当前位置: 仪器信息网 > 行业主题 > >

全光器件

仪器信息网全光器件专题为您整合全光器件相关的最新文章,在全光器件专题,您不仅可以免费浏览全光器件的资讯, 同时您还可以浏览全光器件的相关资料、解决方案,参与社区全光器件话题讨论。

全光器件相关的论坛

  • 检测器——光电转换器件

    光电转换器件是光电光谱仪接收系统的核心部分,主要是利用光电效应将不同波长的辐射能转化成光电流的信号。光电转换器件主要有两大类:一类是光电发射器件,例如光电管与光电倍增管,当辐射作用于器件中的光敏材料上,使发射的电子进入真空或气体中,并产生电流,这种效应称光电效应;另一类是半导体光电器件,包括固体成像器件,当辐射能作用于器件中光敏材料时,所产生的电子通常不脱离光敏材料,而是依靠吸收光子后所产生的电子—空穴对在半导体材料中自由运动的光电导(即吸收光子后半导体的电阻减小,而电导增加)产生电流的,这种效应称内光电效应。光电转换元件种类很多,但在光电光谱仪中的光电转换元件要求在紫外至可见光谱区域(160-800nm)很宽的波长范围内有很高的灵敏度和信噪比,很宽的线性响应范围,以及快的响应时间。目前可应用于光电光谱仪的光电转换元件有以下两类:即光电倍增管及固体成像器件。[b]光电倍增管[/b] 外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成(见下图),每一个电极保持比前一个电极高得多的电压(如100V)。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达10[sup]8[/sup],特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。光电倍增管的窗口可分为侧窗式和端窗式两种[b]1.光电倍增管的基本特性[/b]1.1 灵敏度和工作光谱区 光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即1/2mv[sup]2[/sup]=hn-ф,( hn为光子能量,ф为电子的表面功函数,1/2mv[sup]2[/sup]为电子动能)。当hnф时,不会有表面光电发射,而当hn=ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/n称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或锑-碲阴极。光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为µ A/lm。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见右图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×10[sup]6[/sup]。1.2 暗电流与线性响应范围光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为: i= KI[sub]i[/sub]+i[sub]0 [/sub],式中,I[sub]i[/sub]对应于产生光电流i的入射光强度,k为比例系数,i[sub]0[/sub]为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见上图)。线性响应范围的大小与光阴极的材料有关。暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,另外高压时在强电场作用下也可产生场致发射电子引起噪声,另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高工作电压均加以限制。

  • 美研制出迄今能耗最低的全光开关

    中国科技网讯 据美国物理学家组织网5月3日报道,美国联合量子研究所(JQI)的科学家最新研制出迄今能耗最低的一款全光开关。新开关有望成为光子学和电子学“联姻”的纽带,科学家们可据此研究出能工作的光电通讯协议。研究发表在《物理评论快报》杂志上。 新开关能引导光束从一个方向到达另一个方向,整个过程只需耗费120皮秒(120万亿分之一秒),而且能耗仅为90阿焦(即1×10-18焦耳),是目前能耗最低的全光开关,其能耗仅为此前日本研制出的全光开关的五分之一,是其他全光开关的百分之一。科学家们使用了波长为921纳米的近红外线,约有140个光子。 大多数电子设备的核心部件是晶体管,它是一种固体半导体器件,在其中,一个门信号被施加到附近细小的导电通路上,以此打开和关闭信息信号的传送通道。而在光子学内,固体器件全光开关既能像门一样,打开或关闭光通过附近波导的通路;也能像路由器一样,将不同方向上的光束打开或关闭。 实验由马里兰大学的埃多·沃克斯和同事在马里兰大学和国家标准与技术研究所(NIST)进行。他们使用置于共振光腔内的一个量子点(相当于一个门)制造出了该全光开关。该共振光腔是一个拥有很多小洞的光子晶体,只允许少数光波通过该晶体。量子点由铟和砷组成,仅为1纳米大小,使在其内部移动的电子只能散发出波长不连贯的光。 当光沿着附近的波导行进时,其中的一些光会进入共振光腔内,同量子点相互作用,正是这种相互作用改变了波导的传输特性。尽管140个光子都需要在波导内来产生开关行为,但其实只有6个光子做到了。 以前研制出的全光开关只能通过使用笨重的非线性晶体和高输入功率来工作。而新开关使用单个量子点和非常低的输入功率就获得了极高的非线性相互作用,不过,尽管其能耗比日本研制出的全光开关低,但日本的开关能在室温下操作,而新开关只能在40开(-233.15摄氏度)左右工作。 JQI的科学家拉诺伊·鲍斯表示,该量子点开关还不能完全算是一个“光学晶体管”,目前还只能使用低光子数量脉冲来调制一束光,他希望能增加(减少)打开和关闭共振腔所需要的光子数量。 不过,鲍斯也强调称,新开关预示着科学家们可以制造出一种能工作的、超快速、低能耗的芯片信号路由器。鲍斯说:“最新研究表明,只需要使用6个光子的能量就能执行开关任务,以前从来没有人做到这一点;以前也没有人研制出能耗低于100阿焦的全光开关,这是基础物理学领域的一个里程碑。”(刘霞) 《科技日报》(2012-5-7 二版)

