果公告网站: 中国政府采购网(http://www.ccgp.gov.cn/)、 ____(____)、 广州顺为招标采购有限公司网站(http:// www.gzswbc.com)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:暨南大学 地址:广州市黄埔大道西601号联系方式:020-85220010 2.采购代理机构信息 名 称:广州顺为招标采购有限公司 地 址:广州市环市中路205号恒生大厦B座501室 联系方式:李小姐 020-83592216 3.项目联系方式 项目联系人:伍先生 电 话: 020-83592216-822
  • 2019年电子探针分析技术与科学应用研讨会顺利召开
    2019年12月19日—22日,由昆明理工大学材料科学与工程学院主办,岛津企业管理(中国)有限公司协办的电子探针分析技术与科学应用研讨会在昆明理工大学顺利召开。会议以“探微析理 聚思共进”为主题,来自浙江大学、华中科技大学、西安交通大学、中国科学技术大学、中南大学、中国矿业大学(徐州)、中科院上海应用物理研究所、中科院地质与地球物理研究所、首钢集团、宝钢集团、沙钢集团等近百名国内高校、科研机构的著名专家学者出席了本次会议。 参会代表专家合影 电子探针分析技术作为研究材料、地球与行星物质组成的重要手段,已被广泛应用于高校、科研院所、政府及企业研发部门等各个机构。现阶段,随着材料学、固体地球科学与行星科学的迅速发展,科研人员和测试工作者对仪器实验方法和技术创新发展、(跨)学科间的应用及经验交流越来越重视。 本次会议以电子探针分析技术为主线,旨在为国内电子探针分析技术人员提供一个应用研讨、经验交流、信息共享的平台,促进科研人员和测试工作者之间的学术交流和合作。 开幕式上,昆明理工大学材料科学与工程学院甘国友副院长和岛津企业管理(中国)有限公司分析计测事业部市场部胡家祥部长分别致辞。昆明理工大学材料科学与工程学院副院长甘国友 甘国友副院长首先对大家的到来表示热烈的欢迎,并对岛津公司给与的支持表示感谢。随后他介绍了昆明理工大学的概况,希望就此机会与来自各学校单位的专家学者进行合作交流。最后他预祝本次大会圆满成功。岛津公司分析计测事业部市场部部长 胡家祥 胡家祥部长首先对与会嘉宾的到来表示由衷的感谢与欢迎。他在致辞中提到,岛津公司专注于电子探针产品的研发有近60多年的历史,目前国内许多大学、科研单位、政府及企业研发部门使用了岛津的电子探针产品,并取得了非常出色的研究成果。电子探针作为岛津公司在表面分析领域的拳头产品,数十年来国内用户的队伍不断壮大,感谢全国广大用户对岛津电子探针产品的认可和信赖。 致辞完毕后,大会进入了报告阶段。昆明理工大学胡劲教授、中南大学谷湘平教授、浙江大学饶灿教授、中科院上海应用物理研究所陆燕玲研究员、首钢集团有限公司技术研究院高级工程师严春莲、江苏省(沙钢)钢铁研究院主任工程师吴园园分别作了《无机材料表征研究》、《电子探针标样选择及碳的精确定量》、《超轻金属铍的电子探针分析》、《EPMA 在金属材料中的应用》、《钢坯枝晶偏析的定量分析方法》及《EPMA 在钢铁质量分析中的应用》的大会报告。 岛津公司分析计测事业部市场部龚沿东先生做了题为《岛津电子探针技术特点》的应用报告。报告主要从超轻元素、稀土元素的特征X射线特点及其在电子探针分析上的难点出发,通过对岛津EPMA的52.5°高X射线取出角、高灵敏度和高分辨率型波谱仪等技术特点的阐述及相关测试实例分享,论证了岛津EPMA在定量分析超轻元素和低含量稀土元素上的优势及可行性。岛津公司分析计测事业部市场部 龚沿东研究员 本次会议,还举办了钢铁企业EPMA用户培训班和优秀论文颁奖。国内电子探针分析技术人员通过分享电子探针分析技术进展,进一步提升微区分析研究的能力,实现“更精、更准、更广”的目标。岛津公司钢铁企业EPMA用户培训班合影一等奖获奖人员:中国矿业大学(徐州)王帅副教授二等奖获奖人员
