当前位置: 仪器信息网 > 行业主题 > >

深海探测

仪器信息网深海探测专题为您整合深海探测相关的最新文章,在深海探测专题,您不仅可以免费浏览深海探测的资讯, 同时您还可以浏览深海探测的相关资料、解决方案,参与社区深海探测话题讨论。

深海探测相关的资讯

  • 长春光机所与深海所共建深海光学探测联合实验室成立
    p   9月3日,长春光机所与中国科学院深海科学与工程研究所(以下简称“深海所”)在北京签署深海光学探测联合实验室共建协议,并同期举行揭牌仪式,联合实验室成立。该实验室针对深海科学研究中对光学探测技术的前沿需求,重点开展深海原位气体检测、生物识别与基因测序等深海工程技术研究,共同推进光学技术与深海科学研究的融合发展。 /p p   海洋占了地球表面的71%,深海中蕴藏着丰富的矿产、能源。深海观测技术的发展,可以加速我国的海洋研究从三百万平方千米的海洋领土,扩展到全球的公海中去。而深海中的光学信息比声、电、磁等信息获取方式都要直观,是深海探测中最重要的信息获取渠道。由于海水中含有可溶有机物、悬移质、浮游生物等对光有较强的吸收和散射,通过研究海洋的光学性质或光在海中的传播规律和海洋光学参数的测量可以获取各类海洋学参数。从而为其他深海科研项目提供直观的光学信息,带动海洋矿产、能源、生物、以及地质等各个学科的同时进步。 /p p   目前测量海洋光学性质的仪器可分成两类:一种是测量海水固有光学性质的仪器。因为固有光学性质不受环境条件的影响,可采样在实验室中测量,也可在现场测量,故这类仪器又分为实验室仪器和现场测量仪器两种。另一种是测量海水表观光学性质的仪器。因为表观性质都与环境有密切的关系,故必须在现场观测。测定固有光学性质的仪器主要包括线性衰减系数测定仪(和准直光透射率仪)、测定体积散射函数的β仪、测定总散射系数的b仪等。测定表观光学性质的仪器主要包括辐照仪、辐亮度仪和辐亮度偏振仪等。 /p p br/ /p
  • LIBS技术在深海探测方面获重要进展
    激光诱导击穿光谱技术(LIBS)是一种基于原子发射光谱法的元素分析技术,在多元素分析、实时快速原位检测等方面具有突出优势,并且在痕量物质定性定量分析领域具有重要的应用前景。目前该技术已在深空深海探测、地质勘探、生物医药,以及环境监测等众多领域得到广泛应用。深海矿产资源丰富。海洋资源的探测开发是世界矿产资源勘察开发的热点。在深海资源探测方面,激光诱导击穿光谱技术(LIBS)具有检测速度快、无需对样品进行预处理、实时原位、可应用于液体中等优点。然而,在深海高压水环境下,光谱信号较难被激发,LIBS探测的灵敏度受到影响。中国科学院沈阳自动化研究所LIBS团队提出在深海高压水环境下营造气体环境的方法,增强深海高压水体中固体样品的光谱信号,提升LIBS深海探测效果。相关研究成果以Study on laser-induced breakdown spectroscopy in high-pressure helium gas environment for deep ocean applications为题,发表在Talanta上。在高压水环境下,该研究利用探针将氦气传输至固体样品表面;进而气体将样品表面的水体排出,形成高压气体环境。研究分别在不同压力下开展了LIBS特性研究。实验证明,通入氦气营造气体环境的方法可有效增强LIBS信号,并在60MPa(对应深海6000m水体压力)下获得了有效的光谱数据。实验结果显示,提高激光能量和缩短激光在高压气体中的传输距离可以有效提高光谱信号强度,且与高压水体环境中的结论不同。上述研究表明将水体环境变换为气体环境的方法可以有效降低高压水体对LIBS探测的影响,为深海矿物原位探测提供了新的解决方案。深海激光诱导击穿光谱实验设备结构(图片来源于沈阳自动化研究所)
  • 我国建立常态化深海长期连续观探测平台
    近日,国际学术期刊《深海研究》以封面文章形式报道了中国科学院海洋研究所研制的多代深海坐底长期观测系统在我国南海冷泉区连续多年布放,实现了对该区域高清影像资料、近海底理化参数等数据的连续获取。LOOP在我国南海冷泉开展原位观测 海洋研究所供图深海热液/冷泉区域,是地球多圈层物质与能量剧烈交换的区域,同时也是极端生命发育生长的区域,逐渐成为多学科交叉的深海极端环境研究热点,是地球科学与生命科学的新结合点。然而,深海热液冷泉区域的生物群落变迁、演化以及与周围环境的相互影响均是长时序活动,目前,基于无人缆控潜器(ROV)、载人潜水器(HOV)等水下潜器的短时、随机考察无法满足以上过程的长时间连续观探测需求。为此,研究团队突破水下耐腐蚀技术、能源管理技术等关键技术,探索新型水下布放及回收模式,研制了多代深海坐底长期观测系统(Long-term ocean observation platform, LOOP),实现了对观测区域高清影像资料、近海底理化参数及保压流体样品等数据样品的综合获取。记者了解到,与以往的自由落体式着陆器不同,LOOP为实时视频指导的缆放式着陆器。布放时通过搭载的水下高清摄像头实时观测落点位置,通过科考船配合可较为精确地控制布放位置,并且在海底着陆后仍可通过同轴缆根据实际情况调整观探测参数,保障最优观探测效果。回收时通过同轴缆直接回收。LOOP在设计之初,已经考虑到各类商业化传感器、自研原位探测装备等科学负载的通讯、供电需求。团队研发的深海多通道激光拉曼光谱探测系统(Multi-RiPs)多次搭载深海坐底长期观测系统布放于我国南海冷泉区域,在“发现”号ROV辅助下,布放拉曼探头、进行原位实验,并进行长期、原位、连续探测。LOOP布放模式 海洋研究所供图据介绍,自2016年起,中科院海洋所研制的多代深海坐底长期观测系统已先后多次布放于我国南海冷泉区域,其中,单次最长连续布放天数达659天,有效工作时间为414天,累计水下布放时间1070天。通过获取的数据资料,研究团队发现盐度和溶解氧含量在冷泉喷口附近的水平和垂直方向上具有很强的空间异质性,环境参数的空间异质性可能是冷泉区域化能合成群落空间分布不均的主要驱动因素之一。据悉,深海坐底长期观测系统提供了一种创新、可控的布放和回收模式,有望成为原位、长期、连续通用水下观探测平台。
  • 海洋科技“划重点”:未来五年可燃冰开采、深海探测“大有可为”
    p   时隔两年,参与《“十三五”海洋领域科技创新专项规划》(以下简称《规划》)制定的上海交通大学任平研究员终于盼来了“十三五”海洋科技发展顶层设计正式面世。日前,《规划》由科技部、国土资源部、国家海洋局联合印发。 /p p   “海洋科技创新是提高海洋实力的战略支撑,是海洋强国建设的核心任务。”任平告诉科技日报记者,“十三五”是落实建设海洋强国重大部署,实施创新驱动发展战略的关键时期,《规划》在深入分析世界海洋科技发展新趋势的基础上,查找制约我国海洋科技创新的主要因素,在若干领域布局基础研究和应用技术研究,进一步建设完善国家海洋科技创新体系,提升我国海洋科技创新能力。 /p p    strong “十三五”有望实现万米下潜 /strong /p p   海洋强国战略的实现依赖于深海关键技术与装备能力的提升,而由于高压、低温、高温等极端环境条件的限制,深海技术与装备一直是国际海洋工程技术研究的难点和最前沿,也是制约我国实施深海战略的关键技术瓶颈。 /p p   任平告诉记者,深海潜水器是发展深海技术的引擎和集成平台,也是开展深海科学研究、资源开发的重要支撑,相关技术的进步将促进深海装备配套技术和新兴产业发展。 /p p   开展潜水器谱系化工程,这是《规划》提出的重要目标。“十三五”,我国将通过《深海技术与装备》专项的实施,形成3—5个国际前沿优势技术方向、10个以上核心装备系列产品,满足我国在深海领域的重大需求、为形成我国自主的深海产业提供技术和人才支撑。 /p p   具体来说,包括开展深海空间站研制 全海深(最大工作深度11000米)潜水器研制及深海前沿关键技术研究,争取在“十三五”实现万米下潜 深海通用配套技术及1000—7000米级潜水器作业及应用能力示范 深远海核动力平台关键技术研发。 /p p   科技部相关负责人介绍,“十三五”我国将形成深海运载、探测装备谱系化和配套能力,提升深海作业支持能力以及深水油气和矿产资源开发方面的自主技术能力,最终目的是希望通过技术装备研发,带动整个国家装备制造能力的进步。 /p p    strong 形成可燃冰开采试验能力 /strong /p p   “海洋高技术已成为国家竞争力的重要标志。”任平说,本世纪以来,在国家连续3个五年计划的支持下,我国的海洋科学和技术取得了巨大的进步,然而,在日趋激烈的海洋资源的争夺中,我国海洋资源开发能力亟待提高,特别是深海资源开发能力。 /p p   比如,在海洋油气开发方面,我国仍以300米以浅的海洋油气开发为主,尚未系统掌握深水油气勘探开发技术,大量深水油气勘探开发核心技术与设备不得不依赖进口,核心技术不足已成为我国进军海外深水油气的重要瓶颈。在南极磷虾资源调查、捕捞、深度加工等诸多技术方面,我国与挪威、日本等国仍有至少20—30年的差距。目前国际海底矿产资源活动重点逐步由资源勘探向开发过渡,而我国尚不具备海底资源规模化开采技术。此外,生物基因资源利用、生物多样性保护、公海保护区建设等与资源有关的热点问题都需要有力的科技支撑。 /p p   为此,《规划》提出实施深水能源、矿产资源精细勘探与试采技术工程示范,实现核心技术和装备国产化,全面提升海洋资源自主开发能力,为海洋强国建设提供支撑。 /p p   比如,开展海洋油气工程新概念、新技术研究,开发深水油气勘探核心技术和工程装备,结合“大型油气田及煤层气开发”重大专项,形成1500米到3000米深水油气资源自主开发能力 开展海洋天然气水合物成藏、成矿机理以及安全开采等基础问题研究,开发精确勘探和钻采试验技术与装备,形成海底天然气水合物(又称可燃冰)开采试验能力 开展大洋矿产成矿机理与分布规律等科学问题研究,开发高效勘探核心技术研究及深海采矿系统设计,研制集矿与输送装备,完成1000米海深集矿、输送等技术海上试验。 /p p    strong 实现大型深海探测装备共享 /strong /p p   该人士认为,《规划》一大亮点是,提出重点建设国家重大基础设施和海洋技术创新平台,优化海洋科技创新基地布局。 /p p   如今我国深海探测与作业技术实现重大进展,在深海耐压舱、深海浮力材料、深海推进器、深海液压控制、深海通信与定位技术、深海机械手等方面均取得了突破,取得了“蛟龙”号载人潜水器、“海马”号4500米级遥控潜水器、“海燕”号深海滑翔机等一批重大成果。预计到“十三五”末,我国将是国际上拥有最多大深度载人潜水器的国家。 /p p   在上述人士看来,这给管理者提出的新命题是如何通过共享机制实现资源最优化及高效应用,实现大型深海探测装备共享。 /p p   《规划》同时提出,要建立资源共享的机制,建立海洋科学观测数据、海洋微生物菌种/基因等资源的共享制度,推动科学观测、技术研发、产业培育、海洋管理等环节的相互融合,建立强有力海洋科技任务的一体化实施体系,建立与中央财政科技计划管理改革方案相适应、与海洋事业发展的重大工程紧密结合的协同创新机制,提高科研产出效率。 /p p   该人士表示,与陆地相比,海洋相关数据获取更难、成本更高,正因为如此,共享才显得更为必要。“比如美国的海洋科技创新之所以领先,其中很重要的一点是建立了有效的共享机制。” /p
  • 中科院海洋所研制出国际首套深海多通道拉曼光谱探测系统
