当前位置: 仪器信息网 > 行业主题 > >

三维打印

仪器信息网三维打印专题为您整合三维打印相关的最新文章,在三维打印专题,您不仅可以免费浏览三维打印的资讯, 同时您还可以浏览三维打印的相关资料、解决方案,参与社区三维打印话题讨论。

三维打印相关的资讯

  • 英首次将人类胚胎干细胞用于三维打印
    据物理学家组织网报道,英国赫瑞瓦特大学和一家干细胞技术公司合作,开发出一种真空阀门式(valve-based)三维(3D)打印技术,首次将3D打印拓展到人类胚胎干细胞范围。这一突破使得利用人类胚胎干细胞来“打造”移植用人体组织和器官成为可能,打印结构还能用于药物测试,加速改良测试过程。相关论文发表在2月5日出版的《生物制造》杂志上。   近几年来,3D打印的方法已逐渐发展到生物制造领域。罗斯林塞拉博干细胞技术公司商业开发经理詹森金说:“通常,实验室培养细胞是在二维平面生长,只有少数细胞能用三维打印方式。人类干细胞太敏感,难以用这种方式来控制。我们是世界上首次将人类胚胎干细胞打印出来并进行培养的。”   打印过程中的关键问题是可控性和减少伤害,这样才能保证细胞与组织的发育能力和正常功能。人类胚胎干细胞来自胚胎早期阶段产生的“干细胞系”,没有明确的发育方向,可以分化为人体内任何类型的细胞。研究小组开发出了一种真空阀式细胞打印机,细胞被装入打印机的两个分离容器,然后按预先编好的程序,被统一打印到一个盘子上。该打印机充分考虑了人类胚胎干细胞的敏感性和脆弱性,能打印出具有高度活性的细胞。   当人类胚胎干细胞被打印出来以后,还要经过多项测试,如检测它们的活性,看其是否还能分化为不同类型细胞 检测细胞的打印密度、特征属性和分布情况,以此评价这种打印方法的精确性。   “我们发现,这种真空阀门打印方式非常温和,足以保持干细胞的发育能力,还能精确打出同样大小的球体。更重要的是,打印出来的人类胚胎干细胞保持了它们的多能性,还能分化成其他类型的细胞。”论文合著者、英国赫瑞瓦特大学的威尔文妙舒(音译)说:“该方法是用气压驱动来打印细胞,通过开关微真空管能控制气压,通过改变喷头直径、入口气压或打开真空管的时间可以精确控制喷出细胞的数量。”   舒还指出,通过打印人类胚胎干细胞生成的3D结构,我们能造出更精确的人体组织模型,这对药物开发、毒性测试都非常有用,因为大部分药物开发都是以人类疾病为目标,用人类组织来实验更有意义。   金表示:“这是一次科学的进步。我们希望这一进步能带来长期的巨大价值,为人们提供可靠的药物而不必用动物做药物试验,提供用于移植的器官而无需捐献,并能消除器官排斥和免疫抑制带来的问题。”
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
  • 《Biofabrication》:3D打印器件辅助的声学细胞三维组装
    在前沿的组织工程、药物开发、甚至临床应用中,模拟体内组织结构和环境的体外模型构建都是十分重要的条件,而细胞或微结构单元的组装方式以及细胞外基质环境在组织功能化过程中扮演关键角色,这也就促使了三维组织结构打印技术的发展。在这些技术中,以投影式光固化、挤出式打印技术等为代表,使用包含有细胞的水凝胶作为生物墨水材料,展现了优越的生物组织构建的能力。但是,这种打印仍局限于对生物墨水整体打印,而其中的细胞是随机分布的,难以主动的对细胞组建微结构单元,这也是目前生物打印面临的一个挑战。近些年,声波作为一种易于集成、高生物亲和性且高精度的控制手段,在细胞的灵活操控和高效组装应用中得到广泛研究,比如将声波与微流控相结合的声流控与声镊技术,特别适合操控细胞构建类组织的体外模型。而如何将二维的声场操控技术拓展到三维,并进行三维组织结构的组装,是其迈向生物3D打印需要解决的难题。近日,厦门大学陈鹭剑教授、胡学佳助理教授与武汉大学杨奕教授课题组合作提出了一种新的解决方案:结合层片打印和声学操控细胞三维结构组装,并以题为:Smart acoustic 3D cell construct assembly with high-resolution发表于Biofabrication 期刊上。图1.声学3D细胞组装示意图。借鉴多层光固化打印的思路,本研究提出基于声表面波在凝胶层片中直接操控细胞组成特征结构,并对层片单元进行多层组装,成功实现了细胞的三维结构组装和仿生组织构建。图一中展示了该策略的示意图,该技术在Z-切铌酸锂基底上设计具有六重旋转对称的换能器配置,保证较大的调制自由度,通过波矢组合、相位组合以及振幅调制(图1b),能够将层片中细胞组装成为多样的结构。而为了将表面波产生的二维声场和二维细胞结构拓展到三维空间,使用了摩方精密的PμSL高精度3D打印技术(nanoArch P150,摩方精密),来制造高精度模块化框架,与表面波声场耦合,并在该框架中实现细胞组装(图1c)。GelMA 60作为生物墨水,经过光固化后,可形成具有微观结构的凝胶层片。再将该凝胶层片作为二维单元,进行多层的对齐组装以及使用水凝胶融合,即可得到被凝胶基质固定的微观三维结构。图2.结合3D打印模组的器件示意图。作为论证,图三展示结合3D打印组件的声波装置调制产生的多种声场结构,其具有不同的特征单元,比如类血管的环形结构、类肝小叶的蜂巢结构以及密堆的点阵结构等等,并且通过实验验证其进行灵活细胞组装的能力(图3b)。通过二次三维组装,研究人员实现了多种三维的细胞尺度的类组织模型构建,包括空心管状的毛细血管组织、交织的组织结构以及类肝小叶蜂巢组织等(图4)。这些特征单元的尺度取决于声场的周期,可以通过设计实现在几十微米到数百微米变化。而在三维空间上,由于使用高精度打印的单元结构,这些层片的厚度可以低至100微米,能够通过设计不同层间距离适配不同组织高度的需求。并且这些三维类组织模型经过培养展现了较好的活性,微观上紧密连接的仿生结构进一步促进了细胞与组织功能化的过程,比如实验中验证发现,管状的三维模型在长期培养的过程中细胞之间相互连接融合并展现血管化趋势。图4.对细胞层片单元进行多层组装,构建的多种三维结构荧光共聚焦图。该声学细胞3D组装技术将声表面波的二维操控能力拓展到三维空间,展现了独特的优势,比如直接对细胞组装、精准构造组织结构、灵活可控以及操作简便。这项研究展现了对生物墨水打印之外对微观介质构建的能力,从新的维度提出了一种创新的技术路线。论文信息:Hu, X. J. Zheng, J. J. Hu, Q. H. Liang, L. Yang, D. Y. Cheng, Y. X. Li, S. S. Chen, L. J. Yang, Y., Smart acoustic 3D cell construct assembly with high-resolution. Biofabrication 2022, 14 (4),045003
  • Pμ SL 3D打印技术在三维复杂组织支架中的应用
    3D打印技术近年来被广泛应用于组织工程应用中,利用这一技术可以稳定可靠加工特定尺寸的复杂三维支架,以有效构筑三维生物模拟环境用以相关生命科学研究。本文以类巴基球这一新型支架结构为例,展示面投影微立体光刻3D打印技术如何快速大面积制作三维精细复杂组织支架。 细胞在三维生理环境中的形貌和分化与其在二维组织培养环境中有很大的差别,近年来研究者们对三维结构系统中的细胞生理行为进行了广泛研究。然而,这些三维组织系统在化学组分、力学特性和形状等方面相比二维系统都复杂的多。如何稳定可靠加工出高质量的三维聚合物支架用于后续系统研究细胞的相关行为,仍是首要亟待解决的难题。3D打印凭借其任意复杂三维加工的优势,已被广泛应用于加工各类型组织支架。(如图1所示)图1 使用3D打印技术制作的各类型三维组织支架相比于其他3D打印技术,面投影微立体光刻(PμSL)3D打印技术具有打印精度高、打印速度快、大幅面跨尺度加工、材料适应范围广(聚合物、生物陶瓷等材料)等诸多优点,可适应多种支架结构的打印制作。如图1c所示,利用PμSL 3D打印技术加工的人工轴突支架,可用于直接观察和定量髓鞘形成过程,以及髓鞘化细胞对物理因素和药剂的反应。图1f所示的青蛙骨头支架,被用作生长因子传递的载体工具,最终实现了骨骼缺损中软骨到骨骼的再生。然而,对于一些新型的精细支架结构,由于其结构复杂程度高、特征尺寸小、以及大幅面小批量制作的需求,普通精度的面投影微立体光刻技术3D打印技术仍然难以满足其制作要求。如图2所示的镂空类巴基球结构组织支架(巴基球结构即C60的分子结构,此处讨论的结构由该结构衍变而来),单个支架整体尺寸为200 μm直径,其中的杆径为14 μm,表面开孔边长为25 μm。对于普通精度光固化3D打印技术,由于其设备光学分辨率通常大于50 μm,完全无法打印出14μm的特征细节。图2 类巴基球结构组织支架深圳摩方材料科技有限公司利用其开发的2 μm光学精度设备nanoArch® S130设备,成功实现了对这一新型支架结构的加工制作。对于结构中的十几微米杆径,用2 μm的高分辨像素点可轻易加工完成。另一方面,这一结构为高密度结构,即结构表面开孔只有二十几微米,特别是在Z方向上。这对于基于层层堆叠的3D打印技术同样是个巨大的挑战,即层与层之间既要保持良好的粘接性以实现稳定的支架结构,又要控制其每层固化厚度在合理的数值范围以保持所需的开孔尺寸。摩方材料通过调节打印材料固化深度、打印层厚及切片图片,有效地平衡了材料固化厚度和极小开孔尺寸之间的关系,最终制作出高质量的类巴基球结构组织支架,如图3所示。图 3 摩方材料nanoArch® S130打印的类巴基球组织支架结构本文以类巴基球结构组织支架为例,展示了面投影微立体光刻3D打印技术在三维组织支架方面的加工优势,为三维结构系统中的细胞生理行为的研究提供了良好的样件平台,可有效促进相关组织工程、再生医药等应用领域的发展。对于类巴基球这一新型3D组织支架的生物应用研究,本公众号将在后续进行详细报道。官网:https://www.bmftec.cn/links/10
  • 数字新浙商专访先临三维李涛:让3D打印走进亿万家庭
    从初生到成熟,3D打印行业走过了短短的三十年。这项新兴技术曾刷爆朋友圈,时至今日人们对3D打印的认识却依旧停留在“盲人摸象”的阶段,众说纷纭,褒贬不一。由于入门级的桌面3D打印机率先在教育领域得到普及,更多人仍将3D打印和“玩具”联系到一起。当我们走进位于杭州湘湖边「先临三维」的展厅内,桌面3D打印机却只是整个展厅的“冰山一角”。眼前大到比人高的金属打印机、用于航空航天的金属器件,小到精密的手持扫描仪器、用于齿科矫正的材料… … 把我们带进了一个3D打印的真实世界。作为国内3D打印行业营收领先的先临三维,从单项技术发展到建立装备、数据、服务集成体系;从单个领域应用拓展到高端制造、精准医疗、创新教育、定制消费等多领域的深度应用,沉浸行业15年。在工大学弟周青的牵线下,我们见到了几乎不曾接受公开采访的先临三维CEO李涛。这位毕业于浙大金融系的80后,低调和冷静背后,暗藏热切的呼喊:“我希望大家能真正认识到3D打印不是噱头,不是玩具,而是一套从数字化的信息采集开始,到面向性能的数字设计,最后到柔性的数字制造业全链条的技术系统。掌握好这套工具,就能突破想象力的束缚,真正带来效率、性能和品质的提升。”最终,李涛和先临三维想实现的,是让设计更加智能化、简单高效,让基于3D打印制造的个性化产品不再昂贵,能像家电一样走进亿万家庭。「数字新浙商」访谈现场洞见消费行为正呈现出“个性化”的新趋势,制造模式也从过去的标准化、规模化向高性能、多品种小批量、个性化方向发展。3D打印行业的未来不是一家独大,一定会有很多企业形成整体生态,整个链条正在经历一轮设计和制造思路的变革。个性化一定是建立在高水平的标准化、模块化和数字化应用的基础上,智能化也同理。3D打印行业会成长为现代制造业生态中不可或缺的一个子系统。它会和当前主流的制造设计生态系统相互融合,并非简单取代。 有一本书叫《跨越鸿沟》,很多新技术在初期很吸引眼球,在初期创新市场向主流规模市场过渡时,中间会经历一段时间的沉寂,3D打印技术现在就在这个鸿沟里,跨越鸿沟,才会走向规模化和普及化应用。——李涛谈行业发展:3D打印正经历设计和制造思路的变革章丰:从全球市场看,目前中国的3D打印产业处于怎样的水平?李涛:从数据来看,还是挺耐人寻味的。根据市场研究机构IDC预计,2019年全球3D打印的市场规模将达到138亿美元,中国预计将花费近20亿美元。