  • 瑞柯发布瑞柯全自动四探针测试仪新品
    FT-3110系列全自动四探针测试仪一.功能描述:四点探针法,全自动化运行测量系统,PC软件采集和数据处理;参照A.S.T.M 标准方法测试半导体材料电阻率和方块电阻;可设定探针压力值、测试点数、多种测量模式选择;真空环境,可显示:方阻、电阻率、显示2D,3D扫描/数值图、温湿度值、提供标准校准电阻件. 报表输出数据统计分析.FT-3110系列全自动四探针测试仪二.适用范围晶圆、非晶硅/微晶硅和导电膜电阻率测量;选择性发射极扩散片;表面钝化片;交叉指样PN结扩散片;新型电极设计,如电镀铜电阻测量等;半导体材料分析,铁电材料,纳米材料,太阳能电池,LCD,OLED,触摸屏等. FT-3110系列全自动四探针测试仪三.技术参数: 规格型号FT-3110AFT-3110B1.电阻10^-5~2×10^5Ω10^-6~2×10^5Ω2.方块电阻 10^-5~2×10^5Ω/□10^-6~2×10^5Ω/□3.电阻率 10^-6~2×10^6Ω-cm10-7~2×106Ω-cm4.测试电流 0.1μA.μA.0μA,100μA,1mA, 10mA,100mA1A、100mA、10mA、1mA、100uA、10uA、1uA、0.1uA5.电流精度 ±0.1% 6.电阻精度 ≤0.3%7.PC软件操作PC软件界面:电阻、电阻率、电导率、方阻、温度、单位换算、电流、电压、探针形状、探针间距、厚度 、2D、3D图谱、压力、报表生成等8.压力范围:探针压力可调范围:软件控制,100-500g可调9.探针针间绝缘电阻:≥1000MΩ;机械游移率:≤0.3%圆头铜镀金材质,探针间距1mm;2mm;3mm选配,其他规格可定制10.可测晶片尺寸选购 晶圆尺寸:2-12寸(6寸150mm,12寸300mm);方形片:大至156mm X 156mm 或125mm X 125mm11.分析模式单点、五点、九点、多点、直径扫描、面扫描等模式的自动测试12.加压方式测量重复性:重复性≤3% 13.安全防护具有限位量程和压力保护 误操作和急停防护 异常警报14.测试环境真空15.电源输入: AC220V±10%.50Hz 功 耗:瑞柯全自动四探针测试仪
  • 小分子荧光探针研究取得进展
    近日,中国科学院上海药物研究所李佳团队联合华东理工大学贺晓鹏团队、英国巴斯大学Tony D. James团队,以及美国德克萨斯大学奥斯汀分校Jonathan L. Sessler团队,撰写“指南综述”(Tutorial Review)文章Small-molecule fluorescence-based probes for interrogating major organ diseases,分类总结了可用于探查主要器官疾病的小分子荧光探针。相关研究成果在线发表在Chemical Society Reviews上。  人体是由多个器官系统构成的有机体,每个器官在体内发挥着特定作用,器官之间的协同工作维持着人体的正常运行。然而,异常的器官功能障碍会影响机体的健康,并导致灾难性的后果。组学等鉴定技术的发展,促使与器官功能障碍相关的生物标志物相继被发现。开发非侵入性的、可实时观察特定器官疾病生物标志物的方法,将提高对特定器官病理变化的研究能力,并利于疾病的早期诊断,进而为开发有效的治疗方法提供帮助。基于荧光生物成像的检测技术,具有灵敏度高、操作简单、检测下限低、响应速度快、时空分辨率优异及无损体内原位成像等特性,被用于疾病生物标志物的检测,为器官疾病的诊断提供了较为可靠的依据。  