当前位置: 仪器信息网 > 行业主题 > >

汽车油耗

仪器信息网汽车油耗专题为您整合汽车油耗相关的最新文章,在汽车油耗专题,您不仅可以免费浏览汽车油耗的资讯, 同时您还可以浏览汽车油耗的相关资料、解决方案,参与社区汽车油耗话题讨论。

汽车油耗相关的资讯

  • 国家将统一标准测定汽车实际油耗
    12月16日讯 汽车油耗不再由厂家说了算,而有了统一的检测标准。昨日,记者从有关部门获悉,根据国家工业和信息化部发布的《轻型汽车燃料消耗量标示管理规定》,从2010年1月1日起,在国内市场销售的汽油或柴油车都必须张贴《汽车燃料消耗量标识》,标注由统一标准测定的市区、综合、市郊三种工况的燃料消耗量。   在市区某企业工作的小余最近刚买了一辆汽车,他告诉记者,买车时自己最看重的就是燃油经济性,可毕竟在车行试车时因路程太短,想一下子就了解是不是省油不容易,所以实际油耗怎样一时很难知晓,“最后我只能咨询身边购买过同车型的朋友,咨询他们实际的耗油量大概有多少”。   记者随机采访了许多消费者,他们都表示,买车时,销售员往往会夸大汽车的节油性,所提供的油耗值也是不值得信任,所以他们大都从老车主那里了解汽车的真实油耗,“汽车身上贴上由统一标准测定的实际油耗标注,就直接多了”。   据悉,《轻型汽车燃料消耗量标示管理规定》对汽车燃料消耗量标识的检测与申报、备案、标示、公布、监督处罚等都作了相关规定。
  • 中汽研自曝汽车油耗检测存缺陷 或被车企潜规则
    王强(化名)在国内一家知名汽车杂志任职,去年购买一辆宝马X1开了半年后,他却不满意这款车的油耗。&ldquo 宝马厂商标注的X1百公里油耗为7.2~9.2L,但在实际使用中,百公里油耗超过12L。不知道宝马厂商如何认证这款车的油耗检测。&rdquo 王强告诉《第一财经日报》记者。   王强的吐槽不是个案。不少消费者都曾抱怨,购车时车辆标注的油耗往往与实际用车情况相差甚远。个别车企油耗造假的问题也曾被媒体曝光。事实上,油耗造假已成为整车厂和检测机构心照不宣的约定。   在油耗检测中几乎处于垄断地位的中国汽研5月13日发布停牌公告称,自查和检查过程中,发现公司所属检测中心车辆油耗检测质量控制存在缺陷。对此,公司针对发现的问题正在进行整改,有关管理部门也正在研究,可能做出完善、整改的意见。除此之外,目前公司各项科研、技术服务和生产经营工作正常。   中汽研自曝油耗检测存缺陷,暴露了油耗检测以及后期生产一致性如何管理的问题,也凸显了行业监管缺失问题。   隐藏的利益链   为了严格规范油耗检测,工信部从2009年开始出台了一些文件,要求企业的油耗必须通过国家指定的第三方检测机构确认,其中包括出台了《轻型汽车燃料消耗量标示管理规定》,要求车辆模拟市区、市郊(包括公路)等典型行驶工况油耗,并在车辆中标示。相对之前车企独自发布的等速工况下的理论油耗,这些规定的出台可以明示油耗并便于监管,但是由于监管的缺失,油耗标示成了一门生意经。   国家对汽车产品质量的监督检验业务进行行政授权管理,如整车公告业务由工信部、国家质检总局等主要授权给中汽研下属的国家机动车质量监督检验中心(重庆)、国家轿车质量监督检验中心(下称&ldquo 天津中心&rdquo )等6家检测中心。   这6家检测中心之间是竞争关系,同时这些检测中心主要依靠油耗检测生存,车企是其衣食父母,这就滋生了行业潜规则。   &ldquo 汽车企业可根据自身情况在获得授权的机构中自行选择。目前来看,影响汽车企业选择质量监督检验机构的主要因素有以下几点:一是该监督检验机构的测试评价能力是否能满足自身的需求 二是该监督检验机构的测试评价的服务质量。&rdquo 中汽研在其招股书中表示。   车辆油耗测试结果直接关系到企业能否拿到油耗补贴&ldquo 通行证&rdquo 。&ldquo 一个指标可能影响到一个企业一年的业绩甚至命运,企业内部对这个测试结果非常重视,这也导致劣币驱逐良币的滋生。&rdquo 国内一家车企相关人士表示。   为了能够拿到国家汽车节能减排的补贴以及提升竞争力,众多车企都使出浑身解数加入了申报节能补贴的大军,以获取最低油耗标识。   行业监管缺失   国内一德系汽车品牌工程设计院的整车工程师称,汽车行业油耗测试存在很大可控空间。一般来说,汽车油耗测试分为研发测试和认证测试两部分。   研发测试为车企对自身产品进行测试,车企可自行调整车辆参数。认证检测则由厂家将样车发往第三方检测机构进行油耗试验。如试验结果合格,由检测机构出具检测报告,众多车企能干预的其实是认证检测这个环节。如果企业和检测机构达成默契共识,企业可挑选&ldquo 合格&rdquo 产品送样检测 如果检验机构&ldquo 睁一只眼闭一只眼&rdquo ,只对检测来样产品负责,批量产品的一致性问题得不到有效监管。   对于汽车企业在宣传产品时夸大油耗数据的&ldquo 通病&rdquo ,监督部门则缺乏监管,也没有相应的明确处罚规定。   &ldquo 油耗检测主要对样车负责,即使油耗检测合格了,如果有关行业部门不加强车型生产一致性监管,消费者买到的商品车的实际油耗与厂家标注的油耗仍不会符合,其结果是节能效果也大打折扣。&rdquo 业内人士表示。   实际上,在美国等成熟市场,监管部门会重罚欺骗消费者的行为。韩国现代和起亚两家汽车制造商由于夸大旗下13款产品的油耗,遭到美国环境保护署的起诉,它们将为此支付4.12亿美元作为车主们的补偿。
  • 工信部责令中国汽研整改油耗检测缺陷
    今年3.15期间,中国汽研旗下油耗检测中心被央视曝光,旗下长春与天津两家汽车检测机构存在油耗造假的现状。而涉及方之一的海马汽车,之前便发布公告称否认造假,称所有上市车型均达到国家相关技术标准,公司所有车型的油耗检测均按照《轻型汽车燃料消耗量试验方法》(GB/T19233-2008)的相关规定委托第三方检测机构进行检测 公司所有上市车型油耗均符合《乘用车燃料消耗量限值》(GB19578-2004)标准要求。   5月23日,中国汽研发布公告称,已经收到了工信部的责令整改通知书,对检测中心油耗检测质量控制存在的严重缺陷,责令检测中心自2014年6月1日起进行为期六个月的整改。整改期间,工信部将暂停受理检测中心有关检测报告。   自2009年起,工信部陆续出台了多项政策,强化对汽车油耗的管理,要求上市销售车型必须通过国家指定的第三方检测机构确认,其中《轻型汽车燃料消耗量标示管理规定》明确指出,要求车辆模拟市区、高速、市郊(包括公路)三种行驶工况油耗,在车辆中明确标示,以引导消费者购买。而中国汽研旗下的油耗检测中则处于该项检测的垄断地位。   中国汽研方面表示,由于公司所属检测中心个别部门管理不善,导致在本次油耗检测检查中出现质量控制缺陷,暴露出公司检测中心在内控管理方面存在问题。公司管理层对由此造成的影响深表歉意。而此次责令整改是由于公司所属检测中心个别部门管理不善造成,预计会对公司一定时期的相关业务产生影响。   瑞银证券方面表示,中国汽研在短期内可能面临下行风险,由于公司部分核心检测业务被勒令整改,这导致技术服务业务的估值和今年盈利都将面临向下调整的风险。虽然新订单应能弥补部分技术服务业务的下滑,但是程度可能有限。
  • 油耗检测酝酿2013年启用“国标”
    工信部日前规定,从今年1月1日起,将建立轻型汽车燃料消耗量公示制度。就在工信部公布首批涉及了105家企业的近6000个车型油耗数据时,许多细心的车主发现,此次公布的车辆油耗虽然远比厂家之前发布的更加真实,但不少车型离真实油耗仍然有差距。参与起草《轻型汽车燃料消耗量标示管理规定》的中国汽车技术研究中心专家上周在接受本报记者采访时表示,目前标示的油耗其实仍由厂家提供,并且使用欧洲工况进行检测。专家们透露,为了使得检测数据更加准确,相关部门目前正在研究适合中国现状的“国标”,计划在2013年时开始启用。   标示油耗由厂家提供   在“标示管理”发布之前,国内的汽车油耗一直没有统一标准,购车时看到的数据都是由厂家提供的那些并不具备实际参考价值的等速理论油耗。中汽研标准所所长方茂东指出,由于车辆油耗跟各种因素相关,在不同的气压环境,不同的路况,不同的驾驶风格等情况下都会出来不同的油耗结果。因此,作为参考标准的标示油耗原则上要求覆盖绝大多数车型。但他披露说,事实上目前公示的标示油耗仍由厂家提供,不过工信部会根据企业上报数据制定检测机构进行二次检测校对,如果检测结果在4%范围以内宣告合格。而如果高于厂家提交数据的4%,则需要再进行三次检测,最后直接采用三次重测数据的平均值进行公示。   有望启用“国标”检测   专家介绍说,要使油耗检测更加接近真实状况,还必须靠检测标准。方茂东表示,目前国际上还没有统一的油耗检测标准,但通用的主要有日美和欧洲两种工况标准。而我国按照《轻型汽车燃料消耗量试验方法》检测的正是欧洲2000年开始实施的NEDC循环标准。据悉,国内目前能担负工信部检测的机构主要有天津的国家轿车质量监督检验中心和长春、襄樊及重庆等四五个检测中心。   中汽研标准所副总工程师金约夫认为,虽然这些检测机构设备都基本一致,能保证国内的统一性,但由于国内实际工况跟欧洲模拟工况并不一致,因而会出现差别。“例如,欧洲模拟工况中,市区行驶占31%,市郊行驶占69%,但此前相关的调查数据显示,我国该数据接近市区70%,市郊30%,刚好倒置。另外,欧洲工况所使用的是稳态工况,而日本、美国所使用的是损态工况。”他表示,为了使检测试验更能符合国情,很有必要实施自主内容的“中国标准”。业内人士认为,也只有这样,今后外资企业才能像重视C-NCAP一样来重视中国标准。   中汽研副主任张建伟指出,此事将是一个耗时耗资的巨大工程,再加上我国目前道路状况不稳定,还面临巨大挑战。“中国工况标准我们正在探索,目前还没有定论。”但金约夫表示,现在计划的工况正在由稳态向损态方向发展,考虑低温启动、高温空调损害等情况下的因素。并且,新的工况标准有望在2013年出台,届时所测油耗将更为接近实际驾驶平均水平。
  • 汽车业“低碳”路在何方?
    被称作“拯救地球的最后机会”的哥本哈根气候峰会已经落幕。作为全球二氧化碳排放第二大行业的汽车行业将如何应对,中国车企的出路又在何方?   此前汽车专家陈光祖曾经表示,哥本哈根会议标志着汽车产业上低碳汽车新征程,建设低碳汽车将成为汽车产业一种新的“游戏规则”。   上个月25日,国务院常务会议决定,到2020年单位GDP二氧化碳排放要比2005年下降40%~45%,并提出相应的政策措施和行动。根据专家预测,随着我国汽车产业远远的成熟,汽车的碳排放量在总排放量中的比重会越来越高,最终可能会占到25%~28%的份额。   目前,欧盟已经在汽车行业的碳排放标准建设方面做出了表率。2008年11月,欧盟议会通过了以轿车为代表的碳排放法规总体规划, 2012年要达到130克/公里,2020年要达到95克/公里。   从某种意义上讲,“低碳”已经成为事关汽车企业生存和发展的严肃话题。   单从技术角度看,新能源汽车是最彻底的减排解决方案,但是从技术成熟度、推广应用成本、基础配套设施等方面看,新能源仍面临着较大的困难。   来自罗兰 贝格的预测数据显示,即便乐观估计,到2020年中国的新能源动力车的市场份额也只能达到15%,这意味着短期内,新能源汽车对实现2020年的减排目标的贡献将是非常有限的。   再者,从目前国内车企的现状看,加强生产销售全过程的节能环保和加快新能源车低油耗车的研发,成为他们身体力行“低碳”的主要举措。   例如,比亚迪坚持将电动车作为解决途径 神龙公司最新投产的第二工厂拥有全方位的节能减排考量,实现了水的零排放,使用无碳排放能源,降低排放污染 广汽本田将在降低废水排放、能源集约化建设、厂房建筑节能、能源动力站房建设中的节能降耗等方面积极促进减排工作 长安铃木加大对汽车低碳技术研发的重视程度与实际投入,尽快实现概念性技术的量化与生产 奇瑞则在生产方面最大限度实现几款车的共线生产,整合公司物流系统,改善和提升工艺水平,减少生产、运输过程中的能耗 东风日产则从着手生产更加环保节能的车型、建立绿色工厂和绿色专营店等多方面采取更多的节能减排措施 宝马汽车通过无污染的生产流程、研发低油耗和新能源汽车、实施绿色回收项目进行节能减排。   不过,除了企业自身高要求努力之外,更需要政府出台更为均衡的汽车产业政策。   已有专业人士指出,政府的决策和规划,才是最高境界的低碳。   这里不仅指的是政策,还有标准的细节。笔者认为,对于各车型的油耗,国家就应该在统一标准下进行严格地公示。   另外,国家还应着力使“整天开着大排量车的人为减碳做更多的事”。   汽车业的低碳之路,注定并不平坦。
  • 乘用车油耗新标准2011年将出台
    由工信部起草的《乘用车燃料消耗量限值》(第三阶段标准)已于近日完成,并下发企业征求意见,有望明年起正式实施。工信部希望,新标准实施后,2015年能实现整体油耗下降20%。   11月15日,工信部装备司一位主管政策制定的官员向财新记者证实了这一消息。他表示,实现整体油耗降低是未来的趋势。但他没有透露针对车辆的新的具体油耗限制标准。   国家质检总局和标准化委员会曾经发布《乘用车燃料消耗量限值》标准,分别于2005年7月1日和2008年1月1日起分阶段实施,标准主要针对9座以下的家庭用轿车,如规定一辆自身重量为1吨的轿车在测试状态下行驶100公里消耗的燃料不许超过8.9升,到2008年则要降到8.1升以下。   根据2008年实施的第二阶段标准设定的目标,到2010年底,实现比第一阶段(即2005年到2007年底)降低油耗10%。   上述官员透露,此项标准由工信部负责起草,国家标准化委员会颁布实施。与此前发布的第二阶段标准相比,该标准不再以单一车型作为评价对象,而是参考美国标准,将汽车企业作为整体来评价。   作为评价体系的一部分,标准还计划以相关税费政策作为奖惩标准,鼓励汽车企业研发生产节油汽车。
  • 汽车稳压节油器:是高科技还是大忽悠?
