当前位置: 仪器信息网 > 行业主题 > >

神经科学

仪器信息网神经科学专题为您整合神经科学相关的最新文章,在神经科学专题,您不仅可以免费浏览神经科学的资讯, 同时您还可以浏览神经科学的相关资料、解决方案,参与社区神经科学话题讨论。

神经科学相关的论坛

  • 光学显微成像技术在神经科学研究中的应用

    [align=left][font=宋体][color=#374151]摘要:光学显微成像技术在神经科学研究中发挥着不可或缺的作用。文章将深入探讨两种主要的光学显微成像技术,即荧光显微镜和多光子显微镜,在神经科学领域的应用案例。我们首先介绍了这些技术的基本原理和发展历程,然后详细描述了它们在神经细胞成像、突触可塑性研究和脑功能成像中的应用。通过这些案例,我们展示了光学显微成像技术在神经科学研究中的重要性,以及它们对我们深入理解神经系统的贡献。[/color][/font][/align][font=宋体][color=#374151]关键词:神经科学、荧光显微镜、多光子显微镜、神经细胞成像[/color][/font][font=宋体][color=#374151]光学显微成像技术自17世纪以来一直在科学研究中扮演着重要的角色。随着技术的不断发展,光学显微镜已经成为许多科学领域的核心工具之一,尤其在生命科学和神经科学领域。文章将深入探讨光学显微成像技术在神经科学研究中的应用案例,重点介绍荧光显微镜和多光子显微镜这两种主要技术的原理和应用。[/color][/font][font=宋体][color=#374151]一、光学显微成像技术应用[/color][/font][font=宋体][color=#374151]1.荧光显微镜的应用[/color][/font][font=宋体][color=#374151]荧光显微镜是一种广泛应用于神经科学研究的工具,它使用荧光染料或标记物来可视化和研究神经系统的结构和功能。以下是荧光显微镜在神经科学研究中的应用案例,包括神经细胞成像、突触可塑性研究、脑疾病研究等方面。[/color][/font][font=宋体][color=#374151](1)神经细胞成像[/color][/font][font=宋体][color=#374151]荧光显微镜在观察和研究神经细胞的结构和功能方面发挥了关键作用。通过使用荧光标记的抗体或分子探针,研究人员可以可视化神经元的不同结构,包括轴突、树突、细胞核等。这有助于研究神经细胞的形态特征以及它们在不同生理条件下的变化。[/color][/font][font=宋体][color=#374151](2)突触可塑性研究[/color][/font][font=宋体][color=#374151]荧光显微镜在突触可塑性研究中也具有重要应用。突触可塑性是指突触的结构和功能如何受到刺激和学习的影响。通过标记突触相关的蛋白质或分子,研究人员可以实时观察突触的变化,如突触增强或突触抑制,以深入理解学习和记忆的神经机制。[/color][/font][font=宋体][color=#374151](3)脑功能成像[/color][/font][font=宋体][color=#374151]荧光显微镜在脑功能成像方面也具有潜力。通过将钙指示剂或光遗传学标记物引入神经元,研究人员可以实时监测神经元的活动。这种技术使我们能够理解大脑不同区域的活动模式,以及不同刺激下神经元的响应。这对于研究认知过程、行为和神经疾病有着重要意义。[/color][/font][font=宋体][color=#374151](4)神经干细胞研究[/color][/font][font=宋体][color=#374151]荧光显微镜也被广泛用于研究神经干细胞。通过标记和追踪神经干细胞的命运和分化过程,研究人员可以理解神经系统的发育和再生机制。这对于神经系统修复和治疗神经系统疾病具有潜在应用。[/color][/font][font=宋体][color=#374151](5)荧光标记的蛋白表达[/color][/font][font=宋体][color=#374151]荧光显微镜也可用于研究不同蛋白质在神经系统中的表达和定位。通过使用荧光标记的蛋白表达技术,研究人员可以观察不同蛋白质的分布和相互作用,从而深入理解神经系统中的信号传导和调控。[/color][/font][font=宋体][color=#374151](6)脑疾病研究[/color][/font][font=宋体][color=#374151]荧光显微镜在研究脑疾病方面也发挥着关键作用。研究人员可以使用荧光显微镜来研究神经系统疾病的病理机制,如帕金森病、阿尔茨海默病和精神分裂症。这有助于发现潜在的治疗方法和药物筛选。[/color][/font][font=宋体][color=#374151]荧光显微镜在神经科学研究中的应用是多方面的,涵盖了神经细胞成像、突触可塑性研究、脑功能成像、神经干细胞研究、蛋白质表达和脑疾病研究等多个领域。这一技术为神经科学家提供了非常强大的工具,帮助他们深入理解神经系统的结构和功能,以及与神经相关的疾病的机制。未来,随着技术的不断发展,荧光显微镜将继续在神经科学领域中发挥关键作用,为我们揭示神经系统的奥秘提供更多的洞察力。[/color][/font][font=宋体][color=#374151]2.多光子显微镜的应用[/color][/font][font=宋体][color=#374151]多光子显微镜(Multi-Photon Microscopy)是一种先进的成像技术,它利用非线性光学效应,如多光子吸收,为神经科学家提供了强大的工具,用于研究神经系统的结构和功能。相比传统的荧光显微镜,多光子显微镜具有许多显著的优势,包括更深的成像深度、较少的光损伤、更少的荧光标记物和更高的空间分辨率。以下是多光子显微镜在神经科学研究中的应用领域:[/color][/font][font=宋体][color=#374151](1)脑功能成像[/color][/font][font=宋体][color=#374151]脑功能成像是多光子显微镜的一个主要应用领域。这种技术允许研究人员实时观察活体动物的脑活动,包括神经元的兴奋与抑制、突触传递和脑区之间的相互作用。多光子显微镜能够提供高分辨率的三维图像,而无需使用荧光标记物。这对于研究大脑的基本功能、学习和记忆等过程至关重要。[/color][/font][font=宋体][color=#374151](2)钙离子成像[/color][/font][font=宋体][color=#374151]钙离子在神经元内起着关键的信号传导作用。多光子显微镜可以用于监测神经元内的钙离子浓度变化,这对于理解神经元的兴奋性和突触传递至关重要。通过使用荧光钙染料,研究人员可以实时观察神经元内钙离子浓度的动态变化,以及不同神经元之间的协同作用。[/color][/font][font=宋体][color=#374151](3)神经元形态学研究[/color][/font][font=宋体][color=#374151]多光子显微镜在研究神经元的形态学和结构上也具有独特的优势。它可以提供高分辨率的三维成像,允许研究人员详细观察神经元的分支结构、突触连接和细胞器的分布。这对于理解神经元的连接方式、发展和退行性疾病的机制至关重要。[/color][/font][font=宋体][color=#374151](4)活体动物模型研究[/color][/font][font=宋体][color=#374151]多光子显微镜也在活体动物模型研究中发挥着关键作用。研究人员可以使用这种技术观察小鼠、果蝇等模型动物的脑活动,从而研究不同物种的神经系统功能和行为。这对于神经药理学、疾病建模和药物筛选具有重要意义。[/color][/font][font=宋体][color=#374151](5)细胞内成像[/color][/font][font=宋体][color=#374151]多光子显微镜也可用于单个神经元或突触的细胞内成像。这允许研究人员观察细胞内的亚细胞结构、蛋白质运输和突触形成等过程。这对于研究神经元的分子机制和突触可塑性非常有帮助。[/color][/font][font=宋体][color=#374151]多光子显微镜的应用领域不仅局限于神经科学,还扩展到其他生命科学领域,如细胞生物学、免疫学和生物医学研究。其高分辨率和深层成像能力使其成为许多领域中不可或缺的工具。[/color][/font][font=宋体][color=#374151]尽管多光子显微镜在神经科学研究中具有巨大的潜力,但它也面临着一些挑战。其中之一是成像速度,尤其在观察大脑活动时,需要高速成像以捕捉快速的神经事件。另一个挑战是数据处理和分析,因为高分辨率、三维和四维成像产生了大量的数据,需要强大的计算资源和分析工具。[/color][/font][font=宋体][color=#374151]未来,我们可以期待多光子显微镜技术的不断改进和发展,以应对这些挑战。新的激光技术、荧光标记物和成像算法将继续推动这一领域的进展,为我们深入理解神经系统的复杂性提供更多的洞察力。多光子显微镜将继续在神经科学领域中发挥关键作用,有望帮助我们解决一些最具挑战性的神经科学问题。[/color][/font][font=宋体][color=#374151]二、光学显微成像技术在神经科学研究中的应用存在问题[/color][/font][font=宋体][color=#374151]光学显微成像技术在神经科学研究中的应用虽然具有众多优势,但也存在一些问题和挑战,这些问题需要科研人员不断努力来解决。以下是一些存在问题:[/color][/font][font=宋体][color=#374151]1.有限的成像深度[/color][/font][font=宋体][color=#374151]传统的光学显微成像技术受到光的折射和吸收的限制,导致成像深度受到限制。这在研究深层脑区时成为问题,因为光无法有效透过多层组织,导致深层神经元无法清晰成像。多光子显微镜已经在这一方面取得了进展,但仍然存在深度限制。[/color][/font][font=宋体][color=#374151]2.光损伤和毒性[/color][/font][font=宋体][color=#374151]荧光标记物和强光源在成像过程中可能对生物样本产生光损伤和毒性作用。这对于活体成像和长时间观察是一个挑战,因为它可能导致样本的退化和死亡。科研人员需要努力寻找更温和的成像方法和标记物,以减轻这些问题。[/color][/font][font=宋体][color=#374151]3.数据量庞大[/color][/font][font=宋体][color=#374151]高分辨率和多维成像技术产生大量的数据,需要强大的计算资源和复杂的数据分析工具。处理和管理这些数据可能是一个挑战,尤其是在长期实验和大规模成像项目中。[/color][/font][font=宋体][color=#374151]4.标记物的选择[/color][/font][font=宋体][color=#374151]合适的荧光标记物对于获得高质量的成像数据至关重要。然而,选择适当的标记物可能会受到限制,因为一些标记物可能会干扰样本的正常生理活动,或者不适合特定的实验条件。因此,需要不断开发新的标记物和成像方法。[/color][/font][font=宋体][color=#374151]5.解析度限制[/color][/font][font=宋体][color=#374151]光学显微成像的分辨率受到光的波长限制,通常受到绕射极限的限制。虽然一些超分辨率成像技术已经出现,但它们仍然无法突破光学分辨率极限。这可能会限制对神经系统微观结构的精确观察。[/color][/font][font=宋体][color=#374151]6.活体成像的挑战[/color][/font][font=宋体][color=#374151]对于活体成像,尤其是在大脑中,样本的运动和呼吸等因素可能导致成像失真。稳定和精确定位样本是一个技术挑战。[/color][/font][font=宋体][color=#374151]尽管存在这些问题,光学显微成像技术仍然是神经科学研究的不可或缺的工具,因为它们提供了独特的实时、高分辨率和非侵入性的成像能力。科研人员不断努力解决这些问题,通过技术创新和改进,光学显微成像技术有望继续为神经科学领域的研究提供更多洞察力。[/color][/font][font=宋体][color=#374151]三、下一步研究方向[/color][/font][font=宋体][color=#374151]基于上述问题,光学显微成像技术在神经科学研究中的应用仍然需要不断改进和发展。下面是可能的下一步研究方向,以解决这些问题:[/color][/font][font=宋体][color=#374151]1.改进成像深度[/color][/font][font=宋体][color=#374151]研究人员可以探索新的成像方法,如双光子显微镜和光学波前调制成像,以增加成像深度。此外,开发新的光学透明样本制备技术,如透明大脑样本技术,可以帮助克服深度限制问题。[/color][/font][font=宋体][color=#374151]2.减少光损伤和毒性[/color][/font][font=宋体][color=#374151]研究人员可以寻找更温和的成像条件,减少光损伤和荧光标记物的毒性。此外,使用先进的成像系统,如自适应光学成像,可以减小激光功率,同时保持高分辨率。[/color][/font][font=宋体][color=#374151]3.数据管理和分析工具[/color][/font][font=宋体][color=#374151]开发更强大的数据管理和分析工具,以处理庞大的成像数据。机器学习和深度学习方法可以帮助提高数据分析的效率,并自动检测和量化细胞和结构。[/color][/font][font=宋体][color=#374151]4.标记物的改进:寻找更多、更具选择性的标记物,以减少对样本的干扰。这可以包括荧光标记物的改进、发展新的基因表达标记和探测技术。[/color][/font][font=宋体][color=#374151]5.突破分辨率极限[/color][/font][font=宋体][color=#374151]进一步发展超分辨率成像技术,以突破传统光学分辨率极限,获得更高的细节分辨率。例如,结构光显微镜和单分子成像技术可以帮助提高分辨率。[/color][/font][font=宋体][color=#374151]6.活体成像技术改进:研究人员可以探索新的样本固定和稳定技术,以减小样本运动对成像的影响。另外,开发新的活体成像方法,如头部悬置成像和小型显微成像技术,可以帮助在动态活体条件下进行成像。[/color][/font][font=宋体][color=#374151]7.多模态成像[/color][/font][font=宋体][color=#374151]结合不同的成像技术,如光学显微镜与电生理记录、光学显微镜与功能磁共振成像(fMRI)等,以获得更全面的神经科学数据。[/color][/font][font=宋体][color=#374151]8.多尺度成像[/color][/font][font=宋体][color=#374151]开发多尺度成像方法,能够在微观和宏观水平上同时观察神经系统的活动,从神经元到整个脑区。[/color][/font][font=宋体][color=#374151]这些研究方向代表了改进和扩展光学显微成像技术在神经科学研究中的应用的可能途径。通过不断的技术创新和跨学科合作,神经科学家和工程师有望克服这些问题,提高光学显微成像技术的效能和应用广度,以更深入地理解神经系统的复杂性。[/color][/font][font=宋体][color=#374151]四、结论[/color][/font][font=宋体][color=#374151]光学显微成像技术在神经科学研究中的应用案例清楚地表明,这些技术在揭示神经系统的复杂性和功能中起到了关键作用。然而,这仅仅是一个开始,未来仍有许多挑战和机遇等待我们探索。例如,新的成像技术和荧光标记方法的不断发展将进一步扩展我们的研究领域。此外,将光学显微成像技术与其他分子生物学和生物化学技术相结合,可以更全面地理解神经系统的功能。[/color][/font][font=宋体][color=#374151]在未来,我们可以期待更高分辨率、更深层次的成像以及更多三维和四维成像的发展。这将有助于解决神经科学中的一些最具挑战性的问题,如神经网络的复杂性和神经退行性疾病的机制。光学显微成像技术将继续为神经科学研究提供有力的工具,推动我们对大脑和神经系统的理解不断深入。[/color][/font][font=宋体][color=#374151]参考文献:[/color][/font][font=宋体][color=#374151][1]高宇婷,潘安,姚保利等.二维高通量光学显微成像技术研究进展[J].液晶与显示,2023,38(06):691-711.[/color][/font][font=宋体][color=#374151][2]王义强,林方睿,胡睿等.大视场光学显微成像技术[J].中国光学(中英文),2022,15(06):1194-1210.[/color][/font][font=宋体][color=#374151][3]章辰,高玉峰,叶世蔚等.自适应光学在双光子显微成像技术中的应用[J].中国激光,2023,50(03):37-54.[/color][/font][font=宋体][color=#374151][4]曹怡涛,王雪,路鑫超等.无标记光学显微成像技术及其在生物医学的应用[J].激光与光电子学进展,2022,59(06):197-212.[/color][/font][font=宋体][color=#374151][5]关苑君,马显才.光学显微成像技术在液-[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分离研究中的应用[J].中山大学学报(医学科学版),2022,43(03):504-510.DOI:10.13471/j.cnki.j.sun.yat-sen.Univ (med.sci).2022.0319.[/color][/font][font=宋体][color=#374151][6]陈廷爱,陈龙超,李慧等.结构光照明超分辨光学显微成像技术与展望[J].中国光学,2018,11(03):307-328.[/color][/font][font=宋体][color=#374151][7]安莎. 轴平面光学显微成像技术及其应用研究[D].中国科学院大学(中国科学院西安光学精密机械研究所),2021.DOI:10.27605/d.cnki.gkxgs.2021.000055.[/color][/font][font=宋体][color=#374151][8]杜艳丽,马凤英,弓巧侠等.基于空间光调制器的光学显微成像技术[J].激光与光电子学进展,2014,51(02):13-22.[/color][/font][font=宋体][color=#374151][9]莫驰,陈诗源,翟慕岳等.脑神经活动光学显微成像技术[J].科学通报,2018,63(36):3945-3960.[/color][/font][font=宋体][color=#374151][10]张财华,赵志伟,陈良怡等.自适应光学在生物荧光显微成像技术中的应用[J].中国科学:物理学 力学 天文学,2017,47(08):26-39.[/color][/font]