    近日,国际学术期刊《Deep-Sea Research Part I: Oceanographic Research Papers》在线发表了题为“Development and deployment of lander-based multi-channel Raman spectroscopy for in-situ long-term experiments in extreme deep-sea environment”的文章,报道了中国科学院海洋研究所成功研制国际首套多通道深海拉曼光谱探测系统,实现了冷泉喷口流体、天然气水合物动力学过程、冷泉生物群落的长期原位观测与现场实验,在我国南海冷泉区域构建首套深海原位光谱实验室。   研究团队前期研发的探针式深海激光拉曼光谱探测系统已常态化应用到深海沉积物孔隙水、冷泉和热液喷口流体、化能合成生物群落内部流体、天然气水合物以及冷泉和热液喷口系统附近岩石矿物的原位探测与定量分析。但是,随着对深海热液和冷泉系统研究的深入,科学家逐渐认识到深海热液或冷泉系统是有机统一的整体,冷泉和热液活动在时间和空间上都具有强烈的不均匀性。已有的深海原位拉曼光谱仪的探测是短期瞬时且相对独立的,难以捕捉冷泉和热液系统等高动态和非均匀环境中不同目标之间的动态规律和潜在联系。   为此,研究团队研制了国际上首套深海多通道拉曼光谱探测系统(Multi-channel Raman insertion probes system, Multi-RiPs),研发光路切换技术,实现了主要光学器件(如激光器、光谱仪、光电传感器等)的分时复用(如图1所示),结合系列化拉曼光谱探针,实现了深海热液、冷泉系统中流体、固体、气体等不同相态目标物的长期原位监测。 图1 多通道拉曼光谱探测系统关键光学器件布局图和光路切换原理示意图   为了明确甲烷在深海冷泉喷口附近的转换通道以及冷泉区域的甲烷释放通量,研究团队使用深海多通道拉曼光谱探测系统搭载深海坐底长期观测系统(Long-term ocean observation platform, LOOP)于2020年、2021年、2022年前后3次布放于我国南海北部的台西南冷泉区域(如图2所示),实现了冷泉喷口流体中主要成分、天然气水合物与深海环境的耦合变化过程、冷泉生物群落内部甲烷氧化过程的长期原位探测与现场实验,成功建设国际首套深海原位光谱实验室,并常态化运行。 图2 Mulit-RiPs搭载LOOP连续三年(a:2020年;b:2021年;c:2022年)布放于我国台西南冷泉区域对深海原位实验进行探测与分析   论文第一作者为海洋所副研究员杜增丰,通讯作者为海洋所研究员张鑫。研究得到了国家自然科学基金、山东省自然科学基金、中国科学院战略性先导专项等项目联合资助。
  • 7千米级深海探测紫外激光拉曼光谱仪海试成功
    p style=" text-align: center " img width=" 400" height=" 280" title=" 2017451677514.jpg" style=" width: 400px height: 280px " src=" http://img1.17img.cn/17img/images/201704/noimg/c4d597a3-d490-43d8-bed3-a6cf5ae64ce4.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 7000米级深海紫外拉曼光谱仪 /p p   近日,中科院大连化物所李灿院士、范峰滔研究员、黄保坤高工等参与研发的7千米级深海原位探测紫外激光拉曼光谱仪在马里亚纳海沟成功通过7000米海试验证。该光谱仪是国际上首次进行深海探测的紫外激光拉曼光谱仪,也创造了拉曼光谱仪最高深海探测记录(7449米)。该仪器的成功研发将提升我国在深海矿藏、能源资源(天然气水合物)、碳循环与气候变化以及深海生物信息方面的探测能力。 /p p   中国科学院深渊科考队赴马里亚纳海沟海域执行中科院战略性B类先导专项“海斗深渊前沿科技问题研究与攻关”和国家重点研发计划“深海关键技术与装备”重点专项等科技任务,使用原位实验号、万泉号、天涯号深渊着陆器对我国自主研发的一系列深海装备进行了成功的试验和实际应用,其中包括该光谱仪的成功应用。 /p p   此次进行深海探测的紫外激光拉曼光谱仪,是国内外工作水深最大的拉曼光谱装置,同时也是国内外首次采用紫外激光作为激发光谱的深海原位拉曼光谱仪。仪器的研发基于李灿团队在紫外拉曼光谱仪多年的研发经验和学术积累(国家自然科学二等奖,2011,国家技术发明二等奖,1997),进一步提高了探测的灵敏度,特别是解决了常规拉曼光谱易受海洋微生物以及有机质荧光干扰的缺点。另外,在深海条件下,光谱仪面临高压(约700个大气压)和着陆冲击等极端条件,这对光谱仪的性能提出了苛刻的要求。该研究团队通过科学设计,反复验证,采用折叠反射镜、光纤软连接以及同轴反射镜等一系列技术,成功研发满足深海极端条件应用的紫外拉曼光谱仪器。 /p p   该项目是中科院战略性B类先导专项“海斗深渊前沿科技问题研究与攻关”的课题项目,由我所牵头并与三亚深海所合作承担,我所主要负责光谱仪器研发,深海所主要负责仪器的深海应用研究。两所通力合作,取得了技术突破,为今后的科技合作探索了一条新路,充分体现出我院在深海科技领域中独特的集团优势。 /p p & nbsp /p p & nbsp /p
  • 中科院海洋所在深海甲烷原位探测系统取得重大突破
    中科院海洋研究所张鑫博士作为第一完成人与美国MBARI (Monterey Bay Aquarium Research Institute) 研究所合作,成功研制出基于深海ROV (Remotely Operated Vehicle) 缆控机器人的深海甲烷原位探测系统。相关研究成果已于近期发表在Geophysical Research Letters 杂志,并在第一时间被《自然》和《科学》杂志同时进行了报道和评述。   利用该项技术,科研人员在世界上首次获得了深海沉积物中甲烷的原位真实浓度,是传统采样测试结果的10-20倍,从而证明甲烷不仅存在于天然气水合物中,而且更广泛地大量赋存于深海沉积物中。在ROV的视频监控下,系统将钛合金探针插入深海沉积物中,抽取沉积物孔隙水,并使用深海激光拉曼光谱仪原位获得孔隙水中的甲烷浓度。同时,该技术还可以原位获取深海沉积物中溶解的硫化氢气体、pH值和硫酸根等多种海洋化学参数。   著名天然气水合物专家Ross Chapman教授认为,该项技术是“昂贵却实用的”。相关研究成果已在2009年AGU秋季会议和2010 Ocean Sciences会议上作了会议报告,还将于今年6月在西班牙召开的OCEANS 2011会议和今年7月在英国召开的第七届国际天然气水合物大会上作邀请报告,已经成为近期国际海洋界的研究热点之一。   深海沉积物中蕴藏着丰富的甲烷气体,其与水分子结合可以形成天然气水合物,在全球甲烷循环和气候变化中具有重要作用,并且是一种潜在的清洁能源,但一直缺乏有效的探测手段。   作为一种先进的海洋化学探测技术,该研究成果对于海洋地质和海洋化学研究中关注的沉积物海洋地球化学、天然气水合物原位探测和深海热液、冷泉生态系统研究具有很好的应用前景。   从海底取样(图片来源:MBARI)   张鑫在科研船上进行研究(图片来源:Nancy Barr/MBARI) 使用深海激光拉曼光谱仪原位获得孔隙水中的甲烷浓度(图片来源:张鑫/中科院海洋研究所)
  • 原位拉曼光谱定量探测深海高温热液喷口流体获新突破
    p   近日,中国科学院海洋大科学研究中心研究员阎军团队、李超伦团队在深海热液系统原位拉曼光谱定量探测研究中获得进展,基于自主研发的深海原位激光拉曼光谱探测系统(Raman insertion probe-RiP)对冲绳海槽中部热液区的高温热液流体进行了原位拉曼光谱定量探测,在国际上首次获得高温热液流体中溶解二氧化碳及硫酸根离子的原位浓度。相关研究成果以封面论文的形式,发表在Geochemistry,Geophysics,Geosystems上。 /p p   深海热液系统作为20世纪地球科学重大发现,沟通了不同圈层之间的物质能量交换。近年来,高温热液喷口流体理化性质及其对大洋环境影响已成为热液活动新的研究热点。温度、压力变化以及海水混入的影响会明显改变热液喷口流体的化学成分或浓度,尽管科学家使用保真取样方法进行实验室分析取得了较为贴近的数据,但由于取样方法的限制而一直无法获取高温热液喷口内流体的准确样本,造成分析数据与实际仍有明显差异。研究团队攻克了光学镜头耐高温和高浓度颗粒附着对光学系统的影响等国际技术难题,成功研制了国际首台耐高温(450℃)的热液流体拉曼光谱探针-RiP(Xin Zhang et al.,DSR-I, 2017)。该系统自2015年以来依托“科学”号科考船和“发现”号深海缆控潜器(ROV)对马努斯热液区、冲绳海槽热液区的高温热液喷口进行了原位拉曼光谱探测,采集到大量原位光谱数据。 /p p   该研究基于2016年“科学”号热液冷泉综合航次获得的冲绳海槽中部热液区三个高温热液喷口流体的原位拉曼光谱(最高273℃),结合实验室内大量高温模拟实验建立的CO2、SO42-的拉曼光谱定量分析模型(Lianfu Li, Xin Zhang*, et al., Applied Spectroscopy, 2018 Shichuan Xi, Xin Zhang*, et al.,Applied Spectroscopy, 2018),成功确定了冲绳海槽中部热液喷口流体中CO2、SO42-的浓度(Lianfu Li, Xin Zhang*, et al.,G-cubed, 2018)。研究发现,硫酸根含量作为海水混入程度的指标,在所测高温热液流体中的含量几乎为零,证明原位拉曼探测系统采集的热液流体中并未发生海水混入,即所测样本代表原始的热液流体喷出物。通过对比ROV在同一热液喷口保压取样方法测量的二氧化碳浓度发现,原位测量的浓度可高出保压取样实验室测试浓度的三倍以上。基于该成果可以认为热液活动对全球碳循环以及气候变化的影响很有可能被大大低估。该研究对于推动原位光谱探测技术在深海极端环境下的应用具有重要意义,有助于重新认识热液活动对全球海洋环境的影响。 /p p   该研究得到了国家自然科学基金、中科院海洋先导专项、中科院前沿科学重点研究项目的资助。博士研究生李连福为论文第一作者,研究员张鑫为通讯作者。 /p p   论文链接 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/19da6824-497c-4fb2-9d20-5fe1a3483365.jpg" title=" W020180803573736486382.jpg" / /p p style=" text-align: center " 原位拉曼光谱数据获得的二氧化碳、硫酸根离子浓度数据与传统保压方式获得的数据对比 /p p style=" text-align: center " (红色符号代表二氧化碳,黑色符号代表硫酸根) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/9f6f2c0d-ba2c-411d-8b06-829b5dd26482.jpg" title=" W020180803573560140519.png" / /p p style=" text-align: center " 刊物封面 /p
  • 看“潜龙二号”如何勘探深海矿产资源