从地域看,美国仍是全球最大市场,德国、英国、法国、意大利等国家紧随其后。国内的3D打印市场起步晚于国际市场十几年,但大致上也会沿着国外市场发展的轨迹追赶,从规模上讲还很小,但从增长速度来看,国内市场会超越大部分国家。过去我们大量进口国际先进3D打印设备和技术,现在国内自主研发的设备、材料和软件也纷纷走向国际市场。 章丰:中国是制造大国,而且在大部分细分行业形成了全球领先的产业链,为什么3D打印的市场份额比较小? 李涛:目前3D打印的最大市场是在美国、欧洲等主要的经济发达区域。首先,从产品消费市场来看,经济发达的地方,消费水平会高一些,人工成本也高,对于产品制作效率、品质的要求更高,这助推了对设计和制造工具的高要求。比如在康复和医疗领域,3D数字设计和3D打印的应用在国外的用量明显比国内大,我们只有在解决常规手段或经验完全无法解决的疑难杂症时,医生才会不得已用到3D打印。原因是其中的结构太复杂,需要事先演练、验证,避免出现意外;同时,国内各地因为收费标准不明确,有些医生甚至自己掏腰包来承担这笔打印费用。 章丰:可以这么理解,3D打印行业的发展是由消费市场的成熟度决定的? 李涛:消费市场的成熟度是一方面,还包括认知度和必要性,对3D打印的认知到不到位、是否刚需以及消费水平,几个因素共同形成了消费市场的差异,这是最主要的原因。在业内大家还有其他观点,一些制造业企业用户提出材料的种类不够丰富、性能不够好等原因。但是他们忽略了一点,近年来许多材料巨头把眼光转向了3D打印,纷纷推出专门的3D打印材料,可以说现有材料已经可以广泛应用于各领域,我们可以从设计上进行优化,充分发挥材料的性能。过去我们在制造中遇到高性能要求的时候,习惯从材料上想办法,能不能有更高强度、高耐用度的材料?3D打印提供了一种新的思路——将现有材料通过结构变化来实现目标性能,计算机仿真出物体在实际运行环境中的受力变形和散热状况,优化出最适宜的几何结构,最终得到一样的性能。 我个人认为,设计意识也是一个非常大的瓶颈。很多时候,工程师的思路受限于原有的加工工艺。以我们打印服务中心接到的订单为例,几乎99%以上都是面向开模、切削加工工艺来做设计的产品,只是想在加工前用3D打印来快速验证,缩短开发验证时间。验证迭代以后,产品量产还是用原有工艺,他们没有考虑面向3D打印的特点,做高性能的结构来解决问题。但从我们国外的订单来看,有些零件一看就是非3D打印不能制造,也就是说它是为了将来以3D打印方式来量产做准备。这方面主要靠大公司推动,像航空航天和能源系统的公司。比如说发动机领域,劳斯莱斯、GE航空,包括spaceX开发的火箭推行系统,都在用3D打印开发新一代发动机。最典型的例子,2016年GE开发团队宣布把一款涡轮螺旋桨发动机的845个部件合并为只有11个3D打印部件。不仅成本大大削减,而且减少了复杂性,缩短了生产周期,并且新技术可以把发动机大修时间间隔延长30%以上。 章丰:刚才讲到的几点原因中,设计能力的制约占多大比重? 李涛:我认为设计的瓶颈远远超过材料和其他因素。3D打印是一个风向标,帮助我们看到了当前中国创新所处的阶段。中国确实是制造大国,但和其他制造强国相比,自主创新的企业所占比重仍偏低。在先临三维的用户分布上,国外从大公司、中型公司到小型公司,都在使用3D打印技术。但国内的客户群主要集中在超大型公司和超小型公司。为什么?大型企业在研发下一代新产品和新应用时追求高性能,使用3D打印技术来进行优化迭代。而超小型企业不具备一开始就制造量产的能力,先打印5个、10个,然后投放市场、验证反馈、快速迭代。消费行为正呈现出“个性化”的新趋势,制造模式也从过去的标准化、规模化向高性能、多品种小批量、个性化方向发展。3D打印行业的未来不是一家独大,一定会有很多企业形成整体生态,整个链条正在经历一轮设计和制造思路的变革,所以整个思路都要重构。谈个性化:辩证看待 个性化也基于标准化之上足部3D扫描仪在个性化定制领域,先临三维也积极展开尝试,将3D数字化技术和3D打印技术应用于精准的个性化定制解决方案。比如在“鞋”这件小事上,公司自主研发了固定式足部3D扫描仪及手持式足部3D扫描仪,可以快速获取高精度脚型数据,结合3D打印技术,可应用于个性化定制鞋、医疗支具及矫形器定制等众多领域。章丰:高性能、小规模、个性化也随之带来一个问题,成本造价会不会升高? 李涛:要辩证地看。我们作为制造业企业,习惯性考量某个零件单体制造成本,现在一些公司开发新产品时,不仅考量制造成本,还要联动前期的设计成本、时间成本,后期的维护成本、回收成本。如果以全周期来看,会发现成本和量产规模有关。国外曾有分析表明,某个零件的制造,相比开模,在制造数量低于某个临界点后是3D打印更划算。所以整个3D打印在国外的大型企业的应用,已经覆盖到了整个产品的周期,从前期的概念验证到制造过程中的工装、模具,再到部分产品的直接生产。章丰:随着材料工艺、软件设计能力,包括计算机视觉智能化水平的提高,未来3D打印的成本曲线是否会呈现往下走的趋势?而传统的制造工艺已经成熟,它的成本曲线可能更趋向平滑。这两条曲线在未来的演变过程中,有没有可能在相当程度上实现交叉?李涛:一定会。传统制造方式随着量增加,成本会线性下降,因为它的初期投入会被摊薄。3D打印的成本也是向下的,只是没那么陡,为什么?材料成本、设备成本在下降,设计工艺带来的整体成本也下降了。所以两者一定会在某个目标制造量下出现交叉点。当然最后根据产品是否用金属材料、尺寸大小,成本会有不同。但总得来说,产品尺寸越小、结构越复杂,3D打印的成本越低;越大越简单,用3D打印的相对成本越高。章丰:近两年制造业经常提C2M(Customer-to-Manufacturer,用户直连制造),强调消费者端的定制化生产。鞋子就很典型,因为每个人的脚型都有差异。未来如果C2M模式逐渐普及,在工业制造端的3D打印会是怎样的面貌?李涛:个性化也是分级的,好比我们买车,也有个性化定制,但厂商提供了几个配置组合,这些配置就是相对标准化的,只是通过消费者的选择组合,变成了个性化。拿鞋举例,可能100万人中,按传统的尺码分成10个尺码,经过三维扫描建立起3D足型数据,这100万个数据通过软件自动计算和分类之后,可以归类出100个尺码。如果再往下细分,意义就不大了,就像圆周率的精确度。章丰:个性化也是“优化的个性化”,过度个性化的边际效应已经很小了。 李涛:没错,实际上采用数字化的再分类方式更智能,同样可以提供舒适度。这100万个人当中,和这100个尺码100%吻合的人,会超级合脚舒适,剩下的误差脚感上也是微乎其微。高度的个性化一般应用于康复领域,比如脚受伤了,通过建模打印一双和脚型完全一致的鞋,这类产品随着3D打印材料成本的下降,也可以控制在几百块以内,不再高不可攀。谈研发投入:高薪高水平 胜过人海战术 2018年,先临三维的研发投入高达1.405亿,相对于4.12亿元的营收,占比达到34%,相当之高。财报显示,从2012年开始,公司每年投入研发的资金都维持在较高的水平,超过营收的20%。章丰:多年来研发费用占比保持在20%以上,这在科技公司中也是一个很高的水平。 李涛:主要出于几点考虑。首先,公司的综合毛利相对可观,可以保证这部分研发费用。第二,因为我们所做的是图形图像领域软硬件结合的产品,对于人工智能领域的高端人才是刚需,所以待遇水平占了支出的很大一块。第三,尤其最近三年投入比重特别大,因为我们在做技术结构的调整,建立了一种梯度型的研发投入。我们把研发分成三个层次:底层是面向未来的核心算法和软件技术储备。由我们的首席科学家带着研究院的教授及员工在开发,他们做的是探索性的工作。中间层叫基础研发。基础软件和基础硬件部门负责整个公司的软硬件平台的搭建,把那些可以在近期用到产品中的软件进行架构化和标准化,把研究院的成果做成更加稳健的软件模块和算法模块,供我们的产品部门调用,实现三维扫描跟3D打印共性的技术的平台和成熟组件的开发。最后就是产品层面的开发,各产品线的研发团队面向不同行业应用,面向客户需求的产品功能开发和用户体验优化。我们坚持每年都会发布几款新产品,每年每个产品线都有新产品,现有的成熟产品,最慢两年内会更新一代。章丰:这么高频? 李涛:随着行业发展,用户需求是越来越多样化的。比如有的是拿来做零件,有的用以维修,那么维修就要用到三维视觉,如何识别它维修部位,帮助用户精准地自动定位。再举金属打印的例子,早期我们的金属打印机只有一台。后来我们发现,金属打印机用在不同的领域,有不同的需求——有的侧重效率,有的侧重强度,有的侧重成本,那么就要对它做细致的分类,进行迭代。另一方面,我们的用户结构也在发生变化。以前的设备主要提供给科研型的单位、高端制造业的工程师用,他们经过培训就可以按照流程使用。但是近几年,随之设备的普及,操作者可能是模具厂的工人,那么我们在软件上就要根据用户场景和使用需求做简化和一键式操作。 章丰:3D打印是一种跨学科的交叉技术,对团队人才的要求是复合型的,需要计算机、光学、机械制造、材料等等学科背景,而且很多技术处于行业演进的前端,这样的人好招吗? 李涛:很不好招,所以我们注重高薪高水平胜过人海战术,而且要人尽所长。我们的主管在行业里沉淀了多年的经验,以他们的架构能力,把需要的能力拆分成几种类型的,招相应专业的人才,进公司后还需要培训磨合。我们投入了很大一部分精力,把内部的软件架构做了模块化梳理。我认为,个性化一定是建立在非常高水平的标准化、模块化和数字化应用的基础上才能实现。章丰:这个观点我很赞同,否则个性化很难走得远。李涛:智能化也是同理。智能化如果不是建立在非常高水平的数字化,以及数字化下的高度的数据结构化的基础上,靠散乱的数据、垃圾数据拿去学习,就难以得到准确的结果,就像是我们常说的“Garbage in,Garbage out”(无用输入,无用输出)。谈应用领域:大众的想象真的太高了 短期内打印器官肯定不行目前3D打印技术已经广泛应用于工业及消费领域,但在风口来临之前,先临三维已经在行业内深耕了15年,为高端制造、精准医疗、定制消费、启智教育等领域用户提供 “3D数字化—智能设计—增材制造”智能制造解决方案。作为业务模块之一的3D打印服务,打造 C2M 和线上线下相结合的分布式服务模式,并在全国建立了布局了十几家线下服务中心。 章丰:这些3D打印服务中心分布在哪里? 李涛:一般在制造业相对较发达的地方,我们和地方政府合作,作为块状产业的配套。但这一块现阶段看,尝试并不太成功,原因是我们忽略了当前制造业用户所处的状态。原来我们认为在制造业发达的地方,用户需求会高,现在看需要同时满足设计、创新都发达的条件,而且这些企业的需求还不一定连贯,没有办法保证服务中心的高频运转。所以我们认为当前服务中心的模式还是集中优于分散,相应地我们做了一些调整,加强总部的服务能力,通过物流触达各地。 章丰:未来3D打印会在哪些领域形成较大规模的应用场景? 李涛:根据规模,依次是先进制造、医疗健康、教育文创几大领域。在接下来相当一段时间内,规模也会按照相类似的比重放大。在制造领域,目前主要是一些超大型企业和初创企业在使用,会逐渐形成辐射效应,加上设计软件门槛下降之后,越来越多的工程师可以基于这项技术做一些这种高性能的零件。 章丰:生物3D打印的应用,也是很多人关注的领域。按照你的估计,未来5年生物3D打印能达到什么样的水平? 李涛:我怕让大家失望。因为大众的想象真的太高了。短期内打印器官肯定不行,但是在人体的一些局部个性化修复领域,比如骨骼、皮肤、血管,应该会越来越多。当然这方面也需要相关的制度供给。现有的医疗器械的管理里,3D打印植入体的认证,包括一些个性化的认证,还没有被纳入。国外的认证就会快一些,美国每周都会有相关的认证性产品发出来。如果在制度供给上能跟进的话,推进会更快。谈行业图景:3D打印是制造业生态不可或缺的系统章丰:很多人对3D打印的整个行业没有一个整体认知,包括我,因为这里面有很多角色,能不能解读一下?李涛:这个问题很好,我一直想讲的就是,我们公司虽然是3D打印的一员,但我们不能代表整个行业。因为这个行业未来会是一种新生态,里面会有设计、应用、材料、设备制造单位。光制造设备,根据材料和工艺种类的不同,应用方向的不同,可能都有成百上千家不同类型的专用设备的企业产生。所以3D打印行业以后会成长为现代制造业生态中不可或缺的一个子系统。它会和当前主流的制造设计的生态系统相互融合,并非简单取代,而是解决传统方式做不了的东西,相当于制造业的增量市场。 章丰:相对于你描述的理想生态,目前行业的发展处在哪个阶段?