当前位置: 仪器信息网 > 行业主题 > >

全脑数据

仪器信息网全脑数据专题为您整合全脑数据相关的最新文章,在全脑数据专题,您不仅可以免费浏览全脑数据的资讯, 同时您还可以浏览全脑数据的相关资料、解决方案,参与社区全脑数据话题讨论。

全脑数据相关的资讯

  • 骆清铭团队获取大鼠全脑高分辨数据集在欧盟脑计划平台发布
    由华中科技大学武汉光电国家实验室(筹)骆清铭教授、龚辉教授研究团队获取的一套大鼠全脑高分辨数据集,近期发布在欧盟人脑计划(Human Brain Project, HBP)的神经信息平台(Neuroinformatics Platform, NIP)上。这标志着该团队建立的“鼠脑最精细脑图谱基础数据库”为欧盟人脑计划正式采用。  此次发布在HBP-NIP上的数据集由该研究团队独立完成,样本为Golgi-Cox法染色的Sprague Dawley大鼠全脑,用显微光学切片断层成像(MOST)系统获取了全脑图像,成像分辨率为 0.35μ m×0.35μ m×1μ m,共包含16216层矢状原始切面。该数据集也同时在全脑网络可视化(Visible Brain-wide Networks, VBN)网站进行了共享,访问地址为 https://vbn.org.cn/2D/id3.html。  HBP是2013年经欧盟委员会批准发起的旗舰级拨款项目,汇集了欧洲神经科学领域的众多科研团队与神经科学前沿研究课题,有超过120个参与机构和10亿欧元的项目资金。神经信息平台是HBP的重要组成部分,用于神经科学数据的发布与检索,近期发布的是神经信息平台的第一个公开版本,可直接通过 https://nip.humanbrainproject.eu 访问。HBP还同时发布了脑模拟平台、高性能计算平台、医学信息平台、神经形态计算平台和神经机器人平台,可通过 https://collab.humanbrainproject.eu 注册、登录和使用。
  • 2019年开年最新:PD1治疗脑转有了首个大数据证实!
    p style=" text-align: justify "   今天20%-40%的非小细胞肺癌(NSCLC)患者常在疾病确诊2年内出现脑转移,这些患者预后极差,目前全身性的用药方案非常有限。PD1/PDL1虽然火热于肺癌治疗中,但免疫单药用于脑转移的理想数据却非常少,在既往CheckMate 063,017及057的数据中,nivolumab(O药,纳武单抗)与传统化疗相比都未体现出优势。聊到这话题,小编就给大家分享Lung Cancer上新发布的OAK研究亚组分析,探讨atezolizumab(Tecentriq,阿特珠单抗)这款PDL1单抗对脑转移的疗效。 /p p style=" text-align: justify "    strong OAK研究简介 /strong /p p style=" text-align: justify "   该试验为国际多中心、随机III期研究,纳入既往治疗线数≥1(1-2线)的NSCLC患者,不排除脑转移及EGFR/ALK突变。患者分别静脉给予阿特珠单抗1200mg/3周或多西他赛75mg/m2/3周治疗。之前报道的首次分析中,阿特珠组的中位OS(总体生存期)较化疗延长了4.2个月,安全性也更佳,免疫后线疗效获得认可。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/f6159a70-c6ef-4c9d-aed4-bcd33aabe82a.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify "   本篇文章针对OAK试验中的经治无症状脑转移患者进行了亚组分析,脑转纳入标准包括:颅外必须有可测量病灶,仅限小脑幕上转移(排除幕下、脊髓或软脑膜转移 新发的无症状脑转患者必须接受过放疗/手术),无脑出血,无需激素治疗,入组前7天未做立体定向放疗及前14天未做全脑放疗。另外,试验中“基线脑转移”的定义包括既往做过脑部放疗的患者,因为这类人群强烈提示以往有无症状脑转移史。 /p p style=" text-align: justify "    strong 研究结果 /strong /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 1. 基线情况 /strong /span /p p style=" text-align: justify "   在数据截取时,共分析了850例患者,其中14%为经治无症状脑转患者(阿特珠组为61例,化疗组为62例,两组基线可比。首次入组给药距离既往脑部放疗的中位间隔时间为阿特珠组3个月,化疗组5.1个月 两组中既往接受过脑部放疗的患者分别占90.2%(阿特珠)及82.3%(化疗)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/795c483e-f082-4300-9d11-a937709a9a52.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 2. OS(总生存期):免疫治疗提高脑转患者各时间段OS率,展现OS延长趋势。 /strong /span /p p style=" text-align: justify "   在经治无症状脑转患者中,阿特珠组的OS比多西他赛组延长了4.1个月,但无统计学差异(P=0.16)。免疫组OS有获益趋势,可能因随访时间不够而无法提现明显优势。对于无脑转患者中,阿特珠的OS较化疗延长了3.9个月,差异非常显著(P& lt 0.01)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/0286247d-a360-4c5a-8157-133f92f56a1b.jpg" style=" " title=" 3.jpg" / /p p style=" text-align: center " 图A 两组脑转移患者的总生存期对比 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/ce3346a5-aaea-44eb-9e93-262be904e73c.jpg" style=" " title=" 4.jpg" / /p p style=" text-align: justify " br/ /p p style=" text-align: center " 图B 两组无脑转移患者的生存期对比 /p p style=" text-align: justify "   无论是有无脑转移史,阿特珠组的6、12、18及24个月OS率都高于多西他赛组。有脑转移史患者的OS率为6个月(阿特珠77.9% vs 化疗71.4%),12个月(58.4% vs 48.5%),18个月(42.5% vs 27.9%)及24个月(26.6% vs 19.3%)。具体见下表。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/7c8545ee-87c5-4a1b-a8b8-12e5b383931e.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 3. 新发病灶:阿特珠提高无新发脑病灶的患者比例,体现一定的预防作用 /strong /span /p p style=" text-align: justify "   在脑转患者中,阿特珠组出现有症状的影像确诊新发脑转移灶的中位时间尚未达到,明显优于多西他赛组的9.5个月(P=0.02),阿特珠单抗有更好的防治新发脑病灶能力(见下图)。对于无脑转的患者,两组新发病灶中为时间都尚未达到。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/eca707d0-a6b4-49b4-998f-d76b1233ac8e.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " 上图为脑转移患者出现新发脑病灶的两组中位时间对比 /p p style=" text-align: justify "   在有脑转移史的患者中,阿特珠组在各个时间点(6、12、18及24个月)不出现新发脑病灶的发生率都高于多西他赛组,分别为85.1% vs 64.1%,76.6% vs 42.8%,76.6% vs 42.8%及76.6% vs 0%。在无脑转移史患者中,阿特珠组从第18个月后开始出现获益。两个亚组(有无脑转移史)分析结果提示阿特珠单抗预防新发脑转的能力优于化疗组,且时间越长获益越多。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/78c43524-f036-4a49-b5e0-264b7d27f7b5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 4. 安全性 /strong /span /p p style=" text-align: justify "   无论是否有脑转移史,阿特珠组的治疗相关AEs(不良反应),严重AEs及治疗相关神经性AEs发生比例都比化疗组更少。阿特珠的最常见治疗相关神经性AEs为头痛。两组均无4-5级神经性AEs的发生。两组总体安全性良好。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1d1a0124-5471-4a1c-ac59-22f15f29af16.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 总结 /strong /span /p p style=" text-align: justify "   本文章为首个免疫治疗脑转移的III期研究分析,且为免疫单药治疗,具有一定的临床指导意义。 /p p style=" text-align: justify "   虽然阿特珠单抗组的脑转移中位OS并无明显延长(P& gt 0.05),但较化疗组仍有获益趋势,随着日后随访时间的加长可能会发现优势。无论有无脑转移,阿特珠组各时间点的OS率都更佳,再次印证了免疫的长期疗效更有优势的特点。 /p p style=" text-align: justify "   阿特珠组无新发脑转移灶的患者比例更多,无论基线有无脑转,免疫治疗都能起到很好的防治作用,且时间越久获益更明显。 /p p style=" text-align: justify "   免疫治疗总体耐受性良好,安全性优于化疗。 /p p style=" text-align: justify "   本研究不足之处:两组患者的基线化疗及突变有差异,造成可能夸大免疫疗效 另在新发脑转病灶的分析中,影像检查只在患者出现相关症状后才做,可能对结果判定有影响。 /p p style=" text-align: justify "    span style=" color: rgb(127, 127, 127) font-size: 14px " 参考文献: /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   Shirish M. Gadge et al. Atezolizumab in patients with advanced non-small cell lung cancer and /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   history of asymptomatic, treated brain metastases: Exploratory analyses of /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   the phase III OAK study,Lung Cancer 128(2019)105-112. /span /p
  • Neuroscience Bulletin最新上线综述︱华中科技大学袁菁教授︱​全面总结全脑显微光学
    全脑显微光学成像:介观水平绘制全脑精细结构地图的有力工具Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level江涛1 &bull 龚辉1,2 &bull 袁菁1,21华中科技大学苏州脑空间信息研究院,苏州215000,中国2华中科技大学武汉光电国家研究中心,武汉430074,中国第一作者:江涛通讯作者:袁菁 大脑是生命进化的顶峰,破译大脑工作机理是人类的终极梦想,但迄今为止,科学家们还未能揭示出记忆、思维和意识这些大脑功能的基本机制。由于对大脑结构和功能的了解有限,也导致治疗如阿尔茨海默病和帕金森病等脑疾病的有效药物和方法的缺乏。哺乳动物的大脑是一个高度复杂的网络,由数百万到数十亿个密集的相互连接的神经元组成,同时神经元的胞体、小动脉和小静脉的直径仅为几十微米,毛细血管的直径仅为几微米,而树突和轴突纤维的直径则在1微米及以下。在介观尺度绘制全脑范围神经环路、血管网络的三维精细结构可以为理解大脑提供重要的结构信息,是阐明脑功能运行机理的一个重要前提。 近年来,在介观尺度绘制脑联接图谱,定义细胞种类及其排布规律,以理解脑功能的结构基础,助力人工智能、组织再生工程等新兴学科的发展,已成为生命科学的重要前沿方向之一。绘制脑图谱涉及在介观尺度进行特异性标记、全脑显微光学成像、大数据处理及生物学解读,其中全脑显微光学成像扮演了不可或缺的重要角色,负责以亚细胞分辨率获取全脑三维精细结构,为绘制脑图谱提供数据基础,所采集图像的质量与完整度,直接影响到后续相关数据挖掘的难易程度。显微光学成像方法具有亚微米的横向分辨率及"光学切片"的层析成像能力,在介观水平观察神经环路结构具有天然优势。通过结合组织光透明技术或组织切片技术(图1)来克服组织散射和吸收对于光学成像深度的限制,可以实现细胞分辨的全脑显微光学成像。各类全脑显微光学成像技术的快速发展带来了前所未有的大规模精细数据,在全脑细胞、神经环路和血管的定量分析方面显示出巨大的应用潜力,推动了神经解剖学的复兴。 图1 全脑显微光学成像的技术路径。A 光片照明显微成像与组织光透明处理结合实现全脑成像。B 各类块表面层析成像与组织切片结合实现全脑成像 图2 全脑显微光学成像结果展示。A MOsPlxnD1+单级输入神经元的小鼠全脑三维水平面渲染图。B、C 6个AAV-GFP标记(prelimbic area)神经元形态重建结果的水平面和矢状面展示图。D 100μm厚小鼠血管冠状面图像的最小值投影图。D、E 海马局部血管的三维可视化结果。 全文总结目前,各类特异性标记、全脑显微光学成像和信息学工具的无缝整合已经开始产生统计学上的有力结论,改变人类对脑神经联接关系的认识和理解。全脑显微光学成像方法的持续发展将为破译结构-功能关系、理解复杂的大脑功能和人类大脑疾病提供关键信息。文章链接:https://link.springer.com/article/10.1007/s12264-023-01112-y
  • 这一重大仪器原创成果或将改变脑科学研究方式!可实现单细胞完整形态全脑三维成像
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’”专题 ,并向国产光学显微镜企业广泛征稿,以了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为武汉沃亿生物有限公司(以下简称“沃亿”)供稿。自2013年起,沃亿生物先后多次购买骆清铭院士和龚辉教授带领的MOST团队(以下简称MOST团队)技术专利,推出BioMapping1000、BioMapping3000、BioMapping5000和BioMapping9000显微光学切片断层成像(MOST)技术/荧光显微光学切片断层成像(fMOST)技术的系列仪器设备,在国内外得到广泛应用。仪器信息网: 请回顾一下贵公司光学显微镜技术的发展历程。沃亿生物的光学显微镜技术是来源于骆清铭院士和龚辉教授带领的MOST团队发明的显微光学切片断层成像系列技术(MOST /fMOST)。MOST团队从2002年开始,经过近十年的努力、自主研发了拥有自主知识产权的显微光学切片断层成像技术(MOST),通过从理论、方法到仪器的系统性研究,建立了一套完整的技术体系,解决了厘米尺度样品的三维亚微米高分辨成像难题,在此基础上获得了世界上第一套小鼠全脑高分辨率图谱,相关成果发表于2010年Science杂志。为满足不同的科研需求,MOST团队进一步发展了具有不同成像特点与系统性能的fMOST系列成像技术。2013年,MOST团队建立了荧光显微光学切片断层成像(fMOST)技术,实现了单神经元水平的荧光小鼠全脑三维连续成像,并首次实现了单神经元轴突的长程追踪。2016年,MOST团队建立了一种类似全球定位系统(GPS)的全脑定位系统(BPS),实现对荧光标记的单神经元及其共定位细胞构筑信息的双色同时成像,达到在单细胞分辨的三维精准定位下获取神经元的三维完整形态,为神经元分类问题研究提供了可靠的形态学数据,相关结果发表在Nature Communications杂志上。2021年3月,MOST团队在Nature Methods杂志发表了高清晰荧光显微光学切片断层成像(HD-fMOST)技术,利用线照明调制显微成像新原理,实现了高分辨率、高通量、高清晰度、高鲁棒性的全脑三维成像,解决了神经元胞体与突起纤维信号亮度差异极大的探测难题,做到了“在太阳旁边观察星星”。2013年,通过教育部直属高校科研成果公开挂牌交易转让的方式,沃亿生物购买了MOST系列技术的专利。专利买回来后,沃亿生物组织力量开始消化技术,不断去打磨细节、积累经验、调整方案,耗时四年,历经3个重大版本更新,成功推出BioMapping1000产品,实现从原理机到高端科研仪器的转变。该产品适用于Golgi、Nissl、HE等传统组织染色方法,实现对大尺寸生物组织样品的高分辨率三维连续成像,是获取生物组织三维精细结构信息的理想工具,可用于果蝇、斑马鱼、小鼠、大鼠、灵长类等模式动物及人体组织的神经、血管等不同结构特征的成像。BioMapping 1000显微光学切片断层成像仪此后,沃亿生物经过近十年的精细打磨,又先后推出了适用于荧光全脑成像的BioMapping3000、BioMapping5000与BioMapping9000系列产品。该系列仪器稳定性高、鲁棒性强,具有长时间不间断的三维数据采集能力,特别适用于自动获取全脑内神经环路投射路径及其细胞构筑信息。仪器信息网: 当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术? 沃亿生物主要产品为基于MOST系列技术的BioMapping1000、BioMapping3000、BioMapping5000、BioMapping9000,以及配套应用于MOST/fMOST成像的技术服务,包括全脑神经投射、跨尺度血管网络、三维胞体定量分析、单细胞形态学分析、空间蛋白定位、多方位三维成像。沃亿生物的光学显微镜技术最大的亮点是完全基于由我国科研团队发明的原创技术进行成果转化。BioMapping3000设备基于数字微镜阵列的结构光照明调制显微成像方法,具有宽场大容积层析成像的高通量多通道特点,结合转基因小鼠、荧光染料、腺相关病毒(AAV)示踪等荧光标记技术,实现突起级别的三维高分辨荧光成像,适用于神经元和血管的双色成像、形态分析及神经元长程投射追踪、介观神经联接图谱分析、血管网络分析等。BioMappping5000设备采用时间延迟积分(TDI)成像方式,通过对样本的多次曝光和信号累积,在保证高速成像的同时可实现高信噪比的成像,并结合创新性的化学成像样品处理方法可获得高轴向分辨率,实现对全脑树突棘分布的精细成像。BioMapping9000是基于斜光片成像与振动切片结合实现单细胞分辨率的全脑三维快速荧光成像仪器,与前述其他产品相比,具有成像速度更快的优势,能快速获取与分析全脑荧光数据,适合对批量样本进行高效筛选。仪器信息网: 请介绍一下贵公司主推的光学显微镜当前的市场现状如何?整体技术发展趋势如何?从各国脑计划的开展过程可以看到,一系列新型显微成像技术的诞生也在不断帮助生物科学家们拓宽研究场景,进行更深层次的探究。例如,超高分辨光学显微镜突破了光学衍射的极限,在FISH原位杂交等单分子成像领域展现了实力;双光子显微镜更适用于组织深层成像,实现了小型化长时程活体成像。全脑光学成像技术是近10余年新兴的技术领域,利用光学的方法以亚细胞分辨率获得全脑的三维精细结构,在助力脑介观联接图谱的绘制方面独具应用价值。MOST系列技术以高分辨率成像质量为技术特色,在这一领域处于全球领先地位。经过与国内外知名科研院所开展的广泛合作与应用,相关技术路线逐步成熟,已形成了从样本制备、三维成像到数据处理的全链条解决方案,备受合作伙伴的好评与认可,也是目前全脑介观联接图谱绘制的主流技术。