  • 高校科研院所招聘联盟正在寻找华南理工大学发光材料与器件国家重点实验室-有机聚合物太阳电池材料与器件 职位,坐标广东,谈钱不伤感情!

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-有机聚合物太阳电池材料与器件 [b]职位描述/要求:[/b]导师:马於光(ygma@scut.edu.cn)、苏仕建(mssjsu@scut.edu.cn)、陈江山(msjschen@scut.edu.cn) 1) 已取得或将于近期取得博士学位,35周岁以下; 2) 具有新型高效有机发光材料(含钙钛矿)开发、有机电致发光器件设计与制备、有机电致发光材料及器件中的光物理及器件物理机制研究、有机激发态研究(含自旋光电子器件)等研究背景; 3) 热爱科研、勤奋努力,有良好的团队协作精神和沟通协调能力,须全时工作,不得兼职; 4) 良好的英文阅读、写作、及交流能力,在重要学术刊物上发表至少1篇学术论文; 5) 能独立开展相关课题的研究,协助指导研究生,配合完成项目申报。 [b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59920]查看全部[/url]

  • 高校科研院所招聘联盟诚聘华南理工大学发光材料与器件国家重点实验室-有机聚合物太阳电池材料与器件,坐标广东,你准备好了吗?

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-有机聚合物太阳电池材料与器件[b]职位描述/要求:[/b]一、招聘条件 1.遵纪守法,无违纪违规行为。热爱高等教育事业,身心健康,具有良好的品行和职业道德。 2.获得博士学位不超过3年的博士,或通过博士学位论文答辩的应届博士。年龄在35周岁以下。 二、招聘方向 方向1:有机聚合物太阳电池材料与器件(5-10名): 导师:曹镛(yongcao@scut.edu.cn)、黄飞(msfhuang@scut.edu.cn)、何志才(zhicaihe@scut.edu.cn)、段春晖(duanchunhui@scut.edu.cn)、彭小彬(chxbpeng@scut.edu.cn)、朱旭辉(xuhuizhu@scut.edu.cn) 1) 已取得或将于近期取得博士学位,35周岁以下。 2) 有机合成、高分子化学与物理、有机/高分子光电材料、光电器件与物理、表界面科学与技术、等研究背景。 3) 热爱科研、勤奋努力,有良好的团队协作精神和沟通协调能力,须全时工作,不得兼职。 4) 良好的英文阅读、写作、及交流能力,在重要学术刊物上发表至少1篇学术论文。 5) 能独立开展相关课题的研究,协助指导研究生,配合完成项目申报。 [b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/58795]查看全部[/url]

  • 关于直读光谱标准物质的期间核查

    各位大神:小女子是质量负责人,化学类专业出生,但是直读光谱没有做过,之前CNAS评审,因为没有进行光谱标准物质的期间核查就开了不符合项,然后就要求整改。我们的检测人员就不知道怎么进行光谱标准物质期间核查,请指教!小女子就只知道进行实验室简比对或者能力验证可以代替期间核查,有没有具体的作业指导书可以教教我!另外我们的标块有很多,是不是每一块都需要进行期间核查?因为上过好几次内审员课,老师都说有证标准物质可以不用期间核查,有新的标准物质进行期间核查的话就用新的了,不要用老的!