在科研团队前期研究的基础上,研究人员分类总结了可用于探查主要器官疾病的小分子荧光探针。该论文阐述了用于主要器官疾病研究的小分子荧光探针的设计策略;剖析了生物标志物检测对于研究器官功能障碍和其他器官相关疾病的重要性;阐明了小分子荧光探针在体外、体内监测各种致病过程的用途;介绍了目前用于研究器官疾病的小分子荧光探针存在的局限,并提出了建议与展望。该研究为开发新的有效的荧光分子探针用于早期诊断和治疗不同器官疾病具有重要的借鉴意义。  研究工作得到国家自然科学基金重大研究计划、上海市科技重大专项、上海市国际合作与交流项目及中国博士后科学基金面上资助等的支持。 综述中涉及的人体主要器官示意图(a)及用于探查器官相关疾病的小分子荧光探针的设计策略示意图(b)
  • 一文解读扫描探针显微镜拓展模式(一)
    01MFM(Magnetic Force Microscopy,磁力显微镜)磁力显微镜(Magnetic Force Microscopy,MFM)是一种专门用于成像样品表面的磁性分布的扫描探针显微镜,通过探针和样品之间的磁力相互作用来获得信息。MFM应用MFM主要用于研究材料的磁性特征,广泛应用于物理学、材料科学、电子学等领域。常见的应用包括:磁记录介质:研究硬盘、磁带等磁记录设备的磁性结构和缺陷;磁性材料:分析磁性薄膜、纳米颗粒、磁性多层膜等材料的磁畴结构;生物磁性:研究生物组织中天然存在的磁性物质,如磁性细菌。应用实例在自旋存储研究中,以斯格明子的研究为例,传统的磁存储单元受限于材料性质,显著影响自旋存储的高密度需求。斯格明子是一种具有拓扑性质的准粒子,其最小尺寸仅为3nm,远小于磁性隧道结,是理想的信息载体,有望突破信息存储密度的瓶颈。下图为通过MFM表征获取的斯格明子图像。[1]标准斯格明子M-H曲线 斯格明子图像在磁盘研究中,通过MFM可以获取磁盘表面的高分辨率磁性图像,详细了解其磁畴结构和分布情况。MFM具有高空间分辨率和灵敏度,为磁盘材料的研究和优化提供了重要的数据支持。下图展示了通过MFM测试获取的磁盘表面磁畴结构图像。电脑软盘磁畴图像02PFM(Piezoresponse Force Microscopy,压电力显微镜)压电力显微镜(Piezoresponse Force Microscopy,PFM)是一种用于研究材料压电性质的扫描探针显微镜,利用探针与样品表面之间的逆压电效应来成像和测量材料的压电响应。材料由于逆压电效应产生形变示意图 [2]PFM应用PFM广泛应用于材料科学和电子学领域,尤其是在研究和开发新型压电材料和器件方面。具体应用包括:铁电材料:研究铁电材料的畴结构、开关行为和退极化现象。压电器件:分析压电传感器、致动器和存储器件的性能。生物材料:研究生物组织中的压电效应,例如骨骼和牙齿。应用实例具有显著的压电效应,即在外加机械应力作用下产生电荷。这使其在超声波发生器、压电传感器和致动器中具有重要应用。在研究PbTiO3样品时,通过PFM,可以获取PbTiO3表面的高分辨率压电响应图像,详细了解其畴结构和分布情况,为PbTiO3材料的研究和优化提供了重要的数据支持。下图展示了通过PFM测试获取的PbTiO3样品表面压电力图像。PbTiO3垂直幅度图PbTiO3垂直相位图03EFM(Electrical Force Microscopy,静电力显微镜)静电力显微镜是一种用于测量成像样品表面的电静力特性的扫描探针显微镜。EFM通过探针与样品表面之间的静电力相互作用,获取表面电荷分布和电势信息。静电力显微镜(抬起模式)[3]EFM应用EFM广泛应用于材料科学、电子学和纳米技术等领域,常见的应用包括:电荷分布:测量和成像材料表面的电荷分布。