基于MOST技术的沃亿生物BioMapping系列设备,也在国内外得到广泛应用,特别是在华中科技大学苏州脑空间信息研究院落地应用,已开始“以工业化的方式大规模、标准化地产生数据并绘制脑图谱,将改变神经科学已有的研究方式”。仪器信息网: 贵公司高端光学显微镜在生命科学研究中有哪些应用?沃亿生物的BioMapping系列产品可用于生物组织样品的单细胞分辨率三维精细结构及空间定位成像,特别是大尺寸样品。可应用于多物种研究,如小鼠、大鼠、树朐、雪貂、猪、猴、人等;可应用于不同器官研究,如脑、脊髓、眼球、肝脏、心脏、肠等;可应用于不同研究模型,如正常模型、疾病模型、发育模型等。MOST/fMOST系列技术已经在神经生物学、发育生物学、肿瘤生物学等领域发挥着重要作用,相关应用成果在Science、Nature等国际知名学术期刊多次发表。通过沃亿生物的BioMapping系列产品,科学家们可以结合Golgi、Nissl、HE等传统组织染色方法和转基因小鼠、免疫染色、荧光染料、腺相关病毒(AAV)示踪等荧光标记技术,以亚细胞分辨率开展大尺寸样本的三维信息获取。依靠这些技术,可以进行全脑任一脑区单细胞形态学分析、三维胞体定量分析、长程和局部神经投射分析;建立哺乳类动物全脑介观立体定位三维脑图谱,绘制脑内不同类型神经元的空间分布图谱及输入输出神经联接图谱,建立模式动物介观脑联接图谱及其数据库。此外,还可以通过对蛋白空间定位分析,绘制具有单细胞分辨率的蛋白表达空间分布图谱,助力脑科学、类器官发育和毒理学相关研究;通过跨尺度的血管网络分析、药物空间分布评估,从脑组织到全器官,从形态学研究到病理机制研究,多方位的三维成像分析,助力血管疾病相关的发病机理和药物研发等研究。还有更多潜在的应用场景,等待我们与合作伙伴一起去开发和展示。可以说,亚细胞分辨率全器官尺度的三维光学成像技术为生物学家打开了一扇窗,可以从三维立体的角度审视相关生命现象,为回答重要的生物学问题提供新的依据。仪器信息网: 从整个行业的角度,对于目前的高端光学显微技术,您比较看好哪些?还有哪些问题亟待解决?现有的高端光学显微技术,特别是全脑光学成像技术主要还是应用在小鼠、大鼠、果蝇等小型模式动物上。我们认为科学研究的最终目标还是要解析人,其中人类大脑皮层约是小鼠的1000多倍,这对技术工具提出了极大的挑战。要实现这一终极梦想,能够对大体积样品进行高分辨成像的完整器官三维光学显微成像技术是关键领域。特别适用于大尺寸生物组织成像的MOST技术,因采用机械切削的方式打破成像深度限制,扩展到人体器官尺度的三维光学成像,相较于其他无需切削的同领域技术将更有优势。当然我们也注意到从小型模式动物的全脑成像跨越到人脑或人体组织器官的三维整体成像,还是有许多技术问题有待解决。例如样本标记技术,不同于模式动物,适用于人体组织器官的标记技术相对较少,转基因、病毒示踪标记等先进的标记技术都无法直接使用,均一、高效的大体积染色技术将值得尝试与探索。扩展到人的完整器官成像,成像范围提高了几个数量级,超大体积样本的制备、成像设备的数据采集效率优化及长时程稳定性、随之而来的PB级数据存储及处理分析等,都将是亟待解决的巨大挑战。仪器信息网: 从整个行业的角度,您如何评价目前高端光学显微镜的应用情况?应用过程中还有哪些亟待解决的问题?未来光学显微镜应用将会如何发展?目前得益于生命与健康领域的蓬勃发展,高端光学显微镜得到越来越多的关注与重视,已逐渐在各大科研院所、医疗机构等普及。全脑三维光学成像技术作为其中典型代表之一,也得到了广泛的应用空间。在推广应用的过程中,我们体会到将学术成果快速转化成商业化、实用性强的设备及解决方案,还存在很多挑战。一项新的技术诞生后,如何展示出独特的应用价值,如何向生物学家快速普及相关知识,如何提高设备的易用性使之成为具有普适性的科研工具,从而广泛应用于更多的科研领域及范围,都是值得我们深入思考并积极寻求解决方案的。我们相信,未来全脑光学成像技术在提高分辨率、成像速度、成像质量、成像范围的基础上,结合体外、体内等功能研究,将广泛应用于不同组织、器官样本的整体三维精细成像,服务于生命科学、医学、农业、材料学等不同领域。 仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距? 目前国内在高端光学显微成像技术的研发上,与国外科研单位的实力越来越接近,甚至在部分领域占据领先地位。然而,整体来说国产光学显微镜,与国外同类产品相比还有一定差距,纯国产化之路还很漫长,尚需在与进口品牌厂商合作交流过程中不断学习并加强技术创新,在软件应用特别是数据分析软件中重点投入或许可以在短时间内实现弯道超车。我们作为高端光学显微镜的国产厂商,深感责任重大,愿意为“光学显微镜中国造”贡献自己的一份力量。仪器信息网: 您认为,未来几年高端光学显微镜的热点市场需求有哪些?未来几年高端光学显微镜的热点市场需求将集中于生物医药、疾病和神经科学等细分领域的高分辨、高通量的全脑三维成像、大尺寸生物组织完整成像(小型模式动物的外周系统或完整个体的整体成像,猴、猪、人等的组织器官成像)、多维度活细胞动态成像、细胞器超分辨成像、动物活体深层成像等。除了成像设备本身,配套的样本标记技术、样本包埋技术、成像数据采集、数据分析与管理等科研服务也有着巨大的市场需求。无论是显微光学切片断层成像技术(MOST)还是荧光显微光学切片断层成像技术(fMOST),沃亿生物作为BioMapping系列设备的生产厂商,不仅进行设备销售,还提供从样本制备、数据采集到数据分析及交付的高分辨率三维结构成像全流程技术服务,相信未来一定能为更多的客户和合作伙伴们提供高质量的产品和全方位的服务。
  • Neuron:最新下丘脑室旁核(PVH)催产素神经元单细胞全脑投射图谱
    前言骆清铭院士和龚辉教授带领MOST团队发明的显微光学切片断层成像系列技术(MOST/fMOST)作为介观尺度最精准的三维完整器官成像技术,已在神经机制、脑疾病、心脑血管疾病以及药理毒理等科学前沿领域研究中发挥重要作用,并带动了相关标记技术和大数据处理和解析技术的发展。 文章题目:Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns发表时间:2024年1月29日发表期刊: Neuron研究团队:北京大学生命科学学院黎胡明珠、华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者;北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者 催产素是九个氨基酸组成的环状神经肽,由大脑中的神经细胞合成、分泌。其最早被报道的作用是促进分娩和泌乳,主要由垂体分泌至外周循环的催产素完成。进一步研究发现催产素还参与维持机体代谢平衡和内稳态,并调控社交行为、学习与记忆、奖赏等复杂行为。关于催产素的研究已经持续百年,但其多样功能的结构基础仍不清楚。一个关键问题是,催产素神经元如何将催产素分泌至各个脑区及外周组织,从而实现特定功能的调控。前人研究表明大脑中产生催产素的神经元主要分布在14个脑区中,其中下丘脑室旁核(paraventricular hypothalamic nucleus, PVH)拥有数量最多且投射最为复杂的催产素神经元。因此,对于室旁核催产素神经元投射的形态解析对理解其功能多样性至关重要。室旁核包含两类传统方法定义的催产素神经元类群:大细胞催产素神经元被认为拥有复杂的轴突结构并参与中枢和外周的调控,小细胞催产素神经元主要参与中枢自主神经调控(图1)。然而群体示踪的方法无法精细区分两类神经元的投射图谱,也无法揭示每一类群中是否存在进一步的功能与形态异质性。系统性重构单神经元形态为解答这一问题提供了可能。 2024年1月29日北京大学于翔团队与合作者在 Neuron 期刊发表了题为“Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns”的研究论文,在单细胞水平揭示了下丘脑室旁核催产素神经元的完整形态。中国科学院脑科学与智能技术卓越创新中心与上海科技大学联合培养,目前就职于北京大学生科院的黎胡明珠博士为第一作者。 图1:(左)根据传统分类与群体示踪的大细胞催产素神经元(magnocellular)与小细胞催产素神经元(parvocellular)分类。(右)基于系统性重构单神经元形态提出的室旁核催产素神经元C1与C2分类 该研究首先构建了病毒载体rAAV-EF1α-DIO-YPet-p2A-mGFP,在Oxytocin-ires-Cre小鼠中实现了室旁核催产素神经元的稀疏高亮标记。通过荧光显微光学切片断层成像(fluorescence micro-optical sectioning tomography, fMOST)对稀疏标记样本进行全脑成像,用Fast Neurite Tracer进行形态追踪,重构了264个室旁核催产素神经元的完整三维形态,从而绘制了亚微米分辨率下的单神经元全脑投射图谱。进一步通过层级聚类和投射靶点相关性分析,揭示室旁核催产素神经元包含两类投射模式互斥的类群。其中,C1类包括177个神经元,轴突较短且终止于正中隆起(连接下丘脑与垂体的脑区),仅有少量分支分布于下丘脑区域,且对其他脑区几乎没有投射(图2,红色);C2类包括87个神经元,其轴突广泛投射至除正中隆起之外的两百余个脑区,涵盖新皮质、嗅区、海马结构、皮质板下层、纹状体、苍白球、丘脑、下丘脑、中脑、脑干、脑桥、延髓、小脑和纤维束(图2,绿色)。每一类群又可进一步分为投射模式不同的三个亚类。此外,还发现室旁核催产素神经元,特别是C2类神经元的树突形态复杂并可延伸至室旁核以外,而C1类神经元的树突则较简单且分布在胞体附近,两类神经元胞体位置有一定偏好,并具有独特的转录特征与分子标志。 图2:小鼠下丘脑室旁核催产素神经元根据单神经元投射图谱可分为C1类(红色)和C2类(绿色)。 C1类和C2类神经元及其亚类在投射模式上的高度异质性,表明各亚类神经元可能分别执行了催产素的不同生理功能:(1)正中隆起—垂体后叶是催产素向外周分泌的重要途径,因此C1类神经元应主要负责通过神经内分泌调控外周生理活动,同时其在下丘脑的投射分支可能参与中枢自主神经调控;(2)C2类1亚型(C2-1)神经元投射至脑干多个区域,可能参与自主神经调控、介导躯体感觉以及伤痛感觉的调控;(3)C2-2 和 C2-3亚型神经元拥有复杂且精细轴突分支,全脑广泛投射,除了涵盖C2-1亚型神经元的功能之外,很可能介导社会识别、亲社会行为、学习与记忆、奖赏行为及厌恶行为等高级脑功能;(4)脑室周围存在C2类神经元轴突分布,提示其分泌的催产素可能是脑脊液中催产素的重要来源之一;(5)对催产素神经元树突的重构发现其分支延伸至室旁核周围核团中,可能具有整合信号输入及通过催产素的树突释放调控周围脑区的作用(图3)。 图3:(A, B) 室旁核催产素神经元各亚类的单神经元投射图谱。(C) C1类与C2类神经元具有截然不同的投射模式。(D) C2类神经元轴突投射至脑室附近区域。 综上,该研究对室旁核催产素神经元进行全方位的、单细胞精度的胞体、树突和轴突形态学分析,为进一步理解催产素神经元调控复杂生理功能提供了详实的结构基础。两类神经元分子标记物的鉴定,为后续特异性的分子、环路操作和功能探索奠定了基础。该项工作从单细胞水平,更新了人们长久以来对于室旁核催产素神经元形态结构的认知,并将为后续研究提供重要的参考。 该研究工作是多团队联合攻关的成果。中科院脑科学与智能技术卓越创新中心和上海科技大学博士毕业生,现北京大学生命科学学院研究助理黎胡明珠是该论文的第一作者。华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者。北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者。华中科技大学骆清铭、龚辉与李安安团队,中科院遗传与发育研究所吴青峰课题组,中科院脑科学与智能技术卓越创新中心严军与许晓鸿课题组及全脑介观神经联接图谱平台中心对该研究做出了重要贡献。 原文链接:https://www.cell.com/neuron/fulltext/S0896-6273(23)01010-3
  • 苏州医工所“全脑在体单神经元解析成像实验装置” 重大科研设施预研筹建项目正式立项
    近日,江苏省科技厅发布《2022年省科技计划专项资金(创新能力建设计划)暨中央引导地方科技发展资金(创新能力建设项目)拟支持项目》公示。苏州医工所牵头组织的“全脑在体单神经元解析成像实验装置” 是苏州大市唯一获批立项的重大科研设施预研筹建项目。“全脑在体单神经元解析成像实验装置”定位于面向脑与认知科学的重大需求,建成世界首个具备三维曲面动物全脑皮层单神经元解析能力的在体实时成像装置,开展哺乳动物全脑皮层单神经元活动图谱的实验研究。本装置的顺利实施,将开拓“皮层功能组学”新领域,打造世界重要的脑科学研究实验基地,助力我国脑科学研究进入世界领先水平,推动人工智能理论方法的发展,同时提升我国高端光学装备自主研制能力。重大科研设施预研筹建,是以江苏省经济社会发展的重大需求为导向,围绕国家战略部署,聚焦长三角科技创新共同体建设、苏南国家自主创新示范区一体化发展等,以培育创建国家重大科技(科教)基础设施,支持有条件的地方集聚国家战略科技力量,预研建设重大创新基础设施(平台),支撑综合性国家科学中心或区域性创新高地建设。“全脑在体单神经元解析成像实验装置”获准启动之后,将攻克系列关键技术和核心器件。前期,将重点开展“全脑皮层单神经元在体成像系统”的建设任务。后期,将以此为基础,积极争取国家和地方等多方面的资金投入,进一步将此装置建成突破型、引领型、平台型的国家重大科技(科教)基础装置,服务于在体脑科学前沿和基础研究。
  • 国家重大科研仪器研制项目“基于形态与组学空间信息的细胞分型全脑测绘系统”现场考察会议在武汉召开
    p    /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/a7b03cd8-f103-448e-ade8-892ac4ae02e3.jpg" title=" tpxw2018-09-20-04.jpg" alt=" tpxw2018-09-20-04.jpg" / /p p   2018年8月31日,国家重大科研仪器研制项目“基于形态与组学空间信息的细胞分型全脑测绘系统”现场考察会议在武汉召开。国家自然科学基金委员会(以下简称基金委)党组成员、副主任高福出席会议并讲话。根据国家重大科研仪器研制项目相关管理办法要求,本次现场考察专家组由国家重大科研仪器研制项目专家委员会委员及同行技术专家等共11位专家组成。会议由中国科学院武汉物理与数学研究所叶朝辉院士、中国人民解放军总医院海南分院顾瑛院士两位专家组组长主持。 br/ /p p   高福副主任在讲话中阐述了国家重大科研仪器研制的重要性及其意义,强调坚持“鼓励探索,突出原创,独辟蹊径,聚焦前沿,需求牵引,突破瓶颈,共性导向,交叉融通”,要求聚焦重大前沿科学问题和国家重大战略需求,在关键领域、卡脖子的地方下功夫。 /p p   专家组分别听取项目负责人骆清铭教授及子课题负责人的报告,并进行现场考察。专家组考察后对该项目进行认真讨论,并形成考察报告。 /p p   基金委计划局及医学科学部有关人员参加此次考察会议。 /p
  • 日本岛津推出最新脑功能研究近红外光成像装置
    - 为康复效果评价与新药开发做出贡献 &ndash 日本的精神疾患患者数已达300万人,精神治疗药物的处方数超过了日本总人口数,精神疾患的诊断与治疗已经成为一大社会问题。高效的精神治疗药物开发与高精度的精神疾患诊断都需要以更广的范围、更高的精度且更快的速度测定脑的活动状态。 「SMARTNIRS」(医疗用) / 「LABNIRS」(研究用) 8月23日,日本岛津制作所最新推出了可非侵入、实时观测伴随语言・ 视觉・ 听觉・ 运动等产生的脑活动的近红外光成像装置「SMARTNIRS」(医疗用)/「LABNIRS」(研究用)。 *近红外光成像装置以生物体透射性较高的近红外光照射头部,通过检测在生物体内散射・ 吸収的同时发生的反射光,实时可视化脑表面活动状态。具有可在自然状态下安全地测定脑活动状态的特长,广泛应用在医疗、心理学、教育学、认知科学、工程学等众多领域的研究。 岛津公司开发的新型近红外光成像装置,配备最多40组80根(原有装置的2.5倍)光纤,能够以5倍于原有装置的高速度(最快6毫秒)收集数据,全面提高了过去有限的感兴趣区脑功能测定、全头测定、多名同时测定、感兴趣区高密度测定、脑血流测定的精度,捕捉更快速的神经活动等,满足不断进化的脑功能研究的所有需求。 中风患者的康复效果评价、精神疾患解明、以及相对应的治疗方法确立等,本装置在医疗领域从基础研究到临床应用做出广泛的贡献。在产业应用领域从机器人工程学的应用研究、感性评价方面,科学地支持商品开发。岛津公司争取通过向市场投放强有力地支持最尖端脑功能研究的本近红外光成像装置进一步提高其销售额。本装置应用了文部科学省脑科学研究战略推进项目的部分成果。 <新产品特长>(1) 高密度地测定脑部全区域 配备40组80根(原有装置的2.5倍)光纤,实现了脑表面测定数的増量与高密度化,可无遗漏地测定脑部全区域。 (2) 数据收集高速化 高速度收集数据,可高速地观测变化的信号。(3) 降低头皮血流的影响 通过降低头皮血流的影响,可以更为准确地测定脑血流。(4) 卓越的扩展性 光纤组件可扩展,从4组到最多40组(原有装置最多为16组)。减少了初期导入费用,同时,通过增设组件,方便地升级通道。(5) 「简便操作、简单显示」(对应精神科) 追加了可望应用于忧郁症辅助鉴别诊断的解析软件,实现一键式数据解析。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 传感器阵列以最高分辨率记录脑信号 为中长期脑机接口研究提供新的可能
    一个由工程师、外科医生和医学研究人员组成的团队发布了来自人类和大鼠的数据,证明一种新的大脑传感器阵列可直接从人脑表面记录电信号,并实现破纪录的细节处理。该大脑传感器具有密集网格,由1024或2048个嵌入式皮质电图(ECoG)传感器组成。如果获准用于临床,传感器将直接从大脑皮层表面为外科医生提供大脑信号信息,且分辨率比目前可用的高100倍。该论文于19日发表在《科学转化医学》杂志上。  人的大脑总是在运动,例如,随着每一次心跳,大脑会随着流过它脉动的血液而发生活动。从直接放置在大脑表面的传感器网格记录大脑活动,已经被外科医生普遍用作一种工具,用来切除脑肿瘤和治疗对药物或其他药物无反应的癫痫症。  此次新研究提供了广泛的同行评审数据,证明具有1024或2048个传感器的网格可用于可靠地记录和处理直接来自人类和大鼠大脑表面的电信号。相比之下,当今手术中最常用的ECoG网格通常具有16到64个传感器。  能够以如此高分辨率记录脑信号,可提高外科医生尽可能多地切除脑肿瘤的能力,同时最大限度地减少对健康脑组织的损害。对于癫痫,更高分辨率的脑信号记录能力可提高外科医生精确识别癫痫发作起源的大脑区域的能力,这样就可在不接触附近未参与癫痫发作的大脑区域的情况下移除这些区域。通过这种方式,这些高分辨率网格可以增强正常功能脑组织的保存。  研究团队表示,此次能以更高的分辨率记录大脑信号,归因于他们能够将单个传感器放置得更靠近彼此,而不会在附近的传感器之间产生干扰。例如,该团队的3厘米×3厘米网格和1024个传感器直接记录了19名志愿者的脑组织信号。在这种网格配置中,传感器彼此相距一毫米。相比之下,已经批准用于临床的ECoG网格通常具有相距1厘米的传感器。这为新网格提供了每单位面积100个传感器,而临床使用的网格每单位面积1个传感器。  该项目由加州大学圣地亚哥分校雅各布斯工程学院领导,团队其他成员来自马萨诸塞州总医院和俄勒冈健康与科学大学。该团队正在研究这些高分辨率ECoG网格的无线版本,可用于对顽固性癫痫患者进行长达30天的大脑监测。
  • 我国研发高分辨“脑地图”可视仪
    人脑中错综复杂的神经元网络,就如同地球上密布的道路网,如今人们借助遥感卫星分辨地球上的路网容易多了,但要绘制“脑地图”,似乎远比发射几颗遥感卫星困难许多。近日,华中科技大学的专家,正着手解决这一问题,他们开始研发高分辨全脑神经元网络的可视化仪器。   该校骆清铭教授领导的团队经过8年的攻关,在国际上率先建立了可对厘米大小样本进行突起水平精细结构三维成像、具有自主知识产权的显微光学切片断层成像系统(MOST),该研究成果曾发表于《科学》(Science)期刊上。MOST技术相对于传统成像技术优势明显,创造出迄今为止最精细的小鼠全脑神经元三维连接图谱,为实现全脑网络可视化创造了必要条件。此研究成果将在脑结构、脑功能、脑疾病,以及药物作用效果等研究中发挥非常重要的作用。   骆清铭介绍说,通过MOST技术将会更全面深入地了解大脑结构和功能,为治愈多种神经性疾病提供重要的手段。该成果曾入选“2011年度中国十大科学进展”。
  • 中科院三院士谈AI:人工智能的“脑洞”有多大?