李涛:有一本书叫《跨越鸿沟》,很多新技术在初期很吸引眼球,然后开始应用,在初期创新市场向主流规模市场过渡时,中间会经历一段时间的沉寂,就叫鸿沟,跨越鸿沟才会走向规模化和普及化应用,3D打印技术现在就在鸿沟里。我个人认为,整个行业需要系统的推进,有几大因素可以助推:一是大企业的辐射效应。二是3D数字设计和制造工具会越来越简单,使用体验越来越好,学习成本会低。第三,我认为教育领域所能起到的作用非常大的。我们投入了很多经历和资金在教育上,因为我们希望让大家认识到,3D打印不只是打印制造本身,它实际上是一个从数字化的信息采集开始,到面向性能的数字设计,最后到柔性的数字制造业全链条的技术系统。这一套工具掌握好了之后,你能打破想象力的束缚,创造出很多很好的产品。而这些产品,因为它的复杂性,除了3D打印,没有其他手段能制造和生产。快问快答章丰:你最得意的事情是什么?李涛:我们从2012年开始,能得到董事会股东的认可,支持原创性技术的高投入,而且坚持这么多年,也不会因为财务报表的压力给我们施压。 章丰:最期待发生什么? 李涛:我希望大家能真正认识到3D打印不是噱头,也不是玩具,而是能真正带来效率、性能和品质的提升的一项技术。希望国内也能用好这项技术,从设计层面去跨越鸿沟。 章丰:最害怕发生什么? 李涛:为了3D打印而3D打印。 章丰:你会如何解读“数字新浙商”? 李涛:一直以来,大众对“数字”形成的理念主要是互联网、大数据、云计算、机器学习等等。很多时候,大家不会把我们做的领域认为是跟数字化有关的,但我个人认为,我们在做的事恰恰代表着未来整个数字经济发展的非常重要的支撑力量——3D打印是集数字化的设计、应用和制造一体化发展的行业。 数字化固然重要,它是未来智能化的根基,但未来不单单是数据层面的数字化。互联网完成了人与人之间的连通,未来设备与设备、人与设备的关系连通,也是数字经济非常重要的环节。当然现在很多互联网企业在提工业互联网、云计算,如果说他们做的是“云”是“脑”的部分,完成机器本身的数字化,我们在做的就是“端”和“手脚”,让各种工具也数字化,才能真正实现互联互通。“数字新浙商”既然来采访我,说明你们看到了整个数字化的大生态,未来应该是所有产业无处不数字化,只有无处不数字化,才能无处不智能化。来源: 数字经济发布微信公众号
  • 3D打印制芯片 西湖大学实现国内最高精度三维精密制造
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp 一根细细的金属探针正在一块名片大小的电路板上循环画圈,探针内流下的液体逐渐围成一个圆环。“这是我们通过3D打印而成的微电极阵列,再用硅胶进行二次加工后,可用于药物机理检测等领域,检测效率将大大提升。”日前,在西湖大学精密智造实验室,正在显示屏前监测情况的西湖大学工学院周南嘉实验室博士生朱沛然对记者说。 /p p style=" margin-top: 10px line-height: 1.5em "   西湖大学工学院特聘研究员周南嘉团队自主研发的这项微米级精度三维精密制造技术,是目前国内最高精度的电子3D打印技术,以新材料作为突破3D打印精度极限的核心,设计全新的3D打印功能材料,实现了百纳米至微米级别电子3D打印。 /p p style=" margin-top: 10px line-height: 1.5em "  “我们开展的最小尺度的3D打印,就是直接在芯片上用3D打印进行加工。”周南嘉说。周南嘉团队将3D多材料打印技术引入芯片级高端制造领域,利用3D打印技术进行三维高精度光电封装、制造高频无源器件,例如可将天线尺寸缩小到十微米至百微米级别。周南嘉介绍,这一做法较现有的加工方式,在精度上提升了1个到2个数量级,从而让3D打印技术得以应用到毫米波技术、光通讯、微型机器人、柔性电子等领域,为未来小型化、集成化、个性化电子设备提供新的制造方案。 /p p style=" margin-top: 10px line-height: 1.5em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8b30d035-636c-4309-892f-b615fbb5a600.jpg" title=" t011b1664dd6ab99891.webp.jpg" alt=" t011b1664dd6ab99891.webp.jpg" / /p p style=" margin-top: 10px line-height: 1.5em text-align: center " span style=" font-family: 宋体, SimSun " strong span style=" color: rgb(63, 63, 63) " 西湖大学工学院特聘研究员& nbsp 周南嘉 /span /strong /span /p p style=" margin-top: 10px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 当下,电子与光学领域核心功能器件与系统加工对技术精度的要求越来越高,传统工艺难以满足产品需求;同时,目前市场上为人所熟知的3D打印主要以激光烧结、光固化等工艺为主,其产品主要为金属、航空件以及塑料等聚合物,但这些3D打印产品往往仅具备结构而无法功能化。这些都成为当下相关行业领域的痛点。 /p p style=" margin-top: 10px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 在周南嘉看来,3D 打印并不只是能够实现具体的结构,更重要的是实现特定的功能。依托西湖大学精密制造实验室及浙江省3D微纳加工与表征重点实验室,周南嘉以精密增材制造技术为核心,基于先进功能材料和三维集成技术方面的优势,开发了多材料、多尺度的灵活加工工艺。 /p p style=" margin-top: 10px line-height: 1.5em " & nbsp & nbsp “在超高精度 3D 打印方面,工艺本身并不复杂,要实现超高精度以及多样化功能,真正在实际应用上取得突破,从源头出发,实现材料方面的突破才是关键。”周南嘉说。通过材料和技术两方面的努力,突破目前的打印精度之后,其团队自主研发的微米、亚微米级3D打印技术与材料体系成功解决了这些难题。“其实,今后生活中常见的显示屏、手机、可穿戴设备、无人机、汽车导航、医疗健康仪器等许多电子产品的‘内脏’里,就能找到我们产品的身影。”周南嘉说。 /p
  • 先临三维重磅推出高精度光固化3D打印机,助力原型设计和柔性生产
    5月26日,TCT亚洲展现场,先临三维正式发布AccuFab-L4K 高精度光固化3D打印机。AccuFab-L4K 高精度光固化3D打印机是先临三维自主研发的高品质3D打印机,拥有4K高分辨率、192*120*180mm的成型尺寸,具备稳定、准确的打印精度,并支持连续稳定打印,能够实现设计原型的快速迭代以及小批量快速生产,可应用于工业设计、零配件/手办/医疗辅具打印等众多专业领域。AccuFab-L4K 的发布,进一步推进了先临三维“3D扫描-设计-3D打印”系统解决方案的普及化应用。 AccuFab-L4K 高精度光固化3D打印机主要优势: l 高精度打印,准确呈现设计原型l 4K分辨率,还原细节,实现终端打印l 大幅面,快速成型,高效率打印l 连续打印,稳定性强,实现小批量快速生产l 适配多种工程树脂,满足不同品质要求l 软硬件人性化设计,使用高效便捷 合作巴斯夫,进一步提升高精度打印品质 高质量的3D打印设备+高质量的3D打印材料,可以为应用者提供稳定、高质量的打印服务,得到优质的打印产品。为进一步提升AccuFab-L4K的打印性能,先临三维在进行良好硬件设计的同时,也在材料上投入大量研发精力,部分自主研发的树脂材料,已通过医疗器械认证备案,可应用于医疗专业场景。 同时,先临三维也与巴斯夫3D打印解决方案品牌Forward AM取得合作,将巴斯夫Ultracur3D® 光固化树脂纳入AccuFab-L4K打印材料库。基于巴斯夫在聚氨酯研究和生产方面数十年的经验,Ultracur3D® 光固化树脂拥有以下优势: l 使3D打印零件具有长期的紫外稳定性l 使3D打印零件具有良好的力学性能l 打印精度高l 表面质量优良l 抗变形能力强l 环保,对环境影响小“我们非常荣幸此次和化工巨头巴斯夫进行合作。L4K打印机研发之初,我们便十分注重设备稳定性,作为高稳定性的3D打印机,对于设备的各项性能要求均比较高。巴斯夫的材料种类众多且性能稳定,使用巴斯夫的材料,为我们L4K打印机的性能又增加一项加持。” ——先临三维3D打印研发部经理 庞博 “我们很高兴与先临三维达成此次合作,实现‘AccuFab-L4K 高精度光固化3D打印机+ Ultracur3D® 系列光固化树脂’的解决方案,该方案能帮助客户更高效,更稳定的实现高性能功能性原型和小批量零件的制造。” ——巴斯夫3D打印解决方案(Forward AM)亚太区业务及运营总监 陈立博士 在3D打印领域,先临三维拥有多年的行业经验,所研发的打印机在齿科领域已得到良好应用。此次,先临三维发布AccuFab-L4K 高精度光固化3D打印机,是将3D打印技术在工业领域扩展的又一项实践——使用3D打印技术助力工业设计以及小批量柔性生产,推进智能制造的发展。先临三维也将持续努力,不断致力于高精度3D数字化技术的普及化应用。 关于先临三维 先临三维成立于2004年,公司专注高精度3D数字化及3D打印技术十余年,主营3D数字化与3D打印设备及相关智能软件的研发、生产、销售。公司是全球为数不多的拥有自主研发的“从3D数字化到智能设计到3D打印直接制造”的软硬件一体化产品解决方案的科技创新企业,致力于成为具有全球影响力的3D数字技术企业,持续推动高精度3D数字技术的普及化应用。 关于巴斯夫3D打印解决方案有限公司 巴斯夫3D打印解决方案有限公司总部位于德国海德堡,是巴斯夫新业责任有限公司的全资子公司。通过Forward AM品牌,专注于3D打印领域先进材料、系统解决方案、组件和服务的开发和业务拓展。公司凭借灵活、充满初创活力的内部结构,满足多变的3D打印市场中的客户需求。该公司与巴斯夫全球研究平台和应用技术部门紧密合作,以及科研机构、高校、创业公司以及行业合作伙伴开展密切合作。其潜在客户主要是致力于将3D打印用于工业制造的企业,所服务的典型行业包括汽车、航空航天和消费品。
  • 3D打印技术新趋势:向工业企业延伸、材料多样化及低成本——访升华三维联合创始人刘业