表面电势:研究材料表面的电势分布和电特性。半导体器件:分析半导体器件中的电特性和缺陷。纳米电子学:研究纳米级电子器件的电性能。应用实例Au-Ti条带状电极片静电力04KPFM(Kelvin Probe Force Microscopy,开尔文探针力显微镜)KPFM是一种通过探针与样品之间的接触电势差来获取样品功函数和表电势分布的扫描探针显微镜。KPFM广泛应用于金属、半导体、生物等材料表面电势变化和纳米结构电子性能的研究。KPFM 获取 Bi-Fe薄膜样品表面电势 [4]KPFM应用KPFM在材料科学、电子学和纳米技术等领域具有广泛的应用,常见的应用包括:表面电势分布:测量和成像材料表面的局部电势分布。功函数测量:研究材料的功函数变化,特别是对于不同材料的界面和缺陷。半导体器件:分析半导体器件中的电势分布和电学特性。有机电子学:研究有机半导体和有机电子器件的表面电势。应用实例Au-Ti条带状电极片表面电势05SCM(Scanning Capacitance Microscopy,扫描电容显微镜)扫描电容显微镜(Canning Capacitance Microscopy,SCM)是一种用于测量和成像样品表面的电容变化的扫描探针显微镜。SCM能够通过探针与样品表面之间的电容变化,提供高分辨率的局部电学特性图像。这种显微镜适用于研究半导体材料和器件的电学特性,如掺杂浓度分布、电荷分布和界面特性等。SCM在半导体工艺和材料研究、故障分析以及器件优化中发挥着重要作用。通过SCM,研究人员能够获得纳米尺度的电学特性信息,从而推动半导体技术的发展和创新。SCM原理示意图 [5]SCM应用SCM主要应用于半导体材料和器件的研究,广泛应用于电子学和材料科学领域。具体应用包括:掺杂分布:测量和成像半导体材料中的掺杂浓度分布。电荷分布:研究半导体器件中的电荷分布和电场。材料特性:分析不同材料的电容特性和介电常数。06致真精密仪器自主研发的原子力显微镜科研级原子力显微镜AtomEdge产品介绍利用微悬臂探针结构对导体、半导体、绝缘品等固体材料进行三维样貌表征,纵向噪音水平低至0.03 nm(开环),可实现样品表面单个原子层结构形貌图像绘制。可以测量表面的弹性、塑性、硬度、黏着力、磁性、电极化等性质,还可以在真空,大气或溶液下工作,在材料研究中获得了广泛的使用。设备亮点● 多种工作模式● 适配环境:空气、液相● 多功能配置● 稳定性强● 可拓展性良好典型案例晶圆级原子力显微镜Wafer Mapper-M产品介绍利用微悬臂探针结构可对导体、半导体、绝缘品等固体材料进行三维样貌表征。样品台兼容12寸晶圆,电动样品定位台与光学图像相结合,可在300X300mm区域实现1μm的定位精度,激光对准,探针逼近和扫描参数调整完全自动化操作。可用于产线,对晶圆粗糙度进行精密测试。设备亮点● 多种工作模式● 适配环境:空气、液相● 可旋转式扫描头● 多功能配置● 稳定性强、可拓展性良好典型案例参考文献:[1]Li S, Du A, Wang Y, et al. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature[J]. Science Bulletin, 2022, 67(7): 691-699.[2]Kalinin SV, Gruverman A, eds. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Springer 2007.[3] https://www.afmworkshop.com/products/modes/electric-force-microscopy[4] https://www.ornl.gov/content/electrostatic-and-kelvin-probe-force-microscopy[5] Abdollahi A, Domingo N, Arias I, et al. