当前位置: 仪器信息网 > 行业主题 > >

森林土壤

仪器信息网森林土壤专题为您整合森林土壤相关的最新文章,在森林土壤专题,您不仅可以免费浏览森林土壤的资讯, 同时您还可以浏览森林土壤的相关资料、解决方案,参与社区森林土壤话题讨论。

森林土壤相关的资讯

  • 氮沉降调控森林土壤碳排放的格局及机制获揭示
    中科院华南植物园副研究员郑棉海团队联合美国康奈尔大学教授骆亦其等科研人员,研究揭示长期氮沉降调控热带森林土壤碳排放的格局及机制。相关研究12月1日发表于《自然地球科学》(Nature Geosciences)。同月5日该期刊再次以研究简报(Research Briefing)的形式进行了报道。人类活动所导致的大气CO2增加已成为当前重要的科学话题并引起了广泛的政治和社会关注。土壤是陆地生态系统最大的碳库,至少有一半的土壤有机碳储存于森林中。热带和亚热带森林主导全球森林碳循环,它们占据全球森林78%总碳排放和55%总碳吸收。人类活动也导致大气氮沉降加剧。氮沉降通过影响植物生长和微生物活性改变森林土壤呼吸及碳排放,但目前学术界关于氮沉降如何影响森林土壤呼吸的认识主要源于短时间尺度的研究。由于氮沉降是个长期的生态环境过程,缺乏长期且连续的研究将无法准确认识氮沉降调控森林土壤碳排放的格局及机制。研究人员依托我国最早建立的模拟森林氮沉降研究平台——广东省鼎湖山国家级自然保护区,发现长期氮沉降对南亚热带森林土壤碳排放的影响呈现阶段性变化。研究平台包括3种典型森林类型:季风常绿阔叶林、针阔叶混交林和马尾松针叶林。9-13年长期氮添加处理后,森林土壤呼吸呈现“无显著变化-显著降低-无显著变化”的三阶段格局。相比低、中氮处理,高氮处理缩短了三阶段格局的时间。在整个实验过程,氮添加累计减少土壤CO2排放总量为6.53-9.06 Mg CO2 ha-1,氮添加减少土壤CO2排放的效率为5.80-13.13 Mg CO2 Mg N-1。研究人员还基于鼎湖山模拟氮沉降样地测定的849项有关土壤、植物和微生物碳氮循环数据,构建了氮沉降调控热带森林土壤碳排放的机理框架。这些结果表明过去许多短期氮添加实验无法准确反映森林土壤呼吸响应氮沉降的格局。该研究成果为氮沉降促进热带森林土壤碳固持现象提供了重要证据,也为全球气候变化的预测和生态系统碳中和目标的实现提供新的依据。上述研究得到国家自然科学基金重点项目、面上项目、中科院青促会项目和中国生态学会青年人才托举工程项目等资助。郑棉海副研究员为该论文第一作者,张炜副研究员和莫江明研究员为共同通讯作者。此外,鲁显楷研究员、黄娟副研究员、毛庆功助理研究员、王森浩博士,以及合作者骆亦其教授、叶清研究员和刘菊秀研究员、岭南师范大学张涛博士也参与该项工作。
  • 高光谱遥感技术再立功!可建立森林土壤预测模型
    近日,中国科学院武汉植物园研究人员利用光谱技术建立了森林土壤光谱反演预测模型,从而较好地实现对高异质性森林SOC和TN的快速预测。森林土壤预测模型  快速、廉价、准确地获取土壤中碳(C)、氮(N)含量信息是当前土壤质量评价和全球土壤碳库收支管理研究的基础和前提,而土壤空间异质性加大了人们对土壤属性动态监测的难度和成本。  森林土壤是调控陆地生态系统碳收支平衡的重要基础。利用近地高光谱遥感技术实现多层次森林土壤C、N含量信息的快速、高效、无损、低成本建模估测,有望为当前土壤C、N动态研究及制图开辟新的途径,必将有助于加深对土壤C、N空间异质性及影响因素的理解,对于森林土壤碳库管理和持续经营具有重要意义。然而,受土壤层次的影响,土壤属性的高光谱反演模型的预测能力降低,限制了模型的应用。  中国科学院武汉植物园助理研究员姜庆虎在研究员刘峰的指导下,以中亚热带(八大公山)森林不同层次土壤为例,利用光谱技术建立了该区表层和亚表层土壤有机碳(SOC)和全氮(TN)的光谱反演预测模型,从而较好地实现对高异质性森林SOC和TN的快速预测。其中,光谱模型对SOC预测的R2为0.79-0.90,对TN预测的R2为0.66-0.86。在此基础上,针对模型难以实现层次间的传递性应用问题,利用spiking法并借助加权算法,成功解决了这一难题,使得预测模型的传递性得到大幅提升。该研究的开展,为快速获取高异质性土壤属性信息提供了潜在的可能。  该研究得到国家自然科学基金(31270515,31470526)和国家重点基础研究发展计划(2014CB954004)的资助,结果发表在Geoderma杂志上。
  • 土壤呼吸 | 积雪对有/无凋落物的温带森林土壤CO2及其δ13C值的影响
    在这银装素裹的世界里,下雪不仅带来了诗意的画卷,还为大地覆盖了一层白色的绒毯,守护着生命的源泉,对土地土壤的呼吸也产生着影响。在漫长的冬季里,积雪和大地度过了一个又一个宁静的时光。积雪不仅保护了土地的水分,还防止了土地温度的剧烈变化;当春回大地,雪慢慢融化,雪水还会滋润着大地。在这些过程中,积雪下土壤中的微生物是一场狂欢还是一片沉寂呢?接下来跟随一篇优秀的文章来了解一下这些过程~积雪对有/无凋落物的温带森林土壤CO2及其δ13C值的影响永冻层和季节性积雪区域占全球陆地表面的60%左右,占全球土壤有机碳(C)储量的70%以上。积雪直接影响表土和大气之间的热交换,减少土壤温度波动的影响。在严寒条件下,较厚的积雪可防止土壤结霜,为地下微生物活动提供相对稳定的生活环境。然而,在全球气候变化背景下,北半球春季陆地积雪面积正逐年减少,预计本世纪末将减少25%。季节性积雪模式对全球气候变化具有复杂且多样的响应,可能会通过光、热、水和养分等资源再分配来影响森林生态系统的地上和地下过程。土壤呼吸作为土壤C循环的重要过程,占据森林生态系统呼吸的60%以上,气候变化导致的土壤呼吸的微小变化甚至会引起森林生态系统呼吸的重大变化。积雪和气温升高之间的相互作用影响土壤冻融循环,导致土壤性质和土壤CO2排放的变化。作者认为冬季积雪会影响不同季节土壤微生物呼吸及其δ13C值,且会随着林分和凋落物的存在而变化,然而,目前,关于该方向的研究十分有限。基于此,为尽可能降低其他环境因素的影响,研究者们在长白山森林生态系统国家野外科学观测研究站附近的温带森林林地(温带红松阔叶混交林(BKPF)和白桦林(WBF))采集带有凋落物的土柱带回实验室,一半去除凋落物,一半保留。人工雪(轻/重)覆盖,根据野外土壤温度和气温的全年变化,利用低温培养箱进行长期培养实验,合理设置不同季节的模拟温度水平变化。利用SF-3000+碳同位素分析仪测定土柱中的CO2排放量及土壤呼吸CO2的δ13C以研究人工积雪和凋落物的存在对中国东北长白山地区典型温带森林土壤异养呼吸及其δ13C值的影响。不同阶段加雪量及加雪时间研究结果不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱的CO2排放量不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱的平均CO2排放量箱线图不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱释放CO2 的δ13C值的动态变化不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱释放CO2 的δ13C平均值箱线图有/无凋落物下土柱CO2排放量与其相应δ13C值之间的关系研究结论该分析系统可用于研究实验室条件下未受干扰的大型土柱的异养呼吸变化及其相应的δ13C值。根据全年四个不同季节的室内模拟实验,人工积雪对森林土壤异养呼吸及其δ13C值的影响可能因季节、凋落物的存在和森林类型而异。在秋季冻融模拟中,与轻雪覆盖相比,重雪覆盖时的CO2排放量相对较大,土壤呼吸CO2的δ13C值也较小,这表明冬季结冰前积雪增加可能会增加温带森林地下土壤有机碳的分解。随着模拟春季冻融的进行,所有处理中土壤呼吸CO2的δ13C平均值变得不那么小,这与秋季冻融模拟期间观察到的δ13C值的变化相反。模拟春季冻融期间,重雪覆盖时土壤呼吸CO2的δ13C值比轻雪覆盖时更负,这与模拟秋季冻融期间和生长季观测到的δ13C值的变化相反。无论积雪以及凋落物是否存在,在模拟生长季节与非生长季节,所有大型土柱上均观察到土壤异养呼吸13C富集变化(平均约4.2‰),这可归因于土壤水分、释放到土壤中的有机碳化合物的数量和质量以及实验条件下的土壤微生物特性。通常,陆地生态系统土壤异养和自养呼吸的δ13C值的季节变化在一定程度上可以反映SOM分解对环境条件的响应。本研究结果强调了冬季积雪和凋落物的存在对温带森林全年土壤呼吸及其δ13C值的影响,需要未来在野外条件下进一步研究,通过适度考虑土壤理化和微生物特性以及细根生物量引起的激发效应对土壤呼吸δ13C和土壤碳动态的调节作用,探索关键的内在影响机制。
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biologyand Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respi
  • 森林与土壤生态国家重点实验室揭牌仪式举行
    12月16日上午,森林与土壤生态国家重点实验室揭牌仪式在中国科学院沈阳应用生态研究所辉山新园区举行。森林与土壤生态国家重点实验室学术委员会主任傅伯杰院士,以及国家科技部基础司,中国科学院计划财务局、资源环境科学技术局,辽宁省科技厅,沈阳市科技局等部门有关领导出席了揭牌仪式。实验室主任韩兴国研究员及学术委员会其他成员、实验室学术带头人及骨干、所机关各部门负责人参加了会议。揭牌仪式由沈阳生态所党委书记姬兰柱研究员主持。   实验室主任韩兴国研究员致欢迎词,并为实验室学委会成员颁发了聘书。科技部基础司卞松保副处长对实验室建设相关管理规定进行了介绍,希望实验室进一步凝练科学目标,明确研究方向,培养高水平研究人才,积极承担国家任务。沈阳市科技局局长宋锡坤祝贺实验室揭牌,并表示将大力支持重点实验室建设。中科院计划财务局副局长潘锋强调,揭牌仪式意味着实验室的发展进入了一个新的阶段,责任更重,要求也应更高,一定要加强管理,努力提高实验室学术水平。   随后,傅伯杰、卞松保、辽宁省科技厅副厅长闫灵均、宋锡坤、潘锋等共同为森林与土壤生态国家重点实验室揭牌。   实验室主任韩兴国研究员从实验室的定位与研究方向、队伍规模与结构、科研条件建设等方面向学术委员会成员作了详细汇报,并重点对实验室研究条件、人才培养计划、实验室激励机制、实验室开放与交流等方面工作提出了下一步工作设想。   下午,实验室第一次学术委员会会议召开,会议由傅伯杰院士主持。程维信等6位研究员分别就实验室的相关研究内容作了学术报告。学委会各成员就实验室学科定位与研究内容给出了具体的建议。   傅伯杰在总结发言中,从四个方面提出了实验室建设的要求:一是实验室必须紧密围绕国家重大战略需求,面向国际科技发展前沿,加强应用性、基础性研究,努力提升实验室科技创新水平和能力,为国家提供重要战略咨询。实验室应根据生态学研究的特点,进一步加强研究的系统性,以期形成具有显示度的科研成果 二是进一步完善实验室规章制度,积极创造优秀的实验室文化,按照计划建设任务书,尽早达到实验室建设的各项指标要求 三是加快人才队伍建设,尤其是35岁以下青年人才的培养,尽快将他们培养成为实验室骨干和国内外具有重要影响的学术带头人,并通过布置群体性项目,营造交叉研究和群体合作氛围,凝练一支高水平的创新型研究队伍 四是加大实验室开放和共享力度,加强国内外的学术交流与合作,引进国内外优秀科学家来实验室工作,使实验室成为在森林与土壤生态研究方面有国际影响力的实验室。
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 土壤三普常见技术问题答疑手册发布 讨论了这些仪器和方法
    近期,国务院第三次全国土壤普查领导小组办公室组织第三次全国土壤普查专家技术指导组,对试点期间各地反馈的关于平台应用、外业调查采样、内业样品制备与检测等问题进行梳理总结与分析研判,初步形成常见技术问题答疑手册,第1期共139问。其中,答疑手册第三部分专门就样品检测过程中的问题进行了解释,包括制样器具选择、样品前处理的步骤、相关的标准方法以及所使用的仪器等,包括原子吸收分光光度法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法、X 射线衍射法、火焰光度法等。仪器信息网摘录部分如下:102.国家层面是否统一制样器具的类别、材质和型号?答:《土壤样品制备与检测技术规范(试行)》中 2.4 对样品制备所需工具和材质已做明确要求,承担样品制备任务 的实验室应结合本省任务安排及实际情况,确定相应样品制 备器具。103.第三次全国土壤普查工作平台上样品制备的起止时间如何界定?答:一般样品和剖面样品的制备起止时间为粗磨开始和粗磨结束。水稳性大团聚体的制备起止时间为风干开始和风干结束。104.1 mm 土壤样品如何细磨?答:按照《土壤样品制备与检测技术规范(试行)》中 2. 6.1“一般样品制备”有关要求,采用四分法或多点取样法,在 送检样品中分取约 50g 样品(具体数量依据相关检测方法要 求),用木辊或在瓷(玛瑙)研钵中研磨,使之全部过 1 mm 样品筛,用于速效钾、缓效钾等指标检测。105.阳离子交换量、交换性盐基有多种方法,是否需要根据土壤样品酸碱性来选择不同方法进行样品检测?酸性土壤、中性土壤、石灰性土壤如何界定?答:按照《土壤样品制备与检测技术规范(试行)》规 定,阳离子交换量、交换性盐基等土壤样品检测,应根据土 壤样品酸碱性选择对应的检测方法。依据《中国土壤》(中 国农业出版社,1998),pH7.5 为碱性土壤,pH 6.5~7.5(包含 6.5 和 7.5)为中性土壤。106.有效态铁、锰、铜、锌检测方法为《土壤有效态 锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004),该标准适用范围为 pH6 的土壤,pH6 的土壤。《土壤分析技术规范》(第二版)(中国农业出 版社,2006)引用了该标准,并明确 pH答:本次土壤普查借鉴的固体废物检测标准均是检测土壤试样而非检测土壤试样的浸出液。其中,使用《固体废物 22 种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)的方法可采用“盐酸+硝酸+氢氟酸+双氧水,微 波消解法”,也可采用“盐酸+硝酸+高氯酸+氢氟酸,电热板消解法”进行前处理。使用《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)可采用“盐酸+硝酸+氢 氟酸+双氧水微波消解法”进行前处理,若通过验证能满足本 方法的质量控制和质量保证要求,也可以使用电热板等其他消解法进行前处理110.《土壤样品制备和检测技术规范(试行)》中未写明土壤矿物、凋萎系数检测具体方法。 答:《土壤样品制备与检测技术规范(试行)》和第三次 全国土壤普查内业检测培训教材中规定了土壤田间持水量和凋萎系数采用压力膜(板)法,并明确了具体操作步骤和有关要求,土壤矿物测定采用 X 射线衍射法。112.《土壤分析技术规范》(第二版)中比重计法测定机械组成过程繁琐、精度不高,是否可探索建立吸管法使用粒度分布仪测定方法,或使用《森林土壤颗粒组成机械组成 的测定》(LY/T 1225-1999)方法检测?答:《土壤样品制备与检测技术规范(试行)》规定土壤 机械组成测定采用《土壤分析技术规范》(第二版)吸管法 和比重计法,两种方法均可用于土壤机械组成的检测。《土 壤样品制备与检测技术规范(试行)》规定的检测方法主要采用标准方法或权威方法,且经过专家多次研讨确定,在方法未经大量试验验证前不得随意改变。《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)土壤质地分类与颗 粒分级采用美国制,与现有技术规范规定不一致。115.碳酸钙检测用非水滴定法检测,最终结果是否转换为以碳酸钙计? 答:《土壤分析技术规范》(第二版)中非水滴定法测定 结果是以 CO2计,此次三普土壤样品测定结果以碳酸钙含量计。117.林地草地盐碱荒地中交换性盐基总量测定方法仅有《森林土壤交换性盐基总量的测定》(LY/T 1244-1999),该方法明确规定适用于酸性和中性,对于碱性土壤是否适合? 答:对于碱性森林土壤(石灰性土壤或盐渍化土壤), 不能采用《森林土壤阳离子交换量的测定》(LY/T 1244-19 99),因为该标准采用乙酸铵交换-容量法会溶解石灰性土 壤碳酸钙中游离钙离子,导致交换性盐基总量大于阳离子交 换量。鉴于碱性森林土壤的交换性盐基总量目前尚未有明确 的国家或行业标准规定,建议采用《石灰性土壤交换性盐基 及盐基总量的测定》(NY/T 1615-2008)方法测定交换性盐 基总量。118.交换性盐基总量中交换性钠含量较低,采用火焰光度法测定结果稳定性较差、检出限高,建议补充交换性钾、交换性钠、交换性钙、交换性镁 ICP 法测定方法。答:目前没有 ICP 法测定交换性盐基离子标准,应按照 《土壤样品制备与检测技术规范(试行)》规定方法检测。119.部分土壤样品中硝酸盐含量较高,本次阴离子只测定碳酸根、碳酸氢根、硫酸根、氯根,造成水溶盐阴阳离子不平衡,水溶盐总量和离子总量不平衡该如何解决?答:本次普查水溶盐的测定主要针对盐碱地,盐碱地土壤所含的可溶盐主要是钠、钙、镁的氯化盐或硫酸盐和碳酸盐及重碳酸盐。土壤水溶性盐分组成测定按照《森林土壤水 溶性盐分分析》(LY/T 1251-1999)标准操作,该标准规定用离子加合法将阴阳离子总量相加进行计算水溶性离子总量,同时对全盐量与水溶性离子总量之间的允许偏差进行了规定。更多详情请关注:第三次全国土壤普查常见技术问题答疑手册.pdf