    2024年7月9日,由中国材料研究学会主办、欧洲材料研究学会联合主办、广东工业大学协办的中国材料大会2024暨第二届世界材料大会在广州白云国际会议中心盛大开幕。本届大会是在加快推进高水平科技自立自强大背景下举办的新材料领域跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平高、涉及领域广、前沿动态新的品牌大会。借此盛会,仪器信息网采访了深圳升华三维科技有限公司(以下简称“升华三维”)联合创始人刘业。采访中,刘总详细阐述了升华三维在3D打印技术的材料研发、设备开发等方面做出的努力,并介绍了相应产品的应用现状和发展趋势,及公司在3D打印领域的发展规划等。仪器信息网:本次是贵公司第几次参加中国材料大会?参会感受如何?刘业:这次是我们公司参加的第四届中国材料大会。很幸运的是,从19年开始,升华三维就在材料大会上展出粉末挤出3D打印的产品。整体而言,我感觉中国材料大会的规模持续扩大,人流量越来越多。据说,本届大会的总参与人数已攀升至25,000余人,代表了中国新材料的发展,也打通了产学研的发展链条。仪器信息网:本次贵公司带来了哪些解决方案或新品?主要针对哪些市场?解决了用户的哪些痛点?刘业:升华三维主要是从事粉末挤出3D打印技术方法,在国内应该也是领航者和开创者,这是结合了3D打印和粉末冶金的新技术方法。3D打印解决成型的问题,再利用成熟的粉末冶金工艺实现脱脂烧结,从而获得产品性能,能够为客户带来不一样的增材制造方式。在此次展会现场,展出了一台粉末挤出3D打印设备,该设备采用PEP技术——Powder Extrusion Printing粉末挤出打印技术。该技术最大的价值就是打印机已经不需要高能的激光器了,成本已经从百万级别降低到几十万。另外材料的种类更多,金属、陶瓷等都可以成为原材料。而且对粉体的要求会比较低,对粒形和粒径没有特别严格的要求。PEP工艺和粉末冶金工艺有非常高的契合度。 仪器信息网:贵司相关产品的主要热点应用领域有哪些?采取了哪些产品研发计划或市场计划?刘业:主要是做装备开发——自主研发的打印机;材料开发——经过多年的发展,在难熔金属(如钨合金、钨钼钽铌等)、成型难度较大的材料(碳化硅、氮化硅、氧化物陶瓷等)等方面提出了许多解决方案。打通了从材料开发、装备开发、工艺开发到性能开发的整条产业链,主要面向科研、教育、核工业、航空航天、新能源等领域。未来希望为客户的新产品研发或异型产品的制造、低成本制造,提供新型的解决方案。仪器信息网:谈谈相关技术或产品未来的发展趋势?未来贵司将有哪些新产品和新技术发展计划?刘业:未来3D打印肯定是作为一种制造手段,会从航空航天、国防领域更多得向工业企业或消费级的领域去延伸。第二个发展趋势是材料的种类会越来越多,金属也好,陶瓷也好,我相信种类会更加的宽泛。第三个就是制造的成本也在逐渐降低,无论是选区激光熔化还是电子束的制造方式,未来的生产成本会进一步降低。我们公司也针对上述发展趋势展开了相应的研发工作,像这次推出的梯度打印设备,就是实现双材料的梯度打印成型,如钨铜打印,通过钨和铜两种材料连续渐变、交替渐变的过程,通过打印机可以直接打印。第二也会开发更多的材料,如钨合金,我们公司在钨合金的性能和特殊结构的制造方面,也得到了一些客户的认可。另外在陶瓷领域(如碳化硅、氮化硅等)也展开了相应的研究。最终还是希望面向能够批量化的生产、制备的应用场景。从打印的效率来说,我们公司也在开发新一代更高效的打印技术。在下半年会推出金属丝材,可以匹配目前市面上消费级的、大概几千块钱一台的FDM打印机。我们可以想像,未来可以实现10台、100台、1000台的打印机,再配套粉末冶金成熟的脱脂烧结工艺,就可以急剧降低3D打印的成本,尤其是金属和陶瓷的应用领域。毕竟成本和效率一直是升华三维追求的两个方向。仪器信息网:贵司在过去一年中,业绩表现如何?接下来有哪些战略规划或市场规划?刘业:在过去的一年里,我们公司始终保持着对市场的坚定信心,实现了整体业绩的有效增长。今年上半年,再次稳固了增长态势,增长率超过30%。下半年,升华三维会针对材料、装备及技术的开发,推出一系列新的产品型号,我相信下半年会有更好的表现。
  • 3D打印显微镜nSPEC 3D可捕捉纳米级三维图像
    2014年10月14日,世界上技术最先进的纳米成像(nanoimaging)技术解决方案开发商,Nanotronics Imaging宣布推出其最新的计算机控制显微镜&mdash &mdash nSPEC 3D。该公司是在田纳西州Nashville美国化学学会2014年国际橡胶会议上公布这一消息的。   nSPEC 3D配置了带先进的计算机模式识别算法的高品质光学镜头,定制化的3D打印硬件,具备人工智能,只需点击一下鼠标或做个手势即可捕捉纳米级的三维图像。   Nanotronics Imaging公司首席执行官Matthew Putman:&ldquo 我们的解决方案将使许多行业,包括工业材料、半导体、甚至是生物制药等,获得复杂的成像技术,可以提升他们的制造能力和快速、高效地操纵先进材料的能力。&rdquo 据了解,该公司开发nSPEC 3D的初衷就是为了解决工厂在对复杂材料进行高通量成像时所面临技术挑战&mdash &mdash 即无法捕捉3D图像中可重复的测绘图型及自动诠释功能。   与传统的实验室仪器不同,这款nSPEC 3D是由Nanotronics团队与纽约著名设计师Mari Kussman和Francis Bitonti合作设计的。通过将成像技术与3D打印技术相结合,可以以低得多的成本获得和使用纳米级图像。   Flow Polymers是领先的化学分散剂和加工助剂生产商,该公司首席执行官Michael Ivany称:&ldquo 我们对Nanotronics公司开发的nSPEC 3D兴奋不已,因为这款仪器有帮助行业优化产品的性能、使用寿命和稳定性。到现在为止,我们还没有找到一种仪器能够充分量化混合质量。&rdquo   在这次会议上,Nanotronics将利用Oculus公司虚拟现实技术与 Leap Motion的手势控制现场演示如何操作由 nSPEC 3D拍摄的纳米级3D景观展。
  • 先临三维发布先临三维 双蓝光手持扫描仪 EinScan HX新品
    先临三维基于多年三维测量经验,结合市场需求,创新性地将蓝色LED光源与蓝色激光光源集于一款设备,两种光源,兼容多种表面材质和物体尺寸;一机多用,兼顾效率与数据质量,满足用户的多重需求,既有 LED结构光的快速高效,又兼顾激光的精度和细节,赋予EinScan HX更多应用可能。● 双蓝光搭配双蓝光,让EinScan HX结合了LED结构光与激光的优势,提高了对扫描材质和环境光适应性,赋予产品广泛的应用。● 高品质数据激光模式下,精度0.04mm,最小点距0.05mm,高分辨率展示物体精致细节,满足大部分工业应用场景的需求。● 快速高效快速模式下,采用蓝光 LED结构光扫描,无需粘贴标志点即可快速获取三维数据,扫描速度1,200,000点/秒;激光扫描模式配备双7线+1线蓝色激光,为逆向设计、CAD/CAM以及3D打印快速提供高品质3D数据。● 材质适应广泛独特的反光材质及黑色表面算法,软件一键设置,轻松获取黑色和反光材质物体高品质3D数据。● 便携易用没有冗余的软件设置,清晰的工作指导流程,灵活便携,可在各种扫描场景中灵活应用。人体工学设计,净重仅710g,轻松握持。创新点:1.双蓝光 搭配双蓝光,让EinScan HX结合了LED结构光与激光的优势,提高了对扫描材质和环境光适应性,赋予产品广泛的应用。 2.快速高效 快速模式下,采用蓝光 LED结构光扫描,无需粘贴标志点即可快速获取三维数据,扫描速度1,200,000点/秒;激光扫描模式配备双7线+1线蓝色激光,为逆向设计、CAD/CAM以及3D打印快速提供高品质3D数据。 3.材质适应广泛 独特的反光材质及黑色表面算法,软件一键设置,轻松获取黑色和反光材质物体高品质3D数据。 先临三维 双蓝光手持扫描仪 EinScan HX
  • 深化3D数字化布局,先临三维发布SHINING3D Design高端三维设计软件
    2021年3月,先临三维正式发布SHINING3D Design高端三维设计软件(先临三维CAD),这是先临三维推出的一款自有品牌工业软件产品。SHINING3D Design智能易用高效建模,覆盖产品设计全流程SHINING3D Design(先临三维CAD)由先临三维发布,是一款面向产品设计的3D软件,其采用Siemens Parasolid内核和Solid Edge平台,能够高效创建和修改产品的3D数字模型。SHINING3D Design作为一款易于使用的软件工具产品组合,可轻松应对3D设计、仿真、制造、数据管理等产品开发流程的各个方面,提高产品设计效率、加快产品开发速度。 作为一款高端的产品三维设计软件,SHINING3D Design采用了国际主流CAD建模与仿真技术,并从实际应用角度出发,拥有强大的功能: 1、具有多种建模方式,并根据特定应用场景进行软件工具包的开发;2、支持主流CAD软件设计数据的批量迁移;3、可无缝对接西门子TeamCenter等主流PLM软件系统;4、拥有有限元仿真模块可验证零件和装配设计;5、支持3D扫描数据的逆向工程设计;6、提供在线数据库给予设计师更多的参考等。 “总体来说,当前国内很多基础工业设计软件基本上都是国外的品牌,随着现在国际上对科技输出的限制,我们国内的企业在使用这些软件的时候受到了一定的影响。随着制造业数字化和智能化大潮的演进,面向产品开发的数字化设计软件愈发重要,我们就想推出这样一款工业软件,让用户能够拥有更多的应用自主权,缓解国外品牌对特殊产业在软件应用需求上的掣肘。 同时,我们在设计SHINING3D Design时,很关注的一点,就是性价比,总体来说,同等功能的国外CAD的软件比较昂贵,对我们很多制造业用户来说,使用成本很高。我们想通过SHINING3D Design的普及应用,能够让更多国内企业在承担较少成本的情况下,能够享受与SolidWorks,Solid Edge等主流CAD和仿真软件相近的功能与应用体验。同时,我们也关注到软件的学习成本,力求简单的操作体验,轻松上手,多方面降低企业的设计门槛。”——先临三维数字系统总经理-周青 SHINING3D Design(先临三维CAD)高端三维设计软件,自有品牌+独立发布软件授权、采用国际主流建模与仿真技术、以及具有普惠型高性价比特征,将为国内的工业设计等领域加入新的软件工具选项。 同时,SHINING3D Design的发布,也深化了先临三维的3D数字化技术方案,进一步丰富“从3D数字化到智能设计到3D打印直接制造”的系统解决方案,帮助用户实现“从产品概念-3D数字模型创建(设计)-3D制造”的产品创造流程和“从产品实物-高质量3D数字模型获取-智能设计-3D打印”的微创新或二次创新。先临三维也将持续努力,以更加优良的产品、解决方案持续推进高精度3D数字化技术的普及化应用。扫描二维码 申请试用
  • 三维扫描,守候徽派百年老宅经典传承
    本次程氏三宅的的三维扫描项目,受到了国家文化和旅游科技创新工程项目《面向中国传统纹样当代呈现的3d打印技术体系研究(项目编号2019-006)》的资助,在黄山市程氏三宅古民居博物馆的配合下,由项目承担单位浙江传媒学院和项目合作单位先临三维科技股份有限公司共同实施,目的是获取程氏三宅建筑装饰的三维数据,后期将在获取原始数据的基础上开展再设计和3d打印制作。随着三维数字化技术的不断发展,文物数字化逐渐成为文物保护的大趋势。三维扫描技术为文物及古建筑的三维数字化工程提供了高效坚实的技术力量,不仅可以作为文物/古建信息存档,便于后期的学术研究和维护修缮,同时还可以作为文物/古建的宣传展示、文创衍生等。程氏三宅徽派建筑是中国古建筑最重要的流派之一。徽派民居将南方干栏式建筑和北方四合院相结合,形成了高脊飞檐、粉墙黛瓦、错落的马头墙和精美的砖木石雕等风格特征。流行于徽州(今黄山市、绩溪县、婺源县)及严州、金华、衢州等浙西地区。徽派建筑集徽州山川风景之灵气,融中国风俗文化之精华,风格独特,结构严谨,雕镂精湛,不论是村镇规划构思,还是平面及空间处理、建筑雕刻艺术的综合运用都充分体现了鲜明的地方特色。在安徽黄山屯溪区柏树街,有三处历经数百年的风雨洗刷,至今依然保存完好明代古建筑,分别位于屯溪柏树东里巷6号、7号、28号,三处住宅均为明代成化年间所建,因主人都姓程,故命名为“程氏三宅”。程氏三宅是最典型的明代南方居住建筑,是徽派建筑发展鼎盛时期的遗物。无论是窗棂、月梁上的奇秀木雕,还是门楼上富于变化的石雕、砖雕等,都展现出其精妙之处,不仅是研究明代徽派建筑重要的标准物,同时也是具有很高的科研价值和观赏价值。现场采集数据在黄山市程氏三宅古民居博物馆的配合下及浙江传媒学院胡浩老师的指导下,先临三维技术工程师使用einscan pro 2x plus 2020多功能手持3d扫描仪对古宅里的石雕、木雕及砖雕进场扫描,获取了窗棂、月梁和门楼上的传统雕刻纹样高质量完整数据。三维数据展示木雕传统纹样数据石雕传统纹样数据砖雕传统纹样数据程氏三宅古建雕刻纹样三维数据的采集是国家文化和旅游科技创新工程项目《面向中国传统纹样当代呈现的3d打印技术体系研究(项目编号2019-006)》的一个重要环节,目前3d打印研究项目还在进行,后续项目成果,我们也将会持续关注。历史文物和遗迹都是前人智慧的结晶,然而由于文物/古迹本身的脆弱性和独一无二性,如何准确获取、保护、修复、重建、传播展示、传承这些文物/古迹就成为需要待解决的重要问题。在文物/古建装饰数字存档过程中,传统数字记录方式只有通过影像进行的数字记录,复杂的几何外形无法表现出来,只能再配合平面图或剖面图人工建模制作出文物的三维模型。这种传统记录方式,建模需要花费大量的人力、物力及时间,且制作的文物三维模型精确度也是不够的,无法为文物修复/修缮、复制保护、衍生开发等提供原始数据基础。相较于传统方式,三维扫描技术可根据需求记录文物/古建装饰更为真实、全面的形态特征。通过计算机重构其三维数据,真实快速地再现文物/古建装饰原貌,在原始数据的基础上进行文物数字存档、三维展示、保护复制、修复及衍生品开发。项目主持人胡浩浙江传媒学院设计艺术学院副教授,硕士生导师研究方向包括传统建筑装饰虚拟仿真与3d打印、传统纹样生成式设计等。