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials[J]. Nature communications, 2019, 10(1): 1266.本文由致真精密仪器原创,转载请标明出处致真精密仪器拥有强大的自主研发和创新能力,产品稳定精良,多次助力中国科研工作者取得高水平科研成果。我们希望与更多优秀科研工作者合作,持续提供更加专业的技术服务和完善的行业解决方案!欢迎联系我们!致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代。通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。另外,我们可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 北京离子探针中心离子探针质谱仪器研发进入攻坚阶段
    2010年1月16-17日,由北京离子探针中心主办的“2009北京SHRIMP成果报告会”在京隆重举行。中国科学院多位院士、政府相关部门负责人以及来自全国各地的地学界同仁等约100人出席了开幕式。自2002年起,一年一度的“北京SHRIMP成果交流会”已经成为中国地学界同仁们进行学术交流、展示成果的一个重要平台,其在学界的地位得到了业内人士越来越高的重视。   2010年1月16-17日的“2009北京SHRIMP成果报告会”开幕式上,“中心”主任刘敦一研究员向与会领导及来宾总结汇报了“中心”2009年度的主要工作进展 ,其中他也谈到了北京离子探针中心自主研发离子探针质谱类大型科学仪器的相关情况:   目前,在科技部和财政部的支持下,该项建议已在“十一五”国家科技支撑计划重大项目《科学仪器设备研制与开发》中立项,其中《二次离子质谱仪器核心技术及关键部件的研究与开发》子项目由北京离子探针中心牵头负责并开始实施。在各协作单位的共同努力下,课题的各项研究工作进展顺利,对主要关键技术的攻关有了突破进展;完成了TOF-SIMS和Trap-TOF的整机设计、气体离子源的整体设计,加工了部分关键部件;液体金属源创新研究顺利进行,样品台三维微聚焦系统完成了方案设计及关键部件选型;离子光学系统、二次离子源及质谱接口完成了理论模拟、方案设计及优化;TOF专用高速数字转换器(ADC)已完成方案设计,实现了部分电路子系统;实现了飞行时间质谱模块和模拟电路系统模块、数字测控模块及软件系统模块;搭建了离子阱离子反应器实验装置,完成了角反射式TOF系统的设计及关键器件的研制。   而据“中心”近期透露,仪器研发项目的最新进展是:已经进入攻坚阶段,并已显示出中心在技术创新方面具有雄厚的基础和发展前景。
  • 普瑞纯证获超亿元B轮融资,探针资本担任独家财务顾问
    普瑞纯证医疗科技(广州)有限公司(以下简称“普瑞纯证”)近日宣布完成由君联资本领投,老股东康君资本跟投的超亿元人民币B轮融资。探针资本担任独家财务顾问。据悉,本轮资金将主要用于海外医疗器械资源的布局、专业人才团队扩充、医疗器械领域的战略拓展,以及大数据信息化平台的升级迭代。普瑞纯证成立于2020年6月,作为一家行业领先的全球化SaaS+Data生命科学服务商,立足于打通全球市场的医疗器械出海全流程信息化,帮助医疗器械、体外诊断、医疗软件AI等产品提供全球市场合规准入的全流程咨询服务,涵盖器械法规咨询,当地授权代表,产品认证注册,海外临床试验,技术文档与体系辅导,产品检测等全流程服务。