当前位置: 仪器信息网 > 行业主题 > >

排放监测

仪器信息网排放监测专题为您整合排放监测相关的最新文章,在排放监测专题,您不仅可以免费浏览排放监测的资讯, 同时您还可以浏览排放监测的相关资料、解决方案,参与社区排放监测话题讨论。

排放监测相关的资讯

  • 《甲烷排放控制行动方案》明确:在重点领域推广甲烷排放源监测
    生态环境部、外交部、国家发展和改革委员会、科学技术部、工业和信息化部、财政部、自然资源部、住房和城乡建设部、农业农村部、应急管理部、国家能源局等11部门在7日公布《甲烷排放控制行动方案》(以下简称《方案》),明确提出“十四五”和“十五五”期间甲烷排放控制目标,这是我国开展甲烷排放管理控制的顶层设计文件。甲烷是全球第二大温室气体,具有增温潜势高、寿命短的特点。积极稳妥有序控制甲烷排放,兼具减缓全球温升的气候效益、能源资源化利用的经济效益、协同控制污染物的环境效益和减少生产事故的安全效益。近年来,我国在甲烷资源化利用方面取得一定成效,但甲烷排放控制仍然面临统计监测基础较为薄弱、法规标准体系尚不完备等问题,技术和管理能力亟待提高,需要采取更加有力的措施,切实提升甲烷排放统计核算、监测监管等基础能力,全面有序推进甲烷排放控制工作,积极参与应对气候变化全球治理。《方案》指出:加强甲烷排放监测。探索开展甲烷排放监测试点,在重点领域推广甲烷排放源监测。根据我国甲烷排放特征,在现有的生态环境监测体系下开展甲烷环境浓度监测,逐步建立地面监测、无人机和卫星遥感等天空地一体化的甲烷监测体系。加强关键技术创新。加强不同领域甲烷排放特征规律研究,持续开展资源化利用、高产低排放育种、监测等关键技术的研发创新,强化甲烷排放控制技术示范工程建设,将甲烷排放控制相关技术纳入国家重点推广的低碳技术目录,加快推进重点领域甲烷排放控制装备和技术的集成化和产业化,部署建设一批国家重点研发创新项目和重大工程。按照《方案》,“十四五”期间,甲烷排放控制政策、技术和标准体系逐步建立,甲烷排放统计核算、监测监管等基础能力有效提升,甲烷资源化利用和排放控制工作取得积极进展。种植业、养殖业单位农产品甲烷排放强度稳中有降,全国城市生活垃圾资源化利用率和城市污泥无害化处置率持续提升。“十五五”期间,甲烷排放控制政策、技术和标准体系进一步完善,甲烷排放统计核算、监测监管等基础能力明显提升,甲烷排放控制能力和管理水平有效提高。煤矿瓦斯利用水平进一步提高,种植业、养殖业单位农产品甲烷排放强度进一步降低。此后,石油— 7 —天然气开采行业力争逐步实现陆上油气开采零常规火炬。附:甲烷排放控制行动方案.pdf
  • 碳排放监测全国推进中!首个市级地方标准发布
    为贯彻新发展理念、构建新发展格局、推动高质量发展,落实碳达峰、碳中和工作。泰州市生态环境局、泰州市市场监管局、泰州市标准化院等单位联合起草《碳排放在线监测系统建设规范》(以下简称《规范》),并于近日正式发布。《规范》致力于建立泰州市碳排放在线监测系统,为碳排放在线监测系统的建设提供标准化指导,通过明确其建设原则、组成结构、技术要求和性能指标等具体要求,为碳排放数字化、智能化、在线监测提供技术支撑。《规范》自2023年1月30日正式实施,这也是碳排放监测领域国内首个市级地方标准。《规范》指出:要通过建设碳排放在线监测系统对重点排污企业、重点污染源的碳排放实现在线精准监测,提供实时分析数据,对碳核算结果和减碳技术进行智能分析,形成减碳方案;实现碳排放监测、核查和预警,形成碳核查报告,为主管部门监督管理提供决策方案。《规范》特别对碳排放在线监测系统(online carbon emission monitoring system,OCEMS)进行了说明,即对大气污染源排放的气态污染物或颗粒物进行浓度和排放总量连续在线监测,利用计算机网络、自动化、云计算、物联网等技术实现对前端监测站点的数据进行统计分析,并将信息实时传输到主管部门的装置。