当前位置: 仪器信息网 > 行业主题 > >

神经突触

仪器信息网神经突触专题为您整合神经突触相关的最新文章,在神经突触专题,您不仅可以免费浏览神经突触的资讯, 同时您还可以浏览神经突触的相关资料、解决方案,参与社区神经突触话题讨论。

神经突触相关的资讯

  • 我国科研人员在冷冻电镜解析神经突触超微结构方面取得重大突破
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/e2f81b1e-e30b-4ff6-8cc6-54a29e2ec276.jpg" title=" 20180211094445855.jpg" / /p p   记者10日从中国科学技术大学获悉,该校科研人员在利用冷冻电镜解析神经突触超微结构方面取得突破,解密了神经突触“黑匣子”。 /p p   国际学术期刊美国神经科学学会会刊《神经科学期刊》(《Journal of Neuroscience》)近日以封面形式报道了该项研究成果。 /p p   突触是大脑行为、意识、学习与记忆等功能的最基本结构与功能单元,同时也是多种脑疾病发生的起源。精确解析突触的分子组织架构及其在神经活动过程中的变化,被认为是解密大脑奥妙的最直接有效的方法,也是神经科学中最基础的研究工作之一。 /p p   早期,生化与分子生物学、电生理学等研究发现了突触中的各种大量分子和细胞器组份,并揭示了突触的各种功能特性和可塑性规则。然而,由于研究手段的局限,突触中的这些不同组件是如何组织成复杂的机器来执行不同的功能,还远远没有充分观察和解析。 /p p   中国科学技术大学合肥微尺度物质科学国家研究中心与生命科学学院毕国强、刘北明与周正洪教授合作,利用最新发展的冷冻电子断层三维重构技术(cryoET),结合自主研发的冷冻光电关联显微成像技术,实现了对中枢神经系统中两类最主要突触的定量化分析。通过将大鼠的海马神经元培养在冷冻电镜的特型载网上,课题组获得了一系列完整突触在近生理状态下的三维结构。 /p p   结合定量分析手段,首次报道了抑制性突触的均匀薄片状突触后致密区结构,并发现两类突触中均存在椭球状突触囊泡,结束了关于两类突触在突触囊泡和突触后致密区形态精细结构上的由来已久的争论。 /p p   随后,课题组进一步获得了突触在分子水平的精细组织架构,实现了在突触原位直接观察单个神经递质受体蛋白复合物及其与支架蛋白的相互作用。 /p p   这是当前国际上首次利用冷冻电镜技术对完整突触进行系统性定量分析。该工作一方面推动了对突触超微结构与功能这一“黑匣子”的解密,另一方面为突破冷冻电镜技术在复杂细胞体系中原位解析生物大分子复合物的组织结构这一技术难题奠定了基础。 /p
  • 中美学者用冷冻电镜解析大脑神经突触“黑匣子”
    p   2月12日电突触是大脑行为、意识、学习与记忆等功能的基本结构与功能单元,也是多种脑疾病发生的起源。近期,中国科学技术大学教授毕国强、刘北明与美国加州大学洛杉矶分校教授周正洪组成课题组,利用冷冻电镜技术对完整突触进行了系统性定量分析。美国神经科学学会会刊《神经科学》日前以封面形式对此进行了报道。 /p p   精确解析突触的分子架构及活动过程,被认为是解密大脑奥妙的最有效方式。早期的研究者发现了突触中的分子和细胞器组份,揭示了突触的各种功能特性和规则。但由于手段局限,对其机理还远没有充分观察和解析。 /p p   近期,课题组利用冷冻电镜技术,结合自主研发的冷冻光电关联显微成像技术,实现了对中枢神经系统中两类最主要突触——兴奋、抑制性突触的精确区分,以及结构特征的定量化分析。他们将大鼠的海马神经元培养在冷冻电镜的特型载网上,快速冷冻并直接成像,获得了一系列完整突触在近生理状态下的三维结构。结合定量分析手段,了解了抑制性突触的均匀薄片状突触后致密区结构,获得了突触在分子水平的精细组织架构,实现了在突触原位直接观察单个神经递质受体蛋白复合物及其与支架蛋白的相互作用。 /p p   据介绍,这是当前国际上首次利用冷冻电镜技术对完整突触进行系统性定量分析,推动了对突触超微结构与功能这一“黑匣子”的解密。另一方面,为突破冷冻电镜技术在复杂细胞体系中原位解析生物大分子复合物组织结构这一技术难题,奠定了基础。 /p
  • 国科大冷冻光电关联显微成像技术成功解析神经突触超微结构
    p style=" text-align: center "   img style=" width: 450px height: 300px " title=" " alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/3c8aab60dba745dba378baa58e3763e7.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   2018年2月7日,国际学术期刊—美国神经科学学会会刊《Journal of Neuroscience》以封面形式报道了中国科大微尺度物质科学国家研究中心与生命科学学院毕国强、刘北明与周正洪教授合作课题组的研究成果—利用冷冻电子断层三维重构技术(cryo-electrontomography,cryoET)与冷冻光电关联显微成像技术(cryo- correlative light and electron microscopy, cryoCLEM)解析神经突触超微结构。 /p p   突触是大脑行为、意识、学习与记忆等功能的最基本结构与功能单元,同时也是多种脑疾病发生的起源。精确解析突触的分子组织架构,及其在神经活动过程中的变化被认为是解密大脑奥妙的最直接有效的方法,也是神经科学中最基础的研究工作之一。早期,生化与分子生物学、电生理学等研究发现了突触中的各种大量分子和细胞器组份,并揭示了突触的各种功能特性和可塑性规则。然而,由于研究手段的局限,突触中的这些不同的组件是如何组织成复杂的机器来执行不同的功能,还远远没有充分观察和解析。最新发展的冷冻电镜技术(cryoEM),尤其是cryoET技术能够实现对亚细胞乃至全细胞在纳米水平分辨率的三维成像,为突触分子组织架构的解析提供了契机。 /p center p style=" text-align:center" img style=" width: 450px height: 253px " title=" " alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/1a09c6615b644cab8d1b801fb8bf6375.jpeg" height=" 253" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p /center p   合作课题组利用cryoET结合自主研发的冷冻光电关联显微成像技术实现了对中枢神经系统中两类最主要突触-兴奋性/抑制性突触的精确区分以及结构特征的定量化分析。通过将大鼠的海马神经元培养在冷冻电镜的特型载网上,随后进行快速冷冻后并直接进行CryoET/CryoCLEM成像,课题组获得了一系列完整突触在近生理状态下的三维结构。结合定量分析手段,首次报道了抑制性突触的均匀薄片状突触后致密区结构,并发现两类突触中均存在椭球状突触囊泡,结束了关于两类突触在突触囊泡和突触后致密区形态精细结构上的由来已久的争论。进一步,利用当前最先进的结合了Volta相位板、电子能量过滤器和直接探测相机的冷冻电镜成像设备,合作课题组获得了突触在分子水平的精细组织架构,实现了在突触原位直接观察单个神经递质受体蛋白复合物及其与支架蛋白的相互作用。 /p center p style=" text-align:center" img style=" width: 450px height: 338px " title=" " alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/3d9159e6d55349468de507eb6529dbf6.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p /center p   这是当前国际上首次利用冷冻电镜技术对完整突触进行系统性定量分析。这一工作,一方面推动了对突触超微结构与功能这一“黑匣子”的解密,另一方面为突破冷冻电镜技术在复杂细胞体系中原位解析生物大分子复合物的组织结构这一技术挑战奠定了基础。 /p center img alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/45e3e783ec57412d8f858989386d1214.jpeg" height=" 454" width=" 356" / /center p   图: 利用CryoET解析离体培养海马神经突触三维结构的三维可视化渲染(Journal of Neuroscience 2018年2月7号封面) /p
  • 文献分享 | Echo Revolve在海马体突触传递和突触可塑性调节研究的应用
    经过20世纪生命科学的快速发展,我们对疾病、遗传生命本质等方面的认识都有了长足的进步,但还有一个领域仍有太多的未解之谜困扰着我们,那就是神经科学,我们仍未了解意识是如何产生的?大脑是如何进行认知的?记忆产生的具体机制是什么?当然也包括神经系统相关疾病的发病机制,如阿尔兹海默症的发病机理等等,这些问题的解决对整个人类发展都具有重要意义,科学家也在不断探索,以期获得真相。意识是如何产生的?这是作者最好奇的问题,在作者的观点中意识很大程度上是和记忆相关,记忆已经证实是源于突触的微小改变,脑内电活动的改变引发第二信使分子传递信号,产生突触蛋白的修饰,这些暂时性变化最终转化为突触结构的永久变化后,长时程记忆就产生了。在对记忆的研究过程中人们在海马中发现了记忆产生相关的LTP(长时程增强)和LTD(长时程抑制),因为海马细胞构筑和组成体系简单,且海马可以从大脑中移出切成脑片,在体外可以存活数小时,可以进行电流刺激并记录突触反应,因此成为研究突触传递的理想部位。▲ 图1:海马微环路我们的身体是一个整体,激素、外界刺激、大脑活动等都会影响我们的记忆产生,在《The FASEB Journal》期刊杂志上发表的一篇题为《Rapid actions of anti‐Müllerian hormone in regulating synaptic transmission and long‐term synaptic plasticity in the hippocampus》的文章就将激素与大脑认知发育和功能联系了起来,分析了抗缪勒氏管激素(Amh)与突触传递及突触可塑性的关系。研究人员通过PCR、Western Blot检测Amh基因及其受体在雄性和雌性小鼠海马中的表达情况,同时采用ECHO正倒置一体荧光显微镜对免疫荧光染色材料观察其真实表达情况(如下图)。图中可以看出,CA1神经元的胞体和树突均为Amh阳性(图2A,C),而仅在CA3神经元胞体出现Amh阳性染色(图2E,G)。Amhr2在CA1(图2B,C)和CA3(图2F,G)的表达模式与Amh相似。表明Amhr2与Amh在神经元胞体和树突共定位(图2D,H)。▲ 图2:anti-Müllerian激素(Amh)和配体特异性II型受体(Amhr2)在小鼠海马中的蛋白定位。冠状切片使用荧光标记,Amh(红色 A、E) Amhr2(绿色 B,F)和DAPI(核染色 蓝色 C、G)。在每个面板的左上角插入框中显示了框区域的高倍图像。A和E显示阿蒙氏角(cornu Ammonis, CA) 1和CA3 对Amh染色阳性。B、F显示CA1、CA3对Amhr2染色阳性。D和H显示 Amh-和amhr2阳性染色共定位于细胞体和树突(箭头)。进一步分析发现,外源Amh蛋白增加了突触传递和长期突触可塑性。Amh暴露也增加了CA1突触的兴奋性突触后电位。这些结果表明,Amh可能在学习和记忆方面发挥作用,并可能是认知发育和功能的性别差异的原因。Echo Revolve正倒置一体显微镜Echo Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。▲ Echo Revolve正倒置一体显微镜☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 高可靠性人工突触半导体器件问世
    韩国科学技术研究院(KIST)神经形态工程中心研究团队宣布开发出一种能进行高度可靠神经形态计算的人工突触半导体器件,解决了神经形态半导体器件忆阻器长期存在的模拟突触特性、可塑性和信息保存方面的局限。研究成果近日发表在《自然通讯》杂志上。模仿人脑的神经拟态计算系统技术应运而生,克服了现有冯诺依曼计算方法功耗过大的局限。实现使用大脑信息传输方法的半导体器件需要一种能表达各种突触连接强度的高性能模拟人工突触装置。当神经元产生尖峰信号时,这种方法使用神经元之间传输的信号。KIST团队微调了活性电极离子的氧化还原特性,以解决阻碍现有神经形态半导体器件性能的小突触可塑性。研究团队在突触装置中掺杂和使用各种过渡金属,以控制活性电极离子的还原概率。研究发现,离子的高还原概率是开发高性能人工突触装置的关键变量。因此,研究团队将具有高离子还原概率的钛过渡金属引入现有的人工突触装置中。这保持了突触的模拟特性和生物大脑突触处的设备可塑性,大约是高电阻和低电阻之间差异的5倍。此外,他们开发了一种高性能的神经形态半导体,其效率大约提高了50倍。此外,由于掺杂钛过渡金属的高合金形成反应性,与现有的人工突触装置相比,信息保留率提高了63倍。此外,包括长期增强和长期抑郁的大脑功能可更精确地模拟。该团队使用开发的人工突触设备实现了人工神经网络学习模式,并尝试了人工智能图像识别学习。结果,与现有的人工突触装置相比,错误率降低了60%以上;此外,手写图像模式识别准确率提高了69%以上。研究团队通过这种改进的人工突触装置证实了高性能神经形态计算系统的可行性。
  • 媲美人脑能效的类脑突触原型器件问世
    8日,记者从中国科学技术大学获悉,该校李晓光教授团队在前期研究基础上,基于对铁电畴形态和翻转动力学的设计,在铁电量子隧道结中实现了亚纳秒电脉冲下电导态可非易失连续调控的类脑突触器件,可用于构建人工神经网络类脑计算系统。研究成果日前表于《自然通讯》杂志上。  以神经网络为代表的类脑人工智能技术正深刻影响人类社会。但目前运行神经网络计算的硬件系统依然基于传统硅基运算器与存储器,能效远低于人脑。研发具有神经形态模拟功能的类脑器件,如神经网络硬件系统的核心器件——电子突触,是进一步推进人工智能发展的重要途径之一。为执行复杂的人工智能任务,神经网络硬件系统对电子突触器件提出了诸多苛刻要求,然而,已报道的类脑突触器件无法全面满足相关的指标要求。  李晓光教授团队制备了高质量的铁电隧道结,通过PZT(压电陶瓷驱动器)超薄厚度和取向的设计,获得了更小的铁电畴和更连续的翻转动力学行为,更丰富的铁电多畴亚稳态利于类脑突触器件中多态的可控调节。该器件表现出优异的综合性能:其8比特线性电导调控和高耐久性,满足类脑突触器件的核心性能指标要求。基于该器件性能仿真构建的神经网络具有高图像识别率,即使在图片中引入椒盐噪声或高斯噪声,其识别图片的准确率仍然大于85%。此外,该器件具有亚纳秒超快操作速度,而且其能耗低至飞焦级。研究人员经过推算表明,该铁电隧道结构建的神经网络计算系统,有可能实现相当于人脑的优秀能效,而人脑神经元突触单次脉冲能耗约10飞焦。人脑突触响应速度约亚毫秒,其响应速度也比人脑突触快6个量级,堪称媲美人脑突触的能效表现。  这一研究成果展现了铁电隧道结在构建未来高性能类脑人工智能计算硬件系统方面的重要潜力。
  • 研究团队成功开发高耐久柔性突触半导体材料
    据韩国成均馆大学消息称,该校电子电气工学系研究团队成功开发了高耐久性柔性突触半导体元件。研究成果刊登在国际学术期刊《科学观察》上。  近年来,物联网技术在便携式智能设备领域应用需求迅速增加,特别是柔性电子(Flexible Electronics)在机器人工程及智慧保健医疗领域的应用备受关注。研究组在聚酰胺材料的柔性基板上,将数十纳米厚的非晶体氧化物半导体薄膜进行沉积后作为通道,组成非晶体氧化物半导体、离子—凝胶混合结构,研发出可通过电脉冲信号控制的柔性突触半导体元件,该元件在机械、电压力测试后,表现出稳定的静态及动态动作特性。研究团队利用该元件,制作了弹性阻力传感器安装在手上,通过实验验证了可适用于神经元系统(sensory-neuromorphic systems)。  注:本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 帕金森病的希望:对α -突触核蛋白聚集抑制剂的研究突破