  • 【推荐讲座】:显微成像新技术在神经科学研究领域的应用(8月9日 10:00)

    【网络讲座】:显微成像新技术在神经科学研究领域的应用【讲座时间】:2016-08-0910:00【主讲人】:徕卡神经科学产品专家,应用主管,2013年毕业于中科院生化细胞所,细胞生物学和神经生物学专业。攻读学位期间运用共聚焦、转盘共聚焦、微流控钙成像、电生理等技术研究钠离子通道,曾在国际期刊J. Neurosci、J. Biol. Chem.、Cell Res.等杂志上发表文章,在成像领域积累了非常丰富的经验。【会议简介】在过去的十年间,神经科学领域不断涌现出新的成像技术,从解析超微结构到构建大脑整体网络,从离体神经元成像到光学与在体电生理的结合,为科研难题提供了解决方案。此次Webinar中,徕卡神经科学产品专家苏博士将分享超高分辨率显微镜、双光子、光片及激光显微切割等先进的显微成像分析技术在神经科学中的应用实例,为大家的科研提供新的灵感。应用领域包括:神经生物学,细胞生物学等。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年08月09日 10:004、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/20065、报名及参会咨询:QQ群—2901017206、扫描下面的二维码,加入生命科学微信群,入群口令“生命科学”。http://ng1.17img.cn/bbsfiles/images/2016/07/201607071638_599649_2507958_3.gif

  • 欢迎参加第二届教育与认知、行为、神经科学国际会议(ICECBN2019)

    [b]大会介绍[/b][color=#444444]为了探讨教育对人的认知、行为、神经等领域产生的影响,提高国内教育与认知行为、神经科学的科研及应用水平,推动相关领域的学术交流,国际应用科学与技术协会(IAAST)主办的第二届教育与认知、行为、神经科学国际会议(ICECBN2019)定于2019年12月21日在河南郑州召开。[/color][color=#444444]大会将邀请国内外高校、研究机构、医院、医药企业的相关专家、学者莅临参会,并通过特邀报告、专题讲座的形式就教育、认知行为与认知神经科学领域的最新学术进展和热点问题进行深入探讨,以为相关领域的研究学者提供一个展示最新科研成果、寻求全球合作的平台,促进相关领域学术成果的转化。[/color][b]大会议题[/b][color=#444444]1.教育学[/color][color=#444444]教育技术、体育科学、艺术教育、现代教育模式、教育科学研究方法、教育评价、教学方法、教育管理模式、教育心理学等[/color][color=#444444]2.认知、行为学[/color][color=#444444]认知心理学、微行为心理学、认知与情感计算、认知内隐性、认知神经、行为分析、组织行为、行为培养、认知行为疗法等[/color][color=#444444]3.神经科学[/color][color=#444444]神经发育、突触传递及可塑性、神经元兴奋性,胶质细胞、学习记忆、认知行为及神经环路、感觉系统、运动系统、内稳态、神经免疫、内分泌、神经变性疾病、心理研究、精神疾病、神经损伤和再生、人工神经网络、运动神经网络、脑电信号、体脑交互影响、情感计算等[/color][b]大会征文[/b][color=#444444]一、征稿范围[/color][color=#444444]所有大会议题[/color][color=#444444]二、论文发表形式[/color][color=#444444]1.会议论文集[/color][color=#444444]会议论文集结出版,出版后送交CPCI等数据库收录,检索类型ProceedingsPaper。[/color][color=#444444]2.SCI会议摘要[/color][color=#444444]SCI会议摘要即对当前研究进行高度凝练,保留核心内容,以长摘要的形式发表出来,一般为300-500个单词。发表之后送交SCI数据库收录,有独立WOS检索号,检索文献类型为MeetingAbstract。[/color][color=#444444]3.SSCI全文[/color][color=#444444]遴选的优秀论文可推荐发表至SSCI期刊,检索类型为Article,不含会议信息。[/color][color=#444444]4.普通国际期刊[/color][color=#444444]部分接收论文可安排至普通国际期刊发表,并送交Scopus,CNKI(知网),GoogleScholar,CrossRef等数据库收录。[/color][color=#444444]更多征稿信息,请访问:ICECBN2019官方网站。[/color][b]重要日期[/b][color=#444444]会议日期:2019年12月21日[/color][color=#444444]截稿时间(第一轮):2019年10月31日[/color][b]联系我们[/b][color=#444444]会务秘书:尤老师[/color][color=#444444]电话:15515536262[/color][color=#444444]邮箱:icecbn@163.com[/color]

