当前位置: 仪器信息网 > 行业主题 > >

生物成像

仪器信息网生物成像专题为您整合生物成像相关的最新文章,在生物成像专题,您不仅可以免费浏览生物成像的资讯, 同时您还可以浏览生物成像的相关资料、解决方案,参与社区生物成像话题讨论。

生物成像相关的仪器

  • 活体成像仪 400-860-8560
    UVP Biospectrum Advanced 900活体成像仪随着科研的深入,生命科学的研究已经发展到在体研究的阶段,德国耶拿公司UVP Biospectrum Advanced 900活体成像仪是一款兼容生物发光和荧光多重成像的非侵入性活体成像仪。生物发光方面,该仪器使用了一个-100度深度制冷的背照式CCD,配合超大光圈的定焦镜头,不仅能实现灵敏度的信号采集,而且将噪音水平控制到极低的水平,从而实现高灵敏度的生物发光检测。荧光成像方面,高强激光光源可以实现从紫外到近红外的全光谱荧光成像,带宽更窄,激光光强更强,既兼容了所有的荧光成像应用,又可以通过近红外降低样品背景,进一步提升了成像效果。 该仪器既可以用于动物活体成像,亦可以用于植物活体成像,模块化设计,及各种配件可以实现生物学、医学、环境生物学等多个领域的各种成像应用扩展,比如高分子材料、纳米靶向材料成像、WB成像等。可以根据客户需求定制化滤光片,匹配个性化的需要。温控板可以让小鼠保持正常生理体温,小鼠成像时的状态与正常生理状态一致,确保结果的准确性。软件使用方便,对于需要多次成像的试验,可通过预设模板的方法进行一键成像。在线气体麻醉系统可以实现在线麻醉,防止体外麻醉对小鼠带来损伤。一次可同时进行多达10只小鼠的成像。软件符合21CFR Part11,可以实现对数据追踪溯源,保证数据的真实性。应用方向:癌症与抗癌药物研究 ,免疫学与干细胞研究 ,细胞凋零 ,病理机制及病毒研究 ,基因表达和蛋白质之间相互作用 ,转基因动物模型构建 ,药效评估 ,药物甄选与预临床检验 ,药物配方与剂量管理 ,肿瘤学应用 ,生物光子学检测 ,食品监督与环境监督等。
    留言咨询
  • 活细胞成像系统 400-860-5168转1222
    细胞培养过程中,常需要使用显微镜进行观察,对细胞生长状况、融合度等及时进行评估。传统的观察方式需要从培养箱中取出细胞,暴露在非培养环境中进行观察,环境骤变容易影响细胞生长,并增加污染风险。活细胞成像培养系统内部集成活细胞成像仪,通过外接PC可对细胞培养状况进行实时观察,同时支持多种培养容器,操作简便。可量化的活细胞成像和分析平台,可通过远程监控细胞生长,获取细胞量化培养数据。通过用户自定义管理,系统定期对细胞进行扫描,计算细胞数量,并确定融合度。细胞生长数据自动保存至云端,因此实验人员无需进入洁净间,即可随时监测细胞状态。产品特点 同侧成像,适配多种培养容器—反射照明成像,无容器高度限制,可放置各种培养瓶,平皿及细胞工厂;易清洁消毒,避免微生物污染—系统无消毒死角,表面经特殊处理耐受过氧化氢消毒;封闭操作,减少环境干扰—系统长期放置在培养箱内直接观察细胞,避免温度骤变、培养基扰动和污染等问题造成的风险;无标记成像,降低细胞损伤—无需对细胞进行染色,直接获取细胞状态;自动化计数,确保数据一致性—基于AI算法计数细胞数量及融合度,降低人员主观因素差异;区域扫描,细胞全面分析—提供标准孔板及自定义模块的区域扫描,可实现多点采样 远程监控,实时观察细胞—基于云端服务器的远程监控,便于细胞观察。
    留言咨询
  • Coastal Ocean Vision公司生产的水下浮游生物连续彩色成像及分类系统(CPICS)是先进的水下显微成像仪器,用于海水、淡水和实验室样品中微小的浮游植物和浮游动物及其他颗粒物的连续彩色成像及分类。CPICS采用先进的暗场显微成像技术(DarkfieldIllumination),可以捕捉浮游生物特征小至40μm,大至1.2cm。科学界发现,彩色图像是对生物进行高准确度分类的关键,同时也提供了重要的生理信息,比如因吃了某种浮游植物而留存在体内的色素。CPICS具备开放的视野,在水下直接成像,水中生物处于自由游动的状态,所以能够完整的捕捉到浮游动物的细微的生体结构及原始的生活状态,比如捕食过程。CPICS获取的ROIsCPICS应用:1.扫描浮游动物、浮游植物、微小颗粒物;2.连续彩色成像、自动分类、计数、时间序列丰度分析;3.海洋、湖泊、河流、水库、饮用水源;4.可安装于:剖面仪、多瓶采水器、海底观测网、浮标、潜标、变水层拖体、AUV、ROV、载人潜水器、深海Lander;5.科学研究、环境监测。CPICS主要特点:1、先进的成像技术:CPICS采用先进的暗场显微成像技术(DarkfieldIllumination),与传统的明场成像和全息成像相比,可生成更高对比度、更高分辨率的彩色图像;2、高性能光源:CPICS配备高输出、高寿命的LED环形阵列,对聚焦区域进行完全照明,不会产生任何阴影;3、高性能镜头:CPICS配备的是远心镜头,可在全景深范围(DOF)内保持恒定的放大倍率,并对聚焦采样体积(FOV视野)内所有生物体进行拍照;4、CPICS具有高达1.5L的开放式流动区域,在水下直接成像,无需像实验室仪器或流式细胞仪那样将水样抽到仪器内部进行拍照,不破坏水中生物的自由游动状态,所以能够完整的捕捉到浮游动物的细微的生体结构及原始的生活状态;5、自动化程度高: CPICS内置高性能图像处理器及大容量存储器,可现场对ROI进行自动提取、处理并保存。此外,CPICS带有WiFi功能,无需打开仪器外壳,即可以通过电脑直接连接WiFi,对CPICS进行各种参数的设置;6、灵活性高:多种配置及放大倍率的镜头可供用户选择,以便对感兴趣尺寸大小的浮游生物进行高质量的成像拍照。比如:超微型、微型、小型、中型或大型浮游生物;7、适用海域广:不但适用于水质较清水域,还可以用于高浊度水体(大于100NTU);8、使用范围广:不但可用于海底观测网进行定点长期观测,还可用于CTD,拖体,锚系,剖面测量或者搭载到无人潜水器(ROV,AUV,Glider等);9、基于浏览器的分类软件:ROI-Manage手动和ROI-Class自动分类软件运行在美国COV厂家的服务器上,特征提取和分类解码程序可以自动更新,免除了用户大量的维护工作。只要用户能够上网,就可以通过浏览器来登陆分类软件进行分类和数据显示;10、CPICS的另一个优势是:对浮游生物和颗粒物进行自动分类,结合我们提供的OceanCube海底多传感器平台上的其他传感器和ROI-CLASS分析软件,CPICS能让科学家更好的观察并了解水生生物的生态和生理,比如不同的浮游生物种类在不同的环境参数影响(水温、深度、盐度、光照、溶解氧等)下的空间分布,以及随时间而变化。CPICS案列图片安装在海底观测网平台上的CPICS(通过光纤远程控制,图像数据实时传输到岸上)CPICS安装在HabCam V5水下拖曳式立体成像扫描系统中CPICS获得的图像分类示例图像11个分类类别:a海雪,b束毛藻属,c硅藻类,d放射虫,e有孔虫,f挠足类,g等足类,h刺胞动物,其它浮游动物(i成年海星,j毛鳄类动物),k糖虾,l鱼类。尺寸条代表500μm,j、k和l代表1000μm。
    留言咨询
  • DW-3系列生物显微成像测量系统产品简介: DW-3系列生物显微成像测量系统由DW-100型三目生物显微镜、DW-3型高清晰彩色数字摄像头和DW-3型显微成像分析软件组成。DW-100型三目生物显微镜采用了最先进的光学设计,DCIS无限远光学系统,超大而平坦的视场,从而得到卓越的光学成像质质量。 该系统广泛应用于医疗卫生机构实验室、研究所及高等院校等单位作细菌学观察、教学和研究、临床实验及常规医疗检验之用。 产品优势:1. 高清晰彩色数字成像。2. 轻松完成数字图像获取和存储。3. 提供了科学级的无损格式图像输出。4. 可帮助用户轻松完成生物显微图像的获取、图像存储、图像编辑、图像处理和各种图像测量应用。 DW-3-CMOS型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CMOS数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT4. 三目生物显微镜:光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm目镜:高眼点大视野平场目镜,WF10X/18mm物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)转换器:内倾式4孔转换器载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,调焦越清晰;粗动松紧可调,14mm/转。安全设计:工作台上限位安全装置,最大行程20mm照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调5. 500万像素科学级CMOS数字摄像头光学界面: 1/2.5英寸,C型成像接口分辨率: 2560 * 1944,色深12bit,500万像素 像素尺寸:3.4μm * 3.4μm 光谱响应:400nm~1000nm帧频率:5fps@2592x1944,16fps@1024x7686. 仪器配置:三目生物显微镜 1台 三目成像接头 1个500万像素科学级CMOS数字摄像头 1台 显微成像分析软件 1套 DW-3-CCD型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CCD数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT4. 三目生物显微镜:光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm目镜:高眼点大视野平场目镜,WF10X/18mm物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)转换器:内倾式4孔转换器载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,调焦越清晰;粗动松紧可调,14mm/转。安全设计:工作台上限位安全装置,最大行程20mm照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调5. 500万像素科学级CCD数字摄像头光学界面: 2/3英寸,C型成像接口 传感器:Sony ICX282 CCD,彩色 分辨率: 2560 * 1944, 500万像素 像素尺寸:3.4μm * 3.4μm 像素混合模式: 2*2,3*3或4*4 ,彩色 曝光控制: 1.6毫秒到17.9分钟,1微秒递增 制冷类型: 热电制冷(Peltier cooling)至环境温度以下10度 实时预览: 全幅实时预览速度25幅/秒 帧频率:10fps@1280X768;30fps@320X2406. 仪器配置三目生物显微镜 1台 三目成像接头 1个500万像素科学级CCD数字摄像头 1台 显微成像分析软件 1套
