当前位置: 仪器信息网 > 行业主题 > >

生产工艺

仪器信息网生产工艺专题为您整合生产工艺相关的最新文章,在生产工艺专题,您不仅可以免费浏览生产工艺的资讯, 同时您还可以浏览生产工艺的相关资料、解决方案,参与社区生产工艺话题讨论。

生产工艺相关的资讯

  • 制药生产工艺核查拉开帷幕
    12月23日,国家食药监总局药品审评中心发布《关于对已上市药品生产工艺信息登记模板公开征求意见的通知》。通知发布了中药、化学药品和生物制品的生产工艺信息登记模板(征求意见稿),这暗示着国家食药监总局对药品的生产工艺核查要正式开始了!  生产工艺核查风暴开启!  早在今年8月11日,国家食药监总局发布《关于开展药品生产工艺核对工作的公告》(征求意见稿),要求药品生产企业自公告发布之日起对每个批准上市药品的生产工艺(中药为制法)开展自查,排除质量安全隐患。药企应于2016年10月1日前完成自查并上报自查情况。  根据当时的公告,对于药企的自查结果,应分别采取以下处理措施:  1、实际生产工艺与批准生产工艺一致  药品生产企业应将自查情况报告与药品生产工艺等资料一并归档,作为监管部门开展日常监管、现场核查的备查资料。  2、实际生产工艺与批准生产工艺不一致  要求开展充分的研究验证。  生产工艺变化对药品质量不产生影响的,药品生产企业应按照《药品注册管理办法》提出补充申请。  生产工艺变化对药品质量产生影响的,企业应立即停产。  药品生产企业应于2017年6月30日前完成在产品种生产工艺的研究验证、提交补充申请等相关工作,其他暂不生产品种应于2017年12月31日前完成上述工作 未按时完成的,应停止生产。  停产大潮要来了?  从以上信息看来,此次公布中药、化学药品和生物制品的生产工艺信息登记模板,是为了让药企在2017年6月30日前完成在产品种生产工艺的研究验证、提交补充申请等相关工作提前做准备。只有半年的时间,对于药企而言,如果被查实际生产工艺与批准生产工艺不一致,将很可能面临停产的处理。  有业内人士表示,因为药企当初申报一种药品时,其工艺流程等是按照实验室的数据上报的。在实际投入生产时,由于环境和设备的变化,药品的稳定性可能会出问题,这时药企就不得不对工艺做调整,从而获得相对正确的数据应对飞检以及其他各种检查。  此外,在新版GMP的软、硬件要求和严格的飞检下,对于制药企业而言,利润剧减也是必须直面的问题。很多中小药企一旦正规操作,在利润面前就显得完全没有竞争力。因此,就有了简化生产流程、篡改生产工艺等不合规行为。这些问题,在本轮生产工艺核查风暴中都很可能会被暴露。  如今,在国家食药监总局各种飞检下,大力打击药品生产工艺问题过程中,肯定会有不少药企在飞检严查中暴露问题,在即将到来的2017年,会迎来大批药企的停产大潮吗?我们拭目以待。  附:生产工艺信息登记模板(生产工艺信息基本要求)  中药生产工艺信息基本要求:  1.提供完整的生产工艺。生产工艺描述应与工艺规程内容一致,应能使经过培训的专业技术人员根据申报的生产工艺可以完整地重复生产过程,并制得符合其质量标准要求的产品。详细的生产工艺可附后(必要时可以图表的形式表示)。  2. 应根据实际生产所用的生产线和生产设备,存在多个生产线的情况应按生产线分别列出,明确商业生产批量范围。  3.根据实际生产情况,明确各步工序的规模范围以及收率范围。  4.按单元操作过程描述工艺,明确投料量、操作流程、工艺参数和范围、生产过程质控的检测项目及限度。  5.在描述各单元操作时,建议根据剂型特点及具体品种的实际情况撰写,并关注以下内容:  1)前处理:明确药材(饮片)前处理的方法和条件,明确处理后饮片(药粉等)的保存时间和条件等。  2)提取:明确提取方法及条件,提取用溶媒的种类、用量,提取次数,提取温度、时间,提取液过滤的方法及条件等。  3)浓缩:明确浓缩的方法、条件,如温度、压力的范围,浓缩过程允许的最长受热时间等。明确浓缩液的相对密度,明确浓缩液或浸膏的得率范围。  4)纯化:明确纯化的方法及条件,详述相关工艺参数。  5)干燥:明确干燥的方法、条件及设备等,明确得率范围。  6)制剂工艺:明确制剂处方,详述成型工艺的方法及参数,包括原辅料的加入方法、条件和投料顺序,以及成型方法及条件等。  6.其他事项  1)对于不连续工序,应注明物料的存放条件及允许存放时间。  2)对于无菌制剂,应详细描述原辅料的预处理、直接接触药品的内包装材料等的清洗、灭菌、除热原等 详细描述除菌/灭菌的工艺过程及参数,包括灭菌温度、灭菌时间和目标F0值,初滤及精滤的滤材种类和孔径、过滤方式、滤液的温度与压差、流速等。  3)企业需填写实际生产批量,如有多个批量,可增加数据列。如单个表格无法容纳,可按当前格式新增表格。  化学药品生产工艺信息基本要求:  1.提供完整的反应式和生产工艺。生产工艺描述应与工艺规程内容一致,应能使经过培训的专业技术人员根据申报的生产工艺可以完整地重复生产过程,并制得符合其质量标准的产品。  2.应采用与商业生产一致的生产线和生产设备,存在多个生产线的情况应按生产线分别列出,批量应在商业生产批量范围内。  3.按商业生产规模投料 并注明各步工序的规模及收率范围。  4.按单元操作过程描述工艺,包括各单元操作的反应方程式,所用物料的投料量及投料比(或摩尔比),工艺操作、工艺参数及参数的控制范围、生产过程质控(包括反应终点控制)的检测项目、方法及限度,中间体的检测项目、方法及限度。  5.在描述生产工艺各单元操作时,注意:  (1)对于非化学合成原料药,可根据其工艺特点,参照上述要求对工艺步骤及操作进行详细的描述。  (2)对于不连续下个工序,应注明存放条件及允许存放时间。  (3)对于无菌原料药,应详细描述相关物料的无菌处理、除菌/灭菌的工艺过程及控制参数。  6. 企业需填写实际生产批量,如有多个批量,可增加数据列。如单个表格无法容纳,可按当前格式新增表格.
  • 康宁和Ni科技成功示范连续反应和分离的集成生产工艺
    新闻发布 发布日期 ––2015年6月16日 康宁和Ni科技成功示范连续反应和分离的集成生产工艺 纽约州康宁—康宁公司(纽约证交所代码: GLW)和Ni科技有限公司成功示范了由康宁Advanced-Flow?微通道反应器,和Ni科技的(NiTech?)连续流结晶仪,以及Alconbury Weston 有限公司 (‘AWL’) 连续过滤设备组成的连续合成—分离的集成生产工艺。该集成系统为制药、精细化工和特种化工提供了连续合成和下游分离的整体方案。 康宁反应器技术全球业务总监姜毅博士指出:康宁公司和Ni科技的成功的示范合作,不但回答了“能否实现整个生产连续化包括连续结晶和连续过滤”这个问题,同时还证明了整个系统的集成能够创造高收率。 纵观这次和Ni科技的合作,康宁反应器在阿司匹林的连续合成中显示了它独特的性能优势。康宁反应器不但非常容易与连续结晶和连续过滤的装置配套,而且康宁反应器在没有进一步工艺优化的条件下,已经取得了100%转化率以及60克/小时高纯度的阿司匹林初品。短短几天时间,康宁? Advanced-Flow? G1反应器和Ni科技? DN15-Lite连续结晶仪以及AWL公司的连续过滤装置三步整合,在位于法国的康宁欧洲技术中心AFR实验室取得了非常好的结果。该连续流合成生产系统的小试结果很容易放大到千吨级工业化生产装置规模,而无放大效应。 Ni科技主席Paul Hodges表示“医药企业的一些重大变革正在进行中,Ni科技和康宁的合作给医药企业的绿色化生产提供了可能,使医药生产更快捷,更安全,成本更低。” 康宁反应器能够帮助精细化工、特种化学品以及制药生产企业降低成本。康宁? Advanced-Flow? 高通量微通道反应器,与传统搅拌釜反应器相比,对多相体系混合能力能够提高100倍,热传导性能能够提高1000倍,并能够实现实验室到规模化生产之间的无缝对接。康宁的专利的反应器技术具有集成化、兼容性强以及无缝升级等特点。康宁正在全球范围内与有关客户进行广泛合作,并持续开发多种连续流生产系统工艺流程包括连续反应和下游连续分离过程。不断提升的经济压力、环境影响和监管要求正在使得连续流生产技术受到广泛关注。 Ni科技提供多种型号的从实验室到工业化生产用振荡折流板式的连续结晶仪,目前可提供实验室用的DN15系列,内部液体体积从1.25 升 (DN15-Lite) 到 3.5 升 (DN15-Plus)。与AWL公司连续化过滤相结合,Ni科技可以提供高收率的精细化工连续流结晶技术。 预测性与警示性声明此新闻稿内含预测性陈述(符合1995年私人证券诉讼改革法案),以康宁目前财务报表及营运状况的预测与假设为基准,其中涉及种种可能对实际结果产生实质性差异的商业风险与其他不确定因素。这些风险和不确定因素包括:全球政经商局势产生变化或动荡不安的可能性;金融与信贷市场的状况;货币汇率;税率;产品需求和行业产能;竞争;集中客户群依赖度;生产效率;成本降低;关键零组件与原料之可取得性;新产品产量;价格波动;高价值与非高价值产品的销售组合变动;新厂房动工或重建支出;因恐怖行动、武装冲突、政治或金融动荡、自然灾害、恶劣天气或重大卫生因素可能造成的商业活动中断;保险的充分性;入股公司活动;购并及撤资活动;库存积压或陈废水平;技术变更率;专利权的执行能力;产品与零部件性能;关键员工留存;股价波动;以及不利的诉讼或法规发展。康宁已将上述及其他风险因素详细呈报美国证管委(Securities and Exchange Commission) 。 预测性陈述仅表达新闻资料发表当日的事实,未来若有任何新咨讯或事件发生,康宁无任何义务修正此陈述。关于康宁公司康宁公司(www.corning.com)是特殊玻璃和陶瓷材料的全球领导厂商。凭借着160多年在材料科学和制程工艺领域的知识,康宁创造并生产出了众多关键组成部分,这些组件被用于高科技消费电子、移动排放控制、通信和生命科学领域。我们的产品包括用于LCD电视、电脑显示器和笔记本电脑的玻璃基板;用于移动排放控制系统的陶瓷载体和过滤器;用于通信网络的光纤、光缆、以及硬件和设备;用于药物开发的光学生物传感器;以及用于其它一些行业,例如半导体、航空航天、国防、天文学和计量学的先进的光学和特殊材料解决方案。关于康宁中国康宁积极参与中国的发展已有30多年,以其专业人才及本土知识开发并应用突破性的技术从而改善了人们的生活。今天,康宁在中国的投资与该地区新兴市场的趋势紧密结合,在大中华区的总投资额已达30亿美金,员工总人数超过5,000人。请访问www.corning.com.cn和@康宁中国官方微博 ,了解更多关于康宁中国的信息。 关于Ni科技有限公司Ni科技有限公司(www.nitechsolutions.co.uk)是一家连续振荡折流板式反应器和结晶技术的创新发展型公司,旨在服务化工、医药及生物技术等领域。Ni科技反应器和结晶仪代替传统的搅拌釜(STR),使得生产连续化,过程更安全快捷。同时可以节省成本,过程更可控,生产更加绿色化。和传统搅拌釜相比,在跟小的生产空间中可以生产出更多,质量稳定,成本更低的产品。Ni科技是一家独立的公司,总部在爱丁堡(苏格兰)。 Alconbury Weston Limited(www.a-w-l.co.uk)是一家专一开发连续流工艺方案以及提供工艺放大的独立的仪器制造商,总部在英国Stoke-on-Trent。 媒体关系联络人: 康宁中国瞿敏 (86 21) 2215-2888qum@corning.com
  • 生产工艺核对“来袭”,科学仪器如何把握“动荡”中的制药圈
    p   自2015年的“7.22临床试验自查核查”开始,医药圈一直震荡不断。行业相关政策公告接踵而至,令人应接不暇,网上甚至有网友直言“现在的阅读速度已经无法跟上法规颁布的速度了”。整个制药行业面临严峻考验,大洗牌在即,虽有阵痛,但也意味着我国制药行业正在朝更加正规、更加先进的方向发展,对我国药品的质量、人民用药安全无疑是一件非常有意义的好事。另外,制药行业在面临彻底改革的同时,又给分析仪器市场带来了巨大商机。仪器厂商面对瞬息万变的制药行业,该如何把握机遇?从哪些方面占领市场先机?仪器信息网编辑就此粗浅分析如下: /p p    span style=" color: rgb(0, 112, 192) " strong 药品生产工艺核对再次震荡制药圈 /strong /span /p p   8月12日,CFDA正式对外发布了《关于开展药品生产工艺核对工作的公告(征求意见稿)》,要求药品生产企业应对每个批准上市药品的生产工艺开展自查,排除质量安全隐患。药品生产企业应于2016年10月1日前完成自查并将自查情况报所在地省级食品药品监管部门。生产工艺变化对药品质量产生影响的,企业应立即停产。 /p p   药品生产工艺是持续稳定地生产出合格药品的过程和方法,按照监管部门批准的生产工艺组织生产是保障药品质量的前提。企业获批进行药品生产需要向监管部门提交生产标准并得到生产证书,但这一生产标准很多并不是实际应用的工艺。或出于节约成本的目的,或为了工艺“保密”,实际工艺与注册不符在我国制药行业也是一个长期默认的“潜规则”。从研发端到生产端再到流通端,兼以飞行检查贯穿产业链,环环相扣,国家打出了一系列的组合拳,而这次生产工艺核查其本质上是继 GMP 检查之后对生产端供给侧改革的又一大动作。 /p p   据悉,目前各个制药企业都在组织人员梳理、研究本厂的生产工艺,更是有觉悟早的企业已经根据过去的工作经验,开始制定生产设备、相应分析仪器及标准品的购买计划。 /p p   仿制药一致性评价针对的是化学药领域289个品种,涉及近两万个文号 而生产工艺核对,则是针对包括化学药、生物药和中药的所有企业。加之有很大一部分药厂要同时面对仿制药一致性评价及工艺核对两项工作量巨大的任务,对分析仪器的需求可想而知。 /p p   span style=" color: rgb(0, 112, 192) " strong  药包材、辅料关联审评审批终出台 /strong /span /p p   8月10日,CFDA发布了《关于药包材药用辅料与药品关联审评审批有关事项的公告》,药包材和药用辅料关联审评终于有了实质性进展。 /p p   由于历史原因,我国专业的药用辅料生产企业不多,一些常规辅料多由化工、食品生产企业生产。据不完全统计,我国现有内资的药用辅料生产企业约400家,其中专业从事药用辅料生产的企业仅占23%,而化工企业约占17%,食品与其他企业约占60%。国内还有外资药用辅料企业10多家。国产药用辅料在质量及功能性方面仍与进口辅料也有一定差距。新政出台后,提高辅料品种及其质量标准、加强其功能性,甚至为下游制剂企业提供个性化产品也是我国药用辅料企业极为紧迫的任务。 /p p   新政提高辅料生产门槛后,国内某些化工企业若要继续拓展辅料市场,需配备专门的药学研发人员以及符合GMP(生产质量管理规范)的生产车间和质量管理体系才能抢占市场先机。据悉,国内较大规模的企业已着手对车间进行升级改造并着手购买先进的分析仪器,以提升产品质量和规模。值得关注的是,行业外一些企业看到辅料市场的发展前景后,也有意发展这一领域,并已开始准备进行车间改造及仪器购买。 /p p   未来,伴随我国制药工业的发展,药用辅料质量必将有所提高,而药用辅料质量检测及功能性研究均离不开先进的科学仪器,在这一蓬勃发展的市场之中,科学仪器厂商必可争得一席之地。 /p p    span style=" color: rgb(0, 112, 192) " strong 仿制药一致性评价工作步入正轨 /strong /span /p p   8月17日, CFDA官网公布了2018年底前须完成仿制药质量和疗效一致性评价品种的批准文号数量,包括289个品种17740个文号。目录的出台,使得仿制药一致性评价的厂家和品种的具体情况更加明确,通过一致性评价,一大批仿制药文号或将被清理,最终提高我国化学仿制药品的生产质量。 /p p   关于仿制药一致性评价的内容,行业内人士都已非常熟悉。进入2016年来,国家频发的政策通告等,在表明国家整顿仿制药质量决心的同时,也一步步明确了一致性评价工作的流程,除公布原研对照药进口要求、申报资料要求外,还明确了溶出度仪验证的方法。另外,在之前公布的“征求意见稿”中,体外溶出试验方法的耐用性主要是针对色谱系统包括色谱柱、流动相的耐用性。在“试行稿”中,则将不同溶出仪之间的结果差异考察作为建立体外溶出试验方法的耐用性溶出量检测方法的方法学验证结果考察。以往的体外溶出度一致性评价试验中,仅通过同一台溶出度仪四种不同溶出介质即可完成试验,“试行稿”出台后,若想完成体外溶出度试验,则至少需要两台不同品牌的溶出度仪。仿制药一致性评价工作时间紧、任务重,我国很大一部分药厂都拥有若干仿制药品种,如每个品种都进行工艺改进已达到“一致性”目的,溶出试验及溶出度测定的试验工作量势必可观,稳定、可靠、可长时间运行、配备自动取样系统甚至在线测定系统的溶出度仪以及溶出度测定仪器(液相/紫外等)都会更受市场欢迎。 /p p    span style=" color: rgb(0, 112, 192) " strong 中药领域将迎来爆发式发展 /strong /span /p p   2月3日,国家取消了中药材生产质量管理规范(GAP)认证、2月26日,国务院印发中医药发展战略规划纲要(2016—2030年)、8月11日,《中医药发展“十三五”规划》正式出台。相对于我国医药行业其他子行业,可以说中药领域半年来出台的政策法规大多为利好政策。 /p p   取消中药材生产质量管理规范(GAP)认证后,将由中药生产企业(包括饮片、中成药生产企业)对产品生产全过程的质量保证负责。国家取消GAP认证,并不意味着放任不管,而是变由企业自身切实对药材质量负责。另外,“国家中药标准化项目”也在切实推进过程之中。国家推行的一些列政策都提示,质量控制并不仅仅存在于药品生产的最后阶段,而是贯穿生产全过程,甚至存在于中药材的种植阶段。保证中药材种植、中药饮片生产、中成药生产全过程均有相应质量标准和技术规范来保障质量,并做到产品与标准均可溯源,可以说,这一发展目标对快速、稳定的在线分析仪器市场来说是个巨大的利好。目前我国已有少部分中药生产企业将近红外、拉曼等在线分析技术应用到生产之中,这也将是未来的发展趋势。另外,不论是“中医药发展纲要”,还是“中医药十三五规划”,都明确指出未来我国中药质量标准要与国际接轨,甚至要引领国际水平。而且在未来几年,我国还将建设一系列独立、权威、具有公信力的第三方质量检测技术平台,为医疗机构、相关企业、药品采购机构、公众和新闻媒体等提供中药质量检测和信息服务。从这几个方面来说,科学仪器在中药行业都将迎来爆发式发展。 /p p   近两年的制药行业正面临着力度空前的改革,未来,行业集中度将获得极大提升。正如业内人士所言:“熬过了这些关的企业必定就是好企业”。经过这一系列的改革,我国药物质量将会得到实质性的提高,药物质量标准与检测技术也将与国际先进水平进一步接轨。在这一蓬勃发展的市场之中,少不了科学仪器这一重要角色,在未来制药行业之中,科学仪器的市场也将进一步扩大,为保证我国人民用药安全贡献力量。(撰稿 :王明煜) /p