    高油价时代,如何节油成为车主们关注的焦点。于是,各种节能产品应运而生,汽油清净剂、节油贴、节油丸、省油精等等层出不穷。最近,一种用于汽车点烟器上的电子稳压节油器风头正劲。在网上搜索,此类稳压节油器有许多品牌,价格从几十元到几千元不等,它们大都宣传自己的产品具有5%—30%的节油效果。其中,数款节油器品牌因宣称自己拥有同济大学汽车学院的检测报告,更让人们趋之若鹜。   而记者调查却发现,同济大学汽车学院正为此事不堪其扰,他们只为两款节油器做过检测,并且在极端实验条件下油耗相差只能达到5%左右,30%的节油率从何而来?专家表示,市面上各种汽车节油产品基本都无效果。   同济只检测过两款节油器   “一箱油多跑100公里,节油率达9%—22%……”这些数据都源自金迈驰汽车节油器的广告宣传。另一个同样“一箱油多跑100公里”的卡康尼节油器的官网,也搞得有声有色:“节省燃油5%—30%,减少尾气排放30%……”同样蛊惑人心的还有达普利、助我行等等品牌。   这几款插在点烟器上工作的汽车稳压节油器都声称自己具有同济大学汽车学院的检测报告。   果真是同济大学汽车学院为这些节油器背书吗?   “这个事情已经弄得我们不堪其扰了,我们还在汽车学院的网站上都登了一个公告,说明这个事情。我也不知道,他们这些人怎么会这么吹牛,我们现在一律都不做这种检测了。”接到记者的电话时,同济大学汽车学院新能源汽车工程中心实验室主任周毅一阵抱怨。   周毅告诉记者:“我们只测试过两款节油器,2008年是上海劢晟的Konisonic节油器,2010年是厦门卡尔康尼的稳压节油器。这两款节油器都是先在新车上做,没有效果,找了一台老旧的桑塔纳2000,也做不出效果,即使不断的加速减速跑了十个循环,才做出两次百公里耗油相差大约是百分之五点几。但在实际道路行驶时,不可能像检测时那样不断地加速减速。”   浮夸的节油率神话   “一般我们不去判断它节不节油,但第一次我们工作人员没经验,就给他写了个相差百分之五点几。结果他们就出去宣传说同济大学说能节油,这搞得我们很尴尬。”周毅很无奈,“第二次做检测,我们就比较谨慎,做检测的是一辆连欧3标准都达不到的旧车。我索性把所有排放数值都写在检测报告上。”   记者从同济大学获得关于厦门卡尔康尼公司稳压节油器的检测报告,报告里各项排放的数值都是“不合格”。实验结论为“HC,CO和Nox均超过规定标准值。未达到欧3标准。”   一台尾气排放只能达到欧2标准的老旧桑塔纳,在不断的加速减速这种极端情况下,百公里油耗相差5%左右。在节油器的宣传中却声称最高能达到30%。   “我就不相信这些东西,我从来不用节油器。如果节油器真能降低15%,甚至30%的油耗,那汽车厂早就用了,还等他们来卖啊?30%不可能的,他们节油器厂家都要来做检测,说节油率有30%,如果真有,美国人就不用打伊拉克了。”周毅幽默地说。   到处“流浪”的检测报告   除了“绑架”同济大学进行夸大宣传,更加“灵异”的是,同济大学做的检测报告在数个节油器品牌的网站上“流浪”,成了多个品牌的吸金法宝。   无论是“日本最新科技,节油5%—30%”的卡康尼变频稳压节油器,还是“全球首创,德国技术,油耗直降25%”的达普利汽车稳压节油器,抑或是“全部从原厂台湾发货,台湾知名品牌”助我行变频稳压节油器,他们的报告中所有内容数据都与同济大学2010年为厦门卡尔康尼做的检测报告无异,所不同的只是各品牌名和公司名。   “我们也在网上看了这些检测报告,只要是我们实验室出具的检测报告每一页上都有骑缝章,而我看到的这些报告上从第二页开始就没有我们的章。”周毅说。他表示同济只对检测的样品负责,没有章的检测报告同济不承认。   更加蹊跷的是,除了检测报告相同,这三款节油器出具的实用新型专利证书和外观设计专利证书也都一模一样。卡康尼拥有日本最新科技,达普利是德国技术,助我行来自台湾,但是记者根据其“共同”的专利号200920136517.8向国家知识产权局查询后得知,这一专利号指向的汽车节油器是由郑万森、钱小四发明,专利权人是厦门市湖里区的林天林。   如果说,这三款节油器“抄袭”得太明显,另一个致力于“进军百亿市场”的知名品牌金迈驰则显得比较“高明”。它在官网上并没有列出专利证书和检测报告,但是在其各种广告宣传中都提到其经过同济大学汽车学院实际道路检测。   “我们根本就没有给金迈驰做过检测。”周毅明确表示,“但是有媒体拿到过他们的检测报告给我看,这份报告上从第二页开始也没有我们的章。”   周毅获得的这份金迈驰的检测报告,所有内容及数据都与同济大学2008年为Konisonic节油器做的检测报告无异,只是样品名称由“Konisonic节油器燃油消耗”变更为“金迈驰汽车稳压节油器”,制造单位名称由“上海劢晟经贸有限公司”变更为“香港新基业企业集团”。“我们的报告上面都写着,一旦变更,我们的报告就作废了。”周毅告诉记者。   记者多次致电金迈驰官方网站上的联系方式——中国新基业控股集团北京华纳百川科技有限公司,对方表示会由相关部门对记者进行答复。但截至记者发稿时,从未接到过该公司的回应。   节油器“骗你没商量”   “这肯定是个骗局,从原理上就讲不通。”清华大学汽车工程系汽车工程开发研究院高级工程师林建告诉科技日报记者,“汽车电压是靠发电机、调节器等来稳定,绝不会因为在点烟器上插一个东西就能稳定电压。”   “汽车企业不断研发出的新技术,能节油3%就不错了。省油涉及到汽车方方面面,单从改变一个系统的小环节入手,对整车的节油没有太大的作用。如果这类设备真的能达到15%的节油效果,那么汽车企业早就采用这种设备了。”林建进一步解释道。   “骗你没商量!”北京狂飙堂汽车改装俱乐部技师郑文龙脱口而出。他告诉记者,发电机是自调节的,只有电瓶亏电和使用大功率用电器的时候发电机负载才会加大。一个插在点烟器上的东西不会对其有影响的。   “这种节油器基本没有效果,如果是十几年前的汽车,工作电压不稳定,是可以通过外接装置稳定电压来提高工作效果节油。而现在的汽车电压都非常稳定,并不存在稳定电压可节油的原理。”郑文龙认为。   “节油器并不是什么新鲜的玩意儿,现在又沉渣泛起了。”林建介绍说,“在汽车电喷技术刚进入我国的时候,号称节油的东西特别多。有的号称有能量,能够接入油路 有的说能改善发动机的进气道 更神秘的东西都有。但事实上,我们做过的实验表明,这些号称节油的产品基本上都没有效果。即使有一点效果也是因为试验中道路情况略有不同造成的。”   林建表示,号称节油的各种产品很多都是舶来品,几十年前在美国流行,二三十年前在澳洲流行,十年前在台湾流行,现在在那些地方都骗不了人了,而大陆的汽车保有量不断增加,所以这些东西开始有市场。
  • 皓天设备与通达汽车零部件制造联合,助力汽车产业持续发展
    皓天设备与通达汽车零部件制造联合,助力汽车产业持续发展6月13日,皓天设备与通达汽车零部件制造签署战略合作协议,双方将在多个方面展开合作,共同助力汽车产业的持续发展。此次战略合作签署的高低温湿热试验箱,复合式盐雾试验箱等设备,标志着皓天设备与通达汽车零部件制造在汽车产业领域的合作迈入了新的阶段。 根据协议,双方将在以下几个方面展开合作:一是加强销售渠道拓展,共同开拓国内市场,提高汽车零部件的可靠性;二是加强品牌推广,提升双方品牌影响力;三是加强数字化转型,利用现代技术提升运营效率和客户服务水平。  皓天设备与通达汽车零部件制造的合作将充分发挥双方的优势,实现资源共享和优势互补。皓天设备作为国内技术型的设备制造商,在汽车产业领域有着丰富的经验和技术积累,能够为通达汽车零部件制造提供优质的设备和技术支持;通达汽车零部件制造作为国内知名的汽车零部件制造商,在汽车零部件制造领域有着深厚的积累和广泛的市场渠道,能够为皓天设备提供更广阔的市场空间和应用场景。  双方的合作将为汽车产业的持续发展注入新的动力。通过加强销售渠道拓展和品牌推广,双方将提高汽车零部件的可靠性和稳定性,为消费者提供更加优质的产品和服务;通过加强数字化转型,双方将利用现代技术提升运营效率和客户服务水平,为企业的可持续发展提供有力支持。  此次战略合作的签署,是皓天设备与通达汽车零部件制造在汽车产业领域的一次重要合作,也是双方共同推动汽车产业持续发展的一次积极尝试。双方将以此次合作为契机,进一步加强沟通和协作,共同推动汽车产业的持续发展。
  • 十五部委将推广车用乙醇汽油 2020年汽车将“喝酒精”
    p   开车加油是人们日常出行中必不可少的环节。大家都知道,喝点酒开车上路,那叫酒驾,是交规严禁的危险驾驶行为。但是,您的爱车要喝点酒精上了路,那就叫环保,是国家鼓励和推广的清洁能源出行方案之一。 /p p   近日,国家发展改革委、国家能源局、财政部等十五部门联合印发了《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》。根据方案,到2020年,全国范围内将基本实现车用乙醇汽油全覆盖。到2025年,力争纤维素乙醇实现规模化生产,先进生物液体燃料技术、装备和产业整体达到国际领先水平,形成更加完善的市场化运行机制。 /p p   将燃料乙醇以一定比例添加到汽油中,形成车用乙醇汽油。这种汽油可有效减少汽车尾气中的碳排放、细颗粒物排放以及其他有害物质的污染,根据十五部委的联合《实施方案》,我国将全面推广E10乙醇汽油,也就是在汽油调合组分油中加入10%的变性燃料乙醇调合而成的环保汽油。 /p p   其实,燃料乙醇产业15年前就在我国应运而生。说白了,它曾经是咱们消化多余玉米的重要手段之一。用超期超标的玉米、废物秸秆等作为原料,产生清洁的汽油,帮助解决目前困扰很多人的雾霾等问题,这就是十五部委日前发布的《实施方案》的基本逻辑。 /p p   根据国家发改委《可再生能源中长期发展规划》给出的目标,到2020年我国生物燃料乙醇的年利用量将达到1000万吨。而按照《实施方案》操作,到2020年,乙醇汽油的使用就将基本覆盖全国。全面推广燃料乙醇和它调和出的乙醇汽油将如何改变我们的生活呢? /p p   还没有进入秋天烧秸秆的日子,冬天传统的燃煤季节更是还远,然而挥不去的雾霾却已经间歇性地笼罩京津冀地区。从这个角度讲,生物燃料乙醇和乙醇汽油的推广势在必行。中国国际工程咨询公司石化轻纺部副主任乐有华表示,乙醇汽油的使用对于环境的友好是全面的。 /p p   乐有华:总的来说以玉米为原料的燃料乙醇,大的结果就是全生命周期里大概一吨乙醇可以减排34%,如果2025年纤维素乙醇商业化运行并得到快速发展,那么这个环保效益就更加明显了,可以达到75%以上。特别是作为纤维素乙醇这个产业,应该说可以有效解决我们这个秸秆焚烧污染大气的问题。 /p p   新世纪以来,能源安全和环境问题日益成为制约可持续发展的焦点问题,生物燃料乙醇因为它的可再生、环境友好、技术成熟、使用方便、易于推广等综合优势,成为替代化石燃料的理想汽油组分,在很多国家得到推广,生产消费规模也在全球范围内快速增长,从2005年的3628万吨,增加到2016年的7915万吨。 /p p   据不完全统计,已经有超过40个国家和地区推广生物燃料乙醇和车用乙醇汽油,年消费乙醇汽油约6亿吨,占世界汽油总消费的60%左右。其中,美国作为世界上最大的燃料乙醇生产消费国,去年一年就用掉了4000多万吨。我国排名第三,但目前年消费量只有近260万吨,发展相对滞后。 /p p   对于一个石油消耗大国来说,乙醇汽油的使用可以替代部分石油,对于能源安全非常重要。 /p p   中国石油化工集团科技部原主任教授级高工乔映宾:4000多万吨(一年)美国的燃料乙醇(使用量)在提高他的能源自给率里占了8个百分点。我们国家大力发展的话也会对我们的这个能源自给率大大提高。2016年我们国家进口了3.81亿吨的石油,石油对外的依存度是65.4%。 /p p   更重要的是,国际经验表明,发展生物燃料乙醇可以为大宗农产品建立长期、稳定、可控的加工转化渠道,提高国家对粮食市场的调控能力。 /p p   乐有华:就是国家战略需要的时候,就是加快地把这些超期超标的粮食进行转化,如果供求紧张的时候,主要是用木薯这些淀粉质的原料来生产燃料乙醇,形成一个良好的调控手段。 /p p   同时,生物燃料乙醇产业也是处置超期超标等粮食的有效途径。而我国目前恰恰处在一个玉米大量过剩的状态。 /p p   乔映宾:两会期间我得到的(消息),两会上的报道,我们国家东北三省和内蒙古,玉米的库存超储了。储存了多少?2.3亿吨玉米。这些玉米如果再放一年、两年、三年,三年以后这玉米就不好吃了。 /p p   除了超期超标的粮食支撑燃料乙醇生产,据有关权威机构测算,国内每年还有可利用的秸秆和林业废弃物超过4亿吨,其中的30%就可以生产生物燃料乙醇2000万吨。业内人士普遍认为,担心燃料乙醇推高粮价的“小伙伴们”可以放心地洗洗睡了。 /p p   当然,就算燃料乙醇各种好,值得全面推广,但是,对于挣工资加油的广大车主们来说,更环保的汽油是不是也有着更让老百姓心跳加速的高价格?普通老百姓的用车成本到底会不会因此上升? /p p   我国生物燃料乙醇产业自2001年就开始发展了。截至目前,全国已经有11个省区试点推广乙醇汽油,乙醇汽油消费量占到同期全国汽油消费总量的1/5。根据辽宁省发改委相关负责人的介绍,试点地区乙醇汽油与传统汽油同价。 /p p   当然,也曾有车主反映,感觉使用了乙醇汽油车的油耗似乎更高了。对此,多位接受采访的专家都明确表示,并不存在这种差别。 /p p   中石化石科院教授级高工张永光:就是热值,加E10(乙醇汽油)的话比普通汽油理论上(热值)是差3.8%。但是你不能说就完全损失了3.8,因为它的辛烷值就比我们的烯烃、芳烃高基本上十几个辛烷值单位,弥补了大概我们认为1%-2%油耗的损失,它可以更好地适用于高压缩比(发动机)汽车性能的发挥。第二点就是本身它含氧,促进了它(汽油)的燃烧,一些未完全燃烧的碳氢化合物已经得到比较好的燃烧,从这个角度上可能又弥补了1%-2%。 /p p   根据业内人士介绍,美国权威研究机构曾做过16辆实车样本的测试,结果表明E10,也就是添加10%燃料乙醇的乙醇汽油与普通汽油在油耗上的差距可以忽略不计。 /p p   清华大学环境学院教授吴烨:10%的乙醇放进去,为了满足我们最新的国Ⅴ国Ⅵ汽油的标准,它那个汽油(组分油)是要进行一些调整的。我们过去这两年时间里面已经做了将近10辆车,大概做了上百组试验。目前来看几种普通的车型,在国Ⅲ国Ⅳ国Ⅴ的车里面都没有发现,它的能耗(因为)用了乙醇汽油而上升了。 /p
  • 从宏观到微观:汽车要”瘦身”更要安全
    导读随着“2020年第七届中国汽车轻量化国际峰会”的日益临近及《国家第六阶段机动车污染物排放标准》的发布与实施,在环境保护和节能降耗法规要求日趋严格的当下,轻量化已成为中国汽车产业发展的重要方向和必然趋势。 其中对车身的轻量化更是提高汽车动力性、降低油耗、保护环境的关键。车身轻量化与使用材料密切相关,如镁合金、铝合金等金属结构材料、工程塑料及其复合材料在轻量化中起到重要作用。采用工程塑料及其复合材料可减轻汽车零部件约40%的质量,可降低成本40%,因此开发工程塑料和复合新材料是车身轻量化发展的趋势,其中PP(聚丙烯)和PMMA(聚甲基丙烯酸甲酯)应用最为广泛。 塑料及其复合材料的应用场景 为什么在汽车材料轻量化中大量应用PP、PMMA?今天,我们要对PP、PMMA做两个有趣的试验: 1. 宏观视界下的拉伸 PP、PMMA在常规的静态测试外,可能会受到动态变形的影响,例如,在涉及运输设备的碰撞和产品掉落时。因此,为了保证可靠性,还必须进行冲击试验。特别是,由于聚合物塑料具有粘弹性,(既有粘性又有弹性),其力学特性表现出对环境温度、时间和变形速率的依赖性。 采用岛津AGX-V电子万能试验机和HITS-TX高速拉伸试验机可以研究PMMA/PP与试验速度关系。 应力-行程曲线 试验结果 高速拉伸试验中PMMA和PP的拉伸强度均高于静态拉伸试验,证实了这两种塑料材料拉伸强度的试验速度依赖性。 2. 微观视界下的断口 当发生损坏、故障事故或劣化时,我们通常迫切需要调查原因和提出对策。塑料的失效形式多种多样,包括静态断裂、冲击断裂、疲劳断裂、蠕变断裂、环境引起的断裂等。根据分析不同类型的断裂原因,可以观察到具有不同特征的断裂面,这表明可以通过断口观察来确定损伤的原因,并研究解决损伤的方法。拉伸试验后,我们选择对PP试样的断口进行镀金,并用光学显微镜和EPMA进行观察。 电子探针EMPA8050G 在PP断裂表面镀金,并用光学显微镜和EPMA进行观察。静态拉伸试验和高速拉伸试验后的聚丙烯断裂表面分别如下图所示。(a)为光学显微镜图像,(b)-(d)为电子探针二次电子像。 对比PP静态拉伸微观图(a)与PP动态拉伸微观图(a)可见,与高速拉伸试验的断口面积相比,静态拉伸试验的断口面积明显较小,这应该是由于静态拉伸断裂时,塑性变形伴随着颈缩而导致的。 静态拉伸微观图 在PP静态拉伸微观图(b)中的断裂面中部,可见纤维断裂面以韧性方式伸长。对 PP静态拉伸微观图(b)的中心区域及其左侧区域进一步放大,结果见PP静态拉伸微观图(c)及(d)。由PP静态拉伸微观图(c)可见树脂纤维伸长的情况。PP静态拉伸微观图(d)显示断面上有许多孔,这是由树脂(如低分子量物质)或杂质等微观缺陷等形核长大而导致的。 高速拉伸微观图 在高速拉伸试验中,断裂处没有出现颈缩现象,整个断口呈扁平、粗糙的片状。对断面中心及边部进一步放大,结果见PP动态拉伸微观图(c)及PP动态拉伸微观图(d),可见,中部和边部的断口形貌无明显差异。据此可推断,随着试验速度的提高会导致无塑性变形的脆性断裂。 结 论 岛津具有丰富的产品线,在宏观方面:拥有各种静态试验机与动态试验机,可以提供力学测试,并进行定制化夹具设计;从微观方面:拥有电子探针EMPA等各种微观测试仪器,可以提供表面分析数据,为客户提供一整套服务与方案。岛津为汽车改性塑料的快速发展提供帮助,在汽车安全性的基础之上实现汽车轻量化,为营造和谐绿色的环境做出贡献,创造崭新的明天。
  • 油耗上升,怠速抖动?您的爱车需要关注GPF(汽油车尾气颗粒捕捉器)了!