    日前,中科院沈阳自动化所作为技术总体单位研制的“潜龙二号”自主水下机器人(AUV)圆满完成了中国大洋第40航次试验性应用任务。  在本次海上作业中,“潜龙二号”团队实现了多个重要突破。如实现了深海近海底高精细地形地貌快速成图,发现多处热液异常点,获得洋中脊进海底高分辨率照片300多张,取得我国大洋热液探测的重大突破。可以说,“潜龙二号”西南印度洋试验性应用的成功,填补了我国深海硫化物热液区自主探测技术装备的空白。  那么,“潜龙二号”圆满返航的背后,有哪些不为人知的秘密呢?在为期三个多月的海上科研中,发生了哪些故事?日前,《中国科学报》记者到中科院沈阳自动化所,对“潜龙二号”团队成员进行了采访。  从淡水到深海  “潜龙二号”,是我国自主研发的“4500米级深海资源自主勘查系统”的代称。它是“十二五”国家“863”计划——深海潜水器装备与技术重大项目的课题之一。  中科院沈阳自动化所研究员、水下机器人研究室总工刘健告诉《中国科学报》记者,该课题总体目标为自主研制一套4500米级AUV系统,并以此为平台,集成热液异常探测、微地形地貌探测、海底照相和磁力探测等技术,形成一套实用化的深海探测系统,并培养一支装备操作维护队伍,进行多金属硫化物等深海矿产资源勘探作业。  “这项工作由中国大洋矿产资源研究开发协会作为用户单位组织实施,我们所与国家海洋局第二海洋研究所等单位共同研制。”刘健介绍,2012年初科研人员开始进行研制。2014年10月,“潜龙二号”完成了总装联调和检测工作。“之前‘潜龙一号’也是由我们来完成。多年技术的积淀,使我们的研发任务能够迅速推进。”  2014年11月,“潜龙二号”在浙江千岛湖先后开展了两次湖上试验,累计下水147潜次。  2015年夏季,“潜龙二号”从淡水试验走向南海海试,国家“863”组织6名专家全程跟随,对其性能、指标进行全面考核,最终以高分过关。  2015年12月中旬,“潜龙二号”团队从三亚起航前往西南印度洋,参加中国大洋第40航次试验性应用任务。在这项为期近3个月的航程中,“潜龙二号”团队完成了两个阶段的作业。  “一个是验收试验,另外一个是试验性应用。在第一航段的验收试验中,潜水器共8次下潜,完成了验收试验规定的所有考核项目,高分过关。”刘健说,“一般而言,科研人员的任务就到此为止了,但我们马上又让水下机器人直接进入应用阶段,这在众多‘863’任务中还是首次。”  多项突破性进展  验收试验阶段和试验性应用阶段有什么区别呢?中科院沈阳自动化所副研究员赵宏宇告诉《中国科学报》记者,在第一阶段的西南印度洋中脊热液区大洋探测中,“潜龙二号”获得的断桥、龙旂热液区的近海底精细三维地形地貌数据等,和以往数据相对比都很吻合,这证明了“潜龙二号”的可靠性。  而在第二阶段的8次下潜中,“探索的完全是未知海域,人类在此之前完全没有涉足过,地形复杂,难度极大”。尽管如此,“潜龙二号”团队依然取得了多项重大突破。  在第一阶段,“潜龙二号”首次使用我国自主知识产权的AUV进行洋中脊热液区大洋探测任务,发现断桥、龙旂热液区多处热液异常点,获得300多张洋中脊近海底高分辨率照片,取得我国大洋热液探测的重大突破。  在第二阶段,“潜龙二号”完成了7个长航程探测任务,累计航程近700公里,探测面积达218平方公里,同时发现多处热液异常点。其中,单次下潜最大探测时间达到32小时13分钟,最大航行深度超过3200米。本航段“潜龙二号”连续4个长航程成功探测成绩也创下了我国深海AUV之最。  “这次海上应用中,我们实现了很多技术上的首次。”刘健介绍。如“潜龙二号”首次采用全新非回转体立扁形设计和推进器布局,增强了潜水器的机动性能 首次采用基于前视声呐的避碰控制方法,大大提高了障碍物的有效识别能力,实现了复杂海底地形条件下的有效避碰控制 国内首次在AUV上安装了磁力探测传感器,实现了近海底高精度磁力探测等等。  “‘潜龙二号’为我国开展深海资源大范围精细探测提供了重要技术装备,标志着我国深海资源勘查装备已达到实用化水平,使我国自主水下机器人技术及产品跨入了国际先进行列。”刘健说。  难忘的深海之旅  “潜龙二号”西南印度洋试验队共有17人,核心研发人员约10人,其他以应用人员为主。从2015年12月到2016年3月10日,“潜龙二号”团队在茫茫大海上度过了近三个月难忘的时光。  这是一支年轻的队伍,平均年龄在35岁以下。除了刘健在多年以前有过类似的深海航行,其他队员在此次航行之前并没有在大洋上待过这么久。  科研人员的海上之旅,绝大部分时间都处于忙碌状态。在“潜龙二号”没有下水作业的时候,大家要负责进行设备维护和数据分析工作 “潜龙二号”在水中作业期间,大家轮流值班,通过显示屏监测水下机器人的举动 “潜龙二号”上船后,大家下载其获得的数据并及时分析,同时进行机器人的电池更换等工作。  三个月的时光,对于年轻人来说,其实最难的是通讯不畅。“这些‘80后’的小伙子,基本都是独生子女,上有老下有小。一走这么长时间,家里很多事情都没法管,其实挺不容易的。”赵宏宇说,为了完成“潜龙二号”的海试,大家都牺牲了很多。  “长期以来,我们对于海洋权益的关注度不够,开发也落后于他国。”刘健说,随着经济的发展,海洋权益、海底矿藏对中国的发展将会越来越重要,这也需要我国有与之配套的科研研发实力与深海装备。在向深海进军的道路上,中科院的科研人员将会继续努力。
  • 第443期泰山科技论坛 —深海生物资源及其药用潜力论坛在青岛举办
    第443期泰山科技论坛—深海生物资源及其药用潜力论坛在青岛举办2023年9月 18 日,第27期总第443期泰山科技论坛—深海生物资源及其药用潜力论坛在青岛举办。本期论坛由山东省科协技术协会主办,青岛市科学技术协会和青岛市分析测试学会承办,中国海洋湖沼学会药物学分会、中国海洋湖沼学会化学分会和青岛市老科学技术工作者协会共同协办。山东省科协党组成员、副主席袁慎庆出席大会并讲话,国际欧亚科学院院士孙松致辞并作主旨报告。来自科研院所、大专院校和医药生产企业代表200多人参加论坛。论坛由青岛市分析测试学会秘书长李宁主持。(山东省科协党组成员、副主席 袁慎庆)袁慎庆副主席对论坛的筹备召开给予了充分肯定,并在讲话中指出,青岛有全国乃至全球领先的海洋资源禀赋,希望与会的院士、专家紧紧围绕国家海洋发展战略,积极探索深海生物资源,发现深海药用新化合物和深海生物医药产业化发展等问题进行深入研讨和交流,也充分利用海洋资源优势为海洋强省建设作出积极贡献。(孙松院士)本次论坛的领衔科学家,国际欧亚科学院院士、中科院海洋研究所原所长、研究员孙松作了题为《深海极端环境与生命探测——特殊环境中的特殊生物》主题报告。孙松院士指出,深海是地球上最后没被分配的领域,开发深海生物资源进行药物应用是国家的战略需求,也是科研工作者的自身职责。作为海洋科研领域的先锋团队,青岛的海洋工作者应责无旁贷的到深海中找寻生命,并利用这些生命资源服务于人民。(孙松院士)会上,中国海洋大学教授、海洋药物教育部重点实验室主任于广利,上海交通大学海洋药物创新研究中心主任、教授林厚文,中科院南海海洋研究所副所长、研究员张长生,中科院海洋研究所研究员王斌贵分别围绕中国“蓝色药库”开发进展及建议、海洋共生生物药源分子的结构与功能、深海微生物药源天然产物的发现及其生物合成、深海天然产物研究进展与发展趋势等方面作了主题报告。(于广利教授)(林厚文教授)(张长生教授)(王斌贵教授)专家们表示,随着我国科考船和深潜器技术的不断发展,深海科学研究、深海资源开发以及深海生态保护等必将得到快速的发展,对社会的发展、人类的进步将产生深远的影响。以海洋新药产品创制为导向,对于加大近海、浅海尤其是深远海与极地海洋药用生物资源的开发利用,具有重要的战略意义,对于重大疾病的防治、提高国民健康水平有积极的推动作用。(会场现场)会上与会人员和专家们并就我国深海海洋生物医药的发展现状以及产业化进展,深海新型药用化合物的发现与结构修饰等方面问题,进行了互动交流。院士专家的高质量报告,极大的激发了科技工作者的活跃度和关注度,深入浅出的知识解读和传播,对大家更好的理解专家观点起到了正向的引导和推动作用,为推动深海海洋生物医药的发展发挥了应有的作用。当前,有关深海生物资源药物开发己受到世界各国广泛关注,我国各级政府对深海生物资源药用开发也非常重视,我国海洋科技创新总体从“量的积累”阶段已进入“质的突破”阶段,但仍有一些制约创新驱动的“瓶颈”存在,面对海洋经济发展相对滞后于陆域经济发展的现状,山东海洋领域的科技工作者们责无旁贷的肩负起“建设海洋强国”使命任务,加快深海药用资源的探索,推进海洋生物医药科技创新发展。本次论坛以充分活跃学术思想、启迪创新思维、推出原创成果、促进原始创新为目的,旨在推动深海生物资源产业的健康发展,促进相关技术互通互融,汇聚高端人才智力和创新要素资源,全面提升深海生物资源利用及其药用潜力开发技术领域创新水平。
  • 宁波材料所在深海工程材料原位损伤监测方面取得进展
    深海资源丰富,战略价值巨大,深海开发对先进海洋装备需求巨大,然而在深海极高压力、低溶解氧、强电解质、复杂微生物等强耦合作用下,金属结构长期服役时面临腐蚀缺陷带来的力学结构失稳等致命性风险。目前国内针对深海极端环境关键材料超长期服役过程表界面环境、结构演替等的原位监测技术薄弱、数据匮乏,难以对深海工程材料数年以上的力学-电化学-微生物等强耦合损伤开展快速评价及寿命预测。中国科学院宁波材料技术与工程研究所海洋新材料与应用技术重点实验室王立平研究员和毛飞雄研究员带领的研究小组在成功研发海洋工程材料原位立体监测装置的基础上,与中国科学院深海科学与工程研究所深海探测团队紧密合作,在深海工程材料原位腐蚀损伤监测方面取得了新进展。联合团队突破了传感器高精度、低能耗技术及深海耐高压设计,开发出国内首套6000米级原位腐蚀损伤监测实验舱,该实验舱可实现深海环境因子及材料损伤状态数据多维实时采集、高效融合处理,并可结合深度神经网络与电化学模型最优化拟合,快速分析材料损伤演变过程,为深海材料服役状态监测及损伤快速评价提供创新解决方案,为深海长驻型装备选材设计、安全服役、运维保障提供重要依据。实验舱于近日搭载于深海基站成功完成功能验证实海试验,未来将进一步开展长周期深海原位试验工作。   研究团队长期针对我国海洋新材料跨海域环境适应性考核数据匮乏、新材料服役性能与实验模拟数据严重不匹配等关键技术难题,率先建成了“国家海洋局海洋工程材料服役评估评价平台”,先后布局了东海、南海等跨海域海洋材料试验台站,累积了超过8年的环境考核数据。本次实海试验意味着团队在针对深海领域的海洋材料试验台站建设方面迈出了重要一步,对完善我国在东海、南海以及深海等苛刻海洋环境下材料强耦合损伤失效数据体系,借助物联监测和AI辅助大数据技术支撑深海材料与装备服役寿命的可靠评估等具有重要意义。实验舱搭载于深海基站深海原位腐蚀损伤监测实验舱成功海试海洋工程材料原位立体监测装置与跨海域服役大数据平台
  • 海洋地震-电磁一体化探测技术及设备顺利完成海试
    7月5日,记者从南科大获悉,南科大海洋地震-电磁探测系统研发团队已于近日在南海北部珠江口海域开展了海上试验,凭借最新研制的地震-电磁一体化探测系统和地震-电磁联合反演软件,率先成功完成了4个测点地震-电磁一体化数据采集。 探测系统样机及主要研发人员 南科大供图经过三年的潜心攻关,南科大地球与空间科学系主任陈晓非、何展翔带领海洋地震-电磁探测系统研发团队,研制出地震-电磁一体化探测系统和地震-电磁联合反演软件,可为深海目标提供“B超+CT”联合的多参数探测。与传统海洋勘探方法相比,一次性探测获得的数据和效率均提高了2.5倍,能够有效识别含油气目标,消除非唯一性和多解性,为今后海洋资源和海洋科学研究提供了新的方法技术。 试验现场 南科大供图据了解,目前研究团队已申报专利20余项、登记软件2项,发表论文10余篇,具备完全知识产权的仪器样机2套。团队将继续加快系统和软件的研发和完善,在未来几年里对南海资源及深部热点目标进行科学攻关,探索海底构造演化、资源分布规律,推动我国海洋科学和资源勘探开发事业。
  • 大连化物所研制的Accuopt 2000微光探测器获2023年BCEIA金奖