    p strong   李德毅 /strong /p p strong   中国工程院院士、中国人工智能学会理事长 /strong /p p   我们今天的科学家,尤其是计算机科学家,把‘计算’用得太狠了,对‘计算’的依赖甚至有些‘贪得无厌’了! /p p   人工智能学者不能只盯着计算认知,一味要求 人脑研究的步伐有多快,而要拿出更多的精力放在“记忆认知”和“交互认知”上。 /p p   关于自动驾驶,无论是对话、诗词或者驾驶,图灵测试都允许测试者现场介入,判定结果都带有近似性和主观性。但是,和对话、诗词测试相比,驾驶的图灵测试可以进行更为精确、更为客观的评测。 /p p   当初汽车被发明出来的时候,人们最感兴趣的是汽车的结构、机械、传动、轮胎、底盘和车身。到20世纪,人们感兴趣的则是发动机、碳排放和被动安全。到20世纪末、21世纪初,人们总体上关心3件事情,轻量化、清洁化、智能化。 /p p   智能化,有4个阶段,第一是理性辅助驾驶,以人驾为主 第二是自动驾驶,局部时段可以放开手和脚 第三是自动驾驶,即用自动驾驶接管驾驶权 第四是人机协同驾驶。 /p p   无人驾驶的重点,难在拟人。汽车是从马车演变而来,作为动力工具,汽车的马力可以达到100匹马力,但汽车远远不如马应对不同的负荷、天气、路面,以及不同车辆情况下的适应能力。说白了,汽车的感知、认知能力远远不如马这个认知主体,“老马识途,车不如马!” /p p   所以根本问题不在于车而在于人,要解决人的问题,就要让驾驶员的认知能够用机器人替代,让机器人具有记忆、决策和行为能力,于是新的概念产生了——“驾驶脑”。 /p p   “驾驶脑”不等于驾驶员脑,“驾驶脑”是要做驾驶员的智能代理,要去完成包括记忆认知、计算认知和交互认知在内的驾驶认知,他说,这应该是人工智能时代最有意义的课题之一。 /p p strong   蒲慕明 /strong /p p strong   中国科学院外籍院士、中国科学院神经科学研究所所长 /strong /p p   不管是国内还是国外,都是如此,不过随着研究手段不断丰富,研究领域不断突破,两者的交叉融合成为热点,甚至出现一个新的研究名词,类脑智能。美国、欧盟都相继启动相关研究计划,中国也启动了脑计划。但中国的计划是将脑科学和人工智能结合得最为紧密的。 /p p   比如,现在流行的深度学习,就是基于人工神经网络的一个应用,这些人工神经网络都可以从神经科学的一些规律中得到灵感。蒲慕明说,比如可以借鉴神经突触的可塑性、记忆储存、提取与消退,等等。 /p p   目前的脑科学研究能启发人工智能的并不是特别多。因为当前的脑科学研究,仅相当于物理、化学等学科在19世纪末期的研究水平,要完全理解大脑,可能是几个世纪的事情,而不是我们这个世纪就可以达到的。 /p p   对于类脑研究,必须要在这个时候做一些适当的应用,假如不把已经知道的知识应用到对脑疾病的诊断、干预和治疗上,那么到2050年我们的医疗系统很可能要面临崩溃——那时你会发现仍然没有一个脑疾病能够治愈。 /p p   对于人工智能的应用,不一定非要完全搞清楚,神经科学一些具有阶段性的成果,也可以给人工智能的发展提供启发。 /p p strong   谭铁牛 /strong /p p strong   中国科学院院士、中国科学院自动化研究所研究员 /strong /p p   “模式识别”是人类最重要的智能行为,也是人工智能重要的研究内容——机器的“模式识别”能力,在一定程度或者很大程度上反映了机器智能“类人”的程度。 /p p   比如语音识别,近些年突飞猛进的科大讯飞,能将维吾尔语翻译成汉语,汉语翻译成维吾尔语 再如步态识别,在看不到人脸、虹膜和指纹的时候,就能通过步态在几十米外感知到其身份。 /p p   此外,还有图像识别,其中具有代表性的人脸识别,早在几年前马云刷脸支付已经引爆舆论热点。图像识别不仅可以用在手机上,还可在查找丢失儿童上发挥作用。 /p p   关于模式识别的技术瓶颈,可通过借鉴生物的机理改进,未来生物启发的模式识别在人工智能领域前景可期。其最终追求,是希望模拟逼近人的模式识别,这是非常艰巨的过程。 /p p   目前,模式识别的主要瓶颈在于鲁棒性、自适应性和可泛化性。 /p p   关于鲁棒性,说白了,就是人工智能“够不够皮实”“是不是稍微有点扰动,就会出错”。比如在酒会上聊天,背景噪音比较多,如果想听清其中某一个人的声音,就要忽略或者抑制背景中其他对话的干扰——人类可以做到这一点,也就是听觉系统所谓的鸡尾酒效应,但人工智能可以吗? /p p   关于自适应性,则比较容易理解,人类的眼睛会随着灯光的变化、环境的变化进行调整,这说明自适应性非常强。这一点可以应用到人工智能上,比如人脸识别,有一位朋友十几年甚至几十年没见,再见面是否还能认出来?他说,现有的模式识别在这方面还不是很理想。 /p p   可泛化性,说白了就是“举一反三”。当小孩认识苹果后,即便只记住了一次,也可以识别其他类型的苹果,这说明人类看到一个东西后,不仅知其然,还知其所以然。而知其所以然,就是人工智能领域所说的“深度学习”。但目前的人工智能深度学习,必须建立在大量数据的基础之上,这一点也有待进一步研究。 /p p   要解决这3个问题,关键还是看人类本身,在微观层面上,人工智能的模式识别可借鉴人类的神经元,神经元有兴奋性、抑制性、功能可塑性和传播性。科学家受到这个启发,增强了模式识别动态系统的稳定性。 /p p br/ /p
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 重磅!马斯克称第二例脑机接口设备植入成功
    近日,马斯克在节目录制时透露,其脑机接口公司“神经连接”已成功为第二名人类患者植入脑机接口设备。据悉今年年初,“神经连接”公司进行了脑机接口设备的首例人体移植。患者的脑部活动信号可被实时读取。患者只需通过意念就能控制手机、电脑,并通过它们控制几乎所有设备。失去四肢功能的人群将是这款产品的首批使用者。脑机接口”是一种人机交互技术,工作原理是采集脑部神经信号并分析转换成特定的指令。(Brain-Machine Interface,BMI;Brain Computer Interface,BCI ),指在人或动物大脑与外部设备之间创建的直接连接,实现脑与设备的信息交换。这一概念其实早已有之,但直到20世纪90年代以后,才开始有阶段性成果出现。这种技术能够在人或动物大脑与外部设备之间创建直接的连接,不依赖正常的由外周神经和肌肉组成的输出通路,实现“脑”与“机”之间的直接信息交换。除“神经连接”公司外,目前全球还有多家公司也正在研发脑机接口技术,有些公司已开始进入人体临床试验阶段。2024年,中国团队成功研发65000通道脑机接口芯片。武汉高德红外股份有限公司董事长黄立3月份介绍,他带领中华脑机接口公司团队成功研发65000通道双向的脑机接口芯片,居于国际领先水平。当天,十四届全国人大二次会议第二场“代表通道”采访活动举行。黄立在受访时说:“目前,国外的脑机接口芯片还只能做到3000多个通道,而且是单向的。而我们的脑机接口芯片可以做到65000通道,是双向的,居于国际领先水平。他表示,这项技术可以让很多目前实现不了的医疗应用成为可能。比如,可以让假肢有真实感觉,可以用人脑、意念控制假肢,神经系统的疾病治疗也成为可能,比如癫痫、老年痴呆、郁症、帕金森病等。盘点5家具有影响力的脑机接口公司一、NeuralinkNeuralink公司是由特斯拉创始人Elon Musk于2016年7月成立的,旨在开发一种可以将人类与AI融合的脑机接口系统。这个系统可以通过植入大脑的芯片,将人类的思想上传到云端,并实现人与机器的交互。目前,Neuralink已经成功地开发出了一种名为“Link”的脑机接口设备,该设备可以通过手术植入到大脑中,并使用无线充电技术来保持运行。Link设备可以读取大脑中的神经元信号,并将其转化为数字格式,然后通过云端进行进一步处理。Neuralink的脑机接口技术可以应用于多个领域,包括医疗、娱乐和军事等。例如,它可以帮助瘫痪患者恢复运动能力,还可以帮助正常人更好地控制机器人肢体。此外,Neuralink还开展了一些有趣的研究,例如通过脑机接口技术实现意念打字和意念控制电子游戏等。为了将Neuralink的脑机接口技术推向市场,公司一直在积极开展动物实验和人体实验,并已经获得了美国食品药品监督管理局(FDA)的批准。如果一切顺利,Neuralink的脑机接口技术有望在未来几年内进入市场。二、NeuroSkyNeuroSky是一家脑机接口技术公司,总部位于美国加利福尼亚州圣克拉拉市。它的使命是利用脑机接口技术改变人们与世界互动的方式,让每个人的生活都变得更好。该公司开发了一系列神经科学产品,如脑电图(EEG)、多通道生物电位记录器(EOG)和脑部活动监测设备(BAE)等,以帮助客户研究大脑活动,开发治疗方法和产品。NeuroSky的脑机接口技术基于EEG和EOG信号,可以非侵入性地监测大脑的活动,从而了解用户的意图、情感和认知状态等。该公司的产品和服务广泛应用于医疗、娱乐、教育、心理学、智能家居等领域。例如,在医疗领域,NeuroSky的技术可以用于诊断和治疗抑郁症、注意力缺陷多动障碍(ADHD)、焦虑症等心理疾病。在教育领域,NeuroSky的技术可以用于提高学生的学习成绩和注意力。在智能家居领域,NeuroSky的技术可以用于控制家庭设备,如灯光和温度等。除了开发和销售产品,NeuroSky还提供脑机接口解决方案,帮助客户在各种应用领域开发自己的产品和服务。该公司的客户包括迪士尼、微软、IBM、索尼等知名公司。三、InteraXonInteraXon是一家开发神经科学技术的公司,总部位于加拿大安大略省多伦多市。它开发了一种名为“Muse”的头戴式设备,可以监测大脑活动并提供反馈,以帮助人们提高专注力和放松力。Muse是一款基于脑电图(EEG)技术的产品,可以通过测量大脑活动来了解用户的注意力和放松程度等。该设备采用了低功耗蓝牙技术,可以与智能手机应用程序进行无线连接,让用户实时了解自己的大脑活动情况。Muse的应用程序提供了多种功能,包括冥想、专注和放松练习等。用户可以在应用程序中选择自己喜欢的冥想课程,并跟随Muse的反馈来调整自己的大脑状态。Muse还可以记录用户的脑波数据,让用户了解自己的大脑活动情况,从而更好地控制自己的情绪和行为。除了Muse,InteraXon还开发了一系列其他的神经科学产品,如“Sigmund”和“MindSet”等。Sigmund是一款可以监测和反馈大脑活动的头戴式设备,主要用于研究和诊断注意力缺陷多动障碍(ADHD)等心理问题。MindSet是一款可以减轻疲劳和增强专注力的头戴式设备,主要应用于劳动生产力提高、驾驶安全等领域。四、Blackrock NeurotechBlackrock Neurotech是一家心理科技公司,总部位于美国加利福尼亚州圣克拉拉市。它主要研究脑电图技术(EEG)和生物电位记录器(EOG)等神经科学产品,并开发了名为“Quell”的疼痛管理产品,以帮助缓解疼痛。Quell是一款基于EEG技术的可穿戴设备,可以通过监测大脑活动来缓解疼痛。该设备采用了低功耗蓝牙技术,可以与智能手机应用程序进行无线连接,让用户实时了解自己的疼痛管理情况。Quell的应用程序提供了多种功能,包括疼痛管理、冥想和专注练习等。用户可以在应用程序中设置自己的疼痛管理计划,并跟随Quell的反馈来缓解自己的疼痛。Quell还可以记录用户的脑波数据,让用户了解自己的疼痛管理情况,从而更好地控制自己的疼痛。除了Quell,Blackrock Neurotech还开发了一系列其他的神经科学产品,如“Think”和“Attune”等。Think是一款可以监测和反馈大脑活动的可穿戴设备,主要用于研究和诊断注意力缺陷多动障碍(ADHD)等心理问题。Attune是一款可以监测和反馈情绪的可穿戴设备,主要应用于情感识别和心理健康管理等领域。五、NeuroLutionsNeuroLutions是一家人工智能公司,总部位于美国马萨诸塞州沃尔瑟姆市。它的目标是利用神经科学技术和人工智能技术,为人们提供更好的健康和生活体验。NeuroLutions主要开发神经科学技术产品,如脑电图(EEG)、多通道生物电位记录器(EOG)和脑部活动监测设备(BAE)等,以及提供神经科学解决方案。该公司利用AI技术分析EEG和EOG信号以及行为数据,以帮助客户研究和开发治疗方法和产品。NeuroLutions的客户包括医疗设备公司和制药公司等。该公司的神经科学解决方案可以帮助客户更好地了解大脑活动和认知过程,从而提高治疗和诊断的准确性。此外,NeuroLutions还与游戏和娱乐公司合作,提供脑机接口解决方案,以帮助客户开发更智能和更具互动性的游戏和服务。
  • 广西大学315.10万元采购脑立体定位仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 脑立体定位仪 开标时间: 2022-03-15 09:00 采购金额: 315.10万元 采购单位: 广西大学 采购联系人: 张文华 采购联系方式: 立即查看 招标代理机构: 广西科文招标有限公司 代理联系人: 梁伟贞 代理联系方式: 立即查看 详细信息 广西科文招标有限公司关于科研设备采购(GXZC2022-G1-000169-KWZB)的公开招标公告 广西壮族自治区-南宁市-西乡塘区 状态:公告 更新时间: 2022-02-21 项目概况 科研设备采购招标项目的潜在投标人应在政采云平台获取招标文件,并于 2022年03月15日 09:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:GXZC2022-G1-000169-KWZB 项目名称:科研设备采购 预算总金额(元):3151000 采购需求: 标项名称:广西大学脑立体定位仪系统数量:12预算金额(元):3151000简要规格描述或项目基本概况介绍、用途:序号 标的的名称 单项预算(万元) 数量 单位 简要技术需求或者服务要求1 小动物呼吸麻醉系统 9 1 套 流量可控范围0.1--4L/min,5个分支独立控制2 小动物微量给药系统 9.8 1 套 夹持注射器量程范围0.5-1000ul,线性推力: 11lbs/min 3 脑立体定位仪系统 18 1 套 操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm4 机械痛测定仪 13.7 1 台 使用高精确度和高灵敏度压力传感器,可施加的压力范围0-450g,分辨率0.1g。5 红外热痛测试仪 9.7 1 台 允许支架容纳6只大鼠或12只小鼠进行测试。6 冷热盘测痛仪 9.6 1 台 温度可在 0-65℃范围内进行调节,调节精度为 0.1℃7 甩尾测痛仪 8.8 1 台 数字控制程序 用户可自定义“cut-off”时间。8 大、小鼠条件性位置偏爱系统 38 1 套 尺寸约总长60cm*中间长12cm*总宽31cm*中间宽10cm*高 31cm。9 小动物行为视频分析系统 98 1 套 采用模块化设计,可以处理并分析实时影像,也可以处理已经录制好的影像,影像视频格式必须支持常见的MPG、MPEG、AVI、DIVX、VOB等格式。10 大、小鼠转棒仪 18.5 1 台 加速设定范围5-70rpm可调16cm降落高度。11 步态记录分析系统 68 1 套 动物跑道前后墙壁长度范围7.6cm-61cm可调,以及130cm x 68cm固定跑道。12 大、小鼠跑步机 14 1 台 跑带速度3-80m/min可调,步进量1m/min。 最高限价(如有):/ 合同履约期限:详见采购文件 本标项(否)接受联合体投标备注: 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:2022年02月21日至2022年03月15日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,法定节假日除外) 地点(网址):政采云平台 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月15日 09:00(北京时间) 投标地点(网址):“政采云”平台 开标时间:2022年03月15日 09:00 开标地点:“政采云”平台 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标保证金(人民币):30000元。保证金专用银行账号:开户名称:广西科文招标有限公司开户银行:广西北部湾银行南宁分行营业部银行账号:01010120906156892、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。3、根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的规定,对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。4、网上查询地址:中国政府采购网(www.ccgp.gov.cn)、广西政府采购网(zfcg.gxzf.gov.cn)。5、本项目需要落实的政府采购政策:(1)政府采购促进中小企业发展。(2)政府采购支持采用本国产品的政策。(3)强制采购节能产品;优先采购节能产品、环境标志产品。(4)政府采购促进残疾人就业政策。(5)政府采购支持监狱企业发展。