  • 第二届教育与认知、行为、神经科学国际会议(ICECBN2019)下月即将召开

    [table=100%][tr][td]ICECBN2019召开在即(12月21日),请有意参会或投稿者尽快联系。ps:ICECBN2018检索率100%,详情请赴官网查看会议主题如下1.教育学教育技术、体育科学、艺术教育、现代教育模式、教育科学研究方法、教育评价、教学方法、教育管理模式、教育心理学等2.认知、行为学认知心理学、微行为心理学、认知与情感计算、认知内隐性、认知神经、行为分析、组织行为、行为培养、认知行为疗法等3.神经科学神经发育、突触传递及可塑性、神经元兴奋性,胶质细胞、学习记忆、认知行为及神经环路、感觉系统、运动系统、内稳态、神经免疫、内分泌、神经变性疾病、心理研究、精神疾病、神经损伤和再生、人工神经网络、运动神经网络、脑电信号、体脑交互影响、情感计算等[/td][/tr][/table]

  • 【转帖】英科学家探明一种大脑关键神经组织蛋白质清单

    英国一项新研究显示,人脑中一种名为“突触后致密体”的神经组织含有1000多种蛋白质,该组织病变会导致痴呆等130多种神经系统疾病,这项成果将有助于更有针对性地治疗相关疾病。英国桑格研究所等机构的研究人员12月19日在英国《自然—神经科学》(Nature Neuroscience)杂志上报告了这项成果。他们分析了接受大脑手术的一些病人的脑神经组织,在其“突触后致密体”组织中找到了1461种蛋白质。研究者指出,“突触后致密体”组织是大脑神经系统的一种关键组织,它位于连接不同神经细胞的突触上,如果出现病变,会导致早老性痴呆症、帕金森综合征、癫痫、儿童自闭症和学习功能障碍等130多种神经系统疾病。研究人员认为,在获取“突触后致密体”的蛋白质清单后,研究相关疾病时就可以按图索骥,直接检查有“嫌疑”的蛋白质,加快研究进程。据介绍,这份清单中的某些蛋白质还是“惯犯”,在多种疾病发展中都发挥作用,因此如能有针对性地研发出相关药物,还有望一药多用。领导这项研究的塞斯·格兰特说,通过分析上述蛋白质,研究者发现,“突触后致密体”的结构和功能在过去数百万年中都没有发生大的变化,现在实验鼠大脑中的相关结构仍与人类很相似,这说明在研究相关神经系统疾病时,实验鼠仍是较好的参照对象,可以先通过动物实验来获得初步数据。

  • Carl Zeiss 高调亮相郑州中国神经学会第九届全国学术会议

    Carl Zeiss 高调亮相郑州中国神经学会第九届全国学术会议

    中国神经科学学会第九届全国学术会议2011年7月30日~8月1日在河南郑州郑东新区会展中心举行,Carl Zeiss 是此次会议展位最大的一家。Zeiss 最新的LSM 780,VivaTome,SteREO Discovery V 20, Primo Vert Monitor 系数上阵。http://ng1.17img.cn/bbsfiles/images/2011/08/201108021101_307944_1719174_3.jpg

  • 科学家完成人类脑白质微观结构图集

    利用新型核磁共振成像技术,历时三年科学家完成人类脑白质微观结构图集 中国科技网讯 最近,一由欧洲多个国家研究人员组成的联合研究小组宣称,他们利用其开发的新型核磁共振成像技术,历时三年,完成了人类大脑白质微观结构图集。该图集的完成,将大大推动科学家对人类大脑白质的研究,对于未来神经科学和医学的研究发展具有重要意义。 白质是神经系统的三个重要组成元素之一。过去由于缺乏有效的研究工具,神经科学领域中的研究主要集中在灰质和神经元的研究上,而对于白质的研究则相对较少。为了完成大脑白质图集,联合研究小组开发了新的核磁共振成像方法,这种方法提供了前所未有的细节和准确性,使得科学家们首次可以对整个大脑活体的微观结构进行可视化探查,重新理解大脑思维过程与细胞结构的关系。 此次联合研究小组发布的大脑白质图集涵盖了100名志愿者的脑部三维图像,详细描述了大脑白质的微观特征,如细胞大小、密度、纤维直径等。这些图像可作为未来医学和基础神经科学两个领域中大脑研究的参考标准,不仅有助于科学家对大脑的理解达到一个新的高度,同样使得那些非专业用户,如医生或医疗人员,可以利用它来了解有关大脑的知识。可以预见,籍此图集的诞生,未来学界对于大脑白质结构及功能的研究将会大大加强。(记者 刘海英) 《科技日报》(2012-10-22 二版)

  • 【神经信息学的重大突破】科学家研发新型神经示踪技术

    来自加州大学圣地亚哥分校,北京大学生命科学学院的研究人员发表了题为“Mapping Neural Circuits with Activity-Dependent Nuclear Import of a Transcription Factor”的文章,报道了一种新型神经示踪技术,并利用这一技术追踪了一种关键的钙离子应答转录因子,这一研究模式将可以用于识别特异神经群体中的活性神经元。相关成果公布在《神经遗传学期刊》(

  • 【转帖】科学家发现神经系统“交警”

    自然》:科学家发现神经系统“交警”蛋白质MEC-17帮助维持大脑细胞内的“交通秩序”美国研究人员发现一种蛋白质帮助维持大脑细胞内的“交通秩序”,“指挥”细胞内营养物质和废弃物何去何从。这一发现有助研究帕金森氏症和阿尔茨海默氏症(早老性痴呆症)等神经系统疾病的治疗方法。“交警”这种蛋白质名为MEC-17。它的发现纯属好奇结果。美国趣味科学网站9月8日援引佐治亚大学富兰克林艺术和科学学院细胞生物学系教授亚采克·格蒂希的话报道:“这一项目没有任何医学或科学驱动,纯粹是因为好奇细胞内运输机制,但看起来我们确定了神经系统内发挥重要作用的一种酶。”格蒂希说,细胞内有一个管道网,称为微管,这些微管由蛋白质组成,承担细胞内部物质运输,还在细胞生长、细胞间发送信号等方面发挥重要作用。而这个管道网内的交通信号指示就是一种名为“乙酰化标记”的化学添加剂,明确指示微管将何种蛋白质运往大脑细胞内何处。研究人员发现,乙酰化标记存在于大脑负责发送信号的神经细胞内的微管,而负责接收信号的神经细胞内的微管没有这一标记。催化事实上,研究人员早在1983年就发现了乙酰化标记,但直到近期才了解它的作用在于系统管理微管内运输物质的动力蛋白。不过,研究人员一直不清楚乙酰化标记形成的细胞过程,换句话说,哪一种酶决定这一“交通信号”在何地发挥作用。格蒂希和同事分别研究了原生动物四膜虫、线虫、斑马鱼和人体癌细胞后发现,MEC-17就是负责微管乙酰化的“交警”。研究人员发现,MEC-17在微管乙酰化反应中起到催化作用。具体到线虫,这种酶与它的触感有关;在斑马鱼身上,MEC-17损耗会导致神经肌肉缺陷。研究结果由权威期刊《自然》杂志发表。运用先前一些研究结果显示,亨廷顿氏症、帕金森氏症和阿尔茨海默氏症等神经退化性疾病患者的微管乙酰化标记水平发生改变。格蒂希说,确认MEC-17这种酶,了解它的工作机制之后,制药企业就可以开发药物抑制或提高它的活性,从而治疗神经退化性疾病。格蒂希的研究小组由多家实验室成员组成。他将这项研究成果归功于大家精诚合作,“一起努力才让我们能够使用各种模型,结果发现MEC-17参与的微管乙酰化过程是一种***性保留作用。没有亲密合作,那不可能实现”。新华网

  • 【转帖】三名华裔教授当选美国国家科学院院士

    美国国家科学院新增三名华裔院士,他们是约翰霍普金斯大学医学院神经科学教授[url=http://neuroscience.jhu.edu/KingWaiYau.php]游景威[/url],加州大学河滨分校植物细胞生物学教授[url=http://genomics.ucr.edu/people/person-details.php?id=314]朱健康[/url],以及当选为外籍院士的中国科学院古脊椎动物与古人类研究所研究员[url=http://sourcedb.ivpp.cas.cn/zw/rck/200908/t20090811_2364084.html]周忠和[/url]。美国国家科学院4月27日上午举行第147届年会,宣布新增72名院士,院士总数达到2097名。新增14个国家的18名科学家为外籍院士,外籍院士总数达到409名。约翰霍普金斯大学医学院神经科学教授[url=http://neuroscience.jhu.edu/KingWaiYau.php]游景威[/url]出生于广州,19岁到香港,在香港大学念了一年医科后来美,1971年普林斯顿大学物理系毕业,1975年取得哈佛大学神经生理学博士学位后在斯坦福大学做博士后,1986年至今在约翰霍普金斯大学医学院神经科学系从事视觉和触觉方面研究。加州大学河滨分校植物细胞生物学教授[color=#800000][url=http://genomics.ucr.edu/people/person-details.php?id=314]朱健康[/url][/color]1987年毕业于北京农业大学,1993年获得美国普渡大学植物生理学博士,是国际顶尖的植物分子生物学家。中国科学院古脊椎动物与古人类研究所研究员[color=#800000][url=http://sourcedb.ivpp.cas.cn/zw/rck/200908/t20090811_2364084.html]周忠和[/url][/color]1987年毕业于南京大学地质系古生物与地层学专业,1999年获美国堪萨斯大学古鸟类学博士学位,1999年入选中科院“百人计划”,2000年获国家杰出青年科学基金。现主要从事古鸟类和热河生物群的研究。美国国家科学院于1863年由林肯总统签署成立,作为联邦政府的科技顾问机构。科学院院士由科学家和工程学家组成。