    导读您的爱车上是否安装了GPF(汽油车尾气颗粒捕捉器)?可以去翻翻随车配备的使用说明书,如果在目录页发现了GPF警报、GPF再生等字样,那么恭喜您,您需要认真和GPF打交道了:)众所周知,悬浮在空中的细小颗粒污染物对环境和人类健康有着极大的危害。随着中国汽车保有量突飞猛进,汽油车排放的细小颗粒物也在增加。《GB18352.6-2016轻型汽车污染物排放限值及测量方法(中国第六阶段)》(以下简称国六)b阶段的推进,对汽车尾气中颗粒物的排放限值做出了严格要求。真正的国六标准2020年7月1日起,国六标准a阶段已在全国全面实施,国六b阶段预计2023年开始正式实施。为什么要实施两步走的路线,主要原因当然是一步到国六的技术难度较大,给汽车厂商、零部件供应商等提出了严峻的现实挑战。 国六a相比国五,气体排放污染物(CO、CH、NOx等)仅取国五最严值。而国六b相对国六a:1、气体排放限值又严格了50%左右,2、增加了细小颗粒物排放的要求。3、技术中性,即轻型车不分燃料种类和发动机技术路线,都需要满足相同的气态污染物和颗粒物排放要求。4、实际驾驶排放(RDE),对车辆污染物在实际工况下的排放水平也进行了监管和限值要求。可以说国六b阶段才是真正意义的国六新标准。 国六汽车中为什么要装这个GPF柴油车上早已部署尾气颗粒捕捉器(DPF)。虽然汽油车的颗粒物排放不如柴油车显著,但近年的研究发现,之前为了降低燃油消耗和CO2排放而从进气道喷射(PFI)改进为缸内直喷(GDI)技术,汽油发动机缸内油气混合时间变短,容易形成局部浓区,导致细小颗粒物的排放量增大。 汽油车颗粒捕捉器(GPF)是当前有效地控制汽油车颗粒排放的技术手段,已经在满足国六b排放标准的汽车上得到广泛应用。 GPF的结构特点GPF(汽油车尾气颗粒捕捉器)技术过滤机理与DPF(柴油车尾气颗粒捕捉器)基本相同,由蜂窝状陶瓷组成,通过交替封堵蜂窝状多孔陶瓷过滤体,使排气气流从孔道壁面穿过,通过扩散、碰撞和拦截等方式过滤和减缓颗粒物排放,使之有时间能够在高温GPF中进一步燃烧分解。 在国五车辆升级国六过程中,仅升级GPF可能会引起其他污染物排放的恶化,在设置上,需搭配改进的三元尾气催化剂(TWC)同时使用。采用壁面涂覆的GPF产生部分的三元催化效果是一个很好的设计。 什么是再生,怎么再生长时间市区低速行驶,可能会使GPF壁面上沉积大量颗粒物,导致车辆出现“怠速抖动,油耗上升,动力下降”等问题,这就是被国六车主吐槽的GPF老化报警问题。 再生过程也不复杂,只需要高速行驶并滑行交替,使GPF核心温度高于650℃,有了足够的氧气,就会燃烧沉积的颗粒物,自动再生。一般推荐的做法,把车开上高速,油门踩到底加速,让车辆高速运转起来,随后松开油门滑行,减少燃料供应,保证排气中有足够的氧气以燃烧沉积颗粒,如此循环几次,就可达到GPF再生的能力。 岛津电子探针测试GPF使用岛津电子探针分析了某GPF试样,电子图像观察显示,此GPF载体为蜂窝型空隙状陶瓷,壁面两侧有明显涂覆层(图1)。图1 GPF背散射电子像 随后对GPF外表面的涂覆层进行了微区成分定性测试(图2),发现了Rh、Pd等贵金属活性催化成分,以及作为储氧剂、分散剂、稳定剂等作用的金属和稀土氧化物成分。 图2 GPF涂层微区成分定性分析结果 对主要元素进行了面分布特征测试,结果(图3)显示Mg、Al、Si、Fe等硅铝酸盐成分主要分布于陶瓷载体基体,载体有一定的孔隙度,这是GPF的主体结构。在壁面两侧的涂覆层中,Al、Zr(一般是其氧化物)作为热稳定剂和分散剂,Rh、Pd等是有效的活性催化贵金属,La、Ce等稀土(一般是其氧化物)作为储氧剂使用。一般来说,Rh可对汽油车尾气中的NOx进行还原催化,尾气气体中的HC和CO可通过Pd催化氧化反应,改善尾气排放污染。可见,采用涂覆的GPF可产生类似三元催化剂的效果,是一个很好的设计。 图3 元素面分析结果 具有涂覆层GPF的测试特点出于成本考虑,贵金属活性成分一般含量很低,所以在测试时对仪器的灵敏度要求较高,同时由于添加的稀土元素特征X射线峰位之间非常接近,一般的能谱仪(EDS)也不足以满足能量分辨率的需求,岛津电子探针对此类样品的测试有着足够的优势,同时满足灵敏度和分辨率的测试要求。 岛津电子探针(EPMA-1720& EPMA-8050G) 岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量贵金属元素如Pd、Rh等以及稀土元素如Ce、La等都能够轻松地测试和表征。 如果您对汽车尾气催化剂TWC感兴趣,或者对电子探针测试微量元素、稀土元素对比扫描电镜上的能谱仪测试效果感兴趣,可参考扩展阅读。 结语使用岛津电子探针对汽车尾气颗粒捕捉器GPF试样进行了观察和解析,确认了其具有涂覆层的结构。结果显示GPF载体为有一定孔隙度的硅铝酸盐陶瓷材料,而涂覆层含有La、Ce等稀土和Rh、Pd等贵金属活性成分,具有三元催化效用。岛津电子探针兼具高灵敏度、高分辨率特性,可对GPF微观结构进行有效表征。 本文内容非商业广告,仅供专业人士参考。
  • 岛津推出《电子探针在汽车材料中的应用》数据集
    汽车行业是一个涉及多种材料的综合性产业,材料应用的多元化是其突出的特点,虽然钢铁材料仍占主导地位,更安全、更节能、更环保的发展趋势要求,使得汽车轻量化设计越来越受到重视,高强合金、轻金属和非金属材料的应用发展前景广阔。 轻量化是汽车的发展趋势,在更安全的前提下,资源友好和环境友好的可持续发展战略使命也对汽车材料的应用和发展提出了更高的挑战。世界各国都在努力改进和研发新的汽车材料,提高材料的比强度、降低构件的重量、减少制造的成本和耗能。 主要涉及以下几个关键性材料: 一、高强度钢和超高强度钢的开发:可用于车身车架、横纵梁等关键部位。世界各国和各大车企都在大力参与开发各种高强度钢板,如冷轧含磷板、双相钢(DP 钢)板以及目前最先进的相变诱发塑性钢(TRIP 钢)板等。 二、轻金属包括镁合金、铝合金和钛合金等的应用呈现出越来越广的趋势。 (1)铝合金:密度约是钢铁的三分之一,现已广泛用于汽车发动机、变速器、差速器壳体、铝轮毂、转向节及各种换热器等部位,是汽车上应用最多的轻质金属材料。而且随着铸锻焊、冲压等制造技术的发展,会有更多的部件采用铝合金制造。(2)镁合金:镁合金的密度仅相当于铝合金材料的 66%左右,但在比强度和刚度等机械性能要明显优于钢铁和铝合金,而且在成型效率和尺寸稳定性方面也有很大的优势。目前镁合金在汽车上一般可用于发动机气缸体、壳体、进气歧管、方向盘、转向器、轮毂等零部件。由于镁元素化学特性特别活波,工艺难以控制这在一定程度上限制了镁合金的应用。 (3)钛合金:具有密度小、质量轻、比强度高、耐腐蚀及高低温性能优异等特点,使之可以在一些恶劣的工作条件中保障汽车的性能。但由于钛合金原材料获取困难,加工成本较高。在汽车制造中,一般将高强耐热钛合金用来生产发动机配气系统、曲轴连杆机构和底盘零件,例如气门、气门弹簧、凸轮轴、连杆、涡轮转子和紧固件等。 三、非金属材料在整车占比也在不断扩大。 其中塑料占很大比例,塑料在汽车上的应用有密度低,成形性好,耐腐蚀,弹性形变可吸收冲击能量,除常规的热塑性和热固性塑料外,也包括塑料纤维增强的复合材料。另外,陶瓷、复合材料和功能材料在车用材料领域也占有重要地位。 岛津公司作为全球著名的分析仪器厂商,自 1875 年创业以来,始终坚持创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。早在上世纪 60 年代岛津公司就开始研制和生产电子探针,独有的 52.5°高检出角及兼顾高灵敏度和高分辨率的全聚焦晶体,可在微米级的微小区域到最大 90×90mm 的广域范围中可进行精准分析。电子探针 EPMA(Electron Probe Micro Analyzer)是将聚焦电子束照射到样品,通过激发样品发出的电子信号进行细微结构的观察,通过检测指定区域内发出的元素特征 X 射线进行定性、定量及面分析等多种测试分析。 为了更好的服务于岛津电子探针 EPMA 客户,岛津公司分析中心也开展了汽车行业多种材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • TSI公司将参加“汽车测试及质量监控博览会”
    美国TSI公司将于2017年9月19-21日,参加在上海世博展览馆举办的汽车测试及质量监控博览会。此次博览会是发现面向组件和整车的最新测试、开发和验证技术的理想场合。从NVH测量工具、碰撞测试服务和耐久性/质量验证技术,到车辆动力学工具和无损检测技术,汽车测试及质量监控博览会是中国最大、最重要的汽车测试展会。美国TSI公司为满足汽车测试及质量监控用户的需求,将于会上展出以下多种检测技术和设备。TSI 公司3795 型纳米颗粒物排放测量仪(NPET)是一款便携的、精准的仪器,它能够测量包括建筑机械、公交、固定式发电机组等在内的各种柴油动力源排放物中总固态(非挥发)颗粒物数量浓度。NPET 具有坚固耐用、用户友好的工业设计,非常适合于科研人员、监管检查员以及维护人员使用。3090 型发动机排放颗粒物粒径谱仪(EEPS ™ ) 是一种能够快速响应且具有高分辨率的仪器,能够测量稀释后尾气中含量极低的颗粒物的数量浓度。它能够提供市面上最快的时间分辨率为每秒10 次,这让它非常适合进行发动机动态和瞬态测量。它能够完成发动机排放颗粒物5.6 ~ 560nm 的粒径分布和数量浓度的测量,覆盖了整个重要的粒径范围。欢迎您届时莅临TSI公司位于上海世博展览馆3号馆的3043展位!关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 皓天鑫与通达汽车成功合作,大型冷热温控试验箱助力汽车零部件质量提升
    皓天鑫与通达汽车成功合作,大型冷热温控试验箱助力汽车零部件质量提升近日,东莞市皓天试验设备有限公司与通达汽车零部件制造有限公司达成合作,为其提供大型冷热温控试验箱,以满足通达汽车在产品质量检验与控制方面的需求。该试验箱的引入将为通达汽车的产品质量提升提供有力支持,进一步巩固其在汽车零部件制造领域的市场地位。通达汽车作为一家成立于 1996 年的汽车零部件制造与销售企业,一直以来都非常重视产品质量。为了更好地满足客户需求,提高产品质量和可靠性,通达汽车决定引进先进的试验设备。经过多方考察和比较,最终选择了广东皓天检测仪器有限公司的大型冷热温控试验箱。东莞市皓天试验设备有限公司是一家专业从事环境试验设备研发、生产和销售的企业。公司拥有先-进的生产技术和设备,以及一支经验丰富的研发团队。其产品广泛应用于电子、电器、汽车、航空航天等领域,深受客户好评。此次合作的大型冷热温控试验箱采用了先-进的温度控制技术和湿度控制技术,能够模拟各种复杂的环境条件,对汽车零部件进行严格的测试和检验。该试验箱具有温度范围广、温度变化率快、温度波动小、湿度控制精度高等优点,能够满足通达汽车对产品质量检验与控制的高要求。此外,该试验箱还采用了智能化的控制系统,操作简便,易于维护。同时,东莞市皓天试验设备有限公司还为通达汽车提供了优质的售后服务,确保试验箱的正常运行和使用。通过此次合作,东莞市皓天试验设备有限公司与通达汽车建立了良好的合作关系。双方将继续加强合作,共同推动汽车零部件制造行业的发展。同时,东莞市皓天试验设备有限公司也将不断提升自身的技术水平和产品质量,为客户提供更加优质的产品和服务。   产品名称:大型冷热温控试验箱(水冷式)   控制器:7英寸超大触摸智能可程序温湿度控制器:   内箱容积:20m³   内箱尺寸(约)2.5 *2.5mm *3m (宽*高*深)   外箱尺寸(约):具体以实际尺寸为准   温度范围:-40℃~90℃ (水冷式)   湿度:30%~95%RH   温度变化率:降温约 1 ℃/min,升温约 3 ℃/min(非线性空载)   温度波动:温度≤±0.5℃ ;湿度≤±3.0%RH   温湿度误差:温度:≤±2℃ ; 湿度:≤±5.0%RH   温度均匀度:≤±1℃   内壁材料:内板材质为SUS304 不锈钢   外壁材料:碳素钢板,表面作静电彩色喷塑处理+聚胺标准保温板   箱体保温材料:硬质聚氨酯泡沫
  • 英斯特朗汽车测试黑科技大鉴赏,助您开启智能移动时代
    2018年6月20日和22日,英斯特朗携手ITW旗下兄弟公司标乐、北极星成像公司(NSI)分别在重庆、上海召开了汽车材料测试创新研讨会。会议一共邀请到一百多人参加,嘉宾遍布多个汽车相关行业:汽车制造商,材料生产商,汽车零部件制造商,汽车研究院,知名高校,第三方检测机构等等。此次研讨会英斯特朗特邀汽车行业全球产品经理和Ceast落锤冲击全球高级应用工程师,与众国内技术专家一起解读在2020年新型油耗标准和轻量化的大环境下,汽车相关产业如何将车用材料从传统钢材,逐渐向塑料、镁铝合金等多材料混合应用的趋势发展,应对材料性能测试需求相关的挑战。会议当天上午,汽车行业全球产品经理Matthew Spiret以《创新技术在车用材料力学性能测试研究的进展及应用》作为开场。英斯特朗全球产品经理Matthew SpiretMatthew提到,从业务角度来看,在英斯特朗所有终端客户中,汽车行业占据非常大的比重,全球众多知名车企均是英斯特朗数十年的忠实客户。汽车制造商客户一览从汽车本身来讲,一辆汽车车身涉及多种材料和零部件,而英斯特朗试验机能完全满足针对汽车底盘和车身、传动系统和悬架、电子设备、汽车发动机、安全系统、汽车内饰、车轮和轮胎、汽车组件的多达二十几种力学性能测试和结构测试。近几年,汽车轻量化话题甚嚣尘上,众多汽车都在研究采用何种材料来应对车身轻量化趋势带来的挑战。Mattew分别探讨了利用钢材、铝材和复合材料实现车身轻量化的可行性。结合英斯特朗在复合材料测试中积累的丰富经验,Matthew分享了英斯特朗针对车身焊接强度、驱动轴扭转测试,组件和零部件测试的专业技术和应用案例。随着汽车日益向智能化发展,消费者不再满足于汽车基本的造型和功能,而是更加关注汽车驾驶、乘坐的舒适性和智能化体验。新型驾驶辅助系统,一键启动和控制汽车,新增车载智能互联系统,人车体验日趋完善和人性化,乘车人拥有了更加舒适的乘车体验,这些革新的背后离不开英斯特朗针对汽车内饰和电子智能系统的各项创新性测试解决方案。Ceast落锤冲击全球高级应用工程师Alessandro Tomaiuolo分享的《“一锤定音”:仪器化冲击试验的优势及汽车行业应用全球案例分享》,从英斯特朗Ceast落锤冲击试验机的实验原理出发,详细阐述了汽车材料或结构进行冲击实验、刺穿测试、粘度测试、拉伸测试的必要性和实验过程。众所周知,安全是汽车最重要的要素之一。而汽车安全又涉及多个方面,如乘车人安全,行人安全,驾驶质量,车辆主动安全等等,英斯特朗对上述方面均有丰富的测试经验。英斯特朗Ceast落锤冲击全球高级应用工程师Alessandro Tomaiuolo 英斯特朗高级应用专家市场与业务发展总监杨卫刚带来的《 动态测试在汽车行业的创新解决方案如何使测试更便捷,更高效,更精准》,介绍了英斯特朗疲劳实验系统不同的载荷覆盖范围、速度和应用的难易程度,如高周疲劳,高周疲劳测试面临的挑战,复合材料的疲劳测试挑战,断裂力学,低周疲劳和温度控制,以及英斯特朗多种多样的疲劳测试解决方案。Instron高级应用专家市场与业务发展总监杨卫刚来自标乐公司的资深应用工程师毛伟林分享了《标乐硬度计测试方案和案例介绍》,从硬度的定义和硬度测试的优点出发,阐述了标乐针对汽车材料的全套硬度测试方法和创新性解决方案。标乐资深应用工程师毛伟林北极星成像公司(NSI)业务发展经理乔志伟带来《工业CT无损检测技术及汽车行业相关应用》,通过常见的医学CT的基本原理-x射线衰减引申到工业CT的应用上。NSI有针对汽车行业的强大的生产线和丰富的应用案例。北极星成像公司(NSI)业务发展经理乔志伟截止到6月22日,2018年上半年英斯特朗已走进全国多个城市,召开了十几场研讨会,覆盖电子行业,生物医学,复合材料,高校科研,纺织服装,汽车行业,受到众行业客户的广泛关注。英斯特朗产品专家通过创新性的技术分析和应用案例分享,为客户们带来英斯特朗在材料测试领域的前瞻洞察,近距离的产品演示更让客户直观生动地感受到了英斯特朗试验机的高效性,精确性和专业性。虽然技术和应用研讨会已暂时告一段落,但是英斯特朗仍然渴望随时与客户交流互动、听取客户声音。如果您有任何材料力学性能测试相关的需求,欢迎随时联系英斯特朗,我们将竭诚为服务。
  • 首次公开!理想汽车的89个专项试验室
    今年,理想汽车检验检测中心正式通过中国合格评定国家认可委员会(CNAS)的审核,获得国家实验室认可证书。通过CNAS的审核,不仅标志着理想汽车检验检测中心,已正式迈入国家认可的实验室序列,更意味着其所出具的各类检测数据结果,将被全球100多个国家和地区的国际互认机构予以承认,具有国际权威性和公信力。而其涵盖的89个专项试验室,也首次浮出水面。今天, 将掀开部分试验室的神秘面纱,帮你从中窥一斑而知全豹,落一叶而知深秋,感受理想汽车检验检测中心的强大实力与理想汽车的技术底蕴。受访人:理想汽车检验检测中心工程师01 智能空间试验室——让脑海中的构想转瞬成为现实每一款理想汽车在打造之初,都是如何构思的?如何让车内的空间被最大程度合理利用?如何让每一处细节,兼顾质感的同时又符合家庭用户所需?当其他品牌还在脑海里凭空构想时,我们已通过自研的智能空间试验室,让一切成为现实。借助智能空间舱模拟器,产品和研发工程师们只需通过PAD上的简单操作,就可借助数字孪生的用户界面,轻松控制超过168个电机,实现座舱的柔性空间切换。就像拼乐高一样,工程师们可任意对座舱的350个模块单元,以智能电动的调节方式进行灵活的集成布置,快速完成对感知、交互与系统集成的开发与验证,将原本数周的工作周期缩短为寥寥几小时。“我们自研的空间舱,其尺寸可以覆盖主流的绝大多数车型,车身的各个部件都可基于需要,自由进行伸长、缩减、旋转,精度可达0.1毫米,进而实现柔性、安全的空间变换,为产品、研发工程师提供可验证、测试、展示、体验的智能座舱空间。门槛高度应该是多少才更方便一家老小上下车?B柱、C柱多宽才能在保证安全的同时更美观?后备箱离地多高才能拿取行李更加方便?这些原本需要依靠经验、想象的设计,现在都可以在现实里加以判断。小到空调出风口的摆动方式、车内氛围灯的氛围营造,大到不同尺寸车身所对应的空间布局、后备箱的布局等,也都可以借助空间舱,以更直观的方式呈现在所有产品与研发工程师面前,方便大家对其打磨、调整,让大家可以共创、共识出超越用户需求的设计方案。针对如今越来越多的智能交互,我们也在柔性座舱和柔性台架的基础上,增加了对于智能空间的验证。就比如我们二排的屏幕,通过磁吸的方式,不仅可任意更换不同尺寸的屏幕,去验证用户的使用感受,还可与二三排的座椅调节进行联动,让屏幕下翻后,二排座椅自动后移并调节仰角,帮助研发伙伴找出适合绝大多数用户的最佳观影角度。同时,由于我们的座舱顶棚与车身是分体结构,我们也实现了同一时间内,不同业务伙伴的同时开工。负责车内视觉摄像头的伙伴,可以在顶棚这边去测试摄像头是否能精准捕捉车内乘员的动作,而负责座椅的伙伴则可在柔性台架上调整座椅布局,而负责氛围灯的伙伴则可在车门、中控台上验证不同的氛围灯设计方案。过去,这一切都要等到车身基本成型后,才可进入试验阶段,而随着我们空间舱的落成,现在都可与车身的开发同期进行。”负责智能空间试验室的工程师玉亭介绍。02 电磁兼容试验室——构建强大的电磁“免疫系统”你在行车过程中,是否也曾出现过突然闪屏、音响发出杂音?出现这类情况,虽然有一定可能是由于线路接触不良、电压不稳等原因造成,但多数情况则是由于电磁干扰导致。“过去,传统的燃油车都是机械结构,对电磁兼容几乎没有要求。但随着科技进步,如今即便是燃油车,其刹车、换挡、转向助力等,也都已变成了电子的。而对于智能电动车,电磁干扰带来的影响则会愈发明显。像我们理想的车辆,不论是电池、电机、电控的‘老三电’,还是冰箱、彩电、大沙发的‘新三电’,以及我们的智能驾驶、智能空间,其背后都是大量精密、复杂的电子设备。它们都会持续释放微弱的电磁波,彼此产生干扰的同时也会对车外产生干扰。另一方面,城市里的电磁环境也相较以往更加复杂,无线电台、电视台、基站等,都会对车内的电子设备产生一定干扰。极端情况下,过大的电磁辐射,甚至会直接引起周边的电子设备功能失效或误动作,甚至击穿电子器件,对用车安全造成严重影响。就比如市郊的一些广播电台,很多年前当各个品牌都还不重视电磁干扰时,电动车一开到那附近就会出现问题,轻则黑屏、花屏、杂音,重则直接电压下降,车辆直接‘趴窝’。”工程师陈大可介绍。为了保证我们每一台理想汽车上,各个电子设备的稳定运行,特别是在强电磁环境中依然能够正常使用,我们重金打造了电磁兼容试验室,具备整车以及高低压电子电器零部件的电磁兼容及射频测试能力,以应对新能源汽车电子电气系统集成化,智能化和网联化带来的电磁兼容挑战,让每一台理想汽车都通过了堪比航空级别的EMC电磁兼容性测试。我们EMC测试能力同时满足国家法规与欧盟出口法规,测试项目覆盖度达到行业内的领先水平,测试频率范围可达DC~18GHz,测试场强30V/m~300V/m,充分模拟车辆在社会道路上行驶所能接收到的各种电磁干扰,进而为每一台理想汽车构建起强大的电磁“免疫系统”。03整车半消声室——在这里体验“落针可闻”乍一眼看到整车半消声室,你很可能会发出这样的疑问,“就这?很厉害么?”但当你真的步入这一试验室,你可能会第一次理解,到底什么才叫万籁俱寂、落针可闻。极度的静谧,甚至会让你的耳朵一时间都产生不适。工程师老郑介绍,“只有在极度安静的环境内,我们才能准确识别出车上的各类声音,而在自然界中这种环境并不存在。一般来说街面上的音量约为60、70分贝,办公室约为40、50分贝。但在我们的试验室里,本底噪音仅10分贝。为此,我们不止墙面上全部被复合型吸音材料覆盖,整个试验室我们甚至都采用了‘房中房’的结构,在内房与外房的底部结构之间填充了大量的隔振块进行隔振降噪处理,这才实现了这份极致的安静。