  • 邀请函 | 2021农药制剂配方技术、生产工艺案例解析研讨会
    农药制剂配方技术、生产等问题的技术交流研讨会一直备受制剂企业及各方面供应商的关注和欢迎!本着不忘初心,帮助从事农药剂型开发的专业人员提高研发能力,加强企业技术力量储备,应对政策与市场需求,2021农药制剂配方技术、生产工艺案例解析研讨会定于7月22日~23日在南京举办“。本次会议将邀请具有丰富剂型制剂研发经验的专家、业界高手到会演讲,就政策解读、发展方向、新技术新配方新问题、专用助剂的研究和推广等专题(技术)进行研讨。届时,欢迎各位同仁莅临大昌华嘉科学仪器部展位,与您共同探讨前沿技术,互惠共赢!展会信息:时间:2021年7月22日到23日地点:江苏南京 - 南京熊猫金陵大酒店
  • ATAGO折光仪在酱油生产工艺品质控制的解决方案
    酱油作为一种常用的咸味调料,必然含有一定量的食盐。按照我国人民现实的生活习惯,在烹饪和调味时,加入了酱油之后,往往会不加或少加食盐,因而,酱油是我国人民在饮食中摄取食盐的一个重要来源。食盐是人体生理活动必不可少的营养物之一,但过量摄取后带来的害处也不容忽视。近年来,中国的酱油业界十分重视低盐和减盐酱油的开发。 酿造酱油具有独特的色、香、味, 是人们日常生活中必不可少的调味品。食盐是酱油的原料之一, 不仅对人体有着重要的生理作用, 而且在酱油的酿造中扮演着重要的角色, 是酱油生产中不可忽视的一个重要因素。 实验目的:了解酱油生产过程中加盐量与固形物BRIX%的线性关系工具:PAl-1酱油折射仪,酱油,盐,天平,定量瓶 试验方法:定量取50ml的海天酱油,用天平准确称取0.2g的盐加入酱油中,测试Brix值并记录,持续重复每次加盐0.2g左右到原有样品中,每次添加之后测试并记录现有样品的BRIX值,总计加入食盐4g,添加次数20次,记录BRIX值变化。 数据如下: 数据分析:由上表的实验数据得出盐度换算值:0.2g盐=0.2-0.3Brix% 实验结论:可以在生产线上采用在线折光仪CM-800a快速检测酱油原液加盐调配前后的Brix值去评估和在线监控加盐量。 更多酱油生产工艺品质控制的解决方案尽在ATAGO(爱拓)ATAGO(爱拓)调味品折射仪PAL-98S, 酱油折射仪PAL-1,在线折射仪(酱油品控管理)PRM-100a,通过检测Brix值,来判断什么时候需定时替换或者添加物料,多种数据输出方便用户进行自动化控制管理,控制不同酱油生产线的样品混合比例,实时检测浓度的变化。 请尽快联系我们构建您的在线浓度检测系统。www.atago-china.com
  • 中国生物制药发展机遇与挑战——连续生产工艺技术是实现中国生物制药后发优势的突破口
    导读近年来国家推出系列医疗改革,尤其是仿制药一致性评价、“4+7” 带量采购政策等对整个医药产业的竞争格局和产业生态产生了深远的影响。药企竞争也将由原来的销售为王,变成以创新、质量和成本为核心竞争力。一方面,中国巨大的市场潜力,国际重磅生物药专利到期,大量的海归人才回流以及中国日益强大的资本助力都为中国生物制药发展提供了前所未有的历史机遇;另一方面国内生物类似药企业不仅要面临国外原研药断崖式降价,带来的压力,而且还要面对越来越多的制药企业进入生物类似药的竞争。当前中国生物药企业无论在技术、规模、经验,人才还是资金,跟国际生物制药巨头相比都有较大差距的情况下如何立足,并能实现后发优势,是所有中国生物制药企必须面对的问题。中国生物制药发展机遇1.市场巨大: 全球生物制药产业发展迅猛,根据Frost&Sullivan市场调研,2018年,全球生物制药市场规模约为2642亿美元。单抗类药物由于特异性好,靶向性高,副作用少,疗效显著成为发展最快的一类生物药。单抗药物在全球生物药中所占市场份额超过50%, 而且在全球十大畅销药品排行榜上占据 7 个席位。很多重磅单抗生物药的专利将于2020年之前到期,给生物类似药带来了巨大的机遇。2020年全球生物类似药市场空间预计可达350亿美元。中国有庞大的未被满足的医疗需求,近年来政府强有力的医疗改革,VC/PE加大对生物制药投资力度,以及资本市场对未盈利利生物制药企业开放等因素,使中国生物医药行业得到前所未有的发展机遇。2. 人才基础:中国培养了大量生命科学领域的人才,而且有相当一部分人才有着在国外长期从事生物医药研发和生产的经历。随着国内经济实力的提升,越来越多的海归人才纷纷回流,缩短了国内外生物制药技术的差距。 大量人才的回流带来技术的进步为中国生物制药快速崛起提供了保障。3. 资本助力:生物制药是高投入,高风险,长周期的行业。以往中国风险投资基金偏好于短平快的产业,这种状况随着中国经济转向高质量发展得到改变,近年来生物制药成为中国风险资金投资热点。资本市场也为生物医药企业敞开大门:首先,香港联交所于2018年初出台新规,允许尚未盈利或未有收入的生物药公司赴港上市;随后,国内科创板在上海证券交易所设立并试点注册制,重点鼓励生物医药等领域企业上申报科创板,为未盈利或未有收入的生物科技企业提供了一个更为多元化的融资渠道,将极大促进中国生物制药的发展。中国生物制药的挑战中国巨大的市场潜力,国际重磅生物药专利到期,大量的海归人才回流及中国日益强大的资本助力,都为中国生物制药发展提供了前所未有的历史机遇。但在目前中国生物制药企业无论是技术、规模、经验,人才还是资金,跟国际生物制药巨头相比,都有着较大的差距的情况下,如何立足是中国生物制药面临的挑战。另外中国正式加入ICH和国际药监管体系接轨,降低药品进口关税,对抗癌药物实施零关税等系列政策,降低了国外原研药进入中国市场的门槛,这一政策有利于中国患者更早获得国外新药,但同时也给中国生物药企业带来了压力和挑战。首先,由于市场的独占性,原研药在专利期内会很快收回投资成本并获得丰厚的回报,因此一旦专利过期,原研药的价格可以断崖式下降以阻碍仿制药的市场竞争,中国仿制药面临成本压力不可避免。另外,越来越多的制药企业进入生物类似药的开发领域,每个重大抗体药物基本上都有几十家企业在研发申报,进一步加剧了生物类似药的竞争。 “4+7”带量采购对制药产业竞争格局的改变在过去,药企以销售为王,最早进入市场的仿制药可以抢占市场渠道,阻碍后来者进入,因此大多数中国生物制药企业为了产品能提早获得审批,往往不惜成本以最快的速度推进产品进入市场,忽略了生产工艺创新性及生产成本的重要性。药企也往往优先采用昂贵的进口设备和耗材,导致国产生物类似药很难有成本优势,甚至远高于国外原研药的生产成本。由于过去药品市场终端价格高,利润空间大,因此这种模式在过去容易获得成功。 但“4+7”带量采购新政下允许通过一致性评价的仿制药与原研药一起同台竞标,低价中标,药企能否在竞标中取得优势完全取决于其产品定价。药品生产的成本主要取决于生产工艺的效率及关键耗材和设备的采购成本,因此中国生物药企能否在市场竞争中取得优势,一方面取决于中国药企能否采用创新性生产工艺如连续生产工艺,使得生产成本可以比原研药更低;另一方面中国生物制药产业链是否完善也会影响中国仿制药的生产成本及其竞争力,如果国内药企还是像以往一样完全依赖国外进口的昂贵设备和耗材,那中国仿制药就很难有成本优势,因为大多数国外垄断耗材在中国卖的价格远高于国际市场上的价格。因此关系到生物制药主要生产成本的上游的培养基、生物反应器,下游的层析介质、层析设备,膜材料及过滤系统等的国产化对中国生物制药产业发展极其关键。关键耗材国产化替代,采用创新工艺,提高生产效率,降低生产成本是国内生物仿制药在激烈的竞争中立足的根本。生物制药工艺生物制药关系百姓身体健康和生命安全,因此制药行业有着非常严谨和苛刻的管制。生物制药工艺也是个非常复杂的过程,而且要满足GMP的操作规范。生物制药可以分为上游细胞培养和下游分离纯化。制药工艺效率决定了生物药的成本,而在带量采购新形势下生物仿制药的市场竞争力又取决于生产成本。中国生物仿制药能否占有市场份额关键在于药企是否有创新性生产工艺技术,并能实现关键耗材和设备国产化替代。生物制药基本的工艺流程(1)生物制药工艺技术发展状况:生物制药行业一直致力于改进生物工艺(Bioprocessing)技术,以提高生产效率和降低成本。过去十多年来,基因工程获得突飞猛进的进步,细胞培养的表达量从原来的不到0.5 g/L 到现在普遍达到5g/L,有的甚至超过10g/L。这些进步是由细胞系表达载体的开发,克隆筛选以及细胞培养基的变化所获得的。由于发酵产率的大幅度提升,使得上游细胞培养成本大幅度降低。浙江大学林东强教授课题组采用生物过程模拟软件分析单抗生产的经济热点[1]。结果表明当表达量从0.5g/L 上升到5g/L时,单抗生产成本下降显著,随后变化趋于平稳,主要生产成本转移到下游分离纯化。与上游十多倍生产效率提升相比,下游分离纯化技术进步明显滞后,导致下游工序成为生产瓶颈,据调查研究,74.3% 的受访者认为下游技术问题是产能瓶颈的主要原因(来源:前瞻经济学人)。下游工艺在整个生物制药生产中占据主要生产成本,也被认为是最需要改进的技术领域。下游工艺的优越性和创新性决定了药企生产效率和主要成本的关键所在,也成为生物仿制药企业的核心竞争力。下游分离纯化核心的工艺流程下游纯化工艺的主要目的是通过分离纯化提高产品的纯度和收率,保障产品质量和稳定性。色谱和层析技术是下游分离纯化的最主要方式(注:色谱和层析都从Chromatography翻译过来,小分子分离领域习惯叫色谱,大分子分离领域叫层析),而影响层析效率最重要的是层析介质及其工艺。因此下游技术进步关键在于发展创新性高效色谱填料和层析介质,及开发先进的色谱层析生产工艺技术,如连续层析生产工艺技术。(2)连续生产工艺成为生物制药降低成本的突破口制药行业是监管和法规要求极高的行业,制药行业历来也是非常保守的行业,对新的技术和工艺接受比较慢,而且生产工艺一旦申报定型,即使后来开发的新工艺有明显的优势,厂家也不愿采用新工艺替代老工艺,一方面因为新工艺的验证成本高,风险大,另一方面新工艺往往需要重新投入新的设备。化学仿制药或生物类似药都是等原研药专利过期后才能做,因此原研药工艺比仿制药工艺要提早十多年完成,这十多年间技术和工艺的进步让仿制药企业有机会选择更好的工艺技术,性价比更高的设备和耗材,以更低的成本和更高的效率生产仿制药。比如说传统的生物药生产模式都是采用批次工艺,而新发展的连续生产工艺可以显著提高生产效率和降低生产成本。用于抗体分离纯化的传统层析介质都是多分散软胶层析介质,由于多分散软胶粒径分布宽,机械强度差,因此柱效差,流速慢,柱床高度受限制(一般只能装到20 cm高度)。现在可以选择新一代单分散聚合物材质的层析介质,这种新的层析介质具有粒径均一性好、机械强度高、耐压性强,因此可以显著提高柱效,提高层析流动相流速及装柱高度,分离纯化效率也得到大幅度提高。上游技术进步更加显著,发酵产率提高十几倍。 这些技术的进步让生物类似药有机会实现后发优势,生产出更便宜的药品。中国生物制药刚刚起步,主要产品是生物仿制药,中国药企无论在技术水平还是生产规模及效率上都与美国生物药巨头有较大差距,如果中国生物仿制药的生产工艺还是按美国原研药的批次生产模式,而且使用的关键耗材如培养基和层析介质都依赖进口,中国生物仿制药的生产成本就没有优势,在带量采购的竞标中就会处于不利地位。因此中国生物仿制药企业要在激烈竞争中获胜,就必须比原研药厂拥有更好的生产工艺、更高的生产效率及更低的生产成本。连续生产技术刚刚起步,国内外基本处于同一起跑线上,如果中国仿制药企业可以抓住机遇优先发展和使用连续生产工艺,将可以发挥后发优势,提高中国生物类似药的生产效率,降低生产成本。连续生产工艺技术的使用是中国生物药获得竞争优势的一个突破口。(3)连续生产的优越性传统生物药生产采用的是批次生产流程,需要经历一系列间隔的生产步骤。整个流程中的每个间隔环节都会带来生产效率的降低和延迟,并增加产品缺陷和操作失误的概率。连续生产制药技术是一种新兴技术,虽然还面临着许多监管的问题和技术的挑战,但连续生产的优越性却显而易见,也是生物制药工艺发展的必然趋势。首先,连续生产能够通过不间断的流程以更快、更稳定、更经济、更安全地生产。 由于连续生产工艺集成度高、自动化程度高,因此可减少人工成本。第二,连续生产还可以做到实时质量监控,随时撇下不达标的中间产品,从而让产品更可靠并减少浪费。第三,连续生产可以实现设备小型化,高效利用厂房空间,大幅度缩小厂房的使用面积,减少固定资产的投资。第四, 连续生产还可以提高介质利用度,降低流动相及介质的使用量从而降低生产成本;第五, 连续生产规模易于调节,可大可小,方便适应不断变化的市场需求,这种操作灵活性同时减轻一些审批后的监管任务,也使得工艺更容易放大,减少传统工艺放大所面临的诸多验证和重复的问题。连续灌流培养技术是实现上游连续细胞培养发展起来的新技术,这种方法是通过接种后新鲜培养基的持续加入,含有产品的培养基持续收获,细胞截留装置将细胞保留在反应器中。相对于批次培养,连续灌流培养从根本上解决营养物耗竭和代谢副产物积累之间的矛盾,极大地提高培养过程中的细胞密度、延长培养周期,提高目的产品产量。凝血因子VIII是第一个获得批准的采用灌注流工艺生产的生物药物, 细胞密度和凝血因子VIII产能与批次培养相比可提高30倍,大大降低了对工厂规模的要求。连续生产在生物制药领域的应用将有望使抗体生产成本从现在的120-200美元/g, 降低到15美元/g以下。这也是为什么一向保守的美国FDA这几年却极力倡导和鼓励生物制药行业使用创新的连续生产工艺技术。 FDA甚至在2018年向三个连续制造项目提供近六百万美元资金支持,旨在帮助实施连续生产的创新技术在生物制药的应用,以提高产品质量并降低成本;FDA于2019年2月26日颁布了涉及连续生产的关键指南草案《Quality Considerations for Continuous Manufacturing》,积极推动连续生产新技术的应用。FDA还首次批准了连续生产工艺用于抗艾滋病的药物Prezista的生产。连续生产要在生物制药上使用,需要解决上游连续细胞培养技术和下游分离纯化技术,其中最具挑战的是下游分离纯化。(4)连续生产的挑战连续生产这一技术早就成功用于食品和化药生产上,如葡萄糖和果糖的分离及手性药物的分离就是用SMB连续生产技术。由于生物制药行业的特殊性和复杂性,增加了生物药连续生产工艺的挑战和困难。生物药的生产流程长,步骤多,工艺复杂,实现连续生产的难度大,尤其是下游分离纯化。以典型的单抗生物药生产为例,其下游的分离纯化就至少需要三个独立的完全不同的层析过程:包括第一步用Protein A 亲和介质捕获抗体 第二步用阳离子层析作为中间纯化去除抗体多聚体、HCP、DNA等,第三步用阴离子层析介质精细分离残留的DNA,、HCP、Protein A、内毒素等杂质以达到精纯目的。中间还有膜过滤浓缩,pH调节,病毒灭活和去除,缓冲液置换, 溶液配方等系列步骤。而且每一步都有严格的质量管控要求,即便是批次生产也可能出现各种问题。连续生产需要把所有步骤有机连接起来,使得生产工艺可以高度集成,高度自动化,而且要确保产品的稳定性和一致性等,其难度可想而知。传统间歇式层析(左) 新型连续层析工艺(右)首先,对于批次生产工艺,中间质量检测可以通过取样检测,传统的检测方法如HPLC、MS等都可以满足要求,而连续生产需要在线检测,传统的检测方法很难满足要求。第二,在生产过程中由于层析介质如Protein A 介质会受残留杂蛋白的污染,配基还可能受到酶或化学试剂影响而脱落使得介质性能逐渐下降,因此如何保证连续生产过程中产品质量稳定性和一致性也是挑战。第三,由于连续生产是长期不间断生产过程,因此对设备质量和稳定性要求也更高。第四,连续生产对层析介质机械强度,粒径均匀性,载量等性能的要求也更高。(5)创新单分散层析介质有助于连续层析的实施连续层析系统不仅对设备、软件有更高的要求,而且对介质的要求跟传统批处理模式也不一样。首先,连续层析由多根串联的层析柱组成。为了保障产品连续生产的质量,对每根柱子的一致性要求高。因此介质填料均匀性就显得更为重要,因为介质越均匀,越容易装柱子,柱效也越高,柱与柱之间的一致性也越好。传统多分散介质由于颗粒有大有小,在装柱过程中大小颗粒的沉降速度不同,使得柱与柱之间差异较大;而且小颗粒容易堵塞筛板,影响流速,大颗粒又会降低柱效,也容易使样品流穿,从而影响分离效率。因此高度粒径均一的单分散层析介质可以克服传统多分散介质在连续生产中存在的问题,单分散介质由于粒径分布均匀可以确保柱与柱的一致性和稳定性。第二,在连续层析过程中,使用的是串联的小柱子,为了提高生产效率,线性流速要快,这就对层析介质机械强度要求要高,以满足高流速下产生的高压力。目前市场上主流的介质是软胶,耐压性差,只能低流速操作。聚合物层析介质由于是高度交联的介质,因此机械强度高,可满足高流速的需求。第三,层析介质的载量与纯化效率也有直接的关系,载量越高,样品上样量可以越大。但层析介质的载量与样品柱的留时间有关系,线性流速越快,柱保留时间越短,则载量越低。软胶虽然在低流速下有较高载量,但在高流速下,载量迅速下降。单分散聚合物层析介质是大孔结构的微球,通透性好,蛋白在微球内的传递速度快,因此在高流速下能保持较高的载量。因此粒径均一(单分散),高机械强度,高流速下保持高载量的介质是连续层析生产的理想的介质。MabSelect SuRe 和UniMab动态载量与柱保留时间的关系, 在高柱留时间两者载量差不多,在低驻留时间,UniMab 载量比MabSelect SuRe 高很多浙江大学林东强教授课题组开展了连续层析的系列研究,发表了《双柱连续流层析亲和分离抗体的过程设计和应用》文章[2]。比较了传统单柱层析与连续层析的过程。结果表明连续层析与批次单柱层析相比,抗体的纯化生产效率提高46%以上,流动相使用量却可以降低45%。论文还详细地对比了目前市场上占据主流的Protein A 层析介质MabSelect SuRe 和新一代单分散聚合物为基球的Protein A 层析介质 UniMab分别在批次和连续层析分离性能的实验。结果表明纳微生产的UniMab无论是在批次或是连续层析模式上,其生产效率、介质利用率及流动相减少方面比MabSelect SuRe 都有明显的优点。生物制药是投资大、技术门槛高的行业,中国生物制药起步晚,技术落后,很多核心技术受制于国外发达国家。比如说关系到生物制药主要成本的上游细胞培养基、生物反应器、下游层析介质、层析设备、膜材料和膜过滤系统等基本依赖进口。近年来,随着越来越多海外人才回国创新创业,这一局面得到极大改善。在上游细胞培养领域,由海归人才创办的奥浦迈和健顺生物公司都成功地开发出国产培养基,为中国培养基技术进步和国产替代做出重要贡献。在下游领域,同样海归团队创办的纳微科技股份有限公司在高效层析介质领域实现了弯道超车,从空白走向引领,成为世界上第一家可以大规模生产用于抗体分离纯化的单分散聚合物层析介质包括Protein A亲和、离子交换、疏水等层析介质,且拥有自主知识产权。纳微世界领先的单分散层析介质精准制造技术不仅填补国内下游层析介质的空白,而且推动了世界层析介质技术的进步,将为整个世界生物制药提高生产效率,降低成本做出贡献,并且有助于连续层析技术工艺的应用。在设备方面,利穗、赛谱、荣捷、汉邦等公司也都不同程度地实现了下游层析设备国产化。当然中国生物制药产业链还有待进一步完善,还有很多关键材料, 如说膜过滤材料还处于空白。中国生物制药发展需要更多像纳微这种可以突破“卡脖子”技术的公司。中国生物制药后发优势依赖连续生产工艺21世纪被称为生命科学和生物技术的时代,生物制药行业在过去的20年间有了长足的发展,特别是抗体类药物的销售额逐年攀升。目前,大部分抗体类产品是以批次的模式进行细胞培养和分离纯化。随着多个重磅原研生物药的专利到期,为了满足临床市场的需求和降低原研生物药的昂贵医疗费用,越来越多的制药企业进入生物类似药的开发领域,这进一步加剧了生物类似药的竞争,企业成本压力日益凸显,因此,中国生物制药企业要在激烈的竞争中立足就必须开发和采用创新的生产工艺并使用国产耗材。随着连续生产技术进一步成熟及国产培养基,层析介质等关键技术获得突破,生物制药批次生产向连续生产转移,关键耗材和设备进口替代,必将是中国生物制药发展的趋势。连续生产技术的成功使用还需要中国从事生物制药上下游耗材、设备生产厂家及制药公司的共同努力,协同发展,突破连续生产的一些瓶颈技术。连续化生产和关键耗材和设备国产化替代可以大幅度降低生物制药成本,必将惠及广大患者,也是中国生物制药发展实现后发优势的机遇。参考文献:[1]史策,虞骥,高栋,王海彬,姚善泾,林东强。单抗制备的过程模拟和经济分析。化工学报 2018,69(7)3198-32078[2]高宗晔,史策,姚善泾,林东强.双柱连续流层析亲和分离抗体的过程设计与应用 高校化学工程学报,2019,33(1):117-127.致谢:感谢北大同班同学江庆红在信息收集,调研及文章的整理,修改和编辑中做了大量的工作。
