当前位置: 仪器信息网 > 行业主题 > >

秦山核电

仪器信息网秦山核电专题为您整合秦山核电相关的最新文章,在秦山核电专题,您不仅可以免费浏览秦山核电的资讯, 同时您还可以浏览秦山核电的相关资料、解决方案,参与社区秦山核电话题讨论。

秦山核电相关的论坛

  • 【分享】核电是一种安全可靠清洁的能源吗?

    近半个世纪以来,人类一方面发展核能,另一方面,到现在为止,没有任何国家找到安全、永久处理高放射性核废料的办法。核能发电已有45年的历史,所提供的电力约占世界电力生产的18%,已取得巨大的经济效益。但自1959—1995年全球共发生18次重大核事故。  1986年4月26日,位于乌克兰境内的切尔诺贝利核电站发生重大事故,电站第4号反应堆起火燃烧,整个反应堆浸泡在水里。由于没有严格的安全防范措施,致使大量放射性物质逸入大气中。据1992年6月官方报道,已有6000—8000名乌克兰人死于核辐射,而且还长期严重影响着附近居民的正常生活。如切尔诺贝利以西约50英里的奥夫鲁奇地区曾有着田园诗画般的家园,是核事故带来了一场无尽无休的灾难:儿童生病、死亡率不断上升、动植物令人吃惊的畸形,事故遗患成了日常生活的组成部分,无把握、恐惧的气氛,终日笼罩在人们心头。1994—1998年,日本共发生大小不同的核事故115起。1999年7月,号称核设施“银座”的日本敦贺核电站2号反应堆事故再发。美国肯塔基州帕迪尤卡核电站有数千工人,曾经在毫不知晓的情况下接触放射性材料,时间长达20多年。美国能源部长于1999年8月下令对此展开调查。在核电建设方面处于领先地位的法国,在建成著名的超级凤凰核电站(SPX)后,由于事故不断,只正常运转了10个月就被迫关闭,目前仍在处理后事。当时,这个世界上最大的快中子增殖反应堆核电站(装机124万千瓦),曾被法国总统德斯坦誉为“现代技术的奇迹”。  当前,处理核废料,各国大都采取浅部临时掩埋的措施。某些发达国家甚至将灾难转移,把大量有毒废料运往穷国。在利用深部岩石洞室做为永久储存库方面,虽然科学家为之奋斗了几十年,迄今未获圆满解决。核泄漏不能完全避免问题已引起全球关注。由于技术上的原因及各界人士的强烈抗议,使一些核电生产大国在选择永久存放核废料地点时,陷于困境。  近年来,欧美大部分发达国家,出于安全及环保的需要,基本上停建核电站或提前关闭核电站。北欧国家甚至通过立法,要求在2010年前关闭已有核电站,根据国际能源机构的展望,今后的核电开发呈下降趋势,核能在世界电力生产中所占的比例将会由现在的18%下降到2020年的8%。美国未来研究所等权威机构联合提出的报告甚至预测:“一些国家的绿色和平组织及公众将互相呼应迫使各国放弃核能发电”。从总体上看,核电市场每况愈下。西方发达国家的核电技术、设备急于向国外出口。  与西方发达国家相反,亚洲、东欧等一些发展中国家正致力于核电建设,如印度正在建造6个核反应堆,印尼计划到2015年前建成12座核电站。值得注意的是,上述国家尚缺乏修建核电站的经验,往往借助于发达国家的技术、设备。但是,发达国家有关核电的安全和环保问题并未彻底解决。  我国也正在加速核电建设,继秦山一期及大亚湾两座核电站建成之后,还将建设4座跨世纪大型核电站,共8个机组,660万千瓦,这4座大型电站是:秦山核电二期工程(2×60万千瓦),广东岭澳核电站(2×100万千瓦),秦山核电三期工程(2×70万千瓦),连云港核电站(2×1 00万千瓦)。  为了我国的可持续发展,在核电建设方面,宜慎之又慎,全面考虑国际正反两方面的经验、教训。展望未来,在21世纪人类将继续利用核能,并对核聚变、核废料处理等前沿课题进行研究。与此同时,将重点开发可再生能源,以逐步代替传统的一次能源。在可再生能源中,我国的水能有得天独厚的条件。虽然从总体上看,我国是一个缺水的国家,但水电资源可开发总容量为3.78亿千瓦,居世界首位。在发达国家,水电开发率约为50%—90%,而我国开发率仅约16%,绝大部分未加利用。因此,我国今后宜优先开发水电。在开发水电过程中,要特别注意环境问题。电站规模要与环境协调发展,不一定越大越好,尽可能优先考虑建设中小型电站或引水式电站。

  • 【讨论】核电是一种安全可靠清洁的能源吗?

    近半个世纪以来,人类一方面发展核能,另一方面,到现在为止,没有任何国家找到安全、永久处理高放射性核废料的办法。核能发电已有45年的历史,所提供的电力约占世界电力生产的18%,已取得巨大的经济效益。但自1959—1995年全球共发生18次重大核事故。  1986年4月26日,位于乌克兰境内的切尔诺贝利核电站发生重大事故,电站第4号反应堆起火燃烧,整个反应堆浸泡在水里。由于没有严格的安全防范措施,致使大量放射性物质逸入大气中。据1992年6月官方报道,已有6000—8000名乌克兰人死于核辐射,而且还长期严重影响着附近居民的正常生活。如切尔诺贝利以西约50英里的奥夫鲁奇地区曾有着田园诗画般的家园,是核事故带来了一场无尽无休的灾难:儿童生病、死亡率不断上升、动植物令人吃惊的畸形,事故遗患成了日常生活的组成部分,无把握、恐惧的气氛,终日笼罩在人们心头。1994—1998年,日本共发生大小不同的核事故115起。1999年7月,号称核设施“银座”的日本敦贺核电站2号反应堆事故再发。美国肯塔基州帕迪尤卡核电站有数千工人,曾经在毫不知晓的情况下接触放射性材料,时间长达20多年。美国能源部长于1999年8月下令对此展开调查。在核电建设方面处于领先地位的法国,在建成著名的超级凤凰核电站(SPX)后,由于事故不断,只正常运转了10个月就被迫关闭,目前仍在处理后事。当时,这个世界上最大的快中子增殖反应堆核电站(装机124万千瓦),曾被法国总统德斯坦誉为“现代技术的奇迹”。  当前,处理核废料,各国大都采取浅部临时掩埋的措施。某些发达国家甚至将灾难转移,把大量有毒废料运往穷国。在利用深部岩石洞室做为永久储存库方面,虽然科学家为之奋斗了几十年,迄今未获圆满解决。核泄漏不能完全避免问题已引起全球关注。由于技术上的原因及各界人士的强烈抗议,使一些核电生产大国在选择永久存放核废料地点时,陷于困境。  近年来,欧美大部分发达国家,出于安全及环保的需要,基本上停建核电站或提前关闭核电站。北欧国家甚至通过立法,要求在2010年前关闭已有核电站,根据国际能源机构的展望,今后的核电开发呈下降趋势,核能在世界电力生产中所占的比例将会由现在的18%下降到2020年的8%。美国未来研究所等权威机构联合提出的报告甚至预测:“一些国家的绿色和平组织及公众将互相呼应迫使各国放弃核能发电”。从总体上看,核电市场每况愈下。西方发达国家的核电技术、设备急于向国外出口。  与西方发达国家相反,亚洲、东欧等一些发展中国家正致力于核电建设,如印度正在建造6个核反应堆,印尼计划到2015年前建成12座核电站。值得注意的是,上述国家尚缺乏修建核电站的经验,往往借助于发达国家的技术、设备。但是,发达国家有关核电的安全和环保问题并未彻底解决。我国也正在加速核电建设,继秦山一期及大亚湾两座核电站建成之后,还将建设4座跨世纪大型核电站,共8个机组,660万千瓦,这4座大型电站是:秦山核电二期工程(2×60万千瓦),广东岭澳核电站(2×100万千瓦),秦山核电三期工程(2×70万千瓦),连云港核电站(2×1 00万千瓦)。  为了我国的可持续发展,在核电建设方面,宜慎之又慎,全面考虑国际正反两方面的经验、教训。展望未来,在21世纪人类将继续利用核能,并对核聚变、核废料处理等前沿课题进行研究。与此同时,将重点开发可再生能源,以逐步代替传统的一次能源。在可再生能源中,我国的水能有得天独厚的条件。虽然从总体上看,我国是一个缺水的国家,但水电资源可开发总容量为3.78亿千瓦,居世界首位。在发达国家,水电开发率约为50%—90%,而我国开发率仅约16%,绝大部分未加利用。因此,我国今后宜优先开发水电。在开发水电过程中,要特别注意环境问题。电站规模要与环境协调发展,不一定越大越好,尽可能优先考虑建设中小型电站或引水式电站。

  • 【原创】核能是一种清洁的能源吗?

    近半个世纪以来,人类一方面发展核能,另一方面,到现在为止,没有任何国家找到安全、永久处理高放射性核废料的办法。核能发电已有45年的历史,所提供的电力约占世界电力生产的18%,已取得巨大的经济效益。但自1959——1995年全球共发生18次重大核事故。  1986年4月26日, 位于乌克兰境内的切尔诺贝利核电站发生重大事故, 电站第4号反应堆起火燃烧,整个反应堆浸泡在水里。由于没有严格的安全防范措施, 致使大量放射性物质逸入大气中。据1992年6月官方报道,已有 6000—8000名乌克兰人死于核辐射,而且还长期严重影响着附近居民的正常生活。如切尔诺贝利以西约50英里的奥夫鲁奇地区曾有着田园诗画般的家园,是核事故带来了一场无尽无休的灾难:儿童生病、死亡率不断上升、动植物令人吃惊的畸形,事故遗患成了日常生活的组成部分,无把握、恐惧的气氛,终日笼罩在人们心头。1994—1998 年,日本共发生大小不同的核事故115起。1999年7月, 号称核设施“银座”的日本敦贺核电站2号反应堆事故再发。美国肯塔基州帕迪尤卡核电站有数千工人,曾经在毫不知晓的情况下接触放射性材料,时间长达20多年。  美国能源部长于 1999年8月下令对此展开调查。在核电建设方面处于领先地位的法国,在建成著名的超级凤凰核电站(SPX)后,由于事故不断,只正常运转了 10个月就被迫关闭,目前仍在处理后事。当时,这个世界上最大的快中子增殖反应堆核电站(装机124万千瓦), 曾被法国总统德斯坦誉为“现代技术的奇迹”。  当前,处理核废料,各国大都采取浅部临时掩埋的措施。某些发达国家甚至将灾难转移,把大量有毒废料运往穷国。在利用深部岩石洞室做为永久储存库方面,虽然科学家为之奋斗了几十年,迄今未获圆满解决。核泄漏不能完全避免问题已引起全球关注。由于技术上的原因及各界人士的强烈抗议,使一些核电生产大国在选择永久存放核废料地点时,陷于困境。  近年来,欧美大部分发达国家,出于安全及环保的需要,基本上停建核电站或提前关闭核电站。北欧国家甚至通过立法,要求在2010年前关闭已有核电站,根据国际能源机构的展望,今后的核电开发呈下降趋势,核能在世界电力生产中所占的比例将会由现在的 18%下降到2020年的8%。美国未来研究所等权威机构联合提出的报告甚至预测:“一些国家的绿色和平组织及公众将互相呼应迫使各国放弃核能发电”。  从总体上看,核电市场每况愈下。西方发达国家的核电技术、设备急于向国外出口。  与西方发达国家相反,亚洲、东欧等一些发展中国家正致力于核电建设,如印度正在建造6个核反应堆,印尼计划到2015年前建成 12座核电站。值得注意的是,上述国家尚缺乏修建核电站的经验,往往借助于发达国家的技术、设备。但是,发达国家有关核电的安全和环保问题并未彻底解决。  我国也正在加速核电建设,继秦山一期及大亚湾两座核电站建成之后,还将建设4座跨世纪大型核电站,共8个机组,660万千瓦,这4座大型电站是: 秦山核电二期工程( 2×60万千瓦),广东岭澳核电站( 2×100万千瓦),秦山核电三期工程( 2×70万千瓦), 连云港核电站(2×100万千瓦)。  为了我国的可持续发展,在核电建设方面,宜慎之又慎,全面考虑国际正反两方面的经验、教训。展望未来,在21世纪人类将继续利用核能,并对核聚变、核废料处理等前沿课题进行研究。与此同时,将重点开发可再生能源,以逐步代替传统的一次能源。在可再生能源中,我国的水能有得天独厚的条件。虽然从总体上看,我国是一个缺水的国家,但水电资源可开发总容量为3.78亿千瓦,居世界首位。在发达国家,水电开发率约为50%—90%,而我国开发率仅约 16%,绝大部分未加利用。  因此,我国今后宜优先开发水电。在开发水电过程中,要特别注意环境问题。电站规模要与环境协调发展,不一定越大越好,尽可能优先考虑建设中小型电站或引水式电站。