  • 有机太阳能电池光电器件制备及光伏参数测试

    有机太阳能电池是一种有潜力的绿色光电转换技术,有机太阳能电池的伏安特性曲线是获取器件各个光伏参数的重要手段和方式,因此准确的制备和测量是研究学者和工程师必须面对的问题。本参赛作品以北京理工大学分析测试

  • 【原创】固体光图像传感器的器件技术的开展现状与趋向

    固体光图像传感器的器件技术的开展现状与趋向  1、固体光摄像器件—理想的星载光图像传感器  固体光电子图像传感器技术包括可见光硅图像传感器和短波、中波和长波红外焦平面阵列技术。由于图像传感器器件的不时开展,目前的固体图像传感器从可见光和近红外波段的CCD器件开展到了短波、中波和长波红外焦平面阵列。与星载反束光导摄像管相比起来,由于固体图像传感用具有一系列优点,十分适用于用作空间星载图像传感器,如:  (1)体积小,重量轻;  (2)无图像扭曲;  (3)光响应工作波段宽,可见光硅CCD和CMOS图像传感器的光谱响应可从紫外区延伸到红外区,而红外焦平面的光谱响应波段掩盖了从1mm~14mm和远红外更宽的电磁波谱区;  (4)高分辨率,可在焦平面上集成数十万、百万乃至千万像元的大格式阵列、完成大视场空间传感器;  (5)同焦平面信号处置,像CCD、CMOS和各种红外焦平面阵列器件,由于微型加工技术的开展,可采用混合式或单片集成方式把焦平面上光电转换的焦平面探测器阵列与信号处置电路集成微小的集成电路块,完成同焦平面信号处置;  (6)采用电子自扫描或注视工作形式工作,简化和完整取消机械扫描,完成系统小型化和微型化;  (7)低功耗工作,数伏电压下即可工作;  (8)低本钱;  (9)牢靠性高。  总之,小型化的小体积、轻重量、低功耗、低价钱和高性能、高牢靠性的固体空间光图像传感器为空间系统的设计和应用提供了极大的灵敏性。  2、可见光固体图像传感器  可见光固体图像传感器已使成像技术完成了小型、低功耗、低本钱和便携式应用、使成像系统技术了发作了反动性的变化。虽然迄今为止已开展了多种固体摄像器件,但是CCD器件和已在快速开展的CMOS图像传感器却占领了整个该范畴的95%的份额,CMOS是继CCD之后的后起之秀。  (1)图像传感器件  CCD图像传感器件技术已开展了三十多年,早已是成熟和提高应用到各种军用和民用系统的器件,在红外焦平典型面阵列技术适用化之前很长一段时间极受军用注重,目前仍在可见光波段普遍采用。  ①像元集成度:摄像阵列像元的几是摄像系统分辨率性能的关键性要素,目前的CCD器件已可依据系统应用目的请求同芯片集成或多芯片拼接,或多器件组合成恣意像素数的器件。  · 线阵:常用单芯片像元集成度为512、1024、2048、4096、5000、7450和8000等;多芯片像元集成是用二个或多个单线阵芯片组合起来构成数万像元的专长线阵列,常用作星载或机载多光谱传感器;  · 时间延迟与积分(TDI)阵列:常用的单芯片是2048×96、2048×144和4096×96的阵列;多芯片是用多个单芯片拼合起来,常用作星载或机载推帚式扫描传感器,加拿大的DLSA公司制造的这种传感器在全球很有名;  · 面阵列:大格式阵列像元集成度为1024×1024、2048×2048、4096×4096 少数如科学研讨和天文应用方面阵列达7000×9000、8192×8192和9126×9126元,最大的9126×9126元阵列是美国Farchild Imaging公司研制的;  ②像元尺寸:CCD的像元尺寸不能太小,过小将影响曝光性能,目前的大格式阵列像元尺寸已小达7.0mm×7.0µm;  ③灵活度,通常为几个Lux~Lux-1,加上加强器处于微光工作形式时为Lux-3;采取冷却时为Lux-5~Lux-7;  ④分辨率:大型阵列通常的电视分辨线为1000×1000TV线,依据系统请求可更高,光学尺寸通常为2/3、1/2、1/3、1/4in.,目前最小已做到1/7in.。  (2)CMOS图像传感器件  由于CMOS图像传感器件与CCD相比功耗更低,可完成极高帧速工作和低本钱化,.本钱仅为CCD的1/4,因此开展极快,可能最终在某些范畴取代CCD。  ① 像元集成度:由于器件技术的停顿,目前的像元集成度常用的为几十万到100万像素,如512×480和1280×1000,已能制出4096×4096和6144×6144元的阵列;  ② 像元尺寸:由于制造技术的不时改良,像元尺寸已可小达3.3mm×3.3mm;  ③ 高灵活度:在近红外光谱区(900nm)光电转换效率高达50%;  ④ 宽动态范围:CMOS的动态范围通常为60dB以上,已到达170dB;DALSA CMOS-1M28/1M751024×1024元摄像机的动态范围也高达1,000,000:1。  ⑤ 高帧速和超高帧速:随着CMOS图像传感器技术的开展,2003年中不时报道了高帧速和超高帧速CMOS图像传感器,美、日公司在高帧速工作方面获得了显著的停顿.。DALSA和红湖公司的CMOS图像传感器帧速居然高达100000frame/s。  ⑥ 功耗:CMOS最明显的特性是低功耗,目前高帧速工作时仅为50mW。  (3)趋向  CMOS图像传感器是目前和将来该范畴正在开展中的主流技术。CCD主要是在应用上想方法,依据不同的应用目的和系统设计计划组合应用。由于CCD图像传感器技术极为成熟, 预期最终CMOS图像传感器难以取代CCD图像传感器,将是二者长期共存的场面。但是, CMOS图像传感用具有本钱低、集成度高、低功耗的突出优点,假如再处理了影响性能和图像质量的噪声问题,CMOS就将成为极佳选择。  3、红外焦平面阵列  红外焦平面阵列技术的开展已惹起了商界和军界军火商的极大关注。红外焦平面阵列技术对军事配备更新换代的深远影响正在改动现代战场作战的特性和概念。  刚完毕的伊拉克倒“萨”战争再次显现了在现代战争