  • 满足越来越严苛的电子气体质量要求,从源头提升半导体生产工艺
    从去年开始“缺芯”一直困扰着众多工业行业的发展,尤其是汽车行业受到的干扰更为突出。全球芯片代工厂都在满产运转,各大半导体供应商无不开足马力提升产量,扩展产能,提高未来市场话语权。而在半导体众多工艺过程中,集成电路、液晶面板、LED 及光伏等材料的电子气体所扮演的角色也越发不能忽视。它的纯度和洁净度直接影响到光电子、微电子元器件的质量、集成度、特定技术指标和成品率,并从根本上制约着电路和器件的精确性和准确性。随着电子消费品的升级换代,整个电子工业界对电子气体气源纯度,以及杜绝输送系统二次污染的要求越来越苛刻。基本上工业界对电子气体气相不纯物以及颗粒度污染提出的技术指标,直接与分析仪器技术进步带来的最低检测极限(LDL)相关联。* 图片源自正版图片网站Unsplash在实际生产过程中,半导体厂商发现随着工厂生产工艺的提升,由于对大宗气体检测手段的落后,已经无法提供更高杂质检出限(PPT级)的检测结果,导致产品良品率持续降低:虽然气体杂质检测结果正常,但是生产质量却频频出现问题。对于来自最终用户对于大宗气体质量的指责,气体供应商也认为有必要在大宗气体出厂之前就能够完成质量控制监测,尽早减少生产波动、设备故障带来产品质量问题,确保质量稳定,消除与用户的争议。Thermo Scientific™ APIX dQ(APIX Quattro)超高纯电子气质谱分析仪APIX dQ是赛默飞世尔科技与法国液化空气(Air Liquide)气体公司联合开发的新一代超高纯电子气质谱分析仪。APIX dQ采用了阳离子大气压离子化质谱仪( API-MS)技术, 该技术被电子工业广泛用于检测超纯大宗气体中的众多污染物,如H20, He, CO, CO2, O2, CH4, Kr 和 Xe 等。相比于其他传统的、由多个独立的分析仪组成的分析仪系统,APIX dQ超高纯电子气质谱分析仪有着自身独特的优势: 测量下限低,可达到10ppt级; *注:X表示不分析 单台表能够同时分析多种杂质(见表1:APIX能够监测N2中的杂质和测量下限); 响应时间快,每个组分小于1秒钟;-分析N2中众多杂质不会超过10秒钟; 运行成本低,维护量小(没有载气、助燃气等要求); 配置简单,不需要预处理系统,样气直接进行分析; 真正的在线分析仪,直接在线标定; 全球超过100台套以上使用业绩,为众多电子厂商和大宗气体供应商在全球使用。Thermo Scientific™ APIX dQ(APIX Quattro)超高纯电子气质谱分析仪作为核心检测手段,能够为不断高歌猛进的半导体工业,尤其是芯片制造领域提供可靠、准确,值得信赖的大宗电子气纯度和洁净度的在线连续检测。赛默飞四气体在线杂质检查方案,极大的提升了芯片的质量和良品率,为芯片国产化和半导体工业的发展提供了基础保障,将不断助力于国内数字化、智能化、5G和工业物联网进程。互动福利赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 工信部发布《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》
    中华人民共和国工业和信息化部公告2021年第25号为贯彻落实《中华人民共和国固体废物污染环境防治法》,加快淘汰产生严重污染环境的工业固体废物的落后生产工艺、设备,持续提高工业绿色发展水平,现将《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》予以公告,自2022年1月1日起施行。附件:限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录.pdf工业和信息化部2021年9月23日附件:限期淘汰产生严重污染环境的工业固体废物 的落后生产工艺设备名录条目后括号内年份为淘汰期限,淘汰期限为2023年12月31日是指应于2023年12月31日前淘汰,其余类推;未标淘汰期限的条目为国家产业政策已明令淘汰或立即淘汰。一、石化化工1. 废旧橡胶和塑料土法炼油工艺;2. 间歇焦炭法二硫化碳工艺;3. 高汞催化剂生产设备(氯化汞含量6.5%以上);4. 使用高汞催化剂的乙炔法聚氯乙烯生产装置;5. 有钙焙烧铬化合物生产装置;6. 使用汞或汞化合物的甲醇钠、甲醇钾、乙醇钠、乙醇钾、聚氨酯、乙醛、烧碱、农药生产装置。二、钢铁1. 土法炼焦(含改良焦炉);2. 预应力钢材生产消除应力处理的铅淬火工艺;3. 采用重铬酸盐钝化技术的电解锰工艺设备(2023年12月31日);4. 钢铁行业用一段式固定煤气发生炉(不含粉煤气化炉)。三、有色金属1. 采用马弗炉、马槽炉、横罐等进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或生产氧化锌工艺装备;2. 竖罐炼锌工艺和设备(2025年12月31日);3. 采用铁锅和土灶、蒸馏罐、坩埚炉及简易冷凝收尘设施等落后方式炼汞;4. 采用土坑炉或坩埚炉焙烧、简易冷凝设施收尘等落后方式炼制氧化砷或金属砷工艺装备;5. 铝自焙电解槽及160kA以下预焙槽;6. 鼓风炉、电炉、反射炉炼铜工艺及设备;7. 再生有色金属生产中采用直接燃煤的反射炉;8. 采用地坑炉、坩埚炉、赫氏炉等落后方式炼锑;9. 采用烧结锅、烧结盘、简易高炉等落后方式炼铅工艺及设备;10. 利用坩埚炉熔炼再生铝合金、再生铅的工艺及设备;11. 烧结-鼓风炉炼铅工艺;12. 离子型稀土矿堆浸和池浸工艺;13. 有色金属行业用一段式固定煤气发生炉。四、黄金1. 混汞提金工艺;2. 小氰化池浸工艺、土法冶炼工艺;3. 无环保措施提取线路板中金、银、钯等贵重金属工艺。五、医药1. 铁粉还原工艺生产咖啡因;2. 铁粉还原工艺生产对乙酰氨基酚。六、机械1. 加热温度≤1000℃的热处理氯化钡盐浴炉;2. 钻采工具接头螺纹磷化处理工艺(2023年12月31日);3. 使用汞生产开关和继电器的工艺;4. 使用汞生产气压计、湿度计、压力表、温度计(体温计除外)等非电子测量仪器的工艺(无法获得适当无汞替代品、安装在大型设备中或用于高精度测量的非电子测量设备除外)。七、船舶废旧船舶滩涂拆解工艺。八、轻工1. 脂肪酸法制叔胺工艺 2. 发烟硫酸磺化工艺 3. 铅蓄电池生产用开放式熔铅锅、开口式铅粉机 4. 管式铅蓄电池干式灌粉工艺 5. 铅蓄电池生产中铸板、制粉、输粉、灌粉、和膏、涂板、刷板、配酸灌酸、外化成、称板、包板等人工作业工艺(新建、改扩建项目禁止使用)。
  • UHPLC-MS方案|下游生产工艺中HCP定性/定量分析
    前言宿主细胞蛋白 (Host Cell Protein, HCP) 是细胞生长和后续生产工艺中来源于宿主细胞系的生物药品杂质,会对药品最终的安全性和有效性产生不利影响。因此,必须通过一系列纯化步骤去除这些 HCP。国际人用药品注册技术协调会(ICH)、美国食品和药物管理局 (U.S. FDA)、欧洲药品管理局 (EMA) 和其他国家的监管机构都有关于 HCP 监测的指南。 在本文的研究中,我们对三个来自于下游生产工艺不同纯化阶段的样品进行了基于LC-MS高分辨质谱串联平台的定性及定量分析,并对每个样品中存在的高风险HCP进行了特别标注。分析流程请见图1。 图1 实验整体流程(点击查看大图) 在经过一步ProteinA纯化后的样品中,鉴定到676个具有定量信息的HCP(peptide≥3,下同);再经过一步阴离子交换色谱(AEX)纯化后,HCP数目下降至111;在此基础上再进行一步阳离子交换色谱(CEX)纯化后,仅检测到7个HCP。三个样品中定性及定量的HCP数目请见表1。 表1 不同纯化阶段样品中定性并定量的HCP,所有数据均为三次生物重复的平均值 对于会引起免疫响应、降解蛋白或辅料的高风险HCP是科学家们在产品工艺的优化过程中尤为注意的。图2展示了随着纯化步骤的增多,高风险HCP数目呈减少趋势。图3展示了经过三步纯化后依然能够鉴定到的三个高风险HCP及其各自的含量。图2. 不同样品中高风险HCP数目变化趋势(点击查看大图) 图3. 经过三步纯化后样品中依然能鉴定到的高风险HCP(点击查看大图) 本实验中所有数据均是由一站式生物制药分析软件BioPharma Finder4.1处理。该软件内置HCP分析功能,可同时对目标蛋白和HCP进行搜库、定性和定量(图4~6)。图4 HCP鉴定结果展示界面(点击查看大图)图5 同一个HCP在不同样品中的变化趋势,每个样品均进行了三针技术重复(点击查看大图)图6 三步纯化后一条来源于高风险HCP肽段的二级谱图及覆盖率(点击查看大图) 客户得益用非变性酶解条件进行 HCP 鉴定和相对定量的工作流程,然后进行 LC-MS/MS 分析。使用 UHPLC 系统和高分辨率精确质量 (HRAM) 质谱仪在宽动态范围内进行HCP定性与相对定量,灵敏度可低至约 1ppm。为各个 HCP 提供定性和定量信息,可用于指导下游工艺开发和优化决策。证明 POROS 树脂具有高选择性,可有效去除不同含量和种类的 HCP。Biopharma Finder 4.1单一软件解决方案,可同时提供目标蛋白的肽图分析结果及HCP的定性定量结果。本研究中使用的样品由赛默飞生物工艺部下属的生物工艺设计中心(Bioprocess Design Center, BDC)所提供。该中心总监马骏表示,近年来,有关抗体药品中的HCP可能导致临床不良反应的报道屡见不鲜,其中某些高风险HCP被发现可能是导致不良反应的主要因素。这些案例从客观上对我们提出了一个新要求:在抗体药物的CMC开发过程中,越早对HCP进行更进一步的分析鉴别,越快在工艺开发中去除高风险HCP,就越有利于该药品在临床阶段的成功,而LC-MS联用的方法无疑为这一需求提供了可靠的工具。
  • 一文了解领先的意大利西姆沉淀碳酸钙生产工艺
    p style=" text-indent: 2em " span style=" font-family: 宋体 line-height: 1.75em text-indent: 28px " 沉淀碳酸钙是将石灰石等原料煅烧生成石灰和二氧化碳,再加水消化生成石灰乳,然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,根据用途可进行碳酸钙粒子表面改性处理,最后经脱水、干燥粉碎而制得。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_422477_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 沉淀碳酸钙是重要的无机粉体填料之一,用途十分广泛。据了解目前中国已经发展成为世界沉淀碳酸钙第一大生产与消费国,但是就生产而言,与国外同行业相比差距仍然较大。如企业规模普遍较小,设备陈旧、水平低、产品品种单一、质量差等问题都急需解决。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 意大利西姆作为领先的沉淀碳酸钙生产工艺设计制造工程公司,其提供的技术、工艺和设备具有一定的先进性,对国内企业的生产具有一定的借鉴作用。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 意大利西姆介绍 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 1967年,意大利西姆诞生于欧洲第二个工业大省——意大利贝加莫,贝加莫是一个具有悠久历史和生产石灰、水泥和磨细碳酸盐的地区。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_459162_newsimg_news.gif" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆最初供应单轴石灰窑,三阶段水合物和包装机等,随后通过扩大其技术范围,继续引进回转窑等设备。目前已成为世界著名的提供石灰工业有关技术、设备与工程的工程公司。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆在世界 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆主要业务包括双筒蓄能活性石灰窑,干式消石灰生产装置,PCC工厂建造等。截止2017年10月,西姆足迹遍及5大洲60个国家,共229个石灰窑、169个水化设备?? /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 全球西姆业务分布图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_490464_newsimg_news.png" width=" 400" height=" 300" border=" 0" vspace=" 0" title=" " alt=" " style=" border: 0px margin-left: -3em !important width: 400px height: 300px " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 各地区西姆设备分布图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_568358_newsimg_news.jpg" width=" 400" height=" 300" style=" border: 0px margin-left: -3em !important " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 229个石灰窑: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 北美国+欧洲94个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 南美国+中欧/东欧23个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " AFTRIC+中东27个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 亚洲+大洋洲85个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " 169个水化设备: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 北美国+欧洲103个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 南美国+中欧/东欧30个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " AFTRIC+中东16个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 亚洲+大洋洲20个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆沉淀碳酸钙工艺 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆沉淀碳酸钙生产线 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_578396_newsimg_news.png" width=" 557" height=" 472" style=" border: 0px margin-left: -3em !important width: 557px height: 472px " / /p ol class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " 石灰煅烧 /span /p /li /ol p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆石灰的煅烧采用全自动双筒蓄能气烧石灰窑,燃烧介质为天然气或煤气,体积分数在25%左右,入窑石灰石块度小,可降低石灰石的损耗,并可以生产高活性的轻烧石灰石,(相比国内机制窑活性300 ml(4NHCl))蓄能窑的活性可达370ml(4NHCl)。