  • 【分享】辐射环境之中人类在生活

    为什么说人类生活在放射环境中?     答:实际上,人类的生活没有一刻离开过放射性,这些放射性是天然放射性,主要来自三个方面:     1. 宇宙射线;   2.地面和建筑物中的放射性;   3.人体内部的放射性。   微量的放射性不会危及健康。     人们的哪些活动也有放射性?     答:人类的很多活动都离不开放射性。例如,人们摄入的空气、食物、水中的辐射照射剂量约为0.25毫希/年。带夜光表每年有0.02毫希;乘飞机旅行2000公里约0.01毫希;每 天抽20支烟,每年有0.5-1毫希;一次X光检查0.1毫希等等。     核电给人带来多少放射性?     答:核电给人们带来的放射性是很小的。秦山地区居民的天然放射性本底是0.24毫希/年,而一座百万级核电站周围的居民多接受的放射性为0.048毫希/年,与每天抽一支香烟的辐照剂量相当。     就人类总体而言,因核电而增加的辐照剂量有多少?     答:专家们研究测算表明:全人类集体辐照剂量中,3/4来自自然界。约1/5来自医疗及诊断,核电的份额是1/400。假定全球人类的预期寿命为60岁,则每天抽一包烟将减寿7年,而核电的影响是减寿24秒。