  • 高校科研院所招聘联盟今日正在招聘,华南理工大学发光材料与器件国家重点实验室博士后-有机聚合物太阳电池材料与器件,坐标广东,高薪寻找不一样的你!

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室博士后-有机聚合物太阳电池材料与器件[b]职位描述/要求:[/b]导师:曹镛(yongcao@scut.edu.cn)、黄飞(msfhuang@scut.edu.cn)、何志才(zhicaihe@scut.edu.cn)、段春晖(duanchunhui@scut.edu.cn)、彭小彬(chxbpeng@scut.edu.cn)、朱旭辉(xuhuizhu@scut.edu.cn) 1) 已取得或将于近期取得博士学位,35周岁以下。 2) 有机合成、高分子化学与物理、有机/高分子光电材料、光电器件与物理、表界面科学与技术、等研究背景。 3) 热爱科研、勤奋努力,有良好的团队协作精神和沟通协调能力,须全时工作,不得兼职。 4) 良好的英文阅读、写作、及交流能力,在重要学术刊物上发表至少1篇学术论文。 5) 能独立开展相关课题的研究,协助指导研究生,配合完成项目申报。[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59919]查看全部[/url]

  • 电感耦合等离子体发射光谱仪的检测器——光电转换器件

    [url=http://www.huaketiancheng.com/][b][font=宋体]ICP光谱仪[/font][/b][/url][font=宋体]的光电转换器件是光电光谱仪接收系统的核心部分,也是[b]光谱仪检测分析[/b]的准要部件。主要是利用光电效应将不同波长的辐射能转化成光电流的信号。光电转换器件主要有两大类:一类是光电发射器件,例如光电管与光电倍增管,当辐射作用于器件中的光敏材料上,使发射的电子进入真空或气体中,并产生电流,这种效应称光电效应;另一类是半导体光电器件,包括固体成像器件,当辐射能作用于器件中光敏材料时,所产生的电子通常不脱离光敏材料,而是依靠吸收光子后所产生的电子[/font][font=&]-[/font][font=宋体]空穴对在半导体材料中自由运动的光电导(即吸收光子后半导体的电阻减小,而电导增加)产生电流的,这种效应称内光电效应。[/font][font=宋体]光电转换元件种类很多,但在光电光谱仪中的光电转换元件要求在紫外至可见光谱区域([/font][font=&]160-800nm[/font][font=宋体])很宽的波长范围内有很高的灵敏度和信噪比,很宽的线性响应范围,以及快的响应时间。[/font][font=宋体]目前可应用于光电光谱仪的光电转换元件有以下两类:即光电倍增管及固体成像器件。[b][font=宋体] 光电倍增管[/font][/b][font=&] [/font][font=宋体]外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成,见图,每一个电极保持比前一个电极高得多的电压(如[/font][font=&]100V[/font][font=宋体])。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达[/font][font=&]10[sup]8[/sup][/font][font=宋体],特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。[/font][font=&][size=14px] [/size][/font][font=宋体][size=14px]光电倍增管的窗口可分为侧窗式和端窗式两种[/size][/font][b][font=宋体] [/font][/b][font=宋体] 光电倍增管的基本特性[/font][font=&]1)[size=9px] [/size][/font][font=宋体]灵敏度和工作光谱区[/font][font=&] [/font][font=宋体]光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即[/font][font=&]1/2mv[sup]2[/sup]=h[/font][font=Symbol]n[/font][font=&]-[/font][font=宋体]ф,([/font][font=&] h[/font][font=Symbol]n[/font][font=宋体]为光子能量,ф为电子的表面功函数,[/font][font=&]1/2mv[sup]2[/sup][/font][font=宋体]为电子动能[/font][font=&])[/font][font=宋体]。