    Jody Mason博士在美国JBC上发表文章,验证了构建抗α-Syn聚集肽抑制剂的方法,而且为潜在的药物候选分子提供了一种很有前途的肽序列。梅森博士评论道:“使用CEM公司的Liberty Blue做多肽合成实验,它能够快速合成研究所需的多肽,节省了我们大量的成本和时间,我们也愿意尝试更多的研究,面对更多的风险和挑战。Liberty Blue是我们实验室的一个很好的补充,我强烈建议其他研究人员使用这个系统。”帕金森病是神经系统的一种渐进性疾病,约占所有痴呆症的15%。多见于老年人,据国内权威机构统计,我国65岁以上人群患病率大约是1.7%,并随年龄增长而升高,据推算,目前国内帕金森病患者已经超过220万。目前的医学水平对这一病理改变的准确病因仍不清楚,也没有一个明确的诊断方法(主要依靠病史、临床症状及体征),目前药物治疗是最主要的治疗手段,手术治疗是药物治疗的一种有效补充。应用的治疗手段虽然不能阻止病情的进展,也无法治愈疾病,但能改善症状,有效的提高患者的生活质量。对于这个“老大难”,各大药厂使出浑身解数,近几年,上市了几款帕金森新药,像奥匹卡朋(Opicapone)、GOCOVRI (缓释金刚烷胺)等,但对于这个渐进性的疑难病来说,仍未突破既往的作用靶点。迫于研发难度和资金压力,全球最大制药公司辉瑞在2018年年初宣布,将放弃研发治疗阿茨海默症和帕金森症的新药,裁撤时间科学研究和早期发展项目约300个相关职位,足可见研发帕金森类药物的困难程度。帕金森病是神经系统的一种渐进性疾病,约占所有痴呆症的15%。多见于老年人,据国内权威机构统计,我国65岁以上人群患病率大约是1.7%,并随年龄增长而升高,据推算,目前国内帕金森病患者已经超过220万。目前的医学水平对这一病理改变的准确病因仍不清楚,应用的治疗手段虽然不能阻止病情的进展,也无法治愈疾病,但能改善症状,有效的提高患者的生活质量。 帕金森的病理特征是蛋白质团簇的形成,这些蛋白质称为路易体。 α-Syn(一种突触前神经元蛋白质)作为路易体的主要成分,与帕金森病有密不可分的联系,因此引起了科学界极大的兴趣。 目前的研究表明,α-Syn通过中间可溶的寡聚构象(称为原纤维)来帮助路易体。 而这些原纤维在神经元包涵体中沉积,然后通过影响细胞内靶标和突触功能而导致细胞死亡。之前的研究已经证明,α-Syn的71-82区域负责整个140 mer蛋白的聚集。但是梅森博士的小组指出,早发性帕金森病相关的突变是在该蛋白质的另一个片段中发现的。在观察到大多数突变后,发现该突变位于或非常接近46-53区域,他们选择根据这个肽段检测一个10聚体,具体而言,他们创建了45-54序列的209952个成员库,其中包括已知的突变,以及如图1所示的一系列可选的残基选择。然后用多路复用的细胞内蛋白片段互补分析法(PCA)筛选该多肽库。在此基础上,从文库中筛选出约200个候选基因。随后,在序列选择生长条件下进行了基于竞争的主成分分析,阐明了生长速率的差异。竞争主成分分析从最初发现的200个α-Syn结合剂中获得了一个最有前途的序列,可以通过测序来确定。图1. α-Syn(TOP)的45-54原生型序列被用来建立一个209952个成员肽库。包括与早发帕金森病相关的残基位置和选项(下划线和粗体表示部分)。 从竞争的PCA循环中鉴定的前导肽候选物能够与疾病相关的原生型α-Syn结合并降低淀粉样蛋白的形成超过90%。梅森博士然后利用固相多肽合成技术原生型45-54,α-Syn肽(作为对照)和PCA衍生肽候选物,研究其对140聚体原生型α-Syn结合的影响。从PCA研究中得到的肽能够防止原生型α-Syn在1:1化学计量下聚集,与原子力显微镜(图2)和THT染料结合试验一起证实,圆二色性实验证实几乎完全预防了多肽的β折叠二级结构。正如预期的选择方法,抑制剂也导致与α-Syn聚集相关的毒性大幅度降低。因此,该研究不仅验证了构建抗α-Syn聚集肽抑制剂的方法,而且为潜在的药物候选分子提供了一种很有前途的肽序列。图2. 左边显示的是α-Syn蛋白形成的毒性淀粉样纤维的原子力显微镜图像。这些都是在帕金森病患者的大脑中发现的。右边是与新衍生肽混合的同一蛋白质。多肽结合在α-Syn蛋白中的粘性部分,几乎完全阻止了纤维的形成。 梅森博士在2013年底开始使用CEM的?Liberty Blue™ 多肽合成仪。该系统使他能够快速合成研究所需的多肽。相较于之前购买多肽,现在能够节省大量的成本和时间,这对他的工作来说是非常有价值的。另一个好处,梅森博士不再关心是否有足够的肽材料用于实验问题,因为现在他可以快速有效地制造更多的肽。梅森博士评论道:“自从有了Liberty Blue,我们愿意尝试更多的研究,并能面对更多的风险挑战。Liberty Blue是我们实验室的一个很好的补充,我强烈建议其他研究人员使用这个系统。” Jody Mason博士发表的文章:Intracellular Screening of a Peptide Library to Derive a Potent Peptide Inhibitor of a-Synuclein AggregationJournal of Biological Chemistry, 2015, 290 (12), 7426–7435DOI: 10.1074/jbc.M114.620484
  • 宁波材料所氧化物薄膜晶体管人工光电突触研究取得进展
    人工视觉智能技术在安全、医疗和服务等领域颇有应用潜力。然而,随着网络化和信息化的发展,基于冯诺依曼构架的现有视觉系统因功耗问题难以实时处理海量激增的视觉数据。仿生人类视觉的光电突触器件可集图像信息采集、存储和处理于一体,有效解决现有视觉系统存在的时效性、功耗等问题。非晶氧化物半导体薄膜晶体管(TFT)作为传统电子器件在显示、电子电路等领域已实现产业化应用。因此,基于氧化物TFT的创新器件在产业工艺兼容性、与后端电路的在板集成等方面优势明显,在仿生人类视觉神经突触器件的研发方面,亟待解决如可见光响应弱、频率高效选择性、不同波段信号串扰等一些关键科学和技术问题。   中国科学院宁波材料技术与工程研究所功能薄膜与智构器件团队阐明了非晶氧化物半导体器件中与氧空位息息相关的突触权重调控的微观机理,为提高可见光响应奠定了理论基础,设计了背沟道修饰pn异质结的光电突触TFT,有效耦合了三端器件的栅压调控和两端器件的内建电场调控功能,兼具高光电响应、易集成、低功耗等优势。   近期,该团队携手福州大学教授张海忠团队,设计了基于InP量子点/InSnZnO的光电TFT的仿生视觉传感器,将氧化物半导体优异的电传输特性和InP量子点良好的宽光谱响应特性有机结合,使器件具有优异的栅极可控性和可见光响应特性,通过简单控制栅极偏置实现初始状态的调控,仿生模拟了人眼暗视和明视环境下适应功能的切换。该工作构建的TFT阵列在感知红绿蓝三原色字母时均表现出逼真的环境自适应特征。此外,基于该光电传感阵列的三层衍射神经网络用于手写数字识别模拟,准确率可达93%。该研究为开发环境适应性人工视觉系统开辟了新途径,并对神经形态光电子器件的研发具有启发性意义。   相关研究成果发表在《先进功能材料》(Advanced Functional Materials,DOI: 10.1002/adfm.202305959)上。研究工作得到国家自然科学基金和宁波市重大科技攻关项目等的支持。人眼明暗适应过程与氧化物光电薄膜晶体管光电流变化过程的类比演
  • 101人!国家卫生健康突出贡献中青年专家人选名单出炉
    根据《国家卫生健康突出贡献中青年专家选拔管理办法》(国卫人发﹝2015﹞47号),卫健委组织开展了第九届国家卫生健康突出贡献中青年专家选拔工作。经研究,现对拟当选的101名人选基本情况进行公示,人选按姓氏笔画顺序排列。公示时间为2021年2月5日至2月10日。公示期间如有异议,应实名反映情况。第九届国家卫生健康突出贡献中青年专家人选名单按姓氏笔画排序序号姓名单 位专 业1于永铎辽宁中医药大学中医外科学2马瑞霞银川市第一人民医院耳鼻咽喉科学3马燕琳海南医学院第一附属医院妇产科学4王 刚首都医科大学附属北京安定医院精神病学5王 琪大连医科大学附属第二医院呼吸内科学6王 焱厦门大学附属心血管病医院心血管内科学7王忠敏石河子大学医学院第三附属人民医院放射医学8王映辉中国中医科学院中医药信息研究所中医基础理论9车永胜中国医学科学院医药生物技术研究所微生物药物学10亢泽峰中国中医科学院眼科医院中医眼科学11邓 昊中南大学湘雅三医院临床医学检验技术12占发先湖北省疾病预防控制中心疾病控制13卢 铀四川大学华西医院肿瘤放射治疗学14卢中秋温州医科大学附属第一医院急诊医学15叶 玲四川大学华西口腔医院口腔内科学16冉海涛重庆医科大学附属第二医院超声波医学17兰晓莉华中科技大学同济医学院附属协和医院核医学18师 彬山东省医药生物技术研究中心推拿(按摩)学19朱 悦中国医科大学附属第一医院骨外科学20朱心红南方医科大学生理学21朱波峰西安交通大学口腔医院法医学22任建林厦门大学附属中山医院消化内科学23向 阳北京协和医院妇产科学24刘 昌西安交通大学第一附属医院普通外科学25刘玉玲中国医学科学院药物研究所药剂学26刘成海上海中医药大学附属曙光医院中西医结合内科学27刘连新中国科学技术大学附属第一医院普通外科学28刘思德南方医科大学南方医院消化内科学29刘恩梅重庆医科大学附属儿童医院儿科学30刘清泉首都医科大学附属北京中医医院中医内科学31江 泓中南大学湘雅医院神经内科学32许剑民复旦大学附属中山医院普通外科学33杜 光咸宁市中心医院中药药理学34李 浪广西医科大学第一附属医院心血管内科学35李 群中国疾病预防控制中心疾病控制36李廷荃山西中医学院附属医院中医内科学37李守军中国医学科学院阜外医院心血管外科学38李运伦山东中医药大学附属医院中医内科学39李国新南方医科大学南方医院普通外科学40李岳峰国家卫生健康委统计信息中心卫生经济学41李晓光北京医院放射医学42李雪梅北京协和医院肾内科学43李新民天津中医药大学第一附属医院中医儿科学44杨 莉北京大学第一医院肾内科学45杨 简宜昌市中心人民医院心血管内科学46杨拴盈西安交通大学第二附属医院呼吸内科学47杨炳友黑龙江中医药大学中药化学48杨爱明北京协和医院消化内科学49吴 浩北京市丰台区方庄社区卫生服务中心全科医学50吴 疆北京市疾病预防控制中心疾病控制51吴文灿温州医科大学附属眼视光医院眼科学52吴永忠重庆大学附属肿瘤医院肿瘤放射治疗学53吴安华中国医科大学附属第一医院神经外科学54吴忠仕中南大学湘雅二医院胸心外科学55吴新宝北京积水潭医院骨外科学56沈 南上海交通大学医学院附属仁济医院风湿与临床免疫学57张 罗首都医科大学附属北京同仁医院耳鼻咽喉科学58张 浩上海交通大学医学院附属上海儿童医学中心小儿外科学59张 澄山东大学齐鲁医院心血管内科学60张文宏复旦大学附属华山医院传染病学61张必翔华中科技大学同济医学院附属同济医院普通外科学62张光鹏国家卫生健康委卫生发展研究中心卫生事业管理63张宏家首都医科大学附属北京安贞医院胸心外科学64张艳桥哈尔滨医科大学附属肿瘤医院肿瘤内科学65张桂荣沈阳市口腔医院口腔医学66张瑞平山西白求恩医院放射医学67陆 晨新疆维吾尔自治区人民医院卫生事业管理68陆 舜上海市胸科医院肿瘤内科学69陈 亮苏州大学附属第一医院骨外科学70陈 锋福建省急救中心、福建省立医院急诊医学71陈 椿福建医科大学附属协和医院胸心外科学72陈万青国家癌症中心流行病学73陈厚早中国医学科学院基础医学研究所病理生理学74陈莉明天津医科大学朱宪彝纪念(代谢病)医院内分泌学75林 玫广西壮族自治区疾病预防控制中心疾病控制76林天歆中山大学孙逸仙纪念医院泌尿外科学77林浩添中山大学中山眼科中心眼科学78欧启水福建医科大学附属第一医院临床医学检验学79周行涛复旦大学附属眼耳鼻喉科医院眼科学80周建华华中科技大学同济医学院附属同济医院儿科学81郑军华上海市第一人民医院泌尿外科学82柳克祥吉林大学第二医院胸心外科学83钟惟德广州市第一人民医院泌尿外科学84秦环龙上海市第十人民医院普通外科学85耿庆山广东省人民医院疾病控制86夏维波北京协和医院内分泌学87倪 鑫首都医科大学附属北京儿童医院小儿外科学88徐英辉大连医科大学附属第一医院神经外科学89高树庚中国医学科学院肿瘤医院肿瘤外科学90郭兰萍中国中医科学院中药资源中心中药资源学91郭瑞霞郑州大学第一附属医院妇产科学92黄 恺华中科技大学同济医学院附属协和医院心血管内科学93曹 鹏江苏省中医药研究院中药药理学94崔 勇中日友好医院皮肤与性病学95蒋海越中国医学科学院整形外科医院整形外科学96韩清华山西医科大学第一医院心血管内科学97景向红中国中医科学院针灸研究所中医基础理论98傅君芬浙江大学医学院附属儿童医院儿科学99舒 畅中国医学科学院阜外医院心血管外科学100曾木圣中山大学附属肿瘤医院医学微生物学101曾进胜中山大学附属第一医院神经内科学
  • Nature突破! | 马秋富团队揭示针灸驱动迷走神经—肾上腺抗炎通路的神经解剖学基础
    针灸治疗疾病的核心机理之一是通过刺激身体特定的部位(穴位)来远程调节机体功能,而经络被认为是达到这种远程效应的重要传输载体。尽管现代解剖学研究尚未明确经络特异性结构基础的存在,但揭示了针刺刺激的远程效应可以通过躯体感觉神经-自主神经反射来实现。这种反射首先是激活来自位于背根神经节 (DRG) 或三叉神经节中的外周感觉神经纤维,随后将感觉信息传到脊髓和大脑,进而激活外周自主神经,最终实现对各种机能的调节。从上世纪70年代开始,就陆续发现此类反射存在躯体区域特异性。2020年哈佛大学医学院马秋富教授团队发表在Neuron的研究结果,揭示了低强度针刺刺激小鼠后肢穴位(如足三里ST36)可以激活迷走神经-肾上腺抗炎通路,而针刺刺激腹部穴位 (如天枢ST25) 却不能诱导出此抗炎通路(详见BioArt报道:Neuron | 马秋富团队报道针刺激活不同自主神经通路调节全身性炎症)。这种躯体区域特异性(或者说穴位部位的相对专一特异性)背后的神经解剖学基础至今尚不清楚。2021年10月13日,马秋富教授团队与复旦大学王彦青教授,中国中医科学院针灸研究所景向红教授团队合作(第一作者为柳申滨博士和王志福博士)在Nature又发表文章A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis,实现了针灸研究的历史性突破,揭示了一类PROKR2-Cre标记的DRG感觉神经元,是低强度针刺刺激激活迷走神经-肾上腺抗炎通路所必不可少的。尤为值得关注的是,根据此类神经的躯体分布特点,可以预测在不同部位低强度电针刺激抗炎的效果,从而为穴位相对特异性的存在提供了现代神经解剖学基础。首先,PROKR2-Cre标记的有髓鞘的神经元主要富集表达于支配四肢节段的DRG中,并且此类神经元特异性支配四肢的深层筋膜组织(如骨膜、关节韧带和肌筋膜等),而不支配皮肤的表皮组织和腹部的主要筋膜组织(如腹膜)。其次,为了研究PROKR2-Cre标记的神经元在针刺诱导迷走神经-肾上腺抗炎通路中的作用,研究团队运用交叉遗传等方法特异性地敲除此类DRG感觉神经元。当敲除这类神经元后,低强度针刺刺激后肢穴位ST36不能激活迷走神经-肾上腺通路,也无法抑制LPS(细菌脂多糖)所诱发的炎症风暴;而敲除此类神经元并未影响高强度刺激后肢穴位ST36和腹部穴位ST25所诱导的交感神经抗炎通路。研究团队进一步运用交叉遗传的方法特异性诱导光敏蛋白CatCh表达于PROKR2-Cre标记的神经元,并用473nm蓝光特异性地激活支配后肢穴位ST36的此类感觉神经纤维。研究发现,激活此类神经纤维能显著诱发迷走传出神经的放电,并且能以迷走神经依赖的方式诱导肾上腺释放儿茶酚胺类神经递质,抑制LPS诱导的促炎细胞因子释放,进而显著提高动物的存活率。这一部分研究结果,几乎模拟了低强度电针刺激后肢穴位ST36的抗炎效果。最后,研究人员根据PROKR2-Cre标记的 感觉神经纤维的组织支配模式准确验证了对低强度电针刺激诱导的抗炎效应结构基础。而与下肢胫骨附近筋膜组织中的密集投射相反,下肢后部的肌肉组织中,包括小腿的腓肠肌和大腿区域的半腱肌,PROKR2-Cre感觉神经纤维支配很少。低强度针刺刺激这些部位未能显著抑制 LPS诱导的炎症反应。奇妙的是,PROKR2-Cre神经纤维很少投射的腓肠肌和半腱肌等部位,正好很少分布传统穴位。进一步研究发现, PROKR2-Cre标记的感觉神经元也密集支配到前肢的深层筋膜组织(如桡骨骨膜),此处为手三里穴区(LI10),进一步通过针尖靠近含有这类神经纤维的桡神经深支,对其进行了双侧低强度刺激,发现针刺刺激此穴位也可通过此类神经元和迷走神经依赖方式,显著抑制LPS诱导的炎症反应。以上研究表明,对于针刺刺激诱导迷走神经-肾上腺抗炎通路,存在躯体部位的选择性(如有效的 ST36 、LI10 和无效的 ST25穴位)、穴位特异性(如ST36 与无效的后肢肌肉中的传统非穴位)。这种穴位的相对特异性与PROKR2神经纤维的部位特异性分布有关。此外,针刺强度、深度、检测结果指标都是影响穴位特异性发挥作用的重要要素。这些发现充实了针灸等体表刺激疗法的现代科学内涵,为临床优化针刺刺激参数,诱发不同自主神经反射,从而治疗特定的疾病(如炎症风暴等)提供了重要的科学依据。据悉,该研究获得了复旦大学王彦青教授、中国中医科学院针灸研究所景向红研究员的支持帮助,福建中医药大学王志福副教授、中国中医科学院针灸研究所宿杨帅博士, 还有杨维、祁鲁、傅鸣洲参与了本研究的工作。
  • 牛津大学Nature子刊揭示T细胞突触囊泡研究新方法
    在过去的10年里,人们发现一些超分子效应物会在细胞-细胞连接的界面上传递信息。免疫突触(immunological synapse)是抗原递呈细胞(antigen-presenting cell, APC)和T细胞相互作用的过程中,在细胞与细胞接触部位形成的一个特殊结构,是促进抗原、共刺激/共抑制、细胞因子三种激活信号从抗原递呈细胞传递到T细胞的分子枢纽。在与抗原呈递细胞作用过程中,T细胞会释放第四类信号—跨突触囊泡(trans-synaptic vesicles, tSV),介导免疫细胞之间的双向通信,但是它们作用的具体方式和原理仍不清楚。近日来自牛津大学的Michael L. Dustin教授在Nature Communications上发表题为“T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles”的文章,开创性地提出了脂质双分子层珠子(Glass Bead Supported Lipid Bilayers, BSLB)作为一种多功能的合成APCs来捕获、表征tSV,为研究tSV提供了一种新的检测手段。该研究发现与细胞外囊泡(EVs)相比,tSV中有更多的RNA结合蛋白和更高含量的microRNA,验证了tSV作为细胞间信使的特殊作用。文章首先通过BSLB模拟APC呈递细胞,研究与T细胞相互作用过程中tSV的转移和释放。T细胞-BSLB共培养物的延时成像显示,BSLB可促进来自受刺激T细胞的CD40L的转移,这在被转移的tSV组成的BSLB上留下了突触印记(图1-a)图1. BLBS原理进一步,作者将BSLB上的tSV洗脱下来,并利用NanoFCM对tSV和细胞上清获得的EVs进行综合表征和对比。发现tSV颗粒大小在82.13± 0.75nm,而EVs的粒径为65± 25nm,明显小于tSV的粒径大小。用NanoFCM的Exo粒径标准品(含68, 91, 113, 155 nm四种尺寸的SiO2球),对EVs和tSV的粒径进行分群,发现与EVs相比,tSV中大于113nm和155nm的颗粒所占比例更高(图2-d);tSV中TCR、CD40L、CD81阳性的tSV颗粒粒径显著大于对应的EVs阳性的颗粒(图2-e)。图2. tSV和EVs颗粒大小亚群分类进一步地,对tSV和EVs进行CD81和TCRαβ双标,发现tSV中两种标志物双阳的比例高于EVs,且TCR阳性的tSV粒径也显著大于TCR阳性的EVs(图3)。后续作者研究发现不同种类的T细胞来源的tSV内容物具有明显区别;tSV比EV携带更多的RNA结合蛋白和特有的microRNA等,感兴趣的读者可以阅读原文进行了解。总的来说作者提出了珠状脂质双分子层(BSLB)作为一种多功能的合成APCs来捕获、表征和促进对tSV生物发生的理解,开发了一种免疫细胞间信息传递和交流研究的新方法。图3. tSV和EVs功能亚群分析文章中利用NanoFCM对tSV和EVs的亚群进行精细分类,根据颗粒的大小将tSV和EVs分成四个不同大小的亚群,通过抗体标记,可对tSV和EVs 功能亚群进一步精细研究。利用NanoFCM单颗粒水平和超高分辨率的优势,可对tSV的不同亚群进行精细分类和研究,有望加快研究者对tSV的精细化研究进程!参考文献Céspedes P F, Jainarayanan A, Fernández-Messina L, et al. T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles[J]. Nature communications, 2022, 13(1): 3460.