  • 【原创大赛】浅析核电厂化学分析仪器使用现状及选型指导

    [align=center]浅析核电厂化学分析仪器的应用现状及选型指导[/align][align=center]于淼[/align][align=center]中核辽宁核电有限公司[/align][align=left]摘要:本文首先介绍了核电化学实验室数据准确性的重要意义,其次分析了仪器选型的过程,重点分析了目前核电化学仪器的应用现状及选型指导,最后给出结论及建议。[/align][align=left]关键词:核电;化学实验室;分析仪器[/align][align=left] [/align][align=left]核电化学控制的目的主要有两个,一是降低一回路的辐射剂量场,二是降低一二回路的腐蚀速率。实验室数据的准确性是制定化学控制方案的前提。在核电化学实验室中主要完成的任务有一回路水质参数监督、二回路水质参数监督、油质监督、一回路放射性核素监督、流出物排放监督等。[/align][align=left]1、仪器选型概述[/align][align=left]仪器选型主要分三个步骤进行:一是研究相应堆型的初步设计文件、最终安全技术规格书等上游文件,调研参考电站的电厂化学技术规范及化学相关的技改,制定本单位科学合理的电厂化学技术规范。电厂化学技术规范是仪器选型的重要依据,决定了实验室仪器的种类和数量,以及实验室面积的大小。对于化学工作者而言,需研究有哪些指标需要检测,每项指标的检测范围是多少,要求的精度及下限是多少,准确测量每项指标的背景干扰物质有哪些等等。以核电VVER机组为例,需要检测的指标及测量范围如表1所示。二是调研兄弟电厂如秦山、田湾、福清、昌江、方家山、大亚湾等成熟电厂仪器配置数量、型号及使用情况,主要关注每种仪器的使用情况及经验反馈,同时也需进行差异性分析,不同堆型对应的水质参数个别会有较大的区别。三是主动与各仪器代理商进行联系,邀请他们到现场做技术交流,了解不同品牌、不同型号仪器的优缺点以及各自在行业内的应用情况;同时对于实验室仪器采购方面的预算也有一定的了解。[/align][align=center]表1 VVER机组主要水质参数范围[/align][table][tr][td][align=center]测量参数[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量参数[/align][/td][td][align=center]测量范围[/align][/td][/tr][tr][td][align=center]溶解氢,mg/L[/align][/td][td][align=center]0.1-5[/align][/td][td][align=center]溶解氧,mg/L[/align][/td][td][align=center]0.001-8[/align][/td][/tr][tr][td][align=center]PH[/align][/td][td][align=center]3-12[/align][/td][td][align=center]电导率,μS/cm[/align][/td][td][align=center]0.06-100[/align][/td][/tr][tr][td][align=center]硼酸,g/L[/align][/td][td][align=center]0-45[/align][/td][td][align=center]阳电导率,μS/cm[/align][/td][td][align=center]0.06-5[/align][/td][/tr][tr][td][align=center]联氨浓度,mg/L[/align][/td][td][align=center]0.01-10[/align][/td][td][align=center]氨水,mg/L[/align][/td][td][align=center]0-20[/align][/td][/tr][tr][td][align=center]钾离子,mg/L[/align][/td][td][align=center]0-20[/align][/td][td][align=center]钠离子,μg/L[/align][/td][td][align=center]0-1000[/align][/td][/tr][tr][td][align=center]锂离子,μg/L[/align][/td][td][align=center]0-1000[/align][/td][td][align=center]铁离子,μg/L[/align][/td][td][align=center]0-300[/align][/td][/tr][tr][td][align=center]氯离子,μg/L[/align][/td][td][align=center]0-200[/align][/td][td][align=center]氟离子,μg/L[/align][/td][td][align=center]0-200[/align][/td][/tr][tr][td][align=center]硝酸根离子,μg/L[/align][/td][td][align=center]0-200[/align][/td][td][align=center]硫酸根离子,μg/L[/align][/td][td][align=center]0-200[/align][/td][/tr][tr][td][align=center]可溶性硅,μg/L[/align][/td][td][align=center]0-200[/align][/td][td][align=center]TOC,μg/L[/align][/td][td][align=center]0-500[/align][/td][/tr][tr][td][align=center]水中油,μg/L[/align][/td][td][align=center]0-200[/align][/td][td][align=center]含盐量,g/L[/align][/td][td][align=center]0-400[/align][/td][/tr][tr][td][align=center]透光率,%[/align][/td][td][align=center]50-100[/align][/td][td][align=center]硬度,meq/L[/align][/td][td][align=center]0.1-10[/align][/td][/tr][tr][td][align=center]γ活度,Bq/L[/align][/td][td][align=center]10-10[sup]7[/sup][/align][/td][td][align=center]β活度,Bq/L[/align][/td][td][align=center]10-10[sup]6[/sup][/align][/td][/tr][/table][align=left]2、核电主要化学分析仪器应用现状及选型指导[/align]2.1放射性检测仪器放射性检测仪器主要完成三大功能,即一回路放射性物质检测、一次侧向二次侧泄漏放射性物质检测、流出物放射性物质检测,主要测量总β、总γ、各种核素、H-3、C-14等。各种核素及总γ的测量在核电厂中主要通过高纯锗探测器来完成。同轴型高纯锗探测器分为P型和N型,核电厂要求测量的能量范围为100keV-2000keV,P型探测器即满足要求,此外价格便宜、能量分辨和锋形好,所以核电厂广泛采用P型高纯锗型探测器。对于高纯锗型探测器重要的性能指标是能量分辨率和相对探测效率,但两者不可兼得,能量分辨率高,则相对探测效率低,能量分辨率低,则相对探测器高。核电厂采用探测效率大于30%的探测器,对于低水平放射性核素样品的测量采用延长测量时间的办法进行测量。能量分辨率即[sup]60[/sup]Co源1.332MeVγ射线全能峰峰高一半处的宽度值,用FWHM表示,一般要求小于1.85keV。对于核电厂中仅需要测量总γ的样品,则采用探测相对效率较高的NaIγ谱仪完成。目前采购的主要厂家有美国的奥泰克ORTEC和堪培拉CANBERRA(现被Mirion收购)。H-3、C-14的测量。H-3、C-14因其发射低能β射线,所以核电厂中采用液闪的方法进行测量。该方法具有灵敏高、探测效率高(4π立体角的几何效率)、操作简便的优点,不足之处在于存在淬灭效应。液闪的性能指标是用探测器、测量控制单元、闪烁液、计数瓶进行综合评价的[sup][/sup]。探测器的选择主要关注降低本底和噪声的方法。如80年代,PE公司推出的Quantulus1220产品,采用了重屏蔽和反符合环探测器来降低本底和噪声。闪烁液的选择主要关注其在溶剂中是否有足够高的溶解度,荧光效率,及能否发射光电倍增管最佳探测范围内的光脉冲,闪烁液溶质的浓度一般在1%以下。计数瓶的种类主要有玻璃瓶、塑料瓶、石英玻璃瓶和聚四氟乙烯瓶,这四类计数瓶各有千秋。玻璃瓶有好的能见度、化学惰性和不被溶剂侵蚀;塑料瓶本底低,易于处置,更安全;其他两类也有好的性能,但成本较高。目前国内核电厂主要使用美国PE公司(目前被铂金埃尔默收购)的Quantulus 1220和TriCarb系列产品,Quantulus 1220设备的市场占有率偏高,上海新漫传感技术研究发展有限公司SIM-MAX LSA3000、日本Aloka厂家、芬兰Hidex厂家尚未进入核电市场。H-3、C-14测量过程中应重视闪烁夜的选择、样品与闪烁夜混合体积比例的选择、测量时间对检测限的影响等因素。此外,对于一回路C-14的测量,因高浓度H-3的干扰,核电采用酸解洗气、加过硫酸铵氧化的方法对样品进行处理,将样品中所含的无机碳和有机碳转化为二氧化碳,通过氮气吹扫后用无机碱液吸收(以上步骤通过美国O.I.的总有机碳分析仪完成),吸收液加闪烁液制样后,在液闪上进行C-14的测量。总β的测量。核电厂流出物中总β目前采用低本底α、β计数器进行测量(核电厂化学监督大纲很少有对总α的测量要求)。目前总α、总β计数器的测量原理主要分为流气式、闪烁体和半导体型。该类仪器关注的性能参数主要有α、β探测效率、α、β本底计数。半导体型检测仪效率性能和本底性能优于流气型和闪烁体型,而且体积小,重量轻,便于维护,但价格昂贵[sup][/sup]。闪烁体型检测仪本底计数较高,同时存在α、β探测道干扰,应用较少。流气式总α、总β检测仪市场占有率高,技术成熟、价格低廉,本底计数率低、探测效率适宜,为主流仪器。核电厂中采购应用的主要有美国ORTEC公司的MDS-4流气式正比计数器、德国伯托LB770低本底总α、总β测量仪、美国堪培拉的HY1208半导体型低本底总α、总β测量仪、北京261核仪器厂的BH1216低本底α、β测量仪。此外,辐射监测仪表国外的厂商以ORTEC、堪培拉、Thermo、Mirion、德国伯托、美国PE为主,国内的供应商主要有北京261核仪器厂、西安核仪器厂、重庆建安仪器厂,原子能院、中辐院、总装防化院、陕西卫峰、上海申核等,通过上面的分析可知,放化实验室的辐射监测仪器主要以国外仪器为主。目前只有VVER机组采用了北京261核仪器厂的BH1216低本底α、β测量仪(该仪器已广泛的应用在自来水公司的水质监测及地质实验测试中心的研究中)。2.2水质检测仪器水中总有机碳的检测。核电厂中一二回路对于TOC指标均提出了较高的要求,TOC的限值一般为小于200μg/L。TOC检测仪的选择需考虑仪器本底、回收率、样品性质、检测下限及检测范围。在本底方面,UV/湿法氧化法和加热湿法氧化均有较低的测量本底。因更先进的UV灯设计和更高浓度的氧化剂使用,UV/湿法氧化法具有更高的回收率。燃烧法测量TOC广泛应用于高盐度样品的测量。在样品性质方面,二回路体系较为简单,只有1-2ppm左右的氨水几十个ppb的联氨,但一回路的体系较为复杂,有1000ppm左右的硼酸及3ppm左右的碱金属氢氧化物、30cc/kg左右的氢气,所以准确测量难度较大。VVER机组选择GE公司(现被法国苏伊士集团收购)UV(紫外)/湿法氧化+选择性薄膜电导检测器TOC仪(对于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等大型精密仪器,也用电导进行检测),而其他核电机组,如M310,AP1000等均采用美国OI公司加热湿法氧化(真正实现有机物100%的转化为CO[sub]2[/sub])+非色散红外检测TOC仪,红外检测的原理类似分光光度计,通过朗伯比尔定理进行定量检测。对于高浓度硼基体样品准确测量TOC,仍需进一步关注。水中阳离子的测量。核电厂中水中阳离子的测定是通过[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]来完成的,此方法也是国标要求的方法。国外的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪厂家主要有德国耶拿、赛默飞、PE、日立、岛津、加拿大欧罗拉Aurora、英国派优尼科等,其中PE公司1961年推出第一台火焰原子化器,1970年推出世界上第一台石墨炉,1990年推出第一台赛曼效应扣背景[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪,其优良信噪比和检出限,使其一直是AAS仪器中的佼佼者[sup][/sup]。国内的主要厂家[color=red]普析通用[/color]、科创海光、东西分析、瑞利、浩天晖科贸、江苏天瑞、[color=red]上海光谱[/color]、上海天美、浙江福立、安徽皖仪等。从火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]来讲,国内、国外相差无几,而石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]则有差距。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪采购上主要需考虑待测元素的检测限、检测范围、信噪比及背景校正性能,不同的堆型需进行具体分析,不可完全照搬。核电中目前主要采购的是PE公司(现被铂金埃尔默收购)AA400,AA600,AA800(火焰+石墨炉),AA900T(火焰+石墨炉,火焰氘灯扣背景,石墨炉赛曼扣背景,价格50-60万)。AA900系列分四个型号,单火焰,单石墨炉,火焰+石墨炉,还有一种是火焰+石墨炉都是氘灯扣背景的。目前对于测量小于1ppb的Na困难较大,拉曲线方面常需较长时间。此外,用AA400类火焰法测量硼基体小于20ppb的Fe,灵敏度有待提高。一回路溶解氢气及发电机氢气浓度的测量。一回路冷却剂中的溶解氢气为一回路的控制指标,准确测量具有非常重要的意义。核电目前采用哈希3655便携式氢表和相分离器两种方法进行氢气浓度的定量测量。所谓相分离器就是采用氮气将一回路中的溶解氢气吹出,后通过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的方式进行氢氮混合物的测量,最终计算得出结果。发电机及制氢站中氢气浓度的测量一般用氢气纯度仪或[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行测量。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]国外的厂家主要有岛津、安捷伦、赛默飞,其中安捷伦的市场占有率能到达70%。国内的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有海天美、北京东西分析、上海科创等,市场占有率仅占1.5%。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的选型主要关注色谱柱及检测器的选择。目前核电市场主要采用的有安捷伦6890,7890A(2007年市场推出)、7890B(2013年市场推出)。因测量组分简单、单一,VVER也采用上海科创9800系列产品。水中阴离子的测量。核电厂中主要需要测量的阴离子有F[sup]-[/sup],Cl[sup]-[/sup],SO[sub]4[/sub][sup]2-[/sup],一回路主要是硼酸基体较大,硼酸的浓度为8g/L左右,二回路主要为含有氨的碱性水溶液,pH值9.4左右。核电厂中Cl[sup]-[/sup]等为控制指标,一般采用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]进行阴离子的测量。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的厂家比较少,国内的厂家主要是青岛盛翰,国外的主要厂家为戴安(现被赛默飞收购)和万通。国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]与进口[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]价格相差较大,但因戴安公司的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]在线淋洗液发生器,抑制器、色谱柱等核心技术,核电领域98%采用戴安系列[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]IC2100,IC2500,IC3000,IC5000,就核电领域样品的要求,IC2100,IC2500,IC3000有着更好的应用口碑。万通[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]仅在VVER机组有应用,用来测量25%氨水中氯离子的含量。分光光度计的使用。在VVER机组中,分光广度计用来测量一回路氨、二氧化硅、TTA等物质,其中氨的测量至关重要,因其准确性决定一回路的加药量,几乎影响一回路中所有化学参数的控制。二回路主要分析氨、联氨、二氧化硅、磷酸钠等物质。目前市场上的紫外可见分光光度计主要有扫描光栅型和固定光栅型。国外的厂家主要有PE的Lambda系列,岛津的UV系列,安捷伦的HP系列等,国产的主要有上海分析仪器、上海棱光、天美科学仪器、北京普析、北京瑞利等。采购该类仪器时需考虑光谱范围、波长准确性、分辨率、吸光度范围[sup][/sup]。其中能测量的吸光度范围尤为重要。VVER机组要求在吸光度很小或吸光度很大(吸光度A达到2-3左右)均能准确测量,且仪器稳定。目前核电所采用的仪器多为PE的Lambda系列,北京普析的TU系列也有少数应用。就仪器稳定性方面,化学人员仍需进一步关注。超纯水仪的使用。核电中[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]和[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]要求使用超纯水,此外,按照习惯玻璃器皿一般最后用超纯水做润洗。超纯水仪国外的品牌主要有法国的密理博(现被德国默克收购)、美国的PALL公司、德国的赛多利斯等,国内的有上海乐枫、芷昂等。对于IC和AA用水,按照GB6682-2000《中国国家实验室用水规格要求》,需满足一级水要求。在采购该仪器时需考虑用户水质要求、连续用水还是间歇用水、用水水量、以及出水水质等。核电的超纯水仪进水水质为除盐水,目前核电使用的品牌有法国的密理博(现被德国默克收购)、美国的PALL公司、德国的赛多利斯,美国Barnstead公司NANOpure,未见使用国产纯水机。水中油的测量。水中油的测量有重量法,紫外法,荧光法、红外法等方法。我国测量水中油类物质执行的标准是HJ637-2012《水质石油类和动植物油类的测定红外分光光度法》[sup][/sup],此方法具有重现性好,准确度高,可比性强,不受油品成分结构限制,操作简单方便等显著特点。红外测油仪的厂家及型号主要有北京华夏科创OIL510(检出限0.02mg/L),上海昂林OL1020(检出限0.03mg/L),上海欧陆科仪ET1200(检出限0.2mg/L),目前在核电领域应用,AP1000采用上海欧陆科仪ET1200。荧光光度计测量水中油为俄罗斯与美国测量水中油类物质标准,目前VVER测量水中油采用俄罗斯的荧光光度计。原红外法HJ-637-2012采用的萃取剂四氯化碳是《关于消耗臭氧层物质的蒙特利尔议定书》附件B中第二类受控物质。为推进议定书国际履约进程,实现我国关于2019年1月1日起停止实验室使用四氯化碳的承诺,生态环境部2018年10月10日发布了《水质石油类的测定紫外分光光度法(试行)》(HJ970-2018)。对于测量水中油含量小于200ppb,高盐度硼酸基体样品,准确测量其含量,采用紫外分光广度法测量水中油,仍需化学人员给予关注。对于小型仪表,如pH表(测量范围0-14),电导率表(测量范围0-20μS/cm)余氯表(测量范围0-5mg/L),各大核电公司所用仪器品牌主要有德国WTW公司、奥利龙、梅特勒、哈希公司等,未见使用国产品牌。3结论与建议[align=left](1)谨慎的选择厂家最先进的仪器[/align][align=left]市场中各仪器厂家仪器型号更新换代很快,在厂家的宣传下,仪器的性能和外观对用户会相当有吸引力。但是新型的仪器大多未经过市场的检验,仪器的性能可能存在一些问题。更重要的是还要考虑新产品的实用性。在能满足要求的前提下,可以尽量选择经过市场验证或其他兄弟单位认可的产品。另外,要尽量和厂家的应用工程师交流,而不能仅凭销售的介绍。因为对于仪器具体的性能,只有应用工程师最清楚。[/align][align=left](2)客观冷静看待仪器厂家给予的参数[/align][align=left]很多仪器厂家给予的参数往往是厂家在特定的环境做出的最好的结果,而且不同厂家给出的计算方式可能不太一样,所以仪器参数一般不能作为采购的重要依据[sup][/sup]。此外,对于基体复杂的样品,一定要和厂家沟通,建议到仪器厂家进行相关试验,验证是否满足要求。[/align][align=left](3)因核电一回路基体成分较为复杂,对于控制参数等重要指标,仍需进行研究,寻求更优化监测方法。此外,随着目前国企预算成本管控的要求,对于极为简单的组分分析,如氮气中氢气的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测量,pH的测量,也可大胆选用国产仪器,降低成本。[/align][align=left]参考文献:[/align]杨海兰.液体闪烁计数与低水平环境氚的监测.辐射防护通讯,2012,32(1):1-7.陈五星,安然,万新峰.低本底α、β测量技术发展现状.中国辐射卫生,2016,25(4):509-512.何华焜.国外[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器技术发展分析.现代科学仪器,2007,5:10-16.倪一,黄梅珍,袁波,等.紫外可见分光光度计的发展与现状.现代科学仪器,2004,3:3-7.单仲平,许娟娟,陈欢,等.全自动红外测油仪测定水中油的萃取剂研究.理化检验-化学分册,2016,52(5):612-614.仪器采购必须关注的四要素(原创大赛参赛作品).仪器信息网.蒋增辉.紫外分光光度法测定水中石油类的方法验证和改进.净水技术.2019,38(5):14