  • 【土壤普查】瑞士步琦全新凯氏定氮仪助力土壤全氮测定
    土壤全氮测定瑞士步琦公司全新凯氏定氮产品系列 K-365 提供了最准确并可重复氮的测定过程;仪器系统内的最大精准模式和 AutoDist 自动蒸馏模式,可以让样品的分析测定省去间歇中断;这些功能特点让操作更加灵活,并保证测定的准确性和精确度。基于环境安全的考虑,步琦开发了一款独特的反应监测传感器,可以节省高达 30 % 的试剂消耗。大尺寸的操作屏幕使用更加简单,操作安全环保,极为方便。 国家标准:HJ 717—2014 凯氏定氮法(森林土壤):《森林土壤氮的测定》土壤,作为农业发展和人类生存的物质基础,不仅与人类生产活动密切相关,更事关一方经济社会与环境之间的协调发展。在第三次土壤普查中,土壤理化性质中全氮和阳离子交换量是极为重要的两项参数。土壤中的全氮在硫代硫酸钠、浓硫酸、高氯酸和催化剂的作用下,经氧化还原反应全部转化为铵态氮。消解后的溶液碱化蒸馏出的氨被硼酸吸收,用标准盐酸溶液滴定,根据标准盐酸溶液的用量来计算土壤中全氮含量。根据标准方法,介绍一种简单可靠的测定土壤中全氮的方法。样品通过红外消解仪 K-436 消化,通过带有 Eco 电位滴定仪的凯氏定氮仪 K-365 进行蒸馏滴定。1仪器红外消解仪 K-436尾气吸收仪 K-415 三级吸收装置带有 Eco 电位滴定仪的凯氏定氮仪 K-365烘箱或冷冻干燥机分析天平(精确度 ±0.1mg)2化学试剂和样品化学试剂:98% 浓硫酸含硒的高效催化剂片32% 氢氧化钠2% 硼酸,200g 硼酸,用 10L 蒸馏水稀释,调节其 pH 为 4.650.00545mol/L 硫酸溶液尾气吸收装置中的吸收液:600g 无水碳酸钠,2ml 乙醇,一小勺溴甲酚蓝,用 3L 蒸馏水进行溶解硫酸铵,分析纯 99%为了安全起见,请仔细阅读化学试剂的安全数据说明书。3过程样品:氮标示含量为 1.1 g/Kg 的国标土土壤中全氮的测定包括以下步骤:将样品进行烘干或冷冻干燥处理用消解仪 K-436 进行样品消化样品使用凯氏定氮仪 K-365 进行蒸馏与滴定1、根据表 1 中的参数,设定消化仪 K-4362、将样品加入到 300mL 的样品管中3、向样品管中加入 4ml 水4、加入 2 片催化剂片及 15mL 浓硫酸(98%)5、准备空白样品管,除样品外其他都加6、将尾气吸收装置 K-415 与消化仪 K-436 相连,用于吸收消化时产生的酸雾7、消化完后将样品冷却根据表 1 中的参数设置消化样品Table 1:K-436 的升温参数步骤步骤档数时间(min)15025303990冷却-35注意:如果样品管中的液体没有变成乳白绿,需要在 9 档下,继续消化 30min。根据表 2 中的参数蒸馏样品Table 2:蒸馏仪 K-365 的蒸馏和滴定凯氏定氮仪 K-365 方法参数水60 ml氢氧化钠70 ml硼酸60 ml反应时间5 s蒸馏时间240 s蒸汽力度100%蒸馏搅拌速度5滴定搅拌速度7样品管排空否接收瓶排空是4计算结果计算的是氮的百分含量WN:氮的质量V 样品:滴定样品消耗的标准酸体积(mL)V 空白:滴定空白消耗酸体积的平均值(mL) Z:摩尔因子(HCl 1, H2SO4 2)C:滴定酸浓度(mol/L)f:滴定因子(一般为 1)MN:氮原子的摩尔分子量(14.007 g/mol) m 样品:样品的质量(g)1000:转换系数(mL/L)%N:氮的百分含量5结果硫酸铵的回收率 —— 硫酸铵的氮含量及回收率测定结果见表 3。硫酸铵的理论含量为 21.19%。回收率都在 ≥98% 的范围内。Table 3:硫酸铵回收率结果硫酸铵m 样品(g)V 样品(mL)% N回收率(%)样品 10.070310.0121.25100.29样品 20.07019.9821.25100.27样品 30.069910.0021.35100.76样品 40.07009.9521.21100.11平均值(%)--21.27100.36RSD (%)--0.010.01空白样品消化体积平均值 0.04mL (n=2)土壤中全氮的测定 —— 土壤中全氮的含量测定的结果见表 4。Table 4:土壤 1 中氮的含量测定结果(标示量为1.1g/Kg)国标土m 样品(g)V 样品(mL)% N11.0007.941.08 21.0007.971.0931.0008.391.1541.0008.031.11平均值(%)--1.11RSD (%)--2.56结论及注意事项相关直播预告
  • 聚焦第三次全国土壤普查,有机质和阳离子交换量全自动检测方案出台
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。土壤有机质全自动检测方案:全文下载:土壤有机质全自动检测方法研制报告土壤阳离子交换量自动检测方案:全文下载:土壤阳离子交换量全自动检测方法验证报告
  • 土壤重金属有效态浅析
    p   土壤重金属污染风险不仅与重金属全量有关,更与其存在形态密切关联。重金属的生物有效性一般是指环境中重金属元素在生物体内的吸收、积累或毒性程度,从某种角度上讲,形态分析是生物有效性的基础,而生物有效性是形态分析的延伸。目前大多数生物有效性的研究方法都是通过确定污染物在环境中的形态和分布,再将这些形态分布与生物体中污染物的富集量通过单元回归或多元回归等进行统计分析。 /p p   根据IUPAC(国际纯粹与应用化学联合会)的定义,形态分析是指表征与测定一个元素在环境中存在的各种不同化学形态与物理形态的过程。广义上讲,重金属形态是指重金属的价态、化合态、结合态和结构态四个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。狭义上的重金属形态是指用不同的化学提取剂对土壤中重金属进行连续的浸提,并根据所使用的浸提剂对重金属的形态进行分组。一般分为水溶及可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态以及残渣态。因浸提剂系列和浸提方法的不同,上述分组方法也有变化。 /p p    strong 水溶及可交换态 /strong :是指交换吸附在土壤粘土矿物及其它成分,如氢氧化铁、氢氧化锰和腐殖质上的重金属。该形态对土壤环境变化最敏感,最易被作物所吸收,对作物危害最大。 /p p    strong 碳酸盐结合态 /strong :是指与碳酸盐沉淀结合的重金属,该形态对土壤环境条件敏感,特别是对pH最敏感,随着土壤pH值的降低,离子态重金属可大幅度重新释放而被作物所吸收。 /p p    strong 铁锰氧化物结合态 /strong :是指与Fe2O3和MnO2等生成土壤结核的部分。土壤环境条件变化可使其中部分重金属重新释放,对农作物存在潜在危害。此形态的最大特点是在氧化还原条件下稳定性差。 /p p    strong 有机物结合态 /strong :是指以不同形态进入或包裹于有机质中,同有机质发生鳌合作用而形成鳌合态盐类或硫化物。该形态较为稳定,一般不易被生物所吸收利用 但当土壤氧化电位发生变化时,可使少量重金属溶出而对作物产生危害。 /p p    strong 残渣态 /strong :在连续提取法中,上述各形态重金属被提取后,剩余部分的重金属均可称为残渣态重金属。对这部分重金属的结合方式很难给出明确的概念。大部分学者认为,稳定存在于石英和粘土矿物等晶格里的重金属即为残渣态重金属。残渣态的重金属很稳定,对土壤重金属迁移和生物可利用性影响不大。 /p p   就提取剂而言,有多种类型,美国、欧洲和日本等国家标准中的提取剂包括:王水、NH4NO3、HCl、HNO3、NaNO3、HCl-HNO3-HF和水等。我国当前土壤重金属有效态的标准方法主要有:《土壤有效态锌、锰、铁、铜的测定》(NY/T 890-2004)、《土壤质量有效态铅和镉的测定》(GB/T 23739-2009)、《土壤检测 第9部分 土壤有效钼的测定》(NY/T 1121.9-2012)、《森林土壤有效锌的测定》(LY/T 1261-1999)、《森林土壤有效钼的测定》(LY/T 1259-1999)、《森林土壤有效铜的测定》(LY/t 1260-1999)和《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》(HJ 804-2016)等,基本都采用二乙基三胺五乙酸(DTPA)或0.1M盐酸浸提剂,也有部分采用硝酸-高氯酸-硫酸、草酸-草酸铵或EDTA浸提剂。 /p p   DTPA分子结构为: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/e7a061cf-0596-44cc-85b9-9fc8ae5c57b3.jpg" title=" 8be6fee55d73b8c347db15cdec21b8a5.jpg" /    /p p   DTPA能迅速与钙、镁、铁、铅、铜和锰等离子生成水溶性配合物,尤其对高价态显色金属配合能力强,因此能浸提出土壤中水溶及可交换态、碳酸盐结合态和部分铁锰氧化物结合态的重金属,相对于其全量而言,这些被认为是高度生物有效的形态。 /p p   表征农田重金属生物有效性的方法包括: /p p   (1 strong )实验模拟法 /strong :根据重金属在土壤—水相互作用过程中的释放速率和释放机理,预测自然风化条件下土壤中重金属的潜在环境效应。 /p p   (2) strong 植物指示法 /strong :生活在重金属污染土壤中的植物都能够不同程度地吸收一些重金属。通过分析这些植物体内重金属的含量,可以判断污染土壤中重金属的生物可利用性,从而判断土壤受重金属污染的程度。 /p p   (3) strong 化学浸提法 /strong :即采用一种适当组成与组成量度的试验溶液(一种或几种试剂) 按照一定的土液比与浸提方法进行浸提, 然后测定浸提液中重金属的含量。如前所述的DTPA,虽然能在一定程度上表征重金属的生物有效性,但由于多种因素(土壤类型、酸度、多金属间的作用、金属在不同植物不同部分的迁移)对生物提取剂的影响,使其很难对多种金属的生物有效性准确表征。 /p p   影响重金属生物有效性的因素包括: /p p   (1) strong 土壤pH值 /strong :土壤pH值对土壤中的重金属的形态有很大的影响,其发生变化时,土壤重金属的形态也会动态波动。 /p p   (2) strong 重金属之间综合作用 /strong :土壤中重金属之间及与其他大量元素之间的复合污染也会影响其生物有效性,即重金属元素间的拮抗作用和协同作用影响重金属形态分布。 /p p   (3) strong 植物根际环境 /strong :植物根的生长改变了土壤的某些物理、化学和生物性质 根际( rhizosphere) 是距离根毛大约0.22 mm 厚的土壤层,根际环境是一个复杂的、动态的微型生态系统。土壤中的微生物能够改变重金属生物有效性,从而影响他们在土壤-植物系统中的迁移和转化。 /p
  • 森林加剧大气持久性有机污染物的干湿沉降
    持久性有机污染物(POPs)是一类具有半挥发性、环境持久性、高毒性和生物富集性的有机污染物。由于POPs能够在全球迁移并对生态环境和人类产生负面影响,世界各国于2001年签署了《关于持久性有机污染物的斯德哥尔摩公约》,以便逐步消除POPs的使用和排放。尽管最近二十年来各国政府为POPs做出了巨大的努力并取得了较好的效果,但自上世纪40年代以来就进入环境中的POPs则依然保存在地表环境介质中。尤其是森林植被和林下土壤富含有机碳,为POPs的提供了良好的条件。因此,森林对POPs全球循环的作用和机制已成为POPs研究的重要课题。中国科学院青藏高原研究所郭莉平等对全球森林POPs研究进行了归纳整理,发现森林吸收已经成为大气POPs向地表沉降的重要机制。其中,叶片吸收及POPs随叶片凋落的沉降是林下POPs干沉降最主要的途径;雨水(穿透雨)冲刷则缩短了POPs在叶片表面的滞留时间。这些过程像“泵”一样高效地将大气中的POPs携带到地表,使森林成为全球POPs的“汇”。这一效应也被研究者归纳为“森林过滤效应”。这些过程不仅使林区大气POPs浓度减少1/2—2/3,而且还有效阻止了POPs向极地及高山等生态脆弱地区的迁移。森林过滤效应的主要过程示意图。论文作者供图郭莉平介绍,通过近期的文献分析还显示在气候变化的作用下,全球森林正发生深刻的变化,即:森林的“汇”作用也因此减弱。POPs在叶片、土壤富集和食物链传递过程中均会发生流失和降解,同时,近年来频繁发生的森林火灾更使富集了大量POPs的森林成为POPs的“二次排放源”。鉴于此,郭莉平等提出应着眼于森林POPs高精度/在线观测技术的开发,以详细探究POPs在森林中迁移和沉降规律为基础,探讨气候变化对森林POPs迁移循环的影响;相关的研究将有助于拓展大气污染物干湿沉降研究的范围、丰富POPs全球循环研究的理论和方法。上述内容以《森林地区持久性有机污染物的沉降和释放》为题发表于《地球环境学报》第14卷第2期“大气污染物干湿沉降”专辑。硕士研究生郭莉平为第一作者,龚平研究员为通讯作者。该综述的撰写得到国家自然科学基金项目(41925032,41877490)和中国科学院青年创新促进会(CAS2017098)项目的共同资助。
  • 土壤检测如何解放双手?这家仪器公司给您支招了...