    留言咨询
  • 高通量成像 、高度可重复性 样品辅助摆位--用于斑马鱼固定方向的成像 X,Y,Z 三维快速成像 可选配6通道LED 激发光源 精确控制样品位置、光源和环境模式生物高内涵成像筛选系统是专门为斑马鱼、果蝇等非完全静止的小型模式生物而设计的高效成像设备,该系统包括一个固定的样品室和移动的光学单元,能够避免样品的扰动、剪切应力等外界环境因素的影响。能够添加多达6个通道的LED激光和白光光源,对样本进行快速的明场和荧光成。 该筛选系统特别增加了温度和气体控制系统(选配),能够使模式生物在生存环境下进行拍摄,并保证充足的氧气,保证样本活性。温度控制范围从低于环境温度到40°C,循环制冷和加热系统,保证样品室内各点温度一致,最大化的降低温差。 标准化的硬件配置使您可以轻松地在多获得高度重复性的图像数据,而无需频繁的校准。我们的模式生物高内涵成像系统允许对多种大粒径模式生物及细胞样本进行成像,包括:• 斑马鱼• 果蝇• 酵母• 干细胞• 单层细胞• 类球体• 多细胞类器官 设备的主要技术参数硬件设计• 无摩擦电机技术提供最大的移动精度和可靠性• XY轴光学元件移动分辨率≈1 nm 编码器绝对分辨率:±1 μm• 精准的Z轴聚焦,移动范围 30 mm,成像分辨率 80 nm 整合台式系统• 非手动式操作,避免操作误差• 通过ACQUIFER成像应用程序完全控制所有操作,操作界面友好,操作简便 高级硬件控制系统• 嵌入实时控制器系统,确保设备无滞后运行,以很好性能优化开展实验 物 镜• 最多可从以下物镜中选择4个 激光器• 可选择多达6种通道的LED激光光源• 使用寿命:16000 h,在温度稳定的环境下具有光谱稳定性 专利的自动对焦技术• 软件自动对焦• 红外硬件自动对焦• 酵母实验的用户自定义对焦 成像个性化策略• 针对敏感样本配备了最佳的光学成像条件• 为不具有粘附性的生物个体提供了一个稳定的成像平台,不会因设备的移动而造成样本的损伤可选配孵育控制系统,可对成像平台的环境温度(20 - 40°C) ±0.2°C 进行长时程的精准控制 ACQUIFER 远程桌面远程桌面 (LoQin)• 可远程访问用户界面来设置和控制实验• 可远程通过开源软件和第三方软件进行设备控制更多资料,敬请来电咨询。请关注玉研仪器的更多相关产品。 如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 手持式皮肤生物细胞成像仪手持式皮肤生物细胞成像仪是一款移动式微型化双光子显微成像系统,经设计用于皮肤生物细胞显微成像。双光子显微成像系统是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。生物组织中含有很多内源荧光团,分布于皮肤组织的NAD(P)H,FAD,胶原蛋白,弹性蛋白,黑色素等皮肤组分中,在适当的飞秒激光激发下可产生稳定的双光子荧光信号。此外,飞秒激光还会引起皮肤组织中的非对称结构产生二次谐波信号,因此通过合理设置收集通道的滤光片,即可在同一台光学显微镜下,同时获得双光子自发荧光图像和二次谐波图像,实现双模态信号检测。这种方法在皮肤衰老检测,皮肤疾病检测方面有着巨大的应用潜力。基于双光子显微成像原理,本产品根据预期用途实现了对体表上皮细胞及组织的自发荧光成像和二次谐波成像。双光子自发荧光(2PEF)指基态荧光分子或原子吸收两个光子激发至激发态,然后恢复到基态并发出荧光的过程。荧光分子先吸收一个光子后,将跃迁至一个虚态,需要第二个光子在几飞秒内与处于虚态的荧光分子作用,荧光分子才能从虚态跃迁到激发态。自发荧光物质是指生物细胞与组织内固有的荧光物质。当被合适波长的光激发时,一些细胞和组织的内容物能够发出稳定的荧光信号,它们也因此被称为内源荧光团。二次谐波成像(SHG)是一种非线性的光学过程,在此过程中,两个相同频率光子与非对称介质发生相互作用,将其从基态激发至虚态。在从虚态恢复到基态的过程中,释放频率增倍、波长减半的光子。由于其可将物质自发激发至虚态的特性,二次谐波成像不需要荧光标记,因此不会受到光漂白或光毒性的影响。手持式双光子皮肤生物细胞成像仪基本参数轴向分辨率≤2μm水平分辨率 ≤0.65μm脉冲宽度≤200fs激发光重复频率80mHz±10激发光中心波长780±10μm激发光输出功率50mW±10%扫描视场≥125μm x 125μm成像深度≥200μm图像分辨率512x512像素成像速度≥8帧/秒手持式双光子皮肤生物细胞成像仪特点手持式亚微米级皮肤生物细胞显微成像系统,2.2g超轻显微探头,实现便捷检测;特种超柔光纤,信号无损传输;飞秒脉冲激光器,高效、安全激发;航天级系统,快速采集,实时成像。细胞、弹性纤维、胶原纤维、代谢信息直观可见。安全可靠,简单便携,为您提供在体、原位、无创、无标记的微纳米级显微成像。在皮肤检测领域的应用化妆品评价应用方向化妆品人体功效评价化妆品人体功效开发评价化妆品成分作用机理的研究与探索医美功效评价应用方向激光美容功效评价人体细胞活性检测人体皮肤弹性纤维可视化、量化评估人体皮肤弹性胶原可视化、量化评估皮肤实际年龄检测医疗应用方向皮肤科皮肤疾病辅助诊断内分泌科糖尿病AGEs检测研究肾病血液透析中心个性化透析方案探索与研究烧伤整形皮肤移植活性实时评价人工皮肤状态评估应用实例1.化妆品人体功效评价检测角质层表面形态上图:使用产品28天后,皮肤角质层表层形态趋于平整(角质层可见空洞减少,角质层形成细胞排列趋于均匀),上皮表层逐渐增厚(上图虚线为真表皮交界处)。2.微针创伤检测利用医美微针压刺手臂皮肤之后,用皮肤双光子检测微针窗口上图:角质层存在明显的不规则创口;网状纤维层对应位置出现无信号区,说明微针刺穿了基底层。3.敏感皮肤状态检测对敏感皮肤的红敏区和正常区进行观测检查上图:在红敏区颗粒层、棘层所有细胞均发现细胞核周围“环状”荧光聚集;对照区仅颗粒层顶层细胞散发细胞核周环状荧光聚集更多详情欢迎直接联系昊量光电更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 产品简介: DW-3系列生物显微成像测量系统由DW-100型三目生物显微镜、DW-3型高清晰彩色数字摄像头和DW-3型显微成像分析软件组成。DW-100型三目生物显微镜采用了最先进的光学设计,DCIS无限远光学系统,超大而平坦的视场,从而得到卓越的光学成像质质量。 该系统广泛应用于医疗卫生机构实验室、研究所及高等院校等单位作细菌学观察、教学和研究、临床实验及常规医疗检验之用。 产品优势:1. 高清晰彩色数字成像。2. 轻松完成数字图像获取和存储。3. 提供了科学级的无损格式图像输出。4. 可帮助用户轻松完成生物显微图像的获取、图像存储、图像编辑、图像处理和各种图像测量应用。 DW-3-CMOS型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CMOS数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT 三目生物显微镜:1、光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。2、观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm3、目镜:高眼点大视野平场目镜,WF10X/18mm4、物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)5、转换器:内倾式4孔转换器6、载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm7、聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置8、调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,9、调焦越清晰;粗动松紧可调,14mm/转。10、安全设计:工作台上限位安全装置,最大行程20mm11、照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调12、500万像素科学级CMOS数字摄像头12.1光学界面: 1/2.5英寸,C型成像接口12.2分辨率: 2560 * 1944,色深12bit,500万像素 12.3像素尺寸:3.4μm * 3.4μm 12.4光谱响应:400nm~1000nm12.5帧频率:5fps@2592x1944,16fps@1024x76813、仪器配置:13.1三目生物显微镜 1台 13.2三目成像接头 1个13.3 500万像素科学级CMOS数字摄像头 1台 13.4显微成像分析软件 1套 DW-3-CCD型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CCD数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT 三目生物显微镜:1、光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。2、观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm3、目镜:高眼点大视野平场目镜,WF10X/18mm4、物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)5、转换器:内倾式4孔转换器6、载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm7、聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置8、调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,9、调焦越清晰;粗动松紧可调,14mm/转。10、安全设计:工作台上限位安全装置,最大行程20mm11、照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调12、500万像素科学级CCD数字摄像头12.1光学界面: 2/3英寸,C型成像接口 12.2传感器:Sony ICX282 CCD,彩色 12.3分辨率: 2560 * 1944,,500万像素 12.4像素尺寸:3.4μm * 3.4μm 12.5像素混合模式: 2*2,3*3或4*4 ,彩色 12.6曝光控制: 1.6毫秒到17.9分钟,1微秒递增 12.7制冷类型: 热电制冷(Peltier cooling)至环境温度以下10度 12.8实时预览: 全幅实时预览速度25幅/秒 12.9帧频率:10fps@1280X768;30fps@320X240 13、仪器配置三目生物显微镜 1台 三目成像接头 1个500万像素科学级CCD数字摄像头 1台 显微成像分析软件 1套