另一方面,为了评价行驶过程中整车、零部件的声音表现,我们还在试验室地下打造了一个高达9米的巨型空间,在那里布置了一整套的四驱四电机静音转毂,不仅可模拟道路正常行驶模式,还可模拟反拖车辆运行,同时兼容两驱、四驱。即便试验过程中转毂速度提升至270km/h时,其所产生的噪音依然可控制较低的噪音工况。”随着整车半消声室的落成,其能力已全面覆盖动力系统、热管理系统、声学包、电器品质、开关门品质的开发需求,仅此每年便可为我们节省数百万的外委试验费用。以动力系统为例,我们自研的理想2.0增程系统采用全套机械静音设计,增程器开启对比纯电模式,噪音相差仅不到1分贝。很大程度上,就得益于整车半消声室提供的助力。针对动力系统的NVH性能,如增程器振动噪声、电驱系统振动噪声、进排气系统噪声、供油系统噪声等,我们都可借助大量的试验不断加以优化,进而不断打破行业固有认知,为用户打造更为安静的“家”。04 整车环模排放试验室——自由操控天气的奇异空间每一次用户舒适度上的提高和行车能耗的降低,其背后往往都是车辆在整车环模试验室里无数次试验后的成果。在我们自建的整车环模排放试验室,可最大程度模拟不同温度、湿度、日照、气流等环境,进行油耗、冷启动、续航里程等测试,更可根据企业标准进行热平衡热害试验、空调降温试验、除霜除雾试验等各类可靠性试验。理想汽车的每一款车,无论是一开始的原型试制阶段,还是SOP阶段,都需要在整车环模排放试验室里持续进行大量测试。我们的高低温环境仓可提供-40℃~60℃的高低温环境,以及最大1200W/㎡的红外阳光模拟环境,湿度最高可达95%;底盘测功机支持前后两驱及四驱模式;排放设备为目前最新一代产品,具备国V、国VI排放试验能力。与一些环境模拟实验室仅能实现单一的环境测试不同,我们可联动温度、光照、湿度等,打造更为贴近真实用车场景的复杂环境。在过去,环境模拟几乎要看天吃饭,高温、高寒的试验,很难具备前期的准备和后期改进的条件。天气再恶劣也是一时的,很难无时无刻都保持相同的状态。而借助整车环模排放试验室,则可凭借其稳定的环境模拟条件,为各种开发及验证提供可重复的、稳定的、不受外部影响的测试边界条件。同时,在相同环境条件下的多次重复测试,也更有利于评估和详细分析试验数据显著的试验特性和产品分析特性,具备安全、节能、试验精度高、一致性高等优点。“大量的模拟环境测试,并不会减少我们在真实场景下的验证。我们相当于在大量的方案里,通过模拟的环境,在较短的时间内快速筛选出其中表现最好的部分方案,再结合大量的真实路测,全面覆盖极热、极寒、高湿地域,挑选出表现最佳的那一个,呈交给用户。不夸张地说,我们自建的整车环模排放试验室,仅一年多的时间,为公司节省下的各类费用就已经能覆盖我们所有的前期投入成本,剩下的时间里,我们无时无刻都在‘纯赚’。”工程师强哥说。05 以最高标准打造,是我们技术自研的底气像这样的试验室,在理想汽车的研发中心足足还有80余个。在碳化硅功率模块试制车间与试验室,我们实现了微米级的印刷、打线、测量与检测,并可进行完整的性能与可靠性验证;在结构强度试验室,我们复现了不同的路面情况,不断考察车身及底盘结构可靠耐久性;在电池试验室,我们全面探索更安全、更高效的新一代电芯解决方案,麒麟5C电池也是在这里经过了我们的反复检验;在获得杜比官方认证的空间声学试验室里,我们打造出了理想汽车首创的7.3.4全景声音响系统......截止目前,理想汽车检验检测中心已分别在北京研发中心、上海研发中心、常州生产基地分设三个检测分中心,89间专项试验室,试验能力涵盖整车、系统、零部件、芯片、材料等车辆研发所必备的全部测试能力,试验范围可覆盖实物验证、仿真验证、软件测试、硬件在环测试、路试等,从产品研发到供应链全领域、全生命周期的验证。据负责试验室规划与建设的工程师张文希介绍,“为了确保我们每一次研发的新技术、打造的新产品都能拥有稳定的质量和性能,我们必须对其进行严格的研发测试。为此,早在公司成立之初,我们就已启动了对各类实验室的建设,并严格参照实验室认可服务的全球最高标准——ISO/IEC 17025加以打造。多年来的持续投入,让我们的各项研发验证都更加充分,不断提升产品的升级迭代效率。尽管一些第三方实验室也可以承接部分试验的工作,但无论从测试效率、测试成本,以及知识产权保护等方面,都相较我们自建实验室存在一定差距。以时效性为例,有些第三方试验室由于同时承接不同品牌的大量项目,往往光是排队就要1-2个月的时间,等做完试验,结果也要按照试验的先后顺序排队产出。一些处于研发期的项目,无论智能空间、智能驾驶、增程电动,还是电芯试制、车身底盘、结构强度耐久,我们都需频繁通过试验来辅助研发对方案进行验证,我们根本等不起。但在我们自建的试验室里,一方面我们会基于项目的优先级灵活协调安排,让价值高、时间紧的项目先做,并且第一时间就可产出结果,确保整体效率保持在较高水平。另一方面,凭借自建优势,我们也可将一些试验整合到一起,打造独属于我们理想汽车的试验室,帮伙伴们更便捷、更省心地进行各类项目的研发与验证。”由小到大,从零部件到整车,从功能到系统,我们始终用最为严苛的研发测试验证,去为每一个家庭用户,带来更为极致的驾乘体验。为更多用户创造移动的家,创造幸福的家。
  • 中国III、IV阶段汽车排放限值及测量方法环保标准征求意见
    关于征求国家环保标准《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》(GB 14762-2008)修改方案(征求意见稿)意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,防治污染,保障人体健康,完善国家环保标准体系,我部决定对国家环保标准《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》(GB 14762-2008)进行修改完善。目前,标准编制单位已编制完成修改方案的征求意见稿。现将征求意见稿和有关材料印送给你们,请研究并提出书面修改意见,返回我部科技标准司。征求意见截止时间为2012年6月14日。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   联系人:环境保护部环境标准研究所 纪亮   联系电话:(010)84913998   附件:1.征求意见单位名单   2.《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》(GB 14762-2008)修改方案(征求意见稿)   3.《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》(GB 14762-2008)修改方案(征求意见稿) 编制说明   二○一二年六月四日   附件一: 征求意见单位名单   发展改革委办公厅   工业和信息化部办公厅   公安部办公厅   住房城乡建设部办公厅   交通运输部办公厅   商务部办公厅   质检总局办公厅   各省、自治区、直辖市环境保护厅(局)   中国环境科学研究院   中国环境监测总站   中日友好环境保护中心   中国环境科学学会   环境保护部对外合作中心   环境保护部南京环境科学研究所   环境保护部华南环境科学研究所   中国环境保护产业协会   环境保护部机动车排污监控中心   清华大学(汽车系、环境系)   北京理工大学(机械与车辆工程学院)   北京市机动车排放管理中心   中国汽车工业协会   中国内燃机工业协会   中国汽车工程研究院   国家汽车质量监督检验中心(长春)   国家汽车质量监督检验中心(襄樊)   国家客车质量监督检验中心(重庆)   济南汽车检测中心   北京汽车研究所有限公司   中国第一汽车集团公司   东风汽车公司   东风汽车有限公司商用车发动机厂   安徽江淮客车有限公司   北京汽车制造厂有限公司   北汽福田汽车股份有限公司   广州汽车集团客车有限公司   河北长安汽车有限公司   江铃汽车股份有限公司   南京客车制造厂   四川一汽丰田汽车有限公司   厦门金龙旅行车有限公司   扬州亚星客车股份有限公司   郑州宇通客车股份有限公司   长春一汽四环发动机制造有限公司   沈阳新光华晨汽车发动机有限公司   沈阳新光华翔汽车发动机制造有限公司   绵阳新晨动力机械有限公司   (部内征求污防司的意见)
  • 南京麒麟仪器集团参加中国(国际)汽车轻量化铸造技术交流会
    南京麒麟仪器集团参加中国(国际)汽车轻量化铸造技术交流会 暨中国铸造协会汽车铸件分会年会2016年9月4日到7日,南京麒麟集团代表者吴经理来到素有我国“青铜器之乡”美誉的陕西省宝鸡市,参加在这里举行的中国(国际)汽车轻量化铸造技术交流会暨中国铸造协会汽车铸件分会年会。南京麒麟仪器集团代表者和部分专家学者以及一些铸造企业家进行了友好的交谈,理化检测设备技术交流沟通。同时介绍了“麒麟”品牌直读光谱分析仪、高频红外碳硫分析仪、铁水分析仪等。让自全国各地的汽车铸造领域的专家和企业了解麒麟,优质产品及发展理念,为客户提供一体化解决方案。中国(国际)汽车轻量化铸造技术交流会现场这次会议是中国铸造协会的年度系列会议,专注在汽车铸造领域内的技术交流。届时,将有来自全国各地的汽车铸造领域的专家和企业参会。这次会议将探讨在“中国制造2025”的宏伟蓝图下,汽车铸造领域如何实现轻量化的发展与创新。中国铸造协会汽车铸件分会年会现场由于此次参会的企业类型多样,包括了汽车行业上下游及周边配套企业,在学术交流之余,主办方易贸还致力于为企业牵线搭桥,增进彼此了解,获取商机。因此,在会议现场还举办供需交流会,提供采购专场,进行匹配引荐,加强企业之间的技术产品交流,打造一场商贸对接盛会。 南京麒麟科学仪器集团有限公司检测中心2016年9月8日
  • 【邀请】第三届“汽车及零部件材料分析与测试评价技术”网络会议
    研讨会邀请研讨会简介:汽车由数以万计零部件组装而成,零部件是汽车发展的基础和重要组成部分,其性能优劣直接影响整车性能的优劣。我国是世界汽车产销大国,机动车污染日益严重,在国家倡导建设资源节约型、环境友好型社会的背景下,轻量化已成为汽车技术的发展方向,由此,轻量化材料的研究、应用及分析表征技术日益受到关注。与此同时,新能源汽车已经成为行业宠儿,国家政策的支持与技术的成熟,都促使新能源汽车行业迅猛发展,也向新能源汽车测试提出了更多的要求和挑战。在汽车产品层次,汽车产品全生命周期评价 (LCA),可以定量揭示汽车对生态环境的影响,为制定汽车相关的环境政策和我国汽车产业的可持续发展战略提供参考。基于此,仪器信息网将在前两届会议成功召开的基础上,于2021年3月16-17日组织召开第三届“汽车及零部件材料分析与测试评价技术”网络会议,并设置汽车零部件测试技术、 汽车新材料测试技术、新能源汽车测试技术、汽车全生命周期评价4个分会场。奥林巴斯演讲嘉宾简介:程业杰奥林巴斯工业内窥镜应用工程师现任奥林巴斯工业内窥镜应用工程师,一直从事内窥镜产品应用相关工作,重点关注汽车、风电、核电等行业,对内窥镜在各行业的应用有深入理解。演讲概要:工业内窥镜如何在汽车行业进行应用?汽车零部件作为汽车工业的基础,是支撑汽车工业持续健康发展的必要因素。一般汽车约由2万多个零部件组装而成,其中铁制零件占绝大多数。奥林巴斯的工业内窥镜在检查汽车零部件方面深受客户的好评。可用于检查传统汽车行业的零部件,诸如发动机部件:油嘴,气缸体,燃油喷射阀,凸轮轴,曲轴,气门等。传动系配件:变速器,传动轴等。另外也可以用于检查新能源汽车零部件:电动机水套,机电耦合器,燃料电池汽车氢气储罐等,在保证汽车零配件质量方面起了举足轻重的作用。奥林巴斯内窥镜具有多款不同型号的产品,可以为用户满足不同的零部件应用场景,并且其图像质量和易用性足以完成汽车零部件多种应用场景的检测。会议时间:03月16日 09:30 -- 03月17日 18:00报名地址:
  • 严控PM2.5 《汽车排放限值及测量方法》拟出台
    全国范围内汽车保有量快速增加,其污染物排放也不断增加,对环境的影响日趋严重,给城市和区域空气质量带来巨大压力。汽车直接排放的颗粒物,以及排放的氮氧化物和碳氢化合物反应形成的二次颗粒物,均是环境空气中PM2.5 的组成部分;同时,氮氧化物和碳氢化合物也是形成臭氧的重要前体物。   近日环保部发布了公告,就《轻型汽车污染物排放限值及测量方法(中国第五阶段)》(二次征求意见稿)征求意见。该标准适用于新车型式核准、生产一致性检查和在用符合性检查,包括了轻型汽车大气污染物排放控制的各项要求,即排气、蒸发和曲轴箱污染物排放的限值及测量方法,同时,还规定了污染控制装置耐久性、车载诊断(OBD)系统的技术要求及测量方法。   该标准大气污染物控制项目包括:一氧化碳(CO)、碳氢化合物(THC)、非甲烷碳氢(NMHC)、氮氧化物(NOx)、颗粒物(PM),并需要测量颗粒物的粒子数量(PN)。   以下是环保部发布的公告全文: 环境保护部办公厅函 环办函[2013]46号 关于征求《轻型汽车污染物排放限值及测量方法(中国第五阶段)》(二次征求意见稿)意见的函 各相关单位:   为贯彻落实《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》,防治污染,保护人体健康,适应国家经济社会发展过程中环境保护工作的需要,我部决定制定国家环境保护标准《轻型汽车污染物排放限值及测量方法(中国第五阶段)》。标准草案曾于2011年3月公开征求意见。标准编制单位认真研究了各方提出的意见后对标准草案进行了修改和完善。为了广泛听取社会各界意见,我部决定再次对标准草案公开征求意见。   欢迎有关单位和各界人士于2013年2月18日前通过信函或电子邮件的方式将意见反馈给环境保护部科技标准司。   通信地址:北京市西直门内南小街115号   邮政编码:100035   电子邮件:biao.zhun@mep.gov.cn   联系电话:(010)66556214   联系人:雷晶   附件:1.征求意见单位名单   2.轻型汽车污染物排放限值及测量方法(中国第五阶段)(二次征求意见稿)   3.《轻型汽车污染物排放限值及测量方法(中国第五阶段)》编制说明(二次征求意见稿)   环境保护部办公厅   2013年1月14日   附件1  征求意见单位名单   发展改革委   工业和信息化部   公安部   住房城乡建设部   交通运输部   商务部   国家质量监督检验检疫总局   各省、自治区、直辖市环境保护厅(局)   新疆生产建设兵团环境保护局   辽河保护区管理局   中国环境科学研究院   中国环境监测总站   中日友好环境保护中心   中国环境科学学会   环境保护部对外合作中心   环境保护部南京环境科学研究所   环境保护部华南环境科学研究所   环境保护部环境规划院   环境保护部环境工程评估中心   中国环境保护产业协会   环境保护部机动车排污监控中心   中国汽车工业协会   中国汽车工程学会   中国内燃机工业协会   中国石油天然气集团公司   中国石油化工股份有限公司   中国海洋石油总公司   国家轿车质量监督检验中心(天津)   济南汽车检测中心   国家汽车质量监督检验中心(长春)   国家汽车质量监督检验中心(襄樊)   国家客车质量监督检验中心(重庆)   国家机动车产品质量监督检验中心(上海)   中国汽车工程研究院股份有限公司   清华大学   北京理工大学   武汉理工大学   中国兵器工业集团公司   中国重型汽车集团有限公司   华晨汽车集团控股有限公司   金杯汽车股份有限公司   北汽福田汽车股份有限公司   联合汽车电子有限公司   福特汽车(中国)有限公司   康明斯(中国)投资有限公司   铃木(中国)投资有限公司   沃尔沃(中国)投资有限公司   北京汽车研究所有限公司   中国第一汽车集团公司   东风汽车公司   上海汽车工业(集团)总公司   广州汽车工业集团有限公司   广州本田汽车有限公司   广州丰田汽车有限公司   东风日产乘用车有限公司   北京汽车工业控股有限责任公司   北京现代汽车有限公司   上海大众汽车有限公司   一汽大众汽车有限公司   上海通用汽车有限公司   东风本田汽车有限公司   奇瑞汽车股份有限公司   比亚迪汽车有限公司   浙江吉利汽车有限公司   哈飞汽车有限公司   长城汽车有限公司   重庆长安汽车股份有限公司   安徽江淮汽车集团有限公司   南京汽车集团有限公司   福建省汽车工业集团有限公司   东南(福建)汽车工业有限公司   天津一汽夏利汽车股份有限公司   天津一汽丰田汽车有限公司   沈阳华晨金杯汽车有限公司   柳州五菱汽车有限责任公司   上汽通用五菱汽车股份有限公司   江西昌河汽车股份有限公司   大众汽车(中国)投资有限公司   通用汽车(中国)投资有限公司   日产汽车(中国)投资有限公司   宝马(中国)汽车贸易有限公司   梅赛德斯-奔驰(中国)汽车销售有限公司   丰田汽车技术中心(中国)有限公司   本田技研工业(中国)投资有限公司   泛亚汽车技术中心有限公司   长安福特汽车有限公司   长安马自达汽车有限公司   长安铃木汽车有限公司   北京汽车股份有限公司   广汽长丰汽车股份有限公司   北京奔驰汽车有限公司   广汽菲亚特汽车有限公司   神龙汽车有限公司   南京菲亚特汽车有限公司   南京依维柯汽车有限公司   无锡威孚力达催化净化器有限责任公司   大陆汽车亚太管理(上海)有限公司   东京滤器(苏州)有限公司   优美科汽车催化剂(苏州)有限公司   北京德尔福万源发动机管理系统有限公司   博世(中国)投资有限公司   艾蓝腾新材料科技(上海)有限公司   天津索克汽车试验有限公司   庄信万丰(上海)化工有限公司   巴斯夫催化剂(上海)有限公司   安徽艾可蓝节能环保科技有限公司   奇耐联合纤维(上海)有限公司   埃贝赫排气技术(上海)有限公司   科特拉(无锡)汽车环保科技有限公司   苏州派格力减排系统有限公司   天津悦泰石化技术有限公司   四川中自尾气净化有限公司   浙江临海市邦得利汽车环保技术有限公司   无锡威孚力达催化净化器有限责任公司   华勤爱科环境技术有限公司   NGK(苏州)环保陶瓷有限公司   电装(中国)投资有限公司上海分公司   北京绿创环保集团   3M中国有限公司   南京依柯卡特环保汽车催化器有限公司   昆明贵研催化剂有限责任公司   佛吉亚排气控制技术开发(上海)有限公司   罗地亚(中国)投资有限公司   霍尼韦尔汽车零部件服务(上海)有限公司  康明斯排放处理系统(中国)有限公司   贵州黄帝车辆净化器有限公司   康宁(上海)有限公司   克康(上海)排气控制系统有限公司   上海天纳克研发中心   云南菲尔特环保科技有限公司   (部内征求机关各部门意见)
  • 汽车及汽车零部件强制认证执行标准发布
    为保证强制性产品认证制度的有效实施,现就汽车及汽车零部件产品强制性认证执行标准的有关要求公告如下:   一、新申请认证的产品需按照附表中所列标准要求(含实施日期要求)进行认证。   二、对于标准修订的情况,如果无新增试验项目,已获证产品无须再进行实验,可直接换发新版认证证书 对于新版标准实施前已经出厂、投放市场并且已经不再生产的获证产品,无需按新版标准重新进行确认和换发新版认证证书。   三、对于已获证产品,如标准已明确规定在生产产品实施过渡期的,持证人应在标准规定的日期前,依据相应标准完成认证证书的变更、换版工作 如标准规定的实施过渡期不足本公告发布后12个月的,持证人应在本公告发布后12个月内依据相应标准完成认证证书的变更、换版工作。   四、对于在本公告规定的各标准换版截止日期后,仍未完成证书换版工作的,认证机构应暂停相应产品的认证证书,逾期三个月仍未完成证书换版工作的,认证机构应撤销相应产品的认证证书。   五、各相关指定实验室应在2011年12月31日前,向我委认证监管部上报依据附表中所列标准检测能力情况,以及获得实验室资质认定和认可的情况。   表1.新修订的标准 序号 标准号及名称 发布日期 实施日期 认证标准执行日期规定 1 GB 11555-2009《汽车风窗玻璃除霜和除雾系统的性能和试验方法》(汽车认证实施规则试验项目编号:01—06,01-07) 2009.09.30 2011.01.01 无 2 GB 11550-2009 《汽车座椅头枕强度要求和试验方法》(汽车认证实施规则试验项目编号:02-04) 2009.09.30 2011.01.01 新认证的M1类车型,自2011年1月1日实施,新认证的M1类外的车型,本标准自2011年7月1日起实施;在生产M1类车型,自2012年1月1日实施,对于在生产的M1类外的车型,本标准自2012年7月1日起实施。 3 GB 11566-2009 《乘用车外部凸出物》(汽车认证实施规则试验项目编号:02-07)2009.09.30 2011.01.01 新认证车型,自2011年1月1日实施;对于在生产车型,自2012年1月1日实施。 4 GB 11552-2009《乘用车内部凸出物》(汽车认证实施规则试验项目编号:02—08) 2009.09.30 2012.01.01 新认证车型,自2012年1月1日实施;在生产车型,自2013年1月1日实施。 5 GB 16897-2010《制动软管的结构、性能要求及试验方法》(汽车认证实施规则试验项目编号:06-03) 2010.01.10 2011.07.01 无 6 GB/T 18332.1-2009《电动道路车辆用铅酸蓄电池》(汽车认证实施规则试验项目编号:02-20) 2009.05.06 2009.11.01 无 7 GB 7063-2011《汽车护轮板》(汽车认证实施规则试验项目编号:02-10) 2011.05.12 2012.01.01 对于新认证车型,自2012年1月1日实施;对于在生产车,自2014年1月1日实施。 8 GB 11557-2011《防止汽车转向机构对驾驶员伤害的规定》(汽车认证实施规则试验项目编号:02-14) 2011.05.12 2012.01.01 对于新认证车型,自2012年1月1日实施,对于在生产产品,自2013年1月1日实施。 9 GB 11568-2011《汽车罩(盖)锁系统》(汽车认证实施规则试验项目编号:01-15) 2011.05.12 2012.01.01 无 10 GB14023-2011《车辆、船和自由内燃机驱动的装置无线电骚扰特性 限值和测量方法》(汽车认证实施规则试验项目编号:03-06) 2011.07.29 2012.01.01 无   表2.新增的标准 序号 标准号及名称 发布日期 实施日期 认证标准执行日期规定 1 GB 26134-2010《乘用车顶部抗压强度》(汽车认证实施规则试验项目编号:01-21) 2011.01.14 2012.01.01 无 2 GB/T 14172-2009《汽车静倾翻稳定性台架试验方法》(汽车认证实施规则试验项目编号:01—03) 2009.03.23 2010.01.01 无 3 GB24315-2009《校车标识》(汽车认证实施规则试验项目编号:01-01-01) 2009.09.30 2010.01.01 无 4 GB 24406-2009《专用小学生校车座椅及其车辆固定件的强度》(汽车认证实施规则试验项目编号:02-03) 2009.09.30 2010.07.01 无 5 GB 24407-2009《专用小学生校车安全技术条件》(汽车认证实施规则试验项目编号:01-18) 2009.09.30 2010.07.01 新认证车型自2010年7月1日实施,其中第4.2条2012年1月1日实施。 6 GB 25990-2010《车辆尾部标志板》(汽车认证实施规则试验项目编号:04-15) 2011.01.10 2012.01.01 无 7 GB 25991-2010《汽车用LED前照灯》(汽车认证实施规则试验项目编号:04-02) 2011.01.10 2012.01.01 无 8 GB/T 24552-2009《电动汽车风窗玻璃除霜除雾系统的性能要求及试验方法》(汽车认证实施规则试验项目编号:01-06/07) 2009.10.30 2010.07.01 无 9 GB/T 24549-2009《燃料电池电动汽车 安全要求》(汽车认证实施规则试验项目编号:02-20) 2009.10.30 2010.07.01 无 10 GB/T 4094.2-2005《电动汽车操纵件、指示器及信号装置的标志》(汽车认证实施规则试验项目编号:01-12) 2005.07.13 2006.02.01 无 11 GB 26511-2011《商用车前下部防护要求》(汽车认证实施规则试验项目编号:02-22) 2011.05.12 2013.01.01 对新认证车型自2013年1月1日实施,对在生产产品自2015年1月1日实施。 12 GB 26512-2011《商用车驾驶室乘员保护》(汽车认证实施规则试验项目编号:02-23) 2012.01.01 2012.01.01 无 13 GB/T 18487.1-2001《电动车辆传导充电系统一般要求》(汽车认证实施规则试验项目编号:02-20) 2001.11.02 2002.05.01 无   二○一一年十一月二十五日