    土壤是农业生产和人类赖以生存的物质基础,土壤质量的优劣直接关系到农产品质量、人类健康以及经济社会的可持续发展。国务院发布关于开展第三次全国土壤普查的通知,普查对象为全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。土壤检测数据是客观评价土壤质量状况、实施土壤利用评价、管理和决策的基本依据。本次土壤普查时间紧、任务重,对检测数据的质量和准确性要求很高。如何高效、高质地执行土壤的检测,对每个土壤检测实验室都是一项极大的挑战。按照《国务院关于开展第三次全国土壤普查的通知》中检测实验室的条件要求,入围的实验室必须具备《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范》中规定的场地条件、设备设施、检测能力、仪器设备、人员队伍和资质认定批准等资格,故此常规检测项目必备的仪器设备需求量并不会太大,一些实验室可以根据自身实际情况增购部分仪器。而在应对土壤质地、酸碱度、全盐量、有机质、总碳、全氮和养分等理化指标的检测,绝大部分实验室还在采用传统的手工分析法,而手工法分析速度慢、分析过程耗时复杂、需占用大量的人力物力、结果的准确度依赖于具体操作者的主观意识和操作技能,无法满足实验室大批量、高质量的检测需求。面对检测任务不断增加、部门减员增效的要求和检测质量的提高等,要求检测实验室要优化工作步骤并将实验室分析过程标准化。实验室的自动化分析及由此带来的信息化的改进特别值得关注。斯卡拉分析仪器公司根据土壤的标准方法,结合不同的自动化检测技术,将多项经典的手工操作的分析方法组合起来,实现了检测分析的自动化和分析过程的标准化。提高效率、将人从繁琐的分析过程中解放出来、标准化的分析过程得到了更精准的分析结果。标准不同,检测项目也不尽相同,在该领域中对于仪器的需求及要求是相当高的。根据《第三次土壤普查土壤样品检测技术规范》的规定和要求,土壤机械组成、土壤酸碱度-全盐量、有机质/总碳&全氮以及各种形态碳和营养元素等都需要使用不同理化指标进行检测。1. 土壤机械组成(土壤质地)的自动分析1.1 土壤机械组成的检测标准土壤机械组成的测定,就是测定不同直径的土壤颗粒组成,进而确定土壤质地。土壤质地在土壤形成和土壤的农业利用中具有重要意义。根据LY/T 1225-1999、GB/T 33469-2016、《耕地质量等级》附录D、《土壤分析技术规范》等标准规范,检测方法有吸管法和比重计法。吸管法繁琐,但精确,比重计法操作简单,精度较差,而且计算麻烦。这两种方法都是以司笃克斯(Stokes)定律和土粒在静水中沉降的规律为基础。无论吸管法还是比重计法,均大致分为土粒的分散、粗土粒的筛分、细土粒的沉降分离和测定四个步骤。整个测量过程耗时较长,中间过程控制比较困难。1.2 斯卡拉的土壤机械组成机械人自动分析仪斯卡拉根据吸管法提供了两款机器人分析仪用于机械组成的自动化分析。机器人分析仪实际上是一个三维样品处理平台,搭载相应机械臂、机械手、样品和液体处理装置、精确的电子移液系统和加热控制单元将手工处理的步骤自动化。仪器可执行24小时无人值守地工作、确保整个分析过程的可靠性。SP2000机器人分析仪SP50样品制备机器人2.土壤酸碱度-全盐量的自动测定土壤pH是土壤的基本性质和肥力的重要影响因素之—。土壤pH的测量根据GB/T 33469-2016和LY/T 1239 - 1999 标准规范采用电极法测定:称取10g风干土壤样品至高型烧杯中,加入25ml水搅拌1-2分钟,使土粒充分分散,静置30分钟后用pH计测定。每测5-6个样品后需用标准溶液检查。土壤水溶性盐总量是盐碱土的一个重要属性,是限制作物生长的障碍因素,全盐量的测定根据GB/T 33469-2016、LY/T 1251-1999标准规范有质量法和电导法,质量法测量过程耗时繁琐,电导法是利用土壤的电导率和土壤水溶性盐总量呈线性关系得出,比质量法简便快速得多。斯卡拉的土壤pH&EC机器人自动分析仪可同时测量土壤的pH和EC值(电导)。由于土壤的pH和EC的土水比不同,仪器的设计实际是两通道独立分析系统,一个机械手装载pH&搅拌器&浸提液注液装置,另一个机械手2装有电导率&搅拌器&浸提液注液装置,两通道独立分开测量。可以自动执行电极自动校正、自动添加浸提液、样品搅拌、清洗、测量pH-EC值、自动温度补偿ATC、计算结果和报告输出等。3. 有机质/总碳&全氮的自动测定3.1 有机质&总碳测定的标准方法:传统的有机质的分析有重铬酸钾氧化法,该方法对个别形态的有机碳存在氧化不完全的问题,分析时必须严格控制体系的温度,防止酸性重铬酸盐溶液在高于180 ℃时分解。土壤中存在的Cl-、Fe2+及锰化合物的干扰。在实际应用中,这种方法操作繁琐,重铬酸钾是一类致癌物,硫酸是强腐蚀性的易制毒化学品,也带来了安全和环境污染的严重问题。《第三次全国土壤普查土壤样品检测技术规范》中也给出了杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》 。该方法实际符合ISO10694;EN15936和HJ 695-2014,目前在国际和国内的土壤分析领域早已被大量应用,但国内相对应的标准方法还比较滞后。据斯卡拉了解,有关部门已经开始该方法的编制。燃烧法的主要优点是:高温下保证样品中各种形式的碳燃烧完全,样品前处理的工作量最小,分析速度快、不产生有毒有害物质、整个过程可实现全自动化分析。3.2 各种形态碳的定义标准对总碳的定义实际上是样品以有机碳、无机碳和元素碳形式存在的碳的总量。现有的ISO10694、EN15936等标准,TOC的值可通过差减法和直接测量法检测:差减法是通过TC和TIC测量结果的差值获得。总碳(TC)通过高温燃烧法测量。无机碳(TIC)的测定是通过酸化反应-曝气吹扫的方法测定。直接测量法是首先手工酸化除去土壤样品中的无机碳,ISO10694规定,为确保完全除去无机碳,加酸除无机碳的过程需要等待至少4小时,除去无机碳后,样品通过高温燃烧分解,可直接测量出总有机碳的值。有机质=有机碳*1.724无论差减法、直接测量法还是通过重铬酸钾氧化法所测出的有机碳实际上均包含了元素碳的量,元素碳的形式包括木炭、煤和石墨等,它实际上也在自然界广泛存在,元素碳是有别于有机碳的另外一种碳源,不是生物可利用的,不能供应土壤微生物所需的能量和养分,不能促进植物生长发育。故此,在土壤管理中,单独测量这种第三类碳可以更准确地测定生物可利用的碳含量,从而确定与微生物、土壤生物活动和环境有关的碳源。为此,DIN19539-2016标准采用不同温度下测量各种形态的碳,用于TOC,EC和TIC的测量,该方法是在有氧的条件下,使用高温燃烧炉在不同温度下分解各种形态的碳。400℃释放检测的是有机碳,600℃下检测元素碳,900℃下检测无机碳。一次进样分别测量出有机碳,元素碳和总无机碳的值。3.3 全氮的标准方法:NY/T 1121.24-2012法采用传统的凯氏定氮法,该方法虽然精确的、可靠的,但是它也存在很多明显的缺点,例如:a)需要较长的分析时间 ;b)使用浓硫酸和强碱溶液,带来严重的安全和环境污染的问题;d)必须由熟练的技术人员操作。LY/T 1228-2015连续流动分析仪法(森林土壤):《森林土壤氮的测定》规范采用连续流动法测量全氮实际上是半自动的方法,样品也必须先进行外部消解,消解完成后通过分析仪完成后面的自动分析工作。LY/T 1228 - 2015 元素分析仪法(森林土壤):《森林土壤氮的测定》是全自动的方法,通过自动进样器连续进样,不需要人看管 不需要复杂的样品前处理过程 不产生有毒有害物质;精度高,而且操作简便。3.4 斯卡拉Primacs系列土壤有机质/总碳&总氮元素分析仪Primacs系列采用高温催化燃烧的原理、可提供快速、高效、精确的总氮(蛋白质)、总有机碳(有机质)、总碳(TC)、无机碳(TIC)和元素碳(可选)的全自动分析。内置双检测器,采用热导检测器(TCD)测量氮,非分散红外检测器(TCD)测量碳。内置100为自动进样器,采样自动除灰的坩埚进样,可直接分析固体和液体样品。该仪器既可按照传统的燃烧法通过差减法或直接测量法全自动测量土壤TC,IC、TOC和有机质。也可按照DIN19539-2016方法A和方法B测量TOC,TIC和EC的含量,无需任何硬件切换,仅需软件中选择即可执行不同模式的分析。Primacs系列是目前全球唯一一款可全自动分析土壤有机质的分析仪,该仪器具有自动休眠和自动唤醒功能,可在夜间无人值守自动运行,大大提高分析效率。该仪器将土壤有机质分析过程全自动化,将操作者从繁琐的湿化学分析过程中解放出来,标准化、快速、环保、安全、大批量地进行分析,消除了人为主观因素和操作水平差异造成的影响,得到更精确可靠的分析结果。4. 土壤养分的自动分析-斯卡拉San++系列连续流动分析法用于土壤的全磷/有效磷、全氮/铵、全钾/速效钾/缓效钾、钠、全硼/有效硼、全硫/有效硫/硫酸根、硝态氮、有效硅、有效铁等指标的自动分析仪连续流动分析仪由自动进样器、蠕动泵、化学反应单元、分析模板、检测器和数据处理器组成。仪器最大的意义是将繁琐的化学分析如消解、蒸馏、萃取、透析及离子交换等过程自动化。适用过程繁琐的化学指标的分析。连续流动分析仪其实在土壤养分的分析已经应用很普遍了。不同指标根据标准方法处理土壤样品,如全磷、全钾通过碱熔、有效磷通过碳酸氢钠浸提,速效钾通过乙酸铵浸提,处理后的样品溶液放在自动进样器上即可通过仪器完成各指标的自动分析。San系列是集适用性和多功能性于一体的全自动化学分析仪器,可完成从开机、停机、稀释、重复、清洗到原始数据储存的过程全部自动化。利用各种自动模式组合,对分析过程的稀释、加样、混合、加热、透析、抽提、UV消解等进行自动控制。斯卡拉的土壤自动化分析仪的检测的方法完全符合《全国第三次土壤普查土壤样品检测技术规范》中的方法 ,通过自动化的分析,我们可以将一部分人从疲于应付常规的测量中解放出来,既节约了人力资源和分析成本,也提高了工作效率和分析结果的质量,有效地优化您的工作流程,提高您的质量管理能力,助您将实验室分析的可靠性和效率都提升到更高水平。
  • 你想要的答案在这里!第三次全国土壤普查常见技术问题答疑手册修订版发布
    近期,国务院第三次全国土壤普查领导小组办公室组织第三次全国土壤普查专家技术指导组,基于新发布的《第三次全国土壤普查技术规程(修订版)》等技术规程规范,对关于平台应用、外业调查采样、内业样品制备与检测等问题进行更新完善,形成《第三次全国土壤普查常见技术问题答疑手册(修订版137问)》,供各地参考。《第三次全国土壤普查常见技术问题答疑手册(第1期139问)》自即日起废止。检测相关问题部分解答如下:1.阳离子交换量、交换性盐基有多种方法,是否需要根据土壤样品酸碱性来选择不同方法进行样品检测?酸性土壤、中性土壤、石灰性土壤如何界定?答:按照《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定,阳离子交换量、交换性盐基等土壤样品检测,应根据土壤样品酸碱性选择对应的检测方法。pH7.5为碱性土壤,pH 6.5~7.5(包含6.5和7.5)为中性土壤。2.有效态铁、锰、铜、锌检测方法为《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004),该标准适用范围为pH6的土壤,pH6的土壤样品如何检测?答:农业行业标准《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)规定了采用二乙三胺五乙酸(DTPA)浸提剂提取土壤中有效态锌、锰、铁、铜,以原子吸收分光光度法或电感耦合等离子体发射光谱法加以定量测定的方法,该标准规定适用于pH6的土壤。《土壤分析技术规范》(第二版)(中国农业出版社,2006)引用了该标准,并明确pH6的土壤也可参照使用。经内业技术组专家研究确定,NY/T 890-2004标准适用于所有土壤有效态锌、锰、铁、铜含量的测定。3.全氮检测方法为《土壤检测第24部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012),其中样品前处理规定了“6.3.1不包括硝态氮和亚硝态氮的消煮”“6.3.2包括硝态氮和亚硝态氮的消煮”两种方法,如何选择?答:鉴于土壤样品硝态氮和亚硝态氮含量很低,对土壤全氮量的测定结果影响很小,经内业技术组专家研究确定,除含硝态氮高的土壤外,其余耕地园地、林地草地土壤样品可采用标准中不包括硝态氮和亚硝态氮的方法进行全氮检测样品前处理。4.按照《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)和《固体废物 22种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)检测镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、钼(Mo)、镍(Ni)、铅(Pb)、锌(Zn)、铁(Fe)、铝(Al)、钙(Ca)、镁(Mg),对是检测土壤试样的浸出液还是检测土壤试样,前处理如何操作?答:本次土壤普查借鉴的固体废物检测标准均是检测土壤试样而非检测土壤试样的浸出液。其中,使用《固体废物 22种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)的方法可采用“盐酸+硝酸+氢氟酸+双氧水,微波消解法”,也可采用“盐酸+硝酸+高氯酸+氢氟酸,电热板消解法”进行前处理。使用《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)可采用“盐酸+硝酸+氢氟酸+双氧水微波消解法”进行前处理,若通过验证能满足本方法的质量控制和质量保证要求,也可以使用电热板等其他消解法进行前处理。具体检测方法已列入培训教材,并在“检测小课堂”中发布。5.《土壤分析技术规范》(第二版)中比重计法测定机械组成过程繁琐、精度不高,是否可探索建立吸管法使用粒度分布仪测定方法,或使用《森林土壤颗粒组成机械组成的测定》(LY/T 1225-1999)方法检测?