    留言咨询
  • ABM 自动生物荧光成像系统 ABM(Automatic biological microscope)是韩国Nanoscope Systems 开发的一种全自动荧光显微镜,以传统倒置显微镜构造。 通过目镜可以进行视觉观察,并且通过将摄像机安装在侧面端口上,可以通过监视器显示并保存所有观察图像。 自动样品台,自动聚焦和自动转塔数字控制系统可实现对自动显微镜图像数据采集的高效管理。 Features & Benefits(性能及优势): 卓越的图像质量ABM具有精选和优化的光学组件,高灵敏度检测器和高性能的电脑组件确保出色的图片质量。 紧凑模块尺寸通过简单直观的软件控制界面,即使是初学者也可以简单地操作系统简单操作软件通过专用软件简单直观的用户界面控制共聚焦显微镜 性价比通过自有技术以及丰富的设计经验使得我们可以为客户提供高性价比的产品 完全可定制的模块光学团队、电子团队和机械师团队随时为您提供每一个可定制的光学方案。我们很乐意支持每位客户的第一阶段研究和原型设计提供支持Software(软件):ABM控制测量软件拥有Auto Focus , Video , Automatic Well Plate Scanning ,Time lapse , SNAP(2D 荧光图像测量),Stitching(图像拼接), Z STACK(3D 荧光图像构建)多种功能。SNAP 拥有single point SNAP 和Multi point SNAP可供选择, Z STACK有三种测量方法可供选择:Top/bottom, Center/Range, Upper/Lower Reconstructed 3D image of cell nuclei and cytoplasm by 3D deconvolution algorithmAutomated Well Plate Scanning(自动孔板扫描)进行Well Plate 扫描时,需预先选择标准Well Plate的类型,根据所选的Well Plate类型软件会自动生成每一个Well Plate孔的坐标,点击每一个坐标,物镜将会自动移动到对应孔的位置。Stitching(拼接):对设定的区域执行Stitching, 为样品的大范围成像提供了便利。 用户可对Stitching后的图像进行整体分析。 Stitched image of a single well
    留言咨询
  • Atik Cameras ACIS系列科学相机,应用于生物荧光,基因测序,细胞成像,脑神经研究计划等应用The compact form factor combined with optimised cooling performance of Sony’s CMOS IMX428, 7.1MP sensor makes this camera ideal for scientific imaging. Due to the premium design of the ACIS 7.1 from our in-house R&D team, the camera features low read out noise electronics and high quantum efficiency, and will provide reliable imaging performance ideally suited to applications where a wide field of view is required as a result of low light conditions. The anodised case is specifically designed for maximum EMC performance in an imaging system environment北京领宇天际科技有限责任公司将提供Atik Cameras中国地区技术支持和售后服务010-61406740.更多Atik Cameras科学相机供您选择:
    留言咨询
  • 创新性的QuanlMAGE带来质谱成像的突破 成像速度快——成像速率300像素/秒,能更快得到成像结果分辨率高——空间分辨率优于10μm,能得到质量更好的图像重现性好——仪器硬件的创新性结合,能得到重现性更好的图像QuanTOF Ⅰ型和QuanTOF Ⅱ型仪器特点:高频率半导体激光器(5,000Hz),提高了质谱成像速度;激光光斑5~10μm可调(定制化可达1μm),实现空间分辨率优于10μm 靶板电场接地专利技术使质谱成像重现性更高;高频数据采集技术,使数据采集速率可达300 pixels/second 可对宽质量范围内的特定分子进行可视化位置确定;速度和空间同时聚焦技术,使线性模式在宽谱间达到高质量分辨率;前处理简单,无需任何标记物。 配套设备:冷冻切片机基质喷涂仪 聚集多种质谱技术,是创新性质谱影像系统 硬件系统一一提高影像分辨率高效数据分析和管理软件QuanIMAGE,可以对质谱得到的实验数据进行分类、优化和处理,来进行成像。强大的数据分析和图像处理软件平台,可以对成像图任意区域进行分析和比对。 质谱成像一肿瘤靶向用药位点定位 无需标记,可视化观察药物在组织中的分布情况 药物的组织分布信息对药物研发等环节具有重要作用,包括:药理、药代动力学、安全性评价、药物间相互作用以及药物的转运与代谢等。准确地了解药物在组织中的空间分布信息对药物研发非常重要,特别是对抗肿瘤药物等靶向性要求较高的药物。目前研究方法有:整体放射自显影和LC-MS联用技术,但都存在着同位素标记类似物耗时、费力、实用性差或者空间分布信息的缺失等问题。 质谱分子成像,无需任何标记;多点检测,不局限于特异的一种或者几种分子,同时对一些靶向和非靶向物质进行成像分析。因此,不仅可同时获取组织切片中多种分子的空间分布信息,还可以保持药物在组织上的空间分布特征,还可区分原药和药物代谢物,因此在新药研发中具有重要的应用价值。某药物注入小鼠脑部,对切片进行成像分析 将某药物注入小鼠脑部,做冷冻切片.空间分辨率10μm实验条件进行质谱成像,在特定的位置实现了药物( m/z 499)的可视化。 质谱成像——细胞分型单细胞水平蛋白标志物MALDI-TOF质谱成像 近年来,随着技术手段的提高,MALDI-TOF质谱成像的空间分辨率已经达到了单细胞水平,因而也开始被用于单细胞分析研究。通过免疫荧光标记检测仅可以看到胰岛素,而通过质谱成像选区不同种类蛋白可达到区分不同细胞目的。 上面案例展示了质谱成像在细胞分型方面有巨大潜力。肿瘤的发展是基于单个肿瘤细胞的自体扩增、随机突变以及自我筛选形成相对独立的亚群,这些亚群之间又互相影响成为密不可分的整体。运用质谱成像对肿瘤单细胞进行分型研究,提高了科研工作者对肿瘤细胞异质性和患者个体性的认识,揭示在整个肿瘤生态体系中,肿瘤细胞个体如何感知、回应并适应肿瘤微环境的,并且肿瘤细胞个体的异质性又是如何出现并最终影响肿瘤整体的命运发展。 质谱成像——肿瘤标志物肿瘤蛋白标志物MALDI-TOF质谱成像 作为个体化医疗的关键词之一,肿瘤标志物相关研究方兴未艾.质谱成像技术诞生,为发现肿瘤标志物的组织特异性提供了不可替代的技术手段。 QuanIMAGE系统可以同时提供高空间分辨率和高成像速度,为准确捕捉标志物提供了重要保障。癌变组织成像标志物分析初探通过HE染色技术可以看到癌变组织与间质差异,而通过癌变与间质质谱成像图谱比较证实了差异峰存在。 胃癌组织成像标志物分析初探 一机多用QuanGHb糖化血红蛋白定量质谱系统可定量 糖化血红蛋白定量检测,同时可检测变异血红蛋白效率高 一次可达96、 384等通量;一个样本30秒内即可完成检测结果准 质谱准确检测,抗干扰能力强成本低 测试成本低 QuanID微生物质谱系统快:10分钟内可自动化完成超过96个样本的检测准:超过500属、 45 00余种微生物数据库;二级库提高难分辨微生物准确度稳:新一代宽谱定量飞行时间质谱QuanTOF平台,保证微生物质谱高重现性省:终身免更换激光器;自动化流程,省时省力 QuanSNP核酸质谱系统高通量 单管可以完成多达 40重的检测,一次可检测96/384个样本高效率 15分钟完成96个样本检测,单日完成样本到结果输出高灵敏 fmol级别的物质即可检测低成本 单位点成本降低明显应用广 基因分型(SNP、 插入缺失和CNV) 、 甲基化分析、 实体肿瘤、 液体活检 *仅供科研使用
    留言咨询