当[/font][font=&]h[/font][font=Symbol]n[/font][font=宋体][/font][font=宋体]ф时,不会有[/font][font=宋体]表面光电发射,而当[/font][font=&]h[/font][font=Symbol]n[/font][font=宋体]=[/font][font=宋体]ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/[/font][font=Symbol]n[/font][font=宋体]称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或梯-碲阴极。[/font][font=宋体]光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为[/font][font=宋体]μ[/font][font=宋体]A/lm[/font][font=宋体]。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见[/font][font=宋体]右[/font][font=宋体]图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×10[sup]6[/sup]。[/font][font=宋体]2)[font=&] [/font][/font][font=宋体]暗电流与线性响应范围[/font][size=14px][font=宋体]光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为: i= KI[sub]i[/sub]+i[sub]0 [/sub],式中,I[sub]i[/sub]对应于产生光电流i的入射光强度,k为比例系数,i[sub]0[/sub]为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见右图)。线性响应范围的大小与光阴极的材料有关。[/font][/size][font=宋体]暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。[/font][font=宋体]当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或[/font][font=宋体]打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,[/font][font=宋体]另外高压时在强电场作用下也可产生场致发射电子引起[/font][font=宋体]噪声,[/font][font=宋体]另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高工作电压均加以限制。[/font][font=宋体]3)[font=&] [/font][/font][font=宋体]噪声和信噪比[/font][size=14px][font=宋体]在入射光强度不变的情况下,暗电流和信号电流两者的统计起伏叫做噪声。这是由光子和电子的量子性质而带来的统计起伏以及负载电阻在光电流经过时其电子的热骚动引起的。输出光电流强度与噪声电流强度之比值,称为信噪比。显然,降低噪声,提高信噪比,将能检测到更微弱的入射光强度,从而大大有利于降低相应元素的检出限。[/font][/size][font=宋体]4)[font=&] [/font][/font][font=宋体]工作电压和工作温度[/font][font=宋体]光电倍增管的工作电压对光电流的强度有很大的影响,尤其是光阴极与第一打拿极间的电压差对增益(放大倍数)、噪声的影响更大。因此,要求电压的波动不得超过0.05%,应采用高性能的稳压电源供电,但工作电压不许超过最大值(一般为-900v-1000v),否则会引起自发放电而损坏管子,工作环境要求恒温和低温,以减小噪声。[/font][font=宋体]5)[font=&] [/font][/font][font=宋体]疲劳和老化[/font][font=宋体]在入射光强度过大或照射时间过长时,光电倍增管会出现光电流衰减、灵敏度骤降的疲劳现象,这是由于过大的光电流使电极升温而使光电发射材料蒸发过多所引起。在停歇一段时间后还可全部或部分得到恢复。光电倍增管由于疲劳效应而灵敏度逐步下降,称为老化,最后不能工作而损坏。过强的入射光会加速光电倍增管的老化损坏,因此,不能在工作状态下(光电倍增管加上高压时)打开光电直读光谱仪的外罩,在日光照射下,光电倍增管很快便损坏。[/font][font=宋体] 光电测量原理[/font][font=宋体]光电检测的原理一般是通过光电接受元件将待测谱线的光强转换为光电流,而光电流由积分电容累积,其电压与入射光的光强成正比,测量积分电容器上的电压,便获得相应的谱线强度的信息。不同的仪器其检测装置具有不同的类型,但其测量原理是一样的。其光电检测系统主要有以下四个部分组成:[/font][font=&]1.[/font][font=宋体]光电转换装置,[/font][font=&]2.[/font][font=宋体]积分放大电路及其开关逻辑检测,[/font][font=&]3.A/D[/font][font=宋体]转换电路,[/font][font=&]4.[/font][font=宋体]计算机系统。[/font][/font]