OCEMS由直接监测系统、数据采集与传输系统、数据核算及校核系统、实时监测监控平台等组成(见图 1)。系统测量烟气中一氧化碳、二氧化碳、甲烷等气体浓度、烟气参数(温度、湿度、流速或流量、压力、含氧量等),同时计算烟气中污染物排放速率和排放量,也可通过增加间接排放监测模块或采集燃煤耗量、燃煤低位发热量及收集燃油、燃气等相关参数,核算得到的碳排放量,显示、记录各种数据和参数,形成相关图表,并通过数据、图文等方式传输至管理部门。其系统结构主要包括采样单元、预处理单元、烟气分析仪、温压流测量仪、湿度测量仪、颗粒物监测仪、核算仪、数据采集设备、数据传输设备和报警模块等。此外,《规范》对示值误差、系统响应时间、零点漂移和量程漂移技术4项重要性能指标的技术要求,以及气态污染物、氧气、颗粒物等6种准确度等级技术要求进行量化,为碳排放在线监测系统建设提供了专业性和可操作性的业务指导与规范指引。详情参见:附件:《碳排放在线监测系统建设规范》
  • 深化碳排放监测技术,推动碳达峰建设工作
    碳排放是人类生产经营过程中向外界排放温室气体的过程,碳排放是目前导致全球气候变暖的重要原因,我国碳排放中占比最大的来源于电力和供热部门在生产环节中化石燃料的燃烧。碳达峰是指在某一时间节点,CO2的排放不在增长达到峰值,之后逐步回落。碳达峰是一个过程,即碳排放首先进入平台期并可以在一定范围内波动,之后进入平稳下降阶段。作为国家生态文明建设中关键一环,碳排放监测治理对国家生态文明发展起着助推作用,为了保障碳排放监管治理的有效实施,国家出台有关政策,各地也纷纷根据本地实际情况出台治理措施,深化绿色低碳理念,提升生态系统碳汇能力。碳监测技术的难点在于对监测数据的准确度要求非常高,智易时代助力环保监测领域多年,不断在环保监测行业风口寻求创新点及市场机会。我司凭借着成熟的技术研发经验,经过不断改进设备配置及技术程序,成功推出CO2气体分析仪,并已经成功投入实际应用环节,为企业碳排放监测管理提供了数据支持和有力保障。智易时代CO2气体分析仪是一款适用于国内环保、温室气体监测、碳排放管控等在线气体的分析仪表,主要由红外传感器(光源、气体吸收池、探测器)、数据采集单元、信号接口板及控制电路、电源等部分组成。测定原理:红外相关滤波技术(GFC)和非分散红外吸收法(NDIR)测量量程:(0~30)%(可定制)漂移≤±2%F.S.氧气流量(0.8~1.5)L/min±10%稳定性≤2%响应时间≤60s重复性≤1.0%测量误差≤±2%F.S.预热时间≤60s未来,智易时代会继续加大环境监测力度,并在原有基础上不断改进产品技术及设备监测精度,满足客户不同监测场景使用需求,携手更多优良产品助力国家环保产业发展,助力国家碳达峰建设事业。
  • 全国首个建筑领域碳排放监测与管理系统上线
    9月11日,全国首个建筑领域碳排放监测与管理系统在深圳上线,实现对该市各类建筑碳排放标准制定及碳排量精确测控管理。该系统由南方电网深圳供电局和深圳市住房和建设局联合发布。据了解,该系统基于2021年上线运行的南方电网“双碳大脑”平台,通过和政企数据共享平台实现与市住建局建筑数据互通互联,打造针对建筑领域碳排放监测及管理的“参谋”。在深圳,用电占建筑用能80%以上,用电数据与碳排放数据紧密相关。“我们系统通过采集建筑的用电、面积等数据,利用人工智能算法实现能耗及碳排放测算模型,可以精准计算出每栋建筑物碳排放量及用能强度等关键指标。”南方电网深圳供电局信息中心副总经理庞宁介绍。依托“双碳大脑”大数据分析功能,该系统还能分析各类建筑节能降碳潜力及其节能减碳贡献率,助力政府更有针对性地降低能耗。“该系统为深圳市进行建筑物能耗测算及标准制定、同类型建筑物间的对标等工作提供了有力的数据支撑。”