  • 三维扫描技术在文物中的应用案例分享
    输出数据在可以移动文物的情况下,快速获取文物的三维模型数据,便携式 3D 激光扫描仪 HandySCAN 3D更是随时随地享有 3D 扫描、实现实际操作条件下的精确测量和相当简单的 3D 扫描流程。 使用便携式3D扫描仪采集数据并进行检验和修复是非常方便高效的方式,非接触式的工作方式避免二次损伤的可能。使用3D扫描仪扫描陶瓷器,即时获取高精度3D模型,破损及瑕疵一览无余。简单明了的色彩差异图显示出损伤部位及损伤程度,通过3D处理软件在电脑上对数据进行后处理,拼接修复,为下一步3D打印提供完整精确模型。有了损伤部位的3D模型数据,使用3D打印技术打印出缺失部分,材质可选,也为其它修复手段提供基础数据。 通过3D扫描得出的模型数据误差仅为零点零几毫米,相对手工测量,精准度更经得起考验。精准的数据使得对陶瓷制品材质和物理变化的分析检验以及溯源更为方便有效,也为陶瓷文物修复和仿制提供了新路径,同时可以有效保护陶瓷制品外观设计专利权,促进陶瓷制品合法制作和交易,还可提供陶瓷文物及陶瓷艺术品身份保护。
  • 三维扫描仪新品全球发布——思看科技NimbleTrack灵动式三维测量系统
    新品全球首发!思看科技NimbleTrack灵动式三维扫描系统!2024年4月9日,思看科技(SCANTECH) 正式发布NimbleTrack灵动式三维扫描系统。NimbleTrack集全无线、不贴点、双边缘计算、一体成型架构于一身,精准驾驭中小型场景动态三维测量,领跑工业计量“无线”新时代!灵动式三维扫描系统NimbleTrack,轻巧身型,自在随行,集全无线、多功能等超凡性能于一身,精准驾驭中小型测量场景,成就绝妙之作。其扫描仪和跟踪器深度集成高性能芯片与嵌入式电池模组,实现了全域无线测量和高速稳定的数据传输,开启工业计量智能无线新时代。整套系统巧妙融合了思看科技的自研生态圈,多种功能形态随心变幻,万般场景灵活应对,以极致技术成就极致性能。轻装上阵 即开即扫NimbleTrack超轻型机身,以极致细节重构性能想象,解锁性能美学的超然进化实力。跟踪器仅重2.2kg,身长57cm,恣意穿梭于各类场景,轻装上阵;扫描仪仅重1.3kg,单手掌控游刃有余,轻松完成长时间测量任务。标配一体式便携安全防护箱,兼顾轻型化与紧凑型,容纳万象,灵动出鞘,带上它,即开即扫,尽显轻盈畅快之感。一体成型 稳如堡垒扫描仪采用全新的碳纤维框架一体成型技术,兼备轻量化和高强度性能,在加工工艺上颠覆了传统组装式框架的装配技术,实现了超高结构稳定度和超强温度稳定性,使得一次校准即可长时间内保持良好的精度范围,让每一次扫描都尽在掌控。双内置电池 真正全无线全栈无线三维扫描系统,无线数据传输、零线缆供电,可满足无电、用电不便等应用场景,开启工业计量无线新时代。扫描仪隐藏式电池仓设计,优雅无束缚;跟踪器双循环电池仓设计,供电不间断,无线转站更顺畅。双边缘计算 性能狂飙扫描仪和跟踪器均搭载新一代高性能边缘计算模组,运算效率跃升至全新高度,解锁120 FPS高帧率流畅测量体验,每一帧都行云流水,驾驭自如。扫描时无需外接电源、贴点,与市面上现有的手持式三维扫描仪相比,整体扫描流程大幅简化,复杂场景更显从容,是当之无愧的效率担当。计量基因 精益求精 依托思看科技计量级产品成熟强大的系统架构和自研算法,最高精度可达0.025mm,在标准跟踪范围内,体积精度可达0.064 mm,精准有实力,还原肉眼可见的细微处。万般场景 挥洒自如NimbleTrack三维扫描系统小巧灵动,轻盈穿梭。面对狭小空间或视角遮挡处,扫描仪可无线单独使用,实现最高0.020 mm的高精度扫描。面对大范围测量场景,跟踪器即刻化身远距离红外标记点扫描利器,精准把控全局精度。智能边界检测模块可选配智能边界探测模块,利用高性能灰阶边缘算法,自动采集孔、槽、切边等特征的三维数据,快速获取高精度的尺寸和位置度信息。i-Probe500 跟踪式测量光笔面对隐藏点或基准孔等难以触达之处,可选配便携式测量光笔i-Probe,设备支持有线或无线传输,为精密测量提供全方位的数字化解决方案。多台跟踪器级联支持多台跟踪器级联工作,大幅扩展扫描范围,有效应对大型工件扫描场景。搭载自动化设备 搭载全新定制化三维扫描仪,为自动化解决方案量身定制装夹方式,使其更加适配各类型机器人;360度均匀分布的标记点岛结构,实现全方位精准跟踪,打造高效的自动化批量检测系统。拓展应用生态NimbleTrack是工业级三维扫描领域真正实现全无线测量的产品,凭借智能无线、不贴点、高精度、高便携性等优势,适用于各类应用场景,尤其是尺寸在40mm-2000mm之间的中小型工件,如汽车四门两盖、内饰座椅、压铸件以及新能源电池盒等。在航空飞行器检修和文物数字化等不适宜贴点的情况下,NimbleTrack表现出色。此外,它也非常适合于车间现场,特别是那些无法方便连接电源或电缆的环境,比如野外测量石油管道的腐蚀情况以及高空作业等。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 先临三维被列入“2021年度机械行业职业教育校企深度合作项目” 名单
    机械工业教育发展中心和全国机械职业教育教学指导委员会在发布的《关于公布2021年度机械行业职业教育校企深度合作项目的通知》(机教中函[2021]2号)文件中,公布确定了14个机械行业职业教育校企深度合作项目。“先临三维3D打印与三维数字化设计平台综合建设项目”成功入选。 先临三维申报的“先临三维 3D打印与三维数字化设计平台综合建设项目” 被遴选列入为2021年度14个机械行业职业教育校企深度合作项目之一。该项目将与合作院校,聚焦增材制造技术领域,基于“三维数字化与增材制造教学内容和课程共建”、“高水平师资培训”、“智能制造实训实践基地建设”、“创新创业人才联合培养”等项目设计,围绕重点建设方向开展深度校企合作。项目主要内容在三维数字化与增材制造教学内容和课程共建方向,将面向机电工程、工业机器人、工程创新、艺术设计等专业方向,在学校实现现有教学目标的基础上,将增材制造和三维数字化技术作为一种辅助教学的手段,融合进课程体系中,推动学生系统能力的培养,加强新型制造工艺下新的增材设计思维的培养;为推动与普及3D 打印技术及三维扫描技术在专业建设中起到积极作用而努力,设立课程体系建设和教材项目。通过该项目为合作院校提供课程研讨、校企共建、人才培养、教材开发等支持。在高水平师资培训方向,将围绕当前的三维扫描与增材制造技术热点及热门应用,以培养具有理论与实操基础知识、具备创新能力的职业院校教师为目标,开展院校师资培训、教学研讨会、企业工程师进高校课堂等活动,协助提升一线教学教师的技术和课程建设水平。在联合智能制造实训实践基地建设方向,将依托先临三维3D打印与三维数字化制造平台,为院校师生提供项目实训场地、实习实训岗位,配合学校理论授课环节,企业分阶段派遣经验丰富的工程师为学生讲解设备实操及实际生产应用中的问题,分享实际案例并实操,提升学生技术和项目的实践和创新能力以及职业应用与职场生存能力。在创新创业人才联合培养方向,将面向创新创业方向专业,基于增材制造及三维扫描技术,协助职业院校促进3D打印教育与创新创业教育有机融合,调整3D打印课程设置,挖掘和充实3D打印专业课程的创新创业教育资源,在传授专业知识过程中加强创新创业教育,为学生搭建3D打印创新创业必要的平台支持。先临三维将与院校协同建设三维数字化与增材制造相关专业,制定以三维数字化与增材制造为核心的复合型人才培养方案,开发符合现代学徒制人才培养需求的课程体系和课程资源。支持职业院校创新创业教育改革,协同开展职业素质教育,支持校内创客空间、项目孵化转化平台等项目。强化教学创新团队建设,通过组织师资培训,开展教学能力提升行动,打造新型“双师型”教师队伍。基于生产性实训基地,建成集人才培养、技术研究、员工培训、技术服务于一体的三维数字化与增材制造学院数百个,助力院校三维数字化与增材制造相关专业转型升级,提升我国三维数字化与增材制造类应用人才技能水平。
  • 宁波材料所在树脂基三维碳材料制备技术上取得系列进展
    三维石墨烯碳材料是一种由二维石墨烯在宏观尺度上构成的新型碳纳米材料,在能量储存与转化、催化、吸附分离等领域具有广阔的应用前景。迄今为止已经涌现了大量三维碳材料的制备方法,可以被归类为固态路线(以氧化石墨烯、天然和合成聚合物等为前驱体)和气态路线(气体碳源的化学沉积)。其中,固态路线往往缺乏对产物成分和结构灵活调控的能力,而气态路线极度依赖催化模板且效率低。液态是介于固、气之间的一种特殊状态,兼具固态的分子堆积密度以及气体的流动与兼容性。对液态路线的开发探索被认为是实现三维石墨烯材料结构与性能高效可控制备的关键。长期以来,科研人员在建立一条液态的三维石墨烯材料合成路线方面付出了大量的努力与尝试,但始终未取得实质性的进展。  中国科学院宁波材料技术与工程研究所新型热固性树脂团队刘小青研究员基于多年的生物基热固性树脂研究经验(Composites Part B, 2020, 190, 107926;Green Chemistry, 2021, 23, 8643;Progress in Polymer Science, 2021, 113,101353 Chemical Engineering Journal 2022, 428,131226 Composites Science and Technology, 2022, 219, 109248),提出开发生物基材料的本质是为了实现对生物碳的高效利用。基于此,团队利用激光烧蚀的方法,将生物基热固性树脂转化为功能性碳材料(Carbon, 2020, 163, 85 Carbon, 2021, 183, 600 ACS Nano, 2021, 15, 12, 19490 Nano Energy, 2022, 100, 107477;Small, 2022, 2202960),拟完成从“生物碳”到“生物基树脂”再到“功能碳”的闭环转化。  最近,基于在这两个交叉领域丰富的研究基础,该团队通过对碳前体的分子结构设计,并利用激光刻蚀成功实现了从液态前驱体直接转化为三维石墨烯材料(如图1所示)。这条全新的制备路线集成了激光制造与液态前驱体两者的优势。几乎所有目前广泛应用的石墨烯宏观结构都可以通过这条液态路线直接一步制备,包括粉末、多孔膜、功能涂层、柔性Janus结构,以及结构定制化的宏观三维石墨烯材料,展现出巨大的研究价值与应用前景。图1 激光诱导石墨烯材料从液态前驱体直接合成  此外,制备得到的三维石墨烯材料的功能组分也具有高度的可控性。得益于液体良好的兼容性,功能性的有机或无机填料可以直接混入液态前驱体中,并在激光的辐照下原位形成石墨烯基复合材料,实现包括杂原子掺杂、金属纳米粒子掺杂、金属氧化物纳米粒子掺杂以及其他功能性组分的掺杂等(如图2所示)。比如,将多种金属有机化合物与液体共混之后进行激光辐照可以得到高熵合金掺杂石墨烯材料。其中,高熵合金以纳米粒子的形式均匀分布在三维石墨烯的多孔骨架表面,其粒径和含量则可以通过前驱体的掺杂比例灵活调节。图2 三维石墨烯功能复合材料的制备表征  值得一提的是,文中还提出了一种全新的3D打印原理(Selective Laser Transforming,SLT,如图3所示),即通过对液态前驱体的逐层转化实现对石墨烯材料三维结构的定制化构造,对于当前极为有限的碳材料3D打印技术做出了重要的扩充。由于不熔不溶不聚合,开发适用于碳材料的3D打印技术长期以来被视为一项巨大的挑战。而与现有的打印策略相比,除了在原理上具有本质的不同之外,这种通过面单元原位生长的打印方式最大的优势在于打印过程简单高效以及打印得到的产品具有高结构连续性。SLT打印过程不仅避免了传统的高耗能高污染的氧化石墨烯的制备,得到的打印产物也无需额外的高温退火还原过程。打印产物的电导率和强度更是分别达到了4380 S/m和4.4 Mpa,明显优于传统的3D打印石墨烯材料。图3 全新的SLT石墨烯3D打印技术  相关结果以“Direct Conversion of Liquid Organic Precursor into 3D Laser-induced Graphene Materials”为题在材料领域顶级期刊Advanced Materials上在线发表。本工作得到了国家自然科学基金(52003282、U1909220)、浙江省杰出青年基金(LR20E030001)和浙江省领军型创新团队项目(2021R01005)的支持。  原文连接:https://doi.org/10.1002/adma.202209545