  • [资源集锦] 生命科学&生物工程类 国家重点实验室 汇总

    生命科学&生物工程类 给大家一个参考吧。国家重点实验室1 分子生物学国家重点实验室 中国科学院上海生命科学研究院2 分子肿瘤学国家重点实验室 中国医学科学院肿瘤医院肿瘤研究所3 呼吸疾病国家重点实验室 广州医学院4 华南肿瘤学国家重点实验室 中山大学5 计划生育生殖生物学国家重点实验室 中国科学院动物研究所6 家畜疫病病原生物学国家重点实验室 中国农业科学院兰州兽医研究所7 口腔疾病研究国家重点实验室 四川大学8 脑与认知科学国家重点实验室 中国科学院生物物理研究所9 农业虫害鼠害综合治理研究国家重点实验室 中国科学院动物研究所10 农业生物技术国家重点实验室 中国农业大学11 农业微生物学国家重点实验室 华中农业大学12 认知神经科学与学习国家重点实验室 北京师范大学13 神经科学国家重点实验室 中国科学院上海生命科学研究院14 生化工程国家重点实验室 中国科学院过程工程研究所15 生物大分子国家重点实验室 中国科学院生物物理研究所16 生物反应器工程国家重点实验室 华东理工大学17 生物膜与膜生物工程国家重点实验室 北京大学等18 生物治疗国家重点实验室 四川大学19 实验血液学国家重点实验室 中国医学科学院血液病医院血液学研究所20 食品科学与技术国家重点实验室 江南大学等21 兽医生物技术国家重点实验室 中国农业科学院哈尔滨兽医研究所22 水稻生物学国家重点实验室[/u

  • 日科学家使用核磁共振读取梦境:准确率约60%

    2013年04月08日 来源: 新浪科技 作者: 晨风http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130408/2c27d71a3b4612cc50ff1e.jpg通过对唤醒受试者之前9秒钟其大脑活动的分析,研究人员可以判断这个人刚才是否正在做梦  新浪科技讯 北京时间4月8日消息,据国外媒体报道,一个日本神经科学家小组日前成功地使用大脑扫描设备读出人们梦境中的内容。  日本京都ATR计算神经科学研究所科学家神谷之康和他的同事们使用功能磁共振成像(FMRI)对三名睡眠中的受试者脑部进行扫描观察,并同时记录下他们的脑电波信号。  当观察到受试者的脑电波正处于梦境的早期睡眠特征时,研究人员便将受试者唤醒并询问他们刚才梦到的是什么情景,随后便让他们继续入睡。这种测试的进行期间有3个小时的间隔,并采用不同的方式,针对不同的受试者重复进行7~10次。  在每次间隔期间,受试者每小时会被唤醒10次。每一位受试者都报告他们大约每小时内都会出现大约6~7次梦境,这样每一位受试者身上都会记录到大约200次梦境事件。  大多数梦境所反映的是日常的生活。如一位受试者表示:“我梦到我在一家面包店里。我买了东西然后走到外面的大街上,那里有一个人正在拍照。”另一位受试者叙述说:“我看见一座巨大的铜质雕像,在一座小山坡上。在山脚下有小屋子,街道,还有树林。”也有一部分受试者的梦境中包含了一些不同寻常的内容,比如遇见一位电影明星,或是梦见自己置身于一座录音棚之中。  神谷之康和同事们使用普林斯顿大学开发的语料数据库WordNet来提取受试者陈述报告中的语言特征,并将其划分为20个类别,如“车”,“男性”,“女性”以及“计算机”等,这些文字都是在受试者的陈述中出现频率最高的。随后研究组使用对应于这些文字的图片,让受试者去观看这些图片并同时扫描并记录他们的大脑活动情况,最后将这些数据与此前在进行睡眠实验中唤醒受试者时记录的数据进行对比。令人惊奇的是,计算机能够识别梦境中60%左右的图像。  研究人员对受试者大脑的V1,V2 和 V3区域的活动情况进行了分析,这些大脑区域负责视觉图像处理的最早期阶段,并负责对视觉画面的基本解码,如对比以及边界的对齐等等。研究人员也对大脑中负责更高级别图像处理的区域进行了观察,如大脑中负责目标认知的区域,等等。  在2008年,神谷之康和他的同事们曾经报告称他们可以解码并重建受试者大脑区域活动所代表了视觉情景。而现在,他们已经更进一步,实现了对大脑更高级功能区域活动的识别,也因此几乎能精确地预测受试者梦境中呈现的内容。  神谷之康表示:“我们建立了一套模型,用以预测每一类别的内容是否会在梦境中呈现。通过对唤醒受试者之前9秒钟其大脑活动的分析,我们可以判断这个人刚才是否正在做梦,准确性达到75%~80%。”  他也表示这样的实验并非对受试者梦境画面结构的考察。他说:“我们所关注的是梦境的意义,但是我仍然认为有可能从中提取出结构特征,如形状和对比,正如我们在2008年时所做的那样。”  他们所作的这项工作于去年10月份在美国新奥尔良召开的神经科学学会年会上做了报告,并于近期发表在《科学》杂志上。在这篇文章中,研究组指出人类大脑中负责较高级别视觉处理的区域,其针对梦境和视觉感知所产生的神经反应是相似的。  美国加州大学伯克利分校科学家杰克·格朗特(Jack Gallant)表示:“这是一项有趣的工作,令人兴奋。相比低级区域,从更高级别的大脑区域进行解译可以更加精确地重构梦境,这一事实说明引发梦境的大脑活动中牵涉到一些与视觉想象有关的脑部区域。”他说:“另外,由于对梦境的解译在受试者被唤醒前十几秒钟时最为精确,这一点也似乎可以证明我们醒来后回想自己刚刚经历的梦境,这是一种短时记忆。”  神谷之康和同事们目前正致力于对处于快速眼动阶段(REM)的深度睡眠者实施同样的研究,这一阶段一般也被认为与当事人正处于梦境有关。他说:“这一阶段的研究将更具挑战性,因为我们必须至少等待一小时以上才能等到受试者进入快速眼动阶段的睡眠状态。我并不了解很多有关梦境的作用的理论,我比较了解梦境的内容,以及这些梦境内容是如何与大脑中的不同区域相互关联的,这种关联性将帮助我们更好地理解梦境。”(晨风)

  • 中国科学家发现一种小分子对脑中风有特效

    中国科学家发现,一个叫做“胆甾烷三醇”的小分子对脑中风治疗有着意想不到的作用。经过十多年的努力,终于阐明了这种小分子的作用原理,证明了它对脑中风神经细胞损伤起到显著的保护作用,将在近期发展成为1.1类新药抗脑卒中神经细胞保护剂。得到国家自然科学基金资助的这一重大成果,是中山大学中山医学院颜光美团队和第四军医大学的桑韩飞副教授共同完成的。 脑中风是严重危害人类健康的多发性疾病,具有很高的病死率和致残率,而且一直缺乏疗效确切的药物。颜光美团队研究发现,传统上用于治疗脑中风的中药天然牛黄及人类胆结石中存在治疗量的胆甾烷三醇。因此牛黄的神经保护作用的主要物质基础可能包括胆甾烷三醇及其同系物。经过十多年的努力,终于人工合成了上述物质,并在动物中开展广泛实验。  他们使用细胞培养方法和多种整体动物模型都证明,胆固醇代谢的内源性小分子胆甾烷三醇,是一种天然的神经细胞保护物质。对构成大脑的多种神经细胞具有显著的保护作用,显著减轻动物中风后的肢体残废程度。这些结果表明胆固醇代谢小分子可能组成一个内源性神经元保护系统。  相关研究于8月20日发表于美国神经科学杂志。基于上述研究开发的1.1类新药抗脑卒中神经元保护剂预期在一年内可进入临床试验,并且具有全球发明专利。本文的通讯作者是中山大学的颜光美教授和第四军医大学的桑韩飞副教授。 文章链接:http://www.ncbi.nlm.nih.gov/pubmed/25143622

  • 【转帖】《生物化学杂志》:三种蛋白在神经细胞修复中起重要作用

    俄亥俄州哥伦布市一项新的研究表明,成熟脑细胞表面的三种特定蛋白量的增加可促使细胞产生新的生长延伸。该研究探讨了小鼠脑神经细胞上的三个相关的受体蛋白:GPR3,GPR6和GPR12。当研究人员增加这三种蛋白的量后,细胞生长延伸比蛋白水平正常时的神经细胞的生长大三倍,延伸速度比对照细胞快4-8倍。俄亥俄州立大学医学中心的项目主持人Yoshinaga Saeki说,“我们的研究结果显示,这三种蛋白可能是用于治疗中风、脑和脊髓损伤及神经退行性疾病的重要靶点。”该研究刊登在4月6日的《生物化学杂志》(Journal of Biological Chemistry)上。 这些蛋白量的增加与神经细胞cAMP内的一种重要的信号分子的水平的增加有关。这个分子在调控神经细胞生长、分化和生存,以及传输神经冲动的轴突再生中起着关键作用。随着哺乳动物神经细胞的成熟,其细胞内的cAMP水平下降,这可以部分解释为什么成熟神经细胞受损的轴突不能再生。神经外科副教授、俄亥俄州州立dardinger神经肿瘤及神经科学实验室主管Saeki声称,“我们的发现为cAMP在轴突生长中起着重要作用这一观点提供了更多证据,并显示出这些受体蛋白可能在调节神经细胞cAMP的产生中起主要作用。” 该研究的第一作者Shigeru Tanaka是Saeki所在实验室的一名博士后研究员。在本项研究中,他与同事从小鼠与大鼠脑组织神经母细胞瘤中取得神经细胞,使之在培养基中生长以了解更多关于这三种蛋白及其调控cAMP生长中的作用。他们向这些细胞中注入三种基因以增加这三种蛋白的含量水平,然后用一种被称为核糖核酸干扰的实验室技术关闭这三种蛋白的产生。上述三个蛋白分子中GPR3在神经细胞中最为丰富,而GPR12刺激神经细胞延伸的作用最强。研究表明,阻断GPR3的产生会大大减慢神经细胞的生长速度,研究者们通过修复GPR3或GPR12的产生扭转了这种效应。三种蛋白质的含量水平高也与较高水平的cAMP有关,同时GPR6和GPR12能增加两倍到三倍的水平。 Saeki说,“总的来说,我们的研究结果显示,这三种蛋白能加快神经细胞的生长即使在抑制分子的存在下也是如此,我们迫切希望能找出可以在临床前中风或脊髓损伤动物模型身上重现此结果的方法。”来源:生物谷