  • 陕西省开展检验检测领域突出问题专项治理 公开征集弄虚作假等突出问题相关线索
    根据工作安排,省市场监管局决定于2024年5月至9月在全省开展检验检测领域突出问题专项治理,现面向全社会公开征集检验检测领域突出问题相关线索。此次专项治理重点为:弄虚作假类问题。检验检测机构不按标准要求进行检验检测、出具虚假或不实报告等违法违规行为。违规经营类问题。机构超资质能力范围、不按标准规范进行检验检测,基本条件和技术能力不能持续符合资质认定条件和要求等问题。价格收费类问题。检验检测机构未明码标价或标价不规范、价外加价,恶意低价竞争或达成垄断协议扰乱市场秩序等问题。资质认定类问题。审批把关不严、超范围审批、办理时长超限等问题。监管执法类问题。监管执法尺度不一、搞变通或选择性检查,对违法违规行为查处不力,现场检查“走过场”“大问题小处理”及处罚信息不公示等问题。廉洁从政类问题。监管执法与行政许可工作人员滥用职权、徇私舞弊、“吃拿卡要”及与从业机构进行利益输送等问题,评审员、观察员以“评审费”名义收受被评审机构红包等问题。其他社会组织服务类问题。行业协会等中介组织乱培训、乱服务、乱收费及假借政府机关或事业单位名义开展中介服务等问题。其他有违公正审批、公正评审、公正监管、公平竞争,影响廉洁从政、廉洁评审、廉洁服务及扰乱、破坏检验检测市场秩序的突出问题。线索举报方式:专项治理领导小组办公室投诉举报受理渠道举报电话:029-86138596举报邮箱:sncmajb@163.com省市场监管局直属机关纪委 举报电话:029-86138891来信地址:西安市二环北路东段739号(陕西省市场监督管理局认证监管处)邮政编码:710021(来信请在信封上注明“检验检测领域突出问题专项治理线索”)
  • 我国科学家提出一种绘制全细胞神经介观图谱的光学多层干涉断层成像方法
    大脑的神经回路是极其复杂的网络,包含数十亿个神经元细胞,这些细胞间又存在着数以百亿计的连接。如果只了解其中单个分子或单个神经细胞的工作机理而不了解多个神经元细胞之间连接之后的网络结构和集体行为方式,则无法理解大脑复杂且高等的功能行为,也无法解释很多脑部疾病的致病机理。目前成像技术众多,但仍然缺乏可在亚细胞神经元突起水平上描绘出单个脑组织中所有细胞以及神经投射图谱的方法。构建出一种能快速绘制神经网络联接图谱,展现全细胞细节并与电子显微成像相关联以发挥二者优势的光学成像技术,对了解大脑的工作机制和相关疾病机理具有重大意义。  近期,中国科学院苏州生物医学工程技术研究所张若冰课题组提出一种光学多层干涉断层成像方法Optical Multilayer Interference Tomography(OMLIT)。科研人员发现,原本仅用于收集超薄切片的卷带以及为电镜成像提供导电性的导电镀层在光学显微镜下可发挥独特作用:光经过层与层之间的反射与干涉后到达物镜,获得对比度增强的图像。OMLIT在此基础上,通过测试收集超薄切片时所使用的卷带材料、镀层材料、镀层厚度、超薄切片厚度等因素,找到一种在光学分辨率下获取满足介观尺度下要求的图像的条件。  这种成像方法另外的优势在于快速高效准确。相较于电子显微镜成像所需的3.5小时,OMLIT最快可在12分钟内获得神经突触水平下的小鼠皮层三维结构数据集(0.95×1.15×0.027mm3),并可区分和重建所有神经元和神经胶质细胞的形态以及空间位置,以及毛细血管和神经突触的交织网络。使用扫描电镜验证OMLIT的成像与三维重建精度,展示了两种成像方法之间的兼容性。科研人员认为,未来可将长程神经投射图谱与单个脑组织中全细胞的局部回路的互补突触级细节合并,提高大尺度脑图谱的成像通量。  相关成果发表在ACS Photonics上。  论文链接
  • 国家实验室建设应突出工程化研究能力
    黄伯云院士   多年来,我国科技成果转化率低、科技创新周期长的局面一直没有得到明显改善。中南大学校长、中国工程院院士黄伯云日前指出,造成这种现状的一个重要原因,是工程化这一创新链的严重缺位。   黄伯云表示,大型工程化研究能力不足已成为今天我国科技支撑发展的瓶颈问题。他建议以国家实验室建设为突破点,在国家实验室建设的部署中突出大型工程化研究能力建设,以提高我国科技持续创新能力和科技支撑发展能力。   黄伯云指出,一般来说,科技创新活动的完整创新链应该是从基础研究到工程化、再到产业化。据研究,创新链的资源投入比例呈现出1∶10∶100的规律,而我国却严重缺失工程化环节。如近期我国启动的大飞机科技重大专项,先期8个铝材工程化研究项目等,只能安排到企业生产线上,通过产学研合作开展,这样就带来了企业部分生产线的改造和停产等问题。   在《关于加快建设突出工程化能力的国家实验室的提案》中,黄伯云指出:因国情所限,长期以来,我国政府科技投入的主流方式是重科技项目、轻能力建设。结果造成科技资源越来越分散、低水平重复研究不少 国家建立的重点实验室、工程实验室和工程技术研究中心等由于投资强度低,普遍表现为研究方向窄、集成体量小、装备更新慢,没有真正形成交叉集成、汇聚团队、持续创新的能力。   “但是现代科技支撑和引领发展的明显特征,就是学科的高度交叉集成及与之相互适应的创新能力平台的高端化和大型化,人为地分割基础研究和工程化研究,是与当今科技发展创新周期越来越短的世界潮流背道而驰的。”他说。   据悉,目前美国的国家实验室如橡树岭国家实验室,仍定位为多学科科学和技术实验室,每年的3000名客座研究人员中有约1/4来自工业界。而美国科学和技术研究布局的定位整体上是:研究型大学主要开展自由探索的基础研究 依托研究型大学的国家实验室主要是基于国家战略目标,进行基础研究和工程化研究 企业实验室大多围绕市场作产业化技术。   黄伯云表示,我国必须重视工程化能力的建设,“突出工程化能力的国家实验室建设,是我国科技支撑发展的迫切需要”。   由于工程化能力建设需要更多支持经费,结合我国国情,黄伯云认为应采取集中财力、各个击破的战略。他建议优先部署资源、环境和材料领域突出工程化能力的国家实验室。
  • 致真磁光克尔显微镜助力全线性神经元-SOT磁性存储器件研究取得新进展
    存算一体及人工智能神经网络芯片采用非冯诺依曼架构体系,可大降低数据的访问延迟和传输能耗,提升计算速度。SOT-MRAM以其高速、高耐久度等优点,在此类应用中将发挥巨大的优势。当前,存算一体和人工智能神经网络芯片领域亟需一种全线性的多态存储器件(图1b),以便为人工智能神经网络的神经元、突触、存内计算等提供硬件支撑。但现有的SOT多态磁性存储器件及其他类型的存储器件大都是非全线性的(图1a),其输入-输出曲线的部分区域为线性,其他部分为非线性区,要使器件工作在线性区需要额外的时间、能耗和电路开销,阻碍了其在高速、低功耗和高集成密度的存算一体及人工智能神经网络芯片方面的应用[1]。图1、(a)目前的多态存储器件,(b)理想的全线性存储器件,(c)目前电流磁化翻转曲线,(d)通过调节DMI和交换耦合实现的线性磁化翻转曲线。 今年5月,微电子所杨美音副研究员和博士研究生李彦如为共同作者,微电子所先导中心罗军研究员和半导体所王开友研究员为通讯作者,在Physical Review Applied期刊上发表了题为“All-linear multistate magnetic switching induced by electrical current”的学术论文[2],该团队合作研制出全线性的电流诱导多态自旋轨道矩(SOT)磁性存储器件,并实现了低能耗、可编辑的突触功能,对基于SOT-MRAM的低功耗存算一体逻辑和神经形态计算提供了一种新方法。图2、(a)离子注入引起的全线性磁化翻转,(b)局域离子注入注入实现的可编译的突触功能。 为了获得全线性的多态磁性存储器件,该团队在理论上模拟调节磁性材料中的“DMI效应”和“交换耦合效应”的比例,发现可将非全线性的磁化翻转曲线调控成全线性的磁化翻转曲线(图1c,d)。该理论预测的结果获得了实验验证。该团队在本次工作创新的采用离子注入工艺,成功调节了普通磁性材料中“DMI效应”和“交换耦合效应”的比例,实现了SOT磁性存储器件的全线性磁化翻转(图2a)。同时,通过局域的离子注入,实现了无外场的线性多态存储和突触功能。该突触可在同一超低电流脉冲下实现兴奋和抑制功能,并具备可编译特性。图3 面内场Hx下垂直磁场脉冲作用的磁畴壁运动速度。样品(a) S1, (b) S2, 和 (c) S3. 插图分别是面内场Hx(负、零和正)下的磁畴壁运动的轨迹。(d) 测量的A和D值。本项工作中样品的磁动力学过程观测,磁畴壁运动速度和DMI作用测量的工作由北京航空航天大学张学莹老师组合作提供(如图3),此系列测量表征工作利用了北航-致真团队自主研制的多功能高分辨率磁光克尔显微成像系统,该系统除了能够获得高分辨率的动态磁畴观测外,在磁性薄膜材料和自旋电子器件动力学分析领域也有着突出的优势,它自带了磁场探针台,能够让用户利用软件定义电、磁等多种想要的波形,在进行电输运测量的同时,观察器件磁畴的变化,一键触发后,在样品上同步施加垂直/面内磁场、电流脉冲、微波信号,并同步采集克尔图像信息,能够直观、高效、无损地测量多种参数,包括饱和磁化强度、各向异性强度、海森堡交换作用强度和DMI强度等,是传统的磁光克尔显微镜所不具备的。 图4 多功能高分辨率磁光克尔显微成像系统 产品基本参数:☛ 向和纵向克尔成像分辨率可达300 nm;☛ 配置二维磁场探针台,面内磁场高达1 T,垂直磁场高达0.3 T(配置磁场增强模块后可达1.5 T);☛ 快速磁场选件磁场反应速度可达1 μs;☛ 可根据需要选配直流/ 高频探针座及探针;☛ 可选配二次谐波、铁磁共振等输运测试;☛ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;☛ 4K~800K,80K~500K 变温选件可选。 参考信息:[1] http://www.ime.ac.cn/zhxx/zhxw/202105/t20210521_6036245.html[2] M Yang et al., PHYSICAL REVIEW APPLIED 15, 054013 (2021)
  • 出口服装纤维成分标识问题突出
    今年上半年,江苏盐城检验检疫局在实施出口服装检验监管过程中,先后多次遇到纤维成分标识不符合要求的情况。为此该局及时对出口产品开具了不合格通知单和整改通知单,加强与出口企业及其客户现场沟通解决。纤维成分标识不规范俨然已成为当前出口服装检验中不容忽视的一个突出问题。   目前纤维成分标识不符合要求主要有三种表现形式:一是纤维含量不符,含量偏差超标 二是纤维标注名称与产品实际不符 三是唛标纤维成分与合同标示成分不符。   据调查分析,纤维成分标识不符合要求的原因主要是工厂管理缺乏规范,缺少必要的审核环节,致使唛标印制错误。其次,在金融危机的大环境下,国际市场服装价格压得非常低,服装出口企业不得不被迫采购低价原料和辅料,使服装质量难以得到保证。企业为了节约成本,顾此失彼,往往会导致纤维含量偏差超过规定允许范围。   为此检验检疫部门提醒广大出口企业:由于纤维成分标识在美国、欧盟等许多国家和地区,都是有技术法规作为强制性要求的,即使客户同意降低要求以次充好、或者张冠李戴、混淆纤维名称标识,都是违法的。一经查实,不仅会使工厂自身受到重创,也会严重影响“中国制造”的形象。同时出口企业必须加强对相关法律法规,特别是产品输入国技术法规的学习,增强法制意识,合法经营。不能“饥不择食”,无原则地满足客户要求会造成因小失大。企业要树立正确的危机意识和风险意识,警惕少数投机客商,同时谨防陷入涉嫌欺诈陷阱,杜绝涉嫌欺诈的质量事故的发生。
  • 陕西专项治理检验检测领域8大突出问题
    近日,陕西省市场监管局发布陕西省检验检测领域突出问题专项治理实施方案,从5月至9月,开展全省检验检测领域突出问题专项治理。专项治理聚焦三个方面8大类突出问题。  第一方面是检验检测机构存在的3类问题:  弄虚作假类问题,重点查处检验检测机构出具虚假或不实报告等违法违规行为,食品、环境、建材、机动车等领域检测造假问题,未经检测或以篡改数据等方式编造报告、偷工减料、缩减采样量或缩短检测时间等问题。  违规经营类问题,重点查处机构超资质能力范围、不按标准规范进行检验检测等问题,重点纠治机构基本条件和技术能力不能持续符合资质认定条件和要求的问题。  价格收费类问题,重点查处和纠治本系统检验检测单位未明码标价或标价不规范、价外加价等行为,检验检测机构打价格战、恶意低价竞争或达成垄断协议扰乱市场秩序等问题。  第二方面是市场监管(资质认定)部门存在的3类问题:  资质认定类问题,重点纠治审批把关不严、超范围审批、办理时长超限等问题。  监管执法类问题,重点纠治监管执法尺度不一、搞变通或选择性检查,对违法违规行为查处不力,现场检查“走过场”“大问题小处理”、长期“零办案”、处罚信息不公示等问题。  廉洁从政类问题,重点查处监管执法与行政许可工作人员滥用职权、徇私舞弊、“吃拿卡要”及与从业机构进行利益输送等问题,评审员、观察员以“评审费”名义收受被评审机构红包等问题。  第三方面包括其他2类问题:  其他社会组织服务类问题,重点纠治行业协会等中介组织乱培训、乱服务、乱收费及假借政府机关或事业单位名义开展中介服务等问题。  其他有违公正审批、公正评审、公正监管、公平竞争,影响廉洁从政、廉洁评审、廉洁服务及扰乱、破坏检验检测市场秩序的突出问题。  全省检验检测领域突出问题专项治理工作向社会公开投诉举报受理渠道:  1.专项治理领导小组办公室投诉举报受理渠道,举报电话:029-86138596,举报邮箱:sncmajb@163.com;  2.省市场监管局直属机关纪委,举报电话:86138891;  3.来信地址:西安市二环北路东段739号(陕西省市场监督管理局认证监管处),邮政编码:710021。
  • 科学家借助全新非接触式亚微米红外光谱,首次成功直观揭示神经元中淀粉样蛋白聚集机理
    老年神经退行性疾病,如阿尔茨海默症(AD)、肌萎缩性侧索硬化症、Ⅱ型糖尿病等,目前困扰着全大约5亿人,且这个数字仍在不断迅速增长。尤其是阿尔兹海默症(占70%以上),目前仍未有行之有效的诊断方法,因此无法得到有效的治疗或预防。尽管当代病理学研究已经证实这种病理变化与具有神经毒性的β淀粉样蛋白质的聚集有关,但其在神经元或脑组织中的聚集机制目前尚不清楚。现有的方法, 如电子显微镜、免疫电子显微镜、共聚焦荧光显微镜、超分辨显微镜,通常都需要对样品进行化学加工(标记染色等),可能会对淀粉样蛋白结构本身造成影响。而非标记方法,如表面增强拉曼光谱(SERS)和傅里叶变换红外光谱(FTIR), 前者受限于亚细胞水平上的低信噪比、自发荧光及不可逆的光损伤,后者其空间分辨率受限于红外光波长(?5–10 μm),且光谱可解译性和准确性受到弹性细胞光散射所产生的米氏散射效应(Mie scattering effects)的严重影响,使得直接在亚微米尺度上研究淀粉样蛋白质在神经元内的聚集行为十分困难。美国Photothermal Spectroscopy(PSC)公司开发的全新非接触式亚微米分辨红外测量系统mIRage, 是基于的光学光热诱导共振(O-PTIR)技术,它克服了传统FTIR技术的衍射限和米氏散射效应,红外光谱空间分辨率高达500 nm,且无需对样品进行标记, 不再需要衰减全反射(ATR)技术进行厚样品测试,且能够无接触和无损探测样品,全程对样品无污染,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息,使得在亚细胞水平揭示生物分子结构成为了可能。美国Photothermal Spectroscopy(PSC)公司开发的全新非接触式亚微米分辨红外测量系统mIRage(如图1A所示),使用可见探测束(532 nm)来测量样品在脉冲红外光束照射下的红外光热响应,具体体现为样品反射率的变化,由于使用了可见光作为检测光,使得其空间分辨率不再依赖于入射红外光的波长,且单一特定探测光束的使用还可以消除米氏散射效应。 图1. (A) 美国PSC公司非接触式亚微米分辨红外测量系统mIRage实物图;(B)亚微米红外成像示意图:神经元树突的AFM形貌图,其中神经元直接在CaF2基底下生长。