    9月6日至8日,第二十届北京分析测试学术报告会暨展览会(BCEIA)在中国国际展览中心举办。开幕仪式上宣布了BCEIA获奖名单,我所微型分析仪器研究组(105组)耿旭辉研究员、关亚风研究员团队研制的“Accuopt 2000微光探测器”获2023年BCEIA金奖(分析测试仪器零部件)。   弱光探测器是科学仪器和光学传感器中的关键器件之一,广泛地应用在表征仪器和化学分析仪器中,其性能决定着光学检测仪器的灵敏度和线性动态范围指标。研究团队经过十五年技术攻关,研制出国产化的Accuopt 2000微光探测器组件。该微光探测器已量产,在细粒子光散射检测器、黄曲霉毒素荧光检测器、深海原位荧光传感器等十余款仪器上应用,替代了光电倍增管(PMT),得到了相同的检测信噪比和更宽的线性动态范围。经中国仪器仪表学会成果鉴定,其综合性能达国际先进、动态范围和长期稳定性达国际领先水平。   BCEIA金奖由中国分析测试协会设立,以奖励对我国分析测试仪器创新发展做出贡献的开发和研制生产单位,促进我国分析测试仪器技术的发展和水平的提高,推动新研制分析测试仪器产业化和推广应用。BCEIA金奖每两年评选一次,2023年度首次将分析仪器零部件列入申报范围,共有13个整机产品和5个零部件产品获得2023 BCEIA金奖。
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 我国在南海成功构建深海原位光谱实验室
    从中国科学院海洋研究所获悉,该所科研团队成功研制了国际上首套深海多通道拉曼光谱探测系统(Multi-channel Raman insertion probes system, Multi-RiPs),并在我国南海冷泉区域成功构建了深海原位光谱实验室。中国科学院海洋研究所科研团队经过多年研发试验,研制出国际上首套深海多通道拉曼光谱探测系统,该系统通过激光产生的光谱,可以探测深海极端环境中物质的主要化学成分,例如探测可燃冰的结构与组成,并捕捉其相关动态规律和潜在联系。在此基础上,该科研团队在我国南海海域成功构建了首套深海原位光谱实验室,该实验室是一个无人实验室,相当于把地面实验室挪到了海底,并可在深海冷泉、热液等区域进行常态化运行,开展长期、连续、多点位的海底观测、数据采集和可控实验。用于研究深海热液、冷泉等对于海洋生态与全球气候变化的影响,并可用于探究生命是否起源于海洋等科学假说。据中国科学院海洋研究所研究员张鑫介绍,该无人实验室系统最大可以耐受4500米的海底压力,囊括中国南海的大部分海域,未来可以布局在深海的热液区,研究深海的硫化物、矿物。这些资源可能是以后的战略金属资源,这套系统可以对这些物质的形成演化过程和机制进行相关的原位试验与研究。  多通道拉曼光谱探测系统关键光学器件布局图Mulit-RiPs搭载LOOP在热液区域进行原位实验与多目标物长期连续探测示意图Mulit-RiPs搭载LOOP在冷泉区域进行原位实验与多目标物长期连续探测示意图Mulit-RiPs搭载LOOP连续三年(a:2020年;b:2021年;c:2022年)布放于我国南海北部冷泉区域开展深海原位长期观测与现场实验
  • 深海MEMS气相色谱仪成功完成2022年南海海试
    2022年4月底至6月初,中科院上海微系统与信息技术研究所传感技术国家重点实验室冯飞研究员团队与中科院深海科学与工程研究所联合研制的深海MEMS气相色谱仪成功完成了2022年南海海试。 海试前,中科院上海微系统与信息技术研究所和中科院深海科学与工程研究所的联合研发团队对深海MEMS气相色谱仪进行了测试标定、通讯联调、水压试验。上海微系统所赵斌副研究员携带深海MEMS气相色谱仪参加了由中科院深海所组织的TS2-13航次两个航段的海试,深海MEMS气相色谱仪搭载深海原位实验室完成了8个潜次的深海海试,获得了深海背景区二氧化碳和冷泉区二氧化碳及乙烷的原位定量测试数据。图1 深海MEMS气相色谱仪搭载深海原位实验室布放入海图2 深海背景区溶解二氧化碳的原位测试数据图3 深海冷泉区溶解二氧化碳和乙烷的原位测试数据 该项工作获中国科学院战略性先导专项资助,中科院上海微系统与信息技术研究所传感技术国家重点实验室负责MEMS气相色谱仪的研制,中科院深海所负责仪器的水下化工程方面的研究,冯飞研究员为该任务的负责人。本工作面向深海探测这一国家重大战略需求,开展深海气体探测技术和仪器的研究,可为我国深海深渊探测提供技术支撑。
  • 西工大联合科研团队成功开发深海光学智能导引系统
    记者9月26日从西北工业大学获悉,该校及中国科学院西安光学精密机械研究所等科研机构组成的联合科研团队,突破了探测距离更远、精准度更高、抗干扰能力更强的多象限测角光学导引关键技术,成功开发了“领航者”深海光学智能导引系统。图为开展“领航者”深海光学智能导引系统海试验证联合科研团队近期在中国自然资源部北海海洋技术中心,开展了“领航者”深海光学智能导引系统的海试验证。与传统视觉导引技术不同,该团队利用自主研发的面阵探测器,捕获回收站导引信号光强,建立导引灯偏角数学模型,并将测算的偏角数据,输入自主开发的智能光学导引系统,利用智能搜索算法,完成回收站三维位姿解算。该系统具有超高探测频率,能够同时实现对回收装置的编码识别,进而有效避免了对水下无人潜航器的误导、诱导。据了解,联合科研团队搭乘作业船,在深水区域开展了导引回收海试作业,得益于“领航者”深海智能光学导引系统高速精准的三维位姿解算能力,成功获取了回收站坐标,引导水下无人潜航器实时修正航向,顺利完成导引回收,成功验证了系统高频编码探测能力。该团队使用差分卫星定位设备,对解算的回收站坐标进行了验证,海试达到了预定目标。此次海试,联合科研团队成功验证了一种全新的高频多象限测角光学导引技术,为深海/浅海无人潜航器提供了可靠的光学导引装备支撑,解决了水下无人潜航器能源供给和数据传输需求,助力水下无人潜航器从浅海作业拓展到深海作业、从短期工作拓展到长期驻留、从点域探索拓展到广域开发、从单体作业拓展到集群协同作业,有力保障了“深海进入、深海探测、深海开发”任务高效、安全且可持续开展,为“海洋强国”战略贡献了重要力量。
  • 科学岛团队研制出国内首套深海质谱仪并成功海试
    近期,中科院合肥物质院智能所团队制出了国内首台深海质谱仪,并在南海某海域成功完成多次海试,相关研究成果以《用于深海气体原位检测的水下质谱仪的研制与应用》为题发表在《中国分析化学》上。该工作填补了国内在深海质谱仪研制领域的空白,为我国深海、深渊探测战略提供更多技术支持和保障,同时为后续寻找海底油气及矿产资源,探究生命起源和早期演化以及研究全球气候变化等奠定了原位质谱探测基础。   深海极端环境塑造了特殊的生命过程,蕴藏着极大的矿产资源,对其探测是国际地球科学研究的前沿问题。深海原位探测技术可以在时间和空间维度上连续获取深海样品的组分、含量及其变化信息,因此被越来越广泛地应用于深海极端环境的研究工作中。智能所陈池来研究团队长期致力于新型MEMS质谱关键技术及应用研究。作为深海智能感知技术联合实验室共建单位成员,团队先后突破质谱小型化设计集成、质谱关键器件MEMS制造、水下膜进样快速定量标定等关键技术,经过多年攻关,成功研制出国内首套深海质谱仪,可在原位实现深海中N2、O2、Ar、CO2、CH4等小分子溶解气以及烷烃、芳香烃等挥发性有机物溶解气的定性及定量检测。   2022年至今,团队成员王晗、邵磊等携带深海质谱仪参加了多次专项海试,验证了其工作原理及工程应用的可行性,完成了设备功能性验证实验、海底定点在线检测实验及深度扫描试验;实现了深海冷泉区域溶解气的长时间(25.8h)原位检测及海平面至海底(-1388m-0m)溶解气的在线检测;获取了深海海底小分子溶解气浓度随时间的变化曲线及纵向浓度分布轮廓线等关键科学数据。   该技术不仅可用于深海探测,同样可用于内河、湖泊、近海水下溶解气信息获取,为水体环境污染和生态评估提供重要数据。该工作得到了中科院A类先导专项“深海/深渊智能技术及海底原位科学实验站”中“深海智能感知及决策技术”的资助。图1 设备搭乘原位实验室完成深海探测任务后出水瞬时图2 深海质谱仪图3 深海溶解气在线检测深度-峰高关系曲线
  • 中国科学院深海MEMS气相色谱仪完成南海海试
    中国科学院上海微系统与信息技术研究所传感技术国家重点实验室研究员冯飞团队与中科院深海科学与工程研究所联合研制的深海MEMS气相色谱仪,完成了2022年南海海试。  海试前,上海微系统所和深海所的联合研发团队对深海MEMS气相色谱仪进行了测试标定、通讯联调、水压试验。上海微系统所副研究员赵斌携带深海MEMS气相色谱仪参加了由深海所组织的TS2-13航次两个航段的海试。深海MEMS气相色谱仪搭载深海原位实验室完成了8个潜次的深海海试,获得了深海背景区二氧化碳和冷泉区二氧化碳及乙烷的原位定量测试数据。  上海微系统所传感技术国家重点实验室负责MEMS气相色谱仪的研制,深海所负责仪器的水下化工程方面的研究。本工作面向深海探测这一国家重大战略需求,开展深海气体探测技术和仪器的研究,可为我国深海深渊探测提供技术支撑。研究工作得到中科院战略性先导科技专项的支持。图1.深海MEMS气相色谱仪搭载深海原位实验室布放入海图2.深海背景区溶解二氧化碳的原位测试数据图3.深海冷泉区溶解二氧化碳和乙烷的原位测试数据
  • “深海关键技术与装备”重点专项名单公示
    近日,科技部公示了“深海关键技术与装备”重点专项拟进入审核环节的2016年度项目信息,其中41个项目名列在内,涉及光谱、原位检测、痕量金属分析等多项深海检测技术研发,获得中央财政经费共计12.21亿元,项目实施周期为4-4.5年。 根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现将“深海关键技术与装备”重点专项拟进入审核环节的2016年度项目信息进行公示。 通知原文如下:  关于对国家重点研发计划“深海关键技术与装备”重点专项2016年度项目安排进行公示的通知序号项目编号项目名称项目牵头 承担单位项目负责人中央财 政经费 (万元)项目实施周期(年)12016YFC0300100全海深高能量密度高安全性锌银电池研究河南新太行电源股份有限公司田伟龙10004.522016YFC0300200全海深高能量密度锂电池中国船舶重工集团公司第七一二研究所朱刚10004.532016YFC0300300全海深潜水器声学技术研究与装备研制中国科学院声学研究所朱敏33574.542016YFC0300400全海深机械手研制中国科学院沈阳自动化研究所张奇峰9954.552016YFC0300500全海深海底水体和沉积物气密取样装置研制浙江大学吴世军10004.562016YFC0300600全海深载人潜水器总体设计、集成与海试中国船舶重工集团公司第七○二研究所叶聪363224.572016YFC0300700全海深无人潜水器(ARV)研制上海交通大学葛彤84434.582016YFC0300800全海深自主遥控潜水器(ARV)研制与海试中国科学院沈阳自动化研究所徐会希94074.592016YFC0300900大型深海超高压模拟试验装置四川航空工业川西机器有限责任公司蒋磊37244.5102016YFC0301000一万一千米载人潜水器水面支持保障系统研制中国船舶工业集团公司第七○八研究所张福民33174.5112016YFC0301100长航程水下滑翔机研制与海试应用天津大学王延辉23004.5122016YFC0301200可组网模块化长航程水下滑翔机研制中国科学院沈阳自动化研究所俞建成22004.5132016YFC0301300自主变形仿生柔体潜水器研制西北工业大学潘光8014142016YFC0301400基于数据驱动技术和智慧型复合材料的自主式水下航行器研发中国海洋大学何波10004152016YFC0301500圆碟形水下滑翔机关键技术与装备研发大连海事大学王天霖3104162016YFC0301600基于升力原理的深海高速潜水器研发与试验中国科学院沈阳自动化研究所刘开周10004172016YFC0301700深海爬游混合型无人