高活性石灰对消化工序与碳化工序设计运行有直接影响,机理上对 PCC 粒子晶型确定,成核,晶体成长,以及粒径分布有积极作用。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2.石灰消化 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " PCC生产中,西姆采用的三级消化技术,厢式连续搅拌消化机,消化能力大,出渣量小,设备占地面积小,Ca(OH)2浓度是浓度 8-16%。消化后过旋液分离器和振动筛,采用二级制冷,一级采用工艺水制冷入口温度74° C ,出口温度34° C;二级冷冻水制冷入口温度34° C,出口温度调到25° C以下。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 3.碳化工艺 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的碳化示意图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_757857_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆的碳化采用两级碳化工艺。一级碳化为大气液比连续碳化塔,碳化过程连续进料,以便快速形成晶核。也称为晶核预成器。Ca(OH)2和CO2进行连续碳化反应。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 二级碳化采用了大容积、搅拌式鼓泡碳化方式,调整pH在7以下。能够提供20、27、40、57m3等4个规格的碳化器。碳化器采用双叶轮搅拌器,碳化反应时间为60-90分钟一塔。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 造纸微米钙和橡塑纳米钙的碳化 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_779250_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 4.包覆工艺 /span /p ul class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " ?皂化 /span /p /li /ul p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 皂化采用30立方的皂化釜,硬脂酸与氢氧化钠高温皂化形成硬脂酸钠,皂化温度控制在80-85℃。 /span /p ul class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " ?活化 /span /p /li /ul p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 活化采用体积50m3,直径3.5m的活化釜,高温、高转速、高剪切搅拌活化,温度控制在80-85℃。加入皂化液后,搅拌2小时进行包覆,与碳酸钙表面结合。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 5.干燥粉碎 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 一般的沉淀碳酸钙产品不需要粉碎可以直接包装,如果认为细粉含量低,仍有团聚,可以另外加解聚装置,采用日本细川公司生产的针形磨,进一步粉碎降低团聚体和吸油值。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 对于纳米碳酸钙来说,其干燥被国内专家称为国内 PCC 技术的“瓶颈”。西姆的技术采用英国阿碎得(ATRITOR)干燥粉磨机,同时完成轻质碳酸钙PCC生产中的干燥和解聚工序,是生产高等级超细钙和纳米轻质碳酸钙的重要设备。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_789796_newsimg_news.png" width=" 509" height=" 295" style=" border: 0px margin-left: -3em !important width: 509px height: 295px " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆产品特点与指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 平均粒径尺寸(20-70nm);比表面积(70-18 m2/g);形状规则,粒径分布小;表面包覆硬脂酸,用量1.9-4%,纯度高。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的SC纳米碳酸钙指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_823374_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的造纸钙指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_839392_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p
  • 聚合物热分析新方向 将仪器和数据直接应用于生产工艺——访耐驰科学仪器商贸(上海)有限公司市场应用总监曾智强
    第三十四届Chinaplas2021国际橡塑展近日于深圳国际会展中心举办,此次展会吸引了上百家仪器厂商参展。仪器信息网在展会上采访了耐驰科学仪器商贸(上海)有限公司市场应用总监曾智强。对于传统热分析如何从材料性能参数检测到最终实现真正把仪器和数据转换成生产力,转换成和工艺相关的比如工艺改进或工艺设计,是耐驰近年来一直努力在做的新的应用方向。采访视频如下:本次展会,耐驰带来了用于聚合物热分析表征三台仪器,分别是差示扫描量热仪DSC 214、旋转流变仪Kinexus lab+和介电树脂固化检测仪DEA 288。DSC在聚合物检测中应用广泛,耐驰差示扫描量热仪DSC 214具备独有的DSC谱图检索匹配功能,可用于加工质检、来料控制和问题产品回溯等多种应用场景;旋转流变仪Kinexus lab+是企业级流变测试平台,可用于测定聚合物熔体,聚合物溶液、悬浮液、乳液、涂料、油墨和食品等的流变性质的仪器,可以表征高分子材料的分子量和分子量分布,能快速、简便、有效地进行原材料、中间产品和最终产品的质量检测和质量控制,帮助用户进行原料检验、加工工艺设计和预测产品性能;介电树脂固化检测仪DEA 288通过测量热固性树脂等高分子材料的介电性质的变化来研究其固化过程,该技术可应用于热固性树脂、涂料、粘合剂、油漆、复合材料、电子材料等诸多领域,不仅能用于实验室的研究开发,也能用于生产车间的在线监控。耐驰展位仪器产品差示扫描量热仪DSC 214旋转流变仪Kinexus lab+介电树脂固化检测仪DEA 288热分析的概念在工业市场已经逐渐普及,工业用户对于热分析的作用和认识也越来越深入,接受度越来越高,其在工业界的市场潜力会持续增长。相信未来热分析也会走出象牙塔,从纯科研走向企业应用,帮助实际生产设计和生产工艺向前迈进一大步。
  • 默克密理博邀您共同优化制药生产工艺,化繁为简!
    我们将在4月24日– 27日全国制药机械博览会上精彩亮相!欢迎您莅临我们的展台,并积极参与我们的现场抽奖活动,获取精美礼品! 时间:2014年4月24-27日地点:武汉国际博览中心 湖北省武汉市汉阳区鹦鹉大道619号展位号:国际馆B1-30 我们将与您分享: - 一次性生物工艺解决方案 - 层析工艺 - 澄清、超滤、除菌过滤、除病毒 - 微生物限度及无菌检测装置 - 药用原辅料 - 纯水系列 优化有礼: 欢迎您参加我们的展台,并填写展台调查表,即可参与我们现场抽奖活动,并有机会获得以下礼品,具体每天中奖名单,请至展台接待处现场查询。 明星产品展示:默克密理博NovAseptic GMP低剪切力型号磁力搅拌器适合液液互溶、易溶固体的搅拌、对剪切敏感的产品搅拌● 1993 年上市,久经考验● 有9 种规格可选,适合0 ~ 30000L 的液体● 低剪切力,适合粘度达800cp,转速50-490rpm,叶片最大线速度2.5-5.5m/s● 高无菌等级,碳化硅轴承48 小时连续运转无脱落物,完全可以在线清洗CIP● 配备齐全的预验证中心能为您的产品或工艺提供现场代表性测试,确认并优化您的无菌搅拌工艺,为您的工艺需求 配备合适的搅拌器● 具有DNV ISO 9001:2000 证书,具有CE Mark、DNV 的PED 证等● 覆盖全国的服务网络 我们期盼您的到来!
  • 在用于制药和化妆品的表面活性剂凝胶中,不同的生产工艺会产生不同性能的凝胶
    化妆品,如护发素,必须符合许多的要求,来切合客户的需求。稳定性,香味和外观,奶油状的质地和改变头发表面亲水性的能力都是一些最重要的要求。在适当的处理条件下,少量的长链醇和阳离子表面活性剂可以形成膨胀的双分子层,从而锁住大量的水。这些凝胶网络主要由多层囊泡(MLVs)组成,囊泡壁是由六边形填充的酒精和表面活性剂分子组成的脂质双分子层。这种多层囊泡凝胶网络使得护发素呈现奶油质地。 尽管冷却速度在长链醇和表面活性剂凝胶的生成中一直是一个重要的因素,但造成这些差异的物理化学原因仍然难以捉摸。鲸蜡硬脂醇和氯化十六烷基三甲基氯化铵(CTAC)是构成许多药品和化妆品配方的基础。在一项研究中,来自意大利巴里大学化学系的研究人员与欧莱雅和瑞典隆德大学合作,阐明了冷却过程和凝胶流变特性之间的联系。利用多种技术方法,他们发现使用不同的冷却速率会生成具有不同重复距离的多层囊泡。不同工艺形成的凝胶具有明显不同的弹性模量和粘性模量。 在加热至85℃的条件下,制备了含有5%的鲸蜡硬脂醇和6%的CTAC的凝胶样品。样品在冰水中淬火,或在空气中冷却到室温。淬火凝胶的弹性(G’)和粘性(G’’)模量是空气中的冷却凝胶的4倍,因此影响了凝胶的涂抹性能和手感。两种样品的小角X射线散射(SAXS)结果证实了多层囊泡的存在。Kratky图分析显示,两种样品的层间长周期存在差异,淬火样品为31.4 nm,空气冷却样品为28.5 nm。通过对比Lβ相的理论值,发现淬火样品完全由膨胀的Lβ相组成,而空气冷却样品则是由Lβ相为主的多相凝胶网络组成。利用脂质双分子层形状因子,对散射密度进行拟合,得出两种样品相似的双分子层厚度为3.8 nm (δ)。结合两种样品的双层膜厚度和平均长周期,可以计算出淬火样品中鲸蜡硬脂醇和CTAC的体积分数为0.83,空气冷却样品为0.77。也就是说,在空气冷却的样品中,较大体积分数的鲸蜡硬脂醇和表面活性剂形成的脂质双分子层没有合并到囊泡中。这对平均弯曲刚度有影响,淬火样品的弯曲刚度更大。 综上所述,本研究表明,尽管快速冷却和缓慢冷却都能导致多层囊泡的形成,但囊泡中所含物质的数量不同,层间的膨胀程度也不同。这些差异导致了不同的弯曲刚度和不同的流变性能。了解这些参数有助于制备具有所需厚度、丰富质感和涂抹性能的复杂药物和化妆品配方。
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
  • 中国生物药规模急速扩张 研发生产需创新工艺技术
    p strong 仪器信息网讯 /strong 上周,由中国食品药品国际交流中心主办、赛多利斯协办的“生物制药创新研讨会”在上海成功召开。两天的会议吸引了生物制药领域300多名行业专家和从业人员与会交流,对市场研究、法规监管及上下游生产工艺等方面存在的问题和挑战展开了深入讨论,收获颇丰。下面就让我们一起来看看本次会议有哪些精彩内容吧! /p p style=" text-align: center " img title=" 1.jpg" alt=" 1.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/ed922621-16ef-442b-94b0-c942b8405725.jpg" / /p p style=" text-align: center " 研讨会现场 /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 2020年中国生物医药市场规模将达日本两倍 /strong /span /p p style=" text-indent: 2em " 中国生物医药市场正迎来高速发展,仅2016中国医院生物医药市场规模就高达780亿美元,这其中不包括基层医疗和零售渠道的份额。在2014年,中国超过日本,成为世界第二大生物医药市场,预计到2020年,中国生物医药市场规模会是日本的两倍。 /p p style=" text-indent: 2em " 近年来,国家出台了一系列政策、规划,政府导向无疑将成中国生物制药快速发展的重大利好因素。《中国制造2025》中,生物医药被列为十个重点领域之一。其中提到将发展针对重大疾病的生物技术药物新产品,重点包括新机制和新靶点抗体药物、抗体偶联药物、全新结构蛋白及多肽药物、新型疫苗。“十三五计划”也把医药新技术突破作为重点发展方向之一。“健康中国2030规划” 也重点提到促进医药产业发展,国家预计在2030年医疗健康产业规模将达到25000亿美元。 /p p style=" text-indent: 2em " 目前,我国生物药占比相对较低,大概占整个医药市场的10%,低于全球平均水平(20%)。其中,2016年中国生物制剂CDMO市场规模达3亿美元,但受国家政策和越来越多生物药上市的驱动,到2020年预计会达到15亿美元,增速非常快,市场潜力非常大。 /p p style=" text-indent: 2em " 以上观点来自BCG Healthcare Practice资深董事经理胡奇聪博士题为 “中国的生物制药格局和核心成功要素”报告。 /p p style=" text-align: center " img title=" 2.jpg" alt=" 2.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/dbcbc2d9-a9f6-4520-ae4a-dc2a984a4d33.jpg" / /p p style=" text-align: center " strong BCG Healthcare Practice资深董事经理 胡奇聪 /strong /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 监管者如何审评药品产地变更? /strong /span /p p style=" text-indent: 2em " 原国家食品药品监督管理总局药品审评中心生物制品药学部高级审评员魏开坤博士应邀参加此次研讨会,作“药品生产场地变更的研究和评价”的主题报告,从审评工作者的角度探讨了如何理解质量源于设计的理念、药品生产场地变更和新药研发与生产技术转移的监管考量等问题。 /p p style=" text-indent: 2em " 药品生产场地变更与药品质量密切相关,是药品上市后变更的常见情形之一。已上市药品的生产技术转让、委托生产、企业兼并重组、异地搬迁、改建扩建等情况下,涉及药品生产场地变更都要开展研究验证与注册申报工作。药品生产场地变更一般应遵循以下原则:一,质量源于设计原则;二,风险管理原则;三,质量同等性原则;四,GMP符合性原则。魏开坤博士透漏,国家监管部门鼓励创生物制药企业去更多尝试创新生产工艺。 /p p style=" text-align: center " img title=" 3.jpg" alt=" 3.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/ed89d081-719d-44f1-95ad-ffb92ca0b980.jpg" / /p p style=" text-align: center " strong 原国家食品药品监督管理总局药品审评中心生物制品药学部高级审评员 魏开坤 /strong /p p style=" text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 如何成功获批临床研究申请(IND)? /span /strong /p p style=" text-indent: 2em " Latham Biopharm总经理Susan Dexter女士作“美国市场的IND展望”主题报告,分享了在美国申请IND的成功经验。 /p p style=" text-indent: 2em " 成功申请IND的要点就在于:在创新药物研发早期CMC阶段就应恰当规划应准备和应规避的内容,同时还要实现简单的中期放大和技术转移。企业应该对药品的方方面面都建立准则,认真记录和验证,比如稳定性数据、药品物质说明、药品规格、温度、湿度、储存条件、包装说明书等等。在这方面,欧洲药典是可供参考的范例。对于制药企业来说,通过借助 QbD的方法来进行工艺开发从而完成质量控制已渐成趋势。 /p p style=" text-indent: 2em " 同时,Susan Dexter女士还指出,细胞基因疗法等创新生物药的研发、生产急需创新工艺技术,目前十分缺乏。 /p p style=" text-align: center " img title=" 4.jpg" alt=" 4.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/402e4b6e-8e48-4c7d-8889-d4fef6cd1c0a.jpg" / /p p style=" text-align: center " strong Latham Biopharm总经理 Susan Dexter /strong /p p style=" text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 一次性技术成为中国生物药物生产工艺主流 /span /strong /p p style=" text-indent: 2em " 恒瑞医药副总经理刘洵博士作题为“一次性技术平台成为中国生物药物生产工艺主流的关键因素”的报告。 /p p style=" text-indent: 2em " 一次性技术正在成为中国生物药物生产工艺主流,其优势主要有:一,对于中国生物制药不断增长的商业大规模生产来说,一次性技术具有巨大潜力;二,更加灵活,能节约建设和操作成本;三,能满足多次小批量生产的需求,节约成本。 /p p style=" text-align: center " img title=" 5.jpg" alt=" 5.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/da34337f-a7d9-457e-80e8-526830d1453a.jpg" / /p p style=" text-align: center " strong 恒瑞医药副总经理 刘洵 /strong /p p style=" text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 加快上市和保证质量的完整生物工艺技术策略 /span /strong /p p style=" text-indent: 2em " 赛多利斯集团生物工艺全球市场副总裁Stefan Schlack先生为大家带来了题为“加快上市速度和保证稳健质量的完整生物工艺技术策略”的演讲。高通量筛选、数据分析、线性缩放概念、过程强化、QbD、PAT、一次性解决方案和灵活的自动化技术平台,是提高过程开发/鉴定、放大/缩小模型验证和大规模生产效率时广泛应用的平台。将这样的战略技术平台整合应用到整个药物开发周期中,将使药物生命周期管理更加迅速和稳固。 /p p style=" text-indent: 2em " 在过去几年中,赛多利斯公司开发了创新的技术与服务平台,为药物高效、可持续地应用到临床、市场和患者提供了新的前景。 /p p style=" text-align: center " img title=" 6.jpg" alt=" 6.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/5ecca831-07f5-4a9d-bbb5-030f696f2f40.jpg" / /p p style=" text-align: center " strong 赛多利斯集团生物工艺全球市场副总裁 Stefan Schlack /strong /p p style=" text-indent: 2em " 来自赛多利斯的众多科学家、工程师,也在研讨会上分享了生物制药工艺最前沿、最热门的理念、技术与解决方案,并讨论了与一次性使用技术相关的各项法规与行业标准,以及系统性的风险评估方法和最佳实践建议。从DNA到2000L商业化生产,全线连接生物工艺。 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:符合cGMP的一次性使用系统策略:对SUS风险评估管理的系统性方法 /span /p p style=" text-indent: 2em " 沈亮,赛多利斯中国区验证服务与法规事务经理 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:通过过滤和完整性检测技术的进步实现cGMP级无菌工艺 /span /p p style=" text-indent: 2em " Magnus Stering,赛多利斯集团完整性测试技术全球产品经理 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:工业一次性自动化平台:将简易性和灵活性融于一体 /span /p p style=" text-indent: 2em " Burkhard Joksch博士,赛多利斯集团生物工艺软件产品管理负责人 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:工艺强化:经济上可负担的创新载体 /span /p p style=" text-indent: 2em " Kai Touw,赛多利斯生物医药市场经理 /p p style=" text-indent: 2em " 谭宁,赛多利斯中国区下游产品应用支持经理 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:如何加速生物仿制药的开发 /span /p p style=" text-indent: 2em " 王旭宇,赛多利斯集团全球生物仿制药市场负责人 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:通过从DNA到2000L培养的一次性技术平台实现QbD /span /p p style=" text-indent: 2em " Kai Touw,赛多利斯生物医药市场经理 /p p style=" text-indent: 2em " 赵伟博士,赛多利斯平台开发团队经理 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:可持续一次性系统的实施策略 /span /p p style=" text-indent: 2em " Magali Barbaroux博士,赛多利斯生物工艺袋平台负责人 /p p style=" text-indent: 2em " 任雪芸,一次性产品应用支持经理 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:大规模一次性系统:生产过程中的稳健性 /span /p p style=" text-indent: 2em " 杨威,赛多利斯中国区上游产品应用支持经理 /p p style=" text-indent: 2em " 谭宁,赛多利斯中国区下游产品应用支持经理 /p p style=" text-indent: 2em " span style=" color: rgb(31, 73, 125) " 题目:有效数据管理:黄金批次与实时监控 /span /p p style=" text-indent: 2em " David Wang,赛多利斯集团高级数据科学家 /p p style=" text-align: center " img title=" 7.jpg" alt=" 7.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/da36c2b6-a2a4-47c2-bcd6-ef08589df143.jpg" / /p p style=" text-indent: 2em " 现场更多精彩报告: /p p style=" text-align: center " img title=" 8.jpg" alt=" 8.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/9351d0ac-190d-4172-bb92-08479d843d57.jpg" / /p p style=" text-align: center " strong Abzena PLC技术运营高级副总裁 Jim Mills /strong /p p style=" text-align: center " strong 报告题目:CDMO视角下的高通量和一次性系统生命周期理念 /strong /p p style=" text-align: center " img title=" 9.jpg" alt=" 9.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/8369d8f4-05c8-4007-a845-45b2d7b00614.jpg" / /p p style=" text-align: center " strong 康晟生物技术CEO 潘洪辉 /strong /p p style=" text-align: center " strong 报告题目:设计质量:如何建立更稳健和更灵活的技术平台 /strong /p p style=" text-align: center " img title=" 10.jpg" alt=" 10.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/921f065d-46d4-48fa-be15-e18cb2dc7c28.jpg" / /p p style=" text-align: center " strong 华兰生物副总经理 安文琪 /strong /p p style=" text-align: center " strong 报告题目:一次性技术在单抗生产工艺中的应用 /strong /p p style=" text-align: center " img title=" 11.jpg" alt=" 11.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/da85dad7-c54d-4082-95be-1795105708df.jpg" / /p p style=" text-align: center " strong 上海优卡迪生物医药科技首席战略顾问 俞磊 /strong /p p style=" text-align: center " strong 报告题目:中国基因与细胞疗法的研究现状和展望 /strong /p p style=" text-align: center " img title=" 12.jpg" alt=" 12.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/77f15348-5bd6-467b-b8b9-faa3e9191aa2.jpg" / /p p style=" text-align: center " strong 现场讨论(一) /strong /p p style=" text-align: center " img title=" 13.jpg" alt=" 13.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/0f159a78-1c9d-4cbe-8ebd-fdde29544e53.jpg" / /p p style=" text-align: center " strong 现场讨论(二) /strong /p
  • 总有机碳TOC分析提高食品饮料生产中水处理工艺的质量与合规性
    为了实现生产和利润目标,食品饮料制造商面临着如何改进其生产工艺的挑战。保持竞争力还意味着必须确保工厂遵守法规,优化废水处理工艺,并且保证锅炉、换热器、处理设备和产品储罐等资产的安全。食品饮料行业的成功取决于质量管理、保持高质量的产品和良好的品牌形象。水质监测和高效分析工具的使用,能够清楚地了解工艺状态,使生产厂家能够发现各种变化。这类措施有助于降低污染、产品损失和高额罚款带来的风险。总有机碳TOC分析提供了检测水质的一种简便方法,提供对所有有机物的清楚了解——从生产原料到废水处理的各种成分。实时跟踪有机负荷的变化,把数据驱动的决策工具提供给食品饮料生产厂,非常适合用于质量控制、工艺监测和法规的合规性。通过即时检测到泄漏,食品饮料厂可以快速调整,从而有助于防止污染,最大限度地降低产品不合格的风险。否则,生产厂家就需要销毁产品,承担财务损失。如果泄漏未被发现可能导致产品召回,对品牌形象造成很大影响。实时检测泄漏对于保护资产免受有机物污染、避免可能导致数百万元成本的损坏、停机或灾难性问题也至关重要。由于食品饮料产品基本上都是有机物,或含有香料、色素等有机成分,因此TOC分析对于确定设备的清洁度非常有效,从而可以保证产品质量和安全。此外,作为一种基于前瞻性的解决方案,TOC分析能够为提高废水处理效率提供关键的深入了解,实现长期的成本节约,并确保处理后的废水符合特定的水质标准。来看几个TOC分析如何帮助食品饮料行业运营的实际案例。灌装公司优化膜生物反应器MBR废水处理工艺由于产量增加,在一家大型灌装公司内,其废水处理系统已无法跟上由此产生的高浓度有机物和固体含量的废水处理量。由于流入液体的成分变化很大,包括糖分和装置流量的巨大波动,使操作的一致性更为复杂。结果,化学需氧量(COD)无法满足当地法规要求,该工厂经常排放超出允许限值的废水。该厂以前使用人工检测COD的方法,需要3个多小时才能得到检测结果,这些数值无法用于及时的工艺调整。由于缺乏空间且生产设备的波动很大,工厂扩建不可行,因此进行了技术改造,把浓缩的有机物和高COD废水改道储存起来。这样可以在低浓度废水流动期间,把高浓度的废水缓慢地计量送回到工艺中。该灌装厂还决定增加一台膜生物反应器(MBR)废水处理系统,因为MBR装置占地面积小。为了维持健康的生物量,灌装厂的应用需要保持100:5:1的碳/氮/磷比例。由于碳的可变性最大并且浓度最高,灌装厂选用TOC分析,以便连续监测有机碳负荷。在必要时,向均化池中添加氨产品,以保持营养成分的平衡比。在这里,TOC分析——将程序设定为输出线性COD值——被用于工艺控制输入,以便随着COD的变化加入氨。一旦稳定下来,MBR系统通过大幅度降低出水中的总悬浮固体量(TSS)和大大提高COD去除率,提高了工厂效益。这一综合解决方案每年为灌装厂节省了用于昂贵化学品、废物运输和罚款的数十万美元。制糖厂防止成本高昂的产品泄漏哥伦比亚有一家著名的制糖厂,每天可为国内外客户加工约4300吨甘蔗。鉴于其大规模的产能,优化生产并防止有价值的产品泄漏到工艺流中,至关重要。把甘蔗加工成畅销的商品需要经过研磨、澄清、过滤、蒸发、结晶、离心等一系列步骤。蒸发过程包括一个多级的蒸馏系统来浓缩糖汁。第一级通过由锅炉提供的干净蒸汽源,把得到的蒸发物加入到下一级,继续穿过所有步骤。来自末级的蒸汽用一台气压冷凝器冷凝,并被收集在冷却罐中。收集每个阶段的冷凝水,并将其加入到冷却罐中,供以后用作冷却水。为了保护设备资产,降低产品和利润损失的风险,非常重要的一点是这些冷凝水不能含任何糖或糖汁。所以,高效的泄漏监控十分重要。及早发现产品泄漏,有助于制糖厂在发生损坏或承担成本损失之前,就能停机、切换产线或改进装置运行。该制糖厂以前使用 pH、电导率、碱度、锤度和高效液相色谱(HPLC)分析来确定产品的泄漏。但由于在环境条件下,糖是pH中性的非离子物质,所以这些方法大多不适合检测泄漏。此外,在高压和高温的生产过程中,糖开始分解成有害化合物,这可能导致设备中的沉积、腐蚀和结垢。在糖分解后,也找不到其HPLC的特征峰。基于这些因素,需要一种快速、准确的糖浓度检测方法。作为由碳、氧和氢组成的碳水化合物,通过汇总TOC参数的检测值,可以很容易地检测到糖,从而准确地量化溶液中所有的有机化合物。该制糖厂投资进行TOC分析以表征和描述其系统,从而建立蒸汽、冷凝水和冷却水的控制限值,优化生产,并使盈利能力最大化。制糖工艺的蒸发段包括连续蒸汽和冷凝水的反复加热和冷却,是该制糖厂监测糖泄漏的关键点。通过在这些关键步骤中使用TOC监测,该制糖厂能够实现盈利和维护环境及运营的目标。食品饮料公司提高了清洁周期的效率和质量控制在美国加利福尼亚州有一家食品饮料公司,每年生产350多种不同产品,其想要寻求新的工艺工具,以提高产品质量和安全性。虽然以前使用ATP拭子微生物试验以检测微生物污染,但该公司仍多次遭遇质量问题和产品损失。为了改善清洁过程的质量控制,该公司在灭菌之前,针对在线清洗(CIP)循环后的冲洗样品,使用TOC分析进行监测,以验证其生产设备的清洁度,确保不浪费时间去消毒还未清洁干净的设备。虽然有些技术可用于检测设备上的微生物污染(如ATP拭子试验),但这些试验缺乏残留污染物所需的准确性和选择性,容易出现假阳性的误报。在进行TOC分析后,该公司将TOC分析与ATP拭子试验进行了对比。ATP拭子试验的结果合格,表明:在线清洗循环之后,该设备没有微生物污染。但TOC分析表明,同一设备具有有机残留物(这也得到了目视检查操作人员的证实)。在使用TOC分析之前,该公司曾使用ATP数据来确认清洁度然后灭菌,导致工厂使用未清洁干净的设备生产后续批次产品,引发产品质量的不合格。另一个应用领域是,在设备长时间闲置之后确认其清洁度。这家工厂估计,在设备闲置时间超过规定的保存时间之后,通过减少工人清洗该设备的次数,在水费、人工费和化学品费用方面每月将节省10000多美元。这家位于加州的工厂,在36小时的生产过程中,要生产多达50批次产品。在该过程中,任何导致产品损失的问题至少要花费20万美元。由于在灭菌前确定设备清洁度的过程中,TOC分析比其它工具更准确,这家工厂现在可以把财务损失和产品召回的风险降到最低。由于该公司还希望减少生产过程中的用水量,TOC分析有助于优化在线清洗循环,并有可能确认:缩短的清洗周期也足以清除设备中的所有污染物。缩短在线清洗周期——即使只有几秒钟——久而久之,就可以从减少用水量中明显地节约成本。该公司还计划对冲洗的样品进行TOC分析,对整个生产和清洁过程中的生产设备进行故障排除,并确定可能的优化点。结论通过采用TOC分析进行实时有机物监测,工厂管理层可以更好地了解碳负荷,以确保水质持续优化并确保没有有机污染。这种快速发现问题,并在造成损失之前立即采取纠正措施的能力使食品饮料厂能满足产品质量要求,避免影响品牌形象,触及质量底线。原文英文版刊登于《Water Technology》2019年9月刊◆ ◆ ◆联系我们,了解更多!