  • 【原创大赛】自动旋光仪“三光”器件解析及故障排除

    【原创大赛】自动旋光仪“三光”器件解析及故障排除

    自动旋光仪“三光”器件解析及故障排除 旋光仪是测定物质旋光度的仪器。通过对样品旋光度的测定,可以分析确定物质浓度、含量及纯度等。自动旋光仪采用光电检测自动平衡原理,进行自动测量显示。 下面通过拆解国产“申光”牌WZZ-2型自动旋光仪,来认识自动旋光仪中起重要作用的钠光灯、磁旋光调制器、光电倍增管三个器件,排除其发生的故障。一、WZZ-2型自动旋光仪结构仪器外观:庞大的体积,重量约27公斤。http://ng1.17img.cn/bbsfiles/images/2014/10/201410141237_518237_1807987_3.jpg仪器参数:(1)测定范围:±45°(2)准确度:±(0.01°+测量值×5/10000)(3)可测样品最低透过率:10%(对钠黄光而言)(4)读数重复性:≤0.01°(5)显示器自动数字显示:最小示值0.005°,速度1.30°/秒(6)单色光源:钠光灯加滤色片(589.3毫微米)(7)样品管:200毫米、100毫米两种(8)电源:200伏±10伏,50赫兹,220伏安(9)仪器尺寸:606毫米×310毫米×212毫米内部结构及各部件名称:卸下后部固定螺丝,揭开机盖:http://ng1.17img.cn/bbsfiles/images/2014/10/201410141239_518240_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410141239_518239_1807987_3.jpg开机状态:http://ng1.17img.cn/bbsfiles/images/2014/10/201410141239_518242_1807987_3.jpg各部件名称:http://ng1.17img.cn/bbsfiles/images/2014/10/201410141239_518241_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410141240_518243_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410141241_518244_1807987_3.jpg伺服电机通过伞形齿轮带动蜗轮杆转动(计数圆盘编码光栅同轴转动),蜗轮杆再带动铜质蜗轮转动(带动同轴的起偏镜I转动):http://ng1.17img.cn/bbsfiles/images/2014/10/201410141241_518245_1807987_3.jpg两只光敏LED,接收穿过圆盘编码光栅后的光线,作为计数信号:

  • 高校科研院所招聘联盟刚刚发布了华南理工大学发光材料与器件国家重点实验室-玻璃光纤与激光器职位,坐标广东,敢不敢来试试?

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-玻璃光纤与激光器[b]职位描述/要求:[/b]导师:杨中民(yangzm@scut.edu.cn)、周时凤(zhoushifeng@scut.edu.cn)、周博(zhoubo@scut.edu.cn) 1) 已取得或将于近期取得博士学位,35周岁以下; 2) 具有激光、光纤光学或微纳光子学、稀土发光、纳米合成、光学、光电子学或发光、光谱学、非晶态物理等相关背景; 3) 热爱科研、勤奋努力,有良好的团队协作精神和沟通协调能力,须全时工作,不得兼职; 4) 良好的英文阅读、写作、及交流能力,在重要学术刊物上发表至少1篇学术论文; 5) 能独立开展相关课题的研究,协助指导研究生,配合完成项目申报。[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59921]查看全部[/url]

  • 【求助】光谱块状样品期间核查的方法

    光谱块状样品期间核查的方案与答案,就是样本啦,俺想要一份光谱块状期间核查一定是要做的,那就做啦,可是怎样做才能过关啦,请帮助一下[em09512][em09512][em09512]

  • 直读光谱仪做期间核查时用什么样来做的?

    最近公司在进行评审,我负责的直读光谱仪好像没有期间核查过,现在得抓紧时间来做这个期间核查,但是不知道怎么做,求各位前辈能够指点一二,小妹万分感谢!不知道做期间核查要用什么材料来做的,请教中。。。。。。

  • 直读光谱仪的期间核查

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=32867]直读光谱仪的期间核查[/url]

  • 请教直读光谱仪应该怎样做期间核查

    我们单位最近在做实验室认可,需要对直读光谱仪做期间核查。检定时检定的项目主要是重复性和稳定性,但是期间核查不是这样做的。还有不知道该怎么计算光谱仪的不确定度。我是新人,请多指教,谢谢!