潜水器研制武汉第二船舶设计研究所陈虹10004182016YFC0301800面向深海地球物理科学研究的新型磁震传感器中国科学院半导体研究所李芳10004192016YFC0301900激光多普勒深海热液流速测量系统研制及应用安徽大学俞本立6814202016YFC0302000基于深海潜器平台的海底底质精细结构原位探测器的研究中国科学院声学研究所东海研究站冯海泓3324212016YFC0302100深海热液化学场多光谱联合原位综合探测系统中国海洋大学郑荣儿10004222016YFC0302200基于载人潜水器的深海原位多参数化学传感器研制国家深海基地管理中心赵月霞4974232016YFC0302300深海高精度痕量金属与溶解气体分析系统研制三亚深海科学与工程研究所杜梦然10004242016YFC0302400深海生物数字化原位观测记录系统上海大学屠大维5954252016YFC0302500深海生物功能基因原位检测与传感系统研制三亚深海科学与工程研究所王勇10004262016YFC0302600基于载人潜水器的深海通用配套技术规范化海上试验国家深海基地管理中心周玉斌8074.5272016YFC0302700饱和潜水系统自航式高压逃生艇和外循式环控设备研制交通运输部上海打捞局洪力云35464.5282016YFC0302800大直径随钻测井系统装备研制与示范作业中石化胜利石油工程有限公司杨锦舟25004.5292016YFC0302900海洋浮式平台工程设计一体化集成系统软件上海利策科技股份有限公司李华祥15264.5302016YFC0303000深水油气近海底重磁高精度探测关键技术广州海洋地质调查局陈洁10004.5312016YFC0303100深水双船拖曳式海洋电磁勘探系统研发广州海洋地质调查局余平10004.5322016YFC0303200适用于深海深地层地震拖缆高速率高可靠数据传输关键技术及通用平台研究中国科学技术大学宋克柱4724.5332016YFC0303300极地冷海钻井关键技术研究中国石油化工股份有限公司石油工程技术研究院侯绪田10004.5342016YFC0303400新型极地冰区半潜式钻井平台关键技术研究中集海洋工程研究院有限公司滕瑶10004.5352016YFC0303500随钻电磁波高速率传输技术研究中海油田服务股份有限公司刘西恩10004.5362016YFC0303600新型深水多功能干树半潜平台关键技术研究中海油研究总院粟京10004.5372016YFC0303700基于深水功能舱的全智能新一代水下生产系统关键技术研究中国石油大学(北京)段梦兰6864.5382016YFC0303800超深水多用途柔性管的研制与示范威海纳川管材有限公司沈义俊10004.5392016YFC0303900近海底高精度水合物探测技术广州海洋地质调查局温明明30004.5402016YFC0304000海洋天然气水合物试采技术和工艺中海油研究总院陈伟50004.5412016YFC0304100深海多金属结核采矿试验工程中国大洋矿产资源研究开发协会办公室李向阳143004.5   公示时间为2016年6月22日至2016年6月26日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。  联系人:孙清、钱洪宝  联系电话:010-58884871/4877  传真:010-58884870  电子邮件:sunqing@acca21.org.cn qhb@acca21.org.cn  中国21世纪议程管理中心  2016年6月22日
  • 中国自主研发首个深海原位拉曼光谱实验室在南海实现常态化运行
    工作人员为仪器设备的吊装做准备工作。 吴涛 摄中国科学院海洋研究所(简称“中科院海洋所”)7日发布消息称,经过近三年的试验验证,依托自主研发的世界首套深海多通道拉曼光谱探测系统搭载深海坐底长期观测系统,该所研究团队在南海构建了中国首个深海原位拉曼光谱实验室,并实现了对冷泉(海底天然气渗漏)喷口流体、天然气水合物(可燃冰)动力学过程、冷泉生物群落的长期原位观测与现场实验。研究团队负责人、中科院海洋所研究员张鑫表示,其团队自2008年开始使用拉曼光谱系统对深海热液、冷泉活动的理化环境进行相关研究。此次构建的深海原位光谱实验室实现了深海热液冷泉探测从“看一看”到“测一测”的跨越。科考船回收仪器设备。中科院海洋所供图张鑫介绍说,受成本限制,此前使用的基于ROV(遥控无人潜水器)等深潜器的单通道拉曼光谱探测系统,存在单点、间断探测等不足,无法适应深海热液冷泉不同喷口流体成分各异、非稳态的热液冷泉流体连续喷发等实际应用情景,因此需要一个针对深海热液冷泉活动理化环境开展坐底式的长时、连续、多点原位探测系统,实现对深海的长期原位观测与可控实验。张鑫说,作为深海原位光谱实验室的核心部件,由该团队自主研发的世界首套深海多通道拉曼光谱探测系统,创新采用光学系统分时复用技术设计,通过光路切换开关,切换4个通道的拉曼探头与激光器、光谱仪等光学器件的光学通路,实现4个通道的拉曼探头对舱内关键光学器件的分时复用,进而实现对深海热液、冷泉系统中流体、固体、气体等不同相态目标物的长期原位监测。同时,该系统具备在线调试、离线自容模式,可根据深海目标物及探测环境的实际情况决定光谱探测参数、制作模板文件,且可实现自动开关机,并按照模板文件采集光谱,完成光谱采集后自动保存光谱,适应深海长期布放。据介绍,深海原位光谱实验室的搭建是在深海ROV的辅助下完成的,深海多通道拉曼光谱探测系统上4个通道的拉曼探头会被深海ROV放置在不同的探测区域,实现对深海热液冷泉物理化学环境进行长期原位观测。探测完毕后,将再次借助深海ROV收回探头,等待科考船对其完成回收。张鑫说:“深海热液喷口流体对海洋环境的影响范围可达四千余公里。深海探测可辅助研究热液冷泉等极端环境对于海洋生态与全球气候变化的影响,并可探究生命是否起源于海洋等科学假说。”据悉,该研究得到国家自然科学基金、山东省自然科学基金、中国科学院战略性先导专项等项目联合资助。目前,该深海原位拉曼光谱实验室已在中国南海实现了冷泉喷口流体中主要成分、天然气水合物与深海环境的耦合变化过程、冷泉生物群落内部甲烷氧化过程的长期原位探测与现场实验,并在深海冷泉、热液等区域常态化运行。
  • 15年攻关,国产微光探测器的突破与产业化——访中科院大连化物所关亚风研究员
    微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。  长期以来,我国民用微光探测器处于“国外品牌独秀,国内依赖进口”的被动局面。针对这种“卡脖子”现象,中国科学院大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  近期,该产品通过了由中国仪器仪表学会组织的新产品成果鉴定,获鉴定委员会一致认可:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平。  微光探测器研制成功的背后,有哪些鲜为人知的故事?产品在替代进口器件方面有何优势?团队接下来还有哪些产业化计划?带着疑问,仪器信息网特别采访了团队的核心人物——中国科学院大连化物所关亚风研究员。中国科学院大连化物所关亚风研究员  Q、首先祝贺关老师团队研发的“微光探测器(光电放大器)”通过中国仪器仪表学会组织的新产品成果鉴定。据了解,您团队研制该技术已经有15年的时间了,请您介绍该项目的研制背景?  关亚风:说来话长,我本人是从上世纪90年代初开始从事微型色谱的研究,开始时就是研制微型色谱仪的关键器件与部件。  2003年,团队承接了“十五”科学仪器攻关专题“液相色谱激光诱导荧光检测器(LIF-D)的研制与技术开发”,当时为激光诱导荧光检测配套的是进口光电倍增管(PMT)。由于背景光的存在,光电倍增管用在激光诱导荧光检测器时的信号增益只能用在5,000~30,000区间,但实际上光电倍增管的增益可以达到百万以上,也就是说我们只使用了光电倍增管的低增益区。由此,我想到了使用雪崩光电二极管,但试验结果显示雪崩二极管的灵敏度无法达到要求,而且当时雪崩二极管的价格加上辅助电路价格达到PMT价格的2/3,只能放弃这条技术路线。  2005年,我开始尝试用光电二极管来检测荧光,尽管选择了当时性能最好、自带前置放大器的光电二极管(都是日本、英国公司的产品),但距离理想的灵敏度还有2个数量级的差距。从那时起,我开始构思如何提高光电二极管的检测灵敏度。借鉴我在气相色谱微型热导检测器研制上的成功经验,将思路放在降低噪音和漂移上,而不是提高增益上。我在研制气相色谱的热导检测器时,国际上都是通过提升其热敏丝的温度来提高检测器的灵敏度。但我反其道而行之,不去提升它的响应值,而是通过降低检测器的噪音,优化信噪比,再配合一个低噪音低漂移前置放大器来提升灵敏度。所研制的微池热导检测器的灵敏度在当时可以比肩国外公司的产品。我当时的实验室条件无法提高光电二极管的响应值,很自然地想到通过降低噪音来提高信噪比。  我首先考虑了光电材料界面以及连接导线界面的热电偶和接触电阻对噪音和温度漂移的影响,后来想出了抵消这个影响的方案。经过数年努力,到2012年时对弱光的检测下限达到了雪崩二极管的检测灵敏度,同时线性范围达到了5个数量级,比雪崩二极管宽2个数量级。这时我决定启用团队力量,集中力量攻关,2013年达到用PMT的进口名牌荧光检测器灵敏度的1/4水平,也就是PMT增益在4千左右的水平。耿旭辉2013年博士毕业后加入我们团队继续研制荧光检测器并加入微光探测器攻关。到2014年底,我们的微光探测器噪音、漂移比常规光电二极管降低了两个数量级,不仅检测灵敏度达到PMT增益在2万的而水平,而且动态范围延申了2个数量级,达到近6个数量级。2015年底实现了微光探测器产业化并开始推广销售。团队用简单、低成本的方式实现了弱光信号的高灵敏检测,解决了卡脖子难题,使国内微光探测器不再单纯依赖于进口光电器件,同时也克服了光电倍增管和雪崩二极管线性范围窄的问题。  Q:您刚才提到了微光探测器攻克的技术难点以及取得的成果,我们想追问,AccuOpt 2000系列微光探测器(光电放大器)相比进口器件而言有哪些优势,未来还有哪些需要提升的地方?  关亚风:我先讲一下优点,首先它性能长期稳定、不漂移 其次它对强光免疫,AccuOpt 2000受强光照射后秒级恢复,不影响性能 第三它抗强烈震动和冲击,抗电磁干扰,可以放在手持式仪器上,摔地上也不怕 第四是它不需要高压模块,且功耗低 第五是开机3分钟即能达到稳定状态 第六是使用寿命长,达15年 再有就是价格便宜,不需要调理电路,拿来就能直接用。  缺点是响应速度比较慢,10毫秒级。不过90%的应用对于响应速度没有要求,只有10%的高端应用追求响应速度快,需要高速调制,这点我们无法满足。另一个即可以说是缺点也可以说优点,就是光谱响应范围较宽,为300~1150 nm,但在深紫外区间没有响应。目前国内ICP等发射光谱的重点在紫外区,这是AccuOpt 2000所欠缺的,也是未来重点拓展的一个方向。AccuOpt 2000系列微光探测器(光电放大器)  Q:AccuOpt 2000系列微光探测器应用有哪些?其中实际应用效果最好的案例是哪个?解决的最大问题是什么?  关亚风:最牛的应用是高端,我们团队采用小型、廉价的激光二极管替代激光器为光源,用自主研制的硅基微光探测器替代进口光电倍增管探测荧光,由耿旭辉博士负责研制出“紧凑式”共聚焦激光诱导荧光检测器,我们分析了单个白血病细胞中的active caspase3蛋白,检测限达7个分子(91 pL检测体积内)。研究成果在Analytical Chemistry这一分析化学的国际顶级期刊上发表。  我们最欣喜的、量大的应用是黄曲霉毒素荧光检测器。