  • Webinar报名 | 网络研讨会:生物制剂从冻干工艺开发到放大化生产转移的新型解决方案
    网络研讨会 主讲人:刘恒利(Henry Liu) 凯信远达医药*研发总监 韩晓芳 德祥科技**产品经理 时间:2021年11月24日14:00 主题:生物制剂冻干技术及发展- SP Hull LyoStar 4.0新品发布 您是否也在寻找这样一种冻干方法: 能够在冻干过程中保持药物活性? 能够保持冻干产品的货架储存期稳定性?生物药生产中,冻干工艺因 其稳定好、保存条件温和等优势,已经逐渐成为生物制剂生产中关键的制备技术之一,然而,由于生物制品生产工艺复杂,当下冻干工艺技术面临如质量控制、安全要求等方面的诸多挑战。由于冻干是非常严苛的脱水过程,如何在冻干过程中保持药物的活性,以及保持冻干产品的货架储存期稳定性是对制剂人员的一个极大的挑战。对有关辅料功能与冻干原理的深刻理解是正确设定配方与优化冻干工艺,制备稳定冻干产品的先决条件。本次演讲力求对这两方面进行深入浅出的解释;对冻干各步骤工艺参数之设定与优化予以深入解析;并结合实例讲解如何将参数优化运用到冻干曲线的开发中。本次网络研讨会特邀凯信远达医药*研发总监刘恒利,及德祥科技*产品经理韩晓芳从生物制剂冻干技术及发展为切入点,深入生物制剂的研发与生产,及高端研发型冻干机SP Hull LyoStar4.0的盛大发布,以期为生物医药研发工作者带来新的思路和启发。 刘恒利( Henry Liu),凯信远达医药*研发总监具有20多年美国制药行业的制剂研发与生产的工作经验。曾分别在数家美国药企及国内药企任*或*研究员( Sr. Scientist/Sr. Staff Scientist), *首席研究员(Sr. Principal Scientist),产品研发总监 (Director),研发部门*总监 (Sr. Director) 等职务。对于生物药与化药的多种制剂、剂型的研发, 药物与医疗器械组合, API的处方前研究, API及辅料的理化性质表征, 及IND、CTA、A/NDA等资料撰写与申报有丰富经验。 韩晓芳,德祥科技*产品经理负责SP Scientific冻干机技术,培训及市场开发9年以上,主要致力于冻干技术在生物制药行业的应用,拥有丰富的冻干工艺优化方面的经验。 活动流程14:00-15:00 生物药的冻干制剂开发:配方与工艺 主讲人: 刘恒利(Henry Liu)15:30-16:50 生物制剂从冻干工艺开发到放大化生产转移的新型解决方案 主讲人:韩晓芳 16:50-17:20"SP Hull Lyostar 4.0"新品发布 主讲人: 韩晓芳 赶快扫描二维码,预定席位吧!
  • 培训通知:生物制药产业技术系列职业培训—单抗及重组蛋白研发生产技术和工艺
    p   生物医药产业是高新科技产业,随着生物医药产业的快速发展,我国生物制药产业也进入了快速上升期,而单克隆抗体药物和细胞免疫治疗技术在整个产业中无疑是最为重要的组成部分。目前生物制药产业发展面临人才短缺的挑战,而我国高等专业教育尚不能满足生物制药产业发展的需求,大部分生物医药相关专业毕业生缺乏该产业急需知识和技能而面临就业难。在职职工专业教育是生物医药产业正常运营的基础保障,更是各国药政机构监管的重点。中国蛋白药物质量联盟将针对我国生物医药产业发展现状和国际产业技术的发展进步,特别是各国药政监管要求,推出生物制药产业技术系列职业培训。本期设为单抗及重组蛋白研发生产技术和工艺。 /p p   strong  单抗及重组蛋白研发生产技术和工艺 /strong /p p   根据数据统计,2015年全球药品市场规模近 10700 亿美元,2016 年全球药品市场规模11080 亿美元,2017年全球药品市场规模约为 11290 亿美元。在未来五年内,全球药品支出将会上升30%,2018年将达到11700亿美元,2022 年可达约14400亿美元。2016年全球最畅销药物榜单中生物专利药占据主要地位,仅销量前10种药物年销售额超800亿美元。单抗及重组蛋白药物等生物药的市场需求巨大,形成鲜明对比的是,我国单抗及重组蛋白药物研发能力的薄弱,研发技术壁垒高,我国单克隆药物技术和国外先进水平有很大差距。单抗及重组蛋白的巨大市场需求和国内现阶段的技术发展水平,促使我们必须降低新药的研发风险,增强单抗及重组蛋白药物的研发生产技术能力。 /p p    strong 一、主办单位 /strong /p p   中国蛋白药物质量联盟 /p p    strong 二、培训时间 /strong /p p   时 间:2018年09月11日 PM 1:30-5:30 /p p   地 点:北京兴基铂尔曼酒店,北京亦庄荣华南路12号(三楼巴黎厅) /p p   (晚餐:下午5:30-8:00 北京兴基铂尔曼酒店 一楼餐厅) /p p   strong  三、培训目标人群 /strong /p p   本次培训旨为生物医药产业的技术研发负责人、蛋白药物研发及生产业务骨干温故知新 为职场新人、在校大学生以及对单抗及重组蛋白研发生产技术和工艺感兴趣的相关人员夯实基础。 /p p    strong 四、培训主讲人及题目 /strong /p p   1、 strong 李荣皓博士 /strong ,珠海恺瑞生物科技有限公司董事长兼创始人。李荣皓博士从1984年开始使用无血清细胞培养技术,曾涉足CHO细胞培养及重组蛋白生产工艺优化、多种原代细胞及干细胞等无血清细胞培养,在无血清细胞培养技术应用方面具有很深的造诣。此次培训班李博士将重点介绍其在美国Genentech等公司工作期间所积累的CHO细胞培养液开发以及其它细胞无血清培养技术的应用经验,并与听众互动,共同探讨听众有关重组蛋白表达细胞、干细胞、T细胞、疫苗生产细胞以及原代细胞等多种类型细胞的无血清培养技术问题。和大家一起分析和讨论技术细节。 /p p    strong 主讲题目:重组蛋白药研发及生产中的无血清细胞培养技术 /strong /p p   2、 strong 史艳轻 /strong ,美国贝克曼库尔特有限公司,应用工程师。从事颗粒特性产品应用近六年,有丰富的样品颗粒分析和检测经验。 /p p    strong 主讲题目:颗粒分析技术在单抗药物研发和质控领域相关方案 /strong /p p   3、 strong 滕希 /strong ,伯乐生命科学产品(上海)有限公司技术支持经理,毕业于中国农业科学院,专业是生物技术,曾在华大基因从事分子生物学方向应用相关研究现就职于美国Bio-Rad公司,在定量PCR、数字PCR等技术应用领域有着丰富的经验。 /p p    strong 主讲题目:质量控制检测PCR技术介绍 /strong /p p   4、 strong 刘彬 /strong ,Bio-rad资深应用解决方案专家。毕业于大连理工大学,先后从事与北京韩美、北京诺和诺德,目前就职与Bio-Rad公司,有着十多年蛋白质纯化经验。 /p p    strong 主讲题目:NGC下一代层析系统介绍及蛋白残留的验证 /strong /p p   5、 strong 孙乐 /strong ,博士,北京千人计划专家、北京师范大学兼职教授以及北京AbMax生物科技公司创始人。孙博士具有超过30年的抗体研究及抗体药研发经验,早在1989年即赴美以博士后身份与曾经同Jennifer Mather博士共同开创近代无血清细胞培养技术的David Barnes博士开展合作科学研究,积累了丰富的无血清细胞培养、胚胎干细胞以及表皮生长因子信息传递等领域的研究经验。孙博士后成为美国Upstate Biotech公司的研发总监,负责开发生物科技热门研究领域包括癌症研究的研发试剂,以每年推出200多款产品的高速帮助公司迅速成长为行业知名生物试剂公司。2000年孙博士离开Upstate Biotech,并先后于2000年在美国巴尔的摩市创办A& amp G Pharmactuticals公司、2004年在北京创办Welson Pharmaceuticals 以及2006年创办AbMax公共并担任公司董事长及CEO至今。AbMax利用独有的抗体产生技术开发低免疫原性及高稳定型抗体,为客户提供新一代抗体药研发服务,成为抗体新药研发技术领域提供了一个重要的发展方向。 /p p    strong 五、会议议程 /strong /p p style=" text-align: center " strong img title=" 微信图片_20180830095700.png" alt=" 微信图片_20180830095700.png" src=" https://img1.17img.cn/17img/images/201808/uepic/6395b3b0-bb4b-464d-ac62-23323ef93d4d.jpg" / /strong /p p strong   六、注册事宜 /strong /p p   培训说明:本次培训免费,中国蛋白药物质量联盟证书(自愿)500元/人。获取更多资讯,敬请联系中国蛋白药物质量联盟秘书处: /p p   联系人: /p p style=" text-align: left " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 蒋老师 /p p style=" text-align: left "   手 机:+86-15900209767 邮 箱:jiangxiaowan@126.com /p p style=" text-align: left "   李老师 /p p style=" text-align: left "   手 机:+86-18322696168 邮 箱: a href=" mailto:781494221@qq.com" 781494221@qq.com /a /p p style=" text-align: center " img title=" 微信图片_20180830095820.png" alt=" 微信图片_20180830095820.png" src=" https://img1.17img.cn/17img/images/201808/uepic/5fd3b98f-92d8-418e-ae25-a74ef4bcb54f.jpg" / /p p    /p p & nbsp /p
  • 定了!这7种危化品工艺技术设备要淘汰
    近日,应急管理部制定发布《淘汰落后危险化学品安全生产工艺技术设备目录(第二批)》(以下简称《目录》),明确淘汰7项危化品落后工艺技术设备,包含工艺技术4项、设备设施3项,自文件公布之日起有关新(扩)建项目严格禁用。淘汰落后工艺技术包括:(1)酸碱交替的固定床过氧化氢生产工艺,设为禁止类,要求新(扩)建项目禁用,现有项目五年内改造完毕;(2)有机硅浆渣人工扒渣卸料技术和敞开式浆渣水解技术,设为禁止类,要求新(扩)建项目禁用,现有项目二年内改造完毕;(3)间歇碳化法碳酸锶、碳酸钡生产工艺(使用硫化氢湿式气柜的),设为禁止类,要求新(扩)建项目禁用,现有碳酸锶间歇碳化法生产工艺一年内改造完毕,现有碳酸钡间歇碳化法生产工艺二年内改造完毕;(4)间歇或半间歇釜式硝化工艺,设为限制类,要求硝基苯等27种化学品禁用,二年内改造完毕。  淘汰落后的设备包括:(1)无冷却措施的内注导热油式电加热反应釜(油浴反应釜、油浴锅),设为限制类,要求涉及重点监管危险化工工艺的反应釜禁止,在役设备一年内更换完毕;(2)油库的内浮顶储罐采用浅盘式或敞口隔舱式内浮顶,设为禁止类,要求取得危险化学品经营许可证的油库禁用,在役设备二年内改造完毕;(3)单端面机械密封离心泵和填料密封离心泵(液下泵除外),设为禁止类,要求甲A类、极度危害、高度危害和操作温度超过自燃点的危险化学品禁用,在役设备三年内更换完毕。《目录》实施工作要求各地区加强宣传引导,通过多种方式进行宣贯,组织企业对照《目录》自查,摸清底数、建立台账,确保应改尽改、能改快改,对逾期未完成的依法查处。组织专家加强指导帮扶,“一企一策”提升改造质量,督促企业做好改造期间安全生产工作,防止改造过程中发生事故。与化工老旧装置安全整治、高危工艺自动化改造等工作协同发力,抓好化工和危险化学品安全生产治本攻坚三年行动任务落实,以高水平安全保障高质量发展。据悉,2020年10月,应急管理部印发《淘汰落后危险化学品安全生产工艺技术设备目录(第一批)》(应急厅〔2020〕38号),推动淘汰了一批落后危险化学品安全生产工艺技术设备。但近年来,涉硝化工艺、过氧化氢生产等企业陆续发生一些典型事故,造成了重大人员伤亡和财产损失,深刻暴露出当前一些企业依然存在本质安全水平低、安全风险高的工艺技术和设备设施。同时,随着近年来新工艺、新技术、新装备的不断研发应用,业内已经有了更加安全、先进、可靠的替代工艺技术或设备,为进一步淘汰落后工艺技术设备创造了有利条件。应急管理部有关负责人表示,《目录》的出台是推动提升化工企业本质安全水平的有力抓手,通过刚性约束推动有关不符合安全要求的企业加大安全投入,从根本上消除事故隐患、从根本上解决问题,进一步防范化解危险化学品重大安全风险。今年是化工和危险化学品安全生产治本攻坚三年行动的开局之年,制定发布《目录》是三年行动方案中的一项重要措施。各地区要强化统筹组织,与化工老旧装置安全整治、高危工艺企业自动化改造等工作协同发力推进,加快推动三年行动方案任务落实,以高水平安全保障高质量发展。2020年10月,应急管理部印发了《淘汰落后危险化学品安全生产工艺技术设备目录(第一批)》,淘汰的落后工艺技术和设备12项。其中,工艺技术4项,主要包括使用氨冷冻盐水的氯气液化工艺、用明火加热的涂料用树脂生产工艺、常压固定床间歇煤气化工艺、常压中和法硝酸铵生产工艺;设备8项,主要包括敞开式离心机,多节钟罩的氯乙烯气柜,煤制甲醇装置气体净化工序三元换热器,未设置密闭及自动吸收系统的液氯储存仓库,采用明火高温加热方式生产石油制品的釜式蒸馏装置,开放式(又称敞开式)、内燃式(又称半密闭式或半开放式)电石炉,无火焰监测和熄火保护系统的燃气加热炉、导热油炉,液化烃、液氯、液氨管道用软管。
  • 冻干工艺培训会
    2020年春季冻干技术研讨会,将于6月6日在腾讯网络会议平台准时举行。研讨会主题:冻干在制药医疗等相关行业应用技术研究研讨会主要内容:探讨冻干在医药行业应用、冻干原理、冻干保护剂筛选机制、冻干曲线优化方法及冻干生产工艺。研讨会特色:理论结合实际,进行冻干技术的深入剖析。6月6日由冻干讲师团的成员奉献精彩纷呈的技术分享。参会理由:强大的讲师团,理论与实际的完美结合。讲师团成员:叶明徽先生(硕士)是博医康冻干工艺研发实验中心的负责人,拥有20年冻干工艺研究经验。叶明徽先生在长期的工作过程中,积累了大量的冻干研发实际经验,多次参加国家重大科研,并负责冻干技术部分。会议日程如下:会议安排6日8:50-9:05会议准备工作9:05-9:35冻干在医药行业应用 报告人:叶明徽9:35-10:05冻干原理10:05-11:05冻干保护剂筛选机制 报告人:叶明徽11:05-11:10休息时间11:10-12:10冻干曲线优化方法及冻干生产工艺介绍 报告人:叶明徽12:10会议结束会议内容剧透(部分):1. 常见冻干保护剂介绍。2. 冻干保护剂评价机制。3. 如何设置一条冻干曲线。看点多多,敬请期待6月6日的精彩分享。 收费标准:1500元/人 可以加二维码咨询:
  • 由默沙东工艺开发负责人Mueller 领衔,国际生物工艺讲者阵容尽在5th BioCon
    p   众所周知,生物药物因其复杂的生产工艺而导致在全球范围内的价格居高不下,该价格对于大多普通百姓来说也是毫无疑问的天价。因此,生产出“让百姓用得起的生物药”成为了各大药厂的目标和使命。而降低成本,最直接的方法莫过于生产工艺的优化:诸如一次性工艺、连续工艺等先进生物工艺理念逐渐进入大家的视野。 /p p   我们希望通过一场专注于技术话题研讨的国际化峰会,集合国内外领军生物制药企业的生物工艺一线负责人,向行业内传递和分享全球最先进的生物工艺及生产理念。 /p p   长达2天的生物工艺话题深度研讨贯穿上下游技术难点: /p p   生物类似药篇 /p p   1. 探讨单抗类似药(上游至下游)工艺稳定性与可靠性的先进提升策略与优化方法 /p p   2. 学习生物类似药商业化生产中全程质量相似性/可比性与成本控制的领先企业实践 /p p   创新生物药篇 /p p   1. 探索国际领先蛋白及抗体工程技术与工艺创新应用 /p p   2. 追求产量、质量、速度的一次性生产、连续化生产工艺的企业高效实践 /p p   第五届BioCon2018中国国际生物药大会将于2018年4月20-21日在上海中星铂尔曼召开,将有500-600人与会,论坛共由2场品牌活动构成: /p p   2018第四届生物药物创新及研发国际研讨会:由上海交通大学药学院,抗体药物教育部工程研究中心主办,BMAP商图信息承办,上海市微生物学会协办 /p p   2018第五届中国国际生物类似药论坛:BMAP商图信息主办,上海复宏汉霖生物技术股份有限公司协办 /p p   国内外领军企业和机构的生物工艺专家: /p p    Hans-Martin Mueller ,默沙东生物工艺开发总监 /p p    KyuJong Jeon,Celltrion下游工艺开发负责人 /p p    姜伟东,上海复宏汉霖生物技术股份有限公司联合创始人,高级副总裁兼首席科学官 /p p    彭育才,丽珠集团单抗生物技术有限公司资深副总经理聂磊,浙江海正药业股份有限公司生物药台州研究所所长 /p p    杨晓明,杭州奕安济世药业有限公司产品和过程研发高级副总裁 /p p    于在林,国家级外国专家,中美福源生物技术(北京)股份有限公司创始人兼董事长 /p p    聂 磊,浙江海正药业股份有限公司生物药台州研究所所长 /p p    徐水清,嘉和生物药业上游工艺总监 /p p    李孟捷,三生国健/上海抗体药物国家工程研究中心高级质量总监 /p p    王 彬,勃林格殷格翰生物制药大中华区商务发展负责人 /p p    …… /p p   这里同时云集了几乎所有国内外顶级生物工艺解决方案提供方: /p p img title=" 121.jpg" src=" http://img1.17img.cn/17img/images/201802/insimg/1f347830-73ec-4862-8c14-51f8eede2ff9.jpg" / /p p   为何赞助? /p p   Biocon 作为国内少有的真正落地切实探讨生物工艺的年会,话题都是经过长达2个月的行业深度调研而写成,同时邀请最合适的讲者,确保了发言的权威性,以及听众的关注度。因此,您在Biocon能够见到国内各大药企从事生物工艺开发的负责人和核心技术员工,其数量超过行业内任何同类活动,所以在经过了5年的沉淀后,Biocon才能吸引如此豪华的展商阵容。 /p p   3月15日之前报名将享直降1000元的注册优惠! /p p   了解更多会议嘉宾,议程及报名欢迎联系组委会。 /p p   联系方式: /p p   电话:+86 18017939885 /p p   邮箱:biocon@bmapglobal.com /p p   网站:www.bmapglobal.com/biocon2018 /p p /p
  • 年产500套质谱仪,工艺流程是怎样的?