  • 【求助】谁有《有机电致发光材料与器件导论 》作者是黄春辉的电子版

    [color=#DC143C][size=3]一段时间没登录仪器网了现在发现很多资料都找不到了,以前找资料很方面的啊,特别是向书一类的资源好像没有了,不知道是为什么回到主题,谁有《有机电致发光材料与器件导论 》电子版比如PDF格式或者超星图书,能共享一下吗,或者好心发到我的邮箱sugar1989220@163.com,非常感谢了[/size][/color]

  • 国产全光谱水质在线监测仪的应用原理及研发步骤分析

    [align=center][b][/b] [/align][b]一、全光谱在线分析仪器市场现状[color=#333333]我国环境水质监测仪器以往主要依赖进口,从2000年开始,成熟的国产化设备才开始在全国范围内大规模推广。我国的环境水质在线监测仪器厂家主要以民营为主,在成长初期,普遍存在规模偏小、技术不够成熟、仪器的可靠稳定性不足等问题,难以满足我国复杂的水体环境和日益多样化的污染物监测需求。另外,仪器市场整体存在集中度不高、区域分割严重、单一企业所占市场份额小等问题。后期随着国家对环保产业的重视和水质自动监测网络体系的建立,环境水质在线监测仪器厂家数量迅速增长,部分具备自主研发实力的企业发展壮大起来,成为与国外品牌如美国哈希、日本岛津等相抗衡的仪器生产企业。[/color][color=#333333]具体到光谱在线监测领域,国内目前主要以单光谱UV254为主,较为先进也只有COD等少数数值可进行在线测量,且测量参数及精度较国外设备均有一定差距,如S::CAN公司的高端产品spectro就可以同时测量COD,BOD,BTX,NO3-N,TSS,温度,AOC等参数,并保证测量精度。[/color][color=#333333]外国设备价钱高企业和政府采购难以负担高额成本,而国内仪器设备技术落后等缺陷却无法满足精准监测的要求,此外国外仪器在国内也存在“水土不服”的情况,针对这一矛盾现状,陕西正大环保科技与浙江大学强强合作,发挥自身优势推进全光谱在线设备国产化进程,正大环保以多年的设备设计与运维经验选择相应的原材料进行整合,提供基础设备;浙江大学提供设备内部计算模型及先进完善机制,共同致力于为客户提供运行稳定,数据可靠,价格合理的全光谱在线监测设备。[/color]二、全光谱分析法原理[/b][img]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][b][color=#333333]朗伯-比尔定律光度分析中定量分析是最基础、最根本的依据, 如图所示, 可以用如下公式描述:[/color][/b][img]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][b][color=#333333]式中: A 为吸光度值 I0为空白溶液(即不存在吸收物质)时的光强度 I为吸收后的光强度 b为光程, 单位为 cm c为溶液的摩尔浓度 [/color][/b][img]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][b][color=#333333]为摩尔吸光系数, 单位为I/(mol.cm)[/color][color=#333333]当一束平行的单色光通过某一均匀溶液时, 溶液的吸光度与溶液的浓度和光程的乘积成正比, 样品中待测物质的浓度越大、或通光样品液层越厚, 由于增加了物质分 子的总数, 故对光的吸收愈多、透过的光就愈弱。检测时, 配制浓度各异的量程标准溶液 ( H J /T 191 2005) , 测定各标准溶液的吸光度, 得到标准样品的检测数据, 做出浓度对吸光度的标准曲线。[/color][/b][b][color=#333333]不同的化学物质对不同波长的光吸收强度不同,每一种物质都对应 有 确 定 的 紫 外 可见 吸 收 光谱,吸收光谱体现了物质的特性,是进行定性、定量分析的基础。不同溶液对不同波长的光吸收程度各不相同,几乎所有的有机化合物在紫外 可见光区都有特定的吸收。特定化学物质对特定波长的光吸收性较强,特别是硝酸盐、亚硝酸盐、芳香烃类物质、浑浊度、色度、有机碳含量等对不同波长的吸收不同,其敏感波长在200-700nm之间。如果只用254的波长照射,只能获得比较少的化学物质作用。而用多波长扫描,则可以得到不同波长的吸收谱,该谱能清晰地反映出水体中多种物质的分布。用相应的标准物校准,取得相应的特征吸收光波波长以及吸收率与该指标的对应关系,就可以从仪器的检测结果来推断需要的参数指标。[/color]三、自主研发关键步骤1) 原型机材料选择及整合[color=#333333]光源主要采用卤素钨灯、氘灯或氙灯。氙灯发光效率高,强度大,光谱范围覆盖紫外、可见和近红外区,优势突出。