mIRage采用两束共线性光束: 532 nm可见(绿色)提取光束和脉冲红外(红色)探测光束,样品的光热响应被检测为样品由于对脉冲红外光束的吸收而引发的绿色光部分强度的损失,使红外检测的空间分辨率提高到?500 nm. (C) 小鼠大脑皮层初神经元, 在CamKII促进下表达为tdTomato荧光蛋白,使得神经元结构填满红色,图片标尺为20 μm。(D) 图C区域放大图片,箭头指示树突上的神经元刺。因为上述的巨大技术优势和突破,非接触式亚微米分辨红外测量系统mIRage在生物学领域技术有广泛的应用前景和潜力,可应用于诸如细胞学研究(蛋白质、磷脂结构分析,红细胞、巨噬细胞成像等),临床致病菌/病原微生物鉴定,癌症诊断(细胞/组织),牙科/骨病变/眼科检测,生物大分子损伤,生物组织识别,以及生物药物检测,法医学等。近日,瑞典隆德大学的Klementieva教授团队与美国PSC公司的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为(图1B和C),这是以往的实验技术手段所不可能实现的。在该研究中,他们使用了大脑皮层初神经元,这是因为它们易发生AD病变,且具有特的结构。初神经元的这种形态特征使得可以在单个神经元层面上来测试全新非接触式亚微米分辨红外测量系统的分辨率和准确性。先,他们在反射模式下获得了高质量的红外光谱,且不受米氏散射或基线失真等人为因素的干扰(图2A,B)。值得注意的是,全新非接触式亚微米分辨红外测量系统其约为400 nm的横向分辨率,使得他们能够通过比较1740 cm-1处的峰强度来检测脂质含量的差异,以及通过对比酰胺II (1540 cm?1)与酰胺I特征峰强度(1654 cm?1)的比值来比较氨基酸(蛋白质)的种类和数量上的差异(图2C,D)。这是科学家们次获取单个树突棘的高分辨率的化学图像和红外光谱,以往其它测试方法是无法做到的。图2. 使用非接触式亚微米分辨红外测量系统mIRage观察初神经元结构。 (A) 在1650 cm-1处获得的神经元的红外图像,显示了蛋白质的分布 (B)中对应原始红外光谱的位置用数字和圆点表示,图片标尺为20 μm;(C)在1650 cm-1处获得的树突的红外图像,数字表示D图中获得光谱的位置,图片中标尺为20 μm;(D)在C图中两点处取的归一化红外光谱,体现了该方法的亚微米空间分辨率。红色箭头表示蛋白质结构的化学变化。为了在亚细胞层面上定位神经元中β片层结构,作者对APP-KO神经元进行了为时半小时的合成Aβ(1-42)处理(2×10?6 M),并使用非接触式亚微米分辨红外测量系统mIRage进行了化学结构的成像分析(图3A)。对Aβ处理后的APP-KO神经元的红外光谱进行分析证实,β片层结构可以在亚细胞水平上进行分辨。有趣的是,纯Aβ(1-42)纤维在1625 cm-1位置处有特征的红外峰,当加入到神经元结构中后,β片层结构的特征峰移动到1630 cm-1处,表明淀粉样原纤维结构发生了变化,可能是由于其与细胞蛋白和/或细胞膜发生相互作用导致的(图3B, C)。基于该发现,我们可以得出,在神经元中的淀粉样蛋白的构型变化可能会引发阿尔茨海默症进程中的不同机制。为进一步了解其形成机制,更多的方法学研究变得更加必要,如将非接触式亚微米分辨红外与免疫荧光显微镜结合起来,这种多模态成像模式可以在不同的细胞层面上更详细分析特征蛋白的结构变化,如前突触或后突触,囊泡(溶酶体或内溶酶体)或其他细胞器。图3. 使用非接触式亚微米分辨红外测量系统Mirage观察β片结构在处理后的初神经元中的聚集行为。(A,B)APP-KO初神经元在1650和1630 cm-1处的明场和光热红外成像,彩色标度表示光热振幅的强度,从小值(蓝色)到大值(红色),阈值为50%(以0为中心),插图为放大或叠加后的红外成像图,图片标尺为20 μm;(C)神经元中淀粉样蛋白结构在2×10?6 M Aβ(1-42) (红色)处理或不处理(绿色)后分别对应的红外光谱。β片结构对应的特征红外峰用红色箭头表示,光谱数据点间距为2 cm?1,数据进行50次均一化处理。综上所述,借助全新非接触式亚微米分辨红外测量系统mIRage,科学家成功次揭示了初神经元的分子结构,无需标记,且因为该技术是在非接触模式下工作,不会对神经元造成损伤,这在研究脆弱或粘性的物质时显得尤为重要。另外,该技术还能获得亚微米尺度的红外光谱,且不含由于背景失真或米氏散射造成的散射伪影。新的技术进步表明,全新的非接触式亚微米分辨红外测量系统mIRage现在可以用来做活细胞成像,并保持相同的亚微米空间分辨率。在这种情况下,全新的非接触式亚微米分辨红外测量系统有望在β片层结构在活神经元的突触附近的化学成像中发挥关键作用,并提供一个新的机会来研究神经毒性淀粉样蛋白如何从一个患病的神经元传播到一个健康的神经元,揭示阿尔茨海默症的形成和发展机制。该工作发表在2020年的Advanced Sciences上(DOI: 10.1002/advs.201903004)。
  • 庞国芳院士等9人获“科技兴检”突出贡献奖
    10月8日,国家质检总局发布《关于授予张钟华等九位同志“全国质量监督检验检疫‘科技兴检’突出贡献奖”的决定》,授予中国计量科学研究院张钟华院士、贺青研究员、李正坤副研究员、刘勇工程师,中国检验检疫科学研究院朱水芳研究员、庞国芳院士,中国计量科学研究院臧二军研究员、方占军研究员,湖南出入境检验检疫局王利兵研究员“全国质量监督检验检疫‘科技兴检’突出贡献奖”荣誉称号。   近年来,质检系统大力实施“科技兴检”战略,依靠科技进步支撑和发展质检事业,坚持求真务实、自主创新的科学精神,发扬厚积薄发、勇攀高峰的科研作风,涌现出一批成绩突出的科技工作者。   张钟华等九名同志在多年的科研实践中兢兢业业、潜心钻研、勤于思考、勇于探索,带领科研人员自主创新、团结协作、严谨求实、奋力攻关,在科研难题面前锲而不舍、永不言退、勇攀高峰,以开阔的学术视野和敏锐的专业眼光,瞄准国际前沿技术和质检行业领先技术,取得重大科技成果并获得国家科技成果奖励,为国家的科学研究工作和质检科技发展作出了重要贡献,成绩卓越。   《决定》号召质检系统全体干部职工要以受表彰的科技工作者为榜样,坚持科学发展观,大力实践“科技兴检”战略,围绕国家重大科技攻关和质检科技发展重点,团结协作、开拓创新、锐意进取、扎实工作,努力为质检科技工作作出应有的贡献。
  • 中国科大研发单神经元快速质谱技术 探索大脑神经元代谢奥秘
    近日,中国科学技术大学化学与材料科学学院黄光明教授与生命科学学院熊伟教授开展紧密合作,基于自行开发的单细胞电生理与质谱联合检测平台,对小鼠大脑中单个神经元开展了多种化学成分的快速质谱检测,并且可以做到同步采集电生理信号,在单细胞层次上成功完成了对神经元功能、代谢物组成及其代谢通路的研究。相关研究成果以“Single-Neuron Identification Of Chemical Constituents,Physiological Changes, And Metabolism Using Mass Spectrometry”为题,于2月21日在线发表在国际权威综合学术期刊《美国科学院院报》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)上。  脑内神经细胞在细胞形态、突触连结、细胞结构、电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其化学分子组成、含量、代谢也都有着很大的差别。因此,对脑内单个神经元的化学成分进行分析,具有重要的生物学价值。质谱分析因为具有高灵敏度、大的线性范围以及高通量分析化学分子的特点,逐渐被用于单细胞的细胞代谢分析。但目前的方法需要使用大量有机试剂对细胞进行处理,无法保持采样时细胞的活性 冗长的处理和分离过程也导致较慢的分析速度,无法短时间内完成大量单细胞分析,并缺乏来自同一细胞的电生理信号,最终导致单细胞代谢物的质谱分析无法大规模用于神经细胞的分析。近年来,中国科大黄光明教授实验室与熊伟教授实验室紧密合作,开发了能用于复杂样品的原位质谱分析方法,大大提高了分析速度,并于近期实现了针对细胞内蛋白质的直接分析(Angew. Chem. Int. Ed. 2011, 50:2503 Angew. Chem. Int. Ed. 2011, 50:9907 Anal. Chem. 2016,88:10860),同时通过电生理膜片钳技术开展了对小鼠脑内单个神经元的功能鉴定与解析(Nat. Chem. Biol., 2011 J. Exp. Med., 2012 Nat. Neurosci., 2014)。这些研究为实现单个神经细胞的高通量质谱分析、代谢物鉴定和代谢通路研究提供了重要的工作基础。膜片钳与单细胞质谱分析联用技术分析单个神经细胞示意图  该工作实现了单个神经元化学成分及代谢物的即时分析,该技术将目前神经细胞成分分析的研究推向了一个活细胞及单细胞水平,有望在单细胞层次上去研究神经生物学、代谢组学、毒理学等生命科学的重大问题,具有非常重要的应用前景。  中国科大生命学院与化学院联合培养博士后朱洪影、生命学院博士研究生邹桂昌、王宁为该文章的共同第一作者,黄光明教授和熊伟教授为共同通讯作者。该研究工作得到了科技部、国家自然科学基金委、中科院先导专项以及国家青年千人计划等资助,以及中国科大国家同步辐射实验室光电离质谱线站的仪器与技术支持。
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(三)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,分四期介绍。本期为第三部分内容。5.3. 突触后室突触受体位于突触后室,负责传递来自突触前末端的信号。它包含支架蛋白--负责锚定突触后受体的专门用于信号整合的信号分子。在神经元树突中,从主要树突轴起源并突起的小体积树突棘提供分区功能,并根据突触活动和发育阶段显示大小和形状的动态变化。树突棘是突触长时程增强(LTP)的结构相关物,因此与学习和记忆有关。要想准确观察树突棘的小尺寸、不同形状和动力学,一般要求采用超过衍射极限的分辨率并有可能进行活体成像的光学显微镜方法。第一个将活细胞SMLM应用于原代神经元的研究之一是使用碳菁染料(如Dil)可视化脊髓和丝状足。对于突触后膜结构的可视化,已经发现了一个新的膜标记试剂系列,该系列可实现神经元追踪和树突棘的可视化。最近,通过快速SIM和增强共聚焦显微成像研究了树突棘上微小突起(称为小刺)的动力学。通过将SIM成像与计算方法相结合,进一步评估了树突棘的几何结构,证实凹面对于棘结构稳定的重要性。在树突棘中,F-肌动蛋白高度定位富集在突触后密度区(PSD)和树突棘膜上。肌动蛋白的分子速度升高已让其扩散到除棘尖外整个棘的亚区。为了分析脊髓中肌动蛋白的动力学,我们设计了一种低亲和力的光转换肌动蛋白探针,并利用像差校正光学系统对活体脑切片动力学进行了表征。通过STED显微镜观察对phalloidin-ATTO647N标记的原代神经元,可以在树突棘颈和丝状棘中观察到F-肌动蛋白的周期性片段。同年,STORM成像也显示树突棘颈和丝状棘中存在以肌动蛋白为基础的周期性膜骨架。在树突棘中,分支的F-肌动蛋白在PSD附近聚集,而延伸仅限于指状突起的尖端,并为棘突提供了基础。通过基于监督学习的模式识别进行图像分割,可以对树突肌动蛋白组成异质性做自动分析。用SMLM也对树突F-肌动蛋白进行了同样的分析,并使用树突铂复原电镜进行了验证。使用STED显微镜在活体小鼠脑切片海马CA1神经元上进行延时拍照并结合FRAP及电生理学检查,证明在神经递质释放诱导的长时程增强(LTP)时树突棘颈部具有可塑性(宽度增加并长度减少)。使用正置STED显微镜实现了活体小鼠树突棘动力学的首次超高分辨率成像。在这里Thy1 EYFP小鼠体感皮层中的树突棘在其头部和颈部表现出形态可塑性。另外使用双光子STED成像对活体小鼠的海马树突棘动力学进行了研究,树突棘密度与早期报告相比高出2倍,并能测算几天内的树突棘蛋白周转率(图10)。图10 体内长时程双光子STED成像--海马CA1锥体神经元树突棘蛋白周转。左上图:使用长工作距离物镜的实验方法和CA1锥体神经元的双光子整体图像。右上图:传统的双光子成像与双光子STED成像的比较,显示了总体上更高的棘突密度和更详细的形态,特别是在轴和棘突中。空的箭头标志着常规双光子成像不能显示的棘突,而填充的箭头表示双光子STED报告的棘突数量更多、形态更复杂。底部图像:在海马CA1区基底树突的一个选定区域内,连续几天(第0天、第2天和第4天)成像的树突棘周转。树突棘被连续编号。AB=接近树突的轴突(缩回的棘突用红色标记;新的棘突用绿色标记)。转载自原文参考文献 273。此外,sptPALM揭示了富集在突触棘的突触后激酶CaMKII的空间和动力学亚群,该激酶介导钙依赖性可塑性机制。这些动力学似乎由棘肌动蛋白调节,因为Latrunculin A导致棘内CaMKII扩散显著改变。在PSD内的棘头,一个密集的蛋白质复合物含有不同的突触后支架蛋白,如PSD-95、homer1和shank3,它们排列在大小为∼80纳米的亚突触域中。根据不同的突触类型,PSD-95被动态组织为单个单元或多个纳米簇的形式。STED显微镜揭示了突触后支架蛋白负责将离子受体锚定到突触后膜上,SMLM观察到的活体原代神经元也是一样。在这里,活细胞单分子成像结合定量分析揭示了含有GluA2的AMPA-Rs(优先聚集在突触下的PSD-95簇中)的稳态调节。而PSD-95的uPAINT成像和AMPA-Rs的spt PALM报告在70 nm大小的PSD-95纳米域内平均聚集了20个AMPA-Rs,进一步证实了上面提到的这个发现。AMPA-Rs形成纳米颗粒,并能在几分钟内动态改变其大小和形状。与突触可塑性匹配的是:动态变化是通过突触内和突触外隔室之间的AMPA-Rs在时间维度交换,通过横向扩散来实现的。这些过程通过以微球标记抗体为靶点的内源性受体的单分子追踪实验得到证实。受体运动的类型被认为是布朗扩散,与突触后元件发生短暂的、低亲和力的相互作用。单分子追踪实验中使用Atto 647N修饰的抗体揭示了谷氨酸诱导的脱敏AMPA-Rs的侧向扩散增加导致的短期可塑性。AMPA-Rs的侧向扩散也与突触的短时程增强和长时程增强(分别为STP和LTP)有关。例如,已经证明,为了从突触抑制中恢复,脱敏受体通过侧向扩散被功能受体替换。此外,追踪实验表明,在CaMKII激活诱导LTP后,AMPA-Rs扩散到突触部位。这一过程由钙浓度升高触发,它导致CaMKII介导的stargazin(它与PSD-95一起能够调节AMPA-R的迁移率)磷酸化。进一步的研究报道,AMPA-Rs的交联导致膜上受体制动,它阻止了成功的LTP诱导。这一机制也可能导致由AMPA的致病性抗体介导的自身免疫性CNS疾病的病理生理学。与NMDA-R和mGluR5代谢受体的GluN1亚单位相比,AMPA-Rs的纳米级结构以不同的簇大小为特征。令人惊讶的是,突触前mGluR5受体表现出更均匀的分布,没有聚集行为。通过一种新的基于敲入的基因组编辑方法观察到,代表NMDA-R总库的内源性GluN1亚单位受体被证明聚集在一个由单个受体包围的主要单簇中。在关注NMDA-R细分的NR2A和NR2B亚型时,SMLM表明,在突触发育过程中,这些亚型被分割成纳米结构域,并根据其突触比率进行重塑。关于谷氨酸受体的活动性,单分子追踪实验揭示,神经元活动优先影响AMPA-R的活动性,而NMDA-R的活动是由蛋白激酶C活动触发的,而不是由钾升高触发的。此外,dSTORM成像表明,不同的NR2亚单位定位于不同的纳米结构域,这些纳米结构域在神经元发育过程中表现出灵活性。根据NR2A和NR2B的纳米结构,LTP的表达可以双向调节。kainate受体的单分子追踪实验也表明,突触捕获紧随着突触活性增加后发生。这里,突触激活导致的kainate受体与突触β-连环蛋白/N-钙粘蛋白复合物结合,形成短期可塑性。作为抑制性突触的对应物,gephyrin是将GABAA(GABA-a R)或甘氨酸受体(GlyR)并入突触后膜所必需的关键锚定分子。通过对突触中gephyrin分子的PALM/dSTORM成像发现:抑制性PSD(iPSD)体积为0.01至0.1μm3,并且每个iPSD中有200−250个gephyrin分子。单分子成像进一步揭示了gephyrin分子与受体结合位点的化学计量比约为1:1.96。类似于兴奋性突触,抑制性PSD(IPSD)根据突触活动动态调节其大小。