  • 创新性的QuanlMAGE带来质谱成像的突破成像快速——成像速率300像素/秒,能更快得到成像结果分辨率高——空间分辨率优于10μm,能得到质量更好的图像重现性好——仪器硬件的创新性结合,能得到重现性更好的图像QuanTOF Ⅰ型和QuanTOF Ⅱ型仪器特点:高频率半导体激光器(5,000Hz)大大提高了质谱成像速度;激光光斑5~10μm可调(定制化可达1μm),实现空间分辨率优于10μm 靶板电场接地专利技术使质谱成像重现性更高;超高频数据采集技术,使数据采集速率可达300 pixels/second 可对宽质量范围内的特定分子进行可视化位置确定;速度和空间同时聚焦技术,使线性模式在宽谱间达到高质量分辨率;前处理简单,无需任何标记物。 配套设备:冷冻切片机基质喷涂仪 聚集多种质谱技术,是创新性质谱影像系统 硬件系统一一大大提高影像分辨率高效数据分析和管理软件QuanIMAGE,可以对质谱得到的实验数据进行分类、优化和处理,来进行成像。强大的数据分析和图像处理软件平台,可以对成像图任意区域进行分析和比对。 质谱成像一肿瘤靶向用药位点定位 无需标记,可视化观察药物在组织中的分布情况药物的组织分布信息对药物研发等环节具有重要作用,包括:药理、药代动力学、安全性评价、药物间相互作用以及药物的转运与代谢等。准确地了解药物在组织中的空间分布信息对药物研发非常重要,特别是对抗肿瘤药物等靶向性要求较高的药物。目前研究方法有:整体放射自显影和LC-MS联用技术,但都存在着同位素标记类似物耗时、费力、实用性差或者空间分布信息的缺失等问题。质谱分子成像,无需任何标记;多点检测,不局限于特异的一种或者几种分子,同时对一些靶向和非靶向物质进行成像分析。因此,不仅可同时获取组织切片中多种分子的空间分布信息,还可以保持药物在组织上的空间分布特征,还可区分原药和药物代谢物,因此在新药研发中具有重要的应用价值。某药物注入小鼠脑部,对切片进行成像分析 将某药物注入小鼠脑部,做冷冻切片.空间分辨率10μm实验条件进行质谱成像,在特定的位置实现了药物( m/z 499)的可视化。 质谱成像——细胞分型单细胞水平蛋白标志物MALDI-TOF质谱成像近年来,随着技术手段的提高,MALDI-TOF质谱成像的空间分辨率已经达到了单细胞水平,因而也开始被用于单细胞分析研究。通过免疫荧光标记检测仅可以看到胰岛素,而通过质谱成像选区不同种类蛋白可达到区分不同细胞目的。 上面案例展示了质谱成像在细胞分型方面有巨大潜力。肿瘤的发展是基于单个肿瘤细胞的自体扩增、随机突变以及自我筛选形成相对独立的亚群,这些亚群之间又互相影响成为密不可分的整体。运用质谱成像对肿瘤单细胞进行分型研究,能极大提高了科研工作者对肿瘤细胞异质性和患者个体性的认识,揭示在整个肿瘤生态体系中,肿瘤细胞个体如何感知、回应并适应肿瘤微环境的,并且肿瘤细胞个体的异质性又是如何出现并最终影响肿瘤整体的命运发展。 质谱成像——肿瘤标志物肿瘤蛋白标志物MALDI-TOF质谱成像 作为个体化医疗的关键词之一,肿瘤标志物相关研究方兴未艾.质谱成像技术诞生,为发现肿瘤标志物的组织特异性提供了不可替代的技术手段。 QuanIMAGE系统可以同时提供高空间分辨率和高成像速度,为准确捕捉标志物提供了重要保障。癌变组织成像标志物分析初探通过HE染色技术可以看到癌变组织与间质差异,而通过癌变与间质质谱成像图谱比较证实了差异峰存在。 胃癌组织成像标志物分析初探 一机多用QuanGHb糖化血红蛋白定量质谱系统可定量 糖化血红蛋白定量检测,同时可检测变异血红蛋白效率高 一次可达96、 384等通量;一个样本30秒内即可完成检测结果准 质谱准确检测,抗干扰能力强成本低 测试成本低 QuanID微生物质谱系统快:10分钟内可自动化完成超过96个样本的检测准:超过500属、 45 00余种微生物数据库;二级库提高难分辨微生物准确度稳:新一代宽谱定量飞行时间质谱QuanTOF平台,保证微生物质谱高重现性省:终身免更换激光器;自动化流程,省时省力 QuanSNP核酸质谱系统高通量 单管可以完成多达 40重的检测,一次可检测96/384个样本高效率 15分钟完成96个样本检测,单日完成样本到结果输出高灵敏 fmol级别的物质即可检测低成本 单位点成本降低明显应用广 基因分型(SNP、 插入缺失和CNV) 、 甲基化分析、 实体肿瘤、 液体活检 *仅供科研使用
    留言咨询
  • 佳维斯生物主要从事以组织三维透明技术为核心的创新性产品开发和技术服务,目前已建成三大核心产品及技术服务体系:1、离体透明试剂盒和离体组织透明三维成像技术服务: 通过将佳维斯自主研发的离体透明技术和三维成像技术相结合,可获得各类组织器官内血管、神经、细胞、蛋白等高分辨三维整体影像结果。如心、肝、脾、肿瘤等所有组织器官,通过组织透明技术结合三维成像,可在不切片的条件下,直接获得其完整组织的高分辨结果,可替换传统的二维病理切片、染色;2、活体组织透明试剂盒和活体深层组织在线检测技术服务: 佳维斯自主研发的活体透明试剂盒可透明皮肤、骨头等组织,可与近红外成像、激光散斑成像、双光子成像、拉曼成像、荧光成像等多种光学检测技术结合,进而可无创、非侵入式获得皮下及颅骨下神经、血管和细胞的高清影像结果,大大提高各类活体光学成像分辨率和成像深度;3、活体类器官/类器官芯片透明试剂盒及类器官芯片三维在线检测技术服务: 类器官是从人体组织器官中提取细胞,经培养分化生成的包含有相应组织器官所有细胞及其基本结构的组织,在类器官基础上加上调控其自由生长的微流控装置称为类器官芯片。类器官/类器官芯片可仿真模拟人的组织器官,有望替换细胞和动物实验,大大缩短药物研发周期,提高成功率。但由于类器官/类器官芯片体积较大,而光在生物组织中的穿透能力极其有限,导致现有光学成像技术难以获得类器官/类器官芯片内部完整结构信息。佳维斯自主研发的类器官透明技术可实现活的类器官/类器官芯片的透明且安全无副作用,进而可获得类器官/类器官芯片的三维整体结构,通过类器官/类器官芯片的三维在线检测技术辅助药物筛选,评价药物安全性和有效性。
    留言咨询
  • Asiagene NIR2020 近红外I区和近红外II区生物医学荧光成像系统是上海亚晶生物科技有限公司自主研发的大型高端设备。 主机包含:1.暗箱2.科研一级CCD相机(光谱范围:400-1700nm)3.近红外探测器4.荧光光路及照明系统5.小动物麻醉系统6.操作分析软件7.电源线和数据线8.操作说明 其中暗箱:1.内部铺有吸光性能良好的材料;2.可以装配近红外探测器配备;3.多位波段滤光片及切换装置;4.可装配多个波段光源,并分别控制及采集5.可以支持小动物麻醉系统6.配备自动升降台,可以随时调整样品台高度7.配备小动物恒温模块,保证成像时动物体温8.配备明场光源 近红外探测器:1.探测器芯片:铟镓砷探测器2.分辨率:640(h)×512(v);3.带宽:900-1,700nm;4.峰值量子效率(peak QE):85%;5.保持信号完整性:65,535灰度值;6.扫描频率:4×18 MHz;7.InGaAs探测器运行能力:99.5%;8.输入像素尺寸:15×15μm;9.输入传感器尺寸:9.6×7.68 mm;10.读出杂讯:High gain mode 27-35 电子
    留言咨询
  • ImageQuant&trade 500一体化成像仪是一台理想的生物分子成像仪,其灵敏度高、动态范围广, 可捕获微弱化学发光信号,又可精确定量。用于检测化学发光、荧光,以及白光样品成像,包括多种凝胶及膜样品。ImageQuant&trade 500 提供:&bull 高灵敏度:使用化学发光法可检测低至皮克级蛋白&bull 宽动态范围:同时准确定量强弱蛋白&bull Marker 自动叠加:彩色 Marker 和目标条带直观可见&bull 简便易用:无需工程师即可在几分钟内轻松完成系统安装&bull 小巧灵活:小巧的集成设计,占地面积小,可在 U 盘、系统或网络连接文件夹中灵活存储图像&bull 用途多样:同时满足化学发光,荧光及白光成像需求
    留言咨询
  • VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统 Smart-LF系列的小动物荧光&生物发光成像系统是由科研级CCD生产商——vieworks.lnc公司设计并生产的第三代智能型小动物实时活体成像系统。该系统秉承了VISQUE系列活体成像一贯的高分辨率,智能实时,高采集速度的强大优势,同时通过增强相机性能,大大增加了信号采集的灵敏度,使得VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统在弱光信号成像的领域表现出色,受到了广大客户群体的一致认可,可广泛应用于各种需要荧光或者生物发光功能进行的活体内示踪研究等。 Figure 1.VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统 VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统的主要特点有:1、高灵敏度、分辨率CCD VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统采用了专为高端科研应用设计的,全新的制冷型科研级CCD,像素分辨率可达6.5μm*6.5μm,其高灵敏度的传感器可使其量子效率可达到94%。同时该相机具有超快的,高达37fps的采集速度,优越的成像质量可保证我们的设备在快速实时动态采集过程中保持均一质量的成像结果。 Figure 2.裸鼠尾静脉注射4T1-luc细胞后立刻进行生物发光检测的结果 Figure 3.裸鼠尾静脉注射标记了ICG的药物递送材料6小时候进行荧光成像 Figure 4.外泌体体内分布代谢研究 Figure 5.下肢缺血模型构建效果评价 Figure 6.脑缺血模型构建和评价 Figure 7.药物淋巴管代谢过程研究 Figure 8.脑胶质瘤模型的生物发光成像 2、专业的动力学分析软件 VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统具备专业的软件开发团队,为VISQUE系列每个型号的小动物活体成像系统专业设计了强大的智能化的控制设备成像操作和数据分析的软件——Clevue软件系统。该软件可进行快速便捷的数据分析,具备一键分析功能(一键自动显示显示荧光强度水平和成像时的参数设置信息),ROI一键自动圈选,自发荧光扣除功能,多光谱融合功能,以及可以生成同时展示设置信息,原始图像,ROI信息,Bar条范围等全部信息的报告模式。图像和数值结果可直接输出为tiff,bmp,jpg,png,pdf等格式的图片或者CSV格式的数据,实时成像采集的结果可直接输出为AVI格式视频。同时该软件具备了强大的动力学分析程序,可对实时成像的结果进行10种的动力学分析算法。 Figure 9.Clevue对下肢血流进行动力学分析 Figure 10.使用Clevue可对脑血流进行动力学分析 3、紧凑型设计 Figure 11. VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统外观 VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统采用了用户友好型设计理念,紧凑型的设计,整套设备不超过22kg,轻巧的体型方便用户在实验室的任何位置使用和挪动设备,可选配的可抽拉式加热操作台,多通道的气体麻醉机适配口,便捷的脚踏开关大大方便了用户的实验操作,为活体成像实验保驾护航。 Figure 12.紧凑小巧型设计,便于移动 4、应用广泛,成像效果佳 VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统可广泛应用但不限于以下荧光和生物发光成像实验中: 使用生物发光成像功能追踪肿瘤转移过程; 使用荧光或生物发光对实体肿瘤进行成像; 评估脑血流,下肢血流,淋巴管等的结构和功能; 新药或者药物递送系统的药代动力学研究; 评估新药或者肿瘤治疗方案在关节炎,动脉粥样硬化,自身免疫性疾病,血管生成等作用中的疗效。 对比数据Figure 13.VISQUE Invivo Smart-LF和其他品牌设备的荧光成像(同一只老鼠)结果对比 Figure 14. VISQUE Invivo Smart-LF和其他品牌设备的生物发光成像(同一只老鼠)结果对比佰泰科技(中国)有限公司全国400免费服务热线:TEL:(021)54566520 FAX:(021)54566520公司地址:上海市徐汇区零陵路629号