    科学仪器,作为科学技术实现创新的重要基础,被称作科学家的“眼睛”,更是被比作“高端制造业皇冠上的明珠”。人类就是在不断改进的科学仪器中,发现其他人不能发现的领域,从而逐渐发展出现代科技文明。如今,仪器不仅广泛应用于研究领域,更是大量应用在生产线上。此外,仪器的生产制造也离不开其它的仪器设备。对此,仪器信息网通过公开文件了解到某质谱仪生产项目的情况。项目主体工程及产能该工程投资10000万元,其中环保投资10万元。主要产品及产量为年产临床质谱仪 500 套,临床质谱仪配套试剂盒1000套。项目仪器配置清单如下,项目主要设备清单质谱仪主要工艺流程及产污环节工艺流程简述:(1)电路程序文件:控制线路板由外协单位提供,先进行控制线路板质检(装入检测用调试机进行控制线路板功能调试和运行系统的测量),合格品进行整机组装,不合格品退回厂家;(2)机械部件:将读卡器、外协机械零部件、真空泵等外协件进行组装,然后进行质检;(3)整机组装:将合格控制线路板、机械部件、机壳、机架等装配成整机,整机装配完成后安装软件进行整机调试,调试完成后进行整机老化,老化完成进行出厂检验;(4)包装:将组装完成并检验合格的整机和说明书等装入包装箱,最后入库。质谱仪生产工艺流程及产污环节图下期我们将解密其它工业生产线的仪器设备配置清单,敬请关注
  • 沃特世与爱尔兰国家生物工艺研究培训所(NIBRT)的合作
    沃特世与爱尔兰国家生物工艺研究培训所(NIBRT)的合作 将使生物制药生产过程更加可控和可预测 企业与学术界的合作将创建全球首个UPLC多聚糖数据库,可更准确方便地进行蛋白质糖基化分析 米尔福德, 马萨诸塞州 - 2010年5月6日沃特世(WAT:NYSE)公司和爱尔兰国家生物工艺研究和培训学院(NIBRT)今天宣布一项合作,将创建全球首个超高效液相色谱(UPLC® )多聚糖分析数据库。预计这个数据库将于2011年启用,由NIBRT开发、维持和授权,沃特世与NIBRT将共同在全球进行推广。 生物药物的生产可能很困难,正确的糖基化对于得到正确结构的蛋白质并维持其治疗效果至关重要。蛋白质糖基化在细胞培养过程中会显著受到各种因素的影响,如溶解氧、pH、碳源和温度。这些参数在工艺中的发生任何一点变化都有可能给产品带来质量风险,因此糖基化是否一致被作为生物制药生产工艺是否进行良好控制的重要标志。 由于蛋白质所结合的多聚糖结构复杂、数目庞大,因此生命科学实验室要想对这些结构进行鉴别和定量分析是极为困难和耗时的。 由NIBRT Pauline Rudd教授课题组开发的新数据库,将成为首个与一系列生物治疗有关的聚糖结构的色谱保留时间数据库。其目的在于为生物制药企业提供及时和有效的方法,以确认各种糖基化蛋白质的结构。在生产工艺的各个阶段,有了更快更准确的有关糖基化信息,生物制药企业就能根据法规指南对其生产工艺进行更好的控制,以保证安全有效的生物制药制剂。 &ldquo 通过将我们在分离和多聚糖分析方面的专有技术与NIBRT在糖生物学方面的专长相结合,我们可以将快速准确的糖基化分析作为生物治疗药物的标志,&rdquo 沃特世公司生物制药商业运营部总监Jeff Mazzeo博士说,&ldquo 我们的目标是提供简单且更加准确的多聚糖分析方案,以便生产出优质的生物分子药物。&rdquo &ldquo NIBRT在糖生物学方面的专长,加上沃特世在分离科学方面的专长,将确保这次合作能开发出更快更好的技术用于糖蛋白分析,同时符合相关法规的要求。&rdquo NIBRT的CEO Maurice Treacy博士说道。 许多基于蛋白质的生物药物是糖基化蛋白质。糖基化是一种共翻译和翻译后修饰的形式,将多聚糖与蛋白质、脂类和有机分子结合。多聚糖直接影响糖蛋白生物药物的有效性和安全性。 最近色谱技术上的新进展提供了更高的分离度、灵敏度和分析速度,为蛋白质糖基化的定性和定量分析提供了更高的可靠性。UPLC经众多用户的实践检验被证明是理想的选择,可用于分析生物分子及其结合的多聚糖结构,并确定每种多聚糖结构的相对比例。 沃特世UPLC多聚糖分析方案由ACQUITY UPLC BEH多聚糖分析专用色谱柱配合带荧光检测器的ACQUITY UPLC® 系统组成,用于分析2-氨基苯甲酰胺(2-AB)或其它荧光试剂标记的生物药物经酶处理后得到的多聚糖混合物。UPLC多聚糖分析方案提供比HPLC方案更好的分析结果,具有重现性好、分离度高、灵敏度高且分析速度快的特点。 一旦NIBRT数据库开始投入使用,将沃特世UPLC多聚糖分析方案结合此数据库可以非常容易的根据每个UPLC色谱峰的保留时间来确定多聚糖结构,无论是复杂多聚糖,高甘露糖,中性和唾液酸化多聚糖均可,以便确认样品中存在的已知结构或测定Glu值并确定未知或未预料到的多聚糖。 在一份讨论UPLC Glycan分析解决方案的应用报告中,沃特世详细描述了UPLC用于多聚糖分析的方法。 关于NIBRT(www.nibrt.ie) NIBRT&mdash &mdash 爱尔兰国家生物工艺研究培训所是一家优秀的机构,它为特定目的创建了灵活的现代生物工艺设备,有助于爱尔兰生物制药行业的扩大,以这些设备为生物制造提供研究平台解决方案,为学生提供量身定制的认证产业培训和学术教育计划,来支持生物制药行业。更多信息请参阅www.nibrt.ie。 ### 关于沃特世公司(www.waters.com) 50年来,沃特世公司(NYSE:WAT)通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。 沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。 沃特世公司2009年的总收入达15亿美元拥有5,200名员工;公司正在帮助全球客户推进科研进程,并为其提供绝佳的操作体验。
  • 无菌工艺保障技术交流会,新年重磅袭来!
    药品生产工艺中的无菌保证和风险控制,是确保药品质量安全的重要环节,也是制药企业和法规机构所关注的重点。为了提高国内无菌工艺保障水平,推动无菌制药产业的发展,加强药品监管部门与生产企业之间的沟通与交流,中国食品药品国际交流中心于2017年1月10-11日为广大制药同仁奉上精彩的无菌工艺盛宴——“无菌工艺保障技术交流会”。本次交流会将着重研讨国内外无菌工艺的实施策略、风险评估、监管与法规动态,同时分享CFDA、EMA、FDA及美国药典在无菌工艺保障方面的最新进展。届时,将有来自药品监管机构、制药企业和赛多利斯的多位技术专家发表专题演讲,进一步加强药品监管部门与生产企业之间的沟通交流,并为我国的药品安全保驾护航!  会议组织  主办单位:中国食品药品国际交流中心  支持单位:赛多利斯中国  会议主题  部分演讲人  王董明,上海罗氏制药质量总监  尹放东,礼来公司技术与制造科学总监  崔铁民,朗润(深圳)生物制药有限公司工艺总监  Dr. Isabelle Uettwiller,赛多利斯法国验证实验室负责人,ASTM专家、 SFSTP专家  Petra Motzkau,赛多利斯亚太区验证服务总监,PDA专家  Ulrich Braeutigam,赛多利斯过滤技术亚太区市场总监  Dr. Christian Boecking, 赛多利斯亚太区验证项目高级经理  沈亮,赛多利斯中国法规事务经理  还有来自上海市食品药品监督管理局认证审评中心的神秘专家们,带来最新法规动态。  会议信息  时间:2017年1月10日-11日  地点:万和昊美艺术酒店  上海市浦东新区祖冲之路2299号(近广兰路地铁站)  会议注册  本次论坛免注册费,参会代表交通及住宿费自理。 由于名额有限,每家企业单位至多提  供两个参会名额。  立即在线报名  报名截止日期为2017年1月4日。  会议咨询  张小姐  电话:021-68785302  E-mail: wenji.zhang(at)sartorius-stedim.com
  • 根据工艺能力判断合适的清洁验证总有机碳TOC限值
    观察根据擦拭和淋洗样品总有机碳(TOC)的历史或当前数据而采用工艺能力方法,能够证明清洁工艺及用于此工艺的限度是否可行、可实现、可检验。在下图所示的工艺中,上下游过程都使用1ppmC的“默认”限值,此限值将用于确定工艺能力。但是,TOC样品通常接近TOC方法的检测限(LOD)或定量限(LOQ),因此最可行的方法是使用单侧接受标准来显示工艺能力。对于单侧接受标准来说,工艺能力比率是Cnpk,而不是传统的CpK方法。评估限值对于任何清洁工艺来说,要评估两个清洁验证关键性质量属性(TOC擦拭和淋洗样品)的某个接受标准是否切实可行和可以实现,通常对于特定的生产工艺,使用工艺能力指数。如果从工艺中采集的历史或当前TOC数据满足特定的工艺能力比率,则TOC与对特定工艺的当前接受标准,适用于清洁验证。为表明这种判断,请看以下例子,表现了使用这个特定的设备,对特定的生产工艺进行的清洁工艺的合适程度。将评估以下TOC接受标准:&bull 上下游TOC擦拭样品:统计原理要评估已建立的接受标准是否切实可行和可以实现,需使用工艺能力指数。工艺能力指数旨在确定,考虑到已经观察到的当前与历史上的TOC擦拭与淋洗数据的变化率,该清洁工艺是否能够满足此接受标准。为了判断此方法是否合适,合适的工艺意味着,已建立的接受标准从统计学的角度来看,是合理的。合适的工艺是指能够确保工艺能力指数大于或等于1.25的工艺。此特定比率与传统的大1.33同,因为清洁验证接受标准是单侧规格1。为了选择工艺能力指数的正确计算方法,需同TOC擦拭和淋洗数据分布一起来考虑接受标准的类型(单侧或双侧)。如果TOC擦拭和淋洗接受标准确定TOC擦拭百分比分布目前用于特定产品清洁过程的清洁验证,使用对设备性能确认(PQ)或持续确认(定期监测)和产品转换所进行的整个清洁过程的TOC擦拭和淋洗数据。以上示例数据用直方图形式来确定正态分布。如上表所示,数据显示了同正态分布的明显偏离。大部分数据非常接近方法的检测限,因此将数据转换为近似正态分布是不合理的。所以,TOC擦拭数据要求用百分比分布来计算工艺能力比率,百分比分布应由统计程序来确定。 // 在此示例中,TOC擦拭数据的百分比分布确定了TOC擦拭数据的99.5%为0.8 ppm或800 ppb,TOC淋洗数据的百分比分布确定了TOC淋洗数据的99.5%为0.6 ppm或600 ppb。这些数值在用百分比分布来计算单侧规格工艺能力指数时很重要。对于新的清洁工艺,可升级或更换现行方法,用TOC来验证关键性的清洁工艺参数(TACT)。确定擦拭和淋洗样品的TOC工艺能力确定百分比分布之后,应使用以下公式来确定TOC擦拭和淋洗样品的工艺能力指数。对于单侧规格(如清洁验证应用中的规格),指数计算公式为:CnpK =(USL - 中位数)/(p(0.995) - 中数)其中:&bull Cnpk=非参数工艺能力指数&bull USL=Upper Specification Limit, TOC清洁验证擦拭和淋洗样品的规格上限值&bull 中位数=样品的50%百分比分布。由于TOC数据的50%非常接近检测限,因而TOC样品的中位数通常为0.1 ppm,或者0与检测限的中点值。&bull p (0.995)=数据的 99.5 %可以用此计算方法和相应的百分比分布(擦拭:0.8 ppm;淋洗:0.6 ppm)来计算工艺能力(Cnpk)如下:TOC擦拭:Cnpk=1.4;TOC淋洗:Cnpk=1.8单侧接受标准的合格工艺是指能力指数大于或等1.25的工艺,这表明清洁验证工艺及其关键性参数(时间、搅拌/速度、浓度、温度)能够满足TOC擦拭和淋洗所收集样品的参考文献1. Montgomery, D.C., (1991). Introduction to Statistical Quality Control, 统计质量控制入门, John Wiley and Sons New York, New York, 第373页2. NIST/SEMATECH e-Handbook of Statistical Methods, 统计方法手册, 第6.1.6节, What is Process Capability? 什 么 是 工 艺 能 力 ?http://www.itl.nist.gove/div898/handbook/index.htm◆ ◆ ◆联系我们,了解更多!