(6)扶持不发达地区和少数民族地区政策6、投标注意事项:(1)投标文件提交方式:本项目为全流程电子化政府采购项目,通过“政采云”平台(http://www.zcygov.cn)实行在线电子投标,供应商应先安装“政采云电子交易客户端”(请自行前往“政采云”平台进行下载),并按照本项目招标文件和“政采云”平台的要求编制、加密后在投标截止时间前通过网络上传至“政采云”平台,供应商在“政采云”平台提交电子版投标文件时,请填写参加远程开标活动经办人联系方式。(2)供应商应及时熟悉掌握电子标系统操作指南(见政采云电子卖场首页右上角—服务中心—帮助文档—项目采购):https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r;及时完成CA申领和绑定(见广西壮族自治区政府采购网—办事服务—下载专区-政采云CA证书办理操作指南)。(3)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应当在投标截止时间前,完成电子交易平台上的CA数字证书办理及投标文件的提交。完成CA数字证书办理预计7日左右,投标人只需办理其中一家CA数字证书及签章,建议各投标人抓紧时间办理。(4)为确保网上操作合法、有效和安全,请投标人确保在电子投标过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动。注:投标人应当在投标截止时间前完成电子投标文件的上传、递交,投标截止时间前可以补充、修改或者撤回投标文件。补充或者修改投标文件的,应当先行撤回原文件,补充、修改后重新上传、递交。投标截止时间前未完成上传、递交的,视为撤回投标文件。投标截止时间以后上传递交的投标文件,“政采云”平台将予以拒收。7、CA证书在线解密:供应商投标时,需携带制作投标文件时用来加密的有效数字证书(CA认证)登录“政采云”平台电子开标大厅现场按规定时间对加密的投标文件进行解密,否则后果自负。8、若对项目采购电子交易系统操作有疑问,可登录“政采云”平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:广西大学 地 址:广西南宁市西乡塘区大学东路100号广西大学 项目联系人:张文华 项目联系方式:0771-3274121 2.采购代理机构信息 名 称:广西科文招标有限公司 地 址:广西南宁市民族大道141号中鼎万象东方D区五层 项目联系人:梁伟贞 项目联系方式:0771-2023650 附件信息: 569.0K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:脑立体定位仪 开标时间:2022-03-15 09:00 预算金额:315.10万元 采购单位:广西大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广西科文招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 广西科文招标有限公司关于科研设备采购(GXZC2022-G1-000169-KWZB)的公开招标公告 广西壮族自治区-南宁市-西乡塘区 状态:公告 更新时间: 2022-02-21 项目概况 科研设备采购招标项目的潜在投标人应在政采云平台获取招标文件,并于 2022年03月15日 09:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:GXZC2022-G1-000169-KWZB 项目名称:科研设备采购 预算总金额(元):3151000 采购需求: 标项名称:广西大学脑立体定位仪系统数量:12预算金额(元):3151000简要规格描述或项目基本概况介绍、用途:序号 标的的名称 单项预算(万元) 数量 单位 简要技术需求或者服务要求1 小动物呼吸麻醉系统 9 1 套 流量可控范围0.1--4L/min,5个分支独立控制2 小动物微量给药系统 9.8 1 套 夹持注射器量程范围0.5-1000ul,线性推力: 11lbs/min 3 脑立体定位仪系统 18 1 套 操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm4 机械痛测定仪 13.7 1 台 使用高精确度和高灵敏度压力传感器,可施加的压力范围0-450g,分辨率0.1g。5 红外热痛测试仪 9.7 1 台 允许支架容纳6只大鼠或12只小鼠进行测试。6 冷热盘测痛仪 9.6 1 台 温度可在 0-65℃范围内进行调节,调节精度为 0.1℃7 甩尾测痛仪 8.8 1 台 数字控制程序 用户可自定义“cut-off”时间。8 大、小鼠条件性位置偏爱系统 38 1 套 尺寸约总长60cm*中间长12cm*总宽31cm*中间宽10cm*高 31cm。9 小动物行为视频分析系统 98 1 套 采用模块化设计,可以处理并分析实时影像,也可以处理已经录制好的影像,影像视频格式必须支持常见的MPG、MPEG、AVI、DIVX、VOB等格式。10 大、小鼠转棒仪 18.5 1 台 加速设定范围5-70rpm可调16cm降落高度。11 步态记录分析系统 68 1 套 动物跑道前后墙壁长度范围7.6cm-61cm可调,以及130cm x 68cm固定跑道。12 大、小鼠跑步机 14 1 台 跑带速度3-80m/min可调,步进量1m/min。 最高限价(如有):/ 合同履约期限:详见采购文件 本标项(否)接受联合体投标备注: 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:2022年02月21日至2022年03月15日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,法定节假日除外) 地点(网址):政采云平台 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月15日 09:00(北京时间) 投标地点(网址):“政采云”平台 开标时间:2022年03月15日 09:00 开标地点:“政采云”平台 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标保证金(人民币):30000元。保证金专用银行账号:开户名称:广西科文招标有限公司开户银行:广西北部湾银行南宁分行营业部银行账号:01010120906156892、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。3、根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的规定,对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。4、网上查询地址:中国政府采购网(www.ccgp.gov.cn)、广西政府采购网(zfcg.gxzf.gov.cn)。5、本项目需要落实的政府采购政策:(1)政府采购促进中小企业发展。(2)政府采购支持采用本国产品的政策。(3)强制采购节能产品;优先采购节能产品、环境标志产品。(4)政府采购促进残疾人就业政策。(5)政府采购支持监狱企业发展。(6)扶持不发达地区和少数民族地区政策6、投标注意事项:(1)投标文件提交方式:本项目为全流程电子化政府采购项目,通过“政采云”平台(http://www.zcygov.cn)实行在线电子投标,供应商应先安装“政采云电子交易客户端”(请自行前往“政采云”平台进行下载),并按照本项目招标文件和“政采云”平台的要求编制、加密后在投标截止时间前通过网络上传至“政采云”平台,供应商在“政采云”平台提交电子版投标文件时,请填写参加远程开标活动经办人联系方式。(2)供应商应及时熟悉掌握电子标系统操作指南(见政采云电子卖场首页右上角—服务中心—帮助文档—项目采购):https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r;及时完成CA申领和绑定(见广西壮族自治区政府采购网—办事服务—下载专区-政采云CA证书办理操作指南)。(3)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应当在投标截止时间前,完成电子交易平台上的CA数字证书办理及投标文件的提交。完成CA数字证书办理预计7日左右,投标人只需办理其中一家CA数字证书及签章,建议各投标人抓紧时间办理。(4)为确保网上操作合法、有效和安全,请投标人确保在电子投标过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动。注:投标人应当在投标截止时间前完成电子投标文件的上传、递交,投标截止时间前可以补充、修改或者撤回投标文件。补充或者修改投标文件的,应当先行撤回原文件,补充、修改后重新上传、递交。投标截止时间前未完成上传、递交的,视为撤回投标文件。投标截止时间以后上传递交的投标文件,“政采云”平台将予以拒收。7、CA证书在线解密:供应商投标时,需携带制作投标文件时用来加密的有效数字证书(CA认证)登录“政采云”平台电子开标大厅现场按规定时间对加密的投标文件进行解密,否则后果自负。8、若对项目采购电子交易系统操作有疑问,可登录“政采云”平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:广西大学 地 址:广西南宁市西乡塘区大学东路100号广西大学 项目联系人:张文华 项目联系方式:0771-3274121 2.采购代理机构信息 名 称:广西科文招标有限公司 地 址:广西南宁市民族大道141号中鼎万象东方D区五层 项目联系人:梁伟贞 项目联系方式:0771-2023650 附件信息: 569.0K
  • 2022两会之声:支持脑疾病低成本检测技术开发
    今年全国两会,全国政协委员、红杉中国创始及执行合伙人沈南鹏准备了5份建议,涉及绿色低碳技术变革、发掘农业微生物应用潜力、药物创新能力提升、加大脑科学研究应用、制造业“数智化”转型等前沿科技热点话题。  沈南鹏创立的红杉中国长期关注前沿科技和基础科学领域,投资了大量科技和医疗企业。因此,通过科技创新与科研突破来解决社会关注的重大问题,是沈南鹏建议的一大特点。全国政协委员、红杉中国创始及执行合伙人 沈南鹏  考虑到脑疾病药物仍存巨大空白,加快开展更多关口前移的脑研究势在必行。以中国脑计划为代表,脑科学在我国已进入到全新发展阶段,但在应用实践层面仍存在部分问题。  对此,沈南鹏建议,支持低成本检测技术开发,提高老年人早筛覆盖率 增加脑疾病相关队列研究项目,完善脑数据库建设,促进研究临床转化 资助脑认知脑疾病前沿技术,提升脑科学的基础资源共享。  加强脑科学研究  1.支持低成本检测技术开发,提高老年人早筛覆盖率   2.增加脑疾病相关队列研究项目,完善脑数据库建设,促进研究临床转化   3.资助脑认知脑疾病前沿技术,支持类脑智能与AI、脑机接口、可穿戴等在脑认知脑疾病中的集成应用,推动国内脑机接口标准统一化建设。
  • Science封面|全球首个脑再生时空图谱
    Science期刊封面近日,由杭州华大生命科学研究院主导,联合来自3个国家的17个单位的科学家共同组成的研究团队分析比较了蝾螈脑发育和再生过程,构建了首个蝾螈脑再生时空图谱,这也是全球首个脑再生时空图谱。9月2日,相关成果以背靠背封面文章的形式发表于国际顶级学术期刊Science。至此,短短半年内,华大时空组学与单细胞技术的相关研究成果已连续四次在《细胞》《自然》和《科学》三大顶级期刊发表,实现了大满贯。人类大脑在受伤之后,很难自行恢复,但是两栖类模式动物墨西哥钝口螈(Ambystoma mexicanum)可以。大脑再生是一个复杂的生物学过程。在这个过程中,发生了哪些关键的变化,有哪些重要的细胞参与?它们又分别行使了哪些功能?通过研究,研究团队找到了蝾螈脑再生过程中的关键神经干细胞亚群,描绘了此类干细胞亚群重构损伤神经元的过程,同时还发现脑再生与发育过程具有一定的相似性,为认知脑结构和发育过程提供助力,为神经系统的再生医学研究和治疗提供新的方向。在具体的研究中,要知道大脑是怎么再生的,研究团队先要了解大脑是如何发育来的。于是,研究团队利用堪称超广角百亿像素“生命照相机”的时空组学技术Stereo-seq,在蝾螈脑发育的6个重要时期,分别“拍摄”“照片”,这组“照片”就构成了蝾螈的脑发育时空图谱。通过它们,研究团队能够“看到”蝾螈脑在发育的过程中,各类神经元的分子特征以及空间分布动态变化。结果发现,蝾螈脑从青少年时期就开始特化出具有空间区域特征的神经干细胞亚型。那大脑受到损伤后再生的过程是如何的呢?研究团队对蝾螈脑的皮层区域进行机械损伤手术,并在损伤后的第2、5、10、15、20、30及60天,利用时空组学技术Stereo-seq对大脑样本进行“拍照”,得到各个时间点的蝾螈脑再生图集,完整记录了蝾螈大脑从损伤,到再生修复完成的过程。这就像对蝾螈大脑恢复过程定期做一个X光检查。不过,得到的片子可比X光片清晰度高多了,不只能看到大脑的形状,还能持续放大,看到大脑里的细胞,以及细胞里的分子变化状态。通过对比7个时期再生“照片”和过程中的伤口状态,研究团队发现,伤口区域在损伤早期就出现了新的神经干细胞亚群,这群重要的细胞由损伤区域附近的其他神经干细胞亚群在受到损伤刺激后转化而来,并在后续的再生过程中新生出神经元以填补损伤部位缺失的神经元。此外,虽然伤口处在修复早期便开始逐步被新生组织填充,但直到损伤后第60天,“照片”才显示损伤区域的细胞类型及空间分布恢复到了未损伤侧的状态。蝾螈脑再生时空图谱图片来源于Science最后,研究人员还对比了蝾螈脑发育和再生过程的神经元形成过程,发现这一过程在再生与发育过程中高度相似,或许脑损伤诱导了蝾螈神经干细胞逆向转化,回到发育时期的年轻化状态,以启动再生过程。论文的共同通讯作者、杭州华大生命科学研究院顾颖博士表示:“蝾螈在进化上相较于其他硬骨鱼类更高等,与哺乳动物脑结构具有更高的相似度。同时,它的基因编码序列与人类极其相似,研究蝾螈脑再生的启动机制,发现其中的关键基因,或将为人类神经系统损伤或退行性疾病的修复提供重要指导。”蝾螈脑再生过程中的关键基因,在人类的基因序列中也存在。那为什么其没有像在蝾螈脑中一样发挥再生的作用?这或许会是科学家下一步研究的课题。技术的发展让本研究的推进成为可能,“本研究主要基于华大自主研发的时空组学技术Stereo-seq进行,其达到了纳米级亚细胞分辨率,结合蝾螈细胞体积大的优势,使得研究人员可以在时空单细胞分辨率上解析蝾螈脑再生这一过程的重要细胞类型,并追踪其细胞谱系变化的空间轨迹。”论文的第一作者、杭州华大生命科学研究院魏小雨博士介绍说。“蝾螈脑发育及再生时空细胞图谱的构建,对于我们理解脑再生这一重要的生命过程、两栖类动物脑结构以及大脑结构的演化具有重要意义,为我们寻找有效的临床治疗方法,促进人类组织器官自我修复与再生提供了新的方向,也为物种进化研究提供了宝贵的数据资源。”论文的共同通讯作者、华大生命科学研究院院长徐讯表示,“未来,我们还将通过时空多组学技术去探究更多器官、更多物种的发育和再生过程,找到再生过程中的关键调控机制,助力人类再生医学的发展。”
  • Nature:可实时追踪脑信号的植入设备Harmoni
    日前,来自梅奥诊所(Mayo Clinic)等机构的研究人员在美国神经科学学会年会(Society for Neuroscience' s annual meeting)上报告称,他们研制出了一台名为 Harmoni 的深部脑刺激(DBS)植入设备,首次能够在进行电刺激的同时,监测大脑内部的电反应和化学反应。该设备已经在大鼠和猪等实验动物身上进行了测试。 深部脑刺激技术长期以来被用于治疗运动障碍,但现在已迅速发展为针对包括抑郁症、抽动秽语综合征、强迫症甚至老年痴呆症等神经疾病的一种实验性疗法。尽管相关治疗取得了一些令人鼓舞的成果,但关于植入大脑深部的刺激设备所传递的电脉冲是如何影响神经回路和改变患者行为的,科学家所知并不多。现在,这个深部脑刺激设备原型或许能够提供一些答案。未参与这项研究的凯斯西储大学生物医学工程师 Cameron McIntyre 表示:“这是我们此前在人类身上无法真正获取的新数据。”该团队希望,这个设备能够确定大脑中哪些电信号和化学信号与一些症状的存在和严重性实时相关,比如帕金森氏症患者所经历的震颤。这些信息有助于揭示脑深部刺激在何处和如何发挥其对大脑的治疗性影响,以及为什么有时候会失败。 Harmoni 是基于现有深部脑刺激技术的电子记录能力研发而成的,其增添了应用于动物研究的化学传感技术。该设备采用一种被称为快速扫描循环伏安的方法,在大脑内施加一个局部电压变化,将电子短暂拉离特定的神经递质,从而产生可以测量的电流。神经递质是大脑中激活或抑制神经元的化学物质,每个神经递质分子生成的电化学签名不同,每隔 10 毫秒,就可以根据签名来识别神经递质并估测它的浓度。研究团队已经利用大鼠和猪对 Harmoni 系统的一部分进行了测试。手术中,他们先通过功能性磁共振成像技术找到对植入部位的电脉冲作出响应的大脑区域,然后在此插入化学和电子传感器,就能够合成一幅显示神经元如何受激并释放出何种神经递质作为响应的图像。动物实验的初步结果表明,通过刺激底丘脑核, Harmoni 能够测量出大脑尾状核中神经递质多巴胺水平的上升。而这正是建议用深部脑刺激法治疗帕金森氏病采用的机制之一。该设备的人体试验也在逐步推进中。但研究项目负责人、梅奥诊所的神经外科医生 Kendall Lee 表示,这项研究还处于早期阶段,他们正设法让记录电极更耐用,同时让设备更加小型化,以便能够植入患者体内。研究的合作者、孟菲斯大学神经科学家 Charles Blaha 强调,还需要深入了解大脑的健康和紊乱状态分别用何种电化学签名来描述,以及如何刺激大脑才能使其保持健康模式。