  • 先临三维|外星人的内部构造应该是怎样的?3D数字化解剖为你解密
    想必大家对于《et外星人》中,最后,小主人公骑着自行车带着et飞向月球的画面都记忆犹新。也通过这部电影,我们认识了外星人et。▲ 图片源于百度,电影《外星人et》剧照大家是否想探究一下外星人的内部构造?带着这样的好奇,我们开启了“解剖”、重构外星人身体之旅。我们通过3d扫描—内部数据重建—3d打印这样的技术,让外星人的内部构造也可以肉眼可见。 这次“解剖”的外星人来自very museum,是核心艺术家 steve wang的作品。他的名字是alien grey,有着我们熟识的外星人形象。姓名 grey性别 不详 年龄 不详 “解剖”的流程 以下来自grey的独白 复制一个三维的我 3d扫描获取原始 高细节彩色数据我的“皮肤”有细致的纹路,在复制精细三维数据的同时,还需要兼顾皮肤的颜色。因此,先临三维的工程师使用einscan pro 2x 2020设备获取我的等比彩色数据,为后续“解剖”做准备。▲ 精细的扫描数据,肉眼可见的皮肤纹路重构我的三维模型,制作解剖效果,还需要内部的结构。工程师将我的“头骨”利用手持扫描仪进行数据获取,头骨数据结合外形数据,“解剖”的第一步已经完成。 重构我的内部结构 后处理软件设计解剖结构设计师通过maya等数据建模软件,参考人体构造,结合我的头骨数据和外形数据,重构出内部结构。“解剖”最终造型,左右一分为二,一侧展示外形,一侧展示内部结构。 展现我的“解剖”结构 彩色3d打印机打印完整数据利用stratasys的彩色3d打印技术,实现数据的最终呈现。stratasys的全彩3d打印技术,结合了全彩,透明以及类橡胶材质的组合输出能力,使得我的左右半边外形以及内部结构的展示可以一次性完成。在保留外部轮廓的同时,内部结构也可以清晰地展示在观众面前。在创作过程中,stratasys工程师前后测试了十几个不同的版本,特别在细节方面,包括我的皮肤的颜色,质感,血管的形态,肌肉,脑干,脑沟等大脑结构中不同层次的展现。这个时候3d打印的优势就凸现出来了 – 我的数据缩小到11公分的比例,12小时之内可以完成8个不同版本的打印,实现快速评估整体的效果,确保在正确的方向去进行下一步的创作。一个对于外星来客的创意尝试,利用3D技术,终将有趣的想法,变成可见的现实。3d扫描-内部数据重建-3d打印,赋予外星人全新的形象,实现模型的快速设计制造。通过grey的解剖模型重建,我们看到了3d技术的力量。3d技术,为创意赋能。
  • 2020 TCT亚洲展资讯速递,先临三维现场精彩花絮一览
    2020 TCT亚洲展资讯速递 新品首发 | 精彩花絮 | 品牌联合发布7月8日,TCT Asia亚洲展如期在上海的新国际博览中心开幕,为期三天的中国3D打印盛会正在如火如荼进行中。作为国内3D数字化与3D打印领域的佼佼者,先临三维公司在现场有哪些看点,随着小编一起来盘点吧~Highlight 1:新品全球首发此次展会,先临三维与子公司易加三维、天远三维一起,集中发布了5款新品,包括大尺寸高性能金属增材制造系统EP-M450、全自动桌面式三维检测系统AutoScan Inspec、双蓝光高精度手持3D扫描仪EinScan HX、红外+白光手持式彩色3D扫描仪EinScan H,以及EinScan Pro 2X Plus的2020升级版多功能3D扫描仪。 首次亮相的双光源(蓝色激光+蓝光LED光)手持3D扫描仪EinScan HX 红外+白色LED的双光源手持3D扫描仪EinScan H 2020升级版的多功能3D扫描仪EinScan Pro 2X Plus 工业级高精度全自动桌面三维扫描仪AutoScan Inspec 易加三维大尺寸金属3D增材制造系统EP-M450现场挑战满幅面打印极限Highlight 2:精彩互动活动除了吸睛新品之外,先临三维展位设置了丰富的现场体验与互动活动,吸引了众多参展者的参与。Highlight 3:品牌合作集中发布为了给客户提供更好的应用解决方案与使用体验,先临三维及其子公司在多个领域与合作伙伴展开合作。在2020年的TCT亚洲展上,我们可以看到先临三维的一些合作发布。 先临三维与Stratasys合作推出Ful-color 3D全彩系列解决方案 易加三维与西门子公司合作推出增材制造应用的端到端软件系统
  • 定制足托,先临三维3D数字化技术帮助烧伤患者正常行走
    康复辅助器具是改善、补偿、替代人体功能和实施辅助性治疗以及预防残疾的产品。近年来,随着3D数字化技术的成熟发展及医疗辅具市场的精准化、定制化需求的增长,3D数字化技术在矫形器、假肢等康复辅具上得到了广泛应用。本期,小编将分享一则使用3D扫描与3D打印技术为下肢烧伤患者定制足托辅具,帮助患者正常行走的案例。案例背景某烧伤患者,因右腿烧伤导致腿部发生屈曲,走路需要垫脚尖,无法着地。在做康复治疗时,矫形师与赛乐得医疗科技团队利用三维扫描及3D打印技术为他量身定制了一个足托,让他能够正常的行走。医疗辅具传统制作方式的弊端每位康复患者身体情况存在差异性,而传统的医疗康复辅具制作方法存在弊端,如:石膏纱布缠绕患者身体取模,获取模型的准确度较低,受医师技术水平的影响较大制作工序繁琐复杂,周期长,成本费用高材质笨重,佩戴舒适度低,美观性较差等而3D 数字化技术以其独特的优势不仅可以在减轻质量的同时提高康复辅具的准确性及美观度,满足患者定制化的需求,还能大大的降低康复辅具的制作成本。3D数字化解决方案3D扫描在制作足托前,赛乐得医疗科技团队首先使用了先临三维EinScan H双光源彩色3D扫描仪对患者的足部及小腿进行扫描,在几分钟内就完成了数据的采集,获取了准确的高质量模型数据。EinScan H 双光源彩色手持3D扫描仪采用红外VCSEL和白光LED两种光源,适应各种扫描物体要求的同时支持人像扫描模式,可智能补光,提升扫描舒适感,对人体和眼部无伤害,避免了对患者伤处的二次伤害,引起不适。 智能设计导出STL格式数据后,赛乐得医疗科技团队运用相关三维设计软件,对所得数据进行三维模型设计,设计人员根据患者腿部及足部的模型形状,制作出足托矫形器的外形。3D打印将设计好的模型数据导入到桌面3D打印机中进行打印,基于3D打印技术的独特优势,可一次成型制作出实物。3D数字化医疗辅具应用优势对于医生和矫形技师来说3D数字化的康复辅具定制流程,可大幅度减少制作工序的复杂度,提高辅具定制效率,降低材料定制成本,并且能够为患者提供匹配度更好的康复辅具。三维扫描获取人体数据,可以减少人工测量时的尺寸误差,提高模型数据精度的准确性,让其更加贴合人体、佩戴更加舒适、支撑和矫治效果更好。对于患者来说免接触式扫描,避免人工取样时对患者造成二次伤害,让患者更舒适3D打印技术可以缩短制作周期,加快诊疗流程3D数字化技术,可提高辅具产品与患者身体结构的匹配度,提升诊疗效果随着精准化医疗的不断推进,3D数字化技术在矫形器、假肢等医疗康复器具领域的应用,不仅是为制造康复辅具提供一种方式,促进康复辅具的设计创新、提高定制化水平等,还对医疗辅具行业由传统制作向个性化、精准化发展带来巨大的推动性作用。
  • 2020 TCT 亚洲展,先临三维的新品+精品,你pick哪一个?
    2020 TCT Asia亚洲3D打印、增材制造展览会TCT ASIA(亚洲3D打印、增材制造展览会),承载了英国TCT品牌历史,致力于打造行业领先的增材制造、3D打印产品与技术的专业展览会。它于2015年进入中国市场,现在已成为亚洲市场主要的3D技术展会之一。2020年7月8-10日,作为TCT的“老朋友”,先临三维将携多款精品及新品亮相E6馆E11展位。从3D数字化产品到增材制造设备,先临三维不断专注于技术研发与创新,与产业伙伴建立战略合作,共同推进“3D数字化-智能设计-增材制造”系统解决方案在高端制造、齿科医疗、消费&教育等应用的真正落地,经过多年技术沉淀和数据积累的新品,将为企业和用户的应用解决方案带来新一轮的提升。◆先临三维全明星阵容◆新品7月8日-7月10日亮相EP-M450国内首发易加三维2016年,由北京易加三维科技有限公司为承担单位的“大尺寸粉末床选区激光熔化增材制造工艺与装备研发”项目,获得了国家重点研发计划“增材制造与激光制造专项”(2016YFB1100700)的经费支持。2019年10月,易加三维研究开发的多激光多振镜选区金属增材设备平台EP-M650完成首台交付,应用于航空航天、能源和轨道交通领域的高性能金属部件的直接制造,代表着“大尺寸粉末床选区激光熔化增材制造工艺与装备研发”这个国家项目历经三年之后取得了阶段性重要成果。2020年TCT,EP-M450做为重点研发计划的另一枚硕果,即将在展会现场正式发布。EP-M450采用金属粉末床熔化原理,选用500W IPG进口激光器,有单激光和双激光两种配置可选,可打印钛合金、铝合金、镍基高温合金、模具钢、不锈钢、钴铬钼等材料,适于航空航天、能源、轨道交通、模具等领域大尺寸、高精度、高性能零部件的直接制造。Autoscan Inspec国内首发先临三维AutoScan Inspec堪称精工之作,作为桌面三维检测系统,采用工业级蓝光3D扫描技术,配备双500万像素工业相机,拥有计量级的高精度和出色数据细节表现,其快速精准的三维扫描测量和全尺寸检测功能,可以满足用户对小尺寸精密工件的测量需求。用户一键即可获取高品质数据,可广泛应用于塑料零部件、叶轮叶片、小尺寸铸件等非接触测量、逆向设计、批量化检测及质量控制等工业场景。EinScan-HX国内首发先临三维EinScan HX,一款熠熠生辉的创新产品,预测将是此次展会中要火的那一个!EinScan HX配置了独门秘笈:蓝色X型激光和蓝色散斑双光源。扫描黑色、反光物体难?EinScan-HX告诉你那都不是事儿。它采用Hybrid混合光源扫描技术,具有计量级精度,尤其适于汽车、大型铸件、深色红木家具、模具的3D数字化测量。介绍的太少了?它的优点现在还不能说~~想了解更多独到之处吗?欢迎来先临三维展位现场体验!EinScan-H国内首发先临三维EinScan-H,配置了红外和白色散斑双光源,可敏锐捕捉中大尺寸物体的高品质彩色数据,并着重解决了黑色材质和毛发的数据获取难题。EinScan-H适用于人体、大型艺术品、家具等中大型物品的扫描,欢迎来到彩色世界。EinScan Pro 2X系列2020升级版先临三维如果要说受欢迎程度,EinScan Pro系列当之无愧是shining shining的闪亮之星。此次TCT展会将迎来全面升级的EinScan Pro 2X Plus 2020版本。新版本延续了高质量的扫描数据、高效的扫描体验、多功能的扫描模式等传统优点,同时大幅升级了手持精细扫描模式,为用户带来了更加细腻的数据细节。不止于此,新版本同时拓宽了扫描材质适应性,为用户带来更加简单、高效的高品质3D数据获取。精品7月8日-7月10日必看RobotScan E0505机器人智能三维检测系统天远三维RobotScan E0505天远创新机器人智能三维检测系统,成功将“一键式扫描”、“全尺寸检测”、“避免人为误差”、“人机协作”等优势完美融合。配合高清成像(扫描精度高达0.015mm)以及极速扫描(单幅扫描时间≤1.5秒)的产品性能优势,确保将高质量的数据完美呈现给每一位用户。FreeScan X7 Plus无线激光手持三维扫描仪天远三维FreeScan X7 Plus是一款真正便携的无线激光手持三维扫描仪。产品采用先进的无线技术,成功摆脱线缆的束缚。配备智能化AirMaster无线计算平台,成功实现对图像数据的全硬件计算,优化后的产品性能,带来出色的自由扫描体验。FreeScan Trak无线跟踪式激光扫描系统天远三维FreeScan Trak无线跟踪式激光扫描系统基于动态光学跟踪原理,系统可对扫描头进行跟踪定位并实时精确测量目标的三维形状,实现了无需贴点的高精度三维扫描,让操作人员节省了大量时间。它适用于各类静态和动态应用场景,主要包括航空航天、汽车、造船、能源等行业的大场景三维检测需求。期待与您相聚。我们将按照当地防疫部门要求,严格落实防疫措施,让您观展更安心!