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》明确,机械组成检测依据《土壤分析技术规范》(第二版),5.1吸管法。6.水溶性硝酸根离子含量过高的土壤,水溶盐离子加和总量与水溶盐总量检测结果超出《森林土壤水溶性盐分分析》(LY/T1251–1999)中表4允许偏差超范围。答:建议检测机构在出现水溶盐离子加和总量与全盐量不平衡问题时,对可能影响加和离子的原因进行排查,并提供影响加和的其他阴阳离子含量的测定原始记录等备查。7.碳酸钙检测用非水滴定法检测,最终结果是否转换为以碳酸钙计?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定碳酸钙检测采用《土壤分析技术规范》(第二版),15.1土壤碳酸盐的测定 气量法。8.林地草地盐碱荒地中交换性盐基总量测定方法仅有《森林土壤交换性盐基总量的测定》(LY/T 1244-1999),该方法明确规定适用于酸性和中性,对于碱性土壤是否适合?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定土壤中交换性盐基总量和交换性盐基的检测方法,对于pH≤7.5的样品,采用《土壤分析技术规范》(第二版),13.1酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)方法测定;对于pH>7.5的样品,采用《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)方法测定。9.交换性盐基总量中交换性钠含量较低,采用火焰光度法测定结果稳定性较差、检出限高,建议补充交换性钾、交换性钠、交换性钙、交换性镁ICP法测定方法。答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》增加了交换液中钾、钠、钙、镁离子的等离子体发射光谱法。具体检测方法见培训教材,并在“检测小课堂”中发布。10.部分土壤样品中硝酸盐含量较高,本次阴离子只测定碳酸根、碳酸氢根、硫酸根、氯根,造成水溶盐阴阳离子不平衡,水溶盐总量和离子总量不平衡该如何解决?答:本次普查水溶盐的测定主要针对盐碱地,盐碱地土壤所含的可溶盐主要是钠、钙、镁的氯化盐或硫酸盐和碳酸盐及重碳酸盐。土壤水溶性盐分组成测定按照《森林土壤水溶性盐分分析》(LY/T 1251-1999)标准操作,该标准规定用离子加合法将阴阳离子总量相加进行计算水溶性离子总量,同时对全盐量与水溶性离子总量之间的允许偏差进行了规定。检测机构在出现水溶盐离子加和总量与全盐量不平衡问题时,应对可能影响加和离子的原因进行排查,并做好影响加和的其他阴阳离子含量的测定原始记录等。附:第三次全国土壤普查常见技术问题答疑手册(修订版137问).docx
  • 变化内容解读∣第三次土壤普查土壤样品制备与检测技术规范(修订版)
    《第三次土壤普查技术规范》从2022年4月份的审议稿、2022年5月份的试行稿、2022年7月份的试行稿、到最后2023年2月的修订稿。每一版都有一些变化,但最终修订版变化最大,我现将最终修订版与7月份试行稿的变化内容做一个总结。一、样品制备变化内容(一)制样场地要求发生变化1、风干室要求增加了:“温湿度适宜,其面积应与承接制样任务数量相匹配,高湿地区根据需要安装除湿设施,如受场所限制不能集中风干,应确保每个分散风干的场所均满足本规范要求,并安排专人负责日常监督管理。”2、样品制备室制样过程全程摄像,保存记录由以前的“不少于3年”变为“不少于1年”。(二)制备流程1、一般样品制备(1)“一般样品”全部改为“表层样品”(2)风干:a、对于黏性土壤的风干更加具体,变为“在土壤样品半干时,戴一次性丁腈或聚乙烯等无污染材质手套将大块土捏碎,以免完全干后结成硬块。”b、把风干 “样品风干后混匀,用以粗磨”一句改为“一部分按照国家级和省级土壤样品库留存量要求,采用四分法分取后装入容器中流转至土壤样品库保存,剩余样品粗磨制成2mm样品,数量要确保样品检测和质控等需要。”说明样品库样品只需要风干即可,不需要粗磨。(3)粗磨:粗磨中去掉了“石砾含量较多时,耕地园地土壤样品应记录风干、粗磨过程中弃去的石砾质量,并计算石砾质量百分数。林地草地土壤样品应记录风干、粗磨过程中弃去的砖瓦石块、石灰结核、石砾质量,并计算碎石和石砾的总体质量百分数。”其实不管耕地园地、林地草地要求是一样的,都需要挑拣、称重、记录,所以去掉了。(4)称重:增加了称重“土壤样品应记录风干、粗磨过程中弃去的碎石和石砾等质量, 并计算质量百分数。”其实就是粗磨中去掉的部分,一句话概括为这一条“称重。”(5)分装:分装不按耕地园地、林地草地分不同要求了,统一变为:“粗磨后样品充分混匀后进行分装,每个表层样品的送检样品不少于800g,留存样品不少于200g,如果送检样品含密码平行样,则不少于1600。”2、剖面样品也不分耕地园地、林地草地,基本参照表层样品风干、粗磨、称重、分装步骤要求。3、土壤水稳性大团聚体样品(1)去掉了“一般样品、剖面样品的第1层样品采集时,均需采集土壤水稳性大团聚体样品”要求。(2)水稳性大团聚体送检要求由原来了“送检1000g、含密码1500g”变为:“送检样品不少于1100g,如果送检样品含密码平行,则不少于1600g。”二、样品流转变化内容(一)流转场地增加了流转场地要求:“承担制备任务的实验室应向省级质量控制实验室提供相对独立且配备相关设备设施场地,用于样品转码、组批和流转等,有条件的省级质控实验室也可自行设置专门场地用于样品转码、组批和流转等。”(二)样品组批和装运剖面样品组批要求发生变化,变为:“原则上按照10个剖面样点的全部剖面发生层样品组成一个批次,剖面样点量不足10个时,按照实际样品数量组批,每个批次的密码平行样品和质控样品各不少于1个,其余要求同表层样品。”三、样品保存变化内容(一)留存样品保存留存样品保存条件由原来的“存放温度不高于25℃”变为“实验室保存样品须密封存放,室温保存 (或不高于30 ℃) ”。(二)预留样品保存预留样品统一改为:“每份不少于400g,预留样品须移交本实验室保存室造册保存,保存时间不少于2年,保存条件同留存样品要求。”(三)剩余样品保存剩余样品保存时间由以前的“不少于半年”变为“”不少于1年,保存条件同留存样品要求。”四、样品检测变化内容(一)检测指标1、耕地园地检测指标中去掉了科研部门检测的 “土壤田间持水量”、“凋萎系数”、“矿物组成”,由原来的46项变为43项。林地草地检测指标中去掉了“土壤水稳性大团聚体”和“矿物组成”,由原来的19项变为17项。具体变化见下表1、表2。2、去掉了盐碱地水样检测指标,原备注由省级质量控制实验室检测。表1 耕地园地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√√30%表层土样剖面样品的第一层样品检测,表层样品选择10%检测3可交换酸度√南方酸性土壤区域(pH小于6.0)检测pH√√盐碱土普查涉及的县中均需侧水溶性盐总量、电导率和8大离子。注:水溶性盐总量小于0.1%时,不测电导率和8大离子。全部样品检测水溶性盐总量和电导率,当水溶性盐总量除铁铝土纲不测,其余都测。pH7.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南 (除青藏高原) 所有剖面样品检测,长江以北 (含青藏高原) 水田剖面样品检测7土壤田间持水量√科研部门检测。黑土、棕壤、潮土、栗钙土、黄绵土、紫色土、红壤、黄壤、灰漠土、水稻土各100个土样,环刀法测定。耕地园地采集耕作层、犁底层、心土层3个土层环刀样,林草地采集0-20cm表层、20-40cm亚表层土层环刀样。去掉此项目8凋萎系数√科研部门检测。具体同“4 土壤田间持水量”去掉此项目9矿物组成√科研部门检测去掉此项目表2 林地草地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√去掉此项目3矿物组成√去掉此项目4碳酸钙(无机碳)√除铁铝土纲不测,其余都测pH7.0的样品检测5全铁√pH仅测定铁铝土纲和淋溶土纲的土样长江以南(除青藏高原)所有剖面样品检测(二)检测方法变化以前耕地园地、林地草地的检测方法都是分开的,现在检测方法不分耕地园地、林地草地,统一为土壤样品检测指标方法。具体变化见下表3。表3 检测方法变化序号指标方法标准或规范备注变化内容1机械组成吸管法《土壤分析技术规范》(第二版),5.1吸管法1、仅能用吸管法2、去掉了比重计法2土壤水稳性大团聚体筛分法《土壤检测第19部分:土壤水稳性大团聚体组:成的测定》(NY/T1121.19-2008) (机械筛分方式,详见土壤样品制备与检测技术规范培训教材1、仅能用机械筛分法2、去掉了人工筛分法3阳离子交换量乙酸铵交换法《土壤分析技术规范》(第二版)12.2乙酸铵交换法pH≤7.5的样品1、方法全部变为《土壤技术规范的方法》。2、去掉了NY/T295- 1995和NY/T1121.5-2006两个方法。EDTA-乙酸铵盐交换法《土壤分析技术规范》(第二版)12.1EDTA-乙酸铵盐交换法pH7.5的样品4交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、交换性钾、盐基总量)乙酸铵交换法等《土壤分析技术规范》(第二版),13.1 酸性和中性土壤交换性盐基组成的测定 (乙酸铵交换法) (交换液中钾、 钠、 钙、 镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH≤7.5的样品测定方法增加了ICP法氯化铵-乙醇交换法等《石灰性土壤交换性盐基及盐基总量的测定》(NY/T1615-2008) (交换液中钾、钠、钙、镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH7.5的样品5水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)质量法等《森林土壤 水 溶 性 盐 分 分 析》(LY/T1251-1999) (浸提液中钾、 钠、 钙、 镁离子的测定采用等离子体发射光谱法,硫酸根和氯根的测定增加离子色谱法,详见本规范培训教材)1、浸提液中钾、 钠、 钙、 镁离子的测定只能用ICP法。2、硫酸根和氯根的测定增加了离子色谱法。3、去掉了NY/T1121.16-2006法6有机质重铬酸钾氧化-容量法《土壤检测第6部分:土壤有机质的测定》(NY/T1121.6-2006)增加了元素分析仪法元素分析仪法《土壤中总碳和有机质的测定 元素分析仪法》(农业行业标准报批稿)7碳酸钙气量法《土壤分析技术规范》(第二版)15.1土壤碳酸盐的测定1、仅能用气量法2、去掉了非水滴定法 8全磷酸消解-电感耦合等离子体发射光谱法《森林土壤磷的测定》(LY/T1232-2015) (详见本规范培训教材1、仅能用ICP法2、去掉了氢氧化钠熔融-钼锑抗比色法3、去掉了酸溶-钼锑抗比色9全钾酸消解-电感耦合等离子体发射光谱法《森林土壤钾的测定》(LY/T1234-2015)1、仅能用ICP法2、去掉了碱熔-火焰光度法和原子吸收分光光度法《土壤分析技术规范》(第二版),9.1土壤全钾的测定10全硫硝酸镁氧化-硫酸钡比浊法《土壤分析技术规范》(第二版),16.9全硫的测定1、去掉了燃烧碘量法LY/T 1255-19992、增加了燃烧红外光谱法燃烧红外光谱法本规范培训教材11全硼碱熔-姜黄 素-比色法《土壤分析技术规范》(第二版),18.1土壤全硼的测定去掉了碱溶-亚甲胺-比色法碱熔-等离子体发射光谱法《土壤分析技术规范》(第二版),18.1土壤全硼的测定12全铁酸消解-电感耦合等离子体发射光谱法《固体废物22种金属元素的测定电感耦合等离子体发射光谱法》(HJ781-2016)去掉了碱溶-ICP法HJ974-2018 13全锰14全铝15全钙16全镁17速效钾乙酸铵浸提-火焰光度法《土壤速效钾和缓效钾含量的测定》(NY/T889-2004)前处理统一为2mm粒径样品样品粒径要求由原来的1mm统一变为2mm18缓效钾热硝酸浸提-火焰光度法19有效硼沸水提取-电感耦合等离子体发射光谱法土壤样品制备与检测技术规范培训教材1、仅能用ICP法2、去掉了沸水提取-甲亚胺-H比色法3、去掉了沸水提取-姜黄素-比色法20有效钼草酸-草酸铵浸提-电感耦合等离子体质谱法《土壤检测第9部分: 土壤有效钼的测定》(NY/T1121.9-2023)1、仅能用ICP法2、去掉了示波极谱法NY/T 1121.9-201221总铅酸消解-电感耦合等离子体质谱法《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ766-2015)1、仅能用ICP-MS法2、去掉了ICP法HJ781-20163、去掉了火焰光度法HJ491-20194、去掉了石墨炉原子吸收法GB/T17141-199722总镉23总铬24总镍中国冶金地质总局第三地质中心实验室总工程师 刘桀佳2023年6月22日
  • ASD FieldSpec 4地物光谱仪在评估森林病虫害方面的应用