普瑞纯证发展路程秉持着“助力国产医疗器械出口,让中国产品走向世界”的初心,潜心耕耘数年的普瑞纯证在最近这两年的各个重要时刻大放光彩——- 2021年11月,普瑞纯证创始人孟竹女士入选“2021年度吴中区东吴创新创业领军人才计划”;- 2021年11月,普瑞纯证荣获中国创新创业大赛(广州赛区)新一代信息技术行业初创组的优胜奖;- 2022年1月,普瑞纯证获得康君资本领投,探针新医疗基金跟投的数千万元A轮融资;- 2022年2月,欧美实验室的搭建,丰富了普瑞的海外临床资源;- 2022年3月,大数据信息化平台的AI Builder、Scheduler功能模块正式上线;- 2022年3月,大数据信息化平台的临床数据库正式上线;- 2022年5月,截止至IVDD时代的落幕, 普瑞协助获得近百张CE证书,数千个欧盟产品注册,成为全球斩获List A最多的CRO;- 2022年6月,普瑞纯证获得第六届未来医疗100强大会“蔚澜奖2022年度创业新锐”奖;- 2022年7月,普瑞纯证创始人孟竹女士入选“2022年度姑苏创新创业领军人才计划”;- 2022年7月,普瑞纯证上榜“2022年《财富》中国最具社会影响力创业公司”;- 2022年8月,普瑞纯证荣获“2022年数字中国创新大赛数字医疗赛道创业大赛全国二等奖”;- 2022年8月,普瑞纯证广州总部乔迁至广州国际生物岛;- 2022年9月,大数据信息化平台的生物样本库正式上线;- 2022年9月,普瑞纯证在2022中国医疗器械出海大会上正式推出【国内医疗器械企业出海指数TOP100主榜单】以及【国内医疗器械细分领域出海指数榜单】;……自2020年建立以来,普瑞纯证起于毫末,渐成合抱之木,成长为现如今首家互联网+全球医疗器械合规资质一站式服务商、行业领先的全球化SaaS+Data生命科学服务商。In China For Global依托法规认证与临床经验丰富的全球顶尖专家服务团队,普瑞纯证为医疗器械、体外诊断、医疗软件 AI 等产品提供全球市场合规准入的全流程咨询服务和海外临床试验等一站式解决方案。国际化的团队让普瑞纯证深切地了解欧美各国的法规政策,能够以专业的知识和一流的反应速度帮助客户寻求方案的最优解,以最快的速度打入海外市场。公司服务网络已遍布美国、德国、意大利、西班牙、瑞士、波兰等全球10个国家和地区,拥有8大分公司13所分部。已与超过100家国内外医疗和生物科技企业开展业务合作,并得到了业内的广泛认可。普瑞拥有业内稀缺的临床资源,其位于欧洲和美国的海外临床中心具备CLIA, CAP,ISO 17025等资质。此外,通过多年耕耘,普瑞已拥有1000+ 海外注册/认证成功案例,其中包括上百个英国药监机构(MHRA)认证,沙特、泰国、哥伦比亚等多个国家医疗注册认证。在这1000多个案例中,有超半百例为海外临床获证案例,包括美国EUA应急成功案例、海外临床医疗器械认证成功案例及欧盟通用白名单获证案例。普瑞自主研发了以大数据、人工智能技术等新一代信息技术加持的大数据信息化平台,这一平台可为广大用户提供100+国家准入,60万+ 全球经销商大数据,100万+ 全球临床试验数据,300万+ 全球医械注册数据库。从产品研发、市场战略数据到法规咨询,助力中国医械企业破浪前行,全方位顺利合规走向全球市场。对于本次融资,普瑞纯证创始人孟竹表示:“普瑞纯证的初心是助力中国医械企业出海,扩展海外临床资源,普瑞纯证目前已拥有10大临床中心,打造⼀站式、全链服务生态。我们通过在计算机技术和大数据领域的经验积累,运用新一代信息技术赋能医疗创新,致力于建立标准化、数字化的医械出海系统。普瑞纯证专业的多国医疗器械市场准入咨询服务和优质的海外临床资源,可以满足国内医械企业对多国、多品类的跨境注册CRO需求。