    留言咨询
  • ESL imageBIO266 专为生物成像应用设计的激光剥蚀系统——为生命科学而生第一台为生物成像设计的激光剥蚀进样系统到目前为止,传统的激光剥蚀系统已得到了广泛的应用。生物成像需要较低的通量,较好的稳定性和优良的样品输送。imageBIO266是专为LA-ICPMS高分辨率、高速生物成像而设计的。此产品主要用于实现医学研究用生物薄片等样品的组织元素成像及单细胞基本成像等应用。主要特征: – 亚微米级剥蚀,可用于单细胞成像– DPSS激光源有长期稳定性和可靠性 266nm ,1-1000Hz,样品表面通量6J/cm2– 20倍物镜放大倍数,可用于观察和扫描亚细胞样品– 标配可旋转矩形光斑(XYZ) – TwoVol2为标准。DCI冲洗时间下降到30毫秒,2%空间再现性– TwoVol3可选。在TOF速度下,用纳米级级的超快速冲洗进行亚微米分辨率成像– 矩形剥蚀坑匹配采样和成像像素形状– 高分辨率显示系统
    留言咨询
  • Asiagene NIR2020 近红外I区和近红外II区生物医学荧光成像系统是上海亚晶生物科技有限公司自主研发的大型高端设备。 主机包含:1.暗箱2.科研一级CCD相机(光谱范围:400-1700nm)3.近红外探测器4.荧光光路及照明系统5.小动物麻醉系统6.操作分析软件7.电源线和数据线8.操作说明 其中暗箱:1.内部铺有吸光性能良好的材料;2.可以装配近红外探测器配备;3.多位波段滤光片及切换装置;4.可装配多个波段光源,并分别控制及采集5.可以支持小动物麻醉系统6.配备自动升降台,可以随时调整样品台高度7.配备小动物恒温模块,保证成像时动物体温8.配备明场光源 近红外探测器:1.探测器芯片:铟镓砷探测器2.分辨率:640(h)×512(v);3.带宽:900-1,700nm;4.峰值量子效率(peak QE):85%;5.保持信号完整性:65,535灰度值;6.扫描频率:4×18 MHz;7.InGaAs探测器运行能力:99.5%;8.输入像素尺寸:15×15μm;9.输入传感器尺寸:9.6×7.68 mm;10.读出杂讯:High gain mode 27-35 电子
    留言咨询
  • 长波段UV紫外光(320nm-400nm)对植物叶片激发,可以产生具有4个特征性波峰的荧光光谱(Multi-color Fluorescence,MCF),4个波峰的波长为兰光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740)(C.Buschmann等,1998),其中F440和F520统称为BGF(蓝绿荧光),由表皮及叶肉细胞壁和叶脉发出(指示次级代谢产物等),F690和F740为叶绿素荧光Chl-F。紫外光激发多光谱荧光(UV-MCF)可以用来灵敏、特异性地评估植物生理状态包括受胁迫状态如干旱、病虫害、环境污染、氮胁迫等(H.K.Lichtenthaler, 2021)。欧洲PSI公司采用光学滤波器技术,通过紫外线激发并仅使特定波长的激发荧光到达检测器,研制生产了FluorCam多光谱叶绿素荧光成像系列仪器设备,可以对F440、F520、F690、F740四个波长荧光(多光谱荧光)进行二维成像分析,成为目前广泛应用于植物表型分析、植物胁迫检测等领域的重要仪器技术。基于近二十年叶绿素荧光测量与成像技术、UV-MCF多光谱荧光成像分析技术服务与实验研究,值此公司成立二十周年之际,易科泰生态技术公司隆重推出UV-MCF生物荧光高光谱成像系统,其主要技术和功能特点为:1.基于高光谱成像技术的紫外光激发生物荧光光谱成像分析,可同时获得蓝色、绿色、红色及远红波段的荧光光谱成像,不仅可对生物荧光在二维尺度上进行成像分析,还可以获得荧光光谱特征(光谱指纹)并在高光谱维度上(多达几百个)进行荧光光谱分析。下图为银杏叶高光谱荧光成像(自左至右依次为:彩色成像、绿色荧光F533成像、UV-MCF荧光光谱。易科泰Ecolab实验室提供)2.不仅可进行叶绿素荧光及BGF成像分析,还可以得到其高光谱数据立方并进而分析其光谱特性,使生物荧光二维成像分析提升到高光谱成像分析(达几百个光谱纬度)水平3.可对GFP(绿色荧光蛋白)等进行成像分析4.可选配多激发光(绿色及红色激发光)植物荧光光谱成像分析,并进一步测量分析花青素、叶绿素、多酚等指数及氮素指数5.FluorVision高光谱荧光成像分析软件,可进行光谱融合、ROI选区分析、样品剖面荧光分析、频率直方图、自动识别不同波段峰值并分析其比值等6.可同时获取反射光光谱和荧光光谱,并进行高光谱成像分析和高光谱荧光成像分析(下图为花椰菜高光谱成像分析——光谱反射指数,和荧光成像分析)7.可对植物叶片或整株植物)、根系、果实、种子等不同组织部位进行荧光成像分析和反射光高光谱成像分析8.应用于植物表型成像分析、遗传育种、植物胁迫与抗性分析检测、种质资源分析检测、中草药检测鉴定、采后生物学研究、光生物学研究等。UV-MCF不仅适于活体植物成像分析,也适应于干燥后的茎叶、根系等荧光成像分析,如茶叶及中草药品质检测等分析参数:1.BGF蓝绿荧光Fb(或F440)和Fg(或F520)2.叶绿素荧光Fr(或F690)和Ffr(或F740)3.荧光比值,如Fb/Fg、Fb/Fr、Fb/Ffr、Fr/Ffr等,及F730-740/F680-690(反应叶绿素含量及植物长期胁迫等)、F735/F700(可精确反映叶绿素含量)。下表为UV-MCF部分比值参数与植物表型关系(参考H.K.Lichtenthaler, 2021。++指显著提高,+指提高,--指显著降低,-指降低,0为无明显变化)植物表型Fb/FrFb/FfrFr/FfrFb/FgF735/F700杂色叶片/绿色叶片++++++0背面/正面叶片+++++0-黄绿/绿色叶片++++++--第二片/第一片冒芽叶片----++-+干旱胁迫++++00N胁迫+++++0--暴晒+++++--虫害++++0+-敌草隆处理----+0光抑制++++--0野外/大棚植物++++-04.花青素指数(log(Ffr_R/Ffr_R))、黄酮指数(log(Ffr_R/Ffr_UV)及氮素平衡指数NBI——需选配红绿多激发光模块5.高光谱成像分析,可自动分析计算NDVI、NDVI705红边归一化植被指数(对衰老敏感)、VOG1红边指数(对叶绿素浓度、物候变化等敏感)、PRI光化学植被指数、PSRI 植被衰减指数(用于指示冠层胁迫、植物衰老、果实成熟等)、SIPI结构不敏感色素指数(反映冠层胁迫程度、生理胁迫检测等)、CRI1 类胡萝卜素反射指数、ARI1/ ARI2 花青素反射指数、CI 叶绿素指数(红边指数)、WBIR水波段指数(反映水分含量分布)、HI健康指数等植物色素指数和胁迫敏感指数、NPQI归一化脱镁指数(用于早期胁迫检测)、PSSRa(R800/R680)指数等应用案例:植物对敌草隆的荧光响应参考文献:Claus Buschmann and Hartmut K. Lichtenthaler. Principles and characteristics of multi-colour fluorescence imaging of plants. Journal of Plant Physiology, 1998.H.K.Lichtenthaler. Multi-colour fluorescence imaging of photosynthetic activity and plant stress. Photosynthetica, 2021.
    留言咨询
  • Smart-LF紧凑型小动物荧光&生物发光成像系统 Smart-LF系列的小动物荧光&生物发光成像系统是由全球领先的科研级CCD生产商——vieworks.lnc公司设计并生产的第三代智能型小动物实时活体成像系统。该系统秉承了VISQUE系列活体成像一贯的高分辨率,智能实时,高采集速度的强大优势,同时通过增强相机性能,大大增加了信号采集的灵敏度,使得VISQUE? Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统在弱光信号成像的领域表现出色,受到了广大客户群体的一致认可,可广泛应用于各种需要荧光或者生物发光功能进行的活体内示踪研究等。 Figure 1.VISQUE? Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统的主要特点有:1、高灵敏度、分辨率CCD VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统采用了专为高端科研应用设计的,全新的制冷型科研级CCD,最小像素分辨率可达6.5μm*6.5μm,其高灵敏度的传感器可使其量子效率最大达到94%。同时该相机具有超快的,高达37fps的采集速度,优越的成像质量可保证我们的设备在快速实时动态采集过程中保持均一质量的成像结果。 Figure 2.裸鼠尾静脉注射4T1-luc细胞后立刻进行生物发光检测的结果 Figure 3.裸鼠尾静脉注射标记了ICG的药物递送材料6小时候进行荧光成像 Figure 4.外泌体体内分布代谢研究 Figure 5.下肢缺血模型构建效果评价 Figure 6.脑缺血模型构建和评价 Figure 7.药物淋巴管代谢过程研究 Figure 8.脑胶质瘤模型的生物发光成像 2、专业的动力学分析软件 VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统具备专业的软件开发团队,为VISQUE系列每个型号的小动物活体成像系统专业设计了强大的智能化的控制设备成像操作和数据分析的软件——Clevue软件系统。该软件可进行快速便捷的数据分析,具备一键分析功能(一键自动显示显示荧光强度水平和成像时的参数设置信息),ROI一键自动圈选,自发荧光扣除功能,多光谱融合功能,以及可以生成同时展示设置信息,原始图像,ROI信息,Bar条范围等全部信息的报告模式。图像和数值结果可直接输出为tiff,bmp,jpg,png,pdf等格式的图片或者CSV格式的数据,实时成像采集的结果可直接输出为AVI格式视频。同时该软件具备了强大的动力学分析程序,最多可对实时成像的结果进行10种的动力学分析算法。 Figure 9.Clevue对下肢血流进行动力学分析 Figure 10.使用Clevue可对脑血流进行动力学分析 3、独特的紧凑型设计 Figure 11. VISQUE? Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统外观 VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统采用了用户友好型设计理念,紧凑型的设计,整套设备不超过22kg,轻巧的体型方便用户在实验室的任何位置使用和挪动设备,可选配的可抽拉式加热操作台,多通道的气体麻醉机适配口,便捷的脚踏开关大大方便了用户的实验操作,为活体成像实验保驾护航。 Figure 12.紧凑小巧型设计,便于移动4、应用广泛,成像效果佳 VISQUE Invivo Smart-LF紧凑型小动物荧光&生物发光成像系统可广泛应用但不仅限于以下荧光和生物发光成像实验中: 使用生物发光成像功能追踪肿瘤转移过程; 使用荧光或生物发光对实体肿瘤进行成像; 评估脑血流,下肢血流,淋巴管等的结构和功能; 新药或者药物递送系统的药代动力学研究; 评估新药或者肿瘤治疗方案在关节炎,动脉粥样硬化,自身免疫性疾病,血管生成等作用中的疗效。 对比数据Figure 13.VISQUE? Invivo Smart-LF和其他品牌设备的荧光成像(同一只老鼠)结果对比