  • 中国科学家发现“牛蒡子苷元”有助改善记忆损伤

    2013年08月23日 来源: 中国科学报 作者: 黄辛 中国科学报讯(记者黄辛)中科院上海药物研究所沈旭、胡立宏和蒋华良三个研究小组在最近的合作研究中,首次发现天然产物“牛蒡子苷元(ATG)”能够有效改善阿尔茨海默氏症(AD)小鼠的记忆损伤。该研究成果日前在线发表于《神经科学杂志》,并且已经申请了专利。 有关专家认为,该项研究不仅为抗AD创新药物的研发提供了新的研究策略,而且为基于“牛蒡子苷元”的抗AD药物的进一步开发提供了重要依据。 据了解,AD是一种以记忆力损伤为表现的进行性神经退行性病变,由β淀粉样蛋白(Ab)引起的神经退行性病变被认为是导致AD的关键因素。 随着老龄化社会的到来,我国AD的发病率与日俱增,然而迄今为止,市场依然缺乏有效的治疗AD的药物。 研究人员针对目前基于Ab为靶点的抗AD药物研发的困境,首次采用不同于长期以来的“酶活调节”模式的“蛋白表达通路调控”策略,建立了“一石二鸟”的抗AD药物筛选平台——既能抑制Ab产生又能增加Ab清除,发现了天然活性分子“牛蒡子苷元”。研究表明,给予ATG的AD模型小鼠出现明显的脑内蛋白沉淀斑减少,并且小鼠记忆力损伤得到明显恢复。 据了解,牛蒡子是牛蒡的果实,牛蒡为盛产于日本和我国多地区的一种蔬菜。2011年,沈旭和胡立宏研究小组曾合作研究发现“牛蒡子苷元”具有提高机体抗疲劳的功能。

  • 【分享】R著名生物学家——饶毅

    饶毅 博士北京生命科学研究所资深研究员,学术副所长美国西北大学神经内科学Elsa Swanson讲席教授、Feinberg临床神经科学研究所研究主任教育经历Education1978-1983江西医学院学士MB, Jiangxi Medical College, China1983-1985上海第一医学院硕士学位研究生, MS Student, Shanghai Medical University1985-1991加州大学旧金山分校神经科学博士Ph. D. in Neuroscience, University of California at San Francisco, USA 1991-1994哈佛大学生物化学与分子生物学系博士后Postdoctoral Fellow, Department of Biochemistry and Molecular Biology, Harvard University工作经历Professional Experience2006-present 西北大学神经内科学Elsa Swanson讲席教授 2006-present 美国西北大学Feinberg医学院Feinberg临床神经科学研究所研究主任(Director of Research,Feinberg Clinical Neuroscience Research Institute) 2004-present 中国北京生命科学研究所资深研究员,学术副所长 National Institute of Biological Sciences, Beijing, China 2004-present 美国西北大学神经内科学教授 Northwestern University Feinberg School of Medicine, Chicago, IL, USA 2004-2006 美国西北大学神经科学研究所副所长 1994-2004 华盛顿大学(圣路易斯)医学院解剖学与神经生物学系 Department of Anatomy and Neurobiology at Washington University School of Medicine in St. Louis, Missouri, USA 2001-2006 Journal of Neuroscience(美国)《神经科学杂志》编委 2006-present Developmental Biology (美国)《发育生物学》编委 2002-2005 Developmental Brain Research (美国)《发育脑研究》编委 2006-present Brain Research (美国)《脑研究》编委 2000-present Neuroscience Research (日本)《神经科学研究》编委 2006-present PLoS One (美国)《科学公共图书杂志》编委 2001-2006 Faculty of 1000 (英国)《千位教授》 成员 2001-2008 NeuroSignals (瑞士和香港)《神经信号》编委 2003-2005 Chinese Science Bulletin (中国) 《科学通报》编委 2006-present Cell Research (中国)《细胞研究》编委 2005-present Neuroscience Bulletin《中国神经科学杂志》编委 1999-present 《二十一世纪》 (香港) 编委 2004-present 《科学文化评论》(中国) 编委 2004-present 《科技中国》 (中国) 编委 1998 Gordon分子和细胞神经生物学会议 副主席 2000 Gordon分子和细胞神经生物学会议 主席 2003 主席, 国际脑研究组织皮层发育和进化会议Chair, IBRO Symposium on Development and Evolution of Cortical Specification 1999-2001 美国国家科学基金会 发育神经生物学评审委员会 委员Panelist, Developmental Neuroscience Panel, NSF 1998-2000 杰出青年基金B类 (中国 国家自然科学基金会) 2004-present 中国科学院生物物理研究所兼职博士生导师 2006- present 中国科技大学兼职教授 2002-2005 中国科学院上海交叉学科研究中心共同主任 2002-present 中国科学院自然科学史研究所兼职博士生导师 1999-present 中国科学院神经科学研究所理事会成员 1999-present 中国科学院神经科学研究所客座研究员 1996-1999 中国科学院上海生命科学研究中心兼职研究员 1995-1996 讲课: 发育神经生物学 华盛顿大学 1996-1999 主持: 分子 华盛顿大学 1997-1999 主持: 神经发育原理 华盛顿大学 1999-2004 讲课: 细胞神经生物学 华盛顿大学 1997 主持: 分子发育神经生物学 中国科学院 1998 讲课: 发育遗传学 北京大学 2000-2002 主持: 分子和细胞生物学 中国科学院上海生命科学研究院 2003-2004 讲课: 分子和细胞生物学 中国科学院 北京大学 清华大学 2001-2003 讲课: 神经生物学 中国科学院 神经科学研究所 2002-2003 讲课: 分子和细胞神经生物学 香港科技大学 2005-2006 主持: 发育神经生物学 美国西北大学 研究概述 Research Description该实验室目前主要兴趣在于两个神经生物学问题: 1) 行为的遗传学分析, 2) 神经发育的分子机理。 实验室探索通过遗传学途径用果蝇研究行为的机理。首先探寻果蝇是否有较复杂的行为,建立行为的实验模型,然后通过遗传突变,筛选影响行为的基因,找到基因以后,进一步分析分子机理和神经环路。极性是细胞的一个基本性质。神经细胞有轴突和树突,它们起不同的作用,树突一般接受信号,而轴突通常发送信号。如果没有神经细胞的极性,神经系统的信息传递就会紊乱。实验室在分子和亚细胞水平研究神经细胞极性发生的机理,除了可以帮助基础理解以外,如果能知道怎样形成轴突,也许可以提示如何在损伤后帮助促进神经纤维再生。目前主要研究调节神经细胞极性的信号转导通路。The lab is currently carrying out genetic analysis of behavior in Drosophila and molecular studies of cell polarity in mammal neurons.The lab is using genetic approaches to study behaviors in Drosophila. The initial attempts are made to explore the existence of complex behaviors in Drosophila, to establish Drosophila models of these behavioral paradigms. Once established, these models will make it possible to identify genetic mutations and their underlying genes. The identifications of these genes will allow further studies at the levels of both the molecules and the neural circuitry.Polarity is a basic cellular feature. Each neuron usually has an axon and multiple dendrites. They play different roles: axons usually for sending signals and dendrites for receiving signals. Abnormality in neuronal polarity will disrupt to informational flow in the nervous system. Molecular and subcellular studies of neuronal polarity will further understanding of basic mechanisms and may also help suggesting new approaches to facilitate recovery after neural injuries. The current focus of the lab is on signal transduction pathways involved in establishing and maintaining neuronal polarity.

  • 【已应助】求paper

    - 家族性肌萎缩性侧索硬化的分子遗传学研究 作者:刘小民,唐北沙,赵国华, 中华医学会 中华神经科杂志Chinese Journal of Neurology 2004年 第3期 - 家族性肌萎缩侧索硬化症的分子遗传学研究进展 作者:冯善伟,张成, 期刊 国外医学神经病学神经外科学分册FOREIGN MEDICAL SCIENCES SECTION ON NEUROLOGY & NEUROSURGERY 2003年 第06期 - 家族性肌萎缩侧索硬化致病基因的研究进展 作者:陈文族,赵振华,吴志英, 中华医学会 中华神经科杂志Chinese Journal of Neurology 2007年 第6期 - 家族性肌萎缩侧索硬化症的病因研究进展 作者:姚晓黎,张成, 中华医学会 中华神经科杂志Chinese Journal of Neurology 2001年 第3期 - 家族性ALS的SOD1基因突变及发病机制研究进展 作者:黄慧,张成, 期刊 国外医学(神经病学神经外科学分册)FOREIGN MEDICAL SCIENCES SECTION ON NEUROLOGY & NEUROSURGERY 2004年 第06期 thx

  • 2011年生物科学领域和医学科学领域国家重点实验室评估结果

    自然科学基金会对生物科学、医学科学领域国家重点实验室进行了评估。生物科学领域参评实验室30个,医学科学领域参评实验室26个。评估结果如下: 一、评估结果 1. 生物科学领域国家重点实验室。 神经科学国家重点实验室、生物大分子国家重点实验室、生物膜与膜生物工程国家重点实验室、遗传资源与进化国家重点实验室、植物分子遗传国家重点实验室、植物基因组学国家重点实验室、植物生理学与生物化学国家重点实验室等7个实验室为优秀类实验室。淡水生态与生物技术国家重点实验室和作物遗传改良国家重点实验室在此之前连续3次评估优秀而申请此次免评,按《国家重点实验室评估规则》的有关规定,此次评估结果定为优秀。 病毒学国家重点实验室等20个实验室为良好类实验室(名单见附件)。 家畜疫病病原生物学国家重点实验室、农业虫害鼠害综合治理研究国家重点实验室、作物遗传与种质创新国家重点实验室等3个实验室予以整改,评估结果待定。 2. 医学科学领域国家重点实验室。 蛋白质组学国家重点实验室、脑与认知科学国家重点实验室、生物治疗国家重点实验室、新药研究国家重点实验室、医学基因组学国家重点实验室、医学免疫学国家重点实验室等6个实验室为优秀类实验室。 癌基因及相关基因国家重点实验室等18个实验室为良好类实验室(名单见附件)。 医学遗传学国家重点实验室予以整改,评估结果待定。 其他实验室为较差类实验室。

  • 【转帖】揭示大脑听觉形成机制

    揭示大脑听觉形成机制 众所周知,人类能够获得听力是基于选择性地听取一定频率范围的声音。大脑的“听力中心”听觉皮层中的神经元通常聚集在一起对特定频率的声音产生反应。然而科学家们对于复杂的神经元网络准确地对声音做出反应的具体机制仍然不清楚。现在由冷泉港实验室神经科学计划的负责人Anthony Zador教授领导的科研小组朝揭示这一谜底迈进了一步。科学家们试图通过研究听觉皮层中神经元之间的功能联系了解听力形成的机制。最新的论文发表在《自然神经科学》(Nature Neuroscience )网络版上。“我们希望通过这种方式了解听觉皮层产生应答反应的机制,”Zador说。听觉皮层的神经元组织方式不同于大脑视皮层和感觉皮层。在视觉形成过程中,视网膜上的感光受体可直接将信号传递到大脑的视皮质形成二维“视网膜定位”图像。然而在听觉系统,耳蜗内的听觉受体的组成方式则是一维的。靠近耳蜗外缘的受体可识别低频率的声音,而靠近耳蜗内的受体则对高频率的声音比较敏感。耳蜗中这种由低到高不同部分与不同声音频率的一种规则的对应关系称之为“频率拓扑”。耳蜗的频率拓扑特征使得神经元将高低频率的声音以梯度形式传递至听觉皮层形成一维信号。“人类视觉和感觉器官获得是二维信号,而听觉皮层获取的声音则是一维信号。这表明两种皮层定位机制存在功能上的差异。然而现在还没有人能够理解产生差异的具体机制。”Zador说。