普瑞纯证的发展离不开新老股东和客户伙伴的大力支持,普瑞纯证的全球法规智能平台将在本轮融资后继续完成迭代升级,给予企业产品贸易分析、海外经销商网络、临床趋势研究等数据服务,助力医疗器械企业产品出海。”君联资本董事总经理周瑔表示:“出海已成为中国医疗器械企业的发展共识,但也面临着一系列的困难和挑战,痛点主要集中在海外准入和营销两个环节。随着全球器械法规不断趋严,企业独立自主完成海外准入的难度大、费用高、周期长、效率低、成功率低,非常需要专注于出海的CRO协助。而传统的专家式的CRO服务难以满足高度分散的下游器械企业对产品出海的多元化需求,CRO企业自身的规模效应和盈利能力也遭遇瓶颈。普瑞纯证凭借丰富的海外临床资源,以及数据和算法驱动的新型数字化CRO服务,成功实现了跨国家地区、跨科室、跨品类的CRO能力,同时具有显著的降本增效优势,有望打破传统器械CRO的瓶颈,在器械CRO行业带来颠覆性变革。”康君资本合伙人戴奕人表示:“普瑞纯证通过数据技术提高医疗器械注册、临床服务的效率和标准化水平,致力于打造面向多国、多品类的注册需求,涵盖研发注册策略、注册申报、海外临床、商业数据等系列业务的商业闭环,在医疗器械跨境注册领域具备了一定的影响力。康君资本作为普瑞纯证的A轮投资方,已经见证了普瑞纯证在业务规模、海外资源、人才梯队等方面的快速成长,未来希望继续与普瑞纯证共同努力,为医疗器械产品跨境注册并实现商业化提供优质服务。”探针资本合伙人严晶晶表示:“普瑞纯证具有数据技术和全球法规的双重基因,通过自研SaaS平台整合全球法规大数据极大简化了法规注册流程,并通过全球化组织能力为国内医疗器械提供出海全流程服务。在当下全球医疗卫生需求增长的情况下,普瑞纯证迅速的响应能力已帮助国内数百家医疗器械厂家完成海外布局,率先抢占全球市场。2021年探针资本利用自有的产业数据分析系统“神农一号”挖掘到普瑞纯证所处的赛道正在快速变化和增长。其后12个月内,探针资本先后帮助公司顺利完成了两轮融资,并由探针新医疗基金对普瑞纯证进行了投资。我们希望在普瑞全面的服务下,将有更多优秀的中国医疗器械产品进入国际化市场。”关于君联资本君联资本成立于2001年4月,是联想控股旗下专注于早期风险投资及成长期私募股权投资的基金管理公司。在二十年的发展历程中,君联资本遵循国际通行标准,创造基金运营及管理的最佳实践,已具备完整的基金运营及管理经验,在投资全链条构建生态化合作网络。君联资本通过积极主动的增值服务体系,推动企业创新成长,在多个投资领域持续创造良好投资回报的同时,推动中国的产业进步和社会发展。君联资本以“成为一家具有国际影响力的投资公司”为愿景,秉承“富而有道”的核心价值观,积极践行社会责任。关于康君资本康君资本成立于2019年,依托康龙化成(股票代码:300759.SZ/3759.HK)的产业背景,专注于生物医药领域的股权投资。康君资本团队通过独特的产业视角,利用丰富的产业、科研、管理及资本市场经验进行全球化投资,重点关注全球领先的生物医药研发服务及技术创新平台、生物科技公司、医疗器械公司等。康君资本致力于成为生命科学、健康产业和资本的纽带及可信赖的长期合作伙伴。关于探针资本探针资本成立于2017年,是一家专注医疗健康与生命科技的精品投行,旗下业务包括财务顾问、直接投资、产业咨询和创新孵化。创始团队来自业内一线私募股权投资机构、财务顾问机构、管理咨询公司和医疗垂直媒体。自成立以来,探针资本每年均完成两位数的私募融资与并购交易,累计交易金额超百亿元人民币。在企业增值服务方面,探针资本团队也拥有成熟的产业经验。2020年探针新医疗基金成立,目前已投资十余家业内头部公司。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制