我们放了一台在一家知名国外仪器公司的实验室,他们自己测了一年,证明灵敏度比他们现有仪器高一倍,漂移少一倍。另外一家知名国外仪器公司买了我们一台,与它最新型号相比我们的灵敏度高两倍,比它老的型号高5~6倍。进口品牌荧光检测器的功耗在75瓦~150瓦之间,而我们的产品总功耗只有4瓦,其中3瓦消耗在了交流-直流变换器和直流-直流变换器上。  2019年和2020年,团队与中国科学院深海科学与工程研究所共同研制的4500米级多种型号深海原位荧光传感器搭载深海勇士号/探索一号和二号在某海域科考航次中多次海试成功,均获得了有效数据。AccuOpt 2000就是我们荧光传感器中的荧光探测器件,取代进口PMT得到优于国外同类传感器的灵敏度和更宽的动态线性范围。  眼下新冠肺炎疫情来袭,团队也探索AccuOpt 2000在PCR等设备上的应用。不过,检测器灵敏度过高,而国内试剂的使用量又太大,限制了该部件在国产仪器中的使用。当前团队正与企业展开合作,希望能突破这一关键问题。  Q:AccuOpt 2000系列微光探测器目前产业化情况如何?与哪些仪器企业进行了合作?下一步有哪些产业化计划?  关亚风:AccuOpt 2000系列自2014年研制成功,2015年已着手推进量产工作。五年来,器件的性能不断优化,团队基于ISO9000质量管理体系来管理生产全流程,短时间内完成了960支成品的生产,面向市场售出约140支,自用了200多支。  我们是专业的研发团队,生产装配不在话下,难点反而在于市场销售。以新冠检测为例,国内所有做荧光检测、生物检测的都是我们的潜在用户,但问题卡在哪?就是刚才说的国内试剂使用量太大,检测器的高灵敏度反倒成了问题。一些灵敏度比我们低得多、售价七百元以下的光探测器反而能卖出去。我们必须介入到更早期的研发中才能培育市场需求。后续我们也会加大宣传,推进它的市场销售。  Q:核心零部件/器件对科学仪器至关重要,光电探测器更是影响仪器整体性能提升的关键一环。关老师您从事光电器件的研究近二十年,据您观察,当前国内光电探测器的发展情况如何,国产光电探测器面临哪些关键问题,您有哪些发展建议?  关亚风:国产光电器件的品种相对较少,有些特殊应用领域的做得不错,但是民用的、工业用的相比国外差距还很大。卡脖子问题往往是“叫好不叫座”,都知道关键器件很重要,但落实到具体层面做的人反而很少。我认为有两方面的原因:  首先对企业来说,别看光电器件重要,但研制难度大,实际的产值低、做出的产品卖不出去多少,所以利润薄。如果没有政策引导和项目扶持,企业自然不愿意投入经费与人力,最后成了公益事业,产业发展举步维艰。需要政策倾斜,例如企业根据销量享受相应的退税优惠,或者科技攻关项目给予经费支持,企业才有动力去啃这块“硬骨头”。  其次对于科研院所而言,现有基层的评价体系侧重于论文、专利、产值等评价指标,而研发光电器件的有效成果又不能去发论文或申请专利,原因是很容易被他人或竞争对手复制 但不发论文又意味着与提职称、评奖基本无缘,这就导致了真正潜下心来研究能实际应用的光电器件的人才越来越少。评价体制要落地,而非悬在半空中。这些问题不解决,关键器件的研制很难往下走,就会永远被别人卡着脖子。  光电器件的研制需要理论基础扎实、知识面广的复合型人才,这样的人很容易在热门领域发光发热,能潜心去坐这张“冷板凳”的人才不多。  话说回来,我最初也不是专门研究光电器件的,而是光电器件的用户。当初进入这个领域,是受越来越高的进口器件价格和日益严苛的进口限制所迫。把一个学化学的人逼着去搞光电器件并取得成功,这也是个小概率事件吧。
  • 关亚风团队研制深海原位气相色谱仪、荧光传感器海试成功
    p style=" text-align: justify line-height: 1.5em text-indent: 2em " 近日,中科院大连化学物理研究所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队与中国科学院深海科学与工程研究所共同研制的4500米级深海原位气相色谱仪、深海原位有色溶解有机物(CDOM)荧光传感器和深海原位叶绿素荧光传感器于8月14日至9月7日搭载深海勇士号/探索二号在某海域科考航次中海试成功,均获得了有效数据。深海原位气相色谱仪进行了两次海底试验,最大潜深1637米 深海原位CDOM荧光传感器和深海原位叶绿素荧光传感器进行了八次海底试验,最大潜深3961.9米。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ac0cd68f-5f82-48f1-bedc-8ab77b37a2b3.jpg" title=" W020201123364060937305.jpg" alt=" W020201123364060937305.jpg" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/9dfb6c93-35ab-4857-9a7a-39034961aa87.jpg" title=" W020201123364061206150.jpg" alt=" W020201123364061206150.jpg" / /p p style=" text-align: justify line-height: 1.5em "   深海原位气相色谱仪可原位定量测量深海中单体挥发性有机组分和各类气体成分。本次海试成功的深海原位气相色谱仪验证了其工作原理及工程应用的可行性,获得了不同沸点组分含量的半定量数据,为后续深海地球化学和生物等科学研究,以及能源勘探等工程技术奠定了原位探测技术基础。 /p p style=" text-align: justify line-height: 1.5em "   有色溶解有机物(chromophoric dissolved organic matter,CDOM)是存在于各类水体中的含有腐殖酸、富里酸、氨基酸和芳烃聚合物等物质的溶解性有机物。开展CDOM分布研究能够更好地确定其来源及组成,对揭示海洋碳循环变化规律和海洋生态系统特征有重要意义。在本航次海试中,深海原位CDOM荧光传感器以及新型超高灵敏度深海原位叶绿素a荧光传感器分别测量到了某海域从海平面到海底整个剖面的CDOM和叶绿素a的浓度,为海洋生物、物理海洋等学科研究提供了重要数据。两类荧光传感器均采用行业认可的标定方法,经比对,测量结果与文献报道的船载光谱仪对该海域的测量数据相吻合,包括剖面浓度变化趋势、拐点深度和绝对浓度,证明了两类荧光传感器的测量及标定准确性。经权威部门第三方测试,CDOM传感器检测下限为8.5ng/L硫酸奎宁,叶绿素传感器检测下限为0.42ng/L叶绿素a,检测灵敏度均比可查询的美国、德国等进口同类产品高数倍。两类深海原位荧光传感器已作为中科院A类先导专项“深海/深渊智能技术及海底原位科学实验站”的首批成果,搭载到深海原位实验站上。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/5bbed161-aaa0-416a-b540-8d74e9ac1bdc.jpg" title=" W020201123467651928485.jpg" alt=" W020201123467651928485.jpg" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 在今年年初,团队研发的三种深海原位荧光传感器工程样机,包 /span span style=" text-align: justify text-indent: 2em " 括深海原位叶绿素荧光传感器、深海原位微生物荧光传感器和深海原位多环芳烃荧光传感器已经 /span span style=" text-align: justify text-indent: 2em " 在深海勇士号/探索一号TS16南海科考航次中,搭载“深海勇士号”载人潜水器先后11次进行水下试验,最大潜深达3497.6米。分别测量了南海海水中从海平面到海底整个剖面的叶绿素a、微生物和多环芳烃的浓度。原位探测深海中叶绿素a的浓度,反映了深海中浮游植物生物量或现存量,是计算初级生产力的基础。原位探测深海中微生物的浓度,具有很高的科学研究价值和衍生的经济价值。原位探测深海中多环芳烃的浓度,有助于勘探海底原油溢油,具有重要的能源勘探价值。此次勘探所得数据为海洋生物、物理海洋等多学科研究提供了重要的原始数据。该系列仪器均属我国首套该类型的深海原位荧光传感器。其中,深海原位微生物荧光传感器也是国际首套该类型仪器。 /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/215f7a10-5d96-406b-b6db-ed8a4bb1f93a.jpg" title=" 7F8DFBF6865801A3EFA9B3FCEA2_3B5971E0_46F7B (1).jpg" alt=" 7F8DFBF6865801A3EFA9B3FCEA2_3B5971E0_46F7B (1).jpg" / /p p style=" text-align: justify " & nbsp & nbsp & nbsp 关亚风团队自21世纪初开展高灵敏荧光检测器及应用研究,该系列仪器的研发成功是该团队在深海极端条件应用的原位荧光探测技术研究方面的重要进展。该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,关亚风团队负责深海原位有机组分气相色谱—质谱联用仪与荧光传感器的研发,深海负责耐压水密封外壳的研发和海试。 /p p style=" text-align: justify text-indent: 2em " 该工作得到中科院A类先导专项“深海/深渊智能技术及海底原位科学实验站”和中科院大连化物所创新研究基金等项目的资助。 /p
  • 大连化物所关亚风等研制的三种深海原位荧光传感器海试成功
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " & nbsp 近日,我国三种深海原位荧光传感器工程样机在深海勇士号/探索一号TS16南海科考航次中,搭载“深海勇士号”载人潜水器先后11次进行水下试验,最大潜深达3497.6米。此三种传感器由中国科学院大连化学物理研究所微型分析仪器研究组(105组)关亚风研究员、耿旭辉副研究员团队与中国科学院深海科学与工程研究所(简称“深海所”)共同研制,深海所负责耐压水密封外壳的研发和海试。 /span br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8e566b26-b3bd-4d52-a9cd-1aaf3d6c49da.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 该系列传感器包括深海原位叶绿素荧光传感器、深海原位微生物荧光传感器和深海原位多环芳烃荧光传感器。此前,经深海所测试,此三种传感器均通过净水压力试验,最大工作深度均为4500米。本航次海试过程中,深海原位叶绿素荧光传感器共进行5潜次海底试验,最大试验深度为3497.6米;深海原位多环芳烃荧光传感器共进行3潜次海底试验,最大试验深度为3340.0米;深海原位微生物荧光传感器共进行3潜次海底试验,最大试验深度为2371.4米。该系列传感器分别测量了南海海水中从海平面到海底整个剖面的叶绿素a、微生物和多环芳烃的浓度。原位探测深海中叶绿素a的浓度,反映了深海中浮游植物生物量或现存量,是计算初级生产力的基础。原位探测深海中微生物的浓度,具有很高的科学研究价值和衍生的经济价值。原位探测深海中多环芳烃的浓度,有助于勘探海底原油溢油,具有重要的能源勘探价值。此次勘探所得数据为海洋生物、物理海洋等多学科研究提供了重要的原始数据。