    “森林”这两个字一共由5个“木”字组成,正如同大自然中无数树木相互依存,彼此交织,形成了一个庞大而有机的生态系统。森林具有调节气候、保持水源、防止土壤侵蚀等重要功能,森林是地球上最宝贵的财富之一。然而,随着人类社会的发展和气候变化加剧,森林生态系统也在发生着变化。科研人员一直在努力了解并改善这些变化,随着遥感技术的发展,新的技术手段也带来了更多地研究可能。今天推荐大家了解的是北京林业大学和北京师范大学的研究团队所做的研究。森林生态系统是最基本的陆地生态系统组成部分之一,在调节气候变化、提供物种栖息地、维持生物多样性及减缓全球变暖等方面发挥着重要的作用。随着人类活动和气候变化的加剧,生物和非生物森林干扰事件频发。因此,有效监测影响森林健康的生物和非生物因素对于理解森林生态系统碳循环及监测全球变暖的影响至关重要。其中病虫害是生物干扰事件中最主要的干扰因素之一。检测早期病虫害位置对于识别高风险林分及预防其大规模爆发和蔓延至关重要。然而,不同病虫害在垂直结构的不同位置破坏树木。了解如何监测和评估垂直冠层结构上不同病虫害的异质胁迫对于提高森林质量至关重要。传统的田间调查方法费时费力,难以在区域尺度上监测森林。近几十年来,遥感技术的出现为森林病虫害监测提供了新的途径和技术手段。随着地基、机载、星载平台等多源遥感技术的快速发展,使得高效、动态地监测不同时空尺度的森林病虫害成为可能。基于此,来自北京林业大学和北京师范大学的研究团队在中国河北省怀来遥感站纯人工落叶阔叶林(40.35°N,115.78°E)进行了田间测量(结构信息、叶面积指数(LAI)、上中下垂直冠层高度5个不同位置收集叶片、树皮和土壤反射率)、受损叶片分类(健康、轻度、中度和重度受损)、光谱分析(植物反射率和透射率,ASD FieldSpec® 4 Hi-Res NG)、TLS激光扫描、3D森林场景重建、机载高光谱激光雷达和高光谱图像模拟、高光谱点云表征胁迫水平、随机森林(RF)模型构建及分类模型准确性评估(混淆矩阵和kappa系数)。主要目的是基于3D辐射传输模型(LESS)评估机载高光谱激光雷达(AHSL)在森林病虫害胁迫监测方面的潜力。具体来说,首先根据TLS数据和测量的受损叶片光谱重建虚拟3D森林场景,并在此基础上定义不同冠层受损位置和不同胁迫水平的不同病虫害干扰场景。然后,针对不同受损位置和胁迫水平的每种组合,使用LESS模拟AHSL点云和相应的高光谱图像(HI)。提取AHSL点云不同层的LiDAR点云并光栅化为3m空间分辨率的图像,结合高光谱图像,使用随机森林预测病虫害。研究区域位置,林地照片及受损叶片示例【结果】受胁迫叶片和树皮的光谱反射率基于高光谱LiDAR评估不同受损位置不同胁迫水平分类模型的准确度基于高光谱图像评估不同受损位置不同胁迫水平分类模型的准确度【结论】结果表明,AHLS在森林病虫害异质垂直胁迫监测方面具有巨大潜力。对整个冠层受损和冠层上部受损的监测能力最优,不同胁迫水平分类的总体精度和kappa系数分别为65.95%~89.45%和54.58%~85.92%。此外,在冠层中部(OA:77.56%,kappa:69.90%)和冠层下部(OA:65.95%,kappa:54.58%)也可以获得良好的分类准确度。作者还基于相同的胁迫场景模拟了HI数据,并与AHSL进行了比较。在整个冠层受损的情况下,HI具有最好的分类准确度(OA:57.02%,kappa:41.86%)。但上、中、下冠层受损的分类准确度差异较小。研究结果表明,AHSL提供了结构和光谱信息。与HI数据相比,AHSL能够避免土壤、阴影及其他林下混杂因素的影响。脉冲穿透可以监测森林中下部的病虫害胁迫,但也需要考虑树枝的影响。
  • 土壤肥料养分检测仪提高农作物的产量和品质-莱恩德新品
    点击此处可了解更多产品详情:土壤肥料养分检测仪  土壤肥料养分检测仪是一种快速、高效的土壤肥料养分检测工具,能够快速测定土壤中的氮、磷、钾等主要养分含量,帮助农民更好地了解土壤肥力状况,合理施肥,提高农作物产量和品质。    一、仪器介绍    土壤肥料养分检测仪是一种便携式、手持式的仪器,采用先进的化学方法和光电比色技术,对土壤样品中的氮、磷、钾等主要养分进行快速、准确的测定。该仪器具有操作简便、高效、便携、准确等特点,可广泛应用于农业、林业、环保等领域。    二、检测项目    土壤肥料养分检测仪可以检测土壤中的氮、磷、钾等主要养分含量,同时还可以检测土壤中的有机质、pH值等其他指标通。过这些指标的测定,可以帮助农民更好地了解土壤肥力状况,制定合理的施肥计划,提高农作物的产量和品质。    三、使用方法    使用土壤肥料养分检测仪非常简便,只需按照以下步骤进行操作:    1. 采集土壤样品:选择有代表性的土壤样品,采用专业工具采集适量样品。    2. 制备样品:将采集的土壤样品进行处理,制备成适合测定的溶液。    3. 加入试剂:将制备好的样品溶液加入到试剂盒中,按照说明书上的要求加入相应的试剂。    4. 测定:将试剂盒放入仪器中,按照说明书上的操作步骤进行测定。    5. 读取结果:仪器会自动读取测定结果,并显示在屏幕上。    四、应用范围    土壤肥料养分检测仪可广泛应用于农业、林业、环保等领域。在农业生产中,通过使用该仪器可以快速测定土壤中的养分含量,帮助农民制定合理的施肥计划,提高农作物的产量和品质。在林业生产中,可以使用该仪器检测土壤中的养分含量,了解森林土壤肥力状况,为森林经营提供科学依据。在环保领域中,可以使用该仪器检测土壤中的污染物含量,了解土壤环境质量状况,为环境保护提供参考。    五、注意事项    在使用土壤肥料养分检测仪时,需要注意以下几点:    1. 仪器应放置在干燥、避光的地方,避免潮湿和阳光直射。    2. 使用前应认真阅读说明书,了解操作步骤和注意事项。    3. 试剂应按照说明书上的要求进行配制和储存,避免污染和失效。    4. 测定时应注意样品的代表性,避免误差的产生。    5. 仪器应定期进行校准和维护,保证测定的准确性和精度。    总之,土壤肥料养分检测仪是一种快速、高效的土壤肥料养分检测工具,可以帮助农民更好地了解土壤肥力状况,制定合理的施肥计划,提高农作物产量和品质。同时也可以广泛应用于林业、环保等领域,为科学研究和生产实践提供有力支持。土壤肥料养分检测仪提高农作物的产量和品质-莱恩德新品
  • 伟业新品:土壤分析质控样品系列标准物质
    伟业新品:土壤分析质控样品系列标准物质 土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量。其数值以每千克土壤中含有各种阳离子的物质的量来表示,即mol/kg。土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生理平衡”,同时还可以保持养分免于被雨水淋失。 阳离子交换是土壤比较重要的性质之一,是土壤本身的特有属性,主要原因就是土壤胶体的负电特性,其电荷分为可变电荷和固定电荷,当ph较低时(到达等电点时),整个性质就会发生变化,阳离子交换,顾名思义,负电荷的土壤胶体表面吸附有一些可交换态的阳离子如k、mg、ca等,当污染物特别是重金属类物质与土壤接触时,由于其于土壤胶体表面基团具有更强的结合能力,从而取代部分正电性基团,但是阳离子交换过程并不稳定,属于静电作用,因此自身并不稳定,如上述内容所说,易受ph影响,低ph条件下容易被淋洗。同时由于其具有很强的水溶性,因此生物有效性较高,容易被动植物吸收而贮藏在体内,是土壤化学反应较为活跃的一部分,受土壤环境影响较大。一、标准物质的制备本标准物质选择经筛查的土壤为基体,经过风干、去杂、研磨、混匀、过筛、灭菌而成。量值核验一致后在洁净干燥的实验室环境下分装。二、标准物质的检测本标准物质定值方法参照NY/T295-1995中性土壤阳离子交换量和交换性盐基的测定、LY/T 1243-1999 森林土壤阳离子交换量的测定,通过使用满足计量学特性要求的计量器具保证其量值溯源性。实验原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为NH+4饱和土。用乙醇洗去多余的乙酸铵后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。三、结论通过多次重复性实验的检测,产品的均匀性良好。经12个月长期稳定性研究结果表明有良好的稳定性,研制单位将继续跟踪监测该标准物质的稳定性,有效期内如发现量值变化,将及时通知上级主管部门与用户。四、应用领域本产品通常运用于土壤方面阳离子交换量、交换性盐基指标的检测。作为产品的质控分析样品,也可以用在环境土壤检测。五、注意事项需要注意的是,阴凉密闭及避光条件下保存。使用前应混匀,最小取样量为1.5g,并注意水分的影响。淋洗次数需合理,淋洗次数不够,不能把交换剂全部洗掉,淋洗过头会使易水解的被洗去产生误差,且不能超声提取。
  • 精准助力土壤三普之快速测定土壤中有机碳
    国务院于今年2月份发出第三次土壤普查的通知,其土壤普查理化性状检测指标中,就有机质项目的检测要求。土壤有机质主要来源于土壤中动、植物的残体以及微生物生命活动所产生的有机物质,主要成分为C和N的有机化合物;其含量将决定植物的生长发育,并且对土壤的养分结构、理化性状起着关键性作用。东北黑土地就由于其富含有机质而土壤肥沃,素有“谷物仓库”之称。目前,测定土壤中有机质的方法多采用先测定土壤中的有机碳含量(TOC),再乘以与有机质的换算系数1.724,即为土壤有机质的含量。所以需准确测试土壤中的有机碳。土壤有机碳检测方法一般分为燃烧氧化法和化学氧化法两类。Ø 化学氧化法——做样速度较慢(大于0.5h),受基体影响较大化学氧化法是较为传统的方法,主要通过重铬酸钾-浓硫酸溶液将土壤溶液中的有机碳氧化,再通过硫酸亚铁滴定或分光光度法进行定量测定。此类方法虽然所需设备较为简单,但是实际测试时却有较多不足:(1)需要试剂种类较多,操作步骤复杂,做样周期较长,往往需要半小时以上;(2)由于土壤中的基体非常复杂,且各个地方的土壤成分差异大,同计量的试剂对有机碳的氧化是否彻底,将会影响测定结果;(3)在滴定法或分光光度法测定时,样品基体不同,也对其显色产生不同程度的干扰,造成数据不准,需根据样品再摸索掩蔽剂等条件。Ø 燃烧氧化法——做样3-4min即可出结果,不受基体影响燃烧氧化法方法是较新的方法,该方法是将土壤样品称量后,加酸加热去除无机碳,后置于高温灼烧(1100℃左右)使土壤样品中的有机碳氧化为二氧化碳,最后用仪器检测器测定产生的CO2值,并转换为TOC浓度。此方法有以下优势:(1)样品固体进样即可,制备流程少、做样简单、可操作性强;(2)做样速度快,固体样品进入仪器只需3-4min即可完成测试;(3)无需多种试剂,只需加酸即可,试剂损耗小;(4)不受样品基体影响,由于燃烧温度高,可更加充分地将有机碳氧化,所以无论什么样品基体,均可得到准确结果。以下为土壤有机质测定相关标准对比 :标准氧化方式检测原理试剂耗时NY/T 85-1998土壤有机质测定法重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时NY/T 1121.6-2006土壤检测第6部分:土壤有机质的测定重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时LY/T 1237-1999森林土壤有机质的测定及碳氮比的计算重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时HJ 658-2013 土壤 有机碳的测定 氧燃烧—滴定法高温燃烧氢氧化钡吸收,草酸滴定氢氧化钡、草酸、酚酞、盐酸5小时HJ 615-2011 土壤 有机碳的测定 重铬酸钾氧化-分光光度法重铬酸钾-硫酸溶液加热分光光度法重铬酸钾,硫酸,硫酸汞8小时HJ 695-2014 土壤 有机碳的测定 燃烧氧化-非分散红外法高温燃烧非分散红外法(NDIR)磷酸或盐酸3-4分钟德国耶拿可为您提供燃烧法测试土壤中TOC的全套解决方法:方案1:总有机碳分析仪multi N/C+ HT 1300采用燃烧法可直接测量土壤固体中的TOC含量,具有以下特点,保证实验的高效准确。可分析液体或固体样品… … … … … … … … … … … … … … … … … 软件切换,无需机械移动冷开机20分钟内即可工作,进样3-4min出结果… … … … 实验效率高直接称量于陶瓷舟中… … … … … … … … … … … … … … … … … … … 操作简便最高称样量达3g… … … … … … … … … … … … … … … … … … … … … 保证样品代表性燃烧温度可达1300℃ … … … … … … … … … … … … … … … … … … 充分氧化无需催化剂… … … … … … … … … … … … … … … … … … … … … … … … 低耗材成本高聚焦NDIR检测器 … … … … … … … … … … … … … … … … … … … 抗干扰,宽范围方案2:元素分析仪multi EA 4000全自动固体TOC分析,可全参数分析TOC、TIC、TC参数。具备自动加酸处理等功能。应用实例:通过测定多种标准土验证方法准确性,测试结果均在质控范围内,且测试6次,RSD在0.76~6.29%。具体数据如下:标准品号平均值%RSD (n=6)%标准值相对误差%GBW073140.876.290.86% ± 0.1%1.2NST-62.190.862.2% ± 0.1%0.3GBW07416a0.720.760.73% ± 0.05%0.69GBW074591.280.991.27% ± 0.05%0.39注:multi N/C+ HT 1300方案测定通过以上数据可知,采用耶拿的快速燃烧法测定土壤有机碳,准确度、精密度等指标均符合土壤分析要求,从根本上解决了人为分析误差、污染和环境污染等弊端,消除了基体干扰对结果的影响;提高工作效率,可实现批量化分析。
  • 理加联合土壤温室气体通量监测系统应用