  • 我国汽车材料界的“拓荒牛”——马鸣图教授
    马鸣图教授1942年生于河南兰考,1964年上海交大毕业后分配到机械工业部汽车研究所工作;1978年作为文革之后的首届研究生,入北京钢铁研究总院学习、攻读硕士博士学位;1985年已取得博士学位,重回汽车研究所(现中国汽车工程研究院)工作至今。  三年前,笔者在一次供给侧结构性改革论坛会上与七十七岁的老科学工作者马鸣图教授邂逅。论坛上,身高一米八五、体魄健硕、思维缜密马鸣图教授,对轻量化进行深入浅出的系统论述,同时也道出他的心声:以习近平总书记为核心的党中央“全面深化供给侧结构性改革”的英明决策再次点燃了他绽放科技成果之花的激情。这次谋面我们一见如故,携手踏上了打造我国“钢铁与制造业有效供给新经济体系”的示范之路。并肩战斗的岁月中感触到在马老勤奋拼搏的身后有着一颗情操崇高的心灵,更清楚地看到他在我国汽车材料从无到有、从弱到强再到高质量发展的历程中默默拓荒的身影和留下的一个个勤奋与智慧的丰碑。2021年5月24日马鸣图教授给专家组汇报科研成果 初出茅庐第一功,发明了我国首代军车关键零件用钢1965年,响应党中央号召,支援三线建设;马鸣图随汽车研究所组织部分人员内迁到重庆,主要承担以“法国贝利埃汽车公司”引进的军用越野车为依托,实现我国第一代军用车国产化的开发和生产基地建设。法国贝利埃汽车公司生产的重型越野汽车为北大西洋集团公约专用车,被誉为“沙漠里的羚羊”,车型的越野性能好,功能强,结构较复杂,并且具有自救能力,运行可靠;该车用钢系列为镍铬钼系列,强韧性匹配较好。其前桥内外半轴用钢为30NCD16,相当于30Cr2Ni4Mo,合金含量高,性能要求高:在抗拉强度1000MPa下冲击韧性大于150 J /Cm2,这种性能指标对于当时的调质结构钢是十分高的指标,该钢种曾被誉为法国的“王牌结构钢”,还用于飞机的起落架。我国当时缺镍少铬,就必须开发国内富有的合金元素钢种替代镍铬钢,而且性能又必须满足军用车的需要。为加快军用汽车生产的进度,曾有一个方案是仿制法国的30NCD16,但钢材交到綦江锻造厂进行零件锻造时发生大量的开裂,难以做出合格的锻坯,这条技术路线难以走通。最后,经过无数次的开发 、实验试制终于于1976年成功开发了我国富有合金元素的30Mn2MoW,合金量大幅度降低,成本下降,强度和韧性均达到30NCD16的要求,同时工艺性能优于30NCD16,拥有良好的锻造性能。该钢种是我国独创,这一钢种的研发成功,支持了我国首代军用车的生产和国防建设,并用于我国首代导弹运输车,该成果于1990年获得“国家发明奖”。《双相钢--物理和力学冶金》---我国先进高强度钢发展的奠基石1978年,马鸣图教授以对双相钢的产生、双相钢特性和应用前景的研究成果以及对双相钢深刻认识为基础,率先提出了“汽车轻量化”的概念。同时,对双相钢的强化特性的研究,提出和建立了全新的“计算双相钢强度的混合物定律和表征方程”,用导出的不连续纤维增强的复合材料混合物定律,代替当时大量应用的连续纤维复合材料混合物定律。该方程可根据双相钢的显微组织、合金成分计算和预测双相钢强度,大大提高了计算的精度和预测的准确性。这一成果不仅丰富了双相钢的强化理论,同时,也为双相钢强度的改进和提升提供了方法和依据。有关研究论文发表于在瑞典举行的“第四届国际材料力学性能会议”会刊上。基于对双相钢流变特性的C-J分析的曲线,提出了描述双相钢流变特性的综合变形模型,即双相钢变形的第一阶段用晶体强化的Ashby M.F 微观力学模型来描述双相钢的初始屈服和加工硬化特性;在C-J分析曲线的拐点之后,用Mileiko S.J理论来描述双相钢的均匀变形和组织之间的关系,这一综合模型较好的描述了双相钢的初始加工硬化和均匀变形阶段的流变特性,为双相钢性能的改进和提升提供了理论依据。80年代初,马鸣图教授关于双相钢的研究成果得到美国麻省理工学院W.S.Owen教授认可,之后,W.S.Owen教授发表在“金属工艺技术”上的文章:“一个简单的热处理能够挽救底特律(指美国汽车工业)吗?”,深刻阐明了双相钢对美国汽车四大工业支柱之一的“汽车工业”的重要性和对我国未来汽车工业的重要性。1986年,马鸣图教授和日本茨城大学教授友田阳联合主办了“双相钢微观力学研讨会”,根据近4年的关于双相钢的研究成果以及所发表的文章并综合国内外相关研究结果,撰写了国内外关于双相钢的首部学术专著《双相钢-物理和力学冶金》,该书于1988年01月由冶金工业出版社发行,于2009年01月由冶金工业出版社再版。《双相钢--物理和力学冶金》是冶金企业、机械制造企业、特别是汽车制造企业从事金属材料、热处理和力学性能的科研或工艺开发的技术人员及高等院校材料专业的师生、研究生重要的参考资料。为我国先进高强度钢的发展奠定了重要理论基础,实现我国双相钢总产量已超过千万吨。该著作对我国双相钢的发展起到了重要指导作用,并取得了重大经济和社会效益,极大促进了我国先进高强度钢的发展和在我国汽车轻量化中的应用,被誉为我国先进高强度钢发展的经典著作。双相钢包辛铬效应的开创性研究成果填补了国际空白80年代,马鸣图教授在双相钢的包辛格效应的研究中,采用力学和磁物理参量相结合的研究方法,发现了磁软化现象,得出了许多有意义的新的试验结果,取得了具有开拓性的研究进展,使在这一领域的研究成果处于世界前沿。法国雷诺汽车公司实验室主任法国科学院院士Haik在评价该成果时,认为“该研究结果开创了包辛格效应研究的新的方法和途径:通过力学参量和磁物理参量的对比研究分析,深刻阐明了这一重要的经典效应(包辛格效应)和重要的表征参量背应力的物理本质及其与相间应力的关系与消除背应力的方法,为高强度材料的成形回弹控制奠定了理论基础”。他针对该成果发表了一系列论著,其中,“Bauschinger effect and back stress in a dual phase steel”在“Trans.ISIJ”创刊号上发表。马鸣图教授1990年访问日本茨城大学时,曾被友田阳教授以日本人最高礼遇邀请到家里居住做客,对许多关于双相钢的学术问题进行了深度交流。回国后,马鸣图教授、中科院力学所段祝平教授、日本茨城大学教授日本钢铁学会主席友田阳(Yo Tomota)教授联合撰写了《金属合金中的包辛格效应及其在工业中的应用》学术专著,该书于1994年5月由机械工业出版社出版发行,并被列为我国高校研究生力学性能教学中的重要参考书。振臂疾呼“用高新技术改造和提升传统材料和传统产业”在上世纪90年代,美国为了误导其他国家经济的发展,在全世界大谈发展“知识经济、信息经济”;当时中国的经济发展也深受其影响,不少制造业被迫开始了“关、停、并、转”。对此,马鸣图教授振臂疾呼:制造业是一个国家根本,只有发展制造业国家才能强盛,人民才有就业的机会,才可能有强大的国防。针对在材料行业刮起的大力发展纳米材料的狂热之风,各行业大肆炒作纳米的概念,从食品、日常用品、洗涤用品到各种新型材料都是纳米化。马鸣图教授又提出:用高技术改造传统材料,并在中国上海举行的“首届国际工程师大会”上发表题为《用高新技术改造传统材料》的文章,强调了用高新技术改造传统材料才是材料行业正确的发展方向,该文后来刊登在“中国机械工程”杂志上。文章引用美国材料协会主席Thomas.W.Eagar的“传统材料由于高新技术的溶入,正在发生一场‘平静的革命’”为导语,表述了这场革命的主要表现是传统材料生产率的增长、性能的改善和价格成本的下降,强调了传统材料发生这种变革的基础是严格、科学地对材料制造工艺和零件制造工艺的要求的深刻理解,描绘了这种变革的连续性、进步性。实践证实了马鸣图教授的预言:传统材料行业由于高新技术的不断融入实现了传统材料功能的不断提升、零部件价格的下降,由此所产生的商业价值远远超出新材料所创造的商业价值。开创“材料性能和零件功能关系”的哲学理念在倡导发展基础材料实现制造业高质量发展同时,马鸣图教授针对材料性能和零件功能之间关系,论述了两个概念的差异与共同点,从哲学理论的高度为高功能零件的开发和材料潜力的充分发挥提供了依据和方法。他认为,材料是用于制造有用物件的物资,在人类的历史上曾把当时使用的材料作为历史发展的里程碑,如石器时代、青铜器时代。上世纪六十年代,人们又将材料称为建设当代文明的支柱之一。这些足见材料在发展经济和国防建设中的重要地位。任何一个材料要取得更快更协调一致的商用价值和成果,所要求的不仅是材料的制造工艺、价格、物理性能,更应该强调的是由材料取得的相应制品的几何形状和制品功能的工艺过程;同时还应强调在保持材料经济价格的前提下,将这些材料快速进入市场的能力。实际上,一个新材料商品化的时间可能是该材料研发成败的关键。在这些方面,传统材料比新材料更有优势。他总结出材料的研发包含的四个方面:首先是研发化学成分组织工艺和性能之间的关系;第二是筛选出合理的成分后,进行材料的冶金工艺性能研究,并进行材料的试制;第三是试制的材料要能够用经济、方便、快捷的方式转化为有用的物件,即材料应具有良好的应用工艺性能;其四是试制的零件应具有良好的使用性能,零件具有高的功能并且具有合理的性价比。长期以来,我国许多材料的研发停留在完成第一、第二方面,对后期材料的应用研究缺乏认识和实践重视不足,导致了不少新材料技术的开发半途而废,因此,在重视材料研发的同时更要重视材料的应用研究。提出弹簧钢松弛抗力的产生机理,发明表征参量和测试方法在高强韧性弹簧钢的研究中,提出了弹簧钢松弛抗力产生的机理,表征参量和测试方法;在美国汽车工程学会年会上发表了相关的研究成果,得到了国际同行业的广泛认可,指导了高性能弹簧钢的合金设计和产品开发。这一研究成果所撰写的论文于1991年被录用为《国际汽车工程学会年会宣读论文》,该会议在美国亚里桑那州的凤凰城举行。论文已经被收录于美国“SAE PaPEr”。同时,美国汽车工程学会要编写当年SAE会刊(即Trans.SAE),SAE会刊编委会对该论文给予高度评价,称该文章具有以下三个特点:文章内容有创新;文章内容具有长期的保留和参考价值;文章撰写文笔流畅。率先倡导发展燃气汽车,开拓汽车燃料新科技之路1992年,马鸣图教授当选为重庆市人大代表、市人大常委以后,率先建言提出“要在重庆市发展天然气汽车”,并得到了重庆市政府的大力支持,市科委也拨出专款对该项目予以推动。1995年,马鸣图教授带领的科技攻关团队历时三年,圆满完成了“燃气汽车关键零件开发和产业化”的科研任务,成功开发出了高可靠性的65升钢内衬复合材料环向增强的轻量化气瓶、燃气汽车发动机的ECU控制单元。并对重庆市的出租车实施了全面改装,既降低了排放,又实现了出租车在汽油高价位时低价低成本运行。这些科研成果有效支持了重庆燃气汽车业的健康发展,特别是保证了重庆出租车行业的优质发展,同时,该科研成果陆续在其他省市和国际上得到了较好地推广应用。2002年,“燃气汽车气瓶可靠性的研究”成果获中国汽车工业科技进步二等奖,2005年,“燃气汽车关键零件开发和产业化”科研项目被列入国家863计划,2008年“燃气汽车关键零件开发和产业化”科技成果获中国汽车工业科技进步一等奖。引入EVI模式并成功转化,材料的新成果应用又添利器 EVI是英文Early Vendor Involvement的简称,原意为材料供应商对用户开发新产品的先期介入模式,它来源于对材料生产企业的质量服务体系和对客户应用的支持系统,在马鸣图教授的推动下,现已发展成为通过技术合作支持用户新车型的开发,逐步形成了EVI的工作流程和模式。2008年10月,马鸣图教授应韩国POSCO的邀请参加在首尔举行的“POSCO EVI Global Forum 2008”大会,特邀做《中国汽车工业的发展轻量化和高强度钢的应用》报告,并与韩国浦项钢铁公司总裁交流了EVI的概念和内涵。回国后,根据我国材料行业的发展现状和应用中存在的问题,在韩国EVI模式的基础上进行了完善和深化,并将这一成果发展成为我国在新车开发过程新材料应用的一整套的集成解决方案。马鸣图教授引进和完善的EVI的活动包括四个阶段:第一阶段是开发用户需要的产品;第二阶段是在汽车企业零件制造中如何对用户进行帮助,对产品的开发先期介入,开发出具有高的性价比零件;第三阶段是“钢铁企业如何使用户快速的应用新的钢铁产品”,即钢铁生产和汽车产品的开发有机的融合在一起,双方达到EVI的深度合作和发展共赢;第四阶段是材料的供应商转变为解决用户问题的合作伙伴,包括对用户的硬件、软件、商业支持等。EVI的活动可以有效的促进新材料的开发和应用。但是材料宫颈部门要进行EVI活动应该具备有满足用户需要的相关材料和完整的数据库;具有材料研发和应用方面的技术人才及物质实力;对材料研发全过程有充分的认识和理解,特别是认识应用研究的重要性;以及对材料应用企业和零件生产企业有深刻的认识和理解,牢固树立起用户第一的思想。从2008年到2018年,韩国POSCO公司每两年都有召开一次EVI的国际论坛,共召开了7次,马鸣图都作为嘉宾参会,通过各类展品和报告对EVI的内涵和重要性有十分深刻的理解,为扩大这一理念的应用,从2017年起到2019年已召开两届EVI及高强钢氢致延迟断裂国际会议。本人和中信金属公司郭爱民先生共同作为会议主席主持会议的召开,并编辑出版会议论文集。今年将召开第三届这一国际会议,马鸣图教授在这一领域的研究成果和会议的交流成果得到与会者的广泛认可,并给予高度评价,取得诸多进展和一些处于国际先进水平的研究成果。2016年和韩国POSCO首席专家在国际会议上合影发明新型热成形钢,为汽车轻量化和安全性助力护航针对热冲压成形用钢的强韧性不足及氢致延迟抗力的不足,马鸣图教授在早期已经形成和提出的复合微合金化理论基础上开发了高强韧性和高氢致延迟断裂抗力的热冲压成形用钢,改变了国际上应用的三十年一贯制的热成形用钢22MnB5,目前,这类性能优良的热成形钢已形成了1500-1800MPa钢种系列,有效的提升了我国热成形用钢的强韧化水平以及氢致延迟断裂抗力;从而提升了热成形构件的轻量化水平与安全性和可靠性。现在,又将复合微合金化研发的成果拓展应用到非调质钢中,开发出了高强韧性的非调质钢,并在工程机械、农用机械及特种装备领域得到了广泛应用。自2010年以来,马鸣图教授对热冲压成形技术和材料进行了大量研究,取得了国内外有影响的成果,助力国内建成180余条热成形生产线,平抑了热冲压成形构件的价格,为我国汽车轻量化和安全性的提升提供了有力支撑。从2014年开始到2020年和英国皇家工程院院士林建国教授共同作为大会主席已组织召开了五届热冲压成形国际会议,提升了我国热成形技术在国际上的影响力。现在又创新性地将热冲压成形技术拓展到商用车上应用,解决了长10米,宽2米,厚3-10毫米的大型热成形构件生产的相关装备、工艺、板坯传输和水冷模具的诸多关键问题。已生产U型底板的城市渣土运输翻斗车,将翻斗的重量从4.35吨减到2吨,轻量化率超过50%,为世界领先水平的成果。该项成果将在建筑、国防工业、高速公路护栏、船舶等领域拓展应用,为我国预期碳达峰和碳中和作出新的贡献。和英国皇家工程院院士林建国等在国际会议上合影谦恭学习开拓创新,享誉国内外同行马鸣图教授从上世纪80年代开始,和美国MTS公司合作,共同改进MTS809拉扭复合加载实验系统的机架刚度;通过增加机架的立柱直径,加厚机架横梁尺寸,使改进的机架刚度比原机架提高十倍,成为这一产品系列的定型产品。MTS公司通过提供拉扭复合加载引伸计和相关附件,给这一工作的成功表示肯定和奖励。80年代末,和日本茨城大学友田阳教授开展国际合作进行拉扭复合载荷下材料响应效应的研究和包辛格效应研究,提升了我国在这一领域的研发水平。90年代,和英国贝尔法斯特女皇大学开展建筑防火钢的研究,这是我国最早在该领域内进行的研究,并取得成果;双方共同编写了“材料科学和工程研究进展第一集”,系统介绍了英国和国际上结构材料的最新研究进展。和日本千叶大学开展复合材料研究和交流,共同编写了“材料科学和工程研究进展第二集—复合材料的研究进展”,系统介绍了金属基和树脂基复合材料的研究进展和应用,促进了我国在该领域内的新的发展。本世纪初,和国际上知名企业韩国POSCO开展先进高强度钢的研发、应用和性能检测评价方面的研究和合作,前后承担有近十个项目,促进了我国汽车用先进高强度钢研究和应用;马鸣图教授还是高强度钢热冲压成形国际会议的会议主席,来自国外的代表一致认为该会议是国际上高学术水平和实用性相融合的国际会议,连续五届的国际会议和由世界科学出版社出版的会议论文集极大地促进了我国热成形产业的发展,提升了我国在这一领域的国际上的影响,从而提升了我国汽车轻量化和安全性的水平,也使我国从热成形生产线装备的进口国到出口国。马鸣图教授和台湾金属研究中心及台湾中钢开展热成形工艺技术和用钢方面的合作,促进了两岸企业的交流与合作,中汽院和台湾中钢已经在重庆建设了关于LFT以及热成形的合资企业,目前运作正常。和日本神户制钢的合作交流促进了我国汽车用高强度变形铝合金板材的发展和应用。马鸣图教授和国际上诸多有影响的科学家及专家建立了友好关系;如:美国南卡罗里奥大学焊接专家赵玉津合作制定点焊试样的标准,并发表文章;和英国皇家工程院院士林建国共同作为会议主席主办国际热冲压成形会议;和日本钢铁协会主席友田阳、韩国金属学会主席权伍俊等或合作研究,或学术交流,或双方互访,或共同著书,或联合发表文章,或交流研究生,扩大了中国学术研究成果的国际影响,也增加了对外交流和学习国外先进技术的机会。和英国林建国院士共同主持国际会议56科研硕果累累,耄耋之年奋斗不止马鸣图教授56年的科研生涯,先后承担国家863、973、重点研发计划、自然科学基金重点项目等20余项。形成了独具特色的复合微合金化、强韧性合理匹配,以及以零件功能为目标的选材原理和方法。获国家省部级科技奖励36项,国家发明奖三等1项,省部级奖一等3项、二等16项,三等16项;出版学术专著5部,主编10部;论文300余篇;发明专利10余项。从2016-2018年,和有关单位合作得到三项国家自然科学重点基金项目的支持;十二五期间,还承担铝合金汽车板的国家重点研发计划;2019-2020年,两年间共获省部级科技奖励4项(2项一等奖,2项二等奖)。马鸣图教授先后被国家科委、人事部授予“中青年有突出贡献专家”,国家教委授予“做出突出贡献的中国博士学位获得者”,享受国务院颁发的政府特殊津贴,中国科协授予“西部大开发突出贡献奖”。被誉为汽车材料领域的大师泰斗,为我国汽车材料工业的快速发展做出了突出贡献。马鸣图教授一直是我学习的榜样,我们共同探索的“深化供给侧结构性改革、建设钢铁制造业有效供给经济体系,实现高质量发展”之路理念,已得到新富集团李靖伟董事长的首肯和支持。新富集团依托其自身商用车全产业链的优势与实力,主动承担了“超高强、高延迟断裂抗力汽车用钢与热成形关键技术及产业化”科研项目成果转化的任务,并形成了“创新链产业链融合”实现高质量发展的企业模式。马鸣图教授作为新团队的首席科学家,他时刻以“老骥自知夕阳晚,不需扬鞭自奋蹄”自勉,他对知识的追求如饥似渴,废寝忘食,对科研的热情仍不减当年,对党的事业忠贞不渝。他的精神也将永远激励我们,为夺取新时代中国特色社会主义伟大胜利而努力奋斗!