  • 实验室非甲烷总烃分析全烦恼?谱育GC来支招~
    非甲烷总烃分析是环境监测中最为常见的分析项目之一。是否时常会发现,天天在做的实验,也有诸多顽疾困扰:甲烷、总烃、氧峰分离不理想;样品中含较多重组分,使得甲烷分析时间过长;污染源样品中组分容易在系统中残留,形成交叉污染等等。问题困扰太多怎么办?别担心,谱育来支招谱育科技GC 2000实验室高端气相色谱仪帮助您解决烦恼~GC 2000 气相色谱仪顽疾1 甲烷柱上组分多,时间长、效率低?众所周知,非甲烷总烃分析过程中甲烷柱上只需要实现甲烷峰的分离并进行定量即可,样品中很多其它组分实际上都是不需要参与计算的。但为了避免交叉污染,这些组分仍然需要通过延长单次分析时间来排出甲烷柱。这样就会带来不必要的时间浪费。谱育科技GC 2000采用了对甲烷柱反吹的方式,等甲烷顺利离开甲烷柱后,立即通过阀切换改变甲烷柱中的载气流向,将剩余组分反向吹离色谱柱至放空出口。如此,即可将实验室非甲烷总烃分析的时间压缩至不到1.5min。非甲烷总烃出峰小于1.5min谱图顽疾2污染源样品多残留,交叉污染难排除?实验室还常会遇到组分复杂的污染源样品,其中不乏沸点高、活性大的组分形成污染。当实验室采用的方案又不幸将进样阀体置于常温下,且样品流路未经惰性化,那么,这些来自污染源样品的组分残留将十分严重。谱育科技GC 2000将进样阀置于一个独立控温的阀箱之中,使阀体一直处于一定的高温,确保高沸点的重组分不致冷凝;同时,样品所流经的管路及阀体均进行了惰性化的处理,以隔绝活性组分的吸附。这样,对污染源样品如加油站的空气样品进行分析,仍然能保证样品间“零”交叉污染。加油站样品谱图顽疾3组分之间分离差,总烃峰形圆又胖?污染源的样品除了会带来残留外,通常还会改变各组分的峰形,产生较为明显的拖尾现象。更有填充柱分析总烃时,1ml的定量环会带来总烃有一定峰展宽的现象。这些都会使甲烷峰、氧和总烃的色谱峰分离更为困难。谱育科技GC 2000优选了总烃和甲烷的分析柱,在尽可能提升各组分分离度的同时,还能改善总烃的峰形,使其更加尖锐且对称。因此,在分析复杂如汽车尾气的样品时,系统仍能保证甲烷峰、氧峰和总烃峰的完美分离。汽车尾气的样品谱图
  • 北大获赠千万美元设脑研究院 饶毅任院长
    11月8日,北京。作为世界上最大的信息技术出版、研究、会展与风险投资公司,美国国际数据集团(IDG)继续捐赠1000万美元与北京大学共同建设北京大学—IDG/麦戈文脑研究院。   IDG创始人兼董事长、麻省理工学院(MIT)麦戈文人脑研究院创始人麦戈文(Patrick McGovern)与北京大学校长周其凤在北京大学临湖轩签署捐建协议。这是继今年4月底与清华大学共同建设清华大学-IDG/麦戈文人脑研究院之后,IDG在中国的又一次重大科学捐款计划。   麦戈文先生在致辞中表示,我和我夫人非常高兴能够与北京大学签约设立脑研究院。脑研究院设立后,全面认知脑将不只是梦想。我相信研究院将会产生一系列治疗脑疾病的科研成果。我们为参与这一进程并使之早日实现所做出的努力而倍感自豪。   为何选中国   麦戈文夫妇一直致力于对教育与科研事业的支持,特别是在脑科学研究领域。2000年,麦戈文夫妇向MIT慷慨捐赠,成立MIT麦戈文脑研究院,致力于提高人类交流水平,专门研究人脑的工作机理及相关疾病,包括孤独症、帕金森氏症、精神分裂症、语言障碍等。   目前,全球大约有5亿人患有和脑神经相关的各种疾病。在麦戈文走过的90多个国家中,他发现这些国家的大学和研究所都有个共性,那就是很多优秀的脑神经方面的科学家都来自中国。与此同时,麦戈文在MIT建立脑研究院的时候发现,大约有25%的工作人员来自中国,“所以我认为中国的科学家在这方面有着比较优秀的研究基础,在中国建立人脑研究院可以吸引他们回国,这样就能保证有100%的中国人来从事这一领域的研究工作。”麦戈文告诉《科学时报》记者。“我之所以把钱投在中国,是希望在中国建立这样的一个研究机构,来帮助扩大和延伸他们的研究,同时吸引全球各地优秀的华人科学家回到中国来从事这方面的研究,参与到为解决全球人脑疾病的研究中来。”   IDG及IDG资本管理团队还将分别设立“IDG中国基金会”和“和谐基金会”,为该研究院提供长期的支持与资助。   北京大学校长周其凤告诉记者,IDG和麦戈文夫妇将给予北京大学10年稳定的支持,这样就能保证有一个非常宽松的环境,来让科学家非常自由地来开展研究,从而产生非常好的研究成果。“人类对大脑的认识还不够,加深对大脑的认识和健康的理解将有助于人类治疗脑部疾病。当然,这其中也有很多期待,如对大脑疾病的治疗和解决方案的提升,以及理论方面的认识和研究,还有待继续研究。”   对于北大和清华各自脑研究院如何协同作战,麦戈文认为,不同的大学的侧重点都有所不同,如清华大学在分子结构和计算神经科学方面有优势,有较好的研究成果,北大在行为、遗传和认知科学等方面比较强势,所以将有优势互补。   而对于IDG来讲,他们在中国的战略还远不止北大和清华。   “下一步我们还将继续增加捐款,除了在人脑疾病方面的研究之外。我们还将在儿童教育等方面加大投入,从而能保障一些困难儿童能上得起学,生活基本没有什么困难。在这方面北京师范大学就着一定的基础,该校主要从事教学和研究工作,在儿童的认知科学领域有自己的探索,我希望能与北京师范大学进行合作,展开这一领域的投资。”麦戈文告诉记者。   开放互补   历史悠久、基础雄厚作为北京大学的重要特点,将充分发挥其综合学科优势,在脑科学研究领域包括神经生物学、语言学、生物工程、计算科学、认知科学、以及脑神经系统疾病的临床医学研究等方面已形成了一个初具规模的研究群体,并于2001年成立了跨学科、跨院系的“脑与认知科学中心”。北京大学心理系设有认知心理学、认知神经科学、社会认知神经科学、神经经济学等基础研究方向(以及其他应用基础研究方向),其心理学研究是目前中国大陆唯一进入全球排名前1%的单位 生命科学学院有神经生物学、医学部有痛觉和脑神经系统疾病等研究方向。   北京大学-IDG/麦戈文脑研究院将以北京大学心理学系和生命科学学院为依托,与北京大学-清华大学生命科学联合中心互为倚角,联合医学部、附属医院,发挥北京大学多学科的优势,致力于行为神经科学、遗传神经科学和认知神经科学的研究,做出世界一流的脑科学研究成果。   “这个研究院是非常开放的,欢迎国际上对此感兴趣的专家学者来此合作开展研究工作。除此之外,该研究院也承担着培养研究生和青年人才的重任,通过加强相关脑科学的课程的建设,提升北京大学的科学研究和学术氛围,一次来促进北大的国际化。”周其凤说。   生命科学学院院长饶毅教授拟将兼任北京大学—IDG/麦戈文脑研究院院长,他告诉记者,北大校本部和医学部、临床医院多方面将整合优势力量来一起开展研究工作。“我们希望在中国、在北大做出杰出的脑研究成就,推动人类对于大脑奥秘的认识、帮助解决困扰人类的脑和神经疾患。”
  • 中科院脑智卓越中心孔妤博士:电镜技术平台发展与使用心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。本篇由中国科学院脑科学与智能技术卓越创新中心电镜技术平台主管孔妤撰写,她根据多年工作经验,详细介绍了电镜技术的发展,并分享了生物电镜实验的心得体会。以下为供稿内容: 电镜技术平台是中国科学院脑科学与智能技术卓越创新中心公共技术中心的一个重要分支,成立之初只有一台老式透射电镜,经过多年发展,目前已具备不同配置的三台电镜和全套的电镜制样设备。平台现有专业技术人员4名,最大程度地满足中心及上海地区电镜实验方面的需求。平台大型设施的建设和功能拓展是与生物电镜技术的迅猛发展、科研方向的转变息息相关的。现就生物电镜技术及在神经科学中的实践进行分享。一、电镜简介电镜的发明起源于1927年电子光学领域先驱Hans Bush的电子束聚焦理论。1932年Knoll和Ruska创造出了世界第一台透射电子显微镜(Transmission Electron Microscope,TEM),把经加速和聚集的电子束投射到非常薄的样品上。1940年科学家们又发明了第一台扫描电子显微镜(Scanning Electron Microscope,SEM),可以看到散射的电子而不是通过样品的电子。由于高速电子的波长远小于光子,电镜的分辨率远远高于光学显微镜,用于观察光镜不能分辨的细微物质结构。经历几十年的发展,透射电镜和扫描电镜在多尺度上均能实现超高分辨率的洞察力,冷冻电镜的分辨率甚至达到2.0Å或更小的原子级理论极限值。随着生物样本保存方法和超薄切片技术的建立,电镜在细胞生物学、神经生物学、病理学、结构生物学、传染病学、药学和植物学等多领域的研究中发挥着不可替代的作用。二、透射电镜技术 透射电镜由电子光学系统、真空系统和电气控制系统三部分组成,其中电子光学系统是透射电镜的核心,包括照明系统、成像系统和图像观察系统。成像原理是:在真空条件下,高压加速的电子束穿透一层很薄(通常几十至几百纳米)的样品,形成透射电子,透射电子在电磁透镜的作用下在荧光屏或相机上成像,当电子束投射到样品时,样品的原子序数越大,荧光屏上呈现的像就越暗,所以呈现出明暗不同的灰度图像。由于生物样品的组成元素都较轻,因此用重金属元素标记膜结构可以实现生物超微结构的观察。以下为我们常用的几种生物透射电镜制样技术:1.常温包埋切片技术:早期的透射电镜主要用于病毒等极小病原体的样品形貌观察,后来发展到可以通过超薄切片观察生物样品组织和细胞内的超微结构。为保存生物样品在生活状态的超微结构特征,需要使用戊二醛、甲醛或丙烯醛等醛基固定液对样品进行化学固定,由于化学固定剂存在一定的渗透速度,生物组织需要切得尽可能的小(通常1mm3左右),以保证中心部分的细胞在发生自溶前得到固定。甲醛的分子较小,能够快速地渗透到组织内部进行固定,但甲醛只有一个醛基,固定能力较弱并且固定效果可逆,所以较难渗透的样品一般采用甲醛和戊二醛混合固定液。戊二醛具有两个醛基,可以对生物组织中的蛋白质、糖类等结构进行交联固定,具有较好的固定效果,是最常用的电镜固定液。固定后的样品再经后固定、乙醇梯度脱水、树脂渗透、包埋及聚合后即可进行超薄切片。超薄切片的制备是生物电镜技术的关键,用钻石刀获得厚度一般为50-100nm切片,收集于带膜的金属载网上,经醋酸铀和柠檬酸铅染色后在透射电镜上进行观察。2.高压冷冻-冷冻替代技术(HPF-FS):针对于一些特殊样品,单一化学固定易发生组织收缩、细胞外空间损失和细胞降解的现象,高压冷冻固定可以避免这些问题。高压冷冻是在2100bar压力下将生物样品在30毫秒内进行冷冻固定,极大限度地保存样本自然生理状态的结构特征,为研究细胞结构与功能的关系提供充分而准确的超微结构信息,避免了因化学固定引起的各种假象,同时还可以捕捉到一些光、电刺激后细胞动力学的错综变化瞬间。冷冻固定后的样品需要转移至冷冻替代仪中进行逐步回温和替代,随着温度逐渐升高,替代液中的锇酸、醋酸铀及醛类也会渗透至组织细胞中发挥固定和染色作用。HPF-FS技术虽然有着固定速度快,样品接近自然生理状态的优点,同时也存在着固定体积小(厚度不超过200μm)、易于产生冰晶损伤、设备依赖性等问题,限制了该项技术的广泛应用。3.免疫电镜技术(IEM):基本原理类似于免疫组织化学,将电镜技术与免疫标记技术结合,通过电镜下观察到的(高电子密度)标记物如胶体金或DAB染色来标记某种特定的物质,达到对某种物质在细胞中的超微定位和对组织进行超微结构研究的目的。该技术较为复杂,包括包埋前免疫、包埋后免疫、冷冻超薄切片等不同的技术路线。路线的选择依据在于是否最大限度地保存抗原的免疫活性和组织的超微结构。不能根据这些技术出现的先后来认为其先进性,它们各具优缺点,又各有相应的适用范围。①包埋前免疫是在树脂包埋之前完成免疫标记流程。固定后的样品,经过冻融或表面活性剂处理后,增加细胞膜的通透性,之后进行一抗和二抗的标记,二抗偶联胶体金标记,或辣根过氧化物酶,辣根过氧化物酶通过过氧化物反应,将DAB底物氧化沉淀在目标位点,沉淀的DAB反应物会和之后的锇酸反应,生成特定的黑色标记。完成标记的样品经过常规的电镜包埋切片制样流程,就可以在电镜下观察超微结构和其上的特异标记。包埋前免疫技术的标记效率较高,但由于标记过程中需要增加膜的通透性,所以膜结构通常保存较差。②包埋后免疫是将固定后的样品进行树脂包埋和超薄切片,将切片收集在带支撑膜的镍网上,对镍网上的切片进行免疫胶体金标记,胶体金的粒径通常为5-20nm,使用不同粒径的二抗来实现对不同抗原的多重标记。由于制样过程中需要尽可能的保存抗原,常采用的固定剂是4%多聚甲醛+0.1~0.5%戊二醛溶液或只使用4%多聚甲醛。树脂一般选择在较低的温度(-10℃~50℃)下进行紫外聚合的LR-white,LR-Gold或K4M,HM20等丙烯酸盐类树脂。HPF-FS技术也可用于包埋后免疫电镜的制样,能明显提高样品结构和抗原的保存效果。③冷冻超薄切片是将固定后的样品在-120℃进行冷冻超薄切片(50-100nm),捞于镍网上再进行胶体金免疫标记。标记后的样品用醋酸铀染色并用甲基纤维素封片后就可以进行电镜观察。由于不需要有机溶剂脱水和树脂包埋,冷冻超薄切片技术具有标记效率高,膜结构保存良好的特点,但是对技术人员的技能和经验要求高。4.负染色技术:负染色又称阴性反差染色,它是利用高密度的、且在透射电镜下又不显示结构的重金属盐(如磷钨酸、醋酸铀等),把生物标本包围起来、在黑暗的背景上显示出呈现阴性反差样品的微细结构。负染色所显示的电镜图像,正好与组织超薄切片正染色相反,其样品结构为透明浅色,而背底则为无结构的灰色或黑色。负染色技术无法看到样品的内部结构。这种方法操作简单,图像衬度高,广泛应用于水溶性样品中的颗粒性物质或生物大分子等样品质量和结构的快速检测分析,如外泌体、脂质体、细菌、病毒、蛋白质和纳米制剂等。样品的纯度和浓度都有要求,如果杂质太多样品中有盐类结晶会干扰染色反应。5.冷冻电镜技术(Cryo-EM):近年来冷冻透射电镜成为最为热门的生物研究技术之一,主要包括单颗粒分析(Single particle,SPA)和冷冻电子断层扫描(tomography)两个技术分支。单颗粒分析技术通常依赖于均质的样品,通过将纯化的蛋白质瞬间冷冻在Quantifoil金网上,将载网通过冷冻样品杆或冷冻传输装置放入冷冻电镜中进行观察,在保持蛋白天然构型的前提下,解析蛋白的构象特征。单颗粒分析在电镜下观察每个蛋白质分子在某个角度的投影,获得多个不同方向和/或粒子图像,再通过数据分析和图像分类算法得到该蛋白分子的三维构象图。随着冷冻电镜的加速电压的提高(300kV)和算法的迭代更新,单颗粒分析的分辨率甚至可以达到1.2埃,实现对蛋白质结构原子级别的解析,适用于膜蛋白、蛋白质等大分子复合物的研究。冷冻电子断层扫描技术是一种无标记的冷冻成像技术,能以纳米分辨率提供细胞器和蛋白质复合物的3D数据集。以细胞为例,首先需要对细胞进行低温冷冻(玻璃化),通过聚焦离子束 (FIB) 对细胞目标区域减薄,得到减薄的细胞冷冻薄片。将冷冻薄片置于冷冻电镜下,通过样品杆的倾转,拍摄冷冻薄片在不同角度下的一系列2D图像,然后将其重建为 3D 数据集。冷冻电子断层扫描不需要对样品进行任何脱水、染色或标记,并可以与光学显微术联合使用,获得目标细胞器、蛋白质的在细胞中的位置和纳米分辨率级别的三维结构信息。相比于SPA,冷冻电子断层扫描不仅能获得单个蛋白质的结构信息,还能得到它们在细胞内的空间排布特征以及周围亚细胞结构的三维超微特征。三、扫描电子显微镜技术扫描电镜由真空系统、电子束系统和成像系统三大系统组成。不同于透射电镜,扫描电镜的成像原理是用极细的电子束在样品表面进行逐点扫描,激发样品表面放出二次电子、背散射电子等电子信号,通过不同的电子探测器接受不同来源的电子来形成样品的表面形貌像(二次电子)或衬度像(背散射电子)等,所以扫描电镜的常用功能包括二次电子成像和衬度成像。1.二次电子成像:用被入射电子轰击出的样品外层电子成像,能量低,只能表征样品表面。生物组织在高真空条件水分会快速挥发,影响并破坏样品形态。生物样品必须经过干燥才能进行扫描电镜观察。含水的特殊生物样品也可以通过低真空模式(成像质量下降)或冷冻传输的方法进行观察。干燥方式一般有冷冻真空干燥和临界点干燥两种,其中临界点干燥法是我们常用的方法,它可以消除液体表面张力对脱水过程中样品形态的影响。干燥后的样品还需要用真空镀膜仪在表面喷镀一层导电金属,镀膜厚度控制在5-10nm为宜,用来消除荷电效应,减少热损伤,并提高在扫描电镜中定位检查所需的二次电子信号。2.衬度成像:电子照射到待测样品的过程中,样品能发射一部分电子,背散射电子探头就会检测到这些电子,从而产生相应的电信号,通过放大电路 之后,在对其进行相应的转换,后在检测器 上显示相应待检测样品表面的相关信息图像。背散射电子的数量主要与样品的原子序数有关,原子序数越大,反射的背散射电子就越多,因此可以用来对重金属加强染色的生物样品进行背散射电子成像,得到类似于透射电镜成像的效果。目前我们主要依赖于场发射扫描电镜对树脂包埋的样品进行连续切片扫描后获得序列图像,由此得到第三维度的信息。场发射扫描电镜XY的分辨率已达到2nm以上,Z轴分辨率由切片的厚度决定,现有三种策略:系列块表面(SBF-SEM)、原位聚焦离子束切割(FIB-SEM)和自动化带式收集超薄切片(ATUM-SEM)。