传统检测器采用光电倍增管,一次只能测量个波长点的数据,完成整个光谱区域测量的时间较长,不能适应瞬态过程全分析的要求,而且需要精密的光谱扫描机械装置(正弦机构)与分光系统配合使用,因此整个仪器结构复杂,体积庞大,容易损坏。随着技术和制造工艺的发展,目前检测器可以采用电荷注入器件(CID )、电荷耦合器件(CCD )、线阵图像传感器(MOS )等新器件。这 类检测器具有多个光敏单元和自扫描功能,因此在作光谱测量时可同时采集多个波长点的数据,将这些数据输入计算机或微处理器进行分析与处理。采用多通道检测器,结合计算机技术,不仅可以提高光谱分析的速度,还可以简化仪器的光学系统结构,缩小仪器的体积,使仪器小型化。[/color][color=#333333]仪器主要技术参数要求:波长范围200-700nm;使用环境温度0-45℃ ;光波路径宽度2-100mm;压力为标准0.1MPa-1MPa ;电源为外接电压12V;标准界面为 RS232/485/CAN总线 其他标准总线;远程通讯为调制解调器。[/color]2) 标液测量 最小二乘法获得基础模型[color=#333333]根据国标 GB 1191489 的相关技术要求, 浓度为2. 082 1mol/L的邻苯二甲酸氢钾溶液的理论 COD 值为500mg/L, 依法配制邻苯溶液 15种, 称为量程校正液,通过分别配置不同的量程校正液测量数值,通过参量反演数学模 型 将长段的吸收光谱分成个若干区 间,建立吸光度系数与浓度的方程 取若干个区间的中心波长作为特征波长即为特征波长的个数将特征光谱 映射为COD 值的特征向量,通过最小二乘法做出基本方程。[/color]3) 水样比对[color=#333333]在计算获得基础方程后选取具有代表性的水样进行实地水样检验,以去离子水为参比溶液, 得到该水样的吸光度谱图。由于地表水中其它物质引入干扰, 需要进行修正。使用可见光处的吸光度值作为修正因子,同时通过实验室检测或现场化学在线分析法进行监测,运用统计学方法 ( T检验)对比 UV 法与化学法所测量得到的两组 COD值。[/color]4) 网络神经元算法模型建立[color=#333333]机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。[/color][/b][color=#333333] [/color][b][color=#333333]人工神经网络就是这种机理。假设X(1)代表我们为电脑输入的光谱特征,X(2)代表人的吸光特征X(3)代表水的浊度特征X(4)代表水的其它特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。[/color][color=#333333]现在我们随便寻找待测水质进行测量,设备根据预设变量提取这水质的基础信息进行判断,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个区域值(设为Q)进行比较,根据Y在区域Q的位置,设备就根据预设模型判定水质的COD数值.[/color][color=#333333]由于前期设备计算积累经验较少,所以结果是随机的.一般我们设定是正确的,但是由于水中物质吸光度变化,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变,这时候设备的判断失误,COD设备数值出现偏差.[/color][color=#333333]但是我们通过实验室或是自动设备告诉它正确数值,设备就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来吸光度(3)这个体征的变化导致了其判断失误,设备会自动修改其权重W(3),修改了这个权重就意味着设备通过学习认为吸光度在判断地表水水质权重不同.这就是机器学习的一个循环,而通过大量的数据实验与积累,通过网络神经元算法的持续修正和特征水样的增多,设备对水体水质的适应性及测量精度也会快速提升。[/color]四、数据修正与模型完善5) 全程修正[color=#333333]针对硝酸盐、BTX、浊度等参数,对于适用于如污水处理厂的入流、出流和曝气池、河流、地下水、造纸厂、啤酒厂等场合的在线测量分别给出修正值,通过这种方法保障基础测量精度。[/color]6) 局部修正[color=#333333]在使用全程校准不能达到精确度要求时,经过采样、贮存和实验室分析的高质量的标准测定过程,用两点法进行校准。[/color]7) 高级修正[color=#333333]得到类似非常精确分析的测量,可以采用主成分分析、偏最小二乘拟合等方法。[/color]8) 数据计算模型持续完善[color=#333333]通过水样收集通过网络神经元算法持续完善与改进计算模型。[/color][/b]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制