  • 《新能源汽车动力蓄电池回收利用试点实施方案》发布(附全文)
    p   日前,工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局发布了关于组织开展新能源汽车动力蓄电池回收利用试点工作的通知。为贯彻落实《新能源汽车动力蓄电池回收利用管理暂行办法》,探索技术经济性强、资源环境友好的多元化废旧动力蓄电池回收利用模式,推动回收利用体系建设,工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局将组织开展新能源汽车动力蓄电池回收利用试点工作。以下为具体内容: /p p style=" text-align: center "    strong 新能源汽车动力蓄电池回收利用试点实施方案 /strong /p p   为贯彻落实《新能源汽车动力蓄电池回收利用管理暂行办法》,探索技术经济性强、资源环境友好的多元化废旧动力蓄电池回收利用模式,推动回收利用体系建设,制定本方案。 /p p   一、总体要求 /p p   以党的十九大精神为指导,全面贯彻落实生态文明建设要求,践行新发展理念,选择新能源汽车保有量大、动力蓄电池回收利用基础好、区域带动性强、有积极性的地区开展动力蓄电池回收利用试点。以市场为主导,充分发挥汽车生产、电池生产和综合利用企业主体作用,探索动力蓄电池回收利用市场化商业运作模式,完善相关标准,突破动力蓄电池梯次利用、高效再生利用产业发展瓶颈,建设示范工程,为建立科学完善的动力蓄电池回收利用制度提供实践支撑。 /p p   到2020年,建立完善动力蓄电池回收利用体系,探索形成动力蓄电池回收利用创新商业合作模式。建设若干再生利用示范生产线,建设一批退役动力蓄电池高效回收、高值利用的先进示范项目,培育一批动力蓄电池回收利用标杆企业,研发推广一批动力蓄电池回收利用关键技术,发布一批动力蓄电池回收利用相关技术标准,研究提出促进动力蓄电池回收利用的政策措施。 /p p   二、试点内容 /p p   (一)构建回收利用体系 /p p   充分落实生产者责任延伸制度,由汽车生产企业、电池生产企业、报废汽车回收拆解企业与综合利用企业等通过多种形式,合作共建、共用废旧动力蓄电池回收渠道。鼓励试点地区与周边区域合作开展废旧动力蓄电池的集中回收和规范化综合利用,提高回收利用效率。坚持产品全生命周期理念,建立动力蓄电池产品来源可查、去向可追、节点可控的溯源机制,对动力蓄电池实施全过程信息管理,实现动力蓄电池安全妥善回收、贮存、移交和处置。 /p p   (二)探索多样化商业模式 /p p   充分发挥市场化机制作用,鼓励产业链上下游企业进行有效的信息沟通和密切合作,以满足市场需求和资源利用价值最大化为目标,建立稳定的商业运营模式,推动形成动力蓄电池梯次利用规模化市场。加强大数据、物联网等信息化技术在动力蓄电池回收利用中的应用,建设商业化服务平台,构建第三方评估体系,探索线上线下动力蓄电池残值交易等新型商业模式。 /p p   (三)推动先进技术创新与应用 /p p   鼓励新能源汽车、动力蓄电池生产企业在产品开发阶段优化产品回收和资源化利用的设计 开展废旧动力蓄电池余能检测、残值评估、快速分选和重组利用、安全管理等梯次利用关键共性技术研究,鼓励在余能检测、残值评估等阶段适当引入第三方评价机制 开展废旧动力蓄电池有价元素高效提取、材料性能修复、残余物质无害化处置等再生利用先进技术的研发攻关。同时,形成一系列动力蓄电池回收利用相关标准和技术规范,推动废旧动力蓄电池无害化、规范化、高值化利用。 /p p   (四)建立完善政策激励机制 /p p   鼓励试点地区将动力蓄电池回收利用工作作为落实生态文明建设要求、推动绿色制造产业发展的重要内容及举措,研究支持新能源汽车动力蓄电池回收利用的政策措施,探索促进动力蓄电池回收利用的相关政策激励机制,充分调动各方积极性,促进动力蓄电池回收利用。 /p p   三、组织实施与管理 /p p   (一)试点范围 /p p   在京津冀、长三角、珠三角、中部区域等选择部分地区,开展新能源汽车动力蓄电池回收利用试点工作,以试点地区为中心,向周边区域辐射。支持中国铁塔公司等企业结合各地区试点工作,充分发挥企业自身优势,开展动力蓄电池梯次利用示范工程建设。 /p p   (二)实施年限 /p p   试点工作实施年限原则上不超过2年。 /p p   (三)方案编制与申报 /p p   各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门可自愿申报,会同相关部门按照《新能源汽车动力蓄电池回收利用试点实施方案编制指南》(见附件)组织编制本地区试点实施方案,并报工业和信息化部。中国铁塔公司等结合本企业特点和目标,自行编制示范工程实施方案,报工业和信息化部。 /p p   (四)审核确定 /p p   工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局组织专家对申报的实施方案进行论证,确定试点地区,并对实施方案进行备案。 /p p   (五)实施管理 /p p   试点地区按照试点工作总体要求,积极指导和督促相关企业开展试点工作,进行阶段性评估、经验总结,加强试点工作的过程管理和优化调整。 /p p   (六)总结评估 /p p   试点工作结束后,试点地区对试点完成情况进行总结,中国铁塔公司等企业对示范工程实施情况进行总结,并报工业和信息化部。工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局组织试点验收和示范工程评估,总结试点示范经验,在全国范围内推广。 /p p   四、保障措施 /p p   (一)加强组织领导 /p p   试点地区应高度重视试点工作,加强对试点工作的组织领导,成立试点工作领导小组,按照试点方案目标、重点任务和具体计划,确定各项任务分工,落实责任,确保试点目标任务按期完成。 /p p   (二)加大政策扶持 /p p   试点地区应加强资源整合,积极协调利用现有政策措施和资金渠道,加大对试点工作的支持力度。支持中国铁塔公司等优势企业联合设立产业基金,加强政府、企业和金融机构的对接,引导金融机构创新产品和服务。 /p p   (三)强化能力建设 /p p   国家建立统一的溯源管理平台,对试点地区动力蓄电池全生命周期实现信息溯源管理,支撑试点工作科学开展和阶段性评估。发挥行业协会、骨干企业和科研机构等各方面优势,搭建动力蓄电池回收利用交流平台,促进试点地区产学研用合作,建立动力蓄电池回收利用技术联合攻关和推广应用机制。 /p p   (四)加强宣传推广 /p p   充分发挥电视、广播、报纸、互联网等新闻媒体作用,加强对社会公众的宣传,增强公众资源节约与环境保护意识。试点地区应在网站上公布本地区试点企业名单和相关信息,积极引导公众参与新能源汽车动力蓄电池回收利用。 /p
  • 新型集装箱汽车衡称重识别系统技术鉴定会在天津成功召开
    2008年4月28日,由梅特勒托利多(常州)称重设备系统有限公司、天津港(集团)有限公司共同研制开发的集装箱双箱称重系统通过了交通运输部组织的专家鉴定。 课题组人员在作相关报告 鉴定委员会专家组由中国计量科学研究院研究员李振民、国家质量监督检验检疫总局调研员赵燕,中国衡器协会秘书长刘晓华,上海海事大学教授黄有方,交通部水运科学研究院研究员郑见粹,武汉理工大学教授董明望,秦皇岛港集团李欣、塘沽计量检定所董伟组成,交通运输部科教司领导仉伯强、李奇出席并主持了鉴定会。会上,专家组认真听取了课题组的工作报告、技术报告和用户报告,审查了相关技术资料,并对现场演示进行了考察。 鉴定委员们在激烈讨论此次课题 该系统通过采用三个独立的称重平台设计,配合多秤接口的称重仪表,集装箱运输车辆的各轴(轴组)只要停在不同秤台上,就可以实现通过一次静态称量车辆的总重及各轴重的称重计量,计量精度达到OIML( III)级。经过专家认真讨论,一致形成以下鉴定意见: 1. 该项目提供的技术资料齐全、完整,符合交通运输部科技项目技术鉴定的要求; 2. 该系统在受力结构上采用了分体式称重平台替代了传统的整体式称重平台,具有创新性; 3. 建立了识别系统的力学模型,进行了双箱称重的理论研究,提出了基于轴荷变化的误差修正方法; 4. 成功开发了该系统的识别软件,建立了&ldquo 基础车型数据库&rdquo 、&ldquo 车辆信息管理库&rdquo ,软件功能齐全,界面友好,可操作性强; 5. 该项目实现了一次双箱过衡单箱分别计重,提高了集装箱港口生产效率,为船舶合理配载提供依据;同时具有识别超载集装箱功能,为港口集装箱装卸设备的安全运行提供保障。 该项目达到了预期的研究目标,技术先进,创新性强,为集装箱物流口岸的智能化管理提供技术支撑。新型集装箱汽车衡称重识别系统的成功开发与应用填补了国内在该领域的空白,达到国内领先水平。并且在港口及集装箱物流行业有着良好的应用推广前景。
  • 新能源汽车引领下年更新159条标准——2021汽车材料及零部件测试标准盘点
    2021年可谓标准“元年”,中共中央、国务院印发《国家标准化发展纲要》,将推动标准化与科技创新互动发展作为重要任务之一,研究制定新能源汽车、智能网联汽车和机器人等领域关键技术标准,推动产业变革。我国是汽车产销第一大国,随着新能源汽车、智能网联汽车技术的快速发展和应用,充分发挥标准的引领和规范作用,已成为支撑我国汽车产业转型升级和高质量发展的推动力。回顾过去这一年,我国批准发布大量汽车标准,本文就国家标准、行业标准及主流团体标准进行了简要盘点,以飨读者。国家标准国家标准分为强制性标准和推荐性标准两种,强制性标准主要包括汽车的安全性标准、汽车排放物的控制标准、汽车操声限制标准、汽车燃油消耗量限制标准等。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的国家标准共58项。序号标准号标准名称发布日期实施日期1GB 17675-2021汽车转向系 基本要求2021/2/202022/1/12GB 19578-2021乘用车燃料消耗量限值2021/2/202021/7/13GB 26512-2021商用车驾驶室乘员保护2021/2/202022/1/14GB/T 39851.2-2021道路车辆 基于控制器局域网的诊断通信 第2部分:传输层协议和网络层服务2021/3/92021/10/15GB/T 39895-2021汽车零部件再制造产品 标识规范2021/3/92021/10/16GB/T 39897-2021车内非金属部件挥发性有机物和醛酮类物质检测方法2021/3/92021/10/17GB/T 39896-2021厢式货车系列型谱2021/3/92021/10/18GB/T 32694-2021插电式混合动力电动乘用车 技术条件2021/3/92021/10/19GB/T 26779-2021燃料电池电动汽车加氢口2021/3/92021/10/110GB/T 19753-2021轻型混合动力电动汽车能量消耗量试验方法2021/3/92021/10/111GB/T 19237-2021汽车用压缩天然气加气机2021/3/92021/10/112GB/T 18386.1-2021电动汽车能量消耗量和续驶里程试验方法 第1部分:轻型汽车2021/3/92021/10/113GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法2021/3/92021/10/114GB/T 39899-2021汽车零部件再制造产品技术规范 自动变速器2021/3/92021/10/115GB 9656-2021机动车玻璃安全技术规范2021/4/302023/1/116GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2021/4/302022/1/117GB/T 40032-2021电动汽车换电安全要求2021/4/302021/11/118GB/T 31498-2021电动汽车碰撞后安全要求2021/8/192022/3/119GB/T 40432-2021电动汽车用传导式车载充电机2021/8/192022/3/120GB/T 40494-2021机动车产品使用说明书2021/8/192022/3/121GB/T 40499-2021重型汽车操纵稳定性试验通用条件2021/8/192022/3/122GB/T 40501-2021轻型汽车操纵稳定性试验通用条件2021/8/192022/3/123GB/T 40509-2021汽车转向中心区操纵性过渡特性试验方法2021/8/192022/3/124GB/T 40507-2021乘用车 自由转向特性 转向脉冲开环试验方法2021/8/192022/3/125GB/T 40512-2021汽车整车大气暴露试验方法2021/8/192022/3/126GB/T 40521.1-2021乘用车紧急变线试验车道 第1部分:双移线2021/8/192022/3/127GB/T 40521.2-2021乘用车紧急变线试验车道 第2部分:避障2021/8/192022/3/128GB/T 38146.3-2021中国汽车行驶工况 第3部分:发动机2021/8/192022/3/129GB/T 40429-2021汽车驾驶自动化分级2021/8/192022/3/130GB/T 24347-2021电动汽车DC/DC变换器2021/8/192022/3/131GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法2021/8/192022/3/132GB/T 34015.4-2021车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识2021/8/192022/3/133GB/T 40433-2021电动汽车用混合电源技术要求2021/8/192022/3/134GB/T 40430-2021道路车辆 基于控制器局域网的诊断通信 符号集2021/8/192022/3/135GB/T 34015.3-2021车用动力电池回收利用 梯次利用 第3部分:梯次利用要求2021/8/192022/3/136GB/T 14172-2021汽车、挂车及汽车列车静侧倾稳定性台架试验方法2021/8/192022/3/137GB/T 40822-2021道路车辆 统一的诊断服务2021/10/112022/5/138GB/T 40861-2021汽车信息安全通用技术要求2021/10/112022/5/139GB/T 5334-2021乘用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/140GB/T 39851.3-2021道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求2021/10/112022/5/141GB/T 33598.3-2021车用动力电池回收利用 再生利用 第3部分:放电规范2021/10/112022/5/142GB/T 38775.7-2021电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端2021/10/112022/5/143GB/T 12678-2021汽车可靠性行驶试验方法2021/10/112022/5/144GB/T 27840-2021重型商用车辆燃料消耗量测量方法2021/10/112022/5/145GB/T 19754-2021重型混合动力电动汽车能量消耗量试验方法2021/10/112022/5/146GB/T 40712-2021多用途货车通用技术条件2021/10/112022/5/147GB/T 40711.2-2021乘用车循环外技术/装置节能效果评价方法 第2部分:怠速起停系统2021/10/112022/5/148GB/T 38775.5-2021电动汽车无线充电系统 第5部分:电磁兼容性要求和试验方法2021/10/112022/5/149GB/T 40578-2021轻型汽车多工况行驶车外噪声测量方法2021/10/112022/5/150GB/T 12535-2021汽车起动性能试验方法2021/10/112022/5/151GB/T 40625-2021汽车加速行驶车外噪声室内测量方法2021/10/112022/5/152GB/T 5909-2021商用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/153GB/T 40711.3-2021乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调2021/10/112022/5/154GB/T 39037.1-2021用于海上滚装船运输的道路车辆的系固点与系固设施布置 通用要求 第1部分:商用车和汽车列车(不包括半挂车)2021/10/112022/5/155GB/T 40711.4-2021乘用车循环外技术/装置节能效果评价方法 第4部分:制动能量回收系统2021/10/112022/5/156GB/T 40855-2021电动汽车远程服务与管理系统信息安全技术要求及试验方法2021/10/112022/5/157GB/T 40857-2021汽车网关信息安全技术要求及试验方法2021/10/112022/5/158GB/T 40856-2021车载信息交互系统信息安全技术要求及试验方法2021/10/112022/5/1行业标准汽车行业标准主要包括汽车整车、发动机及各大总成的性能要求、技术条件等表明产品本身质量水平的标准。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的行业标准共9项。序号标准号标准名称发布日期实施日期1QC/T 1149-2021大件运输专用车辆2021/5/172021/10/11QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件2021/8/212022/2/12QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法2021/8/212022/2/13QC/T 1154-2021汽车微电机用换向器2021/8/212022/2/14QC/T 1155-2021汽车用USB功率电源适配器2021/8/212022/2/15QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范2021/8/212022/2/16QC/T 271-2021微型货车防雨密封性试验方法2021/8/212022/2/17QC/T 550-2021汽车用蜂鸣器2021/8/212022/2/18QC/T 62-2021摩托车和轻便摩托车减震器2021/8/212022/2/19QC/T 942-2021汽车材料中六价铬的检测方法2021/8/212022/2/1团体标准本文仅整理由中国汽车工程学会(CSAE)批准发布的团体标准,共92项。中国汽车工程学会标准化工作最早始于2006年,2014年入选首批团体标准试点单位。以下标准自发布之日起生效。序号标准号标准名称发布日期1T/CSAE 172-2021电动乘用车剩余里程准确度评价试验方法2021/2/262T/CSAE 173-2021基于道路载荷谱的汽车用户使用与试验场试验相关性分析评价规程2021/3/293T/CSAE 174-2021汽车产品可靠性增长开发指南2021/3/294T/CSAE 175-2021汽车可靠性设计的用户定义方法2021/3/295T/CSAE 176-2021电动汽车电驱动总成噪声品质测试评价规范2021/3/296T/CSAE 177-2021电动汽车车载控制器软件功能测试规范2021/4/127T/CSAE 179-2021汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求2021/4/128T/CSAE 180-2021轻型汽车道路行驶工况2021/4/129T/CSAE 40-2021乘用车塑料前端框架技术条件2021/4/1210T/CSAE 178-2021电动汽车高压连接器技术条件2021/5/1311T/CSAE 181-2021汽车室内润滑脂气味测试及评价方法2021/5/1312T/CSAE 182-2021汽油机油低速早燃性能测试方法2021/5/1313T/CSAE 184-2021电动汽车动力蓄电池健康状态评价指标及估算误差试验方法2021/5/1314T/CSAE 185-2021自动驾驶地图采集要素模型与交换格式2021/5/1315T/CSAE 186-2021电动汽车动力蓄电池箱火灾用气体防控装置2021/5/1316T/CSAE 183-2021燃料电池堆及系统基本性能试验方法2021/6/1117T/CSAE 75.2-2021汽车防锈包装规程 第2部分:动力总成及其主要零部件2021/6/1118T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1119T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1120T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1130T/CSAE 199-2021汽车用高真空压铸铝合金减振器支座技术条件2021/6/3031T/CSAE 200-2021汽车用铝合金直锻工艺轮毂技术条件2021/6/3032T/CSAE 201-2021汽车用薄钢板冲压极限减薄率测试方法