  • 遗传学与神经生理学的完美结合开创全新领域

    Stefan Pulver博士在神经生理学和神经遗传学方面有多年的教学和研究经验。在美国Brandeis University获得博士学位后,他前往英国剑桥大学(Cambridge University)工作,并作为客座教师在美国康奈尔大学(Cornell University)任教。Stefan Pulver博士在各种科学杂志上发表了许多杰出的期刊论文。起初,Stefan并不喜欢遗传学,但是现在,他全身心地投入研究生教学,这是为什么呢?他说:"I was really a pretty terrible undergrad student. In particular, I deeply disliked genetics and didn't pay attention in genetics classes - something I regret now. I think a lot of students have a similar experience; something about the way we teach genetics just doesn’t resonate with a lot of young biologists.Part of the reason why I'm doing what I’m doing now is to reach out to people who were like me. I want to try and get young people - who would normally hate genetics - interested in the subject."生理学教学实验室的亮点Stefan Pulver博士和他的同事Nick Hornstein (Brandeis University), Bruce Land和Bruce Johnson (Cornell University)最近建立了一系列实验教学模块,向研究生介绍遗传学,同时教授细胞生理学和动物行为学。他们的工作已经发表在《Advances in Physiology Education》杂志:Optogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila。文中详细介绍了一种名为“光遗传学”的新技术:在果蝇大脑的特定神经元表现Channelrhodopsin-2 (ChR2) (蓝光敏感离子通道)的性状。在自由活动的ChR2表达果蝇体内,特定神经元和突触能通过蓝光照射被激活,这个技术已被广泛应用于遗传学生物载体(如果蝇、线虫、斑马鱼和小鼠等)。但是由于这个技术成本较高,因此尚未在研究生教学领域广泛应用。在文中,Stefan Pulver博士和他的合作者展示了一种廉价的方法将这种新技术引入教学实验室,从而鼓励研究生们将它运用到各自的生物学研究中去。Stefan Pulver博士说:“People have this idea that optogenetics is this high tech thing that requires fancy lasers, expensive equipment, and bunch of people with PhDs, but it’s really not that complicated, at least with fruit flies. All you need are the right flies, LEDs, some basic electronics, and a class of curious undergrads.”Screen captures taken from JoVE's video publication of Hornstein, Pulver and Griffith (2009)Images reproduced with express permission from JoVE他们的工作是过去几年研究生教学的巅峰。在过去三年中,Stefan Pulver博士和他的合作者在康奈尔大学神经生理学基础课(BioNB491,由Bruce Johnson教授)中进行相关实验,学生们采用蓝光激活果蝇幼虫的神经系统的不同部分,然后检测行为学的变化,并记录光诱发突触电位。全新的教学模块使教师能够采用可观测的互动方式深入介绍遗传学、细胞生理学和动物行为学之间的关系,突破了显微分子方法的局限。 同时,学生们也通过实验在ChR2研究中开辟了之前的研究者未能达到的全新领域。学生们在参与实践之后几乎全部给出了良好的反馈:· 100%的学生对神经生理学和行为学产生浓厚兴趣· 94%的学生希望进行神经科学的前沿研究· 超过75%的学生对遗传学的兴趣增强Bruce Johnson, Senior Teaching AssociateCornell University“Seeing students get excited in the lab was awesome, but I have to admit, seeing quantitated student response data that clearly showed how well the exercises worked was equally rewarding.”Stefan博士的灵感来源于 Hoy, Robert Wyttenbach和 Bruce Johnson ,他们在上世纪80-90年代改良了小龙虾神经肌肉接头实验,使之成为神经生理学教学的重要工具(The Crawdad Project)。Stefan博士和许多年轻科学家一样,通过小龙虾神经肌肉接头实验首次记录突触电位,进而对动物行为的神经基础研究(神经行为学)产生了浓厚兴趣,最终成为了他的职业。他希望他的论文能够像他的前辈们那样使基层学生对神经行为学产生浓厚的兴趣。Nick Hornstein, graduate studentMD/PhD Program - Columbia University指引研究生取得成功Stefan博士还通过各种方式为研究生们提供帮助。在发展“光遗传学”技术的项目中,他吸纳研究生Nick Hornstein成为成员之一。Nick在Journal of Visualized Experiments (JoVE)杂志上发表的论文为教学实验室的下一步发展提供了坚实的基础。Nick在其研究生第二年作为第一作者在JoVE杂志发表了相关论文,相关研究同时投稿《Neurophysiology》,他因此获得了2009年度的Barry M. Goldwater奖学金。Nick在Brandeis University获得硕士学位后,于2011年9月前往哥伦比亚大学(Columbia University)继续攻读神经生理学博士学位。Stefan Pulver博士将在2011年美国神经学年会(Washington, DC)上展示他的工作,如果您对他的工作感兴趣,可以与他当面交流。您也可以前往1316号展位参观ADInstruments的最新神经生理学相关产品。Publications:· 2011: Stefan R Pulver; Nicholas J Hornstein; Bruce L Land; Bruce R JohnsonOptogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila. Advances in physiology education 2011;35(1):82-91.· 2010: Nair A, Bate M, Pulver SRCharacterization of voltage-gated ionic currents in a peripheral sensory neuron in larval Drosophila. BMC Res Notes. 2010 Jun 2;3:154.· 2010: Berni, J., Muldal, A.M., Pulver, S.R.Using Neurogenetics and the Warmth-Gated Ion Channel TRPA1 to Study. The Neural Basis of Behavior in Drosophila J Undergrad Neuro Ed 2010. 9(1):A5-A14· 2010: Jean-Marc Goaillard; Adam L Taylor; Stefan R Pulver; Eve MarderSlow and p

  • 中国中枢神经制药市场 谁主沉浮?

    科技日报 2012年12月27日 星期四本报记者 李颖 给力产学研 与海外市场相比,我国中枢神经类药物市场尚处于起步阶段,主要表现在市场规模小、人均用药量小等。根据美国医药市场咨询公司IMSHealth预测:2012年全球中枢神经类疾病市场规模超2000亿美元,增速小于10%。但是反观中国市场,2012年中国中枢神经类疾病市场规模将超230亿元人民币,到2020年甚至将超过1000亿元人民币;且截至2012年6月,中枢神经市场与去年同比增长约30%,并持续保持高速增长的趋势。这样高壁垒、高毛利、高增长的新兴市场对外资制药企业有绝对的吸引力。 2012年1月以来,中国制造业开始经历30年以来最严酷的外资撤出严冬,由于中国地区劳动力成本的持续上涨及中国人口红利消失,外加中国境内竞争加剧,外资相继成为迁徙出中国制造业候鸟,但是在中枢神经制药(CNS)板块,外商直接投资(FDI)却呈现截然相反的势头,丹麦灵北制药、礼来等国际大型CNS企业加速升级在华研发机构及直接开设制药工厂,中国CNS市场方兴未艾,显然外来资本已深谋大局。 强强联合 深耕“领地” 从全球范围来看,中枢神经类药物过去几年依然保持了较快的增长速度,年均增长9.46%,是各类药物中销售总额最大的一类药物,其用药规模已经超过了心血管及肿瘤用药。 继与勃林格殷格翰就糖尿病药物联合开发及商业推广达成合作协议后,2011年4月,礼来与美敦力宣布结盟,利用美敦力的植入式给药系统技术结合礼来生物改良型胶质细胞源性神经营养因子(GDNF),合作开发一种治疗帕金森病的新方法。 作为在新兴市场的战略核心,礼来去年在中国成立了专门的中枢神经药物团队。加强研发,强化队伍,加快新药上市,礼来深入该领域的决心由此可见一斑。据礼来公司神经变性团队首席科学官MichaelL.Hutton博士介绍,采用生物合成技术设计的GDNF,能够克服该研究领域以前所面临的一些技术障碍。 GDNF仅仅是礼来研发产品线中的一个。目前,礼来在研的化合物达到近70个,其中处于Ⅲ期临床试验阶段的药物数量将增加至10个,这让礼来并不那么担心专利过期可能带来的挑战。礼来全球董事长、总裁兼首席执行官李励达透露,未来5年,礼来预计将在中国推出13只新药。 本土企业 蹒跚起步 中国中枢神经将持续保持高速增长的趋势,增长速度远高于国际市场。但是,与海外市场相比,我国中枢神经类药物市场尚处于起步阶段,主要表现在市场规模小、人均用药量小等。 由于我国对麻醉和精神类药品采取的定点生产和布局的政策,企业要获得该类药品的生产许可要求非常严格,即使是仿制药品企业数量也非常有限。定点生产企业也只能严格按照麻醉药品和精神药品年度生产计划安排生产。作为国内医药行业唯一一家专注于中枢神经药物细分市场的企业是恩华药业。相比于全球9.46%的年均增速,国内中枢神经类药物市场年均增速更高达15%。 目前,我国中枢神经药品市场主要由外资企业(包括合资企业)占据,各大外资制药企业均拥有中枢神经药品,且外资产品均在各细分市场占据相对优势。如阿斯利康的麻醉药品、美国礼来的抗焦虑抑郁药、西安杨森的抗精神病药、浙江杭州赛诺菲圣德拉堡民生制药公司的抗癫痫药等。中资企业达到规模生产的很少,除了恩华药业的力月西(镇静催眠)和福尔利(麻醉)、思利舒(抗精神病)、一舒(抗焦虑抑郁)外,还有西安力邦的异丙酚(麻醉)、重庆大西南的阿立哌唑(抗精神病)和文拉法辛(抗焦虑抑郁)。 综合数据库显示,排前10名的中枢神经类制药企业中,只有四家中资企业,除恩华药业外有北京四环、重庆大西南和西安力邦三家属于中资企业。 高手入局 整装待发 目前,中国各类精神类疾病患者达到1亿人以上,其中重度患者超过1600万人,70%的患者未得到有效治疗。显然,为了抢占中国市场,国际CNS巨头亦将目标锁定中国超过1亿患者,频频出手。礼来近年在全球裁员14%,却扩充礼来中国一倍员工人数;葛兰素史克升级中国研发中心为其全球神经科学研究总部,主导其全球范围内的神经类药物研发活动;而一向低调的丹麦灵北更是大动作连连,在今年陆续在华设立研发中心和生产工厂。 在中国天津建立自己的工厂是灵北的一大举措,其全球供应运营及工程部高级副总裁Lars Bang在接受采访时表示:“天津生产厂将是灵北全球的重要生产基地,也是灵北在亚洲建立的第一家生产厂。”为了填补中国治疗阿尔茨海默病市场需求缺口,天津生产厂计划在未来三年内的首期任务主要生产易倍申药物。 自1996年开始,灵北产品陆续进入中国市场;灵北中国总部和灵北学院先后在北京设立;2011年灵北在上海设立亚洲首个研发中心,该研发中心将逐步分担灵北全球范围内CNS的研发工作。显而易见,灵北不断将重心向中国市场倾斜的背后,是我国精神疾病患者对中枢神经类药物需求巨大的现状。 灵北制药作为高科技生物企业在天津开设制药工厂项目获得天津政府及天津西青开发区政府的大力支持。对此,作为中国大陆和香港地区负责人的Herman Santoni表示,灵北中国天津制药工厂建立后,灵北承诺加大药品研发投资,帮助培养中国药品研发类人才,推广抑郁教育和老年痴呆护理培训项目,为中国患者提供更优质的产品和服务。 在中枢神经系统领域拥有强大产品线的灵北,此前其产品黛力新、喜普妙、来士普、易倍申在华已有多年销售历史,患者及医生的认同度也较高。现在,灵北的经营模式正在发生变化,逐步建立和扩大自己的销售队伍,大力加深在华投资及本土化进程。 内外资企业打响争夺战 相较于OTC制药市场经历多年厮杀,中国本土制药企业及外资企业已经形成旗帜鲜明的控制格局,但是在CNS市场,由于中国本土中枢神经制药企业起步较晚,而社会经济高速增长带来精神及神经系统疾病高发,中国精神疾病患者对中枢神经类药物的需求巨大,使外资中枢神经制药企业占尽天时地利。 一方面本土制药企业中能够自主研发及生产中枢神经类药物的寥寥可数,而灵北、葛兰素史克等在中枢神经制药却拥有多年研发经验及多项成功产品,这是外资制药企业抢先占据中国CNS市场的先天优势。随着外资制药企业和外资品牌逐步进入我国市场,一些重磅中枢神经系统药物如喜普妙、百优解等销售迅速上升,规模先后过亿,外资制药企业完全有足够的时间,在中国本土制药企业完成中枢神经药物研发、临床试验、产品化之前,形成对市场的瓜分及占有。但是,鉴于中国的药品招标制度对于本土企业有一定的支持作用,未来本土企业也将会进入这一领域。 无疑,在中枢神经类药物市场,一场外资药企间的市场争夺战正在悄然打响。