    留言咨询
  • ImageQuant LAS 500是一台理想的生物分子成像仪,灵敏度高、动态范围广。可捕获微弱化学发光信号,又可精确定量。系统含三个光源:双侧蓝色反射光源、紫外反射光源和白色反射光源。可取代暗室和胶片曝光,直接进行化学发光检测,既实用又实惠。其体积小巧,占地面积少,30×28cm的机器底座仅有笔记本电脑大小,可以灵活地安装在各种的实验室工作台上,而不需要连接电脑。蓝光/紫外光源可检测560nm以上的荧光信号。适用于SYBRTM Green、溴化乙锭(EB)以及Deep Purple TM全蛋白染色的DNA染色成像。 白色反射光源(470nm-630nm)用于可见光成像,如考马斯亮蓝染色和银染。产品特点:?更灵敏:使用化学发光可检测低至皮克级蛋白?自动图像重叠功能:可直接将对化学发光样品和预染的蛋白marker图像重叠?快速制冷:室温下五分钟内CCD即可快速冷却到-25℃ ?操作简单:标配彩色触摸屏,无需外接电脑,可直接进行仪器控制和实验操作?易于安装:仪器差点即用,灵活方便?一体化设计:体积小巧,更有效利用实验室空间? 储存方法多样:可直接通过U盘存储数据,也可通过网络连接传送
    留言咨询
  • K1-Fluo R 正置式生物荧光成像系统K1-Fluo Up是韩国Nanoscope Systems 共聚焦显微镜公司为化学,医疗,生物,材料等领域而开发的一款多功能激光荧光共聚焦显微镜。 优异的光学组件,性能以及出色的性价比吸引了大批的海内外用户. 模块化的设计,开放性的设计理念使得K1-Fluo 的激光控制模块能够与Nikon,Olympus,Zeiss,Leica 的商用显微镜模块兼容 Features & Benefits(性能及优势): 1. 高清晰的图像质量 2. 紧凑的模块尺寸 3. 与各种商用显微镜主体兼容 4. 操作简单 5. 高性价比 6. 可定制的模块 主要功能:1.实时模式 在Live 模式下时,可通过移动物镜的位置并调节Detector Sensitivity并且可以实时观察图像的变化,以此获得高清晰的荧光图像。2. 二维图像测量 在Live 模式下时,点击Manual SNAP 可测量当前条件下的二维图像,若对当前测量的图像不满意,可再次选择测量的激光波长,调节测量条件后再次测量,可覆盖之前测量结果 。3. Z-SNAP (2D深度图像构建) 通过设置想要的scan range,interval,number of section 可获得二维图像的深度照片(选出每张照片上亮的点然后合成为一张二维照片,当样品倾斜时非常适用)4. Z-STACK (3D构建) 通过设置想要的Scan range, Interval, # of section后,系统利用测量的二维照片重新构建出三维图像。 通过K1-3DViewer软件可观察分析构建的三维荧光形貌, 并且可以对测量每一张测量的二维荧光图片进行单独的分析,调节LUT并导出特定区域的强度值,而且可以通过K1-image软件测量荧光部分的三维尺寸。5. Video 功能 通过测量多张连续的照片并将其连接起来,可连接成一个视频。 通过重新设置保存视频的帧数可以调节视频的大小。6. Stitch and EDF stitch(平面拼接与深度拼接) Stitch 是平面拼接功能,只扫描并拼接同一焦平面上的图片。 EDF stitch是在每一个扫描点同时做Z-SNAP 和Stitch(优点是可以看到深度图像,缺点是耗时比较长)7. Time lapse (延时) 通过设置拍摄的时间间隔以及需要拍摄的总张数,可以设置延时功能(特别适合追踪细胞活动以及观察细胞的分裂)8. Automatic Well Plate scanning (自动孔板扫描) 选择该功能后,根据所选的孔板类型,将会自动出现每一个对应的孔板坐标,单击每一个坐标,可将物镜自动移动到对应的孔板然后进行扫描。Software(软件):3-dimensional display (Z-stack)(三维展示):Z-STACK是利用Z轴的上下移动获得垂直方向的光学切片然后构建3D图像,选择用户想要的测量方法后(有三种测量方法可供选择:Top/bottom, Center/Range, Upper/Lower),设置Z轴的扫描范围(Scan range),光学切片的间隔(Interval),光学切片的张数(# of section)Time lapse(延时功能):Specifications(参数):激光模块激光波长基础波长405, 488, 561nm (7mW each)可选波长445, 473, 514, 532, 637, 640, 660, 685, 705, 730, 785nm (10mW or more), selectable up to four lines扫描模块K1-Fluo RT扫描仪共振扫描器和检流镜扫描分辨率128x128 ~ 2048x2048 可选扫描速度 30fps at 512 x 512 pixels (Bi-scan) 15fps at 512 x 512 pixels (Uni-scan)放大范围0.7x~3x 连续扫描区域12.5mm的平方除以物镜放大倍数(场数18)扫描模式xy, xyz, xt, xyt, xyzt针孔自动切换针孔大小 (0.5~10 Airy size)重量7kg探测器模块探测范围400-750nm or NIR 可定制 探测范围标准高灵敏PMT基础模式带一个 PMT 的六轮滤光片转盘 连续切换探测探测器数量Multi-ch 模式高达4个 PMTs 同步检测Emission filter自动滤片切换转轮或单个可更换滤片数据深度12bit重量1.5 kg显微镜模块结构正置X,Y 位移台电动/手动位移台 行程范围 115x75 mm (可定制), 可支持:载玻片,孔板,培养皿等Z-驱动自动位移台15mm行程 / 250nm 小步距.PZT 位移台 (单个物镜)400um 行程 / 1nm 步距配件Jog dial样品载物台(5个)目镜选配:细胞孵化器物镜:支持空气物镜,油镜,水镜等多种规格的物镜 气浮隔振光学平台空气压缩机重量12kg电子模块控制器电子器件 半导体激光发射器,扫描模块,探测器模块功耗: 100~240V, 450VA, 50/60Hz重量: 19kgPCPCWindows 10, 64bit功耗: 100~240V, 900VA, 50/60Hz
    留言咨询
  • 一、用途 ZX系列全自动菌落分析仪,由图像采集系统和菌落统计分析软件构成,具有菌落统计、典型菌筛选、菌株特征检测与描述等功能,适用于生物医药、检验检疫、疾病控制、质量监督、环境监测、食品卫生,以及大专院校、研究院所等领域中的微生物菌落分析和科学研究 二、主要性能技术参数1、成像装置:v 全封闭暗箱,能够完全消除外环境杂散光干扰 v 三色LED可见光v 上、下光源亮度、开启关闭可自由切换,采用全触摸式调节按钮v 色温自动控制,接近自然光v 850万像素高清彩色相机v 300万像素高清镜头 8mm 2、软件功能:1)分类一键统计:v RIDA&trade 一键计数v Compact Dry&trade 一键计数v 背景相近菌一键计数v 微小菌一键计数v 分散菌一键计数v 粘连菌一键计数v 大菌落一键计数2) 辅助统计工具:v 人工修正:鼠标单击可添加或删除遗漏菌落v 智能修正:在一键统计基础上可进行智能修正v 测量工具:角度、线段、面积、曲线v 污染菌(杂质)剔除:根据颜色、直径、圆度剔除杂质v 单菌落形态分析:点击单个菌落,可得知这个菌落的圆度、直径、周长、面积等信息v 所有菌落形态:统计完后可得知平板上所有菌落的圆度、直径、周长、面积等信息v 菌落大小分类:统计完后,根据每个菌落轮廓大小,按25档分类显示v 样本菌落总数换算:根据实际培养皿直径、样本稀释度,实现自动换算3) 数据安全与管理:v 多用户登录系统,每个账户形成独立数据,数据长久保存v 统计结果以PDF格式输出,原始数据不可更改v 具备审计追踪功能,操作人员在软件上的每一步操作软件自动记录,以便后续结果数据的追溯v 与CFR 21 第11部分兼容:系统安全,操作控制,文件管理 3、仪器规格与配置v ZX-200型自动菌落计数仪主机v Zstream自动菌落分析软件v 商务台式电脑
    留言咨询
  • Amersham&trade ImageQuant&trade 800系统是新一代超灵敏多功能CCD成像仪,可在生命科学应用中获取高质量图像,适用于化学发光、紫外、多色荧光和白光成像,样品类型包括凝胶,印迹膜,多孔板和培养皿。优化的光学系统和全新专利技术——SNOW&trade (自动信噪比优化曝光模式)检测模式可通过算法优化图片信噪比,帮助用户提高成像灵敏度和图像质量。该系统集成了界面友好的控制软件和ImageQuant Connect软件,可实现用户远程访问设备。设备有4种型号可供选择,型号间可模块化升级。
    留言咨询