  • 【分享】核电发展与环境保护

    联合国预测,到2050年全球人口从现在的60亿增至90亿,到2100年,达150亿。人口的剧增,生产和生活水平的日益提高,刺激着对能源需求的猛增。2050年全球能耗将是现在的3.5倍,能源紧张,不可缓解。如何做到既开发能源,又保护环境,是关系到社会能否持续发展的重大课题。当今世界五大能源—石油、天然气、煤、水力和核能,其中煤能是污染环境之最,核能是较清洁的能源。1、采煤、燃烧煤对环境的影响 世界上有10个国家拥有全球92%储量的煤,中、美、前苏占57%。采煤、燃烧煤在增加GDP的同时,也在毁损环境质量和公众的健康,其主要表现在以下10个方面: (1)矿工死亡:1983年,在美国《可再生能源》一书中,估计当时中国的煤矿工人每年死亡1.5~2万人。采同样数量的煤,美国矿工死亡人数是中国的3%~4%。在我国,为满足装机容量为100万KW煤电厂所需的煤(200~300万t),每年约有35名矿工为之付出生命。 (2)地表塌陷:采掘出供应装机容量为100万KW(以下均以100万KW电厂为例)煤电厂一年所需的燃煤,平均发生1050亩左右的地表塌陷。 (3)煤渣占地面积:每年产生矿渣约20万t,占地3.15亩。 (4)采矿工患尘肺:年均21.6人。 (5)排出烟灰:每年2~3t。 (6)有毒金属:Pb、As、Cd、Hg和放射性核素等,年均排放约400t。 (7)222Rn的扩散:燃煤加速了氡的扩散,年均最终(即若干年后)因吸入氡而致病、致死约300人。 (8)排出CO2和造成温室效应:碳燃烧后主要形成CO2,其重量是碳的3.7倍。电厂CO2年均排放量600~700万t。CO2使全球发生“温室效应”,按现在的排放速度,100年后,地球气温升高1.5~3.5℃,两极冰山、冰层大量融化,海平面上升1m左右。 (9)排出CO2:年排量3~6万t。 (10)排出SO2和氨氧化物并造成酸雨,硫燃烧后形成SO2,增重1倍。电厂年均排放SO2 5~10万t。煤中的铵盐和有机物,燃烧后形成氨氧化物(它又是致癌物质),年排量2~3t。两者都是强酸性气体,导致降落酸雨。 1992年,多国首脑在巴西召开的世界环境与发展大会上,共同签署了《气候变化框架条约》,要求各国减少CO2排放量。1997年,防止全球气候变暖国际会议,签署了《京都议定书》,要求发达国家在2008~2010年,把温室气体排放量比1990年减少6%~8%。最近,我国也立法规定了各地区、各企业,应有计划地逐年减少COD(水中化学耗氧量)和CO2、SO2 的排放量,并将对其量化检查、监督和考核。2、核电是较清洁的能源 为保护环境,正大力倡导“清洁生产”;生产过程中所排出的废气、废水、废渣的量和其中所含的有害物质,以及放射性、电磁波、光(可见光是波长380~780nm的电磁波)、声、热、震动等物理量都在国际或国家标准所规定的限值以下。利用核能发电,与燃烧化石燃料(石油、天然气、煤)、尤其是燃煤发电相比,属于清洁生产。慢堆、快堆、核聚变发电,其清洁水平,将一代比一代进步。提高核电在供能中的比重,可以有效地减少环境污染。前面列举了煤电污染环境的10个方面,以此作参照系,装机容量为100万kW的压水堆核电站,对环境影响显然要小得多。 (1)矿工死亡:年均0.6人,是煤电的1.7%。 (2)地表塌陷:2.4亩,是煤电的0.22%。 (3)废物占地面积:1.5亩,是煤电的48%。 (4)矿工尘肺:4.4人,是煤电的20%。 (5)排出烟灰:近于零。 (6)有毒金属:核岛中有不高于本底的放射性核素排放。 (7) 222Rn扩散:其排放量约为煤电的1/3。 (8)CO2:6~7万t,为煤电的1%。 (9)CO:零排放。 (10)SO2 和NxOY:零排放。 以上10对数据表明,核能发电属清洁生产。诚然,这些数据是基于核反应堆的正常运转。3、节能降耗,开发新能源 发展循环经济,推行资源节约型、环境友好型的生产技术,可确保社会持续发展。 提高资源利用率,不仅仅是减少浪费、降低成本,更重要的是有助于环保。因为凡生产和生活中被抛弃的物质,都增加了环境的负担。 “节能优先,降低能耗”、“能源结构多元化”、“煤炭的清洁高效利用”等,以及发展核电在国家中长期(2006~2020)科技发展纲要中,分别列为“优先专题”和“前沿技术。” 用天然气替代石油,煤的气化(制水煤气和氢)和液化(煤转化为石油),都是提高能源利用率和减少污染的重大技术举措。大力开发可再生的能源—太阳能、水能、风能、潮汐能和生物质能等,是既可再生而又清洁的能源。这一切,都是“能源结构多元化”的重要内容。但化石燃料不可再生,其耗尽有日。可再生能源,因自然条件等因素而地域和规模受到限制。在当今科学技术的基础上,核能应是改善能源结构的首选。 4、当今核电和未来核电发展 核电的原料也不可再生,但核能潜力巨大。等质量的U-235的核裂变能量是碳燃烧所释出的化学能的250万倍;1kg的U-235核裂变能相当于280万吨标准煤所释出的能量。所以,地球上可以裂变和聚变的核素所存储的能量,足以供人类消耗几百亿年,这里没有包括将来有可能被开采、利用的月球上的He-3。三代核电—热中子堆(慢堆)、快中子增殖堆(快堆)、核聚变堆,一代胜过一代地“清洁”和更充分地利用自然资源。 目前世界上已有近500座核电机组,其堆型几乎都是慢堆;只有法国有5座快堆,其中超凤凰堆电功率达124.2万kW。慢堆只能利用天然铀中丰度仅0.72%的U-235,而且,发电后还有一小部分U-235残留到乏燃料中。不能被利用的以U-238为主的锕系元素中,一部分的半衰期达10亿年以上,处理这些核废料是地质、地理的沉重负担。 快堆中,U-238俘获1个中子,经两次β衰变转化为Pu-239, Pu-239也是核燃料,从而可使铀资源的利用率提高60-70倍,同时大大减轻了处理核废料对环境造成的压力。在法国,快堆早已投入商业发电,美国等10国的新能源发展计划中,把快堆列为重点发展堆型,我国计划于2018-2020年实现6.5万kW快堆的并网发电。

  • 日核电重启,安全因素将升级

    6月16号,日本野田内阁正式决定重启位于福井县的关西电力公司大饭核电站。这是自去年3月发生福岛第一核电站事故以来,其国内因定期检修而全部停运的核电站的首次重启。而就在6月22号,核电站的重启决定引发了当地反核人士的强烈不满,至少1万以上的民众在首相官邸门前举行了大型集会。据了解,此次的反对核电站重启的集会活动是在当地的“推特”等微博上所发起的。当天反核人士聚集在位于东京永田町的首相官邸门前,反对重启福井县的关西电力公司大饭核电站,并呼吁实现“脱离核电”。众所周知的福岛第一核电站事故以来,日本人民乃至全世界人对于核的矛盾心理就一直存在。因为核电站事故中所释放的微量放射性元素,是我们人类难以估量的。其看不见、摸不着的特性,让人无法察觉,杀人于无形,而愈发变得恐怖。所以,反对核电站重启的民众出于安全方面的因素考虑,做出这样的举动,是可以理解的。因为谁也无法估量核辐射的杀伤力。而且“福岛50勇士”的大义壮举还记忆犹新,他们再也经不起任何的打击和伤害了。特别是在一些地震等自然灾害多发的地区,当地民众处于对核电事故仍心有余悸,反对重启的声音要略占上风。但碍于日本其产业经济结构问题,出口型制造业企业是该国的支柱产业之一。电力供应作为影响日本经济发展稳定的一个重要因素,是必不可少的,短时期内要想找到并填补核能发电缺口的方法似乎是并不乐观和现实的。鉴于此,实验室仪器专家认为日本政府要重拾民众信心,缓和国内的这种矛盾,唯有深刻反思其核电利用上的效率与安全性,必须在最大限度地保证核电站发电安全性的基础上,利用资源,高效发电。要吸取上一次经验教训,做好核电站的安全隐患排检排查工作,利用最新的检测技术和最精密的检测仪器,保障核安全。同时,监管处置立法也不能掉队。要着手建立一套以信息透明度为基础的管理体制和庞大的向公众宣传、沟通体系,充当核电“警察”。

  • 【讨论】中国核电安全--和日本比怎样??

    【讨论】中国核电安全--和日本比怎样??

    中国核电安全--和日本比怎样??日本强震,核电爆炸.应该给中国警示啊!http://ng1.17img.cn/bbsfiles/images/2011/03/201103131108_282396_1638489_3.jpg火电投资在飙升的煤价打压下势头减弱,而内陆核电的投资热情却正如火如荼。

  • 【讨论】退出核电以后怎么办?

    今年三月日本发生九级大地震连带超大海啸,导致福岛一号核电站事故频频。福岛这个核电站究竟发生了什么现在人们还不完全了解,但是无论如何核电的安全问题再一次摆到了人们面前,核电的发展前景再次蒙上阴影。在日本核电站事故发生不久的三月十五日,发达国家中反核声音最响的德国就暂停了八座核电站的运行。五月三十日,德国索性宣布这八座1981年前开始发电的核电站直接关闭,剩余的九座核电站也将在从现在起到2022年之前逐渐关闭。也就是说,按照这个政策,德国将在十二年的时间里面逐渐告别核电,比原来的计划提前了十四年。

  • 【讨论】中国应大力发展第三代核电

    中国目前共有13个核反应堆在运行,总装机容量达到1080万千瓦;在建机组达28台,装机容量达3097万千瓦。美国现有104个核反应堆,占总能源比近20%,而中国核电占比不到2%。如果要达到10%,中国将会拥有100个、200个甚至更多的核反应堆,成为世界第一核电大国。 日本福岛核电站1号机组为上世纪60年代末建成的首批商用核电站,我国正在运行和建设的核电站多为80年代和90年代后改进型或革新型核电站,安全性能优于福岛。我国核电站‘门槛’比世界平均水平要高,核电站的选址更加保守、安全,均远离地质断裂带,建在稳定的基岩上。抗震标准、防洪标准等都做到了‘高一级’设防。” 日本福岛核电站事故的原因主要是因为二代核电应急系统中的泵需要电源驱动,没有电,反应堆停堆后无法冷却,导致了一系列后果。“中国在建的第三代AP1000中,整个安全设备系统没有一台泵。无需依靠外在电源,利用高位水箱,靠温差、靠重力、靠气体膨胀来推动流体流动,安全系数得以大幅提升。” 福岛核电事故的经验和教训,为使我国的核电发展更为健康,要防止“因噎废食”。“核电站安全问题,从本质上来讲,不是技术问题,而是利益代价的问题。设防标准要足够保守,必要时要考虑能防范像日本福岛遭遇的9.0级大地震和10米高海啸甚至更高的外来威胁等。”因此中国要大力发展第三代核电,从国家利益出发,集中全力让三代核电快一点发展,三代越多越好,二代越少越好。” 3月16日,国务院总理温家宝主持召开国务院常务会议,要求暂停审批新核电项目。据知情人士透露,在中国核电发展路径上,目前还存有争议,继续发展二代核电的声音犹存。而此次国务院“暂停审批”受冲击最大的是中核集团和中广核集团。这两大巨头是中国目前核电发展的主力军,暂停审批的核电项目中,大部分都是这两家企业的项目,主力机组是二代改进型核电机组。 此次日本核事故将会成为调整中国核电结构的契机,中国核电发展路径是“二代和三代并举”还是大力发展第三代呢?

  • 核电站与大型商用飞机有何关联?

    环保部核与辐射中心有一个课题:大型先进压水堆核电站重大专项子课题 7“大型商用飞机恶意撞击问题的研究”。不知各位坛友是否知道,“大型商用飞机恶意撞击问题”与核电站有何关联?

  • 【资料】熊猫快报--中国核电厂运行安全将有保障

    发布时间:2008年8月21日 国家环保部日前召开了“核设施地震安全评估专题研讨会”透露,目前我国拟建、在建和运行的核电厂厂址均处于地质构造运动相对稳定的区域内,地震活动水平较低,我国在建和运行核电厂的抗震安全符合核安全法规要求,核电厂的安全可靠运行是有保障。 与会代表一致认为,在此次评估中,有关单位又利用核电厂址的最新地震、地质资料对运行、在建和拟建的核电厂址进行了复核,结果表明所确定的抗震设计基准是适宜的。 评估结果显示,我国在建和运行核电厂的抗震安全符合核安全法规要求,核电厂的安全可靠运行是有保障的。目前我国拟建、在建和运行的核电厂厂址均处于地质构造运动相对稳定的区域内,地震活动水平较低。核电厂的核岛等主要安全相关构筑物均坐落在基岩上,具有良好的工程地质条件,有利于保证其地震安全性。 ——信息来源:新华网

  • 退出核电以后怎么办?