  • 我国高校首个脑与认知科学研究院在北师大成立

    2012年1月7日,北京师范大学举行仪式,宣布成立我国高校第一个脑与认知科学研究院。脑与认知科学是以揭示人脑奥秘为核心的新兴交叉学科,脑与认知科学的研究可以为解决国民素质与身心健康的提升、经济建设和社会可持续发展等重大问题提供科学基础和智力支持,具有重要战略意义。世界各主要国家都高度重视脑与认知科学研究,我国《中长期科技发展规划纲要》将脑与认知科学确定为政府重点支持的八大前沿科学领域之一。北京师范大学长期以来在儿童青少年心理健康发展、语言与数学学习基本规律、认知障碍与学习困难等领域开展了大量脑与认知科学研究,取得了系列突出成果,为我国基础教育改革和发展作出了突出的贡献。该校在2005年,建立了我国脑与认知科学领域两个国家重点实验室之一的认知神经科学与学习国家重点实验室。2011年,美国国际数据集团及其董事长、MIT脑科学研究院创始人麦戈文先生捐资1000万美元,与北京师范大学共同建立了北京师范大学—IDG/麦戈文脑研究院,反映了北京师范大学的脑与认知科学研究已经在国际上得到了高度的认可。北京师范大学副校长葛剑平在致辞中表示,新成立的研究院将积极借鉴国际一流研究机构的运行管理机制,力争将该研究院早日建成国内领先、国际高水平的知名脑与认知科学研究机构,成为脑科学与教育的应用推广平台,为推动我国脑与认知科学学科的发展做出应有的贡献。

  • 2012美国生命科学领域薪酬报告:哪个专业薪酬最高

    每年《The Scientist》杂志都要进行生物行业薪酬调查、最佳工作场所调查等相关内容的调查评选,今年11月,The Scientists杂志公布了“2012生命科学薪酬调查报告”。需要说明的是,这个调查报告针对的是美国的情况,不过对于中国有志在生物学领域发展事业的青年来说,也很有参考价值。http://img.dxycdn.com/cms/upload/userfiles/image/2012/11/05/501632319_small.jpg2012年生命科学领域薪酬报告:哪个专业薪酬最高这一生命科学领域薪酬调查已进行了十多年,自2010年首次出现薪酬下滑,研究经费消减的情况之后,去年的情况又出现了一些回升,今年与去年情况基本持平,某些领域还回到了之前的水平。比较于这十年间的薪酬变化,过去几年处于顶峰,而2012年的收入平均数为87,000美元,比2009年报道的90,000美元略低,不过各专业和部门的薪酬却出现了大的调整。今年的高收入学科专业为生物工程,生物物理学,食品/营养科学。而另一方面,传统的研究专业却出现了大幅下降,例如内分泌研究人员的平均总薪酬相比于2011年,下跌超过3万美元,还有系统生物学家的薪酬也下降了38,500美元,癌症/肿瘤学家的平均收入也比去年减少了约15,000美元。这与前年的情况有部分相似——前年,病毒学和生态学薪酬出现了下滑,而生物信息学,生物物理学,生物技术,以及神经科学等却出现较大增长。生命科学行业正试图找出最好的方法来渡过近年来持续发生的经济风暴,并在各种竞争中保持增长,因此与行业相关的薪酬也会出现各种增高的风险,事实上,一些公司已经减少了全职员工数量,而倾向于临时工,虽然这可能意味着更少的长期就业机会,不过咨询职位却出现了相对于2011年的增长,这主要是由于各公司希望能招到更好的自由职业者。

  • 加拿大科学家研究确认 中药“脊髓康”可有效治疗脊髓损伤

    2013年08月31日 来源: 科技日报-中国科技网 作者: 冯卫东 科技日报多伦多8月30日电(记者冯卫东)一项发表在《恢复神经学和神经科学》杂志上的研究成果表明,全身脊髓系统受损的大鼠在喂食中药“脊髓康”(JSK)三周后,可有效改善运动功能、减少组织损伤并保存神经细胞结构。数据显示,JSK首先会减少炎症和降低细胞凋亡,促进局部氧气供应,之后可恢复功能、促进组织再生。 加拿大麦克马斯特大学神经恢复研究小组的牵头人蒋淑翠(音译)博士称,中医实践表明,利用该种新型中药配方(JSK)对脊髓受损大鼠治疗一个星期到3个月,可有效改善大鼠的机能恢复。在该项研究中,研究人员在大鼠患上脊髓神经损伤后立刻使用JSK进行治疗。7天之内,与只接受生理盐水的对照组相比,接受JSK治疗的大鼠的后肢运动功能明显好转,而且在为期21天的试验期内,接受JSK治疗的大鼠能更好地支撑其体重,并表现出更佳的运动协调性。 研究人员在检查脊髓组织样本后发现,与对照组相比,接受JSK治疗的大鼠的脊髓架构得以更好地保存,受损部位的面积在伤后第7天明显缩小,而且在受损部位显现出更完整的轴突和髓鞘。更令人鼓舞的是,接受JSK治疗的大鼠,其受损部位的血纤蛋白原沉积较少,前炎性环氧合酶—2表达降低,病变部位的细胞死亡也较少。 JSK还增加了生长相关蛋白43(GAP43)和大鼠神经球蛋白的表达。GAP43是神经元发育和神经轴突再生的生物标记,而神经球蛋白有助于大脑神经元在经受创伤后的生存和恢复。研究数据表明,通过减少细胞生长抑制因子及促进受损脊髓内的细胞增殖,JSK可有效增强组织的恢复。 研究人员称,JSK以多种生化与细胞路径为靶标,可有效治疗脊髓首次损伤,并预防之后可能随时发生的二次损伤。 总编辑圈点 对于脊髓损伤,目前临床上治疗方法不少,但效果理想的却不多,中药在此通常配合西药进行协同治疗,有助克服西药的副作用、减少并发症——并不是能让坏死的脊髓恢复功能,但可以促进恢复。而相比于加拿大这组人在实验中使大鼠一定程度上机能恢复,我其实更关心化名JSK的中药在加科学界得到的认可。有人说中医药就是中国给世界留下的“一张最美的名片”,那我们希望看到有越来越多的报告来验证这一说法。

  • 【情人节专题】科学家找到“爱情解药”:专治相思病

    新科学家报道,玫瑰是红色的,紫罗兰是蓝色的,当你拒绝我了,我能怎么办呢?随着我们了解到有关爱情的神经机制,我们距离研发治疗心碎的解药更进一步了。虽然很多人对治疗心碎的化学疗法仍有所提防,现在仍有不少人争辩这种抗爱情解药是否真的能够帮助那些因爱无回报而心存自杀或者妄想念头的人们。使用和滥用这类药物的道德标准是非常复杂的,先抛开伦理学不说,爱情解药究竟会是什么样的呢?首先,爱情是什么?对莎士比亚而言,“它就像永久存在的印记,无法撼动。”对神经科学家来说道,它则没有这么诗意:爱情在神经生物学上的表现分为三个子类:性欲、吸引和依恋——这些都会增加生殖和繁殖的成功率。每个方面都根植于大脑里一系列互相重叠的化学系统:减少每个方面的方式也是存在的,美国新泽西州罗格斯大学的人类学家海伦·费舍尔(Helen Fisher)这样说道,但它们并非总是愉快的。拿性欲为例,你是否曾发现自己对一个人最小的细节都迷恋不已?他的头发或者短信里的一个吻的符号?这些表现类似于强迫症(OCD)的某些症状。意大利比萨大学的精神病专家多那特拉·马拉辛提(Donatella Marazziti)对比了20名初坠爱河的人和20名患有强迫症的病人的大脑。两组人的大脑里都有异常罕见的低水平的某种蛋白质,后者会传输血清素,一种涉及调节情绪的荷尔蒙。一年之后对这些初坠爱河的人们进行的再次检查显示他们的血清素水平增加了,而他们报告称不再过度迷恋自己的伴侣。增加血清素的药物也能缓解患有OCD的病人,因此推测这些药物也能帮助抑制贪欲的感觉也是合理的。这些药物包括名为选择性5-羟色胺再摄取抑制剂的抗抑郁药,它能够抑制极端的情绪,使得形成浪漫的情感纽带变得更加困难。这是那些抑郁症患者不想要的副作用,但对于那些想要脱离对爱人迷恋的患者来说则是个好消息。那么如果你想要断绝的不是色欲,而是长久的迷恋呢?形成迷恋需要好几种化学物质的共同作用,动物研究显示了我们将如何操作这些药物以摆脱迷恋。草原田鼠是著名的一夫一妻制动物——它会形成一生一世的情感连接。然而,美国佐治亚州亚特兰大埃默里大学的拉里·杨(Larry Young)向草原田鼠注射了一种会抑制多巴胺(一种治脑神经病的药物)或催产素的药物后,草原田鼠就变得一夫多妻制了。[