  • 重大科学仪器开发专项三维数字彩色成像测量仪项目启动
    p   9月11日,国家重点研发计划重大科学仪器设备开发重点专项“三维数字彩色成像测量仪”项目启动会在广东深圳举行,该项目旨在提升我国科学仪器设备的自主创新能力和装备水平,进一步推动3D和虚拟现实产业跨部门、跨行业、跨区域研发布局和协同创新。 /p p   这一重大专项由国内3D扫描打印和VR/AR领域的领军企业易尚展示牵头,联合清华大学、北京航空航天大学、深圳大学、南京理工大学、河北工业大学、中航工业长城计量所等国内光学领域顶尖研究院所,针对三维测量仪器设备技术和产品的迫切需求,以关键核心技术和部件的自主研发为突破口,研制技术国际领先、具有自主知识产权、质量稳定可靠、核心部件国产化的结构光三维数字彩色成像测量仪。项目将在赶超国际一流“三维数字彩色成像测量”技术、进行产品迭代升级等方面形成良好的契机和优势,并在树立行业创新标杆方面发挥积极作用。 /p p   项目实施后,能大幅提升我国三维数字化科学仪器设备的可持续发展能力和核心竞争力,极大推动我国3D扫描打印产业和虚拟现实产业的发展,为我国博物馆文物三维数字化提供核心装备,加速推动3D虚拟电商发展,提升国内3D创客教育领域的整体装备水平。 /p p /p
  • 天津大学召开X射线三维显微成像技术及其应用学术交流会
    11月22日,天津大学科研院组织召开了“X射线三维显微成像技术及其应用”学术交流会。天津大学精仪学院特聘教授、科技部重大科学仪器项目负责人须颖博士做了关于X射线三维显微成像技术的报告。材料学院、化工学院、理学院、精仪学院等材料领域的师生、及上海大学等校外师生参加了此次交流会。  会上,须颖博士介绍了X射线三维显微成像技术及其应用领域。他详细介绍了X射线三维显微镜的成像原理、分辨率、与传统CT扫描成像及扫描方式的差异等,并强调了其在扫描精度及数据处理速度上的巨大提升。  同时,须博士还着重介绍了X射线三维显微镜在诸多领域的广泛应用。在能源地矿领域中,可用于岩心、矿石、煤等微结构的三维成像 在生物领域中,可用于动植物的组织形态和成分微结构成像,甚至可精准复制数据,用于颅骨重塑 在工业领域中,可用于电子元器件、火工品、铸件、焊件、陶瓷、封装等微结构和缺陷检测 在材料领域中,用于非金属材料及复合材料微结构和成分成像 在农业中,用于种子形态学的研究,并计划用于良种筛查等方向。此外,扫描得到的单位数据体可直接转化为STL数据,为3D打印提供前后端技术支撑。  最后,与会的各个材料相关领域的师生,结合各自研究方向,就此仪器在各自研究中的应用等方面进行了讨论和交流。   X射线三维显微镜由天津大学和三英精密联合开发,目前已完成样机研制工作,并形成了产品。借助于X射线三维显微镜,可用于各种材料内部微观尺度上的三维结构表征,揭示材料结构跨尺度的三维空间分布等,在航空航天领域有着广泛的应用前景,也将为超精密增材制造产品提供质量检测手段,并有效缩短工艺和产品研发周期。
  • 古脊椎所等在CT数据三维重建和可视化软件开发研究中获进展
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院古脊椎动物与古人类研究所副研究员卢静、澳大利亚国立大学博士生胡雨致,与澳大利亚国家计算中心博士Ajay Limaye,在《皇家学会开放科学》( i Royal Society Open Science /i )上发表了在三维重建和可视化计算机软件开发方面取得的新进展。 /p p style=" text-align: justify text-indent: 2em " X射线断层成像扫描技术(X-Ray Computed Tomography,X-CT)能无损获取样本的内部结构形态,在古生物学等领域得到应用,这对CT数据的处理,特别是其三维重建和可视化提出了更高的需求。目前,已有若干商业软件支持对CT数据的三维重建,但价格昂贵,且通常并没有针对古生物学、形态学和比较解剖学教学研究要求的特别优化。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 该研究以一组澳大利亚早泥盆世盾皮鱼化石的CT扫描数据为例,介绍了三维成像数据处理软件Drishti最新版本中的执行数据重建分割 i Drishti& nbsp Paint /i 模块, i Drishti /i 软件三个模块之间的关系和交互,以及体积探索、体渲染的应用功能等内容。该研究介绍了一种用于对体积数据进行阈值处理(即梯度阈值处理)的新工具,以及使用3D Freeform Painter工具执行三维分割的新方法。这些新工具和工作流程可以实现更准确,更精确的重建,建模和3D打印。该研究为CT数据的分割和重建提供了新的工具和思路,对于精准分割体数据,优化三维重建,三维模型制作、渲染和3D打印效果具有重要意义。& nbsp /span /p p style=" text-align: justify text-indent: 2em " a href=" https://royalsocietypublishing.org/doi/10.1098/rsos.201033" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 论文链接 /span /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/f426dd19-1764-4571-8d53-91cd4d0a6926.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-indent: 2em " 图1. i Drishti paint /i 中使用3D Freeform Painter工具对澳大利亚早泥盆世盾皮鱼头部化石执行三维分割 /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/0de4da24-6159-4a47-bfd8-75fc082a4a9c.jpg" title=" 图2.jpg" alt=" 图2.jpg" / strong br/ /strong /p p style=" text-align: justify text-indent: 2em " 图2.使用 i Drishti Paint /i 对澳大利亚早泥盆世盾皮鱼颌骨脉管结构进行三维重建& nbsp /p p style=" text-align: justify text-indent: 2em " br/ /p
  • 广州市第一人民医院借助智能数字技术实现下肢复杂畸形微创、三维精准矫正
    下肢畸形临床较常见,患者不仅下肢功能受到严重限制,晚期还会造成关节退变引起骨关节炎。而且影响患者外观和步态异常等造成患者心理压力、影响患者心理健康,因此需要早诊断、早治疗。21岁的钱小姐,正值花样年华却遭受此病痛烦扰,由于双下肢的严重畸形,且已错过最佳诊疗时机,不少医院同行都表示束手无策,不敢妄下决断。但是钱小姐经介绍找到了华南理工大学医学院教授、广州市第一人民医院关节外科丁焕文主任医师,在计算机技术、3D打印、虚拟仿真、XR技术以及白光三维扫描等医工结合高新技术的配合运用之下,解决了钱小姐的人生厄运,为她开启了美好的全新人生篇章。钱小姐治疗过程中广州市第一人民医院进行了临床决策和手术具体实施。国家人体组织功能重建工程技术研究中心辅助完成了手术导板、个性化外固定支架和钙磷基植入体3D打印。华南理工大学医学院解剖教研室虚拟解剖应用研究团队辅助进行了手术虚拟仿真,完善和优化了手术方案。诺曼数字医疗科技有限公司辅助完成了手术三维设计、手术导板三维设计和医学3D模型平面三维渲染显示。广州联睿智能科技有限公司采用XR技术进行了患者畸形状态、手术方案、手术效果预测等3D显示,辅助医患沟通、病例讨论和术前讨论过程。先临三维科技股份有限公司辅助进行了术前、术中、术后下肢外观白光三维扫描,术前白光扫描了解下肢畸形状态,术中白光扫描引导手术导板精准安放,术后白光扫描评估患者下肢畸形矫正情况和引导矫形过程。治疗经过病例简介:21岁女性。因双下肢畸形、跛行步态7年余就诊。体查:患者身高148cm,双下肢严重畸形,左侧明显(图1)。右膝关节屈曲挛缩,右膝活动度120°-25°-0°。2019年10月行左股骨、胫骨截骨矫形+术后缓慢撑开延长术(图2)。2020年11月23日行右股骨、胫骨微创截骨三维精准矫形+外固定术(图3)。术后1年余左股骨、胫骨正侧位片显示左股骨延长区域愈合、胫骨延长区域有明显骨痂生长(图4),左下肢延长12cm,遗留左小腿外旋畸形,(图5),采用3D打印个性化外固定支架非手术矫正(图6)。新兴科技助力诊疗,术前精准定量诊断树蚁智能数字精准外科云服务系统团队在获得患者CT数据之后即刻进行了三维重建(图7),借助3D虚拟模型,更细致了解患肢在三维层面的畸形程度。同时对下肢的解剖参数精确测量,建立了以下三维数字化定量精准诊断:1.右下肢严重畸形:①双股骨前倾角增大1.7144°②右股骨远端关节面后倾32.2495°③右股骨远端内翻股骨角88.3453°④右胫骨远端外翻,胫骨角92.1646°⑤右胫骨扭转角减少-3.6716°⑥右下肢短缩畸形。2.左下肢矫形术后明确患情后丁焕文教授带领广州市第一人民医院临床研究团队制定了以下治疗计划:1.右股骨、胫骨微创截骨三维精准矫形外固定+术后缓慢撑开延长术2.左小腿个性化外固定架更换遗留外“八”字畸形矫正术手术三维设计和虚拟仿真优化手术方案为更好的解决钱小姐右下肢畸形、短缩问题,丁焕文教授带领树蚁智能数字精准外科研究团队开始紧锣密鼓的进行手术三维规划,由于右下肢存在不同程度的短缩、外翻畸形和股骨远端关节面后倾造成膝关节不能伸直等问题,丁焕文教授团队在左下肢矫正基础上再次对右下肢进行个性化手术三维设计,依次从右股骨头对齐、确定右股骨髁上截骨位置,将股骨进行矫形(图8-9),包括恢复了股骨远端的前倾角和后倾角,同时对远端内翻畸形等进行进行全方位精准矫正。完成右股骨矫形之后,进一步对右胫骨进行三维精准截骨矫形设计,包括截骨位置的选择,矫正恢复下肢力线(图10),再利用CAD软件进行外固定架置钉与截骨导板的设计与3D打印制作(图11)。最后华南理工大学医学院虚拟解剖应用研究团队进行了双下肢畸形三维精准矫形手术虚拟仿真,优化和完善了手术方案。VR科技术前引热议所有术前准备妥当之后在手术当日交班现场,丁焕文教授还拿出了一项吸引眼球的新兴科技,那就是虚拟仿真技术,丁焕文教授与树蚁精准外科云辅助系统、广州联睿智能科技有限公司联合攻关建立了医学3D模型XR显示系统,一排VR眼镜摆在交班室的会议桌上,各位医生护士争相观看,在该系统辅助下VR远程显示病变状态、手术方案和手术效果等。在VR眼镜系统里镶嵌了钱小姐完整的手术设计过程,借助VR眼镜进行了一次完美的术前讨论。(图12)白光扫描术中放异彩术中为了将设计的置钉定位导板安装妥帖,丁教授使用先临三维白光三维扫描技术——EinScan Pro 2X Plus多功能手持三维扫描仪对患者腿部进行扫描(图13),EinScan Pro 2X Plus采用非接触式白光扫描技术,扫描幅面大,细节精度高,因此可以无创、快速高效的获取患者腿部表面高精数据(图14),形成相应的文件。然后利用3D数据在电脑上进行畸形状态评估、术中辅助手术导板快速匹配和精准安放,评估术后畸形矫形手术效果和引导术后矫形过程。术中AR配准引导手术导板精准定位为了进一步验证术中导板与体表的贴合位置,丁焕文教授术中放置手术导板后将正侧位外观照片网上传送给华南理工大学自动化学院李彬教授实验室,进行手术导板术中AR即时配准(图15),通过这种跨越空间的远程交流,进一步体现了创新科技的优越性,进行了远程医疗创新形式的探索,也成功让手术导板能够更准确的贴合患肢,提高了外固定置钉精准度,防止截骨位置发生偏差。个性化手术导板引导完成微创截骨与三维精准矫形手术在王迎军院士领衔的国家人体组织重建工程技术研究中心赵娜如教授、刁静静博士等辅助下,完成了个性化磷酸钙可再生修复体、手术导板和个性化外固定架的CAD设计和3D打印。借助这一系列新兴科技手段,钱小姐的手术按时顺利完成,导板引导外固定螺针(图16)准确打入股骨与胫骨,截骨位置选择十分准确,通过短于2cm的小切口完成微创截骨,安装外固定架后完成矫形。遗留部分畸形采用个性化外固定架非手术矫正(图17)。术后三维评估针对左下肢术后残留的外”八“字畸形和轻微小腿向内成角畸形(图18),CAD设计和3D打印个性化外固定进行非手术矫正,使患者避免了再次手术(图19)。就这样一台复杂疑难下肢畸形矫正手术得以精准、安全和轻松解决。外固定架矫形成功,下肢延长未来可期在手术完成的第二天钱小姐精神状态良好,还在麻醉中的双下肢也没有丝毫不适。进行术后的X线片与CT扫面以及三维重建评估,都提示下肢矫形效果很好。为了下肢功能更好康复,指导、鼓励其积极进行床边、床旁运动。身高148cm的患者术后摇身一变成为160cm的窈窕淑女。术后三维评估患者双下肢解剖参数完全恢复(图20)。END文章源自于广州市第一人民医院 丁焕文教授团队
  • 高性价比!先临三维推出万元内专业级3D扫描仪Einstar
    随着元宇宙、数字孪生、数字藏品等行业的快速发展,世界的呈现方式逐渐从二元结构向三元结构进阶,更高维度的信息逐渐成为刚需,需要海量的三维数据作为基本信息载体。而三维扫描,作为三维数据获取的重要手段,也需要更加普及化的设备,来下沉服务更多的用户。2022年9月20日,三维视觉科技企业先临三维举行全球新品发布会,推出一款在专业级三维扫描仪普及之路上具有里程碑意义的产品——Einstar手持3D扫描仪。数字万物,由此开启!Einstar是先临三维基于多年的三维视觉技术积累,结合市场需求,自主研发的一款超高性价比的普及化专业级手持3D扫描仪。Einstar具有快速流畅的3D扫描体验,优良的数据品质,简便快捷的使用模式,超强的场景适应性。其核心在于让用户以更低的购买成本、学习成本、使用时间成本等,获取高质量的3D数据,进一步推动专业级三维扫描仪的普及,真正实现数字万物。应用范围广泛,助力多种3D应用场景多样应用,领域宽广:支持多种数据格式输出,智能兼容各类3D设计软件和3D打印设备,提升3D建模品质和效率,为3D设计、虚拟展示、数字化存档、可视化交互等应用提供3D数字化解决方案。具有优良的数据获取能力超小点距,细节丰富:能够高清细腻地还原实物立体形态和几何特征,3D点云数据最小点距可达0.1mm。真彩扫描,栩栩如生:搭载专业彩色纹理相机,真实还原物体色彩信息。超强适应,不限场景:配备3组高品质VCSEL红外投射器和3个相机,捕捉图像清晰稳定;场景兼容性强,即使在户外,也能稳定工作;材质兼容性强,即使黑色和反光物体,也能轻松驾驭。操作简便,易于新手使用智能色谱,数据高质:设计了模型质量色谱,用户能够通过颜色区分扫描数据的完整度,直观简便,可以更好地指导扫描工作,新手也可获取高质量数据。广角视野,丝滑体验:扫描流畅,速度可达14帧/秒;工作距离及扫描幅面自适应性强;数据智能跟踪,高速拼接。由此大大降低扫描难度,新手也能快速上手使用。轻巧便携,简单易用:硬件的操作简单便捷,软件的功能强大丰富,且采用引导式操作,如同普通的家用电器,简单查看说明书即可使用。人眼友好,无光扫描:采用红外不可见光,投射时人眼安全、舒适。先临三维3D数字化事业部执行总经理杨扬表示:“先临三维一直致力于推动高精度三维视觉技术的普及应用,针对不同的专业/工业应用场景,研发了具有不同特点的设备。Einstar手持3D扫描仪是先临三维全新推出的普及化专业级产品,我们基于自主研发的核心技术,将具有优良性能的专业级三维扫描仪做到了万元内,这是专业三维扫描领域的一次重大突破。我们希望将来我们的三维扫描仪可以像笔记本电脑一样普及,让人们能够随时随地用它服务于大家的工作和生活。”作为专业级三维扫描仪,先临三维Einstar定价在7999元,可谓专业级性能,入门级价格,性价比拉满。据悉,未来先临三维将继续把“为用户创造价值”放在首位,持续精益求精,以稳定高性能的设备+全球本地化服务+细分领域的深入推广,让用户能够更好地使用高精度三维视觉技术,唱响数字化时代的最强音!