    1 摘要陆地生态系统中土壤温室气体排放或吸收过程极其复杂。实现多种土壤温室气体的同步原位监测已成为土壤温室气体研究人员的迫切需求。基于此,北京理加联合科技有限公司(以下简称理加)研发了土壤呼吸系列产品。其中PS-9000便携式土壤碳通量自动测量系统(以下简称“PS-9000”)用于测量土壤CO2通量,LGR UGGA+PS-3000便携式土壤呼吸系统(以下简称“PS-3000”)用于测量土壤CO2和CH4通量,LGR MGGA+PS-3010超便携CH4/ CO2土壤呼吸系统(以下简称“PS-3010”)用于测量土壤CO2和CH4通量,PS-3020便携式土壤呼吸系统(以下简称“PS-3020”)用于测量土壤N2O/CH4或N2O/CO通量。SF-9000多通道土壤碳通量自动测量系统(以下简称“SF-9000”)可连接多达18个呼吸室,多点测量土壤CO2通量,实现土壤碳通量的连续长期监测。SF-3500多通道土壤气体通量自动测量系统(以下简称“SF-3500”旧型号:SF-3000)可以连接多种气体分析仪来测量CO2,CH4,N2O,NH3和其他气体通量,也可以连接同位素分析仪来测量13CO2,12C18O16O,15N14NO同位素值。SF-3500可以收集多达18个呼吸室的连续数据集,以表征研究区域气体交换的时空变化。2 应用案例2.1 PS-9000中国科学院沈阳应用生态研究所,利用PS-9000测量果树园土壤CO2排放。2.2 PS-30001. 中国科学院大气物理研究所,在长白山森林生态系统的应用。2. 海南大学,在热带雨林的应用2.3 PS-3010中国科学院成都山地灾害与环境研究所,利用ABB LGR MGGA+LICA PS-3010监测海拔约4600 m的青藏高原五道梁土壤CO2和CH4排放。2.4 PS-3020上海市环境科学研究院,在崇明水稻田进行便携式N2O/CH4通量测量。2.5 SF-9000中国科学院西北高原生物研究所,在海北站高寒草地进行研究。2.6 SF-3000ABB LGR 分析仪+SF-3000可在不同生态系统中使用:森林、草地、湿地、沙漠和农业生态系统。也可在不同环境条件下使用:高海拔地区或低海拔地区、高温地区或低温地区、高湿地区或干旱地区。在国内有许多的应用案例:1 青藏高原(若尔盖草原),海拔超过3300 m。中国科学院地理科学与资源研究所。利用N2O/CO+UGGA+SF-3000长期监测土壤CO2,CH4, N2O,CO,H2O通量。2 内蒙古草原生态系统。北京师范大学。利用UGGA+SF-3000长期监测草地土壤CO2,CH4和H2O通量。3 天山(沙漠生态系统)。中国科学院新疆生态与地理研究所。利用CCIA+ SF-3000长期监测沙漠生态系统土壤CO2,δ13C,δ18O,H2O。4 长白山(森林生态系统),海拔超过2000 m,冬季寒冷。利用CCIA+ SF-3000长期监测森林生态系统土壤CO2,δ13C,δ18O,H2O。5 清原森林生态系统观测研究站。中国科学院沈阳应用生态研究所。SF-3000土壤通量系统用于清远林业站NOx的长期监测。6 青藏高原(湿地生态系统)。中国林业科学研究院湿地研究所。利用UGGA+ SF-3000监测青藏高原湿地生态系统的土壤CO2和CH4通量。7 云南哀牢山(森林生态系统)。中国科学院西双版纳热带植物园。利用CCIA+UGGA+SF-3000长期监测CO2, δ13C, δ18O, CH4, H2O。8 兰州市农田生态系统。兰州大学。利用N2O分析仪+SF-3000监测苜蓿地土壤的N2O通量。3 应用文章从研发生产至今,已经有许多科学家利用理加的土壤呼吸系列产品进行了诸多研究。例如,中国林科院湿地研究所湿地与气候变化团队以四川若尔盖高原泥炭地为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,利用PS-9000研究了若尔盖高原泥炭地生态系统碳排放(生态系统呼吸和土壤呼吸)对植物生长季不同时期极端干旱事件的响应,并揭示了植物和土壤酶活性对泥炭地碳排放变化的驱动机理;一组研究人员在青藏高原风火山利用PS-3000测量了两个生长季节(2017年和2018年)不同坡向(北向(阴坡)和南向(阳坡))和不同海拔的生态系统呼吸(Re)和CH4通量,旨在阐明其Re和CH4通量模式并量化生物和非生物因子调节Re和CH4通量的相对贡献;来自中国科学院地理科学和资源研究所的研究团队利用SF-3500研究了青藏高原高寒草甸CO2、CH4和N2O通量及其总平衡对3个增温水平的响应(环境、+1.5℃、+3.0℃),以理解(a)CO2与CH4和N2O通量对增温响应的差异,(b)年GHG通量对不同增温水平的短期敏感性以及(c)生长季和非生长季GHG通量对增温响应的差异。4 小结理加公司专注国产生态仪器的研发和生产,相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。理加将继续努力以全新的面貌迎接更多的挑战和机遇,以更大的热情服务新老客户,为科研人员的科研事业保驾护航。5 Published Literature1.Yan ZQ, Kang EZ, Zhang KR et al. 2021. Plant and Soil Enzyme Activities Regulate CO2 Efflux in Alpine Peatlands After 5 Years of Simulated Extreme Drought[J]. Frontiers in Plant Science, 12: 756956. (PS-9000)2.Li Y, Wang GW, Bing HJ et al. 2021. Watershed scale patterns and controlling factors of ecosystem respiration and methane fluxes in a Tibetan alpine grassland[J]. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108451. (PS-3000)3.Rong YP, Ma L, Johnson DA. 2015. Methane uptake by four land-use types in the agro-pastoral region of northern China[J]. Atmospheric Environment, 116: 12-21. (SF-3000)4.Rong YP, Ma L, Johnson DA et al. 2015. Soil respiration patterns for four major land-use types of the agro-pastoral region of northern China[J]. Agriculture, Ecosystems and Environment, 213: 142-150. (SF-3000)5.Pan ZL, Johnson DA, Wei ZJ et al. 2016. Non-growing season soil CO2 efflux patterns in five land-use types in northern China[J]. Atmospheric Environment, 144: 160-167. (SF-3000)6.Pan ZL, Wei ZJ, Ma L et al. 2016. Effects of various stocking rates on grassland soil respiration during the non-growing season[J]. Acta Ecologica Sinica, 36: 411-416. (SF-3000)7.Ma L, Zhong MY, Zhu YH et al. 2018. Annual methane budgets of sheep grazing systems were regulated by grazing intensities in the temperate continental steppe: A two-year case study[J]. Atmospheric Environment, 174: 66-75. (SF-3000)8.Su CX, Zhu WX, Kang RH et al. 2021. Interannual and seasonal variabilities in soil NO fluxes from a rainfed maize field in the Northeast China[J]. Environmental Pollution, 286, 117312. (SF-3000)9.Yang L, Zhang QL, Ma ZT et al. 2021. Seasonal variations in temperature sensitivity of soil respiration in a larch forest in the Northern Daxing’an Mountains in Northeast China[J]. Journal of Forestry Research, 3. (SF-3000)10.Jia Z, Li P, Wu YT et al. 2020. Deepened snow cover alters biotic and abiotic controls on nitrogen loss during non-growing season in temperate grasslands[J]. Biolog11.Wang JS, Quan Q, Chen WN et al. 2021. Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow[J]. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.144559. (SF-3500)12.庄静静, 张劲松, 孟平等. 2015. 华北低山丘陵区土壤CH4通量对脉冲降雨的响应[J]. 东北林业大学学报, 43(10): 72-78. (SF-3000)13.庄静静, 张劲松, 孟平等. 2015. 华北低山丘陵区人工林土壤CH4通量测定代表性时段研究[J]. 生态环境学报, 24(11): 1791-1798. (SF-3000)14.刘博奇, 牟长城, 邢亚娟等. 2016. 小兴安岭典型温带森林土壤呼吸对强降雨的响应[J]. 北京林业大学学报, 38(4): 77-85. (SF-3000)15.庄静静, 张劲松, 孟平等. 2016. 非生长季刺槐林土壤CH4通量的变化特征及其影响因子[J]. 林业科学研究, 29(2):274-282. (SF-3000)16.何方杰, 韩辉邦, 马学谦等. 2019. 隆宝滩沼泽湿地不同区域的甲烷通量特征及影响因素[J]. 生态环境学报, 28(4): 803-811. (SF-3000)17.何可宜, 沈亚文, 冯继广等. 2021. 植物残体输入改变对樟子松人工林土壤呼吸及其温度敏感性的影响[J]. 北京大学学报(自然科学版), 57(2): 361-370. (PS-2000)
  • 辽宁枫林谷森林公园入选首批36个中国森林氧吧称号
    辽宁枫林谷森林公园负氧离子监测显示系统入选中国首批36个中国森林氧吧称号之一的辽宁桓仁枫林谷森林公园于近期安装完成负氧离子在线监测LED实时显示系统。景区气候凉爽宜人。每逢盛夏,大多地区酷暑难耐,但景区平均气温20℃左右,湿度65%左右,空气纯净,负氧离子含量每立方厘米数万个以上,置身其中,令人头脑清新,呼吸舒畅,心情愉悦。 2015年9月7日,首批“中国森林氧吧”名单在北京揭晓。评选委员会将全国36个获评名单向社会公示,接受监督。由中国绿色时报社《森林与人类》杂志发起的“寻找中国森林氧吧”活动,自2015年4月15日开展以来,得到全国符合申报条件的单位的积极响应和踊跃参与。“寻找中国森林氧吧”评选委员会从全国申报单位中评选出首批36个“中国森林氧吧”。[2015“中国森林氧吧”公示名单安徽琅琊山国家森林公园重庆缙云山国家级自然保护区重庆梁平县百里竹海风景名胜区重庆四面山自然保护区重庆山王坪喀斯特国家生态公园重庆仙女山国家森林公园甘肃莲花山国家森林公园甘肃小陇山国家森林公园桃花沟景区甘肃麦积国家森林公园植物园景区广西龙胜温泉国家森林公园贵州梵净山国家级自然保护区贵州贵阳阿哈湖国家湿地公园贵州毕节国家森林公园贵州樟江风景名胜区贵州尧人山国家森林公园河北雾灵山国家级自然保护区河南黄柏山国家森林公园河南济源南山省级森林公园河南南湾国家森林公园黑龙江呼中国家级自然保护区黑龙江南瓮河国家级自然保护区湖北大别山主峰风景区湖南炎陵县神农谷国家森林公园吉林兰家大峡谷国家森林公园辽宁本溪恒仁枫林谷森林公园内蒙古大兴安岭汗马国家级自然保护区内蒙古大兴安岭莫尔道嘎国家森林公园山东泰安市徂徕山国家森林公园山东泰山国家森林公园山东淄博市原山国家森林公园山西晋中市乌金山国家森林公园四川乐山市黑竹沟国家森林公园浙江大盘山国家级自然保护区浙江钱江源国家森林公园浙江雁荡山国家森林公园浙江玉环大鹿岛[1] 陕西汉中黎坪国家森林公园
  • 原生态“PRI-ECO & CFERN森林生态连清监测技术野外培训大篷车”走进长白山