我们实验室较早采用ATUM-SEM技术开展纳米尺度上神经网络连接和脑图谱绘制的工作,该技术最大优势在于样品可一直保存和重复成像。将连续切片按顺序收集在支持条带或硅片上,放入扫描电镜中利用高通量自动化图像采集软件进行序列成像,获得样品的三维图像数据堆栈。这些海量数据的处理和分析、目标结构的分割和3D渲染等环节都具有较强的挑战性。然而,SBF-SEM技术则是将配有钻石刀的超薄切片机整合到扫描电镜中,对暴露出的样品表面进行自动连续切片和系列背散射电子成像。FIB-SEM的成像原理与SBF类似,不同之处在于聚焦离子束替代了钻石刀切割,实现了更高的Z轴分辨率,在小体积生物样品的三维重构研究中应用非常广泛。四、电镜在神经生物学中的应用与展望电镜技术作为纳米级的生物学成像技术,为神经系统超微形态学观察、疾病病理诊断和神经环路连接图谱绘制提供了二维或三维精细结构信息。神经系统具有复杂的生物结构,有比较粗大的神经纤维、神经突起(最小直径约200 nm),也有很多精细的结构如突触间隙约20 nm及其中的囊泡(直径约30 nm)。神经组织的另一个显著特点是神经元有大量的神经突起或投射到其它神经核团上产生联系,这些神经突起、相互连接可以延伸很长的距离,甚至可以达到数毫米,构成极其复杂的神经网络。全脑神经网络连接具有极精细结构和不规则投射途径促进了体电镜技术的发展,也是当前神经生物学研究的重点之一。除此之外,光电关联技术(CLEM)在神经环路连接中的应用也较多,该技术是将FM和EM技术进行优势互补,集成应用于同一个细胞对象上,可获取多重结构信息和高分辨率。由于电镜无法感知荧光信号,在电镜里找到荧光所确定的感兴趣区域,并让两种图像准确叠合成同一信息,是关联成功的关键。CLEM的工作流程以模板化组合,但不管哪种方案目标都是最大限度的保留来自光学和电子显微镜的图像信息,尽量在EM成像之前拍好FM,避免电子束和高真空对荧光信号产生漂白作用。样品制备的基本原则是在保存荧光信号和获得高衬度电镜结构之间找到平衡点。另外,图像配准时可利用内源性的标志物如血管、细胞核、髓鞘等结构以微米精度进行逐步关联。生物电镜的样品制备原理虽然大同小异,但生物类型、样品来源、实验目标的不同决定了制样方案的多样化,这就对电镜工作者提出了更高的经验要求。非标准化流程的电镜实验数量的增多,更需要依赖多元化的制样和成像方案。电镜技术平台作为一个专业性极强的团队,在现有仪器的基础上,会不断开发新的电镜方法和设备的使用功能,为科研用户提供一站式高质量技术服务,为科研项目提供了更好的技术保障。 电镜技术平台工作人员合影作者简介:孔妤,博士,正高级工程师,现任中国科学院脑科学与智能技术卓越创新中心电镜技术平台主管,上海市显微学学会理事。从事神经生物学电镜技术和神经组织超微结构研究多年,承担青年促进会、上海市科委等多项课题项目,发表国内外研究论文十余篇。近年来主要从事微观脑网络结构分析与重构技术、光镜电镜联用技术、免疫电镜技术等在神经环路连接研究中的应用,技术全面,经验丰富,为科研工作者论文的发表提供了高水平的技术支撑服务。点击图片了解话题详情欢迎广大网友投稿:lizk@instrument.com.cn(内容包括但不限于:生命科学科研故事、生命科学相关仪器/技术分享、市场洞察等)
  • FDA药物安全通讯:确定MRI钆对比剂脑沉积迄今无任何有害影响
    p   国FDA药物安全委员会发表声明:FDA确定MRI钆对比剂脑沉积迄今未产生任何有害影响。 /p p   ▲事件回顾 /p p   ? 自从2017年3月欧洲药物管理局PRAC提出在欧洲市场暂停所有线形对比剂静脉内应用的建议后,美国放射学会(ACR)于2017年4月4日首次回应,表示经过广泛审查相关材料后,ACR药物与对比剂委员会不同意PRAC的建议。ACR认为目前并无有力证据表明钆对比剂(GBCAs,包括线形GBCAs)会对脑内钆沉积产生安全风险。线形对比剂具有大量证据充分的诊断价值,并且一些情况下可能具有比大环形对比剂更理想的药理学性质及更低的急性不良反应风险。 /p p   ? 此次声明是基于FDA对于重复多次使用MRI钆对比剂后发生脑沉积的风险评估。FDA一直非常关注MRI钆对比剂的脑沉积相关证据,并在未来保留继续审查相关数据。 /p p   ▲声明内容 /p p   [2017-5-22] 美国食品和药物管理局(FDA)审查迄今发表的研究数据,尚未发现在使用GBCA用于磁共振成像(MRI)后脑沉积的不良健康影响。所有的GBCA都可能与脑部和其他身体组织中的钆残留存在联系。然而,由于并未发现任何证据表明,在任何一种GBCA中,脑部钆残留是有害的,即使是高度的钆残留,因此目前并无必要限制GBCA的使用。我们将继续评估GBCA的安全性,并计划在未来召开公众会议来讨论这个问题。 /p p   我们对医疗专业人员和患者的建议与2015年7月的情况保持不变:我们正在调查这一潜在风险。当考虑使用任何医学显像剂时,医疗专业人员应将GBCA的使用限制在必要的情况下,并评估重复MRI检查与GBCA的必要性。患者进行MRI检查时如有任何问题或担心,应该与医疗专业人员交谈。钆残留只影响GBCA,并不适用于其他成像方式,例如基于碘或放射性同位素的显影剂。 /p p   我们评估了向FDA提交的17篇科学文献和不良事件报告。一些人类和动物研究发现,GBCA的使用周期长于一年。这些文献和报告显示,钆残留在大脑、骨骼和皮肤等器官中。然而,我们的综述并没有发现与这种脑沉积有关的不良健康影响。 /p p   迄今为止,与钆残留有关的唯一不良健康影响是一种罕见的疾病,称为肾源性全身纤维化(NSF),发生在患有肾衰竭的一小部分患者身上。最近发表了一些报道涉及到在正常肾功能的患者中使用GBCA后发生皮肤和其他组织增厚和硬化的反应,但并未发生NSF。我们继续对这些报告进行评估,以确定这些纤维化反应是否对钆沉积有不良的健康影响。 /p p   线性GBCA OptiMARK(gadoversetamide)的制造商,更新了它的标签,包含了其在各种身体器官,如大脑、皮肤和其他器官中有钆残留的信息。我们正在检查其他GBCA的标签,以确定是否需要更改。 /p p   近期,欧洲药品局(EMA) 药物警戒风险评估委员会的一项评估也确定钆剂脑沉积没有不利的健康影响,但委员会建议暂停某些线性GBCAs的市场销售,因为相比大环的GBCAs,他们导致了更多的脑部钆沉积。委员会的建议目前正处于上诉阶段,由该委员会进一步审查,并随后由EMA人类医疗产品委员会进行审查。 /p p   我们正在继续评估GBCA的安全性。FDA的国家毒物研究中心(NCTR)正在进行一项关于对大鼠的大脑记忆能力的研究。其他研究也正在进行,关于钆是如何在体内保留的。我们将在有新信息时更新公众,并计划在未来召开公开会议讨论这个问题。 /p p   我们敦促患者和医疗专业人员向FDA的MedWatch程序报告涉及GBCA或其他药物的副作用,并在页面底部使用“联系FDA”的信息。 /p
  • 质谱POCT——90秒诊断脑胶质瘤术中分子病理
    脑胶质瘤是最常见的原发恶性脑肿瘤之一,具有边界不清、毗邻功能区、放化疗不敏感等特点,手术切除困难,预后差。此前已有研究发现,2-3级胶质瘤患者中80%存在代谢酶异柠檬酸脱氢酶(Isocitrate dehydrogenase,以下简称IDH)突变,这类IDH突变胶质瘤好发于周边脑叶,年轻人常见,在最大限度肿瘤手术切除后,可显著提升生存率。因此,术中快速识别IDH突变,实现胶质瘤术中分子病理诊断对提升患者预后意义重大。2024年5月28日,复旦大学附属华山医院毛颖/花玮教授团队、清华大学精密仪器系张文鹏/欧阳证教授团队、美国普渡大学R. Graham Cooks教授团队以及梅奥诊所Alfredo Quinones-Hinojosa教授团队合作在《美国国家科学院院刊》(PNAS)上发表了题为术中质谱法快速检测胶质瘤中IDH突变“Rapid Detection of IDH Mutations in Gliomas by Intraoperative Mass Spectrometry”的最新研究成果。此项研究中,使用清谱科技便携式质谱分析系统Cell及活检组织检测直接毛细管电喷雾(Direct Capillary Spray,DCS)试剂盒实施了脑胶质瘤术中检测与分型。清谱科技创新设计中心科学家吴俊函博士是本文的共同第一作者,清谱科技应用中心负责人王南博士参与本研究工作。该项研究由中美顶尖研究和临床机构合作近5年完成,是迄今为止已知规模最大的术中胶质瘤IDH突变检测临床试验。通过临床队列研究,确定了质谱诊断IDH突变的最佳指标和阈值。实验结果表明,通过术中质谱技术以2-HG和GLU的比值作为诊断指标,在260位胶质瘤病人的697例样品检测中实现了100%的IDH突变检测准确率。其中,183位病人的309例样品使用清谱科技Cell便携式质谱分析系统与DCS试剂盒完成检测。胶质瘤是目前发病率最高的颅内原发恶性肿瘤,具有进展快、死亡率高且预后差的特点,超过80%WHO 2-3级的胶质瘤中都存在异柠檬酸脱氢酶(Isocitrate dehydrogenase,IDH)基因突变。IDH突变的胶质瘤患者在最大限度肿瘤手术切除后,可显著提升生存率,所以实现胶质瘤术中IDH突变检测对胶质瘤患者预后提升具有重要意义。脑胶质细胞发生IDH突变后,三羧酸循环中的α-酮戊二酸(α-KG)将转变为一种特殊的肿瘤小分子代谢标志物 2-羟基戊二酸(2-HG),进而促进癌变。因此,IDH突变患者的肿瘤区域将会积累大量2-HG,通过检测2-HG可诊断IDH突变情况。图1 IDH突变型胶质瘤中的代谢变化示意图在本研究中,美方研究团队使用电喷雾解吸电离方法(DESI)和传统大型质谱仪结合的方案;中方团队则采用直接毛细管电喷雾DCS试剂盒与便携式质谱分析系统Cell结合的即时化学检测方案,实现了:1. 2-HG和内标谷氨酸的快速准确检测;2. 成功构建了完整的脑胶质瘤IDH突变术中诊断流程;3. 将术中组织采集到IDH突变检测结果反馈全流程时间压缩至1.5分钟。本研究开创了脑肿瘤术中便携式质谱即时检测的应用范式,将为临床医生在术中进行肿瘤分析提供新的技术储备,为胶质瘤患者预后提升提供重大帮助。图2 术中质谱分析流程示意图本研究在对复旦大学附属华山医院和梅奥诊所的样品检测,实现了100%的IDH突变检测准确率。在实际的术中实践中,该方法还展现了在辅助临床医生明确肿瘤类型、平衡肿瘤切除率与神经功能保全关系、术中进行肿瘤边界判断等方面的优势。这项研究不仅实现了术中分子病理快速诊断,同时为外科手术带来革命性变化和想象空间,为医生的手术策略制定提供重要的分子诊断依据,具有重要的临床价值,是未来手术个性化、精准化的发展方向。图3 临床队列情况以及检测结果图4 脑胶质瘤IDH基因突变检测试剂盒分析流程该研究首次将质谱仪搬进手术室,便携式质谱分析系统将成为外科医生的代谢之眼,为医生及时提供有效分子诊断信息,为患者带来福音。同时,清谱科技的便携式质谱分析系统已经应用于公共安全、科学研究以及临床医学领域。清谱科技将进一步推广便携质谱技术及原位电离技术在医疗行业如血药浓度检测、术中诊断、基于精细结构脂质组学的疾病诊疗研究等方面的广泛应用。
  • 《科学》:利用核磁共振进行脑研究在中国遭遇困境
    核磁共振标记这个区域。 谭力海的小组发现,与对照组相比阅读障碍的儿童大脑特定的区域活性较低,这个区域对中国人的读写来说非常重要。   北京师范大学的神经学家臧玉峰和他的同事们开始招募儿童志愿者,进行多动综合症的研究。他们计划利用功能性磁共振成像(fMRI)探测健康儿童和患病儿童之间大脑活动的差异。为了征集测试者,大学生们在一所小学前发放传单。然而,他们最后只能空手而归:家长担心核磁共振扫描可能会伤害到自己的孩子。对此,臧玉峰表示,“脑功能性磁共振实验实在是太难进行了。”   尽管在中国核磁共振已经作为一种诊断工具被广泛接受,但家长们仍不愿意自己的孩子暴露在强磁场中。这方面的忧虑并不是唯一的障碍。“公众对医生的不信任与日俱增,所以MRI 研究真是越来越难做了,”北京大学第一医院的放射科医生谢晟表示。她认为原因包括病人的维权意识和媒体对治疗方法的争论。招募健康儿童的艰难已经迫使MRI研究真是越来越难做了,不得不通过罹患其它病症的儿童进行研究测试,当然这种方式可能会事与愿违。   “经过三十余年的使用,核磁共振被公认较X射线和正电子发射断层扫描更为安全的检测方法”,美国国家药物滥用研究所(位于美国马里兰州巴尔的摩市)的核磁共振物物理学部主任、物理学家杨一鸿表示。检测的主要危险是针对那些身体里有起搏器或在其他金属物质的人。“到目前为止数百万人已经进行过核磁共振检查,因而现在看来不太可能会有副作用,”马克斯普朗克(Max Planck)人类脑与认知科学研究所(位于德国莱比锡市)认知神经科主任阿诺威尔林格(Arno Villringer)表示。   这种解释对中国的病人收效甚微——甚至是一些科学家。“我不敢让我自己的孩子接受核磁共振测试,”北京大学第三医院的放射科医生韩鸿宾表示。“没有人担保绝对没有任何潜在的危险,尤其是在进行非常规磁共振扫描中会迅速提升磁场强度或使用极高场强时,”他说。   面对诸如此类的问题,一些研究人员尝试走某种捷径。比如,谢晟最近向《癫痫研究》(Epilepsy Research)提交了一篇关于6岁以下癫痫患儿的研究报告。不过,上个月这个期刊拒绝发表她的文章,理由是她的对比对象并非完全健康。谢晟也承认:被她列为对比对象的大多数孩子因为其它病症才做核磁共振检查。“招募真正健康的儿童参加核磁共振测试太困难了,”谢晟表示。   一些同行对此表示同情,并建议有时候适当地准许规范研究实践的例外情况。臧玉峰认为,在谢晟的例子里,那些没有患有癫痫之类神经系统疾病但是可能患有其它病症的孩子,是可以作为对照组的。但是,北京师范大学磁共振物理学家黄瑞旺却不这么想,他认为不录用谢晟的文章是正确的。   在美国招募志愿者进行地要更加顺利。“经过对功能性核磁共振的详细解释,很多家长同意让孩子参加测试,” 俄勒冈卫生科技大学(美国波特兰市)的神经学家达米安费尔(Damien Fair)表示。即使在中国,一些团体也取得了进一步的成功。香港大学脑与认知科学国家重点实验室副主任谭力海表示,他从未在科研项目招募志愿者中遇到麻烦,他的团队通过研究已经能够辨别出决定中国儿童阅读和读写障碍的大脑区域。   谭力海的成功令臧玉峰感到振奋,臧玉峰相信他的小组一定能够克服困难。他们将在这周结束的农历新年之后继续招募活动——臧玉峰表示这一次将竭力向父母们解释他们的研究目的。(原文标题为——中国:对核磁共振对健康的担忧阻碍脑研究)
  • 岛津与全球科学家一起行动丨脑功能成像探索生命领域的奥秘
    脑功能成像探索生命领域的奥秘 联合研究合作方美国耶鲁大学医学院Joy Hirsch教授 我想通过fNIRS这一新技术对人与人的互动进行成像,以了解我们的脑如何适应实际生活和社会活动。比如,使用fNIRS,研究人与人之间的目光接触在交流中起到什么样的作用。我们与岛津制作所具有共同的价值观,希望能够作为伙伴长期一起合作。我不打算满足现状,岛津也是如此。正因为如此,我们才是伙伴。 在不断发展的脑科学研究中,可实现脑功能可视化的功能性近红外脑成像技术(fNIRS:functional Near-Infrared Spectroscopy),作为一种在日常环境中测量大脑活动的新方法而受到关注。 功能性近红外脑成像技术能够在安全、自然的状态下进行检测,对动静的限制较少,已被广泛应用于康复研究、药物开发、医学研究、精神和神经科学等研究领域。 功能性近红外光脑成像系统LABNIRS fNIRS的检测原理 脑内产生神经活动,周边区域的血红蛋白量即发生局部变化。fNIRS能够通过照射高生物透射性的近红外光,来检测吸收波长不同的含氧血红蛋白(Oxy-Hb)和脱氧血红蛋白(Deoxy-Hb),实时动画显示由脑活动引起的相对变化。 根据每个通道的时间序列数据的二维成像,安静时(左)与手指轻触时(右)的比较(Oxy-Hb) 功能性近红外光脑成像(fNIRS)的方案伦敦大学学院(UCL)的认知神经科学研究所,使用fNIRS,检测在莎士比亚剧中演员的脑活动模型。它用于研究人类社会认知和自闭症患者之间的社会交往差异。详情请扫描下方二维访问: PC端网址:https://www.shimadzu.com/about/momentum/feature/vol10.html 参考文献: Noah, J. A., Zhang, X., Dravida, S., Ono, Y., Naples, J. A., McPartland, J. C., & Hirsch, J. (2020). Real-time eye-to-eye contact is associated with cross-brain neural coupling in angular gyrus. Frontiers in Human Neuroscience 14(19), 1-10. doi: 10.3389/fnhum.2020.00019 Zhang, X., Noah, J. A., Dravida, S., & Hirsch, J. (2020). Optimization of wavelet coherence analysis as a measure of neural synchrony during hyperscanning using functional near-infrared spectroscopy. Neurophotonics, In Press.