通过NMDA-R激活形成的抑制性突触LTP加剧突触gephyrin积累,从而以CaMKII依赖的方式增加GABA-AR聚集,从而诱导GABA能突触后电流的增强。相反,抑制gephyrin向突触区的募集导致GABA-AR迁移率降低,并阻止iLTP的诱导。iLTP诱导后,gephyrin片段化为纳米结构域。gephyrin的重组降低了抑制性突触后电流的振幅变异性,证明了GABA-AR准确定位对于iLTP的真正表达非常重要。有趣的是,单粒子追踪显示,脱敏的GABA-AR甚至可以通过侧向扩散在并列的GABA能突触之间交换,为控制GABA能电流提供了另一种机制。此外,为了阐明多巴胺能突触的超微结构布局,dSTORM成像将多巴胺转运体映射到胆固醇依赖性纳米结构域,从而为更好地理解多巴胺能神经传递的病理生理过程奠定基础。5.4.亚突触结构域中的跨突触排列早期电生理学实验中已经发现,突触强度取决于突触前融合位点和突触后受体组织之间的空间关系,突触释放由释放位点的数量,突触小泡的释放概率,以及受体提供的突触后基本反应来决定。首先观测到的亚结构域的跨突触组织是突触粘附分子SynCAM 1位于边缘,EphB2位于PSD的中央。SynCam1在PSD中形成突触下云,可被长期抑郁症模式重塑。SMLM观察链霉亲和素的新单体变体(设计用于减少突触区域的交联和空间位阻),表明跨突触伙伴神经肽原1和神经纤维素1ß在突触处扩散受阻,形成相反的簇。这项研究还表明,另一种粘附分子LRRTM2的流动性不如神经肽1,并形成更密集、更稳定的簇。最近揭示了兴奋性突触上活性区的细胞基质和突触后受体支架的跨突触排列,它与提供高保真突触传递的靶向神经递质释放有关。在这里,释放位点定位是通过一种基于融合到突触囊泡蛋白Vglut1的pHluorin标记和RIM1/2纳米簇的超分辨检测的新方法实现的。多色3D定位显微镜显示RIM1/2和突触后PSD-95形成相反的纳米簇。LTP诱导导致PSD-95密度断裂增加,同时增强了纳米柱的排列,而LTD导致突触后柱的紊乱。突触前和突触后关键分子的这种纳米级排列主要由于neuroligin 1。此外,在应用STED显微镜的实时成像实验中,已经报道了树突棘体积增加和排列的纳米模块数量之间的紧密相关性。还报道了抑制性突触的亚突触结构域的纳米级排列。在这里,STED和SIM阐明了gephyrin和GABA-AR突触前亚区域的紧密联系。此外,突触后GABA-A 受体云显示与突触前边缘结构域结合(图11)。在小鼠神经肌肉连接处,带连接褶开口的突触后乙酰胆碱受体和突触前活动区的排列已通过应用SIM成像可视化。图11. 抑制性突触上的突触亚结构域。突触前的RIM元素与突触后的gephyrin支架分子以及抑制性突触的GABA-A R的突触下结构域的排列。PSD的体积和突触下域的数量随着活动相关的突触大小的变化而变化。转载自原文参考文献302。5.5. 三联突触星形胶质细胞是神经传递的基本调节者,神经元突触周围突触前星形细胞突起(PAPs)的吞噬产生了三联突触这一术语。PAPs能够通过传递调节分子来改变和控制突触的传递。通过dSTORM重建星形细胞突起,可以通过标记胶质酸性纤维蛋白(GFAP)和谷氨酰胺合成酶和S100b的成像来实现星形细胞的纳米级可视化。最近的一份报告应用ExM来观察脑片中突触周围的星形胶质细胞谷氨酸转运体显示,在与这些棘附近的GLT-1水平较高有关的较大的神经元树突棘中,谷氨酸的摄取效率降低(图12)。图12. 海马大脑切片中CA 1锥体神经元周围的星形细胞突起。锥体神经元的树突在Thy1-YFP小鼠系标记(绿色);星形胶质细胞则是在海马脑片上的GLT-1免疫染色显示(红色)。蓝色信号代表树突区和星形细胞突起的共同定位。更高的放大率插图见右图。左下:大棘和小棘的分类。底部中间和右侧:GLT-1和神经元YFP的共定位像素的量化。请注意右图树突棘体积归一化后的变化;红点表示平均数和SEM,p = 0.0220 (绝对GLT-1覆盖率),p = 0.00223(相对GLT-1覆盖率)。转载自原文参考文献307。EM和STORM发现,PAPs也配备了局部翻译位点,以避免星形细胞体细胞中合成的蛋白质的长距离运输路线。最近在器官型切片中进行的3D STED显微镜研究揭示了星形细胞钙信号的结构前提。在星形细胞内检测到了海绵状结构,它包含了接近突触部位的节点和轴。钙离子瞬变的共聚焦成像与星形细胞结构的STED显微镜相结合,显示自发的钙离子瞬变紧密地映射到这些结点。因此,这些结点被认为是类似于树突棘的空间分隔作用。胶质传导物质的外渗需要提供胶质囊泡。通过将电容测量与葡聚糖摄取后星形胶质细胞内的囊泡的SIM图像相关联,发现了外吞和内吞之间的Dynamin依赖性膜中间物。通过STED显微镜和SIM分析单个胶质小泡的特征,在星形胶质细胞中有两个小泡群,其大小和融合能力不同。Phluorin实验结合SIM确定星形胶质细胞囊泡上Syb2分子的拷贝数为25∼。此外,应用STED和TIRF显微镜对培养的星形胶质细胞中的VAMP3阳性囊泡进行了单囊水平的分析。测量结果显示VAMP3覆盖的囊泡大小约为80纳米,并提供证据表明这些囊泡参与了钙依赖性的囊泡循环。SIM成像还可以发现,突触蛋白中一种已知的参与神经元外排的v-SNARE蛋白,也普遍存在并组织在单个星形胶质细胞的囊泡上,以实现高效的外排。星形胶质细胞还通过回收proBDNF到BDNF参与促进兴奋性LTP。这里,SIM成像显示,proBDNF在体细胞区域位于囊泡大小的集群中,而沿星形胶质细胞末梢的点状模式占主导地位,以扩大BDNF对记忆的作用。为了最大限度地减少激发光的散射,通过应用被动CLARITY进行组织透明化和多光子显微镜,改善了组织深处的星形细胞成像。通过使用SiR-actin和SiR-tublulin探针的STED显微镜和原子力显微镜(AFM)的相关方法来测量膜的拓扑结构和硬度,将星形细胞的细胞骨架和膜的生物物理特性联系起来。(未完待续)本文由超高显微技术应用工程师郭连峰、黄梓彤编译(受篇幅限制,未将参考文献列出)相关阅读:超高分辨率显微技术在神经科学中的应用(一)超高分辨率显微技术在神经科学中的应用(二)
  • 【Science】单细胞蛋白分析技术揭示肠脑神经回路新机制
    为什么我们会感觉到饥饿?为什么进食之后会出现饱腹感?我们能感知到大脑与肠道的紧密联系,以往的研究认为这种感知与触觉、视觉、声音、气味和味觉通过受神经支配的上皮传感器细胞传递到大脑不同,肠道刺激的感知被认为涉及消化系统和中枢神经系统之间信号传递的肠道-大脑连接(gut-brain connection)是以激素转运为基础的,这种基于激素的信号传递大约需要10分钟。在肠道中,有一层上皮细胞将腔与下面的组织分开。分散在该层内的是称为肠内分泌细胞的可电兴奋细胞,它们感知摄入的营养物质和微生物代谢物。与味觉或嗅觉受体细胞一样,肠内分泌细胞在存在刺激时会激发动作电位。然而,与其他感觉上皮细胞不同,肠内分泌细胞和脑神经之间没有突触联系的描述。人们认为这些细胞仅通过激素(如胆囊收缩素)的缓慢内分泌作用间接作用于神经。尽管它在饱腹感中起作用,但胆囊收缩素的循环浓度仅在摄入食物后几分钟达到峰值,并且通常在用餐结束后。这种差异表明大脑通过更快的神经元信号感知肠道感觉线索。来自美国杜克大学医学院的科学家们,利用Milo,揭示迷走神经(vagus nerve)可直接连接着肠道与中枢神经系统。相关研究结果发表在Science期刊上,标题为“A gut-brain neural circuit for nutrient sensory transduction”。Milo单细胞Western Blot 验证肠分泌细胞存在神经突触相关蛋白本文使用与小肠类器官或纯化的肠内分泌细胞共培养的结节神经元,在体外重现了神经回路。并结合单细胞定量实时聚合酶链反应和单细胞Western Blot(Milo)共同对突触蛋白进行检测和评估。利用Milo在蛋白水平进行了进一步的验证:单细胞蛋白质印记结果显示83%肠内分泌细胞含有synapsin-1(分析的198 CckGFP细胞中的164个),与其他肠上皮细胞相比,纯化的CCK-肠内分泌细胞表达突触粘附基因Efnb2、Lrrtm2、Lrrc4 和 Nrxn2,表明这些上皮传感器具有形成突触的机制。为了确定与肠内分泌细胞接触的突触的神经元的来源,本文使用了一种改良后的狂犬病毒(DG-rabies-GFP,能感染神经元,但缺少跨突触传播所需的G糖蛋白),发现在肠道类器官中,狂犬病比其他上皮细胞更喜欢感染肠内分泌细胞。并且肠内分泌细胞与迷走神经元突触,通过使用谷氨酸作为神经递质,在几毫秒内转导肠腔信号。这些突触连接的肠内分泌细胞(神经足细胞)形成的神经上皮回路通过一个突触将肠腔与脑干连接起来,为大脑打开一条物理管道,以突触的时间精度和空间分辨率感知肠道刺激。也正是这些突触信号神经足细胞告诉大脑肠道中发生的事情,对我们吃的食物做出一定的反馈。
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(二)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期接着上期的第一部分超高分辨率显微技术在神经科学中的应用(一) ,为第二部分内容。4.荧光标记与样品制备4.1. 荧光标记神经元和脑片的超分辨率成像是用适当的荧光团标记感兴趣的生物分子,理想情况下是以定量和化学计量的方式。虽然SIM和其他超分辨方法的成像质量取决于信号背景(S/B)比,但SIM对荧光团没有特殊要求。另一方面,STED显微镜可达到的分辨率在很大程度上取决于所用荧光团的光稳定性。RESOLFT显微镜使用可逆光开关FPs,具有两个稳定状态,因此可以使用较低的激光照射强度。所有SMLM方法的定位精度取决于每个事件检测到的光子数。dSTORM需要光开关有机荧光团,包括菁、罗丹明和恶嗪染;而PALM则需要使用光开关、光转换和光激活FPs。与此相反,DNA-PAINT理论上适用于所有荧光团,因为开/关速率由对接链和成像链序列和缓冲条件决定,而其中 Cy3B和ATTO 643效果最好。、为了获得一张好的超分辨率图像,除了成像方法以外,样品制备也非常关键。使用荧光探针进行高效和特异的标记,并且使标记误差(荧光团和目标之间的距离)达到最小。为了通过荧光成像进行结构解析,标记密度(即荧光探针之间的距离)必须显著高于所需的分辨率。另一方面,特别是对于接近几乎分子分辨率的超分辨率成像方法,标记误差必须尽可能小,以达到高精度成像。对于活细胞标记而言,在合适的表达载体中融合感兴趣的蛋白质的基因编码FPs无疑成为首选。然而,FPs的亮度较低,与有机染料相比,其图像分辨率较低。理想的标记方法是使用荧光染料标记基因编码的蛋白质、肽标签或单一氨基酸。在模式生物如果蝇或秀丽隐杆线虫的应用得益于基因编码工具,通过转座子、操纵二分体Gal4/UAS表达系统或Crispr/Cas9方法引入或去除突触蛋白和荧光蛋白。由于瞬时转染的细胞表现出不同的蛋白质表达水平,蛋白质的分布和功能不一定反映野生型的情况。图5 通过单体链霉亲和素结合AP标记的突触蛋白成像结果显示Nlg1和LRRTM2的差异分布(dSTORM成像)。上排:Homer 1c GFP作为突触后室的参考。第二排:Nlg1和LRRTM2(dSTORM成像)。左下:频率分布直方图,用于显示相对于Homer 1位置中心的信号分散情况。右下:列出比较两种蛋白质的突触结构域数量的直方图。然而,通过构建优化表达,稳定表达的细胞或CRISPR基因敲入等方法可以产生从内源性到强过表达的蛋白质表达水平。根据不同的转染策略,可以采用不同的方法转染神经元。传统的磷酸钙共沉淀法和脂质体法在大多数实验室都可实施,但这两种技术的转染效率很低。而病毒转染的效率比较高,允许注射到大脑区域,但需要实验者具备病毒生产方面的专业知识,并需要考虑生物安全问题。此外,还必须考虑病毒类型、插入片段大小、毒性和差异表达等因素。要达到高转染效率,可以使用高压脉冲将核酸直接输送到细胞核,进行核转染。然而其缺点是,当这种方法应用于小鼠原代神经元时,会导致细胞存活率较低,并且实验设备昂贵,还需要根据神经元密度和物种对脉冲参数进行多次测试。另外,也可以使用细胞附着式高电阻管,在完整神经元网络(如器官型切片)中进行单细胞电穿孔。利用这种方式,结合CRISPR基因敲入获得了接近内源性的蛋白质表达水平。基于CRISPR基因敲入,在神经元发育的不同时间点通过脂质感染、核感染或病毒转染在神经元中实现。如前所述,FPs光稳定性和荧光光子输出较低,这降低了图像质量。另外,连接大小为2−5nm的FP后,蛋白质功能可能会受到影响。因此,首先必须清楚感兴趣的蛋白质在野生型的功能表现。而有机染料比FPs小得多,有更高的光子产率和光稳定性,但需要与其它能与感兴趣分子结合的分子进行连接耦合。对于固定细胞,使用一抗和二抗进行免疫染色仍然是标记内源性蛋白质的首选方法。缺点是由两个大小17.5 nm左右的IG抗体间接免疫标记有可能导致标记误差。使用直接法免疫荧光或Fab片段可以减少标记误差。另外针对GFP或转基因短肽标签的更小(1.5×2.5 nm)的骆驼“纳米抗体”已应用于dSTORM成像。此外,耦合了链霉亲和素的荧光染料可用于神经元和器官型组织中靶蛋白的特异性标记。使用这种标记方法,研究了神经氨酸酶-1ß、神经肽原-1和富含亮氨酸的重复跨膜蛋白2的动力学和纳米级结构,并揭示了跨突触粘附结构的形成(图5)。另外可以使用生物正交肽或自标记蛋白质标签,例如FlAsH tags, SNAP-tags, and Halo-tags。这些标签蛋白与目标蛋白共表达,并以共价和特异性结合其各自的荧光标记试剂或配体。对于肌动蛋白和微管的标记,可以使用小肽药物,如双环七肽-鬼笔环肽和紫杉烷类药物,如紫杉醇。膜和细胞器的标记可以通过荧光脂质和细胞器的追踪试剂来实现。此外,小肽或配体可以直接用荧光团标记,并特异性结合生物分子,例如,显示抑制性突触后位点的超结合肽。要达到最小的标记误差,可以通过单个非天然氨基酸的特定位点标记实现。通过基因编码导入设计的非天然氨基酸,并用四嗪染料进行生物正交点击化学标记。显然,神经元和组织切片必须根据要成像的结构进行透膜和固定。与所使用的标记方法无关,特别注意所用的试剂必须能保留自然细胞环境中生物分子的超微结构。通过化学试剂固定交联蛋白质,可能会影响结合亲和力,也可能削弱分子间的相互作用。在大多数情况下,多聚甲醛(PFA)和戊二醛已成功用于神经科学的超分辨率成像。此外,还引入了乙二醛等新型固定剂。膜分子应始终使用4%的PFA和0.2%戊二醛固定,以尽量减少残余流动性并避免伪影,例如抗体结合诱导的簇形成。4.2. 神经元的多色遗传标记荧光蛋白彻底改变了神经元的活细胞成像方式,因为荧光蛋白可以与感兴趣的蛋白质融合,并且在假定不影响野生型功能的前提下,用于双色和三色成像。神经系统具有非常高密度的轴突和树突相互作用结构,需要使用更多不同颜色的标记来区分不同的神经元连接。2007年,随着一种名为Brainbow的转基因方案的开发,这一问题得到了解决,该策略能够对神经元进行多色标记。结合单细胞分辨率成像技术,Brainbow技术可以用来创建大脑图谱,详细描述神经元如何形成回路,其连接体以及它们投射到何处。Brainbow利用了三原色,即可见光谱的所有颜色都可以由三种原色的不同混合物生成,即红色、绿色、蓝色(RGB)或转化为荧光蛋白,例如RFP、YFP和CFP。为了实现这一想法,应用了Cre/lox重组系统,该系统可以通过DNA切除、反转或染色体重组启动基因表达,使三个荧光蛋白基因中的一个在转基因中随机表达。转基因盒的多个拷贝的引入导致三个不同拷贝数的基因在每个细胞中组合表达,从而产生几十种颜色,使相邻神经元分化并观察其相互作用。Brainbow技术非常适合绘制不同神经元类型之间的连接模式,追踪轴突,并识别大脑中远距离的神经元连接。此外,已经证明Brainbow表达可以成功地用于研究周围神经损伤后的轴突再生,并检测大脑发育过程中的重要阶段。为了进一步改进Brainbow在包括突触蛋白在内的大脑和连接图谱中的应用,SRM的应用是显而易见的。最近通过结合Brainbow、顺序免疫染色和ExM同时研究同一脑切片上的形态、分子标记和连接,成功地证明了这一点(图6)。将这项技术应用到全脑研究一直是一个挑战,直到最近才成功应用。图6 结合Brainbow和ExM的多轮免疫染色和ExM(miriEx)成像。