    今年三月日本发生九级大地震连带超大海啸,导致福岛一号核电站事故频频。福岛这个核电站究竟发生了什么现在人们还不完全了解,但是无论如何核电的安全问题再一次摆到了人们面前,核电的发展前景再次蒙上阴影。在日本核电站事故发生不久的三月十五日,发达国家中反核声音最响的德国就暂停了八座核电站的运行。五月三十日,德国索性宣布这八座1981年前开始发电的核电站直接关闭,剩余的九座核电站也将在从现在起到2022年之前逐渐关闭。也就是说,按照这个政策,德国将在十二年的时间里面逐渐告别核电,比原来的计划提前了十四年。历史悠久的反核浪潮核电在德国电力供应中很重要,所占比例高达22%。2009年,德国总耗电量为5970亿度,来自核电的就有1350亿度。当然这个数字已经比2001年有所下降,2001年,德国核电的电量是1710亿度,占总电量的29%。尽管核电在德国如此重要,德国的反核力量却非常强大。早在1950年代,对核电的各种担心就能在西德听到,到1960年代,一些反核声音已经导致了几个核电项目在早期就被放弃。1970年代,德国民间的反核声音已经很强大,曾经成功阻止了一个已经完成了审批程序的核电厂的建造。等到1986年前苏联切尔诺贝利核事故爆发后,德国的反核力量进一步加强。1990年代末期,坚持反核立场的绿党进入德国联邦政府,反核终于成为政府政策。2002年,德国通过法案开始对核电进行限制,宣布将在2021年之前关闭所有核电站。这也就是德国核电在2001年达到顶峰后逐渐下降的原因。不过2007年俄罗斯的能源危机之后,默克尔政府开始怀疑核电退出之后德国能源供应的安全性问题,这一怀疑导致2010年九月德国延长了核电厂的服役期限,把退役期延长到2036年。这个决定当然遭到了德国反核力量的强烈抨击。这次默克尔政府核电政策的再次变化,只不过基本回到了一年前的政策上。德国民众对于核电问题非常敏感,特别是日本核危机之后,为了选票起见,默克尔只能让步。核电需要逐渐淡出,俄罗斯的天然气供应的可靠性仍然是个未知数,默克尔这次提出的解决方案就是加大新能源的比例。这个政策与德国最近的发展也是一致的。2000年代,德国的可再生能源发展很快,太阳能发电的装机发电能力从2001年的195兆瓦增加到2009年的9677兆瓦,风能从2001年的8734兆瓦增加到2009年的25813兆瓦,并且这两种新能源的装机能力仍然在高速增长。到2010年,风电、太阳能、水电、生物质等加在一起,德国已经有17%的电力来自可再生能源,默克尔计划到核电完全退出之前把这个比例增加到35%。由于德国水电潜力有限,生物质能总量不足,目前占总供电量8%多一些的风电和太阳能就会是发展的重点。当然,绿党仍然说,这个比例不够。无法完全依靠的清洁能源但是默克尔政府原来的担心是很有道理的,风电和太阳能比例的过高的确会导致能源供应不稳定,因为风能和太阳能的最大问题就是来源不可靠。人类用电有一定的基本规律,在同一天内,用电量也有一个很明显的波峰波谷,一般的,随着上午上班,用电量开始增加,一直持续到前半夜,晚上九点十点以后,用电量才开始下降,到后半夜最低,如此反复。电这种能源形式是非物质的,发出多少电就需要用掉多少电,供电与耗电需要基本平衡,否则电网的稳定性就会受到威胁,这样,发电量同样需要一个波峰波谷。核电、火电由于使用了来源可靠存储方便的物质能源作为能源材料,其发电能力是可以随时调节的,需要多少,就可以在很短的时间内调节成多少,可以说是召之即来,挥之即去,对于稳定电网,保证足够的电力供应贡献巨大。但是风电和太阳能就要麻烦了,特别是风电。风在可以预期的将来仍然是超出了人们控制能力的东西,风大的时候,风电会多得你用不掉,这还不算大问题,毕竟风电多了可以通过降低火电等高碳排的能源比例来进行调节;但是风小的时候,如果还赶上用电高峰,那可就很令人头疼了。此外人们对于风的预测仍然掌握很少,对于风电的供应缺乏可靠的预测机制,风电本身的波动性和不可靠性,就可电网本身的稳定性带来了很大的问题。太阳能在这方面要比风能略好一些,因为至少太阳光照的变化是有一定规律的,是可以进行长期短期预测的。随着太阳日照的周期变化,太阳能每天都有一个供电波峰波谷,不过很可惜,这个波峰波谷与用电的波峰波谷在时间上仍然有很大的差异,并不能与实际用电的峰谷重合。比如夜晚仍然是用电高峰,太阳能这个时候的贡献率基本上是零。在理论上,风能和太阳能结合在一起,可以削平一些供电的变化,风能的广泛分布也会削平一些供电的波动,但是要是连续来上几个没什么风的阴雨天,风能和太阳能可就都无能为力了。虽然这种情况并不是经常发生,但是一年里面发生个几次的可能性还是有的,电网必须为这种情况进行准备。这个时候,就只能依靠随叫随到的能源来出力了。即能随叫随到又清洁低碳的电力形式是水电,有一些国家负责平衡风能太阳能供电的就是水电。但是由于德国自身的水电潜力不足,目前做这个工作调节的,主要就是火电和核电。也就是说,在设计电网的时候,虽然在技术上可以允许比较高比例的风能、太阳能的存在,但是为了预防这种两者同时供能不足的情况,仍然需要建造大量的可靠能源作为备份,来保证能源的连续供应。换句话说,电网要求设计成可以在风电和太阳能贡献很少的情况下仍然可以运行,甚至风电和太阳能完全没有贡献,也不能影响供电。因为目前在德国承担这个任务的主要就是火电和核电,一旦核电从德国电网中退出,那么一个很直接的问题就是,谁来弥补这个空缺?仍然无法实用的蓄能技术如果风能和太阳能可以存储起来,问题就不大了。风能太阳能充足的时候,把多余的电力存下来,等到供电不足的时候使用,这样,风能和太阳能自己就可以成为电网的主力。这方面,一些离岛的应用,小规模的示范,已经显示了实施的可能性。不过到目前为止,大规模能量存储的技术仍然无法满足实际应用要求。目前唯一可靠的大规模储能技术是水电蓄能,做法就是在发电量多于用电量的时候,用电把水提到数百米的高处,利用水的势能把这些多出来的电力存储起来;等到发电能力不足的时候,就可以把这些放在高处的水流下来,同时把势能转变成电能进行发电。这个过程的能量效率受到多种因素的影响,比如所使用的设备的转换效率,水的挥发,实际的地形条件等等,一般总的来讲,在70%到85%的水平,还算是不错的。这个技术本身也非常成熟,早在1930年代就有了实际应用。这个蓄能方法的另外的好处,就是水电对于电力需求的响应非常快,可以在几秒钟的时间内就消耗掉多余的电量,或者发出所需要的电量,而作为能量调节主力的火电,改变发电能力往往需要几分钟的时间,不如水电便捷。对于电网来讲,越快速地实现电力的供需平衡,对于电网的冲击就越小,供电也就越加稳定。因为这个特点,水电蓄能已经在世界得到了广泛的应用,总装机能力已经超过104GW。但是水电蓄能的储能密度很低,成本很高。把一立方米的水提高到100米的高处,所存储的能量仅仅有0.27度电,这样,要存储大量的电力,就需要非常大的库容,非常高的高度差。由于工程量浩大,水电蓄能只能在合适的地形来施工以降低成本,这样,其应用对于地形就有很大的要求,可以应用的地点有限,尽管如此,施工成本仍然昂贵。比如德国最大的Goldisthal蓄能水电站,可用库容有1200万立方米,但是只能存储850万度的电量。这个蓄能水电站的发电能力是1060兆瓦,仅是德国风能和太阳能发电能力的3%。这个项目是经过了十数年时间的论证,长达七年的施工才得以完成,总耗费6亿欧元。这个规模的蓄能水电站,德国目前只有三个,其他的水电蓄能项目规模要小很多。这些水电蓄能项目加在一起,德国目前的水电蓄能能力只有6600兆瓦,不到目前风能和太阳能装机能力的20%。如果德国计划继续扩大风能和太阳能发电能力,同时依靠水电蓄能来弥补风电和太阳能发电的不稳定性,就需要把目前的水电蓄能规模扩大十数倍。德国可能很难找到这么多适合水电蓄能的地点,也难以实现这种规模的投资。也就因为这个原因,世界上目前的水电蓄能仍然主要用于电网的短时间调峰,无法用于大规模可再生能源所发出的电量的存储。水电蓄能,显然不能完全解决核电退出后德国电力供应的安全问题。水电蓄能至少已经成功在数千兆瓦的级别上有了成功应用,其他的蓄能方式就距离大规模应用非常遥远了。电池是民用小规模蓄能最普遍的方式,也已经有了数十兆瓦级别的应用,在一些偏远、离网的地区已经进入实际使用。但是总体而言,传统的蓄电池蓄能仍然是一个费用昂贵、维护成本高昂、使用寿命有限的方法。当然这方面的技术进步是有的。一些新的电池形式,比如液流电池和液态金属电池等也已经开始了数十兆瓦级别的工业尝试,体现出了相对传统蓄电池的优点,特别是成本优势,显示出了其用于电网蓄能的潜力;空气压缩和飞轮蓄能也已经在小规模有了成功应用;熔岩蓄能、冰冻蓄能、化学能蓄能等也已经有了小规模蓄能尝试,也有一定的工业化前景。但是所有的这些,工业化应用都是在刚刚起步,实际应用规模并不大,技术要完善到数千兆瓦甚至数万兆瓦的级别,还需要很长时间的工业实践和大量的资金以及人力投入,要真正解决德国数万兆瓦级别的电力储存问题,还相当遥远。当然,德国的科技实力雄厚,同时由于日本也准备放弃核电,自身缺少能源的科技大国日本同样需要面临蓄能技术的问题,两个国家都肯定会加大这方面的研发投入,大规模蓄能领域的技术进步应该会加快不少。但是科学研究、工程方法有其自身的发展规律,要利用这些技

  • 核电站工作原理

    核电站工作原理 1.热堆的概念中打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。 这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应 利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。  2 热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。  3.慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。  4.反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。 核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站 自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。 目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。  压水堆核电站 压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。 压水堆由压力容器和堆芯两部分组成。压力容器是一个密封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推动汽轮机转动的高温高压蒸汽就在这里产生的。在容器的顶部设置有控制棒驱动机构,用以驱动控制棒在堆芯内上下移动。 堆芯是反应堆的心脏,装在压力容器中间。它是燃料组件构成的。正如锅炉烧的煤块一样,燃料芯块是核电站“原子锅炉”燃烧的基本单元。这种芯块是由二氧化铀烧结而成的,含有2~4%的铀-235,呈小圆柱形,直径为9.3毫米。把这种芯块装在两端密封的锆合金包壳管中,成为一根长约4米、直径约10毫米的燃料元件棒。把 200多根燃料棒按正方形排列,用定位格架固定,组成燃料组件。每个堆芯一般由121个到193个组件组成。这样,一座压水堆所需燃料棒几万根,二氧化铀芯块1千多万块堆芯。此外,这种反应堆的堆芯还有控制棒和含硼的冷却水(冷却剂)。控制棒用银铟镉材料制成,外面套有不锈钢包壳,可以吸收反应堆中的中子,它的粗细与燃料棒差不多。把多根控制棒组成棒束型,用来控制反应堆核反应的快慢。如果反应堆发生故障,立即把足够多的控制棒插入堆芯,在很短时间内反应堆就会停止工作,这就保证了反应堆运行的安全。 轻水堆――沸水堆电站 沸水堆核电站 沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。 沸水堆是由压力容器及其中间的燃料元件、十字形控制棒和汽水分离器等组成。汽水分离器在堆芯的上部,它的作用是把蒸汽和水滴分开、防止水进入汽轮机,造成汽轮机叶片损坏。沸水堆所用的燃料和燃料组件与压水堆相同。沸腾水既作慢化剂又作冷却剂。 沸水堆与压水堆不同之处在于冷却水保持在较低的压力(约为70个大气压)下,水通过堆芯变成约285℃的蒸汽,并直接被引入汽轮机。所以,沸水堆只有一个回路,省去了容易发生泄漏的蒸汽发生器,因而显得很简单。