    如何量化的评价林业生态建设的成果,是推进长白山森林生态系统建设及保护的首要问题。目前,森林生态连清,已成为我国森林生态系统服务、退耕还林工程生态效益、绿色国民经济核算等森林生态状况观测与清查的关键技术。在吉林长白山举办“森林生态连清监测技术野外培训班”,其重要意义显得尤为突出。由中国森林生态系统定位观测研究网络及PRI-ECO生态监测技术中美联合实验室主办,露水河林业局与长白森经局协办,2016年7月11日到15日,“PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”走进长白山。 来自中国林科院、中国林科院院省科技合作办公室、吉林长白山森林生态系统国家定位观测研究站、吉林长白山西坡森林生态系统国家定位观测研究站、吉林松江源森林生态系统国家定位观测研究站、露水河林业局、长白森经局、北京普瑞亿科科技有限公司、上海市林业局、上海市林业总站、贵州梵净山自然保护区管理局、山西省林业科学研究院、广西林业科学研究院、呼伦贝尔市林业科学研究所、赤峰市旺业甸实验林场、赤峰市林业局、赤峰市林业科学研究院、河南省淅川县林业局、宁波市林业局、宁波市林特科技推广中心、甘肃省林业科学研究院、甘肃省林业厅生态办、黑河市林业科学院、江西农业大学、贵州省林业厅、贵州省林科院等26个单位的五十多位科技人员参加了大篷车走进长白山培训活动,现场反响热烈。 吉林长白山森林生态站任军研究员,做了题为“吉林省森林生态系统服务功能标准化评估”的报告。森林生态服务功能是指森林生态系统与生态过程所形成及维持的人类赖以生存的自然环境条件与效用。任军研究员介绍了森林生态服务功能的定义,进行生态评估的背景,国内外进展和现状及评估方法。依据《森林生态系统定位观测指标体系》(LY/T 1606-2003)和《森林生态系统长期定位观测方法》(LY-T 1952-2011)等获得的数据,将吉林省森林生态服务功能各项概念化的指标转化为数字化指标,以价值量的方式评估森林生态效益。 上海市林业局戴咏梅处长,做了题为“上海城市森林特点及生态监测布局与功能”的报告,重点阐述了如何根据上海自然、社会经济和城市林业特点,基于ArcGIS空间分析方法,以上海市地势地貌指标、土壤指标、植被指标、生态功能区指标为基础分类依据,通过图层叠置分析,采取“典型抽样”的方法,提出了上海森林生态系统定位观测研究网络的布局及其功能。 山西省林业科学研究院孙拖焕副院长,做了题为“山西省森林生态监测的特点与布局”的报告,介绍了山西省森林生态定位研究网络发展进程、布局方法以及划分依据。 吉林长白山西坡森林生态系统国家定位观测研究站杨慧主任,介绍了生态站的研究方向与定位,强调要加强研究平台建设,加快基础研究步伐,注重开放合作与交流。 吉林松江源森林生态系统国家定位观测研究站管清成副站长,介绍了森林资源调查的方法,长白山地区森林调查进展,同时对完善森林保护体系的措施与可持续经营对策和与会科技工作者交换了意见。 生态环境监测技术中美联合实验室主任张光辉博士,做了题为“森林生态站标准化建设与硬件配置技术”的报告,报告以森林生态系统长期定位观测的水、土、气、生四大板块的内容为主线,分类介绍了森林生态站建设所需的各种观测仪器设备,着重就目前国内外主流观测仪器设备的技术更新、设备更替和生态监测未来所需的设备功能和性能,提出了自己的观点和看法。 会议期间,大篷车参会人员考察了长白山西坡站,参观了露水河林业局国家红松良种基地、红松科技馆,科技馆工作人员为大家介绍了红松的起源、培育发展过程,以及露水河林业局30多年来的红松科研成果。 露水河林业局座落于长白山西北麓,素有“红松之乡”的美誉。2013年,露水河林业局建成我国首个森林生态连清技术示范地,露水河林业局森林生态连清与价值评估,是国内首次将森林连清技术应用到林业工作管理实践中,也是国内第一次紧密结合林业局尺度森林资源二类调查结果,并与林业局二类调查成果同时发布的生态连清与价值评估。这为开展森林资源核算和绿色经济评价服务,推动森林资源清查工作从侧重森林面积、林木蓄积量的监测,向兼顾林木资源与生态状况、公众效益监测并重转变起到了重要作用,使森林资源清查工作更好地满足建设生态文明制度的需要。 “PRI-ECO & CFERN森林生态连清监测技术野外培训大篷车”,作为公益性的培训活动,通过现场面对面的传帮带方式,与多种级别和形式的生态站进行高效互动,提升生态站野外监测技术人员的工作效率,继而提升森林生态连清标准化观测能力,使CFERN作为全球范围内国家尺度最大的生态观测网络,真正发挥出应有的作用和贡献。
  • 江西成立森林案件检测鉴定中心 独立运作属全国首家
    5月25日,记者从江西省森林公安局获悉,为规范江西森林案件检测鉴定工作程序,提高案件检测鉴定效率,省森林公安局联合江西省林科院共同组建“江西省森林案件检测鉴定中心”,于5月19日正式挂牌运作。据悉,该中心将以独立法人形式运作,在全国属首家。   据了解,近年来,江西森林案件呈多元化与复杂化发展趋势,在案件侦破过程中对检测鉴定工作也提出了更高要求。“在以往,我省森林公安没有自己的鉴定机构,很多森林案件的检测鉴定工作,都是委托第三方或送到外省专业检测鉴定机构进行,特别是一些重大案件。而这样一来,就会存在鉴定成本高、工作效率低等情况,且不利于我省森林案件检测鉴定工作的规范化发展。”据江西省森林公安局技术处处长栾晋介绍。   为有效解决这一问题,改变江西森林案件检测鉴定工作目前的现状,江西省森林公安局积极探索,勇于创新,与江西省林科院联合组建成立“江西省森林案件检测鉴定中心”,中心成立后,将依托省林科院先进的技术条件与专业的技术人才优势,服务于全省森林案件,从而大大降低我省森林案件检测鉴定成本、提高工作效率。   据悉,该中心可提供野生动植物司法鉴定、林木(地)资源司法鉴定、林木种子苗木司法鉴定、林业有害生物司法鉴定、林业有害生物司法鉴定、林产品、森林食品司法鉴定、林业工程(质量)司法鉴定、森林火灾司法鉴定等七项检测鉴定服务。   “中心已在工商及司法部门注册备案,成立后,将以独立法人的模式运作,可向全省森林公安机关、社会团体及个人提供专业的案件检测鉴定服务,并可出具具有法律效力的检测鉴定报告,确保案件的监测鉴定结果公平、公正、公开。”栾晋介绍,目前在国内,像这样以独立法人形式模式运作的专业森林案件检测鉴定机构,这还是首家,该中心的成立,也标志着我省森林公安机关森林案件检测鉴定工作逐步步入正规化轨道。
  • “PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”走进南阳
    2016年10月17-20日,由中国森林生态系统定位观测研究网络、PRI-ECO生态监测技术中美联合实验室、南阳市林业局主办,淅川县林业局、桐柏县林业局承办,“PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”走进南阳。来自河南省林业厅、河南省林科院、湖北红安县、河南省森林生态站、南阳市林业局、南阳市直林业系统、南阳县区林业局、北京普瑞亿科科技有限公司等单位100余人参与了此次活动。10月18日,大篷车首先开进淅川县,举办了森林生态连清关键技术培训,现场反应热烈。我国森林生态效益监测与评估首席科学家,森林生态连清体系的提出者和设计师王兵研究员主持了开班仪式,并做了题为“森林氧吧功能监测与人类福祉”的报告,就林业生态系统功能与服务、森林氧吧-空气维生素的供给者、森林的治污减霾功能进行了系统的讲解,阐述了提高森林生态服务功能的有效途径。PRI-ECO生态监测技术中美联合实验室主任张光辉做了题为“森林生态系统定位研究站建设规范——森林生态站建设监测技术硬件发展”的报告,报告以森林生态系统长期定位观测的水、土、气、生四大板块的内容为主线,分类介绍了森林生态站建设所需的各种观测仪器设备,着重就目前国内外主流观测仪器设备的技术更新、设备更替和生态监测未来所需的设备功能和性能。河南省省级生态建成网络负责人、河南省林科院李良厚研究员做了题为“河南省森林生态定位观测研究网络的建设现状及进展”的报告,指出目前已初步形成了覆盖全省主要自然类型区的森林生态观测研究站网,取得全省主要自然类型区森林生态环境的大数据,推进了全省林业生态效益评估工作。作为大篷车的主题活动,10月19-20日,王兵研究员主持进行了森林氧吧探测活动。分别对淅川县毛堂乡龙山生态站、丹江大观园、丹江库区、南水北调中线工程渠首和桐柏县淮河源进行了负氧离子探测。其中毛堂乡龙山生态站负氧离子监测瞬时值为2700个/cm3,丹江大观园龟寿瀑旁负氧离子监测瞬时值达20100个/cm3,丹江库区行船上负氧离子监测瞬时值达9050个/cm3,渠首闸门处负氧离子监测瞬时值峰值达8500个/cm3,桐柏县淮河源森林生态效益监测点负氧离子含量为5500个/cm3。此外,王兵研究员等专家对河南省淮河源森林生态效益监测站建设进行现场指导,就生态效益监测站的建设规范、软硬件配置、数据传输等进行详细讲解,并表示将给予全方位的技术支持,争取早日建成,为淮河源生态建设提供科学依据。“PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”,作为公益性的培训活动,通过现场面对面的传帮带方式,与多种级别和形式的生态站进行高效互动,提升生态站野外监测技术人员的工作效率,继而提升森林生态连清标准化观测能力,使CFERN作为全球范围内国家尺度单一生态系统类型数量最多的生态观测网络,真正发挥出应有的作用和贡献。 关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际著名厂商签订独家代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • 重大科研专项聚焦森林阻滞PM2.5
    应对日益猖獗的PM2.5,森林能发挥什么作用?我国林业科学家日前启动了一项绿色调控重大研究项目。   据悉,该项目名为“森林对PM2.5等颗粒物的调控功能与技术研究”,是今年最大的国家林业公益性行业科研专项。项目将北京、广州作为重点研究区域,力图通过把森林滞留PM2.5等颗粒物的能力定量化,筛选出不同典型区域有效治理PM2.5等颗粒物的适宜树种,找到森林阻滞不同来源PM2.5等颗粒物的优化配置的理论技术。   项目首席科学家、北京林业大学教授余新晓介绍说,项目主攻方向有三个:一是机理及生态机制,二是监测及评价,三是技术模式与集成。   北京林业大学校长宋维明表示,该项目瞄准国家重大需求,对于开展森林对PM2.5调控的基础研究和实际应用具有重要意义,将为提高森林生态服务功能和改善环境质量提供技术和理论依据。   据了解,项目由李文华、蒋有绪、曲久辉三位院士领衔,联合来自北京林业大学、中国林业科学研究院、中国科学院等单位的近百名专家协同攻关。
  • 我司为四川省黑宝山森林公园建设大气负氧离子监测系统
    近日我司为四川省黑宝山森林公园大气负氧离子监测系统正式投入使用。 “灵气黑宝山,天然大氧吧,养生好去处,回归天地间。”据了解,黑宝山,连绵起伏,有森林、彩叶、清泉、险峰、奇石̷̷一年四季,美不胜收。春天,百花齐放,漫山杜鹃,争奇斗艳;夏天,凉风习习,龙池山泉,飞瀑婉转;秋天,层林尽染,珍稀红豆,绚丽多彩;冬天,银装素裹,万亩雾凇,冰雪奇观。黑宝山森林公园,幅员面积4万亩,森林覆盖率99%,负氧离子每立方米2万个,被誉为“天然氧吧”。目前,万源市正准备聚力打造系列森林康养产品,主要有森林宾馆、森林酒吧、森林草场、森林花园、森林沙滩、森林垂钓、森林露营、森林穿越等项目。
  • 空天院首创超高分辨率光学森林三维遥感新方法
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室研究员倪文俭带领的森林遥感团队,在利用超高分辨率光学遥感立体观测数据提取森林三维结构研究方面取得重要进展。现有研究认为,光学多角度立体观测数据在林区不具备穿透能力,故在缺乏林下地形数据时,无法独立进行森林垂直结构参数的直接测量,特别是在浓密山地林区。本研究发现:分辨率优于0.2 米的光学立体观测数据能够对单株树木的冠顶结构进行精细刻画;受树木异速生长方程启发,创建了“生长关系约束的林下地形逼近算法”(AGAR),打破了传统的认知局限,实现了仅利用光学立体观测数据对森林垂直结构的直接测量。相关研究成果发表在Remote Sensing of Environment上。   森林作为重要的陆地生态系统碳库之一,准确估算其碳储量是遥感研究的主要方向,可服务于我国的“双碳”战略和地球系统碳循环过程研究。过去,国内外开展了基于遥感影像光谱或微波散射强度等“二维”特征的森林碳储量估算原理与方法研究,而“地形影响”“遥感信号饱和”仍是难以逾越的两大科学难题。因此,国际学界逐渐转向以卫星测距技术为基础的“三维”遥感,包括以激光测距为基础的激光雷达遥感、以微波测距为基础的合成孔径雷达干涉以及以视觉测距为基础的光学多角度立体观测。美国科学家致力于发展具备冠层穿透能力的星载激光雷达,包括早期搭载在航天飞机上的激光高度计SLA01和SLA02、2003年至2009年运行的ICESat/GLAS卫星、2018年发射的ICESat-2卫星以及2019年放置在国际空间站上的GEDI。欧洲科研人员则积极发展穿透能力较强的L波段Tandem-L和P波段BIOMASS合成孔径雷达干涉卫星,并计划2024年发射。相较于激光雷达和合成孔径雷达干涉,光学多角度立体遥感具有图像直观形象的显著优势但受穿透能力的限制,目前主要用于地表高程的测量,且需要依靠其他数据源提供的林下地形才能对森林垂直结构进行测量,应用价值和场景受限。   近年来,中国在光学多角度立体遥感方面快速发展,先后发射了资源三号、高分七号、天绘系列以及其他商业遥感卫星,同时影像空间分辨率逐步提高。能否利用不断提高的空间分辨率来突破其穿透能力弱的限制,进而最大程度地发挥超高分辨率光学多角度立体遥感数据的应用价值,既是国际前沿科学问题又是中国遥感科研人员亟需回答的问题。   森林遥感团队意识到超高分辨率光学多角度立体观测遥感数据的独特价值,自2014年对无人机立体观测数据在森林结构参数测量中的应用进行了持续研究,并于2018年开展了大兴安岭林区大范围无人机采样观测实验,揭示了观测角度与影像分辨率的耦合规律,证实了森林高度信息对叶面积指数估算的补充作用,研发了针对落叶林区森林高度提取的有叶季和无叶季影像协同解决方案,突破了光谱与三维几何特征协同的散发枯立木识别技术、单木识别与分割技术、以背景识别为基础的高精度森林覆盖度提取技术。在上述数据与技术积累的基础上,该团队创建了“生长关系约束的林下地形逼近算法”(AGAR),实现了复杂地形条件下森林高度的直接提取。该成果证实了无需额外林下地形数据的支持,AGAR算法仅利用超高分辨率光学多角度立体观测数据即可实现森林高度提取。   尽管AGAR算法使用无人机获取的立体观测影像开展研究,且算法的具体技术细节需要进一步测试完善,但随着0.1米卫星光学遥感数据时代的到来,该方法将开启超高分辨光学立体遥感影像森林三维遥感新时代。图1.生长关系约束的林下地形逼近算法(AGAR)的核心思路图2.典型地形条件下森林高度提取的效果。(a)-(c)为光学多角度立体观测数据获取的数字表面模型(DSM);(d)-(f)为光学多角度立体观测数据通过林窗插值提取的森林高度,由于浓密林区林窗较少,导致树高被严重低估或者地形特征去除不彻底;(g)-(i)为利用AGAR提取的森林高度。(a)区域覆盖山脊,(b)区域覆盖山谷;(c)区域覆盖从山脚到山顶的斜坡。