  • 进行艺术创作,攻城狮与设计师之间的距离,只差一台三维扫描仪
    近期,来自德国的YouTube红人博主Thomas Sanladerer,在发布的视频中,利用EinScan-SE 桌面三维扫描仪做了一个新颖有趣的实验:将打印失败的模型,扫描获取原型数据后,进行再创作,变为一个“艺术作品”。这个实验视频上传至YouTube平台后,已吸引万人围观。图片来源于Thomas Sanladerer频道(YouTube)YouTube博主介绍Thomas是一个3d打印爱好者,在YouTube上坐拥31万粉丝,他的视频多是以幽默风趣的独特风格,分享一些关于3d技术的一切,如创意展示、教程、小技巧和测评等,目前频道累计播放量已达到4500w+。Thomas Sanladerer频道曾在国外知名3D打印媒体ANIWAA发布的“The best 3D printing Youtube channels in 2019”榜单中,位列前十。榜单图片来源于ANIWAA网站视频精彩解析▼以下图片均来自:Thomas Sanladerer频道(YouTube)Thomas在视频的开头展示了一块打印失败的模型,因为材料的原因,这块模型变为了一个拥有丰富纹理细节的黑色反光物体,他认为这很酷,可以用来做一些“意料之外”的艺术作品。三维扫描废料原型Thomas首先利用EinScan-SE桌面三维扫描仪对这块奇特造型,并拥有丰富纹理细节的黑色反光物体进行扫描。一开始,Thomas对这块黑色反光物体没有做任何处理,导致三维扫描仪获取的数据有些缺失。Thomas认为虽然黑色反光物体比较难扫描,有些地方没有扫描到,但EinScan-SE三维扫描仪获取的数据,纹理和细节都很好。为了更好的获取物体完整数据,Thomas对黑色反光物体进行了喷粉处理,再次使用三维扫描仪重新扫描,只用了几分钟,就成功获取到一块外观造型类似 “陨石”的模型数据。设计优化然后,Thomas将获取的数据导入到设计软件中,进行了渲染和优化。在优化的过程中,Thomas特意将模型进行减面,他认为虽然模型细节会减少,但减面后的模型出现了一些特别的角度、形状和细节,变得很酷。3d打印成型最后,Thomas切除模型底部不需要的部分,把模型放大,用 FDM 3D打印设备打印成型。成品展示Thomas认为这件用三维扫描仪+3D打印做出来的“艺术品”,像一个具有金属质感的水晶物体。 (另外,他表示遗憾的一点是因为工作室没有红色的打印材料,他没有打印出计划中的苹果红效果。)艺术的灵感本身是不受任何形式所束缚的,唯一束缚艺术的是表现形式。3d技术以一种开创性的方式给予人们前所未有的创作自由度和创造可能性;thomas用他这种简单有趣的创意实验向大家展示,3d技术可以让生活中任何“平凡”的物体变为无限的可能,同时也能将人们的“奇思妙想”变成为现实。评论区精彩互动评论图片来源于thomas sanladerer频道(youtube)视频案例原文链接:https://www.youtube.com/watch?v=bl0faaatp_0&t=629s榜单原文链接:https://www.aniwaa.com/guide/3d-printers/best-3d-printing-youtube-channels/
  • 2023先临三维国际合作伙伴大会在杭州举行,共谋合作新蓝图!
    2023先临三维国际合作伙伴大会在杭州举行,共谋合作新蓝图!日前,2023先临三维国际合作伙伴大会在杭州总部圆满举行,来自美国、加拿大、英国、德国、法国、意大利、瑞士、葡萄牙、比利时、荷兰、新加坡、泰国、马来西亚、日本、韩国以及印度等国家和地区的合作伙伴齐聚一堂,分享高精度3D视觉技术在全球各区域市场的应用与趋势。先临分享破浪前行 加速向新会议伊始,先临三维CEO李涛欢迎全球合作伙伴相聚杭州,对全球合作伙伴一直以来的信任和支持表达了真挚的谢意,详细介绍了先临三维在海外市场的事业全景、最新研发成果以及产品规划等。2023年,在全球经济环境波动的背景下,先临三维仍然保持着快速增长。上半年公司的营业收入同比增长33.96%,其中海外市场业务占比约60%,公司产品已广泛应用于全球100多个国家和地区。为了不断提升对海外用户的服务效率和服务质量,先临三维持续推进全球化运营,在德国斯图加特、美国加利福尼亚州和佛罗里达州等子公司增大投入,扩建团队规模,提高经销合作伙伴的技术能力,为全球用户提供精细的,本土化售前技术支持和售后服务保障。国际事业部执行总经理黄小萍、国际齿科数字化产品总监平浩、3D打印产品总监庞博、国际3D数字化产品总监胡群、欧洲3D数字化部门总监Niels Stenzel和精度实验室总监李仁举分别作报告,与来宾们分享了先临三维在海外市场的部署与运营详情,以及新产品的技术特点与应用优势所在。大咖分享洞察前沿技术应用趋势美国MINEC成员以及美国数字牙科协会董事会成员Isaac Tawil博士、世赛CAD项目经理Dario Pinto进行演讲,分享了高精度3D视觉技术在口腔数字化、工业测量与设计、人才培养等方面的革新应用与发展趋势。专业论坛技术对话 思维碰撞本次大会还特别设置了3D数字化和齿科数字化两个专业论坛,为这些垂直领域的专家、合作伙伴和用户提供一个更加深入的交流平台。大会花絮共襄盛会 畅叙情谊奋楫笃行,先临三维全球业务稳步向前,不仅需要公司持续深耕技术,保持出色的产品力,同样离不开多年来各专业领域合作伙伴的共同努力。面向未来,先临三维将继续与全球合作伙伴紧密协作,构筑更加坚实的合作关系,提供专业及时的服务,推动高精度3D视觉技术在全球的普及应用。
  • 微型尖锐结构在声场激励下实现声流体芯片上非接触、无损伤细胞搬运及三维旋转操作
    北京航空航天大学机械工程及自动化学院冯林教授课题组学生宋斌,近日在国际期刊《Biomicrofluidics》发表了一篇文章“On-chiprotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了尖锐侧边和尖锐底面微结构,通过PDMS二次倒模并与玻璃基底键合形成声流体芯片。该声流体芯片通过正弦信号激励压电换能器振动,从而带动芯片内微结构振动,并在其周围产生局部微声流,最终实现卵细胞的三维旋转。该研究在细胞三维观测、细胞分析及细胞微手术方面有重大研究意义。(声流体芯片制备工艺示意图) (a)图中声流道长度15mm, 深度250μm,最小宽度200μm。槽道内分布着对称的尖锐结构和斜坡陡坎结构:尖锐结构顶角20°,高度250μm;斜坡陡坎斜角28°,高度80μm。声流体芯片制备工艺如上图所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的尖锐侧边和尖锐底面微结构(最小尖端20°),再倒模出纯PDMS模具,然后经表面处理之后二次倒模获得的PDMS尖锐侧边和尖锐底面微结构。最后把PDMS二次倒模的结构与玻璃基底键合形成声流体芯片。本研究声流体芯片的实验操作系统如上图a所示,主要观测系统和驱动系统两部分组成。上图b展示了声流体芯片的概念图,由受正弦信号激励的压电换能器振动,带动尖锐侧边和尖锐底面微结构振动,从而在相应的微结构周围产生微漩涡(如上图c所示)。在由微漩涡产生的扭矩作用下,最终实现了细胞的三维旋转。对应的微流道及微结构尺寸如上图d-f所示。细胞三维旋转作为一项基本的细胞微手术技术,在单细胞分析等领域有着重大科学意义和工程意义。本文提出了一种基于声波驱动微结构振动诱导产生微声流以实现细胞搬运及三维旋转的简单有效的方法。细胞旋转的方向和转速均可以通过施加不同频率和电压来实现。本研究以单细胞为操作对象,以微流控芯片为手段,以高通量全自动化多功能微操作为目标,为促进我国在微操作技术领域的发展以及生物医学工程交叉学科的革新,进一步为加强我国微纳制造水平提供系统性方法。(BMFnanoArch® S140 System)了解更多https://www.bmftec.cn/links/7
  • 大昌华嘉将全权代理布鲁克三维X射线显微镜产品
    p style=" text-align: justify text-indent: 2em " 大昌华嘉作为布鲁克公司的XRF系列产品中国区的总代理,与布鲁克公司一直保持着长期合作的关系。 /p p style=" text-align: justify text-indent: 2em " 去年4月,两家公司通过分销布鲁克S2 PUMA和S2 POLAR的XRF产品,加强了在亚洲的业务合作。 strong 据悉,近期大昌华嘉还将全权代理布鲁克三维X射线显微镜产品在中国的业务,并向国内用户提供营销、应用及售后服务等。 /strong /p p style=" text-align: justify text-indent: 2em " 三维X射线显微镜产品线SKYSCAN 系列由四个型号组成,具有较高的技术水平。此后,大昌华嘉则将地质、石油天然气勘探、聚合物、复合材料、电池、制药、汽车、航空航天、3D 打印和电子等材料领域的客户提供三维X射线显微镜。 /p p style=" text-align: justify text-indent: 2em " 布鲁克 AXS 全球销售副总裁蒂莫西· 克莱恩评论道:& quot 我们非常乐意延长与大昌华嘉的合作伙伴关系,大昌华嘉一直是我们可靠的业务合作伙伴,并成功地在中国市场销售了我们的关键产品。“ /p p style=" text-align: justify text-indent: 2em " 大昌华嘉中国区技术总监奥利弗· 哈梅尔补充道:& quot 我们很高兴与布鲁克公司在这个充满希望的高科技领域扩大合作关系。这种战略合作伙伴关系的延伸和证明,布鲁克的先进的产品和应用,加上大昌华嘉的销售,可以增加产品市场参与度和市场份额。这种合作将使我们能够为中国的客户提供更为完整的解决方案。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制