  • “新能源汽车”重点专项2021申报指南:拟安排8.6亿元启动18个项目
    5月11日,科学技术部发布国家重点研发计划“新能源汽车”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。“新能源汽车”重点专项2021年度项目申报指南本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。专项实施周期为5年。2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台6个技术方向,按照基础前沿技术、共性关键技术、示范应用,拟启动18个项目,拟安排国拨经费8.6亿元。其中,围绕全固态金属锂电池技术方向,拟部署不超过3个青年科学家项目,拟安排国拨经费不超过1500万元,每个项目500万元。原则上共性关键技术类项目,配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。1. 能源动力1.1 全固态金属锂电池技术(基础前沿技术,含青年科学家项目)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、 电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电 化学场以及失效破坏等实验表征技术及固态电池综合评价方法。考核指标:固态复合正极比容量>400mAh/g;复合金属锂负极比容量>1500mAh/g;固体电解质厚度<15μm,室温电导率>1mS/cm,锂离子迁移数>0.8;全固态金属锂电池:容量>10Ah,比能量>600Wh/kg,循环寿命≥500 次。有关说明:支持一般项目的同时,并行支持不超过3个不同技术路线(互相之间、与一般项目之间技术路线均明显不同)的青年科学家项目;实施周期不超过5年。1.2 车用固体氧化物燃料电池关键技术(基础前沿技术)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能、高可靠电池结构设计及可控制备技术;优化连接体材料及结构,开发低成本连接体加工及涂层致密化技术;开发高一致性、长寿命电堆组装技术,形成千瓦级电堆批量制造能力;研发氢气、天然气、醇类等不同燃料处理技术及关键部件;集成不同燃料应用 场景的SOFC系统,研究系统快速启动响应技术,研究系统在模拟行驶工况下的应用安全。考核指标:建立车用SOFC关键部件、电堆与系统技术及理论体系。完成高性能、高可靠电池的结构设计和验证,电流密度 ≥300mA/cm2条件下,电压衰减≤4‰/千小时(运行时间≥1000h);形成低成本金属连接体及涂层材料加工工艺,连接体高温服役5000h,ASR≤30mΩ‧cm2;掌握SOFC电堆组装技术,单电堆功率≥1.0kW,电堆功率密度≥1.0kW/L,电效率≥60%;完 成氢气、天然气以及醇类等为燃料的SOFC系统开发,额定发电功率≥50kW,启动3分钟达50%输出功率,发电效率≥55%(DC,LHV),建立系统安全性能评价体系。有关说明:实施周期不超过 5 年。1.3 高密度大容量气氢车载储供系统设计及关键部件研制 (共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律,获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。考核指标:车载70MPa大容量IV型瓶储氢系统有效储氢质量≥32kg,氢气泄漏率≤10mL/h,供氢能力≥7g/s,系统服役寿命≥10年;形成相应气瓶与瓶阀的自主知识产权及产品标准,制 定系统零部件、总体结构、集成设计等安全设计准则。其中,70MPa氢Ⅳ型瓶满足T/CATSI 02007—2020要求、容积≥400L,单瓶质量储氢密度≥6.8wt%,单位储氢能力碳纤维使用量<10.7kg/kg H2;集成瓶阀设计压力≥70MPa,内置电磁阀寿命≥50000次, 瓶阀功耗≤8W,瓶阀质量≤1.2kg,瓶阀集成电磁开关装置、过流量装置、超温超压泄放装置(TPRD)、温度检测装置和手动操作装置;调压阀组循环寿命≥50000次,输出压力波动范围10~15%,波动持续时间≤10s,输出流量≥7g/s,质量≤1.2kg;车载氢系统控制器具备独立加氢模式、红外通讯、6路以上氢安 全检测通道,具备加氢状态控制与停车氢安全巡检策略;加氢口及加氢枪加注速率≥7.2kg/min,加氢口使用寿命≥20000次,加 注过程瓶内气温≤85℃。大流量氢气流量控制阀组最大喷射流量≥7g/s(阀组流量),内外氢气泄露率≤0.3mL/h@30bar,耐久性: 喷射阀开闭次数不小于4亿次(比例电磁阀全开闭次数不小于500万次);大流量氢循环引射器压升≥50kPa,引射比≥2.2,电堆功率覆盖范围60~400kW;大流量氢气循环泵系统压升≥50kPa(采用氢气混合气体,循环流量≥3000slpm,氢气浓度≥90%),功耗≤1.5kW,效率≥46%,噪音≤70dB,寿命≥20000h。建立快速加注机械接口标准、通信协议和加注操作规范,并形成标准送审稿;加注协议标准符合国际通用需求。2. 电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础前沿技术)研究内容:在电驱动系统集成与控制方面,研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系 统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。在新材料与新器件方面,研究高性能超级铜线(包括但不限于基于铜合金和铜/纳米管等复合材料的高性能超级铜线)及电机绕组制备技术,探索大电流SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模 块与组件协同优化技术,实现材料与器件优化。考核指标:超级铜线在20℃的电阻率≤1.90×10-8Ωm,180℃的电阻率≤2.57×10-8Ωm,并应用于高性能电机样机;1200V SiC MOSFET单芯片通流能力≥ 250A@150℃,导通压降≤2.5V@250A/150℃,最高结温250℃ , 阈值电压偏移≤0.1V@150℃;SiC电机控制器峰值功率体积密度≥70kW/L@峰值功率300kW,EMC 达CISPR等级4要求;提交电驱系统产品对标测试与技术分析报告共5份,每年样本量2套,提交电驱系统健康管理标准规范1项。有关说明:实施周期不超过5年。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:在高性能轮毂电机及总成方面,突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑;在高密度轮毂电机方面,研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技 术(包括冷却结构、动密封等)。考核指标:轮毂电机总成30s峰值转矩重量比≥20N∙m/kg;轮毂电机总成系统最高效率≥92%,系统CLTC工况综合使用效率≥80%;轮毂电机在额定转速点(额定转矩转折点),1米噪声总声压级≤72dB(A),防护等级不低于IP68,冲击振动标准不低于传统轮毂指标,电磁兼容性能满足Class4级及以上,轮毂电机总成产品实现装车运行。形成可靠性与耐久性测试规范。2.3 混合动力专用发动机及高效机电耦合技术(共性关键技术)研究内容:研究高效清洁燃烧(包括但不限于新型喷射、高EGR率、新型点火、高压缩比、可变机构技术等)结构优化、高效热管理、高效后处理、先进控制策略、低摩擦和低噪声等混合动力专用发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究先进混动控制系统、高效混动控制策略、混动专用电机及电池、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性,通过整车高效优化控制实现整车级行业领先动力和能耗指标。考核指标:专用发动机最高热效率≥45%,整车排放满足国六b+RDE;机电耦合系统机械传动效率≥95%,机电耦合系统综合效率≥85%(注:WLTC工况电平衡工况下的发电和驱动的加权综合效率);产品可靠性及寿命满足整车要求,实现装车运行。所搭载的整车0~100km/h加速时间≤7s,A级车在电量维持模式下油耗≤0.0018×(CM-1415)+3.8L/100km。混合动力专用高效发动机在额定功率下,1米噪声总声压级≤90dB(A);机电耦合系统在其基速点(转矩转折点),1米噪声总声压级≤78dB(A), 完成产品公告的量产车。3. 智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础前沿技术)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,探索高内聚、低耦合架构新形式,研究混合关键级任务调度与分配机理,建立域内、域间高可靠软件动态资源共享协议,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信机制,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余体系,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。考核指标:架构支持车路云一体化协同的高级别自动驾驶系统,可实现软硬件独立和域间协同计算,架构支持算力集中的弹性中央计算平台和分布区域管理控制器实现整车软件定义功能开发,形成具有自主知识产权的标准化软硬件接口≥400 个,接口包括:智能化传感器接口,原子服务接口,车—云标准接口和车与路侧设备接口等,标准接口支持2种以上的操作系统。电子电气架构一体化技术平台支持C-V2X信息交互,车辆相关软件升级时间≤20分钟,车载网络通讯速率可达10Gbit/s,时间敏感业务流转发时延小于50微秒,时间同步精度小于20纳秒。具有高可靠的冗余防失效机制,形成架构冗余设计准则和预期功能安全的解决方案。满足复杂电磁环境下的电磁安全要求,通过GB/T 18387和GB 34660标准 测试。建立信息安全纵深防御设计准则和防护策略。形成整车电子电气架构仿真、评估、优化和测试验证评价体系。在2家以上整车企业获得应用,完成相关技术标准或草案 3 项。有关说明:实施周期不超过5年。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知—决策—控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、 以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。考核指标:典型交通参与者行为预测时域不少于5s,长时域 轨迹预测误差≤0.6m(横向)和≤2m(纵向);支持L3级及以上自动驾驶功能的自我进化训练,涵盖典型道路场景≥5类和交通参与者≥4类,在线学习系统的更新周期≤30min;车载计算装置运行L3级及以上自动驾驶算法模块时,单位功耗算力≥2Tops/W,主要功能模块平均延迟150ms;边缘场景的自然驾驶 样本片段≥1万个,边缘场景类型≥80类,自动驾驶性能评估模 型的准确性≥90%;训练平台支持≥100个交通节点虚拟交通场景,支持不少于20辆实车的封闭测试场或开放示范道路的验证; 制定国家/行业标准≥3项。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安 全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。考核目标:开发预期功能安全实时防护系统一套,实现预期功能安全的实时保障,并在不少于20个边缘场景下进行技术验证;搭建面向大数据的数字孪生高性能云计算平台1套;开发自动驾驶系统预期功能安全分析、仿真测评和管理工具软件1套;开发有条件自动驾驶及以上级别的智能网联汽车预期功能安全测试案例库1套,测试用例≥300条;搭建预期功能安全实车测试平台1个;完成≥100万公里实车道路数据采集,构建预期功能安全场景≥1000个;完成预期功能安全量化开发及测试评价体系标准或草案1项。4. 车网融合4.1 智能汽车信息物理系统(CPS)技术(基础前沿技术)研究内容:面向智能汽车与信息通信及智能交通一体化,建立智能汽车信息物理系统基础理论,研究智能汽车信息物理系统架构体系构建、分析与构型优化方法;研究智能汽车信息物理融合机理,解构系统要素功能间协同机制与耦合规律,研究智能汽车信息物理系统建模方法;研究智能网联汽车信息物理系统开放性、涌现性和演进性特性,研究智能网联汽车信息物理系统全生命周期数字孪生重构设计与系统工程方法;研究智能汽车信息物 理系统测试验证与量化评估方法,建立智能汽车信息物理系统关键指标体系;研究智能汽车信息物理系统协同实现方法,构建典型参考系统以及系统确认方法。考核指标:建立智能汽车信息物理系统架构、特性分析、建模、设计、评估、验证、协同实现、系统确认与系统工程方法; 架构体系包含设计分析维度≥7个;总系统架构包含系统需求定义≥2000项,系统功能、逻辑和物理架构要素不少于4500个; 系统建模工具原型可支持不少于4个类别的模型融合;系统设计工具原型可支持不少于7个维度的系统全生命周期重构设计考量,且可支持不少于50个用户端的数据库并发访问修改和唯一设计版本溯源;智能汽车信息物理系统关键指标体系包含不少于7个维度的量化关键指标且总数不少于50个;智能汽车信息物理系统典型参考系统原型的可支持不少于16类智能汽车运行场景和不少于3000项测试用例的测试验证;完成相关理论著作不少于3项,技术指南或路线图不少于3项,完成系统工程应用手册1套。有关说明:实施周期不超过5年。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术(共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车—路—云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车 载定位、导航、授时一体化系统,研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。考核指标:地图模型支持动静态多层数据调用,包括自动驾驶感知与决策的应用接口协议,地图覆盖公里数≥1万公里;高精度地图每100米相对误差≤15厘米,基于专业采集车地图更新 准确率≥99%,基于众包数据地图更新准确率≥90%;超视距无盲区感知检测准确率≥90%,动态信息传输延迟≤1秒;基于车载北斗卫星定位终端,多源信息融合实现高精度定位,试验场条件下,静态高精度增强定位误差≤1厘米,动态高精度增强定位误差≤10厘米,有卫星信号覆盖的常规城市综合路况下,动态高精度增强定位误差≤20厘米;支持具备车路协同感知功能的高精 度地图示范区域2个以上,完成相关技术标准或草案≥5项。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人—车—路—环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制,研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术,开发场景批量生成与高并发大规模云计算测试平台;车—云—场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人—车—路—环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。考核指标:高精度自动驾驶仿真软件的极限工况动力学模拟精度≥90%;开放道路自动驾驶事故场景案例≥1000例;云控平台数据规模支持PB级,仿真任务执行成功率≥99.9%,达到10000个/分钟用例生成速率及 10000个/小时用例测试速率;数字孪生测试系统支持车速200km/h,最大制动强度10m/s2,最大转向角 40°;数字孪生支持虚、实传感器信号叠加;工具链支持L3级以上自动驾驶全流程测试,完成相关技术标准或草案不少于2项, 服务自动驾驶车型不少于20个。5. 支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具,实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。考核指标:汽车电控单元软件开发及验证的关键工具链能够满足V型开发流程,研制覆盖软件建模、软硬件测试、通讯总线仿真与测试等环节的关键工具不少于4种;汽车电控单元模块级软件建模工具能够支持系统图形化建模、连续与离散仿真、状态机建模等不少于3项的基本功能;汽车电控单元软件测试验证工具支持图形化测试用例搭建、支持自定义测试用例库、测试用例库及测试计划统一管理等不少于3项基本功能;汽车电控单元软 硬件集成测试与标定工具能够支持不少于2种类型标定协议,支持用户可定制的图形标定界面,支持标定数据的记录以及刷写等 不少于3项基本功能;车辆通讯总线仿真与测试工具支持总线监测分析、总线激励、诊断服务等不少于3项基本功能;自主开发工具的云上服务平台实现云端用户登录不少于1000人次/12个月,工具链包含的云端模型库中有效模型数量不少于50个。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。考核指标:搭建支持多样本(≥20个)同步试验、试验温度范围-40~250℃、湿度相对湿度65%、压力≥15psig(磅/平方英寸)的环境应力试验系统,以及可施加电源(电压范围0~20V且分辨率10mV)偏置的寿命试验系统;搭建EMC测试环境,支持传导干扰(20Hz~108MHz)、辐射干扰(20Hz~40GHz)、HBM_ESD(10kV)、电源间断跌落实验(时间≤1ms);搭建支持1024数字通道资源,5G通讯速率,激励电压范围-0.5~+1.5V且分辨率为10μV的ATE测试系统;开发车规计算芯片测试系统,支持GPU/AI 等多种架构车规计算芯片在不同系统配置下(内核可配置、主频测试精度最小100MHz)的算力测试(范围覆盖 5~20TFlops、5~300Tops)及能耗测试(最高精度0.1W);设计开发支持车规芯片半实物和实物芯片的功能安全测试系统,测试范围覆盖车规计算芯片的总线、存储、DDR、时钟、IO、中断等硬件模块及底层软件,完成1~2款芯片功能安全测试用例开发至少1000条;开 发车规信息安全芯片国密算法(SM1~SM4)检测系统,支持被测芯片≥5000次/秒签名验签测试,开发支持置信度(ɑ值0.02~0.05) 任意定义且不少于4个真随机源任意开关的随机数据采集及随机性水平的测试平台,开发信息安全测试用例(包含安全攻击用例)至少100条;在车规芯片测试方面形成5项以上标准提案。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技 术,研究车端感知、线下检测、云端数据协同的在役动力电池系统 安全性风险评估技术;开发智能无损检测装备及软件。研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立 车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技 术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。考核指标:建立动力电池多维度安全性评价体系和装备;开发在役动力电池系统安全性智能无损检测系统不少于2套,测试准确度不低于90%;搭建车载氢系统安全性定量化评价体系和在线监测系统,在商用车和乘用车上进行应用验证,在线监测系统安全响应时间小于1秒;车载氢系统微量泄漏检测精度高于50ppm;车载氢系统严重泄漏预判准确率>95%;形成5项以上动力电池系统和车载氢系统安全性评价相关标准提案。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车—桩(站)—云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于用户行为识别与充电设施状态感知协同的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车—桩—云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电 池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。