  • fMOST荧光显微光学切片断层三维成像系统BioMapping5000是基于fMOST技术的荧光三维成像仪器亚微米级分辨率多通道同时探测多重荧光标记样本能精准定位神经环路,构筑全脑单细胞精细结构成像模式高速线性扫描荧光成像适用标记技术Dylight594,mCherry,PI,GFP,YFP,DAPI等体素分辨率0.35 μm x 0.35 μm x 1 μm连续切削厚度1 - 4 μm最大样本体积5 cm x 5 cm x 3 cm应用案例1-全脑神经投射▲小鼠内侧前额叶皮层γ-氨基丁酸(GABA)能神经元长程输入环路的全脑图谱[1]应用案例2-全脑单神经元形态学分析▲单神经元树突棘展示[2]应用案例3-全器官脉管系统三维重构▲全肝血管、胆管、淋巴管三维重构[3]文献列表[1] A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex.,Nat Neurosci.(2019)[2] Chemical sectioning fluorescence tomography: high-throughput, high-contrast, multicolor, whole-brain imaging at subcellular resolution. Cell Rep. (2021)[3] Multiscale reconstruction of various vessels in the intact murine liver lobe Commun Biol. (2022)
    留言咨询
  • 活体荧光成像 400-860-5168转2042
    荧光成像冷CCD相机 TCH-1.4ICE & TCH-1.4CICE 良好的制冷技术 TCH-1.4ICE和TCH-1.4CICE属于图森专业相机H系列,前者为黑白制冷CCD相机,后者为彩色制冷CCD相机。它们使用了SONY公司经典的高品质CCD芯片ICX285,同时半导体制冷技术将CCD温度降低至零下10摄氏度。在此低温下,CCD可进行长达1小时的曝光而不影响成像质量。TCH-1.4ICE/TCH-1.4CICE相机作为图森多年来精密制造工艺技术的完美结晶,为您进行荧光、化学发光等微弱光成像提供了卓越的品质保证。 TCH-1.4ICE和TCH-1.4CICE应用了图森最新的制冷工艺技术,即在数十分钟长时间曝光进行拍摄时,可以将传感器表面的温度降低至-10℃,使得暗电流噪声降低至忽略不计的水平,为您进行微弱光成像提供更全面的保障。 单个像素点达6.45微米X 6.45微米 TCH-1.4ICE和TCH-1.4CICE冷CCD相机分别搭载了SONY公司的专业CCD图像传感器ICX285AL与ICX285AQ,芯片感光面积的对角线长度为2/3英寸,单个像素点尺寸达6.45微米X 6.45微米。极大的像元面积也显著提高了各像素点的蓄光能力,提供了相当高的饱和输出电压信号。 优异的光电转换效率 TCH-1.4ICE和TCH-1.4CICE拥有很高的量子效率水平,其峰值达65%,这带来优异的灵敏度表现,可以捕获到极微弱的光源信号。TCH-1.4ICE与TCH-1.4CICE非常适合对于荧光、化学发光等微弱光成像应用。 TCH-1.4ICE TCH-1.4CICE 图像传感器型号 Sony ICX285AL Sony ICX285AQ 彩色/黑白 黑白 彩色 CCD/CMOS 尺寸 2/3" 2/3" 像素大小(&mu m) 6.45× 6.45 6.45× 6.45 有效像素 141万 141万 最大分辨率 (H× V) 1360× 1024 1360× 1024 扫描模式 逐行扫描 逐行扫描 快门模式 电子快门 电子快门 帧频 13fps(1360 × 1024 全分辨率) 13fps(1360 × 1024 全分辨率) 15fps (680 × 520,2 × 2Bin) 15fps (680 × 520,2 × 2Bin) 彩色深度 &mdash 36bit 模数转换 12 bit 12 bit 曝光控制 自动/手动 自动/手动 曝光范围 0.1ms-60min. 0.1ms-60min. 白平衡控制 自动/手动 自动/手动 动态范围 67dB 66dB 工作温度 0-60℃ 0-60℃ 工作湿度 45%-85% 45%-85% 贮存温度 -20-70℃ -20-70℃ 制冷方式 半导体制冷 半导体制冷 制冷温度 -10℃ -10℃ 操作系统支持 Windows / Linux / Mac Windows / Linux / Mac 光学接口 C接口 C接口 数据接口 USB2.0/480Mb/s USB2.0/480Mb/s 公 司:福州鑫图光电有限公司 地址:福州市仓山区盖山镇齐安路756号财茂城主楼6F 邮编:350008 电话: 传真: 中文网站: 国际网站: 一、 技术简介 活体生物荧光成像技术是近年来发展起来的一项分子、基因表达的分析检测系统。它由敏感的CCD及其分析软件和作为报告子的荧光素酶以及荧光素组成。利用灵敏的检测方法,让研究人员能够直接监控活体生物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。传统的动物实验方法需要在不同的时间点宰杀实验动物以获得数据,得到多个时间点的实验结果。相比之下,可见光体内成像通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,所得的数据更加真实可信。因其操作极其简单、所得结果直观、灵敏度高等特点,在刚刚发展起来的几年时间内,已广泛应用于生命科学、医学研究及药物开发等方面。 二、原理 活体生物荧光成像技术是指在小的哺乳动物体内利用报告基因-荧光素酶基因表达所产生的荧光素酶蛋白与其小分子底物荧光素在氧、Mg2+离子存在的条件下消耗ATP发生氧化反应,将部分化学能转变为可见光能释放。然后在体外利用敏感的CCD设备形成图像。荧光素酶基因可以被插入多种基因的启动子(promoter),成为某种基因的报告基因,通过监测报告基因从而实现对目标基因的监测。 生物荧光实质是一种化学荧光,萤火虫荧光素酶在氧化其特有底物荧光素的过程中可以释放波长广泛的可见光光子,其平均波长为560nm(460~630nm),这其中包括重要的波长超过600nm的红光成分。在哺乳动物体内血红蛋白是吸收可见光的主要成分,能吸收中蓝绿光波段的大部分可见光;水和脂质主要吸收红外线,但其均对波长为590~800nm的红光至近红外线吸收能力较差,因此波长超过600nm的红光虽然有部分散射消耗但大部分可以穿透哺乳动物组织被敏感的CCD camera检测到。 三、操作方法 荧光标记的选择 活体生物荧光成像主要有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。荧光蛋白适用于标记肿瘤细胞、病毒、基因等。通常使用的是GFP、EGFP、RFP(DsRed)等。荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以标记抗体、多肽、小分子药物等。量子点标记作为一种新的标记方法,是有机荧光染料的发射光强的20倍,稳定性强100倍以上,具有荧光发光光谱较窄、量子产率高、不易漂白、激发光谱宽、颜色可调,并且光化学稳定性高,不易分解等诸多优点。量子点是一种能发射荧光的半导体纳米微晶体,尺寸在100nm以下,它可以经受反复多次激发,而不像有机荧光染料那样容易发生荧光淬灭。 但是不同荧光波长的组织穿透力不同,如图1所示,各种波长的光对小鼠各种器官的透过率,都在波长600nm时显著增加。而如图2所示,在650nm-900nm的近红外区间,血红蛋白、脂肪和水对这些波长的光的吸收都保持在一个比较低的水平。因而,选择激发和发射光谱位于650nm-900nm的近红外荧光标记(或至少发射光谱位于该区间),更有利于活体光学成像,特别是深层组织的荧光成像。(推荐文献: Nature Method, 2005, 2: 12 如何选择合适的荧光蛋白; Science, 2009, 324: 804 钱永建教授研究成果-近红外荧光蛋白,非常适合活体生物荧光成像)。 活体生物荧光成像CCD的选择 选择适当的CCD镜头,对于体内可见光成像是非常重要的。如何选择活体荧光性价比最高的CCD呢?CCD有一些重要的参数: 1) CCD像素。CCD像素决定成像的图片质量,像素越高,成像质量越好。由于荧光背景光较强,产生非特异性杂光干扰明显,需要配有高分辨率CCD的相机。 2) 前照式还是背照式CCD。一般而言,背照式CCD具有更高的量子效率,但是只有在检测极弱光信号优势明显(如活体生物发光成像),但在强光检测中与前照式CCD无本质差别,还更容易光饱和,并且其成本较高的弱势使其不属于荧光检测常规要素。 3) CCD温度。制冷CCD分为两种:恒定低温制冷CCD和相对低温制冷CCD。恒定低温制冷CCD拥有稳定的背景,可以进行背景扣除;而相对低温制冷CCD由于背景不稳定,一般不能进行有效的背景扣除。CCD制冷温度越低,产生的暗电流越小,如图3所示,当制冷温度达到-29℃时,产生的暗电流已经低至0.03e/pixel/s。由于仪器自身产生的噪音主要由暗电流热噪音和CCD读取噪音组成,而目前CCD读取噪音最低只能降至2e rms;因而更低温度的CCD并不能明显的降低背景噪音,而成本却极大提高。 4) CCD读取噪音和暗电流。CCD读取噪音和暗电流热噪音是成像系统产生背景噪音的主要因素,但是在荧光成像中,最主要的背景噪音却是来自于荧光背景光。荧光成像信噪比的改善主要依赖于荧光背景光的有效控制和背景扣除技术(图4)。 &lsquo 自发荧光的干扰 在活体荧光成像中,动物自发荧光一直困扰着科研工作者。在拥有激发光多光谱分析功能的活体成像系统出现以前,科学家们被迫采取各种方法来减少动物自发荧光,比如:采用无荧光素鼠粮饲养小鼠、使用裸鼠等。现在,拥有激发光多光谱分析功能的活体成像系统,能够轻松进行荧光信号的拆分,如图5,食物、膀胱、毛发和皮肤的自发荧光能够被有效的区分和剥离。激发光多光谱分析也可用于多重荧光标记检测,实现一鼠多标记,降低实验成本,并有效提高数据的可比性。 荧光信号的准确定位 如图6所示,如果信号和靶标100%重合,这是科学家所追求的;但是,如果信号并不和靶标重合,而又误以为正确定位时,这是科学的噩梦。也许,一个错误定位的信号,比没有信号更加糟糕! 而同时拥有结构成像(如X光、MRI)和功能成像功能(如荧光、发光、同位素)的多功能活体成像系统,则让您摆脱困境,准确定位荧光信号。如图7所示,小鼠的X成像经过胃肠造影,可清晰地获得胃肠的形状和位置,将荧光信号和X光叠加,荧光和胃肠重合,可准确判定荧光定位在胃肠。 四、应用 在肿瘤方面的应用 它可以快速的测量各种癌症模型中肿瘤的生长,并可对癌症治疗中癌细胞的变化进行实时观测评估;可以无创伤地定量检测小鼠整体的原位瘤、转移瘤及自发瘤。如Hollingshead等利用人类胶质瘤细胞系U251构建U251-HRE细胞,其中的荧光素酶基因表达受可诱导启动子的操控,低氧状态为其诱导条件,因此在细胞处于低氧状态下荧光素酶基因开始表达。将此肿瘤细胞sc于裸鼠体内,肿瘤增殖早期并无明显荧光素酶表达,当肿瘤达到了300~500mg时,局部组织出现低氧状态,此时可监测到荧光素酶显著表达。这种方法不仅仅监测肿瘤本身,更重要的是可以监测肿瘤细胞所处的微环境。 在监测感染和炎症方面的应用 荧光素酶基因标记病毒和细菌,利用活体生物荧光成像技术可以检测到,并能连续观察其对机体的侵染过程以及抗病毒药物和抗生素对其病理过程的影响。如Contag et等用细菌荧光素酶标靶沙门菌,并用活体生物荧光成像追踪细菌感染。 活体生物荧光成像技术和细胞示踪 活体生物荧光成像技术还可应用到免疫细胞、干细胞、细胞凋亡等研究领域。如Costa等通过活体生物荧光成像可以追踪到T淋巴细胞聚集于中枢神经系统。 五、前景 活体生物荧光成像技术让研究人员能够观察活体动物体内的基因表达和细胞活动,是将分子及细胞生物学技术从体外研究发展到活体动物体内的强有力手段,正在被越来越广泛地应用于医学及生物学研究领域。由于其检测灵敏度极高,且操作简单,费用相对低廉,因此在生物科学研究领域有着广阔的应用空间。 除非注明,图森文章均为原创,转载请以链接形式标明本文地址   本文地址:
    留言咨询
  • 相干拉曼成像系统 400-860-5168转2831
    相干拉曼成像系统-RAMOS CARS 3D成像系统姓名:王工(Karl)电话:(微信同号)邮箱:相干拉曼成像系统:多功能 - RAMOS CARS 结合:CARS扫描显微镜拉曼/发光扫描共聚焦显微镜常规扫描共聚焦激光显微镜相干拉曼成像系统:多通道 - 同时可高速测量的五个通道:F-CARSE-CARS和拉曼反射激光测量透射激光测量荧光测量相干拉曼成像系统FeaturesHigh spatial resolution:CARS XYZ 0.7 μмRaman XY 300 nm Z 700 nmWide spectral range:CARS 985 – 5000 cm-1Raman 75 – 6000 cm-1High spectral resolution:CARS 7 – 8 cm-1Raman 0.25 cm-1 3D CARS image of liquid crystal 8CB structure on resonant frequency 2236 cm-1相干拉曼成像系统:CARS方法的优点高灵敏度:与自发拉曼显微镜相比,CARS 产生更密集和定向的信号;反斯托克斯CARS信号的频率超过泵浦波频率,并且在没有斯托克斯发光杂散光的光谱范围内被检测到;CARS 信号仅在激发强度的焦点处出现。它允许使用非共焦针孔以高空间分辨率进行成像,并且还可以执行 3D 逐层扫描,同时将相邻层对测量结果的影响降至很低;CARS 信号的光谱分辨率仅由泵浦激光线的宽度定义,这简化了光谱测量,因为无需任何光谱仪器即可检测 CARS 信号;CARS 信号与分子浓度的平方成正比,它允许使用 CARS(以及该方法的选择性和非侵入性)定量测量样品中的化学物质浓度;用于生物样品的微创(非破坏性)CARS 方法。由于 CARS 方法的高灵敏度,可以在没有荧光标记的情况下检测活细胞中的分子。相干拉曼成像系统应用:纳米生物技术:以高空间分辨率对生物样品(细胞和活细胞成分)进行实时无创分析非生物微结构特性的微纳米技术研究:半导体、液晶、聚合物、药物成分、微米和纳米粒子
    留言咨询
  • Amersham&trade ImageQuant&trade 800系统是新一代超灵敏多功能CCD成像仪,可在生命科学应用中获取高质量图像,适用于化学发光、紫外、多色荧光和白光成像,样品类型包括凝胶,印迹膜,多孔板和培养皿。优化的光学系统和全新专利技术——SNOW&trade (自动信噪比优化曝光模式)检测模式可通过算法优化图片信噪比,帮助用户提高成像灵敏度和图像质量。该系统集成了界面友好的控制软件和ImageQuant Connect软件,可实现用户远程访问设备。设备有4种型号可供选择,型号间可模块化升级。
    留言咨询
  • 3D光场显微成像相机——傅里叶光场显微将显微镜转换为3D实时数字成像显微镜 一、3D光场显微成像模块简介:3D光场显微相机模块DOIT是一款全光成像显微成像模块。该3D显微镜模块放置在显微镜目镜端口或相机端口中,可将普通显微镜转换为3D数字显微镜。3D光场显微相机模块基于微光场技术,也称为积分成像或光场成像,通过一组镜头记录 3D 场景的多个视角,通过这种方式,3D 信息通过单次拍摄存储,允许实时配准 3D 图像。3D数字显微镜目镜DOIT可与任何显微镜一起使用。 二、3D光场显微成像模块特点:1. 3D显微镜 即插即用,与任何显微镜兼容;2. 3D显微镜 三维动态成像,实时分析;3. 3D显微镜 使用简单,性价比高,应用广泛。 三、3D光场显微成像模块参数:参数亮场荧光显微亮场荧光显微横向视野776um776um339um353um有效横向分辨率2.5um4.9um0.9um2.2um景深160um160um35um35um蕞小轴向步长4.0um8.5um1.0um1.7um物镜20X NA0.520X NA0.540X NA0.7540X NA0.75四、3D光场显微成像模块的应用4.1 3D光场显微成像模块生命科学生物化学:3D成像有助于查看生物体内发生的化学过程细菌学:3D成像可以研究和识别与微生物学领域相对应的细菌生物技术:用于食品或卫生部门中转基因生物发展的3D成像神经科学:神经活动的3D实时成像可改善衰老性退行性疾病的研究药物与生物学:体内细胞和类器官的3D成像新药理学发展4.2 3D光场显微成像模块行业航天:3D成像使您可以查看金属材料,塑料,木材,玻璃等的详细信息法证:与法医和犯罪现场调查重建相关的3D成像样本微电子学:用于电子电路开发,设备制造和组装的3D成像农业食品:3D成像可对食品制造进行质量控制教育:3D成像技术用于相关专业课程4.3 3D光场显微成像模块软件3D光场显微相机模块通过计算机屏幕显示图像。通过功能强大的软件,可以处理透视图,并以不同的方式将3D图像呈现给用户。除了传统的2D平面图像,图像还以3D模式显示。不同的模块可根据每个应用程序所需的技术和标准,针对不同的分析增强不同的特性。包括不同观察点的视图,样品的体积重建,场景被遮挡部分的可视化,任意选择的焦平面(具有出色的光学切片能力),颜色编码的深度图或地形图样品表面图等。此外,视图可以转换为体式型,从而可以使用虚拟现实眼镜观看三维场景。此外,它们还可以转换为可从体式或全息光场看到的完整3D图像。关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
    留言咨询
  • 红外辐射显微成像系统(微观温度分布成像)IRLabs的IREM-IV红外显微镜系统使您能够更快、更准确、更可靠地进行半导体故障分析和调试。IREM-IV相机提供超低噪声扩展波长PEM成像,在工作电压为400 mV的10 nm设备上具有经验证的发射成像灵敏度。自行设计和制造的相机,用于低维护操作,具有卓越的功能,包括6位透镜转盘和超过20小时的LN2持续制冷时间。光学扩展端口为外部激光扫描OBIRCH、LADA、TIVA和其他成像模式提供了升级路径。3.3NA SIL物镜是定制设计的透镜家族中的新产品,经过优化,可在整个视场上提供卓越的衍射限制成像。自对准SIL尖端可自动调平,以符合被测设备的局部轮廓。独特的尖端弯曲设计提供了低的接触力,因此适用于成像安装器件或裸晶圆。集成轮廓传感器,测量器件表面轮廓,高度分辨率优于10 um。使用与精密x-y-z平台集成的尖端倾斜台,可以直接测量和补偿从翻转边缘或器件弯曲产生的局部表面倾斜。跟自对准SIL尖端相结合,以实现安全可靠的SIL成像。扩展波长PEM成像通常是热背景噪声受限的。IREM-IV提供两个内部冷却的滤光轮,因此光谱滤光器或背景限制孔径适用于任何测量场景。红外辐射显微成像系统(微观温度分布成像)指标参数:相机 运动系统● 1016×1016 液氮制冷MCT阵列 ● 25nm分辨率● 像元尺寸 18um ● 100mm运动范围 (X-Y-Z)● 400-2500nm 光谱响应范围 ● 阻尼振动隔离● 6个位置自动物镜转盘 ● 电动样品尖端倾斜选项● 6个位置制冷滤光片/孔径转轮● 大于20小时液氮维持时间系统尺寸● 显微镜 810mm x 876mm x 813mm, 160kg● 控制系统 610mm x 1283mm x 762mm,90kg物镜选项:参考图例**详细技术参数可参考Datasheet或咨询上海昊量光电设备有限公司。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 双折射显微成像系统 400-860-5168转2831
    双折射显微成像系统所属类别: ? 光学检测设备 ? Hinds偏振成像设备所属品牌:美国Hinds Instruments公司 产品简介双折射显微成像系统 生物组织/材料 双折射分布显微成像系统 Hinds Instruments 公司的偏振显微/双折射显微成像系统 可以精确测量多个波长下生物样本/材料双折射分布,并配合CCD多个像素元形成详细细致分布。结合不同组织的双折射偏振特性,可以用来分析检测生物样品/材料特定。 偏振显微成像系统、显微偏振成像系统、偏振显微镜、偏振成像、双折射显微成像 Hinds Instruments 公司的偏振显微/双折射显微成像系统,Hinds Instruments 公司的偏振显微/双折射显微成像系统可以精确测量多个波长下生物样本/材料双折射分布,Hinds Instruments 公司的偏振显微/双折射显微成像系统也可以并配合CCD多个像素元,从而Hinds Instruments 公司的偏振显微/双折射显微成像系统可以详细细致的显示这个分布。结合不同组织的双折射偏振特性,Hinds Instruments 公司的偏振显微/双折射显微成像系统可以用来分析检测生物样品/材料特定。 Hinds Instruments 公司的偏振显微/双折射显微成像系统可以配合多个波长实现多波长扫描的实现和应用(三波长或者四波长)。Hinds Instruments 公司的偏振显微/双折射显微成像系统在配合高速偏振调制成像和CCD多像素计算方案有着独到的解决技术。 产品特点? 不需要荧光/染料标记? 支持客户需求定制光谱扫描? 支持客户需范围求点/面/线成像? 同一幅面内双折射分布/强度分布/偏振角分布成像可选? 三色(可到2400nm谱段)四色(可到3500nm谱段成像)可选 相关产品 磁光克尔效应测量系统 成像型穆勒矩阵测量系统
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制