  • 【原创】日本福岛核电站发生爆炸

    日本3月11日8.8级大地震,导致多个核电站受损,核泄漏,3月12日16时福岛核电站,第一反应堆先后发生两次爆炸,核电站的辐射强度每小时相当于原来的一年,强度是平时的1000倍。但是由于铀的含量为3%,故核电站不会象原子弹那样爆炸。核能可以说是一种很有发展潜力的能源,可从俄罗斯,法国再到日本都不同程度的发生过核泄漏,我国也有多座核电站,我国也经常被地震光顾,核电站安全问题更应受到加倍重视,国家核电站在安全防护上应该加大资金投入,确保真正安全,普通老百姓应当学会如何防止被辐射,减弱辐射对身体造成的伤害。

  • 【资料】核电站事故一览

    1957 年9 月29 日:前苏联乌拉尔山中的秘密核工厂“车里雅宾斯克65 号”一个装有核废料的仓库发生大爆炸,迫使苏联当局紧急撤走当地11000 名居民。   1957 年10月7日:英国东北岸的温德斯凯尔一个核反应堆发生火灾,这次事故产生的放射性物质污染了英国全境,至少有 39 人患癌症死亡。   1961年1月3日:美国爱荷华州一座实验室里的核反应堆发生爆炸,当场炸死3名工人。   1967年夏天:前苏联“车里雅宾斯克 65 号”用于储存核废料的“卡拉察湖”干枯,结果风将许多放射性微粒子吹往各地,当局不得不撤走了9000 名居民。   1971年11月9日:美国明尼苏达州“北方州电力公司”的一座核反应堆的废水储存设施发生超库存事件,结果导致5000 加仑放射性废水流入密西西比河,其中一些水甚至流入圣保罗的城市饮水系统。   1979 年3月28日:美国三里岛核反应堆因为机械故障和人为的失误而使冷却水和放射性颗粒外逸,但没有人员伤亡报告。   1979 年8月7日:美国田纳西州浓缩铀外泄,结果导致1000 人受伤。   1986 年1月6 日:美国俄克拉荷马一座核电站因错误加热发生爆炸,结果造成一名工人死亡,100 人住院。   1986 年4月26 日:前苏联切尔诺贝利核电站发生大爆炸,其放射性云团直抵西欧,造成约八千人死于辐射导致的各种疾病。   2011年3月14日: 日本东京电力公司福岛第一核电站3号机组当地时间上午11点过后发生氢气爆炸。福岛县政府13日发布消息称,新确认有19名从福岛第一核电站方圆3公里撤离的人员遭到核辐射,已确认遭核辐射的人数由此上升至22人。福岛第一核电站泄漏的核物质已经飘至东京,东京地区的放射线量已经超过了往常的20倍,而且继续处于上升的趋势。

  • 中微子探测器在大亚湾核电站地下加紧建设

    中微子探测器在大亚湾核电站地下加紧建设

    http://ng1.17img.cn/bbsfiles/images/2011/10/201110242051_326072_1609805_3.jpg10月下旬,中国科学院大亚湾反应堆中微子实验大厅,科研、工作人员正在实施中微子探测器的吊装任务中微子探测器是一个直径5米、高5米的圆桶,里面装有液体闪烁体,总重110吨。这是中国正在建设中的大型粒子物理实验装置,也是由中、美、欧等几十个大学和研究所参加的大型国际合作项目,实验地点在广东省大亚湾核电站地下约100米。

  • 【资料】核电英语300句

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=180766]核电英语300句.rar[/url]

  • 【讨论】地震中的核电站,如何保证它的安全??

    这次日本大地震,给日本造成很大的创伤!尤为让人关注的恐怕要数核电站了,据报道称,好像还有核泄漏的情况,不知道这个情况的严重性到底有多大!之前,可能会有一些措施和预案,解决这个问题。可是这些预防措施一旦失灵,会对周围的环境造成多大的伤害呢?我国也在沿海建造核电站,好多地方的百姓可能出于对核电的不了解,以及恐惧,曾经反对过,那我们如何来解决这个问题呢?如今的地球进入活跃期,地震的发生似乎也越来越频繁了!核电站在建造过程中是如何预防地震破坏的呢?这种形势下是否会对核电站的建造造成影响呢?欢迎大家就此事发表自己的看法和意见!!

  • 【转帖】福岛核电站4号反应堆突然起火

    日本政府核安全局发言人15日表示,福岛1号核电站2号反应堆的外壳很可能已经受损,堆内的放射性物质可能正在泄漏。当天清晨,2号反应堆所在机房发生爆炸。此前,救援人员一直在强行用海水为不断升温的2号反应堆“退烧”。此后不久,福岛核电站4号反应堆突然起火,并造成更多放射物泄漏。日本首相菅直人随即要求距离该核电站30公里内的居民“呆在室内”。此前,日本政府曾要求距核电站20公里的居民连夜疏散。这表明,持续了四天的福岛核电站危机正迅速恶化。  现在,人们最担心的是,福岛核电站所在区域风向变化。一旦噩梦成真,原本被吹向太平洋上的放射性颗粒将进入日本内地甚至跨越日本海污染远东地区其他国家。  不过,日本政府反复强调,2号反应堆内的核燃料目前“依旧完整”。15日发生的爆炸,只对反应堆的压缩舱造成了损害。这个所谓“压缩舱”指的是反应堆底部环绕核燃料的水槽。正常情况下,核反应堆就是靠里面的循环冷却水来帮助核燃料有效降温的。  由于压缩舱是反应堆外壳的一部分,因此福岛核电站2号反应堆可能正在发生核泄漏事故。这种现象也解释了为何这座反应堆中冷却水液面下降速度如此之快,以至于曾两次造成核燃料完全暴露在水面以上。在向反应堆内部灌水的同时,抢险人员还不断用水浇反应堆来降温。  15日的爆炸发生后,福岛核电站大门口的辐射强度正在增加:在短短3小时内就从73微希增加到了1.19万微希。不过,这相当于人体接受一次X光检查的强度。只有超过10万微希才会对人体造成伤害。此前,日本政府承认,福岛1号核电站下属的三座核反应堆内可能正在发生“核燃料部分融化”现象。其中,2号反应堆的险情尤为严重。其他两座反应堆的现在“相对稳定下来”,但仍需要通过向外主动排放含有放射性物质的蒸汽的办法来减轻其内部压力。  福岛1号核电站内反应堆冷却系统依然因被海啸带来的洪水浸泡着而无法运转,救援人员只能通过用消防车灌入海水的方式来为发生“过热故障”的3个核反应堆降温。这种极为原始的抢险方法说明,日本已无法通过正常手段来确保出现问题的反应堆恢复正常。  日本核电站冷却系统正常工作流程是:水泵把完成冷却任务的热水从反应堆中吸出来送入热交换器,然后把冷水灌入反应堆带走热量。现在,因为停电,上述流程无法进行,只能通过灌入海水给反应堆降温,结果在海水沸腾后产生大量蒸汽并造成反应堆压力过高。  自从日本核电站在“311”特大地震和海啸后出现严重险情以来,世界各国都在密切关注局势进展。不少欧洲国家表示,将认真检查现有核电站安全水平并考虑停建新核电站。与此同时,其他国家,包括美国和曾遭受8.8级大地震袭击的智利,都强调将继续推进核电建设。

  • 福岛核电站泄漏高辐射污水

    新华网北京2月24日电(记者石中玉)管理福岛核电站的日本东京电力公司22日说,核电站多个传感器监测到高辐射污水泄漏,排放至大海。 这家企业说,这些传感器安装在福岛第一核电站一个排水沟中,当地时间22日上午10时左右监测到排出污水的辐射水平比平时高出50至70倍。 东京电力公司说,已关闭这一排水沟,以免辐射污水排入太平洋。另外,已对核电站内用于储存污水的蓄水罐展开紧急检查,但没有发现其他反常情况。 这家企业一名发言人说,这些传感器显示,污水的辐射水平已逐渐下降,不过,仍比平常水平高出10至20倍。尚不清楚污水辐射水平骤然升高的原因,也不清楚这一水平逐步下降的原因。 他告诉法新社记者:“通过紧急调查和对其他传感器的监控,我们不认为储水罐中的辐射污水正在泄漏……我们已经关闭这条排水沟,并监控其中传感器,观察(辐射水平的)变化趋势。” 【污水难题】 福岛第一核电站在2011年“3·11”大地震和海啸中遭受重创,引发自1986年苏联切尔诺贝利核电站事故以来最严重的辐射泄漏事故。尽管核电站事故清理工作已经进行3年多,但处理用于冷却反应堆和燃料的污水却成为一大难题。 这些污水不仅具有放射性而且储量巨大,加之来自附近山川的地下水不断涌入,使污水不断增加。 东京电力公司已在核电站中建立大量储水罐和处理设备用于储存和处理污水,但多次发生辐射污水泄漏事故。 国际原子能机构近期说,东京电力公司在福岛核电站清理工作中“进展显著”。这一机构建议,日本可把经过处理的污水排至大海。