考核指标:建成车桩数据交互平台,实现跨平台车桩数据互联互通,跨平台的数据互通与调用平均响应时间≤1s,高并发服务能力≥200万个,接入充电桩≥100万个,车≥100万台,车型≥100个,抗DDoS攻击能力≥200G/s;数据传输可靠性>99.95%, 信息安全通过三级等保评测;构建城市公共充换电场站建设规划模型和技术规范;充电桩利用率提高≥30%,车辆充电等待时间降低≥30%;快换电池系统兼容电池包类型≥3种,可更换车型≥3个,电池更换时间≤90s;无线充放电系统双向功率≥30kW, 工作间隙≥20cm,输出电压范围 DC250-900V,10%到 100%负载 范围内系统效率≥92%,最高效率≥94%,满足多车型互操作性, 实现3个以上车型搭载验证。6. 整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空 调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。考核指标:12米纯电动客车:整车能耗≤52kWh/100km (CHTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥300km(CHTC 工况);-30℃环境下,车辆续驶里程不低于常温续驶里程的 85%,车辆冷启动时间≤8min,空调制热功率≥14kW,COP≥1.3。55℃环境下,空调制冷功率≥22kW,COP≥ 1.7;研制车型≥2个,30分钟最高车速≥100km/h,0~50km/h 加速时间≤15s,最大爬坡度≥25%,实现百辆级验证应用。B级乘用车:整车能耗≤14kWh/100km(CLTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥500km(CLTC工 况);-30℃环境下车辆续驶里程不低于常温续驶里程的85%,车 辆冷启动时间≤5min,空调制热功率≥4kW,COP≥1.3。55℃环境温度下,空调制冷功率≥7.5kW,COP≥1.7;研制车型≥2个,最高车速≥180km/h;0~100km/h加速时间≤4s,满载最大爬坡度≥30%;实现千辆级验证应用。6.2 智能电驱动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构,研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统, 研究颠簸路面大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究大幅变载荷工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的新型驱动系统拓扑结构,研究湿滑坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展典型场景下智能电驱动重载车辆的无人化协同作业示范 应用。考核指标:开发智能电驱动重载车辆的整车平台原理样机1套;小尺寸(0.5m×0.5m×0.5m)障碍物检测距离≥100m,距离检测误差≤0.3m,重载车辆在100吨及以上载重条件下停靠控制误差≤0.5m,可实现16%坡道的坡停坡起;开发自主可控的电驱动系统,与国际同类产品相比,特定场景与工况下综合能效提升20%,在 1km/h车速下仍可有效电制动;开发智能电驱动重载车辆仿真验证平台1套;在典型场景下开展不少于50台100吨及以上载重车辆的无人化协同作业示范运行,并稳定运行1年以上,与国际同类产品相比,平均能耗降低 15%;形成相关技术标准或草案1项。附件:“新能源汽车”重点专项2021年度项目申报指南.pdf揭榜挂帅榜单.pdf形式审查条件.pdf编制专家名单.pdf
  • “两会”汽车领域提案:聚焦“碳中和”目标 发展新能源汽车
    3月11日,十三届全国人大四次会议闭幕。作为国民经济重要支柱产业的汽车产业,依然是今年热议的焦点之一。国内汽车市场开始由增量市场转向存量市场,竞争进一步加剧;同时,在新技术浪潮下,中国汽车产业也从处于高速增长向高质量增长转变的新阶段。汽车领域代表就新形势下行业如何发展提出诸多提案,其中,“碳中和”目标下的新能源汽车如何发展成为被重点关注的领域;同时,推动汽车芯片国产化、智能网联汽车发展亦成为高频词。一、新能源汽车吉利集团李书福:中汽数据测算,2019年我国交通行业碳排放在12亿吨左右,其中商用车保有量仅占我国汽车保有量的12%左右,却制造了道路交通碳排放的56%。根据《中国移动源环境管理年报2020》数据,2019年全国货车氮氧化物(NOx)、颗粒物(PM)排放分别占汽车排放总量的83.5%、90.1%。汽车行业要实现碳排放达峰及排放污染物治理,货车的电动化势在必行。换电模式为货车电动化提供了可行的能量补给方式,国家也发布了一系列政策推动货车的电动化及换电模式示范运行,但目前货车电动化仍面临车辆最大总质量、整车长度等法规方面的障碍。针对货车电动化级重卡换电新模式、新业态发展过程中遇到的实际困难,建议对原标准GB1589-2016《道路车辆外廓尺寸、轴荷及质量限值》中质量及长度限值作补充规定。上汽集团陈虹:氢能源作为脱碳和未来清洁能源的重要解决方案之一,已经成了当下很多国家关注的重点。但是,目前氢能产业在制氢、储氢、运氢、加氢等各个环节发展受制于当前法规政策的种种限制。为此,陈虹建议:一是从国家层面尽快形成统一的中国氢能战略规划。二是在氢能管理政策法规层面有所突破。三是扩大全国碳排放权交易市场配额管理的减排项目范围和碳交易的试点范围,将工业副产氢提纯、可再生能源制氢及加氢站项目纳入减排项目范围,以进入国家碳排放权交易市场,提高绿色制氢项目受益范围,引导社会对于绿色制氢项目的投资积极性。四是在氢燃料电池汽车示范城市群对使用绿氢(可再生能源产生的氢能)进行一定时期的专项补贴。长城汽车王凤英:为实现2030年碳达峰及2060年碳中和的目标,保障国家能源安全,我国需发展车用氢能产业,推动燃料电池汽车示范运行规模,提高可再生能源制氢比例,以加快推进低碳减排。但我国氢能产业战略导向尚不明朗,支持政策尚不完善,加氢站管理缺位,车用氢能供给体系尚不健全,关键材料和零部件自主化能力还不足,整车制造及氢气价格过高导致产业化进程受阻。为支撑燃料电池汽车规模化示范应用,我国亟需解决产业发展所暴露出的种种问题此外,王凤英还建议推动中国新能源汽车产业全球化发展。她认为,发展新能源汽车已成为全球车企转型共识,国际竞争日益激烈。从产业、技术和商业模式的发展规律来看,中国新能源汽车加快全球化发展,有利于抢先占领全球化用户心智,改变汽车产业国际分工格局,提升国际竞争力。二、车用芯片长安汽车朱华荣:由于汽车核心芯片主要依赖进口,随着国际局势风云变化、全球半导体原材料和产能日益紧张、新冠疫情对供应链影响等,汽车芯片存在随时断供风险,且将成为阶段性和结构性问题长期存在,汽车芯片逐渐成为我国汽车工业发展中的主要‘卡脖子’环节。朱华荣表示,在保证产业链稳定供应基础上,建议国家出台积极政策来推动汽车芯片国产化,维护汽车供应链安全。具体包括,设立汽车产业核心芯片及生产设备国产化重大专项;强化激励政策鼓励企业加大投入;支持主机厂在整车开发过程中与国内汽车芯片商尽早开展汽车芯片定制化研发;加强行业标准制定等。广汽集团曾庆洪:中国汽车要强国应先“强芯”,要集中人力、财力、物力解决芯片问题,加强关键零部件产业链建设,坚持自主创新和开放合作两个不动摇,分别解决长期和短期问题。奇瑞汽车尹同跃:突破车载芯片“卡脖子”技术,应强化产业生态融合。他建议,明确车载芯片国产化率发展目标,加大芯片产业链建设、重点扶持及知识产权保护力度;从标准、规范、人才、技术层面给予芯片行业、零部件行业与整车以支持;在产业链生态上给与政策鼓励以及资金支持,推动芯片生态与部件生态、整车生态融合发展。上汽集团陈虹:单靠市场一股力量很难推动车规级芯片国产化,需要形成政府牵头,整车企业联合,针对头部芯片企业开展重点扶持的策略。他建议,在消费级芯片企业的扶持政策基础上,加大对车规级芯片行业的扶持力度,使整车和零部件企业“愿意用、敢于用、主动用”。同时,制定车规级芯片“两步走”的顶层设计路线,实现车规级芯片企业从外部到内部的动力转换。三、智能网联汽车广汽集团曾庆洪:现行交通安全法规是基于完全由人驾驶的车辆而设立的,智能驾驶汽车实际应用仍面临许多合法性难题;同时,还存在自动驾驶汽车道路测试缺乏操作指引,各地测试牌照没有形成互认机制,测试时间和资金成本高;受制于道路基础设施限制和车与外部信息交互(V2X)设备的装配率低,智能网联汽车暂时只能着重发展“单车智能”的技术路线方向,网联化发展进程较慢等发展智能网联汽车,法律法规要走在前面。曾庆洪建议,要尽快完善现行交通安全法规,确认“机器驾驶人”的法律主体资格;加快自动驾驶相关技术标准的编制和发布;完善现行自动驾驶汽车道路测试相关政策法规等。长城汽车王凤英:在我国现行相关法律法规中,产品管理、交通管理、责任界定、保险监管、网络安全管理、地理信息管理等方面的部分规定,不能完全适用于智能网联汽车,存在一些制约智能网联汽车商用化落地的“矛盾点”和可能触发潜在风险的“空白点”。王凤英建议,加快形成跨部门、跨行业、跨领域的统筹协调机制;加快推进智能网联汽车法律法规制修订工作;处理好科技进步与法律稳定性之间的关系。奇瑞汽车尹同跃:近年我国C-V2X得到快速发展,但由于各示范区场景、设备、方案的不同特点,作为主机厂端推进多场景应用会付出多重的准入及通讯协议匹配投入。因此,尹同跃建议,建立国家级测试示范区测试车辆上路准入结果互认机制;各国家级测试示范区使用统一的C-V2X通讯技术;国家层面推进车企上市新车具备嵌入式的蜂窝连接功能;建立芯片底层交互标准;鼓励地方建立C-V2X应用示范区,推动智能网联汽车产业发展,在政策和资金方面给予支持。此外,在促进L3级自动驾驶技术落地方面,尹同跃认为,L3级别自动驾驶应在低速场景下积极探索、先行先试,通过低速场景行驶里程,积累自动驾驶工况,为高速自动驾驶做技术储备等。四、汽车及零部件材料分析与测试评价网络大会我国是世界汽车产销第一大国,汽车产业可在实现碳达峰、碳中和目标中起中流砥柱作用,尤其是汽车轻量化、新能源汽车发展是大势所趋,对于节能减排有着积极意义。同时,汽车产品全生命周期评价 (LCA)可以对汽车全生命周期所产生的物耗、能耗与排放进行系统分析与科学评估。基于此,仪器信息网将于2021年3月16-17日组织召开第三届“汽车及零部件材料分析与测试评价技术”网络会议,特设汽车零部件测试技术、汽车新材料测试技术、新能源汽车测试技术、汽车全生命周期评价4个分会场。本次会议为期2天,20余位报告人将于云端为我们带来一场关于汽车测试评价技术的行业盛会!目前,一汽、重汽、比亚迪、蔚来、广汽、上汽、东风、福特、福田、华晨等知名车企,首钢、包钢、本钢、武钢、东北特钢等各大钢厂已报名,剩余免费名额不足100席,报名从速!无需下载报名软件与付费,长按识别下方二维码或点击报名链接即可免费报名。一键报名:https://www.instrument.com.cn/webinar/meetings/car2021/
  • 汽车社会蓝皮书:汽车增长挑战环境保护
    中国网1月23日讯 由中国社会科学院社会学研究所中国汽车社会研究网完成,以“汽车社会与规则”为研究主题,针对中国汽车社会存在问题进行了深入分析,并提出了政策建议的《汽车社会蓝皮书》今日发布。   《汽车社会蓝皮书》认为,2012年中国正式进入“汽车社会”,每百户家庭私人汽车拥有量超过了20辆。   蓝皮书认为2012年中国汽车社会发展表现出如下特点:   中国冲过“汽车社会”门槛进入加速期   如果私人汽车的增长保持这样的速度,5年多私人汽车保有量就会翻一番,百户家庭汽车拥有量将会达到40辆,10年左右百户汽车拥有量将达到或接近60辆,多数家庭将拥有汽车。   庞大的产销量基数下,汽车保有量增长惊人   中国汽车工业的产销增速已经放缓,不再可能出现几年前那种“井喷式”的增长,但由于国内汽车产销量都近2000万辆,未来汽车工业即使是零增长,汽车保有量的增加依然非常惊人。   后发地区汽车增速快,全国汽车人口快速增加   以千人汽车拥有量看,增速排在前面的地区是宁夏、青海、新疆、河南、江西、甘肃、陕西、内蒙古、安徽、广西等地区增速都超过了20%。2012年上半年,汽车驾驶人已经达到了1.86亿。   汽车使用环境恶化   交通拥堵已经成为几乎国内所有大中型城市的共同问题,2012年汽车社会发展指数显示,汽车环境得分下降。   汽车增长对环境保护的挑战加剧   汽车的增加加大了减排的难度。环境保护面临新的挑战,特别是像氮氧化物、PM2.5这些污染物与汽车直接相关,降低污染的难度加大,成本增加。汽车不仅带来空气污染,也带来声污染。   蓝皮书认为中国汽车社会面临如下困扰:   民众汽车消费意愿提高与汽车使用成本上升的矛盾   民众汽车消费欲望不断提高,无车者意向购买率和有车者换车意愿均高。调查显示,城市无车者一年内有购车意愿的比例为24.7%,二年内有购车意愿的比例为31.6%,五年内有购车意愿的比例为28.8%,合计的比例为85.1%,而永远不打算买车的比例为2.7%。2012年因燃油价格、城市停车费用、汽车行驶不畅造成在途时间延长等经济和时间成本的增加,整体的汽车使用成本在上升。汽车使用成本上升最快的是时间成本,随着各城市汽车保有量的快速上升,一二线、甚至许多三线城市交通拥堵越来越严重,堵车花费时间增加,在途时间延长,时间成本增加很快。   汽车产业增长预期强劲与各地受迫性汽车限制政策出台的矛盾   汽车行业对汽车增长的预期一直很高,汽车业界对于中国汽车产销的预测一直非常乐观。即使按照中国汽车工业协会《“十二五”汽车工业发展规划意见》,产量3000万辆,15%出口,每年增加的汽车将是2550万辆,短期内爆发式的增长将给国内的交通、能源、停车空间等汽车环境带来空前的压力。与汽车业界“增长派”不同的是城市管理者的“限制派”,近两年,北京、上海、广州三个一线城市实行了汽车限购政策,成都、杭州等城市实行了现行政策,北京、贵州则实行了限购、限行双重政策。   汽车社会管理缺乏系统性和科学性   出于不同管理部门的汽车社会管理政策缺乏统筹,出台的汽车政策常常不兼容,如政府管理部门出台汽车限购政策,汽车行业则认为这些政策违反了汽车产业发展政策。不同行业和部门对于汽车的管理也存在缺乏科学性,如2012年国庆中秋小型车高速公路不收费的政策,缺乏前期调研,对高速公路流量增加可能造成的影响没有科学的估计,造成一些时段、路段的大拥堵,甚至连是否收卡,以及免费结束时段如何衔接等都很混乱。   汽车社会规则不完善,汽车社会风险加剧   目前的交通法规的制订还存在不够完善的问题,一些法规缺乏可操作性。一些地方交通管理部门为了个人和部门的利益,对于交通违章和超载存在以罚代管,只罚不管。汽车的增加使得社会风险加剧,社会的脆弱性突显,对社会管理提出了更高的要求,暴露了许多社会管理的问题和弱点。   汽车成为社会分化象征,汽车问题升级为社会问题   随着中国贫富差距的拉大,这种财富差距比较突出地表现在汽车的消费上,从不到3万的国产微型车到车展车价纪录刷新的1.5亿的豪车。巨大差距带来的是社会对贫富差距的不满,集中反映在人们对于豪车违法、横行事件的“标签化”反应。公车超标、公车私用、公车特权也成为引发民众不满的工具。汽车社会分化的另一个现象是汽车与民族情绪的结合,汽车品牌成为区分爱国与否的标准。湖南长沙、山东青岛、陕西西安等多地发生推翻、打砸日系车和烧4S店等行为。   路权意识缺失,文明状况堪忧   “中国式过马路”成为大家议论的焦点,其中存在一个重要的问题就是我们的路权不明晰。路权意识的缺失是造成交通秩序混乱的根源。交通法规没有能够强化人们的路权意识,混乱的相互侵犯路权使得尊重路权在实际效果上受到了惩罚,在大家都抢行的情况下如果礼让就寸步难行,长期下去就没有人坚持尊重别人路权。在城市道路日益拥挤的情况下,路权之争越来越激烈,影响到社会车辆出行的公务车拉开了政府官员与民众的距离,带来了负面影响。   面对已然来临的“汽车社会”和随之而来的一系列问题,蓝皮书提出以下建议:   一、未来汽车的发展及其走向并不是由作为汽车产业主要角色的生产厂商和消费者来决定,而是由城市空间来决定,更具体地是由各城市的决策部门和政策决定的。中央政府应该制订全面的汽车社会发展规划,把汽车相关的不同方面纳入整体规划,特别是解决汽车产业与城市管理之间的矛盾,统合不同部门汽车相关政策,使得这些政策不再出现不兼容的问题,确保汽车社会能够可持续发展。   二、各地政府,特别是城市政府应该研究当地汽车社会发展现状,研究出台科学的、系统的汽车社会管理体系,不再只从交通上解决汽车社会问题,而是从汽车社会的宏观角度协调汽车社会的不同方面,使得汽车社会可以有序、可持续、和谐发展。   三、各地应该切实评估目前汽车限制性政策的利弊,采取疏堵结合的方式调节汽车的增长速度。限制汽车购买和使用,提高汽车使用成本已经成为未来一、二线城市管理者不得不祭出的无奈之招,未来几年深圳、武汉、杭州、成都、西安等将可能加入汽车限购行列,上海、广州、深圳、武汉、西安等将逐步实行汽车限行政策。在汽车成为民众消费必选项的情况下,出台适当的汽车政策要能够做到既不伤害汽车产业又能满足民众需求。   四、各级党政机关应该重视汽车社会带来的社会问题,加强社会管理,处理好汽车社会下的公平问题,处理好公车、校车等问题,通过有效的途径,从法律上、纪律上、道德上、文化上建立健全汽车社会的规则,使得汽车社会进入良性运行。   五、以明确路权、保障路权为突破口,通过法律、教育等手段强化民众的路权意识,惩罚侵权行为,不断提高全社会的汽车文明程度。   六、提高全社会的汽车风险意识,落实交通安全法规的执行,有效降低汽车事故的发生,减少生命财产的损失。
  • 中国汽车工程学会23项标准立项,涉及新能源汽车等
    2022年6月9日-17日,中国汽车工程学会标准部组织了本年度第二次标准集中审查系列会议。本次审查会按照专业方向分10个会场进行,对32项标准项目提案进行了立项论证,来自行业企业320名技术专家参与研讨。最终23项标准项目通过审查,列入2022年中国汽车工程学会标准研制计划。通过立项审查的标准项目清单序号标准项目名称项目负责人技术领域1  《氢能与燃料电池汽车全链数据采集技术规范》金振华新能源汽车2  《燃料电池电动汽车 燃料电池堆耐久性试验方法》王晓兵3  《燃料电池电动汽车 燃料电池堆台架试验方法》冀雪峰4  《燃料电池电动汽车耐久性行驶试验方法》郭 婷王 丹5  《纯电动汽车热系统高低温能量消耗 台架试验方法》付 宇6  《车载时间敏感网络通讯芯片功能和性能要求》王小兴智能网联汽车7  《车载时间敏感网络中间件通用要求》朱海龙8  《车路协同路侧基础设施 总体技术要求》王井伟9  《车路协同路侧基础设施 信息安全技术要求》王井伟王翔宇10  《智能网联汽车 城市道路场景无人化测试 场地试验方法及要求》王井伟孙宫昊11  《智能网联汽车整车移动通信性能技术要求及试验方法》郭迪军邓文山12  《城市智能网联汽车发展评价指标体系》李晓龙13  《车路协同 智能决策道路 第1部分:定义与分级标准》郝若辰14  《车路协同 智能决策道路 第2部分:系统总体架构及应用》郝若辰15  《重型车OBD和NOx控制系统整车检验方法》任烁今汽车整车试验16  《越野汽车高温地区适应性试验方法》龙孝康17  《乘用车越野性能评测方法》郭 强18  《汽车用金属材料断裂应变测试方法》张钧萍汽车材料应用及轻量化19  《乘用车车身用铝合金挤压型材》韩志勇20  《汽车用2000MPa级热成形钢质量评价指南》季春红21  《汽车用碳纤维复合材料车门技术要求及试验方法》高 聪22  《乘用车典型零部件轻量化系数计算方法》刘 波23  《乘用车电动尾翼》车全武汽车零部件接下来,牵头单位将在CSAE标准信息平台正式组建标准起草工作组,欢迎大家加入!
  • 中国最大汽车安全实验室建成
    11月9日,一辆崭新的宝马新3系以64公里的时速在激烈的对壁障碰撞后,碎片四溅,前胎爆裂。为庆祝中国汽车研究中心全新安全试验室启用,宝马新3系在目前国际最先进的汽车安全试验室进行了正面40%碰撞试验。该试验按照C-NCAP 2012年版管理规则实施,碰撞速度由2006年版管理规则的56km/h提升至64km/h,对汽车的结构耐撞性、车型安全设计的要求进一步提高。   中汽中心实车碰撞试验室1999年投入使用, 13年来实车碰撞试验室共进行各类实车碰撞试验5000余次,积累了丰富的实车碰撞经验。2006年,中汽中心推出C-NCAP(中国新车评价规程),至今试验室成功完成178款车型的C-NCAP评价试验。2012年8月31日,中汽中心历时3年、耗资20亿元的新院区建成,作为中汽中心的重点试验室——汽车安全试验室建筑面积超过4万平方米,呈扇形结构,可进行多角度车对车碰撞试验,是目前国际最先进的汽车安全试验室之一。汽车安全试验室总长310米,宽165米,共设置8条轨道,直线轨道长260米,角度轨道长135米。在直线轨道上,可实现2吨重车辆以最高140km/h的速度、7吨重车辆以最高80km/h的速度进行车对壁障碰撞试验,以及两辆3吨重车辆以最高80km/h的速度进行车对车正面碰撞试验。在角度轨道上,可实现3吨重车辆以最高80km/h的速度进行碰撞试验。直线轨道和角度轨道联合使用,可以实现车对车不同速度下多角度碰撞试验,更真实地模拟实际道路交通事故。此外,汽车安全试验室还拥有各类试验壁障及翻滚试验场,可以模拟实际交通环境中的各种事故形态。   中汽中心主任赵航表示,13年来,中汽中心积累了大量碰撞安全数据,这些数据将成为中国汽车工业发展的基础数据,并可以为中国自主汽车品牌分享,对于提高我们汽车工业水平产生积极影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制