(A) 实验方案:在Parvalbumin cre/+ 小鼠的脑切片中,Parvalbumin蛋白阳性中间神经元通过Brainbow进行观察,并在下一轮应用4倍ExM成像。使用EYFP信号对Homer1和Gephyrin进行免疫染色来观察突触。(B) Brainbow 信号的免疫染色。(C) 分别通过突触后标记homer1和Gephyrin的免疫染色来区分抑制性和兴奋性突触。插图(D)−(F)和(G)−(I) 显示图像的更多细节图。(J)和(K)神经元的形态重建(使用ImageJ软件插件nTracer),包括其各自传入的特征。虚线框表示(B)和(C)中所示的区域。重建的神经元按顺序编号。标尺(膨胀前的):10μm(B/C)、2.5μm(I)、20μm(J/K)。4.3. 神经科学中的光电联合显微镜电子显微镜(EM)和电子断层扫描具有光学显微镜无法达到的空间分辨率,可以获得细胞和细胞器的超微结构信息。然而,EM和电子断层扫描不能标记特定的分子,因此难以识别未知的细胞结构或具有相似形态特征的结构。用胶体金标记结合抗体可以实现蛋白质的纳米级定位,但抗原的标记效率低下,这意味着胶体金颗粒的数量仅占抗原总数量的1%到20%。而另一方面,荧光显微镜虽然分辨率较低,但可以进行大视场成像和对活细胞中蛋白质进行定位。对固定样本细胞中的各种分子进行高效和特异的分子标记后,结合超分辨率荧光显微镜方法,达到的空间分辨率可以远低于衍射极限。因此,光电联合显微镜(CLEM)作为一种通用的方法,在电子显微镜提供的细胞超微结构背景下,通过超分辨率成像来可视化蛋白质的定位和相互作用。然而,将超分辨率成像与EM结合起来更为困难,因为乍一看,这主要是由于两种方法的样品制备流程不同且不兼容。例如,EM中保存超微结构所需的固定和染色会引入很强的自发荧光。而且荧光蛋白还会在固定和聚合物包埋所需的脱水和氧化条件下淬灭。此外,这两幅图像必须在纳米精度下精确叠加,首先需要使用在荧光成像和EM中都表现出极好的对比度的固定对准标记物,如裸金微球。 另外,样品脱水引起的结构变形会严重破坏两幅图像的正确叠加。所以必须在超微结构和荧光保存之间找到折衷方案。例如,已经证明,对于某些周期性分子结构,如核孔复合体,无需使用对准标记,dSTORM和EM扫描图像可以以20 nm的精度叠加。光电联合显微镜的流程是先对轴突和树突进行荧光实时成像后,再使用透射电镜观察。例如,表达GFP的脑组织在荧光成像后进行化学固定,再使用电子密度标记进行免疫标记,例如EM金。或者采用更成熟的方法,如过氧化物酶或胶体金标记。最后,可以通过光转化在荧光团处局部生成二氨基联苯胺(DAB)聚合物。为了克服标记问题并确保超微结构的保存,已经开发了用于EM (NATIVE)的纳米体辅助组织免疫染色。NATIVE能够高效标记蛋白质,无需苛刻的渗透步骤、特殊树脂、锇替代物或透明化试剂。随着方法的改进和技术的发展,光电联合显微镜已被证明是研究不同种类突触和定位突触蛋白的理想选择。5.超分辨显微镜观察神经元隔室/突触以及神经元−胶质细胞相互作用下面我们将展示通过超高技术获得的有关细胞骨架组成和动力学、突触前室和突触后室对神经传递准确性至关重要的分子组装,以及形成神经元功能的星形细胞结构的调节和构建的最新数据。5.1. 细胞骨架神经元的极化性质以及树突和轴突的长度都需要结构和功能性支架来支持它们的稳定性、适应可塑性和物质运输,这些特性对神经元的存活和信号传递是必不可少的。因此,神经细胞骨架的结构在过去几十年中引起了神经科学家的注意,并在其它文献中进行了详细的回顾。20世纪70年代的电镜研究表明,神经细胞骨架由三种主要类型的神经纤维组成:大小约为20−30 nm的微管,直径为10 nm的神经纤维和5−10 nm大小的肌动蛋白丝。微管是由异二聚体在GTP依赖性组装过程中结合α和β微管蛋白单体组装而成的圆柱体,称为原丝,再由13个这样的原丝形成一个微管单元。轴突的微管成束状组织,并根据其相对于神经元胞体的位置显示不同的方向。它们的极化通过快速增长的正端和缓慢增长的负端体现。STED显微镜揭示了快速生长极依赖钙锚定在肌动蛋白皮质上。使用dSTORM对发育中的神经元进行活细胞成像证明了神经元极性和轴突具有方向一致的、平行的由TRIM46驱动的微管束,而树突微管的特征是混合极性。用Motor-PAINT方法进行纳米跟踪发现稳定和乙酰化的微管显示负端向外的方向,而动态和酪氨酸酶化的微管则显示相反的方向(图7)。例如轴突起始节中微管密集地聚集在束簇中,由于密集的重叠定位,使用SMLM方法具有挑战性。这个问题可以通过两种实验方法来解决:第一,设计更小的标记探针,如微管蛋白纳米抗体,这不需对神经元微管更详细的观察。第二,一种降低群聚密度的超分辨率方法,如ExM,可用于胞体和树突中微管亚群的可视化。神经纤维是在轴突中形成的广泛平行网络的异质聚合物,它为轴突提供稳定性并调节轴突直径和传导速度,其组成包括低、中、高分子量神经纤维、中间蛋白和外周蛋白的三联体。它们的自组装首先形成平行的异二聚体,然后半交错地结合成反平行的四聚体。最后,八个四聚体横向聚集成单位长度的神经纤维,进一步拉长并径向压缩至最终的神经纤维外观。用电镜观察到在神经纤维之间的交界面,形成3−5 nm大小的交叉桥,但对其功能及其与神经纤维的分子相互作用仍不清楚。在这里,ExM与SMLM的结合或DNA-PAINT的应用可能有助于研究密集神经纤维中的这种相互作用。神经纤维动力学已经通过光转换和光活化SRM实验进行了研究,显示了端到端蛋白合成中的退火和切断过程。肌动蛋白最初被认为与一组更集中的短肌动蛋白丝结合在一起,在轴浆中形成斑点状的膜下层。在原代神经元和脑切片中使用phalloidin Alexa Fluor 647进行STORM成像,揭示了轴突肌动蛋白的新的组成原理。这些实验揭示了轴突中存在圆周式肌动蛋白环,每190 nm固定重复间隔绕一圈,并进一步表征了轴突中具有类似尺寸的ßII血影蛋白和钠通道的周期性条带,而树突状腔室内显示出更细长的肌动蛋白组织。此外,通过STORM成像发现,并通过STED显微镜的研究得到证实,这种肌动蛋白组织模式的普遍性也存在于树突中。进一步的报告发现,尽管树突中也存在基于肌动蛋白血影蛋白的周期性膜骨架,树突中这种结构的形成倾向和发育速度低于轴突。此外,本文还显示了肌动蛋白和血影蛋白在胞体和部分树突中的二维多边形晶格结构,类似于红细胞中的膜骨架结构。此外,使用SiR-actin,可通过STED显微镜在活的原代神经元中观察到这种周期性结构。最后,最近的CLEM方法结合铂金复原电镜(PREM)和STORM研究了无顶轴突中的肌动蛋白组织,并提供了轴突编织状肌动蛋白结构与周期性肌动蛋白超微结构相关的证据(图8)。图8。原代神经元无顶轴突(unroofed axons)的CLEM成像(结合铂复型电子显微镜和STORM的光电联合成像)。用铂复型电镜(PREM)(灰色)显示的轴突辫状条带(箭头)被叠加到大鼠原代神经元的超分辨肌动蛋白环(伪彩)上,比例尺=2, 1, 0.2μm(从左到右)。中间:轴突辫状条带间距测量后显示出与周期肌动蛋白间距相似的尺寸。右图:在铂复型电镜(PREM)中记录的神经纤维厚度,未分裂(交织在一起)和分裂(分裂开)的轴突肌动蛋白辫状条带为蓝色,树突中的单个肌动蛋白神经纤维为紫色,微管为灰色参考。采用平均值和标准误显示数据。Copyright 2019 Springer Nature.ßII 血影蛋白基因敲除导致周期性肌动蛋白环结构破坏,同时细胞器的双向轴突运输受损。SMLM结果显示,与轴突相比,轴突起始节中的分子组织其特征是轴突起始节(AIS)蛋白ankyrin-G和ßIV-血影蛋白,这种基于肌动蛋白-血影蛋白的细胞骨架与远端轴突相似。此外,在AIS中存在ßIV-血影蛋白和Ankyrin G,而在远端轴突中存在ßi--血影蛋白和Ankyrin B。SMLM显示与肌动蛋白环相连的纵向头对头ßIV血影蛋白和Ankyrin的二价取向有助于建立紧凑的AIS超微结构,该超微结构甚至对针对肌动蛋白和微管的药物治疗具有抵抗力。进一步显示Ankyrin-G会聚集到亚结构域,增强神经元活性,而成为精神疾病的主要风险基因。随后的SMLM研究还阐明了αII血影蛋白与ßIV血影蛋白共同在AIS提供强健的周期性细胞骨架组织以及防止AIS装配不完全和神经变性的重要性。一份相关报告显示,αII 血影蛋白丰度随有髓鞘轴突直径的增加而增加,表明大直径轴突更容易发生神经退行性病变。在免疫标记II血影蛋白后,将其连接到一种可膨胀的聚合物,并在水中膨胀后,通过ExM研究ßII spectrin沿轴突的周期性模式。这一新方法证实了如前所述的细胞骨架内部的组织原理。不幸的是,在ExM过程中,phalloidin探针在膨胀过程中被冲掉。有两种策略解决这一问题:一方面,携带甲基丙烯酸基团的phalloidin三功能抗体被设计用于与凝胶的有效标记;另一方面,最近的一份报告使用荧光团结合抗体,类似于常规免疫染色,将荧光团靶向phalloidin探针与凝胶连接。在中枢神经系统的几种神经细胞类型和动物物种中,肌动蛋白和附属蛋白的强大超微结构组织也得到了证实。外周神经系统(PNS)中,STED显微镜也显示在梳理的神经纤维样本上有重复的细胞骨架成分。最后,SMLM揭示了肌动蛋白-血影蛋白骨架的一个重要生物学功能:它可以作为一个信号平台,通过组织跨膜信号蛋白,包括G蛋白偶联受体(GPCR)、细胞粘附分子(CAM)和受体酪氨酸激酶(RTK),在神经元中进行信号转导从而实现GPCR-和CAM介导的RTK信号。5.2. 突触前室为了确保有效的神经化学传递,突触前膨大参与突触囊泡循环、神经递质填充以及与突触前膜在活性区(特殊蛋白质密集分布的纳米隔室)的融合,以最终释放神经递质。在这里,我们关注SRM如何扩展我们对突触前功能的理解。早期只能使用EM对化学固定神经元里的小直径突触小泡进行研究,但随着SRM的出现,应用快速STED显微镜,通过免疫标记位于突触前室突触小泡上的钙传感器突触标记蛋白1(SYT1)来观察突触小泡的活动。STED显微镜进一步显示,突触小泡融合后Syt1分子似乎驻留在突触膜上,也支持胞吐后突触小泡蛋白的清除过程。此外,在突触小泡融合过程中,当暴露于细胞外空间时,靶向Synaptobevin 2 pHluorin的荧光团结合纳米体后,亚衍射追踪显示了突触小泡的异质性迁移。一种类似的方法使用vGlut1 pHluorin在原代神经元中的表达来观察单个神经元突触小泡,定位精度为27 nm,并揭示了突触小泡的多个不同释放位点。作为一项方法学的进步,为了对主动循环的小泡成像,设计了一种名为mCLING的亲脂膜探针,该探针可对突触膜进行染色,通过内吞作用和固定,可以进行免疫标记,且和SRM相结合。突触小泡的胞吐过程需要一组属于突触前细胞基质的突触前蛋白质的高度可靠的相互作用,使突触小泡接近和暂时驻留在所谓活动区的膜上,并最终释放突触小泡。黑腹果蝇易于遗传,有助于精确定位果蝇幼虫神经肌肉接头(NMJ)活动区的第一个重要蛋白质。Bruchpilot(Brp)是一种必不可少的活性区成分,是一种大的、卷曲的螺旋蛋白,对于钙通道聚集和突触囊泡定位到突触释放位点至关重要。除了通过Brp研究钙通道聚集外,STED显微镜还证明了该蛋白细长的组织结构,并揭示了与Brp相互作用的蛋白(如syd-1α、liprin和rim结合蛋白(RBP))的定位。定量dSTORM方法研究了果蝇活动区Brp丝的数量,并显示了Brp的结构组织与其功能之间的强相关性。接下来的研究通过dSTORM评估Syt1敲除后的活动区(CAZ)电生理学和细胞基质参数。这项研究表明,在果蝇NMJs 1b型突触膨胀中,Syt1基因的敲除导致更高的Brp计数和簇内Brp图谱的改变。在哺乳动物突触中,突触前支架蛋白bassoon 和 piccolo参与突触囊泡释放的调节。据报道,bassoon蛋白通过与RBP的相互作用来控制CaV2.1型钙通道的定位。此外bassoon蛋白能加速囊泡释放,因为其丢失导致小脑苔藓纤维到颗粒细胞突触中的突触囊泡数量显著减少和突触抑制。STED显微镜显示bassoon 和 piccolo蛋白是一个夹心三明治结构,两侧为piccolo蛋白,bassoon蛋白居中。STORM成像通过距离测量显示bassoon蛋白相对于突触前和突触后室中其他相关突触蛋白质的方向。囊泡胞吐过程由一组可溶性ethylmaleimide敏感因子附着受体(SNARE)蛋白质进一步协调。位于突触膜上的囊泡SNAREs (v-SNAREs) 蛋白和 t-SNARES蛋白的复杂形成导致突触囊泡成功融合。在质膜上的突触体相关蛋白25(SNAP-25)和突触融合蛋白聚集首先通过STED显微镜进行研究。这项研究表明,大约75个突触融合蛋白分子被堆积成50- 60 nm大小的纳米团簇。在之后的研究中,SMLM以更高的精度对SNAP-25和突触融合蛋白的分布进行成像。在这里,描述了Syntaxin簇内的分子密度梯度。dSTORM成像显示,未聚集的分子紧密地定位于聚集区域。最近的一项研究显示了一种以syntaxin或SNAP-25为靶点的像。研究表明,集中在突触前部位的60%的通道是可变的。此外,通过应用BAPTA钙缓冲降低了钙通道的扩散。结果表明,突触小泡和钙通道之间的纳米域偶联保证了神经传递的精确度,并可根据需要通过突触前钙通道的扩散进行精细调节。 在融合和递质释放后,内吞机制诱导循环产生新的囊泡,从而重建可释放的囊泡池并为持续的神经传递提供基础。囊泡循环的主要机制由网格蛋白介导的内吞作用组成。使用光遗传学和”闪光冷冻”电镜的研究也报道了比超快的内吞快200倍的过程。如双色iso-STED显微镜所示,通过摄取针对囊泡内膜结合位点的Syt 1抗体,将内吞位点定位到活性区外周。此外,在神经内分泌细胞中,STED显微镜也揭示了囊泡只能部分与突触前膜融合释放递质,形成一个“Ω”形状的结构,而没有完全融入膜中,因此有利于“接触后即脱离”(kiss and run)的模式。与网格蛋白介导的内吞作用相比,它会产生更快囊泡再循环率的递质释放模型。依赖于活性的大量内吞作用进一步增加了可能涉及的机制的复杂性,有人提出,根据突触类型和活动,多种内吞模式可能并行运作。本文由超高显微技术应用工程师郭连峰、黄梓彤编译
  • 国家海洋局:我国近岸海域海洋环境问题突出
    新华网北京3月20日电,记者20日从国家海洋局获悉,2012年我国海洋环境质量状况总体较好,但近岸海域环境问题依然突出。   国家海洋局20日发布的《2012年中国海洋环境状况公报》显示,2012年,我国管辖海域海水环境状况总体较好,符合第一类海水水质标准的海域面积约占我国管辖海域面积的94%。   “我国近岸海域环境问题仍然突出。”国家海洋局新闻发言人石青峰说,“主要表现在陆源排污压力巨大,近岸海域污染严重,赤潮灾害多发,局部区域海水入侵、土壤盐渍化、海岸侵蚀等灾害严重,海洋溢油、危化品泄漏等突发性事件的环境风险加剧等。”   公报表示,2012年我国未达到第一类海水水质标准的海域面积达17万平方公里,海水水质为劣四类的近岸海域面积约为6.8万平方公里,较上年增加了2.4万平方公里,近岸约1.9万平方公里的海域呈重度富营养化状态。   同时,在实施监测的近岸河口、海湾等典型海洋生态系统中,有81%处于亚健康和不健康状态。72条主要江河携带入海的污染物总量约1705万吨。辽河口、黄河口、长江口和珠江口等主要河口区环境状况受到明显影响。   公报显示,目前我国管辖海域海水、海洋生物的放射性水平和海洋大气γ辐射空气吸收剂量率未见异常,日本福岛核泄漏事故尚未对我国管辖海域造成影响,但日本福岛以东及东南方向的西太平洋海域仍受到福岛核泄漏事故显著影响。   “国家海洋局正在组织沿海省份围绕海上核污染问题打造安全体系,加强防范风险能力建设。”国家海洋局环保司司长李晓明说。