  • 【原创大赛】浅析核电厂中总有机碳的测量

    [align=center]浅析核电厂中总有机碳的测量[/align][align=center]于淼[/align][align=center](中核辽宁核电有限公司,辽宁省兴城市 邮编:125100)[/align][b]摘要[/b]:本文首先指出了监测TOC指标在核电厂中的重要意义,国内对TOC测量的相关标准,其次重点分析了VVER堆型,其他堆型对TOC指标的测量现状、不足及拓展应用,最后,对国内核电厂准确测量TOC,提出展望。[b]关键词[/b]:核电厂;TOC;测量。[align=center]Brief Analysis of Measurement[/align][align=center]of Total Organic Carbon in Nuclear Power Plant[/align][align=center]YUMIAO[/align][align=center](CNNC liaoning Nuclear Power Corporation, xingcheng 125100, Liaoning, China)[/align][b]ABSTRACT[/b]: Firstly, this paper points out the importance of monitoring TOC in nuclear power plants, and TOC measurement domestic criterion. Secondly, it focuses on [color=#333333]present situation[/color] ,shortcomings and expanding application in the TOC measurement of VVER, etc. Finally, it puts forward the prospect of accurate TOC measurement in domestic nuclear power plants.[b]KEY WORDS[/b]: nuclear power plants TOC measurement我国核电机组有VVER,M310,AP1000,EPR四种类型。在化学监督方面,每种机组制定不同的电厂化学技术规范或化学监督大纲,对水汽品质均提出了较高的要求。其中总有机碳(Total Organic Carbon , TOC)已经成为技术规范中一个非常重要的指标。总有机碳是以碳的含量表示水中有机物质总量的综合指标,是衡量水质中总有机污染物水平的重要指标,在药厂、环境、电厂等均有严格的要求。以三代核电机组AP1000 为例,除盐水提出了总有机碳含量小于100 μg/L 的要求,较国内其他核电机组或火电机组提出了更高的要求。因此,为维护良好的一二回路水质,降低对系统设备的腐蚀,准确测量核电厂中TOC的含量,具有重要的的意义。1、 [b]核电厂中监测TOC指标的重要意义[/b]TOC表征水中有机物的含量,含有痕量有机物的除盐水进入核电厂一二回路中,在高温高压含有放射性的水中会发生如下的一些变化:在二回路中,有机物会在6至7MPa,220℃左右的水中分解成甲酸、乙酸等有机物,引起给水、主蒸汽阳电导率的上升,造成系统设备的腐蚀,尤其是汽轮机低压缸叶片造成严重的腐蚀[sup][[/sup][sup]1[/sup][sup]][/sup]。同时不容易分解的有机物,如腐殖酸等,也会造成凝结水精处理系统树脂交换容量的降低,影响其净化功能。在一回路中,与二回路类似,降低一回路净化系统的交换容量,影响树脂对放射性腐蚀产物的去除,增加生产人员及承包商的受照剂量。此外,对于一回路辅助系统乏燃料水池,因水中没有溶解氢,水呈氧化性、放射性。在反应堆停堆或启动过程中,经过乏燃料水池净化系统时,系统的树脂老化或氧化降级,溶出有机物聚苯乙烯磺酸(PSS),PSS 分解产生硫酸根。TOC 指标能够准确的反应有机物的含量,作为跟踪PSS 的含量,为解决大修期间一回路水化学控制提供必要手段。2、 [b]TOC相关标准[/b]我国对TOC的限值要求最严格的是电子半导体行业。针对电力行业,国家质检总局于2008年颁布了《火力发电机组及蒸汽动力设备水汽质量》(GB/T12145-2008),水中TOC的限值为(200~500)μg/L,非强制检测项目,仅在必要时监测。该标准于2016年进行升版,将TOC指标改为TOCi,TOCi指标表征水中有机物中总的碳含量及氧化后产生阴离子的其他杂原子含量之和,在核电行业中,因阴离子有[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]进行单独跟踪测量,所以尚未引进TOCi概念。我国核电在制定电厂化学技术规范或化学监督大纲时,主要参照各堆型初步设计、国内外水化学导则(如美国EPRI,法国EDF,能标NB,电标DL,国标GB等)、技术规格书(FSAR第16章)以及参考电站运行经验,一二回路水中TOC的限值为(0~500)μg/L。TOC指标在VVER机组大多数系统及系统冲洗、树脂冲洗等都有强制性要求,为必检项目。国内对于TOC方面的标准[sup][[/sup][sup]2[/sup][sup]][/sup],有国家标准《水质 总有机碳(TOC)的测定 非色散红外线吸收法》(GB13193-91),生态环境部标准《水质 总有机碳的测定 燃烧氧化非分散红外吸收法》(HJ/T71-2001),和《总有机碳(TOC)水质自动分析仪技术要求》(HJ/T104-2003),均针对较大浓度TOC含量的测量。对于痕量TOC的测量,有火电行业标准《火力发电厂水汽分析方法 总有机碳的测定》(DL/T1358-2014),该标准侧重于标准曲线的绘制等,TOC的准确测量重点在于仪器的氧化方式(能否将有机物彻底完全氧化)和检测手段(检测器的灵敏性及对干扰的抑制)。对于测量TOC的仪器—TOC仪,为了评定其计量性能,保证量值可靠、准确、一致并具有溯源性,国家质检总局发布了《总有机碳分析仪》(JIG821—2005)检定规程。JIG821—2005主要针对检测器为非色散红外检测器,其实施为该类TOC仪的检定工作提供了技术依据。但由于在规程的制修订过程中,TOC仪在国内主要应用在环境、化工等领域.测量范围仅在ppm级以上[sup][[/sup][sup]3[/sup][sup]][/sup],因此,JIG821—2005规定的检定范围和相关的国家有证标准物质只覆盖ppm级以上,部分检定项目并不适用于测量范围为ppb级的TOC仪的检定。3、 [b]核电厂TOC的测量[/b]我国核电堆型众多,VVER机组为俄罗斯技术,经俄方推荐,中方业主调研,样品含有小于50ppb的TOC,综合运行维护容易和更易检测低含量的TOC,UV/过硫酸盐氧化法是首选方法[sup][[/sup][sup]4[/sup][sup]][/sup],选择GE公司(现被法国苏伊士集团收购)UV(紫外)/湿法氧化+选择性薄膜电导检测器TOC仪(对于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等大型精密仪器,也用电导进行检测),而其他核电机组,如M310,AP1000等均采用美国OI公司加热湿法氧化+非色散红外检测TOC仪,红外检测的原理类似分光光度计,通过朗伯比尔定理进行定量检测。[b]3.1、VVER机组TOC测量[/b]GE 公司生产的Sievers 系列产品TOC仪基本原理如下:通过紫外灯和强氧化性物质(过硫酸铵)将有机物氧化为二氧化碳(CO[sub]2[/sub]),使用高灵敏度和高选择性的“渗透膜---电导检测器”测量二氧化碳(CO[sub]2[/sub])浓度,检测总无机碳(CO[sub]2[/sub],HCO[sub]3[/sub]和CO[sub]3[/sub][sup]2-[/sup])浓度和总碳浓度(氧化后的有机物质浓度),通过计算总碳浓度和总无机碳浓度之间的差值而达到测量总有机碳浓度的目的。具体流程图如图1。该检测方法被ASTM(美国材料试验协会)认可,并纳入美国EPA(环保局)标准方法。广泛的应用于医药、半导体、电厂等行业,是目前对低浓度TOC水样最适合的检测方法之一。该仪器结构相对简单,高度集成,电厂中水样测量过程简单,一键即可,不需要进行样品的前处理操作,并可进行批量集中测量。如测量样品浓度范围不同的样品,使用前需根据样品的TOC含量水平设置仪器参数,并定期对仪器进行检查维护,这需要化学人员对仪器设备本身充分的熟悉。在标准方面,厂家提供标准浓度250ppb,500ppb,750ppb,1000ppb,保存期限两周左右,同时,该仪器所使用的试剂均为厂家提供,密封在仪器内部并自动加药,对人员风险较低。在VVER机组中,二回路的水样含有1ppm的氨和几十ppb的联氨,电导率6.8-10.8μS/cm,样品基体低,薄膜电导法可以有效去除氨和联氨的影响。一回路的水样含有0-8g/L的硼酸,0-13mg/L的KOH,2.2-4.5的H[sub]2[/sub](实验室测量可忽略其干扰),0-10mg/L的氨,测量过程需做一定的优化。运行阶段,一二回路TOC大多较为偏低,回路水质较好,采用GE公司生产的Sievers 系列产品进行TOC测量。对于大修、调试冲洗阶段,回路水中常含有痕量化学辅助材料如油漆,抗燃油、汽轮机油等有机物以及其他颗粒物质,此阶段进行电厂冲洗水样的测量,会造成仪器内部管路污染残留或管路堵塞,此外,此类有机物及腐殖酸等,不易通过UV(紫外)/湿法氧化法进行氧化,也影响样品测量的准确性。我国VVER机组参考电站为内陆电站,俄罗斯、乌克兰等国家电厂内陆水源普遍含有一定量的重油,参考电站用荧光光度法测量水样中水中油含量来代替TOC指标,荧光光度法的的原理就是用正己烷将水样中油类物质萃取出来,用氙灯去照射萃取液产生荧光进而进行定量测量。VVER机组在调试、大修阶段,水样中可能存在油类、辅助化学品、悬浮物等污染物时,经常用水中油的测量代替TOC项目。[align=center][img=,552,591]file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml3392\wps1.png[/img]图1 VVER机组TOC测量原理[/align]水样中C-14的测量,我国目前尚无标准[sup][[/sup][sup]5[/sup][sup]][/sup]。核电厂中常利用C-14辐射生成低能量β射线,用液闪的方式进行测量。因核电厂一回路中含有大量的H-3和少量的C-14,H-3辐射生成β射线能量与C-14辐射生成β射线能量有重叠部分,水中H-3对C-14的测量有严重的干扰,所以用液闪测量前水样中C-14,须将C-14从H-3中分离出去。如图1,CO[sub]2[/sub]渗透膜去离子水侧,CO[sub]2[/sub]被分离(一定效率),VVER机组常用该类仪器作为水样中C-14的测量的前处理使用,拓展仪器使用范围,解决核电厂中水样C-14的测量的危害。[b]3.2、M310、AP1000机组TOC测量[/b]除了VVER机组外,其他核电厂均采用了美国OI Analytical公司Aurora 1030W或1010总有机碳分析仪测量TOC,该类仪器被广泛的应用于如饮用水、地下水、污水及工业排水等TOC相对含量较高的环境领域。[img=,554,513]file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml3392\wps2.jpg[/img] [align=center]图2 M310、AP1000机组TOC测量[/align]具体示意图见图2。其基本原理如下:在常温下将样品加入反应腔,同时加入5%的磷酸将样品酸化到pH小于3,反应腔升温到70℃,同时向反应腔中导入氮气吹扫,将样品中无机碳的反应平衡打破,在酸性条件下使无机碳全部转变成CO[sub]2[/sub],进而被氮气流吹走,再向反应腔中加入10%的过硫酸钠,反应腔升温到98℃,将样品中的有机碳氧化成CO[sub]2[/sub],氧化过程结束后,CO[sub]2[/sub]由氮气吹入净化和干燥处理装置,最后进入NDIR进行监测。该方法将过硫酸盐加热到100℃能更好的分解过氧化物,产生更好的氧化作用,使之能够分解难氧化的有机物和微生物,真正实现有机物100%的转化为C0[sub]2[/sub][sup][/sup]。红外检测法是国标《水质 总有机碳的测定》(GB13193-91)的检测方法。CO[sub]2[/sub]对4.26μm红外有特征响应,且为非线性响应,水分子和卤素也有响应(目前,仪器已有脱卤素管、脱水渗透管将干扰尽量降低),对氮气气源也有纯度要求。M310,AP1000机组TOC的测量,二回路水样的本底与VVER机组类似,TOC易于测量,一回路主要含有0-3.5mg/L的LiOH,25-50cc/kg的H[sub]2[/sub](实验室测量可忽略此干扰),0-1400ppm的硼酸(以硼计),测量过程需做一定的优化。另,该方法仪器设备复杂,操作相对繁琐。此外,M310,AP1000机组一回路C-14的测量也采用此仪器进行前处理。将氮气吹扫出的总有机碳用碱液吸收,从而用液体进行测量,避免了H-3对碳-14 测量的干扰。4、 [b]结论[/b]TOC指标在核电行业内是非常重要的监督指标,尤其在一回路及其辅助系统的监督中。准确测定TOC含量是一项困难的工作,各方法都有其优缺点。目前在核电行业二回路的样品测量中,薄膜电导法以其低检测下限得到了很好的运用,在一回路样品的测量中,因样品中高基体的干扰离子,在TOC的检测中,如检测方法适用性,标准试剂,仪器检测下限等还存在许多问题,需核电化学工作者进一步研究优化,并关注国内外TOC检测最新动态,将最优最先的检测技术应用到核电领域中。参考文献: 田利,戴鑫,沈肖湘.发电厂水汽中有机物含量控制指标探讨.热力发电,2014,43(11):108-111. 徐滋秋.总有机碳(TOC)分析仪综述.见:第三届环境监测仪器与现代控制技术在环境治理工程中的应用研讨会,北京,2004年9月. 马康,谷雪蔷,黎朋.总有机碳(TOC)分析技术及仪器的计量标准现状.中国计量,2011,5:94-96. 刘建伟,莫德举.TOC监测技术的新进展及工业应用选型参数.现代仪器,2000,6:30-33. 黄彦君,上官志洪,黄东辉,等.我国核电厂流出物监测和辐射环境监测标准体系研究.辐射防护,2018,38(5):377-388.