深圳市住房和建设局勘察设计与建设科技处处长龚爱云表示,目前,全市2万多栋建筑物已先行试点实现碳排放、能耗相关指标的自动采集计算,实现数据动态监测。据透露,下一阶段,南方电网深圳供电局将继续携手深圳市住房和建设局,不断丰富完善建筑领域碳排放监测与管理系统功能,研究建筑能效分级影响因素,为后续联合制定《深圳市公共建筑能效分级标准》提供依据,共同为低碳城市提供服务支撑。附:由仪器信息网举办的“第四届大气监测技术及应用”网络会议将于10月11日-13日举办,其中,在11日设置了大气温室气体监测专场,邀请多位来自中国环境监测总站、中国科学院大气物理研究所、国家计量院、上海市低碳中心等行业内资深专家进行碳试点监测、温室气体监测量值溯源、中精度二氧化碳监测反演等报告分享!免费报名点击:https://www.instrument.com.cn/webinar/meetings/dqjc2023/
  • 温州率先应用碳排放连续监测系统
    近日,由国网温州供电公司自主研发的固定污染源二氧化碳排放连续监测系统正式投用,用于碳排放核算计量。这是全省首个接入电力调度自动控制系统(AGC)的二氧化碳排放连续监测系统,可应用于10万千瓦以下小型火力发电厂,预计减少碳排放量10%以上。据悉,该监测系统的核心组件为气体分析仪,采用国内自主可控产品,测量响应速度小于10秒,测量误差小于±1%,为发电企业参与碳资源管理和碳交易市场提供前瞻探索和数智支撑。通过在烟气排放口安装二氧化碳排放激光分析仪,该系统可根据烟气的温度、压力、流速、湿度等参数,对排放率、排放总量等数据进行准确统计,并将数据传输模块与供电企业电力调度控制平台相连接,通过计算机对发电厂的机组进行实时在线监测,并利用电力调度自动控制系统调整机组的发电功率,从而实现碳排放的低碳优化目标。“项目成功应用后,我们可以通过调度控制系统获取火电机组的二氧化碳排量数据,从而为构建新型电力系统提供数据支撑。同时,该技术的应用预计能够降低发电企业生产成本5%以上。”国网温州供电公司相关负责人介绍,系统能够将连续采集到的二氧化碳浓度同步传送至企业和政府监管部门,相关部门可通过手机、电脑等终端实时了解碳排放情况,使得监管更加高效便捷。据介绍,作为省内垃圾发电厂数量最多的地区,近年来,温州在碳检测闭环管控和低碳调度方面进行前瞻探索,为全省甚至全国提供了有效范例。下阶段,该技术将被积极推广应用,有助于推动电网在清洁低碳、安全充裕、经济高效、供需协同、灵活智能等五个方面全面提升,逐步实现“安全-经济-低碳”均衡发展。
  • “超低排放将利好环境监测市场”专题征稿通知
    p   2015年12月2日,李克强总理在国务院会议上提出“在2020年前对燃煤机组全面实施超低排放和节能改造”。随后《关于实行燃煤电厂超低排放电价支持政策有关问题的通知》、《全面实施燃煤电厂超低排放和节能改造工作方案》陆续发布,虽备受争议,但燃煤电厂“超低排放”改造已成定局。随之而来的监测系统升级也必不可少。 /p p   为集中展示目前市场上主流的在线/便携监测解决方案,同时也使广大网友对超低排放监测市场有一个基本的了解,仪器信息网特别策划专题——“超低排放将利好环境监测市场”。现欢迎环境监测仪器厂商踊跃投稿,秀出您的“超低排放”系统。 /p p   稿件请包含以下内容: /p p   1、 监测系统/结构图:整套系统的结构图(像素300DPI),图片上有简单文字介绍; /p p   2、 基本原理:采样单元、预处理单元以及检测单元的基本原理,检测单元可检测的项目(SO sub 2 /sub 、NOx、烟尘等),系统的技术优势等; /p p   3、 系统基本参数:包括检测范围、安装环境等; /p p   4、 案例:已安装系统在一定时间(24h或者一周)内各检测项目的检测结果。 /p p   备注: /p p   (1)所有图片和表格都有相应标题。 /p p   (2)所有来稿须为word文档,A4,五号字,单倍行距,字数不限,请以“公司名称+稿件名称+联系电话”命名稿件。 /p p   (3)内容经本网编辑整理后,将在“超低排放将利好环境监测市场”专题中冠名收录。 /p p   如果有其它资料也可以提供,多多益善。所有稿件如不被录用,本网将不再另行通知。 /p p & nbsp /p p   截止日期:2016年1月31日 /p p   投稿邮箱:lixl@instrument.com.cn /p p   咨询电话:010-51654077-8054 /p p style=" TEXT-ALIGN: right"   仪器信息网编辑部 /p p style=" TEXT-ALIGN: right"   2015年12月21日 /p
  • CIOAE 2015之专题报告:VOCs排放监测技术与连续监测方法探讨
    p & nbsp & nbsp & nbsp VOCs即挥发性有机化合物,在空气中达到一定浓度并长时间存在,将可能伤害肝、肾、大脑和神经系统,主要产生于石化、有机化工、合成材料、化学药品原料制造、塑料产品制造、装备制造涂装、包装印刷等行业。它也是生成PM2.5和臭氧污染物的重要前体物。曾有人预测,在二氧化硫、氮氧化物之后,VOCs或将成为下一个大气污染治理重点领域。这一点从第八届中国在线分析仪器应用及发展国际论坛上再一次得到印证,组委会为“VOCs排放监测技术与连续监测方法”单独设立一个分会场,VOCs在当下的受关注程度可见一斑。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/insimg/6b92c067-4f0f-4d13-843d-c1e412ed200e.jpg" title=" 0.jpg" / /p p style=" text-align: center " strong 会议现场 /strong br/ /p p & nbsp & nbsp & nbsp 本分会场的四个报告分别来自科研机构、仪器厂家、以及标准研究及制定机构,他们从不同的角度、层次为现场听众展示了我国VOCs排放与监测技术的现状及未来的发展趋势。 /p p & nbsp & nbsp & nbsp 从会上了解到,当前我国已制定的涉及固定源VOCs排放的标准有14个,分别是:1、恶臭污染物排放标准;2、大气污染物综合排放标准;3、饮食业油烟排放标准(试行);4、储油库大气污染物排放标准;5、汽油运输大气污染物排放标准;6、加油站大气污染物排放标准;7、合成革与人造革工业污染物排放标准;8、橡胶制品工业污染物排放标准;9、炼焦化学工业污染物排放标准;10、轧钢工业大气污染物排放标准;11、电池工业污染物排放标准;12、石油炼制工业污染物排放标准;13、石油化学工业污染物排放标准;14、合成树脂工业污染物排放标准。 /p p & nbsp & nbsp & nbsp 而国家正在制定中的固定源VOCs排放标准包括:石油天然气开发工业污染物排放标准;铸造工业污染物排放标准;煤化学工业污染物排放标准;电子工业污染物排放标准;氯碱工业污染物排放标准;人造板工业污染物排放标准;农药工业大气污染物排放标准;家具制造业大气污染物排放标准;制药工业大气污染物排放标准;玻璃纤维及制品工业污染物排放标准;染料工业大气污染物排放标准;皮革制品工业污染物排放标准;涂料、油墨及胶粘剂工业大气污染物排放标准;纺织印染工业大气污染物排放标准;VOCs无组织逸散通用控制标准;印刷包装工业大气污染物排放标准;工业涂装工业大气污染物排放标准;干洗业大气污染排放标准;船舶工业污染物排放标准等等。 /p p & nbsp & nbsp & nbsp 以上还没有包括地方制定的或正在制定的VOCs排放相关标准,但我们已经能够隐隐感受到未来VOC监测设备的市场规模。 /p p & nbsp & nbsp & nbsp 由于我国VOCs相关在线监测国家标准的制定今年刚刚立项,最后标准采用哪种或哪几种监测技术目前尚不明了,同时考虑到不同环境条件下的VOCs的监测特点可能各异,譬如:固定污染源中的VOCs、汽车尾气中的VOCs、大气中的VOCs等等,所以国内不少科研单位和仪器制造商都在运用不同的技术路线开发自己的在线或便携VOCs监测产品,这些技术手段包括:FID/PID检测仪、GC/GC-MS技术、质谱监测技术、非色散红外分析技术、傅里叶变换红外光谱技术、差分光学吸收光谱技术等等。此外,对于痕量VOCs的在线监测,前端的采样富集装置的设计开发尤为关键。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/insimg/240bfc7b-b80e-457b-b787-619f4d610146.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 中科院合肥物质科学研究院 沈成银副研究员 br/ 报告题目:在线质谱仪PTR-MS研制与VOCs实时在线监测应用 /strong /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201511/insimg/d01a533b-67c1-491c-a7b9-4f99c5a38b1a.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 北京雪迪龙科技股份有限公司 张倩暄女士 br/ 报告题目:固定污染源挥发性有机物监测技术 /strong /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201511/insimg/a8580468-d294-4266-8e14-c479e4dd445e.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 中国环科院标准所 张国宁研究员 br/ 报告题目:我国固定源VOCs排放标准现状 /strong /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201511/insimg/250a9413-a723-46d9-8a61-01a72e914ce9.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong 上海磐合科学仪器股份有限公司 王宏先生 br/ 报告题目:大气挥发性有机物在线监测解决方案 /strong /p
  • 多地《大气污染物排放标准》频出,LUMEX提供塞曼汞排放监测方案
    2013年以来,随着我国大气污染问题日益严重,雾霾天数逐年增加,其中以煤为主的能源结构造成的煤烟型污染是导致大气污染的重要原因之一。随着治污减霾工作的强力推进,全国对燃煤锅炉开展了超低排放改造,与此同时“煤改气”工作的推进导致燃气锅炉数量不断增长,控制燃气锅炉的氮氧化物排放迫在眉睫,再加之醇基锅炉、生物质锅炉等新型锅炉尚未有明确排放标准,原有的标准体系已不能满足管理要求。因此近来多地印发《锅炉大气污染物排放标准》及《火电厂大气污染物排放标准》,对各种类型的锅炉的排放限值提出了明确要求,其中包括对共排放限值的要求。广东印发《锅炉大气污染物排放标准》 (DB 44/765-2019) 日前,广东印发《锅炉大气污染物排放标准》(DB 44/765-2019)。