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(一)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期介绍第一部分。1. 背景介绍成像技术是推动生命科学几乎所有学科基础研究的核心平台。在神经科学领域,近几十年来,共聚焦显微镜技术已成为分析神经组织的标准荧光成像技术。激光扫描共聚焦显微镜对固定的神经元样本进行观察,在扫描水平上提供了三维和多色图像并使单个细胞达到树突结构的分辨率。作为补充,电子显微镜(EM)用于获取神经元和亚区室超微结构的信息,并用于大脑的连通性分析。EM非常适合于神经元突触和囊泡、细胞器和膜构象的结构分析。然而,由于靶向特异性标记方法的局限性,基于EM的复杂样品中蛋白质和特定电子密度特征的识别受到限制。为了进一步理解神经元功能,包括双光子显微镜在内的几种活体视频显微镜应用的发展使神经元细胞培养的活细胞成像、器官型切片培养和动物模型的活体成像成为可能。同时,新的荧光染料、功能探针和荧光蛋白以及光遗传学方法和光驱动(如笼状化合物)不仅可以表征神经元,还可以操纵神经元及其从单分子水平到整个神经系统的相互作用。然而,荧光显微图像中可见细节的水平,即图像分辨率,仍然受到衍射极限的限制。一个多世纪以来,由λ/2NA定义的阿贝衍射极限(λ为波长,NA为显微镜物镜的数值孔径)决定了光学显微镜的分辨率极限,限制了两个位置小于200纳米的细节分辨。在过去的二十年中,超分辨显微镜(SRM)已经发展成为一种非常有效的亚细胞水平荧光成像和分辨细胞器结构的研究手段。SRM现在可以提供远低于常规光学显微镜衍射极限的空间分辨率,从而能够深入了解神经元细胞和组织中蛋白质的空间结构和相互作用。本文综述了超分辨显微镜和荧光标记方法及其在神经科学中的成功应用。我们将首先详细介绍各种SRM方法的基本原理、新的功能型荧光探针和标记技术。接着,我们将回顾SRM如何有助于我们理解神经元亚细胞结构和功能以及神经元−胶质细胞相互作用。此外,我们将概述超分辨率成像方法如何帮助研究自身免疫和神经退行性疾病的病理生理学。最后,我们将介绍这些新的成像方法是如何应用于神经精神疾病相关的人类样本的分析。由于该领域持续快速发展,我们最多只能代表一份中期报告。进一步的创新和新的显微镜方法的发展将使人们对神经系统功能有更详细的了解。 2. 神经科学中的超分辨率成像方法2.1. 光学衍射极限及其对神经科学的影响人类大脑包含超过800亿个神经元,每个神经元由数千个突触连接。因此,它构成了复杂神经元网络。这些网络的主要组成部分,例如突触神经末梢,显示的空间维度接近于光学衍射极限分辨率∼200 nm。释放递质的突触活性区(突触前细胞基质的特化区)的直径通常约为300±150 nm。突触小泡作为递质运输和释放的关键元件,其尺寸平均小10倍,直径为40−50nm。这些递质被释放到宽度为20-50nm的突触间隙中−再结合突触后受体。由于衍射极限的尺寸限制,胞吐机制和跨突触信号在传统的光学显微镜下基本上是无法观测到的,因此需要用提高10倍分辨率的方法进一步研究。(图1)。图1. 兴奋性突触结构组成。左图为兴奋性突触的油画示意图,右图为左图的灰度图像,其中浅紫色圆圈为衍射极限光斑;玫红色圆圈为兴奋性突触囊泡,约40-50nm;绿色为突触后膜AMPA受体,尺寸小于10nm;黄色部分为突触间隙,约20-30nm。 此外,大量参与突触信号传导的不同的分子,位于极小的突触内,造成很高的分子分布密度,这对微观研究具有挑战性。例如,对于较小的突触,兴奋性突触可以包含数百个小泡,对于大型苔藓纤维束突触,可以包含数千个小泡,每个小泡包含多达1万到10万个递质分子。在这些囊泡中,约有10±5个与释放部位对接,释放的递质平均与0−20 个NMDA受体和0−200个AMPA受体结合,而这些突触后受体又被320±130个突触后PSD-95密度蛋白分子环绕。由于加速电子的波长要短得多,因此EM是唯一能够解析突触纳米级结构的方法。然而,虽然传统的EM产生的电子密度图像具有极好的超微结构分辨率,但需要进行固定和靶向特异性标记的制样方法在很大程度上限制了蛋白质识别和神经元追踪。荧光显微镜可以很容易地对蛋白质进行选择性标记,但是受制于可见光的衍射(400−700 nm)使生成的图像无法实现对纳米结构的分析。 2.2.绕开光学衍射极限的光学显微镜方法 20世纪后期,人们开发了新的策略,通过利用物理或化学手段来区分不同荧光团的发射或减少同一时间荧光分子的数量,以尽量绕过衍射极限。减少荧光团的点扩散函数(PSF)的重叠可以通过生成光图案在集合级别以确定性方式进行,或者通过减少同一时间荧光团的数量在单分子水平上以随机方式进行。在下文中,我们将从确定性集合方法开始介绍,该方法将激光扫描共聚焦显微镜(CLSM)的有效空间分辨率推到理论极限。2.2.1. 确定性集合超高分辨率成像方法(Deterministic Ensemble SR-Imaging Methods) CLSM用针孔探测器阵列替换单点探测器,空间分辨率可以提高√2倍。CLSM测量每个扫描位置探测器每个点的荧光信号。在应用适当的算法后,生成分辨率提升的图像。这些所谓的像素重分配方法包括图像扫描显微镜(ISM)、重扫描共聚焦(RSC)、光学光子重分配(OPRA)、AiryScan和即时结构照明显微镜(iSIM)。对于信号检测,使用了诸如CCD相机、光电倍增管阵列、单光子雪崩二极管阵列和六角光纤束等探测器阵列。结构照明显微镜(SIM)在光路中插入光栅,产生与样品干涉的相干光束,生成横向和轴向方向不同的新照明图案。然后可以使用傅里叶变换提取这种新照明图案的信息,从而在所有三维空间中实现空间频率分解和分辨率倍增。SIM对样品制备的要求最低,并且可使用所有常规荧光探针,这些探针具有最低的光稳定性,并且可以很容易地扩展到多色成像。然而,当记录三维或长时间成像时,强烈建议使用光稳定性更高的荧光团。此外,SIM使用更低的激发强度,因此是活细胞SR实验的理想选择。为了获得更高的分辨率,引入了通过图案化饱和或荧光激发或图案化耗损光开关染料的非线性SIM(NL-SIM)。然而对染料开关特性的苛刻要求限制了NL-SIM在常规生命科学实验中的适用性。非线性SIM单位时间内还需要采集更多的图像,因此实际上仅限于2D成像。另一方面,掠入射(GI)-SIM显示了高达每秒266帧的快速超分辨率成像以及100nm分辨率,揭示前所未有的细胞器动力学细节。结构照明的局限性在于其对波长的普遍依赖性、与其他SR成像技术相比的低分辨率以及对系统稳定校准的需要。最后,后处理需要进行先验质量检查以避免伪影,例如由于高背景信号或不充分标记产生的低对比度图像导致的人工蜂窝图案。通过受激发射耗损(STED)显微镜进行超分辨率成像是一种实现更高空间分辨率的成像方法。这里,高斯分布的激发激光束被中空的甜甜圈样的耗损激光束覆盖,使扫描点外围的荧光团返回基态,这导致纳米级焦点区的直径与耗损光束的强度成反比,耗损光束的强度直接转换为STED显微镜的分辨能力:上图公式中λ为波长,n为折射率,α为物镜的收集角,ISTED为STED光束的照射强度,IS为饱和强度。因此,可以通过改变损耗激光强度来调整分辨率,可定制设计分辨率达30−80nm 的显微镜。STED显微成像可通过连续或脉冲激光激发、门控检测。带有脉冲激光的STED显微镜会降低激发能量,从而减少实时成像中的光毒性效应。STED显微镜中的时间门控检测可以去除荧光团光子到达时间前的空间信息,并且可以在较低的平均功率下工作。商品化STED能提供用户友好的高分辨率成像,无需进一步的数据后处理。活体成像,例如活体树突棘动态成像已经很成熟,但快速动态成像仅限于小帧尺寸,因为它仍然是点扫描方法,高激光强度可能会导致光损伤。STED通过应用自适应照明方式Dymin和rescue技术,可以明显减少光损伤。在Dymin STED中,在共聚焦模式下扫描时确定最低可能的STED光束强度。根据样品的标记密度,这将使STED光束强度降低20到100倍。Rescue STED同样通过减少STED激光开放的区域,从而比普通STED减少光漂白接近8倍。STED的另一个限制是对荧光团光稳定性的依赖,因为在高激光强度下会发生明显的光漂白。这影响了动力学的研究和三维图像的获取。值得注意的是,最近通过使用荧光团标记的寡核苷酸(瞬时结合到连接靶蛋白结合探针的互补寡核苷酸)或非结合荧光团来进行细胞STED成像,从而绕过了STED光漂白问题。这两种方法中,基于DNA互补标记的STED成像和超分辨率阴影成像SUSHI分别通过荧光团标记的寡核苷酸和高浓度的非结合和自由扩散的荧光团不断交换来防止光漂白。SUSHI的方法已经成功地用于活体脑片中细胞外间隙和神经肽的结构解析及其动力学的STED成像。如果使用具有毫秒或更长寿命的两种稳定状态的可逆切换荧光团来代替标准荧光团,则STED强度可以显著降低。可逆饱和切换光学线性荧光转换方法(RESOLFT)已通过可逆可切换荧光蛋白(reFPs)实现,并成功应用于活体海马脑片树突棘的超分辨率成像。2.2.2. 随机单分子SR成像方法(Stochastic Single-Molecule SR-Imaging Methods)上述的确定性方法是通过改变激发模式或相位掩膜来暂时控制荧光发射达到超分辨成像,而基于单分子的定位SR显微镜则是随机地在时间上分离单个荧光团的发射。单分子定位显微镜(SMLM)基于单个荧光团的随机激活,使用配备高灵敏相机(EMCCD或sCMOS)的宽场荧光显微镜进行单分子检测,以及精确的位置测定。通过将理想PSF与实际测量的光子分布拟合来进行分子定位。只要信号来自单个发射区,且单个发射区之间的距离大于显微镜能分辨的最小距离,则通过收集更多光子和最小化噪声,定位的标准误差可以任意小。激活和定位过程重复多次,所有定位最终用于重建超分辨率图像。为了确保在成像的任何时候,只有稀疏的小荧光团以其活性荧光形式存在(开启状态),使用了光开关、光转换、光激活或自发闪烁的荧光团。由于定位精度和最终图像分辨率取决于每次检测到的光子数量,通常采用明亮且稳定的荧光团与1 kW/cm2的辐照强度相结合的方式。根据所使用的荧光团不同,SMLM可达到10−50 nm横向分辨率。光激活荧光蛋白(FPs),自2006年以来已用于光激活定位显微镜(PALM),例如在405 nm的激光照射下可从关闭状态不可逆地转换为打开状态的PA-GFP和PA-mCherry 以及可通过适当波长的激光照射从一种波长状态不可逆地转移到另一种波长状态的光转换FPs,例如MEO。此外,还成功地应用了诸如Dronpa之类的光开关FPs,其在不同激发波长的激光照射下可在非荧光和荧光状态之间可逆地切换。对于活细胞应用,使用荧光蛋白的PALM是首选方法。因为在理想情况下,每个感兴趣的蛋白质都可以用荧光蛋白进行计量标记。然而,荧光蛋白比有机染料表现出更低的光稳定性和光子计数,从而降低了定位精度,并且通常需要更长的采集时间。此外,对于PALM成像而言,融合蛋白通常会过度表达,这可能会导致不真实图像,而用转基因变体替代显示野生型表达和功能的自身蛋白仍然具有挑战性。对于细胞内源性蛋白质的标记,通常使用有机染料的免疫标记。SMLM适用的有机染料必须是光开关、光激活或自发闪烁的,以实现单个染料发射的时间分离,但化学计量标记要困难得多。有机染料通常表现出较高的光子计数和光稳定性,从而使定位精度达到5−10nm。花菁染料Cy5和Alexa Fluor 647可以在荧光开启状态(其典型寿命为10 ms)和非荧光关闭状态(寿命为几秒,利用光开关缓冲液,缓冲液包括PBS,10−100mM硫醇,如ß-巯基乙缅(MEA),酶促氧清除剂,可以有/没有激活染料)之间可逆切换,为随机光学重建显微镜(STORM)和直接型STORM(dSTORM)的发展铺平了道路。近年来,应用于(d)STORM的染料已大大扩展,除了菁染料外,还包括罗丹明和恶嗪染料。有趣的是,最近的研究表明,即使是多个标记的抗体在光开关缓冲液中也呈现出类似于单发射的表现,因此适用于dSTORM实验。光活化染料的作用与光活化荧光蛋白相似。也就是说,它们在被光照射或自发激活之前处于非荧光状态。罗丹明衍生物PA-JF549和PA-JF646以及桥环菁染料Cy5B是已成功用于SMLM的光活化染料。此外,在没有光开关缓冲液的水溶液中,硅罗丹明HMSiR等自发闪烁染料也能应用于SMLM。最近,通过图案化照明方式实现更高的定位精度,单个荧光发射区的定位得到了改进。定位精度取决于信号的大小和强度,可以通过测量的PSF标准偏差的平方除以收集的光子数来估计。然而,包括拟合性能、标记密度、标记误差和显微镜漂移在内的其它参数决定了高定位精度是否可以转化为低于10 nm的空间分辨率。此外,到目前为止,因为SMLM方法成像需要昂贵的仪器和成像者具备广泛的专业知识,这在一定程度上阻碍了其广泛应用。2.2.3. SMLM-点累计纳米成像技术(PAINT,Point Accumulation for Imaging Nanoscale Topography)第一代SMLM技术依赖于荧光团的光开关和光激活,其分辨率需要有效地利用荧光团发出的光子数,而PAINT(point accumulation for imaging nanoscale topography)方法使用活的,与目标区域结构短瞬结合的染料。在成像过程中,被漂白的荧光团可以被成像介质中充足的新鲜荧光团不断置换替补。由于游离染料在采集单个图像帧期间在多个像素上快速扩散,因此它们仅显示为模糊背景且不能准确定位,而结合染料显示为PSF且能准确定位。因此PAINT的第一种方法是将荧光染料(如尼罗红)与细胞膜进行非特异性结合,然后进行光漂白和新的结合。此外,基于蛋白质片段的探针被用于单分子定位标记。在最近的一个研究中,将这种方法与传统的基于phalloidin的肌动蛋白标记方法进行了比较。通过引入通用PAINT(uPAINT)使Ni-Tris-NTA与转基因蛋白质上表达的His-Tags更特异结合,并可用于突触间隙成像。uPAINT也可以应用于其它标记方法,如免疫标记(内源性蛋白抗体、纳米抗体如绿色荧光蛋白)或受体配体结合。为了提高PAINT的适用性和特异性,引入DNA-PAINT方法。它使用长度小于10个核苷酸的短的可控的寡核苷酸链(成像链)瞬时标记其靶结合互补寡核苷酸链(对接链)。成像链与对接链的瞬时结合产生明显的闪烁。因此,荧光团开-关状态之间的切换与其光物理性质不直接关联。DNA-PAINT首先在DNA折纸(DNA-origami)上得到验证。DNA折纸是一种自组装的DNA结构(具有已知的大小),通过侧链和荧光团进行结合,并通过宽场显微镜观察。总的来说,DNA-PAINT是一种易于实现的SR成像标记方法,无需特定光物理特性的荧光团。因为探针可以在一轮结合后,从成像介质中置换补充荧光团,从而避免了光漂白。DNA-PAINT的缺点是图像获取时间长,这是由成像链与对接链的结合和解离速率决定的,以及荧光成像链的纳摩尔浓度引起的背景信号。尽管通过使用优化的DNA序列和缓冲条件,以及使用串联的周期性DNA结构域或通过短肽的卷曲螺旋相互作用(称为“Peptide-PAINT”),可以加快采集速度,但还是要利用全内反射荧光(TIRF)(仅限于对靠近盖玻片结构进行成像的特点),才能更好地减少成像链的背景信号。另一方面,基于DNA的探针提供了序列成像复用的明显优势,如Exchange PAINT中所述,已成功用于小鼠视网膜切片中多个结构的成像(图2)。Exchange PAINT的概念也被推广到dSTORM、STED、SIM和更传统的衍射限制的宽场和共聚焦荧光显微镜。最近,通过一种称为PRISM(probe-based imaging for sequential multiplexing)的基于DNA-PAINT的成像方法,实现了高达10个神经元蛋白质的分辨率约为20nm的多通道成像。该方法使用了低亲和力成像探针,该探针与突触、肌动蛋白和微管一抗上的对接链结合。图2 原代神经元中多个神经元靶点的多标Exchange-PAINT成像。(A)DNA-PAINT顺序成像的四种突触蛋白的超分辨图像:圆圈表示漂移校正的基准点;(B)为(A)中不带*的感兴趣区域的高放大倍率图和超分辨图像。(C)为(A)中带*的感兴趣区域的超分辨结果及单通道图像。2.2.4. 定量SMLM如果每个目标分子都可以单独标记和定位的话,与所有其他超分辨率成像技术相比,SMLM还可以提供有关分子分布和分子绝对数的单分子信息。然而,内源性蛋白质的定量免疫标记仍然是一个挑战,并且多标记抗体的不同定位数目也会使数据解释复杂化。另一方面,达到内源性表达水平比较困难,另外FPs蛋白成熟缓慢也同样会令定量化困难。然而,可以通过设计专门的对照实验估计拷贝数,并提取出有关生物目标结构分子的真实信息。借助合适的算法,SMLM可以提供有关拷贝数、聚类、共定位和复杂化学计量的数据,用于定量模型的生成和模拟。此外,还可以通过将突触结构信息与其功能关联来实现量化,例如膜片钳神经元的生物细胞素标记。例如,通过对链霉亲和素标记后膜片钳神经元进行STORM成像,结合CB1受体的免疫标记,然后在GABA能的海马轴突终端内定量,研究了内源性大麻素信号。