  • 核电用仪表阀门(阀组)的研发

    需求:核电用仪表阀门(阀组)的研发简单描述:核电用仪表阀(阀组)直接关系到核电站运行的可靠性和安全性。目前国际上技术已处于成熟,国内因在核心关键制造技术方面一直没有突破,巨额的利润使外国公司对我们实行长期的技术封锁和市场垄断。因此,建立自己的核电用仪表阀(阀组)的研发和生产平台,不仅具有可观的经济效益和重大的社会效益,而且显得十分迫切。 核电用仪表阀(阀组)要求承受压力250 bar; 工作温度350 ℃;使用寿命大于40年;无内外泄漏、无卡涩。满足我国能预计到的最严酷的抗震(SSE)要求—固有频率大于33Hz, 能承受三个方向的地震加速度5g以上。技术难题及需提供技术支持的具体内容及要求:1)新型结构技术研究开发:科学、合理的新型结构型式对于核级仪表阀的强度、性能、安全寿命以及可靠性等具有非常重要的意义。核级仪表阀要求结构紧凑,重量轻,多种接口,开关灵活省力,并能承受抗震要求。2)密封技术研究开发:对于核电阀门来说,必须要做到零泄露,国此密封技术极为重要。确保零泄露。针对不同的场合,重点进行填料密封、波纹管密封、隔膜密封、硬密封、倒密封等技术研究开发。3)材料的选择及热处理技术研究开发:高温高压下的强度、弹性、抗疲劳、抗高温软化、抗应力衰减、高温耐磨损、耐挤压、耐腐蚀性能。核级仪表阀材料强化处理技术。解决关键零部件存在的表面硬度低、抗磨损性能和抗疲劳性能差等问题,提高核级高温高压仪表阀的性能和使用寿命。我公司自己也有研发,但是效果不理想,希望得到更好的技术支持。

  • 【分享】俄罗斯开建世界首个水上漂浮核电站

    【分享】俄罗斯开建世界首个水上漂浮核电站

    俄罗斯开建世界首个水上漂浮核电站[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905231024_151501_1644912_3.jpg[/img]第一座漂浮的核电站北京时间5月22日消息,据国外媒体报道,俄罗斯圣彼得堡波罗的海造船厂5月18日正式开工建造世界上第一个漂浮核电站,预计将在2012年完工。 这个漂浮核电站建在一艘长144米的船上,用以解决靠近海边的俄罗斯偏远地区缺电和供热问题。船上安装有两个核反应堆动力装置,每个可分别发电3.5万千瓦。承建商表示,漂浮核电站的使用寿命将限制在38年,每12年需要加载一次燃料。 实际上,早在2007年,这个雄心勃勃的建设计划便在俄罗斯阿尔汉格尔斯克地区的谢夫马什(Sevmash)造船厂悄然进行。然而,由于成本上升以及谢夫马什造船厂周围河水泛滥,建设工作不久便停止。18日,漂浮核电站的建设在圣彼得堡波罗的海船厂重新开始。 漂浮核电站的探险之旅将在俄罗斯远东堪察加半岛的威尔尤欣斯基(Vilyuchinsk)水域开始。漂浮核电站计划于2012年完工,将来,这种设备还可以用来向偏远地区提供电力。俄罗斯曾在20世纪90年代使用过类似技术,当时,俄罗斯核动力潜艇和破冰船在没用电的情况下深入该国东部。 俄联邦原子能署(Rosatom)顾问弗拉基米尔格拉切夫(Vladimir Grachev)在接受“俄罗斯之声”电台采访时说:“第一个漂浮核电站的建造是朝着建造小型核能源道路上迈出的一步,可以在特定条件下提供可持续能源供应。这些核电站的作用在没有其他能源的地区将不可替代。” 格拉切夫又说:“长期以来的经验表明,漂浮核电站不会破坏环境。这是电力行业的未来。”俄罗斯政府计划在不久的将来再建7个漂浮核电站,每个耗资100亿卢布(约合3.1亿美元)。另外,俄罗斯还计划将漂浮核电站出口到国外。

  • 【分享】<<核电领域电器安全保护设备校准方法研究》项目通过验收

    3月8日,由上海市计量测试技术研究院在线通用所承担的国家质检总局科技项目《核电领域电器安全保护设备校准方法研究》顺利通过项目验收。  验收评审专家认为,课题主要研究成果思路新颖,具有开拓性、创新性及前瞻性;项目为今后开展核电及相关领域电器安全保护设备的校准提供了整套装置和完善的校准方法,填补了我国在核电电器安全保护设备校准领域的空白,达到同类研究的先进水平。

  • 【讨论】关于核能、核弹和核电站

    核能全世界首个大型核电站在 1956 年建于英格兰坎布里亚郡的考尔德大楼,持续提供了 47 年的电力。核能是通过铀这种大量开采的矿石金属生成的。加拿大、澳大利亚和哈萨克斯坦占据了全球超过半数的供应量。核反应堆的工作原理和其他的发电站很相似,不过它们并不是使用煤炭或煤气来生成热量,而是利用核裂变反应。大部分情况下,核反应产生的热量会将水转变为蒸汽,继而驱动涡轮机发电。铀有许多不同的种类,或称同位素,而在核电站中所使用的是铀 235 这一类,因为这些的原子最容易一分为二。由于铀 235 很稀有,只占天然铀中的不足 1%,所以必须提高浓度,让燃料中有 2~3% 的含量。在核反应堆中,铀棒排列成束,浸入一个巨大的耐压水箱中。当反映开始后时,被称为中子的高速粒子会撞击铀原子,导致它们一分为二,这一过程称为核裂变。这一过程释放出大量能量和更多的中子,于是继续将别的铀原子一分为二,引发连锁反应。这股能量将水加热,然后通过管子输送到蒸汽发生器中。为了确保发电站不会过热,人们将使用吸收中子的材料制作的控制棒放入反应堆下面。整个反应都包裹在一层厚厚的混凝土防护层里面,避免辐射泄漏到外界环境中。在英国,核电站提供了 19% 的电力,占总能源使用的 3.5%。所有的反应堆除了一个以外其他的都计划在 2023 年之前关闭。一些组织反对核电站,因为它们会产生放射性废料,而如果发生事故可能会释放出放射性物质。但核电站并不会释放温室气体,而以煤炭和煤气为燃料的发电站会释放这种气体,造成全球变暖。如果没有核电站,英国的碳排量将会比现在高出 5% 至 12%。在 1957 年,全世界首次核电站事故在坎布里亚郡西部的温士盖(Windscale)发生了。反应堆中发生火灾,导致放射线被释放出来,以至于周围农场的牛奶被禁止销售。该地区后来更名为塞拉菲尔德(Sellafield)。现代反应堆有自动关闭的设计。历史上最严重的核电站事故发生在 1986 年的切尔诺贝利,一个反应堆发生了爆炸,当场炸死几十人,更有上万人受到辐射影响。在一月,政府重申了其在英国扩张核电站的计划,以帮助它达到减少二氧化碳排放量的苛刻目标。核武器核武器有两种主要类型:原子弹,其能量来源于与核反应堆类似的核聚变反应,以及氢弹,其爆炸能量来源于核聚变反应。第一颗原子弹是在二战末期的曼哈顿计划下于美国洛斯·阿拉莫斯国家实验室生产的。原子弹利用常规爆炸让铀 235 和钚 239 这两块分裂性原料相互撞击。这会造成核原料所谓的临界质量,当其中的原子在无法控制的连锁反应中分裂时,能在瞬间释放出能量。原子弹能放出极强的冲击波和高放射性的中子和伽马辐射。在原子弹中,铀的浓度要比在燃料中更高,大约含有 85% 的铀 235。在 1945 年 8 月 6 日,一颗名为小男孩的原子弹被投放到日本的广岛,三天后,另一颗叫胖子的在长崎爆炸了。氢弹,或称热核炸弹,的工作原理几乎与原子弹完全相反。其大部分爆炸能量都来源于将氢原子聚合起来,形成质量更大的氦原子的过程,其释放的能量要比核裂变的原子弹大得多。它使用两种类型,或称同位素,的氢——氘和氚。氘原子和氢原子一模一样,除了其化学式的原子核中多了一个中子。氚原子多了两个中子。氢弹内置了一颗原子弹,用于触发聚变反应。氢弹从未在战争中使用过,它要比原子弹的威力强上千倍。首次氢弹试验发生在 Enewatak,那是太平洋上的一处环礁。它释放出了直径三英里的火球和高达近 60000 英尺的蘑菇云,在爆炸中摧毁了一座岛屿。核废料核工业所面临的最大问题之一就是如何处理所产生的放射性废料。其中部分依然保持着放射性,其威胁性会持续上万年。高放射性废料是最危险的,因为它能熔穿容器,而且放射性强到在它旁边的人只需几天就有致命危险。这种废料只占英国核废料总量的 0.3%,其中大部分都是来自于用尽了的燃料棒的。放射性废料中占比例最大的部分是核燃料部件、反应堆部件和铀。如今,高放射性废料的处理方式是将它在水中冷却数年,然后将其混入熔融态的玻璃中,接着倒入铁质容器。这些容器接着就被保存在混凝土内衬的建筑物中。但这只是种临时方案。科学家知道他们最终将需要找出一种在上千年中安全储存核废料的方法。一些国家,例如美国和芬兰,计划将核废料储存在地底深处的掩体中。为了保证安全,科学家们必须确保这些物质决不可能泄漏出来,以至于污染水源或者升至地表。英国已经产生了超过 100000 吨需要储存起来的高放射性的废料。大量高放射性废料已经被储存在坎布里亚郡 Drigg 的混凝土地下室中了。其他处理核废料的计划包括倒入海中和发射到宇宙中。

  • SC-500砂尘试验箱适用不同区域使用的核电站机柜

    原文来源:SC-500砂尘试验箱适用不同区域使用的核电站机柜 编辑:北京雅士林  [url=http://www.bjyashilin.com/product_show-83.html][b]砂尘试验箱[/b][/url]满足IP5X、IP6X等级,用户可以根据核电站机柜使用区域不同,选择一种或多种试验方法,IP5X及6X结合在一台试验箱上,同时也是防水最高等级,故大多用户直接选择以此通用。  核电站机柜是核电站仪控系统的重要载体,其安全可靠性对核电站安全、可靠、稳定运行至关重要。作为电子电气设备的外壳,核电站机柜的IP防护等级是其最重要的安全性能指标之一。  核电站的不同区域环境条件有所不同,因此对电子电气设备外壳的IP防护等级要求各异。核电站主控室环境条件相对较好,对温度、湿度及灰尘等的控制相对严格,所以一般要求主控室操作台等设备的外壳防护等级为IP30即可。然后与主控室相比,核电站汽轮机房环境条件相对较差,一般要求现场机柜的防护等级为IP43,要数核电站泵房中环境条件最恶劣,所以要求泵房机柜的防护等级为IP55,甚至达到IP56。要单独实现机柜的IP防护并非难事,但若同时实现机柜通风散热却颇具难度。通风散热要求与IP防护要求相互矛盾,IP防护等级要求越高,实现通风散热难度越大。所以保证核电站机柜通风结构的IP防护等级是保证核电站机柜整体IP防护等级的关键。  点击了解更多→盐雾试验箱([url=http://www.bjyashilin.com/][b]http://www.bjyashilin.com/[/b][/url])高低温湿热试验箱([url=http://www.yslshebei.com/][b]http://www.yslshebei.com/[/b][/url])高低温低气压试验箱([url=http://www.ysl17.com.cn/][b]http://www.ysl17.com.cn/[/b][/url])防水试验箱([url=http://www.ayashilin.cn/][b]http://www.ayashilin.cn/[/b][/url])

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制