该系列仪器均属我国首套该类型的深海原位荧光传感器。其中,深海原位微生物荧光传感器也是国际首套该类型仪器。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/90a692f8-c50e-412c-9933-cf17f7162a8d.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 该团队自21世纪初开展高灵敏荧光检测器及应用研究,该系列仪器的研发成功是该团队在深海极端条件应用的原位荧光探测技术研究方面的重要进展。该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,中国科学院大连化学物理研究所负责深海原位有机组分气相色谱-质谱联用仪与荧光传感器的研发。 /p p style=" text-indent: 2em " strong 关于“深海/深渊智能技术及海底原位科学实验站”专项 /strong /p p style=" text-indent: 2em " 中国科学院A类战略性先导科技专项 “深海/深渊智能技术及海底原位科学实验站”于2018年11月正式启动(简称深海智能技术专项),执行周期为五年,牵头单位为中科院深海所,参与单位包括多家中科院院内及院外单位。 /p p style=" text-indent: 2em " 加快打造深海研发基地、发展深海科技事业、推动海洋强国建设,中科院论证启动了深海智能技术专项。通过专项的实施,产出重大原创成果,坚持自主可控、自主发展,重视成果转化应用,实现深海/深渊长周期、无人原位科考,促进我国深海技术从“平台时代”向“平台+载荷时代”转型。 /p p style=" text-indent: 2em " strong 项目执行时间: /strong /p p style=" text-indent: 2em " 2018年10月-2023年10月 /p p style=" text-indent: 2em " strong 参与单位: /strong /p p style=" text-indent: 2em " 声学研究所、大连化学物理研究所、金属研究所、海洋研究所、中国科学技术大学等 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/202004/uepic/2be48132-ad69-441a-a985-e3619efd04b2.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " “探索一号”科考船 /span span style=" text-indent: 2em color: rgb(127, 127, 127) " (图片来源于中科院深海所网站) /span /p p br/ /p
  • 采用大连化物所技术的国内首台4500米级深海原位荧光传感器海试成功
    p   由大连化物所关亚风研究员、耿旭辉副研究员带领的微型分析仪器研究组与中科院深海所共同研制的我国首台4500米级深海示踪剂原位荧光传感器工程样机于2月18日海试成功,大连化物所于近日收到设备参航证书。 /p p   在深海勇士号/探索一号西南/中印度洋TS10-03科考航次中,该工程样机搭载“深海勇士”号载人潜水器SY145潜次进行海底试验,最大试验深度为2450米。该仪器是我国首台应用于深海原位探测的荧光传感器,它的成功研发将提升我国对深海中目标流的轮廓和分布范围,包括对冷泉、热液羽流扩散的探测能力,具有重要科学价值。 /p p br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/201912/uepic/b6f61c9a-9698-47fe-a775-b6eabfc79c8b.jpg" title=" 297b308acbabd1e4c93f9dd3d14cff7d.jpg" alt=" 297b308acbabd1e4c93f9dd3d14cff7d.jpg" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p   基于大连化物所微型分析仪器研究组在高灵敏荧光检测器多年的学术积累,该仪器进一步提高了检测灵敏度,检测灵敏度与国际上最高水平相当。另外,在深海条件下,仪器面临高压(约245个大气压)等极端条件,这对传感器的性能提出了苛刻的要求。该团队与中科院深海所合作,通过科学设计,反复验证,成功研发出满足深海极端条件应用的原位荧光传感器。   /p p   该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,大连化物所负责深海原位有机组分气相色谱-质谱联用仪与荧光传感器研发。 /p
  • 两千米下深海照样看得透 厉害了中国科技
    p   犹如对浩瀚星空的痴迷,人类对于海洋深处的探索也从未止步。静水流深,在广袤神秘的深海,海水的运动有着怎样的规律?海温变化如何影响气候?如何更加清晰地观测海洋的动态并进行准确的预报? /p p   近日召开的“透明海洋”科技创新工程新闻发布会,让“透明海洋”的概念走近公众。“透明海洋”就是通过建立海洋立体观测系统,获取海洋环境综合信息,建立预测系统,掌握海洋环境变化,实现目标海域“看得清、查得明、报得准”。透明海洋工程实施4年了,目前进展如何? /p p   构建了全球首个马里亚纳海沟观测网,成功回收万米综合潜标 /p p   马里亚纳海沟是目前世界上已知的最深海沟,位于菲律宾东北、马里亚纳群岛附近的太平洋洋底,最深处深度约为1.1万米,堪称地球第四极。 /p p   这里历来是世界深海研究的焦点,更是难点。海沟的特殊性质使其海洋动力过程、生物地球化学过程、生物种群分布及起源、地球深部碳循环与开阔大洋相比具有不同的特性。马里亚纳海沟是探索海洋动力过程、物质与能量输运、生物地球化学过程、壳幔结构及极端环境下物种起源的最佳天然窗口,同时是研究深海科学与技术的最佳场所。 /p p   作为“透明海洋”工程的重要成果之一,科学家们正是在这里,实现了首次将“人类的眼睛”放入万米深海——他们构建起全球第一个马里亚纳海沟海洋科学综合观测网,还成功回收了世界首套万米综合潜标,使深海状态变化不再神秘。 /p p   山东省科技厅巡视员徐茂波在会上宣布了包括这一成果在内的一系列成绩:已经成功研发三项世界首创性技术,研制出两项填补国内空白的技术,并有两项技术打破国外垄断。 /p p   青岛海洋科学与技术国家实验室由中国海洋大学等5家驻山东高校和科研单位共同发起筹建,也是目前“透明海洋”工程的实施者。据中科院院士、青岛海洋国家实验室主任吴立新介绍,海洋占地球表面的71%,84%的海洋水深超过2000米。遗憾的是,人类对2000米以下的海洋的了解多局限于“点和线”,不够全面和立体。吴立新希望通过“透明海洋”工程,可以把2000米以下海洋看通看透。 /p p   徐茂波介绍,目前,“透明海洋”工程从四个方面进行了规划:一是技术突破。着重加强深海观测系统关键设备与技术研发,特别是水下浮力平台观测技术,形成核心自主产品,提升观测能力,突破国外封锁。二是观测网拓展。着力提高观测网的时空分辨率,从单一观测拓展为多要素综合观测,形成立体、实时、多学科的观测网。三是理论创新。深入开展西太平洋—中国海—印度洋与极地环境、气候、资源的协同研究,力争在海洋环境多尺度变化机理及气候资源效应等方面取得重大原始创新。四是预测系统构建。逐步有序构建起西太平洋—中国海—印度洋气候预测系统以及针对国家具体要求的区域预测系统,形成多层次、多学科、多目标的预测体系。 /p p   想把海洋看通透,需要稳定的全球观测系统。为此,青岛国家海洋实验室联合中国海洋大学等科研机构,成功研制出4000米深海自沉浮式剖面探测观测浮标,使我国具备了对全球海洋4000米持续观测能力。项目组还成功完成对世界上最大规模的区域海洋潜标观测网——南海、西太平洋潜标观测网的维护及扩充,在国际上首次实现了对蕴含丰富多尺度动力过程的南海深海盆的全面覆盖及完整监测。这些研发加速了观测装备国产化,有的子项目甚至可以做到所用设备均为自主研发。 /p p   降低海洋灾害强度,带动工程装备等产业转型升级 /p p   据青岛海洋国家实验室不完全统计,“透明海洋”工程相关课题目前已获得了超过6亿元科技资金支持。除了加深对海洋的认识,还有一项重要功能就是开展海洋科技基础性、公益性的关键技术研究和突破,影响和改善民生。 /p p   青岛海洋国家实验室教授陈显尧介绍,近年来,由大型绿藻浒苔形成的绿潮在南黄海连年暴发,长达10年之久,对山东、江苏沿岸的旅游业和海水养殖业造成了巨大危害。每年夏季,受绿潮影响的地区,政府部门都需要投入大量人力、物力,对沿海一线绿藻进行收集、打捞和处理。“透明海洋”工程构建了渤黄东海高分辨率精细化短期预报系统,根据卫星遥感反演的浒苔生物量和其他观测数据,建立了浒苔漂移的短期预报,可以实现对一周内浒苔的漂移路径及覆盖范围的定量预报。2017年系统进一步应用到黄海浒苔的预警预测中,基于系统预报的浒苔漂移路径及覆盖范围影响,有关单位向青岛市政府提出在浒苔漂移过程中对关键区域进行先期打捞拦截,减缓了浒苔大范围侵入青岛沿海,从而降低了灾害强度。 /p p   徐茂波表示,近几年,美国、加拿大、日本、欧盟等国家和地区,都在加快制订并实施全球海洋立体观测系统计划,因此建设中国的全球海洋立体观测网的需求十分迫切。这不仅对国家海洋国土安全、海洋资源利用和海洋保护开发具有重大意义,对山东省发展海洋经济同样具有推动作用。 /p p   山东省科技厅海洋科技处处长孙高祚认为,“透明海洋”工程可以及时反映近海以及远洋海洋资源开发状况和开发潜力信息,为实现海水养殖、远洋渔业等合理有序开发提供科学依据 可以及时提供海洋的环境和气候信息,为港口运输、海上捕捞、海上油气开发等作业活动提供安全生产保障。还可以通过对海洋资源环境信息的综合运用,对海洋经济发展前景作出预测。对于山东来说,“透明海洋”工程产生新技术、形成新动能,将会带动山东省海洋观测、海洋工程装备、海洋油气资源开发等产业转型升级。 /p p   多学科协同创新,将建立准确的海洋模拟系统 /p p   根据吴立新的构想,“透明海洋”工程共分为海洋星簇、海气表面、深海星空、海底透视、海洋模拟器5个子计划,分别通过卫星遥感、水下机器人、超算等技术,实现对海洋表层、海洋深处、海底等的立体观测,建立可靠准确的模拟系统,实现真正意义上的透视。 /p p   “这是一项复杂的大科学工程,需要诸多学科的协同创新。”吴立新说,这绝不是一个省份、一所科技机构所能支撑的。 /p p   以深海星空计划为例,吴立新希望能制造出综合多种传感器、智能可控的几千个水下机器人,可以实现水下组网与导航。这项工作不仅难度大、花费高,更需要材料、能源、自动控制、通信等多个学科的协同研发。在海洋深处,如何完成大数据高速传输、如何实现超长续航、智能观测等技术,都是吴立新团队目前正在攻关的难题。 /p p   2017年底,美国国防部高级研究计划局公布了“海基物联网”构想,根据该构想,美国海军可以通过部署数量众多的小型低成本浮标传感器来形成分布式网络,从而在广阔的海洋上实现持久的态势感知。这一构想与我国“透明海洋”工程大致相似,“我们提出时间更早,并已经成功开展前期研究工作,我们已经走在了前面。”吴立新说。 /p p   吴立新这样描述“透明海洋”工程的未来:“科学家在实验室就能知道全球海洋正在发生的事情,如海洋的温度变化、水声通道的变化、鱼群的变化等,并能做出预测,国家海洋利益拓展到哪里,‘透明海洋’工程就建设到哪里。” /p