  • 深脑成像的利器:超维景助力北京大学微型化三光子显微镜问世
    2023年2月23日,北京大学程和平-王爱民团队在 Nature Methods 在线发表题为 Miniature three-photon microscopy maximized for scattered fluorescence collection 的文章。 文中报道了重量仅为2.17克的微型化三光子显微镜(图1),首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。 图1 小鼠佩戴微型化三光子显微镜实景图 解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,为此需要打造自由运动动物佩戴式显微成像类研究工具。2017年,北京大学程和平院士团队成功研制第一代 2.2 克微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了 7.8 倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。 微型化三光子显微镜突破成像深度极限 海马体位于皮层和胼胝体下面,在短期记忆到长期记忆的巩固、空间记忆和情绪编码等方面起重要作用。在啮齿类动物研究模型中,海马距离脑表面深度大于一个毫米。由于大脑组织,特别是胼胝体,具有对光的高散射光学特性,所以突破成像深度极限是长期以来困扰神经科学家的一个极大的挑战。此前的微型化单光子及微型化多光子显微镜均无法实现穿透全皮层直接对海马区进行无损成像。此次,北京大学最新研发的微型化三光子显微镜一举突破了此前微型化多光子显微镜的成像深度极限:1、显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区的直接观测记录(图2)。神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。2、在光毒性方面,全皮层钙信号成像仅需要几个毫瓦,海马钙信号成像仅需要20至50毫瓦,大大低于组织损伤的安全阈值。因此,该款微型化三光子显微镜可以长时间、不间断连续观测神经元功能活动,且不产生明显的光漂白与光损伤。图2 微型三光子显微成像记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。 全新的光学构型设计 北京大学微型化三光子显微镜成像深度的突破得益于全新的光学构型设计。(图3)图3 微型化三光子显微镜光学构型 通过对皮层、白质和海马体建立分层散射模型进行仿真,发现荧光信号从深层组织到达脑表面时已经处于随机散射的状态,使得显微物镜荧光收集效率降低,从而极大限制了成像深度。针对这一问题,经典阿贝聚光镜结构被引入构型设计中:微型阿贝聚光镜与简化的无限远物镜密接可以提高散射光的通透效率;阿贝聚光镜与激发光路中的微型管镜部分复用,可以进一步简化结构,降低损耗。总体上,新微型化显微镜的散射荧光收集效率实现了成倍的提升。 生物应用 同时,利用微型化三光子显微镜,作者研究了小鼠顶叶皮层第六层神经元在抓取糖豆这一感觉运动过程中的编码机制:发现大约37%的神经元在抓取动作之前就开始活跃且在抓取时最活跃,大约5.6%的神经元在抓取动作之后开始活跃,说明不同神经元参与了不同阶段的编码。(图4)这一结果初步展示了微型化三光子显微镜在脑科学研究中的应用潜力。 图4 小鼠顶叶皮层第六层神经元在抓取糖豆任务中的不同反应类型北京大学未来技术学院博士后赵春竹、北京大学前沿交叉学科研究院博士研究生陈诗源、北京大学分子医学南京转化研究院研究员张立风为该论文的共同第一作者,北京大学程和平、王爱民、赵春竹为论文的共同通讯作者,北京超维景生物科技有限公司胡炎辉、李谊军、陈燕川、付强、高玉倩、江文茂、张颖也参与了此项工作的开发。该项目得到科技创新2030-“脑科学与类脑研究”重大项目、中国医学科学院医学与健康科技创新工程—脑疾病的线粒体机制研究创新单元、国家自然科学基金委、国家重大科研仪器研制专项、科技部重点研发计划等经费支持。超维景一直致力于前沿生物医学成像技术的产业转化,为推动生命科学的研究与发展提供优质的、系统化的解决方案。 经过多年的沉淀 我们即将推出自主研发的最新一代微型化三光子显微成像系统敬 请 期 待 !Nature Methods 原文链接:https://doi.org/10.1038/s41592-023-01777-3
  • 微纳3D打印:赋能脑机接口,建立人脑与世界的高带宽连接
    随着数字化、网络化、智能化为核心的新时代来临,脑机接口技术已跃升为全球主要经济体竞相布局的关键领域,旨在催生经济发展的新引擎,并构筑起国际竞争的新高地。与传统制造方法相比,3D打印可以显著降低脑机接口技术的生产成本,快速推动原型制作和测试迭代,加速脑机接口技术的创新和改进,为其在人工智能、生物医疗、疾病康复、增强现实和虚拟现实等领域的应用提供了新的可能性。现状与趋势-技术引领发展 创新赋能未来脑机接口技术是指通过在人脑神经与电子或者机械设备间建立直接连接通路,来实现神经系统和外部设备间信息交互与功能整合的技术。典型的脑机接口系统一般分为四部分,即脑电信号的采集,脑电信号的分析,依据脑电信号控制实施的行为,以及外界的反馈。其中的关键核心技术包括采集脑电信号的电极、神经接口芯片、信号解码等一系列前沿科技。根据Grand View Research数据表明,2023年全球脑机接口的市场规模已达到20亿美元,并预计从2024年至2030年将以17.8%的年复合增长率快速增长。随着神经假体设备的疾病流行率的增加、全球老年人口基数的上升,庞大的患者群体基数带动需求扩张,政策上大力支持脑科学与类脑研究的发展,技术上“产学研医”紧密协同,脑机接口行业在多因素促进下有望迈入发展快车道。在传统制造技术面临挑战的背景下,3D打印不仅能够实现复杂电极的精确制造,显著降低生产成本,快速原型制作和设计迭代,为研究人员提供了一个高效的平台,使他们能够迅速地进行设计测试和优化,从而加速脑机接口技术的创新与改进。这种灵活性和快速响应能力,对于不断发展的脑机接口领域来说,无疑是推动其技术进步的关键因素。Exaddon AG,作为一家专注于微纳金属增材制造(µ AM)技术创新性解决方案提供商,其CERES 3D打印系统可实现在室温条件下直接生产和修复微纳金属物体,且整个过程无需任何后处理步骤。该技术的应用之一,便是制造用于脑机接口的微型电极,这些电极旨在植入大脑,实现外部计算能力与大脑的直接连接。这一突破性的应用为帕金森病或阿尔茨海默症等严重神经退行性疾病患者的生活质量改善提供了可能性,通过精准的神经信号读取和调控,助力于恢复或增强他们的认知与运动功能。Exaddon AG的CERES系统凭借其基于电化学沉积的金属增材制造技术(μAM),不仅确保了金属电极的高导电性和优异的生物相容性,为植入设备提供了关键保障,而且赋予了电极微观结构设计超高灵活性,使得研究人员能够根据需求定制电极,以优化提高与生物组织的互动及信号采集效率。高纵横比:直接在预图案化轨迹或接触垫上以微米级精度打印高宽比(100:1)的结构。铜或金微柱:在室温下通过局部电沉积打印高导电性纯金属针和柱,打印后可对柱进行涂覆。挑战与未来-原创技术赋能 突破研发壁垒当然,脑机接口技术并非简单的即插即用,涉及到可植入技术,通常称为皮层电图(ECoG),直接贴合大脑表面,提供比外部电极更为精确的信息。然而,其安装过程相对复杂,需要能够从大脑传导电信号的生物相容微型电极,这些电极必须足够精密微小,以便能够长期稳定地植入体内。其中“μECoG”技术(微型电极),是近期的一项重大创新,正以迅猛的速度逐步成为领域内的关注焦点。现有可植入技术的关键局限性之一是“传统硬质电子材料与人体动态、柔软且弯曲的特性之间的机械不匹配”。这种不匹配引发了使用者在长期使用设备时对舒适度和耐久性的担忧。同时,为了实现高保真信号传导,所用材料必须具备优异的导电性,这在非金属材料中尤其具有挑战性。目前的技术方案主要依赖于金或铂电极,而基底材料的选择涵盖了铱、铂、聚酰亚胺、金等。为了解决这一问题,研究人员研发了一种具有微柱阵列的柔性基底。Malliaras等研究者利用Exaddon独特的μAM技术开发了一种PEDOT:PSS微针阵列,其电极覆盖区域为10 × 10 µ m² ,电极间的中心距离为60 µ m。这些创新的研究成果不仅为神经科学和生物医学工程领域提供了新的思路,而且有望在未来为脑机接口技术的进一步发展奠定坚实的基础。精细间距阵列:间距可以根据需要定制。图像:40 x 40阵列,由直径1.6 μm的铜柱组成,以25 μm的间距打印,总共1600根微柱。瑞士Exaddon AG已与摩方精密建立长期战略合作伙伴关系。根据协议,摩方精密作为Exaddon AG中国市场的官方服务提供商及主要推广合作伙伴,专注于推广微纳金属3D打印技术,提供设备支持并拓展市场。双方共同致力于将微纳3D打印技术广泛应用于人工智能、脑机接口、生物医药、半导体封装与测试等多个领域,共同推动技术革新与产业进步。
  • 北京大学程和平院士等开发深脑成像的利器—微型化三光子显微镜
    2023年2月23日,北京大学程和平/王爱民团队在Nature Methods在线发表题为“Miniature three-photon microscopy maximized for scattered fluorescence collection”的文章。文中报道了重量仅为2.17克的微型化三光子显微镜(图1),首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。图1 小鼠佩戴微型化三光子显微镜实景图解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,为此需要打造自由运动动物佩戴式显微成像类研究工具。2017年,北京大学程和平院士团队成功研制第一代2.2克微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了7.8倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。此次,北京大学最新的微型化三光子显微镜一举突破了此前微型化多光子显微镜的成像深度极限:显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区的直接观测记录(图2,Video 1-2),神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。另外,在光毒性方面,全皮层钙信号成像仅需要几个毫瓦,海马钙信号成像仅需要20至50毫瓦,大大低于组织损伤的安全阈值。因此,该款微型三光子显微镜可以长时间不间断连续观测神经元功能活动,而不产生明显的光漂白与光损伤。图2 微型三光子显微成像记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。Video1 这是使用北大微型化三光子显微镜拍摄的小鼠大脑从大脑皮层到胼胝体再到海马CA1亚区的三维重建图。绿色代表GCaMP6s标记的神经元荧光信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。左上角显示成像深度,可以看到,激光进入大脑,以硬脑膜作为0点,向下移动z轴位移台,我们一次看到了皮层L1至L6分层的神经元胞体和微血管,之后我们看到了胼胝体致密的纤维结构。在穿过胼胝体后,我们继续向下,我们终于看到了位于海马CA1亚区的神经元胞体。Video2 左下图是小鼠佩戴着微型化三光子探头,在鼠笼(长29厘米× 17.5厘米宽× 15厘米高)中自由探索。左上图是此时小鼠佩戴的微型化三光子探头正在对深度为978 μm的海马CA1亚区神经元荧光钙信号进行成像(帧率8.35Hz,物镜后的光功率为35.9 mW)。右图展示了左上图中10个神经元的钙活动轨迹,尖峰代表钙信号发放。钙活动轨迹上移动的蓝线与小鼠自由行为视频同步。海马体位于皮层和胼胝体下面,在短期记忆到长期记忆的巩固、空间记忆和情绪编码等方面起重要作用。在啮齿类动物研究模型中,海马距离脑表面深度大于一个毫米。由于大脑组织,特别是胼胝体,具有对光的高散射光学特性,所以突破成像深度极限是长期以来困扰神经科学家的一个极大的挑战。此前的微型单光子及微型多光子显微镜均无法实现穿透全皮层直接对海马区进行无损成像。北京大学微型化三光子显微镜成像深度的突破得益于全新的光学构型设计(图3)。作者通过对皮层、白质和海马体建立分层散射模型进行仿真,发现荧光信号从深层组织到达脑表面时已经处于随机散射的状态,使得显微物镜荧光收集效率降低,从而极大限制了成像深度。针对这一问题,经典阿贝聚光镜结构被引入构型设计中:微型阿贝聚光镜与简化的无限远物镜密接可以提高散射光的通透效率;阿贝聚光镜与激发光路中的微型管镜部分复用,可以进一步简化结构,降低损耗。总体上,新微型化显微镜的散射荧光收集效率实现了成倍的提升。图3 微型化三光子显微镜光学构型同时,利用微型三光子显微镜,作者研究了小鼠顶叶皮层第六层神经元在抓取糖豆这一感觉运动过程中的编码机制:发现大约37%的神经元在抓取动作之前就开始活跃且在抓取时最活跃,大约5.6%的神经元在抓取动作之后开始活跃,说明不同神经元参与了不同阶段的编码(图4,Video 3)。这一结果初步展示了微型化三光子显微镜在脑科学研究中的应用潜力。图4 小鼠顶叶皮层第六层神经元在抓取糖豆任务中的不同反应类型Video3 左图是佩戴着微型化三光子显微镜的小鼠在0.5厘米狭缝中用手抓取糖豆吃。中间图是此时微型化三光子显微镜探头拍摄的PPC脑区皮层第6层神经元(位于650微米深度)荧光钙信号(GCaMP6s标记的神经元,帧率15.93 Hz)。右图是选取中间图中5个神经元的钙活动轨迹,其中每条绿线表示一次小鼠的抓取动作。移动的蓝色线与左图的小鼠行为视频以及中间图中的神经元活动同步。视频以正常(×1)、慢速(×0.5)和快速(×10)的速度播放,以便于查看抓取行为。北京大学未来技术学院博士后赵春竹、北京大学前沿交叉学科研究院博士研究生陈诗源、北京大学分子医学南京转化研究院研究员张立风为该论文的共同第一作者,北京大学程和平、王爱民、赵春竹为论文的共同通讯作者。原文链接:https://doi.org/10.1038/s41592-023-01777-3这是程和平院士领衔发表的又一重大微型化显微成像成果。更早之前,由程和平院士牵头研发的微型化双光子活体成像技术,被Nature Methods评为“2018年度方法”,被国家科技部评为“2017度中国十大科学进展”。该技术将传统双光子显微镜中的核心探头,都缩减在一个仅有2.2克重的微小部件中。这项自主研发的核心技术已经成功商业化生产,产品为配戴式双光子显微镜,目前已经在世界多地实现销售,被国内外科学家应用于神经科学研究的多个领域,并获得了业内知名专家学者的高度认可。
  • 石墨烯和脑模型项目获欧盟20亿欧元巨额资助
    人类脑计划联合负责人Henry Markram,该项目脱颖而出获得欧盟巨额的经费支持。图片来源:Denis Balibouse   石墨烯研究和人类脑计划项目分别从欧盟主持的迄今为止最大经费规模的竞赛中脱颖而出,赢得10亿欧元“巨奖”。欧盟委员会将召开新闻发布会,正式宣布获胜者名单,每个获胜项目将获得高达10亿欧元的资金支持。   “这是欧洲有史以来最难的一场科学竞赛,让我们为获胜者干杯!”FuturICT项目协调人Dirk Helbing说,虽然FuturICT最终在角逐中失败。   日前,欧盟启动“未来新兴技术旗舰项目”,有6个项目进入最后一轮角逐,不过,欧盟委员会日前证实只有4个项目仍然坚持比赛。1月24日,其中两个项目——“智慧生活守护天使”和FuturICT——相关参与者对《科学》杂志透露,他们并不在获胜名单中。这样一来,只剩下石墨烯项目和人类脑计划成为冠军得主。   根据旗舰项目相关计划,在开始的两年半里,两支获胜队伍将一共获得1.08亿欧元的经费。但由于大学和产业伙伴也会赞助部分资金,这样折合算来,每个项目在启动阶段将获得超过7000万欧元。   “一般而言,在欧洲,一个研究员的成本大约是每年10万欧元,这些钱相当于700人年的花费。”石墨烯项目协调人、瑞典查尔姆斯理工大学的Jari Kinaret提到,“这是一笔相当大的经费。”启动阶段过后,这两个项目每年有望获得1亿欧元的资金。   石墨烯是一种新材料,引起了许多科学家的兴趣,因为它能够传导光和电。该石墨烯项目旨在开发这种材料在能源和数字技术等领域的应用。尽管拒绝在结果发布会前承认其项目获胜,但是Kinaret假设了一旦获奖意味着什么:“我们将启动在通讯技术方面的应用研究,例如幻想收音机,它能够在今天无法应用的频率下运行。”稍后,他们还将从事诸如人造视网膜和其他“生物植入物”等方面的应用研究。   人类脑计划则试图使用超级计算机模拟科学家掌握的有关人类大脑的所有事情,包括脑细胞、化学特性和连接性等。该计划由瑞士洛桑联邦理工学院神经系统学家Henry Markram负责整合协调工作。有科学家指责Markram的构想不切实际,例如借以洞悉神经退行性疾病如何能被更好地治疗等。   “实际上,这些项目并不是因为其创新性而赢得巨额资金支持的。”瑞士苏黎世联邦理工学院物理学和社会学家Helbing表示。他提出的项目FuturICT预想建立一个“行星式神经系统”来收集和分析大规模数据,从而模拟现代社会以及预测流行病蔓延和下一场金融危机等。   Helbing指出,FuturICT能够促使社会学家、工程师和其他科学家以一种史无前例的方式联合起来,但最重要的是欧盟能否敢于做这件事。