本研究发现,与树突投射型中间神经元相比,胞周投射型中间神经元具有更高的CB1受体密度和更复杂的活动区。通过免疫标记和dSTORM研究了黑腹果蝇神经肌肉连接处内源性Bruchpilot(Brp)分子的数量。利用抗体滴定实验,确定了野生型神经肌肉连接处活性区细胞基质中Brp蛋白的数量为137个,其中四分之三以约15个七聚体簇状排列结合从相同组织样本记录的电生理数据,研究Brp如何组织控制活动区功能。利用DNA纳米结构作为校准,每个活性区Brp蛋白的数量估计通过定量DNA-PAINT(qPAINT)实验证实。此外,定量dSTORM实验表明,每个活性区Brp蛋白的数量和分布受突触标记蛋白-1的影响,这说明突触活性区递质释放的复杂性。在最近的一项研究中,使用Alexa Fluor 532和Alexa Fluor 647免疫标记的双色dSTORM已用于小鼠小脑平行纤维活性区中代谢型谷氨酸受体4(mGluR4)的定量研究(图3)。该研究还使用抗体滴定实验估计每个活性区平均包含约35个mGluR4分子,并排列在小纳米结构中。此外,mGluR4通常在munc-18-1和CaV2.1通道附近被发现,这支持了mGluR4与这些蛋白质相互作用以调节突触传递的观点。图3小鼠脑片中代谢型mGluR4受体定位定量双色dSTORM。上图:mGluR4和Bassoon免疫染色的小脑冠状切片的dSTORM图像,作为活性区参考。与宽场显微镜结果的比较。(A)DBSCAN聚类算法定义了近距离的En face活性区表面积(灰色)和mGluR4信号(品红)。(B)活性区大小的频率分布直方图(C)mGluR4信号到突触和突触外区域的映射。(D)通过Ripley H函数分析评估Bassoon和mGluR4的聚集分布。与随机分布的分子(蓝色、灰色)进行比较。虚线表示Ripley分析的最大值。这些研究显示了定量SMLM在神经科学研究中的潜力。可以预见,定量SMLM的进一步发展将为突触前和突触后蛋白质的功能关系,及其组织和结构的研究提供更有价值的信息。2.2.5. 组织三维(3D)SMLM虽然SMLM方法实现了仅几纳米的非常高的水平定位精度,但它需要特殊的方法来打破图像平面上方和下方PSF的对称性,来实现高轴向定位精度。实现高轴向定位精度的两种方法是PSF重塑和多焦面检测,通常用于在3D中精确定位荧光团。在SMLM中最常用的方法是通过在成像路径中插入单个柱面透镜从而不对称地扭曲PSF,利用光学像散原理来实现三维定位。基于像散方法的3D dSTORM技术还可以与光谱拆分相结合,对COS-7细胞中的网格蛋白表面小窝成像。像散引起的畸变程度由荧光团的轴向位置决定,因此可用于轴向位置计算。例如,3D散光SMLM已用于确定抑制性突触后密度区gephyrin蛋白和受体复合物的分布和拷贝数,或突触前活动区和突触后密度区各种成分的空间关系。采用双物镜像散成像方案,通过3D SMLM研究组织中肌动蛋白、血影蛋白和其他相关蛋白的结构,发现这些蛋白在轴突中形成190nm的周期性环状结构。替代方法包括使用相位掩模、变形镜实现双螺旋、四足或鞍点PSF重塑,和双焦面成像方法实现更大的轴向范围,并已成功应用于不同的应用中。为了在2D和3D中定位单个荧光发射区,已经开发了不同的算法和软件工具。在最近的一次综述中,列出了不同3D SMLM方法获得的水平和轴向分辨率,以供比较高30倍。此外,使用NHS染料对所有蛋白进行标记,然后进行迭代ExM,可以对高蛋白密度的结构或细胞器(如线粒体),实现与EM相比具有更高对比度的超微结构细节。为了在分子尺度上进行成像,ExM与SMLM方法(如dSTORM)相结合是一个理想的选择。然而在含有硫醇和盐的传统光转换缓冲液中,会发生荷电氢凝胶收缩。可通过使用低离子强度缓冲液或加入中性溶液使凝胶稳定以避免收缩。另一种策略是使用自发闪烁的荧光团(如HMSiR)在水中进行SMLM。通过Ex-dSTORM实现分子分辨率的关键是膨胀后标记,这增加了表位可及性,从而提高了标记效率并减少了标记错误。Ex-dSTORM超分辨成像已成功应用于原代细胞和神经元中微管和中心粒结构的解析。
  • 山东省科技项目资金支持方式突出市场主导地位
    6月20日,2014年山东省自主创新及成果转化专项招标项目开标仪式在济南举行。此次公开招标的项目涉及新材料、生物技术与医药、电子信息、高端装备制造、节能环保、海洋新兴、现代农业和传统产业转型升级等8大重点,29个领域44个项目方向,占到全部重点支持方向的74.4%。   记者了解到,今年该省自主创新及成果转化专项申报、评审工作较往年有了较大力度的改革。招标项目主要聚焦在企业、基层科研人员的要求及全省产业转型升级的重大需求上,突出了市场主导地位。山东省注重发挥政府科技投入的引导激励作用和市场配置资源的决定作用,对项目和资金管理实施全过程、系统化的配套改革,力求以改革释放创新活力。对于重大共性关键技术研究和公益性研究等公共科技活动,全部面向社会公开招标。同时加强了专项与人才计划的衔接配套,推进产业协同创新,鼓励龙头企业、高等院校、科研单位、小微企业等加强国内外科技合作,实现项目、平台、人才一体化发展。   信息公开透明是本次专项招标的一大亮点。记者看到,山东省科技厅将招标公告和专项支持重点在媒体上进行了公开发布 在下一步的评审过程中,将聘请社会监督员对专项进行全过程监督,评审意见、拟立项项目及支持资金额度都在媒体上公示,接受社会监督。此外,项目支持方式也有了很大变化。按照项目的不同特点,运用无偿资助、贷款贴息、先导资金+贷款贴息、后补助等多种手段对项目进行支持,充分发挥财政资金的引导作用,撬动各类资本加大对自主创新的投入,在
  • 成都市场成人皮鞋商品标志、感官质量问题突出
    四川省保护消费者权益委员会1月7日发布的成人用单皮鞋比较试验报告表明,成都地区市场上销售的成人用单皮鞋样品内在质量总体较好,但在商品标志、感官质量等方面问题较为突出。   四川省消委会表示,去年以来皮鞋类投诉呈上升态势,该会于2013年下半年针对成都地区皮鞋市场开展了一次成人用单皮鞋比较试验活动。比较试验的样品由该会工作人员与消费者代表一道,在成都市14个经营场所随机购买了成人用单皮鞋样品42组,计126双鞋。该会委托四川出入境检验检疫局检验检疫技术中心和国家轻工业鞋类皮革毛皮制品质量监督检测成都站对所购样品进行检测。   根据试验报告,检测结果显示,成都地区市场上销售的成人用单皮鞋样品内在质量总体较好,所有样品均未检出可分解致癌芳香胺染料 绝大多数样品没有检出游离甲醛 39组样品的物理机械性能指标均符合相关标准的要求,只有标称接吻猫(KISSCATsofoot)样品的成鞋耐折性能、标称克雷斯丹尼(Chrisdien Deny)样品的外底耐磨性能和标称千百度(C.banner)样品的耐摩擦色牢度指标不符合标准要求 42组样品中,只有标称私密(seemiss)样品的外底防滑性能指标不符合相关标准的要求,其余41组样品的所检物理安全性能指标均符合相关标准的要求。   检测结果还显示,成都地区市场上销售的成人用单皮鞋样品在商品标志、感官质量等方面问题较为突出。   45%样品的标志不符合标准要求。42组样品中,12%的样品执行标准标注不清 12%的样品材质及名称不符合相关标准的要求 26%的样品没有标明生产日期。标称珂卡芙(Kekafu)的样品,材质标注为“羊纹”,经检测为人造革,生产厂家利用消费者对“羊纹”概念的模糊,涉嫌误导消费者,以为材质是羊皮。   皮鞋样品感官质量问题较多。大部分样品的感官质量项目指标虽然符合标准要求,但工艺水平不高。如标称千百度(C.banner)样品的外观清洁度差、有胶迹,缝线有一处露线头。   皮鞋异味、舒适性指标检测结果差异较大。5组样品皮鞋异味“强烈”,标称花花公子(PLAY BOY)、金蝎子(XZKING)、欢腾(HANGTEN)、珂卡芙(Kekafu)、森达(SENDA)牌等5组样品的气味检测在四级(四级为强烈的、讨厌的气味) 24%的样品皮鞋帮面不具有透气效应。标称薇压(Via)、老人头、莎莎苏(zsazsazsu)、安玛莉(PRECIS)、珂卡芙(Kekafu)、暇步士、私密(seemiss)、接吻猫(KISSCATsofoot)、奥康、华伦鳄鱼(HUALUNEYU)牌等10组样品的帮面透气性检测值显示为“0”。几乎不具有透气性 19%的样品皮鞋帮面透水汽性能相对较差。标称金蝎子(XZKING)、莎莎苏(zsazsazsu)、珂卡芙(Kekafu)、私密(Seemiss)、接吻猫(KISSCATsofoot)、安玛莉(PRECIS)、奥康、暇步士牌等8组样品的帮面透水汽性测试数据表明其透水汽效果较差。 文章转载自:新华网
  • 生物相容性材料制成新人工神经细胞
    科技日报北京4月26日电 (记者刘霞)英国科学家首次在实验室制造出了由生物相容性材料制成的人工神经细胞,这项创新有朝一日可能会被用于合成组织,以修复心脏或眼睛等器官。相关研究发表于近日出版的《自然化学》杂志。神经元细胞是神经系统最基本的结构和功能单位,基本功能是通过接受、整合、传导和输出信息实现信息交换。在最新研究中,牛津大学哈根贝利团队设计出了一种合成材料,其作用方式与人类的神经细胞类似。这种人工神经细胞由水凝胶制成,直径约为0.7毫米,比人类神经细胞宽约700倍,但与鱿鱼体内的巨大轴突相当。它们的长度也可以达到25毫米,与从眼睛到大脑的人类视神经的长度相似。研究人员称,当光照在这种合成神经细胞上时,会激活蛋白质,将氢离子泵入细胞。这些带正电荷的氢离子随后通过神经细胞,携带电信号。当正电荷到达神经细胞顶端时,它会使神经递质化学物质三磷酸腺苷(ATP)从一个水滴移动到另一个水滴。在未来的研究中,研究人员希望能让合成神经细胞通过ATP信号与另一个神经细胞相互作用,就像神经细胞在突触上相互连接一样。随后,该团队将7个神经细胞捆绑在一起,作为一个合成神经并行工作。贝利说:“这使我们能够同时发送多个信号,它们的频率各不相同。这样做的主要目的是通过同一途径发送不同的信息。”巴斯大学的阿兰诺加雷特表示,这项创新将在本世纪末改善人工视网膜等神经植入物方面发挥重要作用,“在软材料中模拟神经活动是朝着开发出无创脑机接口和解决神经退行性疾病新疗法迈出的重要一步”。贝利希望最终能利用这些合成神经细胞同时输送不同类型的药物,以更快、更精确地治疗伤口,“利用光,我们可能会以一种特定模式释放药物分子”。不过,贝利团队也指出,与真正的神经细胞不同,新合成系统中没有循环和创造新神经递质的机制,因此这个神经细胞只能工作几个小时,人工神经细胞还有很长的路要走。总编辑圈点神经元细胞损伤后,不可再生,虽然可以修复,但难度也不低,且需要时间。这次,科学家首次在实验室制造出了由生物相容性材料制成的人工神经细胞,它能部分发挥真正神经细胞的作用,能传递信息,但只能工作几个小时。需要注意的是,研究人员自己也给出了一个时间表,他们说,这项创新或将在本世纪末在改善人工视网膜等方面发挥重要作用。本世纪末!看来,要从实验室成果变成真正能用于临床的医疗手段,还需要艰苦卓绝的努力。
  • 北大成功研制新一代微型显微镜 可实时记录神经元进行脑分析
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/d524002c-f06f-4221-a09b-ea5520ae7810.jpg" title=" QQ截图20170531163243.png" width=" 600" height=" 424" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 424px " / /p p & nbsp & nbsp & nbsp & nbsp 进入新千年,脑科学研究成为热点。工欲善其事,必先利其器。若要更好的探索人类大脑,就必须有更好的仪器与工具。目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。 其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整 体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。 /p p   近日,自然杂志子刊 Nature Methods 发布了来自于中国在这方面的研究进展。该论文主要展示了《超高时空分辨微型化双光子在体显微成像系统》的研究成果——新一代高速高分辨微型化双光子荧光显微镜成功研制,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。 /p p   该研究成果源自于国家自然科学基金委员会计划局组织的国家重大科研仪器设备研制专项,当时共有9个项目入选。北京大学程和平院士主导的《超高时空分辨微型化双光子在体显微成像系统》就是其中之一,当时也获得了7200万元的经费支持。 /p p   过去三年,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院,联合中国人民解放军军事医学科学院组成跨学科团队,完成了的这一研发工作。团对成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。研究论文2016年12月提交,2017年5月29日正式在自然杂志子刊 Nature Methods 发布。 /p p   根据官方提供的信息,产品相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 0.65μm,成像质量可达商品化大型台式双光子荧光显微镜水平,并优于美国所研发的微型化宽场显微镜。该显微镜采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达 40Hz(256*256 像 素),同时具备多区域随机扫描和每秒 1 万线的线扫描能力。 /p p   此外, 采用自主设计可传导 920nm 飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动 的荧光探针(如 GCaMP6)的有效利用。 /p p   同时采用柔性光纤束进行 荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而 受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能 成像的同时,精准地操控神经元和神经回路的活动。 /p p   值得一提的是,该显微镜重仅 2.2 克,可在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号 在大型动物上,还有望实现多探头佩戴、多颅窗不同脑区的长时程观测。 /p p   之所以说这一研究成果意义重大,主要是因为它为脑科学、人工智能学科的研究提供了重要的高端仪器。具体来说,微型双光子荧光显微成像技术改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、 睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p   事实上,成像技术一直是推动生命科学进步的主要动力。历史上,X射线、全息照相法、CT计算机断层成像、电子显微镜、MRI核共振成像、超高分辨率显微成像技术都推动了科学技术的进步,也都获得了Nobel奖。 /p p   在今天的发布会之前,该成果在 2016 年底美国神经科学年会、2017 年 5 月冷泉 港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的认可。冷泉港亚洲脑科学专题会议主席、 美国著名神经科学家加州大学洛杉矶分校的 Alcino J Silva 教授认为,“ 这款显微镜将改变我们在自由活动动物中观察细胞和亚细胞结构的方式??系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所 造就的大脑环路实现复杂行为的核心工程学原理。” /p p   这项技术研发成功的同时,团队也成立了一家叫做”超维景“的公司,并获得了来自协同创新基金、西科天使的融资,公司将会在符合北大政策的前提下,由北大支持进行商业化推广。团队接下来的重心仍是技术迭代、新产品研发。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制