  • 喝杯热茶 大脑更活泼

    [color=#3e3e3e]喝杯热茶,让大脑动起来,发表在《人类神经科学前沿》上的一项研究发现,喝水能够让你的大脑提速14%,有助于保持思维敏捷。天气炎热,喝杯热茶还是清热止渴的法宝,因为热茶能促使毛孔张开,加速汗腺分泌,还可以利尿。[/color]

  • 2014诺贝尔奖陆续揭晓:中国差距“相当大” 老是差一步(转载)

    生理学或医学奖垂青“大脑GPS”  “这简直不太可能,我从未预料到,这是一项崇高的荣誉。”10月6日,2014年诺贝尔生理学或医学奖获得者之一约翰·奥基夫在接受记者采访时仍然非常激动。当得知获奖时,他正在家里的办公桌前像以往一样工作。  瑞典卡罗琳医学院6日在斯德哥尔摩宣布,将2014年诺贝尔生理学或医学奖授予拥有美英双国籍的科学家约翰·奥基夫以及两位挪威科学家梅-布里特·莫泽和爱德华·莫泽,以表彰他们发现大脑定位系统细胞的研究。  诺贝尔奖评选委员会在声明中说,今年获奖者的研究成果解决了困扰科学界几个世纪的难题,发现了大脑的定位系统,即“内部的GPS”,从而使人类能够在空间中定位自我,有助于进一步了解人类大脑空间记忆的中枢机制。  布里特在采访中表示,在接到瑞典诺贝尔生理学或医学奖委员会秘书长电话得知喜讯后,她喜极而泣。让她感到有些沮丧的是,丈夫爱德华当时正在飞机上,不能在第一时间与他分享这个消息。  “12:30飞机落地后,我走出机舱,有一个机场代表捧着鲜花接我坐车,当时我还一头雾水。”爱德华说,看到朋友们发来的150封邮件和75条短信后,他才知道自己获得诺奖。  今年诺贝尔生理学或医学奖奖金共800万瑞典克朗(约合111万美元),奥基夫将获得奖金的一半,而莫泽夫妇将共享奖金的另一半。非热门的“真贡献”  10月6日下午,2014年诺贝尔奖首个奖项——生理学或医学奖揭晓。  美国及挪威的三位科学家约翰·奥基夫(John O’Keefe),莫泽夫妇——梅-布里特·莫泽(May-Britt Moser)和爱德华·莫泽(Edvard I. Moser)因“发现构成大脑定位系统(GPS)的细胞”获奖。  不过,大奖一出即引来争议,有专家认为,其研究并非“独领风骚”。同时,专家呼吁,中国脑科学计划不宜再“议而不决”。  揭开世纪之谜  数世纪以来,一直有个问题困扰着哲学家和科学家——大脑是怎么构造出一幅描述我们所处环境的地图,我们又是如何在复杂环境中找到线路的?  “这是很重要的未解问题。”中国科学院外籍院士、中科院上海生科院神经科学研究所所长蒲慕明在接受《中国科学报》记者采访时说。  就在两周前,蒲慕明在法兰克福马普脑研究所的一个会议上,与O’Keefe、E. Moser再次相遇。在蒲慕明看来,他们能获得诺贝尔奖是在意料之中的。  “O’Keefe的工作为研究大脑如何决定动物体自身在空间中位置开创了新的实验范式,指出了海马区在空间定位中的重要性。Moser夫妇对网格细胞的发现,是近年来O’Keefe实验范式下的最重要发现之一。”蒲慕明说。  在他看来,Moser团队目前显然是这个领域最活跃的,“他们在奥斯陆Kavli研究所的所有研究组都围绕这个领域展开”。  对于获奖成果的意义,中国科学院院士杨雄里在接受《中国科学报》记者采访时评价,该研究对于人类认识自身基本生理功能,阐明脑的高级复杂功能有典型意义;其次,他们的研究首先具有哲学层面的意义,为康德的先验论提供了神经生理学证据;此外,该研究对与老年痴呆症等大脑疾病的治疗、诊断对策的研发也可能会有所启示。  “神经科学领域一直是诺贝尔奖的得奖大户。这项研究揭示了关于生命最基本的知识信息,让我们能够更加理解人类自己,这也符合诺贝尔奖的一贯原则,即奖励给对人类知识有真正贡献的科学研究。”第二军医大学教授孙学军告诉记者。  获奖存在争议  不过,在杨雄里看来,这样的结果还是有些“出人意料”。  “他们的工作并非‘独领风骚’。”中科院院士杨雄里告诉记者,尽管获奖者在大脑的定位系统方面的研究做得很出色,但是这样类型的研究工作很多,达到这种研究水平的,也不只这么一家。  在杨雄里看来,诺奖到底授予谁,见仁见智,“但还是出乎我的意料”。  有同样感受的,不只是杨雄里。此奖项颁发当天就引来争论。10月6日晚,由北京大学教授饶毅等三位学者主编的《赛先生》发文表示:“今年生理奖不一定有广泛共识”“有观点认为脑内各种细胞都有,比这些细胞更有趣的如‘镜像神经元’‘祖母神经元’等,所以发现细胞不够重要,确定其功能,了解其机理更为重要。”  此前,汤森路透的“诺奖预测”根据论文的引文分析,共筛选出了三项可能获奖的研究,关于大脑定位系统细胞的研究未在其列。  就脑科学领域的研究热点来看,脑细胞空间定位功能的研究也只不过是众多脑功能研究的一个方向。“目前,脑科学领域研究中,最受关注的是各种脑功能相关的神经环路的结构和工作原理,比方说有哪些神经细胞组成怎样的环路结构,在进行各种脑功能时回路中的各个神经细胞是如何处理电活动信息的编码、储存和提取。”蒲慕明说。  “对大脑定位系统的研究是当前脑科学研究很重要的一个方面,但并非‘炙手可热’。”杨雄里说。  中国差距“相当大”  今年3月,蒲慕明、杨雄里等一批神经科学家召开了以“我国脑科学研究发展战略研究”为主题的香山科学会议,呼吁尽快启动中国脑科学计划。  “但是半年过去了,进展情况不如人意。”杨雄里感慨,细致、谨慎的讨论非常重要,但需要果断的决定和妥善的安排,以扎实的措施推进脑计划的实施。  近20年来,杨雄里亲眼见证了中国神经科学的发展。他认为,随着国家对脑科学支持力度的加大,研究人员数量增加,研究水平不断提高,中国的神经科学近年来取得了“相

  • 【资料】医药、卫生期刊==神经病学与精神病学

    [font=宋体][color=#1d6dc7][size=3]核心期刊:[/size][/color][/font][table=700][tr=#eaeac8][td=1,1,50]序号[/td][td=1,1,350][img=14,14,absMiddle]http://61.164.36.250:8001/CSTJ/IMAGES/kanwu.gif[/img] 刊名[/td][td=1,1,100][align=center][b]I[color=#ff0000]S[/color][color=#009900]S[/color][color=#ff00ff]N[/color][/b][/align][/td][td=1,1,100][align=center][b]C[color=#ff0000]N[/color][/b][/align][/td][td=1,1,50][align=center]核心期刊[/align][/td][/tr][tr=#f3f3f3][td]1[/td][td][url=http://61.164.36.250:8001/QK/97431X/index.asp?CSID=]临床神经病学杂志[/url][/td][td][align=center]1004-1648[/align][/td][td][align=center]32-1337/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]2[/td][td][url=http://61.164.36.250:8001/QK/83063Z/index.asp?CSID=]微侵袭神经外科杂志[/url][/td][td][/td][td][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]3[/td][td][url=http://61.164.36.250:8001/QK/86533X/index.asp?CSID=]中华神经医学杂志[/url][/td][td][align=center]1671-8925[/align][/td][td][align=center]11-5354/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]4[/td][td][url=http://61.164.36.250:8001/QK/83063X/index.asp?CSID=]中国微侵袭神经外科杂志[/url][/td][td][align=center]1009-122X[/align][/td][td][align=center]44-1459/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]5[/td][td][url=http://61.164.36.250:8001/QK/90113X/index.asp?CSID=]中华神经精神科杂志[/url][/td][td][align=center]0412-4057[/align][/td][td][align=center]11-2146/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]6[/td][td][url=http://61.164.36.250:8001/QK/98480X/index.asp?CSID=]中华神经科杂志[/url][/td][td][align=center]1006-7876[/align][/td][td][align=center]11-3694/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]7[/td][td][url=http://61.164.36.250:8001/QK/90113A/index.asp?CSID=]中华精神科杂志[/url][/td][td][align=center]1006-7884[/align][/td][td][align=center]11-3661/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]8[/td][td][url=http://61.164.36.250:8001/QK/90692X/index.asp?CSID=]中风与神经疾病杂志[/url][/td][td][align=center]1003-2754[/align][/td][td][align=center]22-1137/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]9[/td][td][url=http://61.164.36.250:8001/QK/93154X/index.asp?CSID=]中华神经外科杂志[/url][/td][td][align=center]1001-2346[/align][/td][td][align=center]11-2050/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]10[/td][td][url=http://61.164.36.250:8001/QK/92855X/index.asp?CSID=]中国神经精神疾病杂志[/url][/td][td][align=center]1002-0152[/align][/td][td][align=center]44-1213/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制