  • 北京脑科学与类脑研究中心184.80万元采购共聚焦显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 共聚焦显微镜 开标时间: null 采购金额: 184.80万元 采购单位: 北京脑科学与类脑研究中心 采购联系人: 邢永涛 采购联系方式: 立即查看 招标代理机构: 华诚博远工程咨询有限公司 代理联系人: 于曼 代理联系方式: 立即查看 详细信息 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 北京市-昌平区 状态:公告 更新时间:2022-03-11 招标文件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 公告概要: 公告信息: 采购项目名称 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 北京脑科学与类脑研究中心 行政区域 昌平区 公告时间 2022年03月11日 16:02 获取采购文件时间 2022年03月11日至2022年03月18日每日上午:9:30 至 11:30 下午:14:00 至 17:00(北京时间,法定节假日除外) 响应文件递交地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 响应文件开启时间 2022年03月24日 09:30 响应文件开启地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 预算金额 ¥184.800000万元(人民币) 联系人及联系方式: 项目联系人 于曼 项目联系电话 15811596673 采购单位 北京脑科学与类脑研究中心 采购单位地址 北京市昌平区中关村生命科学园科学园路26号院 采购单位联系方式 邢永涛,010-81912615代理机构名称 华诚博远工程咨询有限公司 代理机构地址 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 代理机构联系方式 于曼,15811596673 附件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告.pdf 项目概况 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购项目的潜在供应商应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取采购文件,并于2022年03月24日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:HCZB2022-058 项目名称:北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购方式:竞争性磋商 预算金额:184.8000000 万元(人民币) 采购需求: 名称、数量、简要技术需求如下: 序号 货物名称 数量 简要技术需求 1 ▲高分辨快速双扫描共聚焦显微镜 1套 …… 4.1 同一软件控制显微镜、激光器、扫描器,所有硬件均由软件控制。 …… (详见竞争性磋商文件第五章) 注: 1.标注 ▲ 的,允许提供进口产品;未标注允许采购进口产品的,如供应商所响应货物为进口产品,其响应文件按无效响应处理。 2.本项目共1个包,供应商只可投完整包,不允许将一包中的内容拆开进行响应。 合同履行期限:合同签订后,乙方应在3个月内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)供应商不为 信用中国 网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(以评审现场查询为准);(2)供应商单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动; 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年03月11日 至 2022年03月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 方式:现场领购。获取竞争性磋商文件需携带以下资料:1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖供应商公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买竞争性磋商文件等手续,加盖供应商公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖供应商公章)。2.如自然人参加磋商的,上述资料仅需签字或盖章即可。3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、进行体温检测及人员信息登记等事宜,自觉做好个人防护。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 五、开启 时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.竞争性磋商文件编号:HCZB2022-0582.评审标准和方法:采用综合评分法;满分为 100分:经济部分30分,商务部分36分,技术部分34分。3. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。4.本公告在中国政府采购网发布。5.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京脑科学与类脑研究中心 地址:北京市昌平区中关村生命科学园科学园路26号院 联系方式:邢永涛,010-81912615 2.采购代理机构信息 名 称:华诚博远工程咨询有限公司 地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 联系方式:于曼,15811596673 3.项目联系方式 项目联系人:于曼 电 话: 15811596673 × 扫码打开掌上仪信通App查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:共聚焦显微镜 开标时间:null 预算金额:184.80万元 采购单位:北京脑科学与类脑研究中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:华诚博远工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 北京市-昌平区 状态:公告 更新时间: 2022-03-11 招标文件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 公告概要: 公告信息: 采购项目名称 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 北京脑科学与类脑研究中心 行政区域 昌平区 公告时间 2022年03月11日 16:02 获取采购文件时间 2022年03月11日至2022年03月18日每日上午:9:30 至 11:30 下午:14:00 至 17:00(北京时间,法定节假日除外) 响应文件递交地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 响应文件开启时间 2022年03月24日 09:30 响应文件开启地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 预算金额 ¥184.800000万元(人民币) 联系人及联系方式: 项目联系人 于曼 项目联系电话 15811596673 采购单位 北京脑科学与类脑研究中心 采购单位地址 北京市昌平区中关村生命科学园科学园路26号院 采购单位联系方式 邢永涛,010-81912615 代理机构名称 华诚博远工程咨询有限公司 代理机构地址 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 代理机构联系方式 于曼,15811596673 附件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告.pdf 项目概况 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购项目的潜在供应商应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取采购文件,并于2022年03月24日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:HCZB2022-058 项目名称:北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购方式:竞争性磋商 预算金额:184.8000000 万元(人民币) 采购需求: 名称、数量、简要技术需求如下: 序号 货物名称 数量 简要技术需求 1 ▲高分辨快速双扫描共聚焦显微镜 1套 …… 4.1 同一软件控制显微镜、激光器、扫描器,所有硬件均由软件控制。 …… (详见竞争性磋商文件第五章) 注: 1.标注 ▲ 的,允许提供进口产品;未标注允许采购进口产品的,如供应商所响应货物为进口产品,其响应文件按无效响应处理。 2.本项目共1个包,供应商只可投完整包,不允许将一包中的内容拆开进行响应。 合同履行期限:合同签订后,乙方应在3个月内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)供应商不为 信用中国 网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(以评审现场查询为准);(2)供应商单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动; 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年03月11日 至 2022年03月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 方式:现场领购。获取竞争性磋商文件需携带以下资料:1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖供应商公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买竞争性磋商文件等手续,加盖供应商公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖供应商公章)。2.如自然人参加磋商的,上述资料仅需签字或盖章即可。3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、进行体温检测及人员信息登记等事宜,自觉做好个人防护。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 五、开启 时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.竞争性磋商文件编号:HCZB2022-0582.评审标准和方法:采用综合评分法;满分为 100分:经济部分30分,商务部分36分,技术部分34分。3. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。4.本公告在中国政府采购网发布。5.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京脑科学与类脑研究中心 地址:北京市昌平区中关村生命科学园科学园路26号院 联系方式:邢永涛,010-81912615 2.采购代理机构信息 名 称:华诚博远工程咨询有限公司 地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 联系方式:于曼,15811596673 3.项目联系方式 项目联系人:于曼 电 话: 15811596673
  • 探秘大脑“地图”!北航汪待发,研发“世界首个”便携式近红外脑功能成像设备!
    近日,新华社“走进中国新科技”系列专题对北京航空航天大学生物与医学工程学院樊瑜波、李德玉、汪待发联合团队所研发的近红外脑功能成像技术进行了深入报道今天,带大家走近联合团队中的汪待发副教授踏足“脑功能疾病诊疗”科技前沿汪 待 发北京航空航天大学生物与医学工程学院副教授、博士生导师从事近红外脑功能成像、脑机接口、脑功能评价、神经调控等方面研究已有20余载,作为课题组长承担国家重大科学仪器研制项目1项、国家重点研发计划1项;主持国家自然科学基金面上、青年等基金课题。发表SCI论文40余篇,申请发明专利数十项。致力于近红外脑功能成像领域的研究、研发、产业化与临床应用,研发装备已在包括301医院、宣武医院、上海华山医院、清华大学等400余家单位示范应用;支撑在Human Behaviour、Journal of Cleaner Production、NeuroImage等杂志发表SCI论文120余篇。攻克世界难题研发“戴在头上的功能核磁”大脑是人类最复杂神秘的器官,思想的萌生之地,生命的承载中枢。了解大脑的功能和运行机制,可以揭示人类学习、智慧、发育的诸多奥秘,也是治疗中风、阿尔茨海默症、抑郁症、精神分裂症等重大脑疾病的基础。人类对大脑运行机制的不断探索和深刻理解,更为新一代类脑人工智能技术的飞速发展,提供了关键的生物学理论基础。自然状态下大脑活动的高分辨成像是世界难题。目前,主流的脑功能成像方法包括功能核磁共振(fMRI)、核素成像(PET)、脑电(EEG)、近红外脑功能成像(fNIRS)等。然而,大型脑功能成像系统包括fMRI、PET体积庞大,并且患者不能有头动,不适合于自然情景;EEG相对轻便,然而其空间分辨率低,并且对于头动、电磁的干扰均非常敏感。近红外脑功能成像,为自然状态下的高分辨脑成像带来了新型技术平台,亦被称为“戴在头上的功能核磁”。它和fMRI一样,探测的是大脑氧代谢的载体(血红蛋白)的浓度变化。由于采用的光学手段,它空间分辨率高(1-3cm)、适合于各种自然状态,可以一边运动一边检测、一边说话一边检测、一边治疗一边检测,为中国上亿的脑功能障碍疾病患者的诊断、疗效评价、疗效预测、用药/干预/康复方案的指导等提供了创新性手段,这包括脑卒中神经康复、精神疾病、儿童发育障碍(孤独症谱系障碍等)及神经退行性疾病(阿尔茨海默病等)等。近红外脑功能成像原理然而,高端脑影像设备的关键技术长期被发达国家垄断。例如近红外脑功能成像设备,长期被美日等垄断,单价在数百万,但却不能解决亚洲人有黑色头发覆盖区域(顶叶、枕叶等)成像的难题,限制了脑功能检查和研究的开展。汪待发副教授,是近红外脑功能成像技术第三代的践行者。2010年博士毕业后,他来到北京航空航天大学生物与医学工程学院任教。当时,北航生医学院刚刚建院不久,立意高远,把学院科研发展聚焦在解决国家重大需求牵引的医工科学和技术上。汪待发扎根北航,攻坚近红外脑功能成像领域的难题。通过自己多年如一日的努力,以及与包括樊瑜波、李德玉等北航的血流动力学分析、高精密传感专家的不断研讨和思想碰撞,经历数百次的试验、挫折和迭代验证,他终于突破了近红外超微光探测技术,攻克了亚洲人有黑色头发的脑区(顶叶、枕叶等)的快速精准成像的世界难题。汪待发团队fNIRS产品覆盖的行业应用2016年初,依托北航校地合作平台孵化,汪待发创立了慧创医疗,立志要克服成果转化这个陌生领域的重重困难,坚定地把科研成果落实在祖国的大地上。依托科技风险投资的资金支持,汪待发领导的慧创团队与北航联合团队开展合作,充分发挥产学研合作优势,2019年研发推出了世界上首个获得医疗器械注册证的、超100通道的近红外脑功能成像装置,突破性地实现了全脑成像,实现了中国近红外脑功能成像领域自主知识产权的开创性进展。世界上首个获得医疗器械注册证的、超100通道的近红外脑功能成像装置在此基础上,将超微光技术进一步数字化,汪待发带领团队研发了世界首台获医疗器械证的便携式近红外脑功能成像设备。其平板电脑大小的身形,却具备领先于进口台式设备的成像性能,让临床和科研专家惊叹,赢得了广泛的认可。世界首台获医疗器械证的便携式近红外脑功能成像设备目前,汪待发团队所转化的近红外脑功能成像系列产品及技术,已在301、北京协和、上海华山、四川华西、清华大学、北京师范大学、香港理工大学等800余家一流临床及科研单位示范应用,开展临床检查和科学研究,并已支撑专家在以Nature Human Behaviour为代表的顶级期刊上,发表了SCI论文180余篇,在国内外形成了广泛影响。在北航原始创新的加持下,慧创医疗作为唯一一家企业起草单位,与国家药监局合作,制定了中国首个近红外脑功能成像强制性国家标准。同时,近红外脑功能成像产品NirScan,因其“高精尖”装备+原创+领先的综合属性,获评江苏省首台(套)重大装备。近红外脑成像设备支持用户发表的高水平SCI论文致力于科技成果转化解决临床应用痛点为推动近红外脑功能成像更好地解决临床痛点需求,作为医工专家,汪待发积极把自己变成“最懂临床需求的科学家”。目前,他担任了中国康复医学会脑功能检测与调控康复专业委员会常务委员、第二届中国妇幼健康研究会婴幼儿心理健康专业委员会常务委员、中国康复医学会阿尔茨海默病与认知障碍康复专业委员会青年组副组长,并担任了浙江大学医学院附属精神卫生中心(杭州市第七人民医院)特聘专家、国家药品监督管理局医疗器械技术审评中心外聘专家。作为fNIRS领域TOP科学家,他每年在全国各地完成约30余场高质量的学术讲座,与临床专家深入交流,积极推动近红外脑功能成像在临床各个领域的广泛应用。同时,在樊瑜波教授的鼓励下,依托国家医学攻关产教融合平台(医工结合),汪待发所带领的团队,仅2023年就开展了多元化多层次的脑科学领域相关培训近20次,合计邀请了近70位脑科学及相关领域专家,合计线下培训人员超600人,线上培训超8000人。2021年,汪待发与国内顶级医院的临床专家一起,撰写了中国首个近红外脑功能成像专家共识,为该技术在临床的快速应用和发展做出了积极推动。2022年底,北航樊瑜波、李德玉、汪待发联合团队的“近红外脑功能成像系统开发及临床应用”成果获得了中国生物医学工程学会最高奖项——“黄家驷”生物医学工程奖。这一奖项的获得,体现了中国生物医学工程行业对北航近红外脑功能成像技术和系统成果的充分肯定。近红外脑功能成像系统荣获“黄家驷”生物医学工程奖证书近年来,在近红外脑功能成像技术的基础上,在国家重点研发计划的牵引下,汪待发团队瞄准了另一个脑科学世界级难题“阿尔茨海默症(老年痴呆症)治疗”。团队目前在阿尔兹海默症治疗方面已取得突破性进展,其研发的“近红外光脑功能治疗仪”目前已获批国家药品监督管理局(NMPA)医疗器械绿色通道(创新医疗器械设置特别审批通道)。这是国家药监局为具备重大创新的医疗器械开辟的一条审查极为严格的注册证快速申请通道。从2014年国家药监局正式颁布《创新医疗器械特别审批程序(试行)》的近十年来,仅批准了300余项。目前,在国家科技成果转化引导基金的支持下,团队正在和临床专家们合作,开展阿尔茨海默症治疗产品的临床试验。托举学子梦想培育医工行业未来作为年轻科学家,在承接前辈科学家的教诲和精神的同时,汪待发也已成长为带领年轻学子的领头人。汪待发一直将人才培养与国家需求紧密结合,以人民群众的生命健康为牵引,鼓励学生们“能人所不能,坚持解决临床核心痛点,做世界领先的高水平研究”,从临床实际中挖掘科学问题,并将研究成果应用到临床实际中去,扎扎实实地把科研写在祖国的大地上。汪代发与课题组硕博士生合影“要在学生最有梦想的时候好好引导他们,他们是祖国与行业的明天,要让他们放飞思想,追逐科技创新的梦想。”汪待发在科研之余还担任北航冯如书院本科生导师。作为导师,他悉心指导硕士、博士研究生近20人,攻坚脑功能疾病诊疗的难题。他将科研及转化的经验融入课堂教学,近三年担任《生理信号检测与处理实验》的负责人,不断完善课程建设,引导学生主动思考、发现问题、解决问题;作为《医学成像系统》和《生物医学成像技术》的主讲老师,带领学生认识行业内的新技术新成果,培养具有前沿视野的行业接班人。将科研与国家的重大需求做贴合攻坚中国脑功能疾病难题做世界领先的高端脑功能疾病诊疗装备和汪待发副教授一样在北航奋斗的广大教师们一直在脚踏实地、仰望星空潜心科研、矢志创新在建设科技强国人才强国的新征途中上下求索,砥砺前行!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制