  • 中国海洋大学深海激光拉曼光谱仪亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国海洋大学携深海激光拉曼光谱仪亮相国家“十一五”重大科技成就展。 深海激光拉曼光谱仪   中国海洋大学研制的深海小型、自容式原位激光拉曼光谱系统(DOCARS-532/785)可搭载于各种作业平台,实现了对深海正常和极端环境天然气水合物等目标物的无接触、快速探测。目前,国际上仅美国、法国和中国拥有此项技术。我国研制的双波长拉曼光谱系统成功进行了3次深海试验,是国际上首次在4003米水深同时获得双波长激发的拉曼光谱。
  • 230万!国家深海基地管理中心深海基因库碳分析仪等专用设备采购项目
    项目编号:ZYZB2022-01-123项目名称:深海基因库碳分析仪等专用设备采购项目预算金额:230.0000000 万元(人民币)最高限价(如有):230.0000000 万元(人民币)采购需求:预算金额:230万元,本项目共四包,其中第一包95万元;第二包50万元;第三包30万元;第四包55万元。最高限价:230万元,其中第一包95万元;第二包50万元;第三包30万元;第四包55万元。序号设备名称数量分项控制价(万元)分包控制价(万元)分包情况1碳分析仪13595第一包2原子荧光光谱仪1253沉积物岩石粒度营养分析仪1354解剖镜(配成像系统)12050第二包5荧光显微镜(配成像系统)1306PCR仪13030第三包7-80℃冰箱22055第四包8液氮存储系统135合计9230230投标人的分包、分项报价都不允许超过以上控制价,否则视为无效投标。以上第一包到第三包可兼投兼中,第四包与前面三包兼投不兼中。合同履行期限:详见招标文件本项目( 不接受 )联合体投标。
  • 室温红外探测与仿生动目标探测研究获进展
    中国科学院上海技物所研究员胡伟达与复旦大学教授周鹏合作,在范德华尔斯异质结室温红外探测与仿生动目标探测领域中取得进展。  在室温红外探测方面,研究首次提出了基于范德华尔斯单极势垒结构的红外探测器,突破了传统材料的晶格匹配与能带匹配的限制。上海技物所团队巧妙地构建出一种天然屏障的能带结构,只阻挡“有害的”暗电流成分,却让“有益的”光电流可以顺畅通过,因而在不削弱光响应的情况下有效抑制暗电流,提高探测器信噪比和工作温度。在室温下,中波红外峰值黑体探测率达2.3×1010cmHz1/2W-1。目前,只有少数的二维材料红外探测器可以呈现出黑体响应,该研究推进了二维材料进入红外应用领域的关键技术研究。相关成果以Unipolar barrier photodetectors based on van der Waals heterostructures为题,发表在Nature Electronics上。  进一步,在仿生动目标探测方面,上海技物所团队构建了更为复杂的三维垂直堆叠范德华尔斯异质结,提出了“ALL IN ONE”器件,实现了集探测、存储和计算(即感存算)为一体的原型器件。研究将具有双极性以及可见-近红外探测的硒化钨作为浮栅,运用电子空穴双存储模式在单一器件内同时获得了正负光存储特性,并实现了线性度良好的正负多态存储。该正负多态存储恰好对应了视网膜神经网络中的ON/OFF特性。基于这种类视网膜神经网络,展示了“ALL IN ONE”器件的时间差分处理能力,首次实现了动目标探测演示。相关成果以All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition为题,发表在Nature Nanotechnology上。  研究工作得到国家自然科学基金委、科技部、中科院、上海市科委的支持。  论文链接:1、2
  • 中性原子探测仪:国际首次在月表探测中性原子
    p style=" text-indent: 2em text-align: justify " 从中国研制第一颗科学卫星——双星计划开始,中国科学院国家空间科学中心的科学家就和瑞典空间物理研究所的科学家有了首度合作。 /p p style=" text-indent: 2em text-align: justify " 时隔十数年,在嫦娥四号国际载荷工作中,两位老朋友再度联手,研制出国际上首个可以在月表直接探测中性原子的仪器——中性原子探测仪。 /p p style=" text-indent: 2em text-align: justify " “月球是一个天然的实验室,太阳风和月表的相互作用,可以类比到其他的行星体上,对未来的科学研究提供重要的科学数据。”中方首席专家、中科院空间中心研究员张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 太阳风吹呀吹 中性原子飞呀飞 /p p style=" text-indent: 2em text-align: justify " 太阳风是一种跟空气流动很相似的“风”,只不过它吹的不是气体分子,而是太阳上层大气射出的超声速等离子体带电粒子流。 /p p style=" text-indent: 2em text-align: justify " 由于太阳风中的粒子会干扰通讯系统,它一直让人类倍感恐慌。2006年12月13日,一次太阳风暴曾经对我国短波无线电通信造成严重影响,使得广州、海南、重庆通信中断达3小时之久。好莱坞大片《2012》《末日预言》等也曾展现过人类对于太阳风袭击地球的恐惧。 /p p style=" text-indent: 2em text-align: justify " 这种恐惧同时也演化成了科学家的研究方向,在没有磁场、大气保护层的“月球实验室”里,他们决定近距离且直观地看一看太阳风与月球表面的作用机制。 /p p style=" text-indent: 2em text-align: justify " “最早,人们以为太阳风里的离子和电子是被月表吸收了,但是,经过一段时间的研究后,科研人员发现,太阳风离子打到月表后,会反射回来,反射回来的粒子里,有一部分仍然是离子状态,还有一部分则获得了电子,从离子状态变成了原子状态,成为中性原子。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 与此同时,就好比“一石激起千层浪”,太阳风里的高速粒子打到月球表面后,也会将月球表面物质溅射起来。 /p p style=" text-indent: 2em text-align: justify " “最终,溅射出的中性原子也会因为拥有一定的速度和能量,出现‘逃逸’,形成月球的外逸层。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 除此之外,太阳风和月表作用会对月球环境产生什么样的影响,也是科学家希望探索的内容。 /p p style=" text-indent: 2em text-align: justify " “有科学家猜测,太阳风里的氢离子和月表的氧相击,可能会产生水,月球上的水可能与太阳风打到月球表面有一些关系,虽然这还不是一个定论,这也是我们想要搞清楚的内容。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 创造探月新历史 首次月表直接探测 /p p style=" text-indent: 2em text-align: justify " 这次,嫦娥四号上搭载的中性原子探测仪,主要目标就是在月表上测量太阳风和月表相互作用之后产生的中性原子,包括太阳风本身的离子获得电子后产生的中性原子,和月球表面被溅射出的中性原子。 /p p style=" text-indent: 2em text-align: justify " 印度的首颗绕月人造卫星“月神一号”曾经搭载过中性原子成像仪,但和其他探月卫星一样,都是在环月轨道上对中性原子进行探测。 /p p style=" text-indent: 2em text-align: justify " “我们这次要做的是在月表巡视区直接测量中性原子,可以说是人类探月史上首次在月表开展中性原子探测。以往的探测就好像是用肉眼看中性原子,这次,我们是拿着放大镜近距离、仔细地看。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 过去人类在环月轨道对中性原子的探测,曾发现了一些超出预期的现象,留下了一些未解之谜,例如,人们发现中性原子和太阳风在密度、速度比率上没有直接关系等,而这些谜题也为此次探测指出了方向。 /p p style=" text-indent: 2em text-align: justify " “这次我们在月表可以进行实地观测,随着月球车在月表移动到不同位置,可以观测到月表不同的地形地貌,进而观测到太阳风与月表相互作用的不同过程,有望解决过去遗留的类似科学问题。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 碰撞与交流中 航天文化再度对接 /p p style=" text-indent: 2em text-align: justify " 作为搭载在嫦娥四号巡视器上的国际载荷,中性原子探测仪由瑞典空间物理所负责研制,中国科学家参与设备的性能测试及交付后的相关工作。 /p p style=" text-indent: 2em text-align: justify " 张爱兵介绍,中国与瑞典在科学卫星载荷上,已经有了很长的合作历史。 /p p style=" text-indent: 2em text-align: justify " 最开始的合作是在中欧合作研制的我国第一颗空间科学卫星——双星计划时。双星计划中有一台测量地球轨道环境下中性原子情况的中性原子探测仪,就是由中国科学家和瑞典科学家合作完成。 /p p style=" text-indent: 2em text-align: justify " 2009年,中国发起的“萤火一号”火星探测计划中,中国科学家与瑞典科学家再度合作,双方分别研制其中一个载荷的一部分,然后集中在一起形成了一个载荷包,用于测量火星离子和电子的情况。 /p p style=" text-indent: 2em text-align: justify " 此外,在中科院空间科学先导专项中,中国科学家和瑞典科学家也曾联手完成一些预先研究项目。 /p p style=" text-indent: 2em text-align: justify " “由于双方合作次数比较多,所以在嫦娥四号的合作上非常顺利。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 当然,尽管顺利,但合作中难免会有碰撞和交流,“新的合作加深了两国航天文化的交流。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 按照中方的相关规范,中方在国际载荷接管复查过程中要确保接口安全,包括接口设计和元器件等的安全,不能影响其他载荷的工作,更不能影响嫦娥四号整体任务。 /p p style=" text-indent: 2em text-align: justify " “一开始对方不能理解,但是通过交流,他们还是按照我们的要求做了相关工作,并把相关资料提供给中方。此次合作再一次体现了我国航天精益求精的作风,而这样的工作作风也让瑞典科学家十分认可中国科学家的工作。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 未来,中国和瑞典将共同利用科学数据开展科学研究,为此,中方已经组织了专门的科学家团队。“双方将会协同工作,共同利用好这台仪器的科研数据。”张爱兵说。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制