  • 赛多利斯隆重推出新一代Flexsafe生物工艺袋家族
    2014年8月19日,由IBC主办的6th BioProcess International? China(第六届中国国际生物制药工程工艺年会)在上海金茂君悦大酒店隆重举行。 作为全球领先的生物制药工艺完整解决方案提供商,赛多利斯斯泰迪生物技术(Sartorius Stedim Biotech)作为金牌赞助商出席了此次盛会,并在会上正式发布了新一代Flexsafe生物工艺袋家族。 公司流体管理技术业务部全球市场副总裁Jean-Marc Cappia先生系统阐述了目前一次性使用技术所面临的新挑战,详细介绍了新的生物工艺膜技术的发展及特点。Flexsafe作为新一代一次性生物工艺袋的代表之作,其创新性的概念解决了制药行业对永不过时的疫苗和药品商业化的一次性生产技术的关键需求。Flexsafe 使用的多层专利聚乙烯膜 S80是基于与树脂和薄膜供应商紧密协作下共同开发的创新膜。其以细胞生长性能测试作为检测标准,优化薄膜配方,限定挤出、接合和伽马辐照的操作范围,并建立完善的操作规范与工艺控制。除了提供一致的细胞生长以及卓越的强度和优异韧性,赛多利斯通过与供应商签订长期合同,以及安全库存和树脂生产在内的全球生产能力的限定,来保证业务的可持续性计划和供应链的稳定。 最新的 Flexsafe系列能够覆盖包括从工艺开发到生产的整个制药生产过程中的所有一次性使用工艺,从上游到下游全部使用同一种创新的聚乙烯膜。赛多利斯目前已推出了 Flexsafe RM 细胞培养袋(1L-200L)和用于验证的小生物工艺袋。 今年还将逐步推出用于一次性生物反应器 BIOSTAT STR(50-2000L)和用于存储、混合、运输、冻融等其它应用的生物工艺袋。 此外,赛多利斯发酵技术业务部全球市场副总裁Christel Fenge女士也与参会嘉宾共同分享探讨了一次性上游技术应用于2000L连续培养生产工艺规模的经验策略。 同时,赛多利斯在会议期间还设立了展位,展示了最新的台式生物反应器、无菌接管机及一次性使用产品,吸引了众多与会嘉宾驻足停留,与我们的市场、技术专家热议讨论。赛多利斯集团是一家国际领先的实验室仪器、生物制药技术和设备的供应商。实验室产品及服务部为客户提供一流的实验室仪器如实验室天平、移液器和纯水设备、实验室耗材包括实验室过滤器和移液器吸头,以及优质的服务。生物工艺解决方案涵盖过滤、液体处理、发酵、细胞培养和纯化,并致力于生物制药行业过程控制。工业称重专注于对食品,化工和制药行业生产工艺过程中的称重、监控和控制。 赛多利斯集团在欧洲、亚洲以及美洲都拥有自己的生产及研发机构,并已在全球110多个国家设立了办事处及代表处,总共拥有5,000多名员工。 赛多利斯中国 电话:400.920.9889 / 800.820.9889 传真:021.68782332 邮箱:info.cn@sartorius.com 官网:www.sartorius.com.cn
  • “渐冻症”患者的福音——连续流工艺生产依达拉奉
    研究背景依达拉奉是一类能清除自由基的脑保护剂,2001年在日本获批用于改善急性脑梗死引起的神经及功能障碍。2017年,FDA批准依达拉奉用于治疗肌萎缩性脊髓侧索硬化(ALS,俗称“渐冻症”)患者。因此,当前市场对依达拉奉的需求不断增加。传统的生产方式是将乙酰乙酸乙酯及苯肼在乙醇中回流得到依达拉奉粗品,通过重结晶来提升产物纯度。这个方法的缺点是收率低,在进行100g规模的制备过程中发现文献报道的杂质3~6出现在粗品产物中(如图1所示),粗品纯度只有82.1%,虽然可以通过重结晶提高产物纯度但收率下降很多。图1 依达拉奉合成路线和文献报道杂质(3-6)近年来有文献报道采用微波法和超声波法合成依达拉奉,收率高,杂质少,但工业化放大有难度。来自沈阳药科大学制药工程学院的孙铁民教授课题组开发了一种连续流合成依达拉奉的新方法。该方法采用两步连续反应、一次重结晶的方法,终产品纯度可达99.95%,收率88.4%(较釜式工艺提高6.2个百分点),产能可达11.3 kg/d。与传统间歇法相比,连续流通过减少反应过程中的水分、氧气和光照的暴露,最大限度地减少了苯肼的分解,有利于提高产品的纯度和收率。本文将详细介绍该方法的开发过程,以期为您连续流工艺研究提供有效参考。 研究过程一、初步研究在初步实验中,以乙醇为溶剂溶解(图1)1和2,在微反应器中反应,最终得到反应液经液相色谱检测,结果表明未得到目标产物依达拉奉,但生成了中间体7。经过反应条件优化后,通过升高反应温度得到了目标产物依达拉奉,但杂质含量却比较高(见图2)。这样的结果显然不够理想。图2. 高温反应液HPLC图谱 通过分析前期的研究数据及反应的机理,研究者提出了一个两步法的解决方案。在早期的研究中在温度较低的情况下主要得到中间体7,此时反应条件温和,杂质较少,且避免了高温下烯醇互变异构产生的杂质6。根据相关文献分析了环化反应的可能反应机理(如图3),作者认为有必要添加碱以使反应容易完成。因此研究者也对碱及重结晶条件浓度、停留时间和反应温度等进行了优化。图3. 可能的反应机理 小贴士反应机理分析整个过程是胺进攻羰基进行亲核加成得到四面体中间态,然后脱去乙氧基得到依达拉奉。加成得到的四面体中间态可以以多种形式存在,质子化的程度和位置不同,如中间体8~10。由于中间体8乙氧基阴离子的离去能力很差,直接从中间体8生成依达拉奉的速度很慢,而更多的是从中间体10生成依达拉奉。当有碱存在时,中间体8会迅速转化成更稳定的中间体10,即使在较低的温度下,反应速度也会比以前快。最后,中间体10定量地产生依达拉奉。应当注意,当使用碱时,也可以避免杂质5,因为中间体10的形成很快,抑制了不希望的消除(脱水)反应。 二、两步连续流合成实验完成了上述研究后,将两步反应按顺序连接到一套装置(图4),将苯肼和乙酰乙酸乙酯输送至微反应器R1(25°C,0.5min,1bar),流速均为10mL/min。然后,反应液通过预热装置使溶液保持在60°C后流入微反应器R2,同时,以10mL/min的速度将氢氧化钠溶液输送至微反应器R2(60°C,1min,1bar),完成第二步环化反应。从R2流出的反应液用6M盐酸调节为中性并过滤后得到粗品依达拉奉。最后,用乙醇−水进行一次重结晶,得到纯度为99.95%的依达拉奉,收率88.4%,较釜式工艺提高6.2个百分点。图4 连续流合成依达拉奉的工艺流程图 结果与讨论: 研究者研究开发了一种两步法连续流生产依达拉奉的新工艺,降低了杂质含量,提高了收率; 与间歇实验相比,该工艺效率更高、速度更快,工艺运行稳定,进行工业化生产的可能性高; 在该方法第二步中,氢氧化钠更容易催化反应,通过调节pH值,使反应液在流出后直接沉淀,得到产物; 研究者两步反应的方法是基于对整个反应过程以及反应机理的理解和研究基础之上的,因此开发连续流工艺深入理解化学反应原理非常重要。 参考文献: https://doi.org/10.1021/acs.oprd.1c00228
  • 网络直播:默克为您解读《无菌工艺模拟试验指南》要点
    默克为您解读《无菌工艺模拟试验指南》时间:2017年7月21日 13:30-14:30 本次课堂针对《无菌工艺模拟试验指南》中相关内容,您可以了解到: 无菌制剂生产工艺及模拟范围 培养基的灭菌与除菌风险 最差条件的选择与干预设计 过往缺陷案例展开分析与讨论我们邀请您共同探讨,加深对无菌工艺模拟试验及指南的理解。相关法规无菌工艺模拟试验,培养基模拟灌装的相关要求GMP附录1 无菌药品 第十章第四十七条 无菌生产工艺验证要求培养基模拟灌装试验首次验证应连续进行3次合格试验。之后每班次半年进行1次,每次至少一批。《无菌工艺模拟试验指南》(无菌制剂)和(无菌原料药)国家食品药品监管总局食品药品审核查验中心组织起草了该指南,结合近年来在无菌药品生产企业GMP认证检查和跟踪检查中发现的无菌工艺模拟试验缺陷情况,以指导和规范无菌药品生产企业开展无菌工艺模拟试验。 日期: 2017年7月21日 下午: 13:30 - 14:30 主讲人: 韩璐璐 默克微生物监控市场部参与该《无菌工艺模拟试验指南》的编写工作,专注于微生物检测的应用与研究,先后就职于制药及医疗器械质量控制行业,从事微生物实验室及厂房设计及验证,质量管理,微生物检测等工作。熟悉食品药品微生物检测,生产过程环境监控,GMP管理。扫描以下二维码,报名赢取精美礼品!根据用户参与课堂的活跃度抽取:一等奖 象印保温杯 3名二等奖 充电宝 6名三等奖 魔方插座 10名根据用户参与课堂的时长抽取:时间达人奖 不倒杯 、笔记本 共30名
  • 梅特勒化工工艺及过程分析技术应用交流会
    梅特勒托利多自动化化学部联合华南理工大学化学与化工学院共同举办2013年化工工艺优化及过程分析技术(PAT)应用交流会,敬请从事反应过程研究和结晶工艺研发、工艺安全评估与放大的专家学者和研发人员参加。 时间:2013年6月5日8:00 - 17:00 (8:00-9:00 报到,9:00正式开始) 地点:华南理工大学(广州市天河区五山路381号)逸夫人文馆二楼多功能报告厅 报名地址: http://cn.mt.com/cn/zh/home/events/seminars/cn_ac_pat_invitationguangzhou2013-.html 近年来,随着中国化工产业的不断发展,竞争日趋激烈。因此快速的研发出安全、稳定、可靠的生产工艺显得尤为重要。过程分析技术,简称PAT技术,通过在工艺过程中控制关键工艺参来保证关键质量性质,多年来被越来越多的科学家们应用于工艺过程研究、开发和优化。 梅特勒托利多提供的过程分析技术(PAT)&mdash &mdash 全自动实验室反应器技术EasyMaxTM/ OptiMaxTM和反应量热技术RC1eTM,实时在线颗粒分析技术FBRM® 和PVM® 和实时在线反应分析技术ReactIRTM,能够帮您充分的理解反应过程,快速的筛选和优化工艺,安全的中试放大,从而提高研发效率、降低研发成本,更快的得到安全、稳定、可靠的生产工艺。 在过去20年间,我们的技术广泛应用于学术研究、制药行业、精细化工、石化及特种化学品等行业。在全球范围内,越来越多的设备在实验室、工艺开发和生产中体现着优势,丰富的实际经验和全球化的支持帮助您充分了解和优化化工工艺的过程。 演讲内容  过程分析技术(PAT)在结晶工艺R&D和反应过程研究中的应用  结晶工艺优化技术  ReactIR技术用于反应机理和反应动力学研究  RC1e反应量热技术优化工艺过程、安全放大工艺  EasyMax/OptiMax全自动反应器技术的应用 演讲者 本次交流会专门邀请了结晶领域的专家华南理工大学的王学重教授和天津大学国家结晶中心的郝红勋副教授介绍结晶工艺的过程分析技术(PAT)和结晶过程的优化与控制;武汉大学国家杰出青年基金获得者雷爱文教授课题组的张恒博士介绍科研工作中应用在线分析技术获得的部分研究成果,分析宝贵的应用思路和经验。同时,来自梅特勒托利多的技术应用专家也将分享国外工艺研发实例。我们旨在通过面对面的专家交流和案例分析,为您今后的研发工作带来新观念、新思路和新方法。  王学重 中组部千人计划特聘专家、华南理工大学化学与化工学院教授  郝红勋 天津大学国家工业结晶工程技术研究中心副教授  张恒 武汉大学化学与分子科学学院雷爱文课题组副教授  万欢 梅特勒托利多 技术应用顾问 演讲者简介 王学重 中组部千人计划特聘专家、华南理工大学化学与化工学院教授 王学重教授就职于华南理工大学化学与化工学院,是国家中组部千人计划特聘专家。研究工作集中在现代化制药、生物制药、纳米材料、精细化工的产品和工艺开发、过程的放大、工业生产的监测、优化控制和故障诊断等领域。王学重教授是过程工业数据挖掘研究领域的创始人,他领导的课题组首次实现了药物和精细化工生产中结晶过程中晶体形状分布的自动控制,标志着在这一领域的突破性进展。除此之外, 在纳米生产过程的在线测量、模拟、控制、放大以及高通量新产品开发等重要领域的研究上,他的研究也取得了广泛的国际影响。已发表科研论文200余篇,论文被引用超2000余次,其研究成果被广泛的应用到世界最大的制药和精细化学公司Pfizer、GlaxoSmithKline、AstraZeneca、Syngenta以及其他20多家公司。 郝红勋 天津大学国家工业结晶工程技术研究中心副教授 天津大学国家工业结晶工程技术研究中心副教授,2003博士毕业于天津大学后曾先后在英国University College London(访问学者)和爱尔兰University College Dublin(高级研究员)工作。目前主要从事晶体产品分离与精制、晶体新产品开发、固体药物制剂技术等研究。发表论文30多篇(SCI25篇),申请发明专利5项,曾获得国家技术发明二等奖、教育部科技进步一等奖和天津市技术发明一等奖。 张恒 武汉大学化学与分子科学学院副教授 张恒,博士,2005年毕业于武汉大学化学与分子科学学院,目前在先后主持国家自然科学基金三项,2012年获湖北省自然科学一等奖(第二完成人),目前主要从事过渡金属催化的有机反应的方法学、机理和动力学等方面的研究。 万欢 技术应用顾问 梅特勒托利多 毕业于华东理工大学制药工程与技术专业,曾从事有机合成与药物合成工艺安全放大的研究。毕业后加入上海康鹏化学有限公司进行API原料药合成工艺的研究,曾任研发部API原料药组组长。于2011年加入梅特勒托利多公司,主要从事全自动反应器技术在小试合成工艺和中试安全放大方面的应用工作。 2013年化工工艺优化及过程分析技术(PAT) 应用交流会 日程安排 时间:2013年6月5日地点:华南理工大学(广州市天河区五山路381号)逸夫人文馆二楼多功能报告厅 8:00-9:00 报到 9:00-9:15 主持人讲话 9:15-9:45 应用于工艺研发和工艺放大的PAT工具 万欢 梅特勒-托利多 技术应用顾问 9:45-10:45 结晶工艺的过程分析技术(PAT)和模拟,优化控制 王学重 华南理工大学化学与化工学院教授 10:45-11:00 茶歇 11:00-12:00 晶体产品开发中的结晶过程优化技术 郝红勋 天津大学国家工业结晶工程技术研究中心副教授 12:00-13:30 午餐 13:30-14:30 应用ReactIR进行反应机理和反应动力学研究 张恒 武汉大学化学与分子科学学院 副教授 14:30-16:00 应用全自动反应器技术进行小试合成工艺,中试安全放大以及化工工艺安全评估的研究 万欢 梅特勒-托利多 技术应用顾问 报名地址: http://cn.mt.com/cn/zh/home/events/seminars/cn_ac_pat_invitationguangzhou2013-.html
  • 2011赛默飞世尔生物制药工艺研讨会在杭召开
    仪器信息网讯 为了探讨生物制药工艺的国内外最新进展,解读国内法规药典的最新动态,并征集用户对赛默飞世尔科技相关产品的期望与意见,2011年4月18-19日,“携手共赢2011赛默飞世尔生物制药工艺研讨会”在杭州望湖宾馆举行,100余位从事生物工艺开发、细胞培养、疫苗生产等领域的专家学者出席了此次研讨会;仪器信息网作为特邀媒体亦参加了会议。 会议现场 赛默飞世尔科技生命科学部大中国区商务总监谭斯其先生致辞   谭斯其先生首先对大家的到来以及多年来对赛默飞世尔科技的支持表示欢迎与感谢。随后,谭斯其先生介绍到,近几年,生物制药公司迅速发展,越来越多的公司进入生物工艺开发领域,竞争日益激烈,市场淘汰、合并率增加,同时,产品的质量要求更严格,生产工艺更为复杂。在这种环境中,生产工艺决定着最终产品,从而决定着整个公司的未来。全球2010年生物制药第三方调研报告表明,新领域投资的重点方向集中在了一次性生产系统的开发应用方面。   此外,谭斯其先生还重点提到,2010年赛默飞世尔科技全球有110亿美元的销售收入,在全球150个国家有350000家客户,在40个国家拥有37000名员工。旗下主要包括分析仪器、实验室产品、专业诊断产品、客户渠道、生命科学产品以及生物医药服务等6大业务平台,其中生命科学部门包含生命科学研究、生物工艺生产品以及化学产品3方面的业务。 赛默飞世尔科技细胞培养产品全球市场总监Brandon Pence先生   Brandon Pence先生在《Key Factors in Upstream Bioprocess Development Success》报告中谈到,在上游工艺开发的过程中,关键因素包括市场需求与驱动力、客户要求、原料来源与质量、产品的生产过程与控制措施、技术服务以及合作者的产出等。而赛默飞世尔科技作为一次性产品的专业供应商,会坚持“正直、热情、创新、参与”4大理念,为客户提供优质的产品与完善的解决方案。 赛默飞世尔科技一次性产品全球市场总监Michael Ravodon先生   Michael Ravodon先生在《Single-Use Systems(SUS)》报告中提到,赛默飞世尔科技的一次性产品性能与质量有保证,且产品线具有可扩展性,产品规格从25L到2000L。此外,一次性生物工程容器系统较之传统不锈钢发酵罐,不但可以让实验者节省约40-50%的实验时间与45-55%的实验经费,还可成功解决一直困扰细胞研究领域专家学者关于细胞培养交叉污染的问题。 赛默飞世尔科技亚太地区技术服务经理Surendra Balekai先生   Surendra Balekai先生在题为《Single Use Technologies in Vaccines & Manufacturing Biosimilar》的报告中谈到,事实上赛默飞世尔科技的一次性产品不仅仅用于细胞培养方面,在疫苗、抗体、生物药等生物制品生产过程中的每一个环节都可以选用赛默飞世尔科技的一次性产品。随后,Surendra Balekai先生以数据或图片形式向与会嘉宾介绍了赛默飞世尔科技一次性生物反应技术在疫苗和抗体生产中的应用。 中美奥达生物技术(北京)有限公司生产总裁孙雷先生   孙雷先生表示很荣幸能够收到赛默飞世尔科技的邀请来杭州做报告。近几年,我国生物药的开发速度与规模呈上升趋势,而赛默飞世尔科技的一次性生物产品确实给该领域的科研工作者们带来了很大的便利。同时,孙雷先生还举例介绍了中国生物制药的发展和商业化,以及一次性生物反应技术在加速工艺开发和放大进程中所起的作用。 用户参观赛默飞世尔科技一次性生物容器系统产品   关于赛默飞世尔科技   赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。欲了解更多信息,请浏览公司网站:www.thermofisher.com,中文: www.thermofisher.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制