  • 报告显示过量森林砍伐致巴西温室气体排放量不断攀升
    巴西环保组织“气候观测站”于当地时间3月23日发布了最新报告,报告汇编了从2010至2021年间巴西温室气体排放概况。报告显示,巴西温室气体排放量从2010年的约17亿吨(二氧化碳当量)增加到了2021年的约24亿吨,增幅约41%。报告指出,造成温室气体排放量上升的主要原因是“过量森林砍伐”。此次报告中统计了废弃物、工业、能源产业、农业、土地和森林利用等共5个主要排放源。2021年,土地和森林利用这一排放源的排放量占巴西温室气体排放总量的近一半(49%),达11.9亿吨,而亚马孙地区的森林砍伐在土地和森林利用这一门类中,温室气体排放所占比例达77%。巴西国家空间研究所(INPE)的数据显示,在2010至2021年间,巴西年度亚马孙森林砍伐量从2010年的约7000平方公里增加到2021年的超过1.3万平方公里,增幅约86%。报告认为,由于森林滥伐问题严重,巴西在温室气体减排方面经历了“失去的十年”。联合国政府间气候变化专门委员会(IPCC)于3月20日发布的最新报告指出,与工业化前水平相比较,当前全球气温已经上升了1.1摄氏度,而极端天气事件也因此变得更加频繁和强烈,为了将全球气温上升幅度控制在1.5摄氏度以内,温室气体排放必须“最迟在2025年之前”达到峰值,到2030年比峰值减少48%。2021年11月1日,巴西时任环境部长曾公开承诺,相比2005年,巴西将于2030年减少温室气体排放50%,2050年实现碳中和。对此,有业内专家表示,巴西若要顺利实现承诺目标则需要大幅降低森林砍伐量。
  • 249万!内蒙古七老图山森林生态系统定位观测研究站仪器设备采购(进口设备)
    项目编号:CFZCKQS-C-H-220009项目名称:内蒙古七老图山森林生态系统定位观测研究站仪器设备采购(进口设备)采购方式:竞争性磋商预算金额:2,490,000.00元采购需求:合同包1(其他仪器仪表):合同包预算金额:2,490,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表插针式植物茎流计1(套)详见采购文件150,000.00-1-2其他仪器仪表稳态气孔计1(台)详见采购文件50,000.00-1-3其他仪器仪表便携式叶面积仪1(台)详见采购文件140,000.00-1-4其他仪器仪表植物生长测量系统1(套)详见采购文件190,000.00-1-5其他仪器仪表植物冠层图像分析系统1(套)详见采购文件180,000.00-1-6其他仪器仪表全自动凯氏定氮仪1(台)详见采购文件420,000.00-1-7其他仪器仪表土壤水分特征曲线测量仪1(台)详见采购文件440,000.00-1-8其他仪器仪表土壤碳排放测定系统1(套)详见采购文件350,000.00-1-9其他仪器仪表连续流动分析仪1(台)详见采购文件570,000.00-本合同包不接受联合体投标合同履行期限:自合同签订日期起30日历天
  • 土壤呼吸 | 极端干旱改变土壤微生物功能群丰度来降低土壤异养呼吸
    土壤呼吸 | 极端干旱通过改变高寒泥炭地土壤微生物功能群丰度来降低土壤异养呼吸而非甲烷通量【温室气体】人类活动造成温室气体排放急剧增加,全球地表温度持续上升,显著改变了自然生态系统碳水循环格局。极端气候事件,尤其是极端干旱事件发生的频率和强度不断升高,对土壤含水量、土壤微生物群落结构和功能、土壤异养呼吸(Rh)以及土壤甲烷(CH4)通量具有重要影响。高寒泥炭地拥有巨大的碳储量,对气候变化高度敏感。虽然目前围绕高寒泥炭地碳排放开展了一些研究,但对高寒泥炭地生态系统碳排放对极端干旱响应的微生物机制仍不清楚。若尔盖国家级自然保护区基于此,中国林业科学研究院湿地研究所的研究团队以青藏高原东部若尔盖国家级自然保护区高寒泥炭地(33°47′56.62′′ N,102°57′28.44′′ E,3430 m.a.s.l.)为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,旨在解决以下问题:(1)不同植物生长期,极端干旱如何影响Rh和CH4通量?(2)极端干旱如何影响土壤微生物群落结构和功能群?以及(3)驱动Rh和CH4通量变化的主要因素是什么?作者于2019年6月18日至9月25日测量了Rh(PS-9000便携式土壤碳通量自动测量系统(北京理加联合科技有限公司))和CH4通量(一个闭路静态室(0.5×0.5×0.5 m)+ABB LGR便携式温室气体分析仪(UGGA,GLA132-GGA))。试验三个生长期结束时,作者测量了样地0-20 cm土壤的土壤性质,包括总氮(TN)、土壤有机碳(SOC)、有效磷含量(AP)、总磷(P)、pH值、溶解有机碳(DOC)、土壤含水量(SWC)、硝态氮(NO3--N)、铵态氮(NH4+-N)、微生物生物量磷(MBP)、微生物生物量氮(MBN)和微生物生物量碳(MBC)。此外,还进行了新鲜土壤样品的DNA提取、PCR扩增和测序。图1 PS-9000便携式土壤碳通量自动测量系统。【结果】图2 不同植物生长期极端干旱对土壤异养呼吸(a)和甲烷通量(b)的影响。“ED”,“MD”,和“LD”分别代表植物快速生长期、盛花期和植物生长衰退期。图3 不同植物生长期极端干旱对细菌碳循环功能群的影响。图4 驱动因素对土壤微生物呼吸(a)和甲烷通量(b)的相对贡献。【结论】极端干旱导致植物生长衰退期土壤异养呼吸显著降低38.04 mg m−2h−1,但对CH4通量无显著影响。极端干旱显著降低了细菌的α多样性,显著降低了植物快速生长期和衰退期的Rokubacteria和Chloroflexi菌的相对丰度,显著增加了盛花期Actinobacteria菌的相对丰度。在植物快速生长期和盛花期,极端干旱使芳香烃降解功能群(aromatic hydrocarbon degraders)相对丰度分别降低了50.26%和64.37%。在植物生长衰退期,极端干旱显著降低了甲醇氧化(methanol oxidizers)和木质素降解(lignin degraders)功能群的相对丰度,分别为81.63%和82.08%。随机森林模型分析表明,细菌功能群在决定土壤异养呼吸和甲烷排放中起着重要的作用。芳香族化合物降解(aromatic compound degraders)和芳香烃(aromatic hydrocarbon degraders)降解功能群对土壤异养呼吸累计贡献率为11.89%。芳香族化合物降解(aromatic compound degraders)、芳香烃降解(aromatic hydrocarbon degraders)、脂肪族非甲烷烃降解(aliphatic non-methane hydrocarbon degraders)和甲基营养(methylotrophs)功能群对甲烷通量的累计贡献率为13.29%。研究结果强调土壤细菌碳循环功能群对于探索未来极端干旱背景下土壤碳循环可能的微生物响应机制至关重要,为高寒泥炭地应对未来气候变化提供了理论基础和科学依据。【产品简介】PS-9000是一套用于测量土壤CO₂通量的便携式测量系统,采用动态气室法测量,专利设计。具有控制测量、存储和数据处理等功能,可测量呼吸室内CO₂浓度变化,同时结合自身测量的空气温度、大气压、土壤温度等传感器的数据,计算处理得到CO₂通量。PS-9000可通过掌上控制器实现无线操作,实时显示仪器测量的各种参数值,并可现场修改各种设置参数。
  • 案例分享丨复旦大学聂明团队在土壤碳循环方面取得新进展
    近日,复旦大学生科院聂明团队在全球变化生态学研究领域取得重要进展。相关成果以“Rising temperature may trigger deep soil carbon loss across forest ecosystems”为题发表于Advanced Science 杂志。 因大气CO2浓度升高引起的全球变暖问题是21世纪人类社会所面临的最严峻挑战之一。全球土壤有机碳库储量约是大气碳库的三倍,因此通过土壤有机碳分解释放的CO2对大气CO2浓度有着重要的影响,进而改变区域乃至全球气候。土壤有机碳的分解强度受到温度的调控,其对温度的敏感性被认为是决定未来气候变化态势的关键因素之一,也是陆地气候预测模型的关键假设与重要参数。底层土壤储藏着与表层土壤相当的有机碳,然而以往研究主要集中于表层土壤,对底层土壤碳分解的温度敏感性还知之甚少,这直接制约了对未来气候变化态势的判断。 为此,该研究团队选取我国90个典型森林生态系统(图1),涉及热带雨林、亚热带森林、暖温带森林、寒温带森林与北方森林。每个森林中分6个土层采集了1米深度的土壤,探究土壤有机碳分解温度敏感性随土壤剖面变化的一般性规律及其调控机制。 图1 中国森林90个典型土壤剖面采样点空间分布图。 研究发现,随着土壤深度的增加,有机碳分解的温度敏感性随之增大,表明底层土壤碳分解对全球变暖的响应更为敏感(图2a)。此外,表层土壤碳分解温度敏感性主要受气候因子调控,而底层土壤主要受气候因子和碳质量的共同调控(图2b)。 图2 土壤有机碳分解温度敏感性(Q10)随土壤深度增加而增大(a)及不同因子对Q10调控作用的相对贡献随土壤深度的变化(b)。 该研究还发现,忽视土壤有机碳分解温度敏感性沿土壤剖面的变异,会极大低估土壤释放的CO2量(图3),强调急需将这一特征纳入到陆地气候预测模型中以提高预测精度。 图3 与多层模型(six-layer model;使用剖面变异的温度敏感性Q10值)相比,单层模型(single-layer model;将表层0–10 cm土壤的Q10值应用于整个土壤剖面)会低估本世纪末温度升高3°C时土壤碳排放,即高估土壤相对碳库(relative SOC stock)。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202001242 从聂明老师团队的研究中发现,土壤有机质分解的温度敏感性(Q10)不仅是生态学和土壤学研究的核心科学问题之一,也是全球变化生态学研究的热点领域。国内外学者对Q10的影响因素或机制开展了大量卓有成效的研究工作,并有不少相关的综述或展望。 在该项研究中,聂明老师团队运用的测定方法是连续变温培养+气相色谱手动测量,而今天要为大家介绍的是一种更快的连续变温培养+连续自动测试新模式。 长期以来,室内培养研究的方法经历了几次技术更新。最早是用碱液吸收法+气相色谱来进行(CDM模式),该方法无法变温,测试点少,并且需要人工操作;之后经过技术改进,可以变温培养,仍然采用气相色谱设备检测(VDM模式),该方法仍然存在取样点少,人工操作不方便,无法大量样点试验等问题。 鉴于培养和测定模式对实验研究的重要性,北京普瑞亿科科技有限公司和中国科学院地理科学与资源研究所何念鹏研究团队合作研发了PRI-8800全自动变温土壤培养温室气体(同位素)分析系统,并发展了Q10研究的连续变温培养+连续自动测试的新模式。3种模式的示意图见【图1】,各自的特点、优缺点见【表1】。图1:3种模式示意表1:3种模式的特点VCM模式实验过程 150mL样品瓶(PRI-8800样品瓶)中填装40g土壤样品,向其中混入10g石英砂,防止土壤板结,调整含水量至60%(WHC),放置在样品盘上。土壤样本在25°C下预培养7天,排除微生物活动干扰。分别在第1天、5天、8天、15天、22天和26天的时候,使用PRI-8800全自动变温控制土壤通量系统(PRI-ECO,中国)测量每个样品瓶中SOM分解速率(Rs)。该系统允许连续改变培养温度并在高频下测量Rs。测样时,每个样品需在一个设定温度恒温稳定至少30分钟,然后在12小时的测量周期内测量36次(75s一个样品)。PRI-8800每秒钟记录一次CO2浓度,同步记录土壤温度,以提供准确的Rs和土壤温度配对数据。采用称重法监测土壤水分。最后,使用经典指数方程计算Q10值,每个方法的R2和P值。所用设备 PRI-8800即可对接温室气体分析仪,又可对接碳氮同位素分析仪。稳定同位素技术具有示踪、整合和指示等多项功能和检测快速、结果准确等特点,δ13C、δ15N同位素技术被广泛用于土壤碳氮循环研究,也成为探讨土壤中有机组分来源和转化动态的有效手段,利用δ13C同位素可区分土壤呼吸的不同成分,指示碳的来源和周转途径;δ15N用于土壤氮素转换等的研究。可灵活对接不同分析仪(同位素分析仪、气体浓度分析仪等);标配16位样品盘,也可选配4位或9位样品盘;自动化程度高,无人值守,24h不间断工作;可方便拆卸土壤瓶固定装置,实现在线置换土壤瓶;全自动控温系统(-20~80 ℃),控温精度优于0.1 ℃;土壤温度传感器探针可频繁自动插入土壤瓶中,准确测量土壤温度;高效的气体循环气路——双回路气路设计,可根据需要对CO2浓度进行预处理,调控系统内的起始CO2浓度(避免过高CO2浓度的抑制效应);高效的气路设计,缩短响应时间;可灵活设定的标定系统,保障测量数据的准确性;友好的软件界面,可根据具体实验需要设定参数及数据存储等功能;全自动日变化温度模拟功能。参考文献: Robinson J M , T. A. O’Neill, Ryburn J , et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year[J]. Biogeochemistry, 2017, 133(3):101-112.Liu Y, He NP*, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition[J]. Soil Biology & Biochemistry, 2019, 138, 107596何念鹏, 刘远, 徐丽, et al. 土壤有机质分解的温度敏感性:培养与测定模式[J]. 生态学报, 2018, 38(11).
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制