该标准在全省域范围执行,适用于燃煤、燃油、燃气和燃生物质成型燃料的每小时65蒸吨及以下蒸汽锅炉、各种容量的热水锅炉及有机热载体锅炉;各种容量的层燃炉、抛煤机炉,其中对汞排放限值的要求为0.05mg/m3,具体执行时间规定如下:一是在用锅炉自2019年7月1日起执行表1规定的大气污染物排放限值,自2020年7月1日起执行表2规定的大气污染物排放限值;二是新建锅炉自2019年4月1日(本标准实施之日)起执行表2规定的大气污染物排放限值;三是未实行清洁能源改造的每小时35蒸吨及以上燃煤锅炉自2021年1月1日起,执行表3规定的大气污染物特别排放限值。 山东印发了《火电厂大气污染物排放标准》DB37/ 664-2019 2019年3月15日,山东近日也印发了《火电厂大气污染物排放标准(DB37/ 664-2019代替DB37/ 664—2013)》。其中对汞污染物的排放提出了更为严格的要求,排放浓度限制要求为0.03mg/m3,标准将于2019年9月7日实施。陕西印发《锅炉大气污染物排放标准》DB61/ 1226-2019 2018年12月29日,陕西印发《锅炉大气污染物排放标准》。本标准规定了火力发电锅炉和工业锅炉的大气污染物浓度排放限值、监测等要求。其中对汞污染物排放限值的要求是0.03-0.05mg/m3,该标准自2019年1月29日开始实施。一起往下看吧! LUMEX高频塞曼烟气汞解决方案 针对标准中提到的《固定污染源废气 气态汞的测定 活性炭吸附/热裂解原子吸收分光光度法》(HJ917-2017)已于2017.12.29颁布实施,我们的测汞仪也充分参与了方法验证,LUMEX针对烟气汞排放监测需求,提供成套解决方案。独特优势:采用高频塞曼背景校正技术:高选择性和灵敏度、抗干扰性强;现场便携检测:可直接野外便携检测样品中汞含量;操作简单:主机直接实时检测气体中的汞含量,复杂样品直接分析,分析结果快--1-2分钟出结果;无需金汞富集及样本前处理;高灵敏度:9.6 m光程保证灵敏性和高选择性;宽泛动态检测范围:适于高汞污染,汞含量可高达0-20000ng;独特设计满足重金属汞污染源排查;在线系统可实现无人操作监控;空气做载气,不用特殊气源; LUMEX公司是具有近30年的分析研发、生产的制造厂商,已开发拥有100多种分析方法,产品/方法用户现已遍布全球80多个国家,产品方法符合美国EPA、欧盟CE标准和中国GB/HJ等分析检测方法标准,并已通过国际ISO认证。LUMEX公司作为汞技术专家,专注于分析方法的开发和研究,为行业用户提供有效的定制化的解决方案。 (来源:LUMEX分析仪器)
  • 赛默飞世尔在华售首台汞排放监测系统
    中国上海(2007年7月17日)赛默飞世尔科技日前宣布向北京清华大学销售第一台汞排放监测系统,该系统将专门用于学校实验室研究和汞排放的初步检测。随后,这台监测系统将会被安装在一家燃煤发电厂使用(根据最新统计显示中国每10天就会有一家新的燃煤发电厂投入使用)。 “赛默飞世尔科技一直致力于为那些承诺改善和保护环境的世界商业实体和科研院所提供帮助。”赛默飞世尔科技空气质量事业部市场总监 Michael Nemergut 先生说到,“我们通过向中国的大学销售最先进的汞排放工艺和技术来带动这一世界上燃煤电力发展最快的国家对汞排放的认识。这次销售是我们在中国汞排放监测领域树立影响的第一步;并且对于中国来说,通过使用这一技术将最终有益于改善本地区乃至全球的环境。” Thermo Scientific(赛默飞世尔科技的品牌之一)的汞监测系统具有简洁的设计,其4个基础组件都无缝集成在一个标准双插门机柜内。该类系统具有使用方便,易于维护,安装及操作成本低,同时还具有高可靠性和较低的空间要求等特性。 图为赛默飞世尔专家现场安装调试汞监测系统 screen.width-300)this.width=screen.width-300"
  • 关于超低排放CEMS监测的存在的问题和解决的方案
    1、 低浓度排放SO2监测的难度 1.1 烟气预处理系统对SO2的吸收 传统直抽法系统中,包含冷凝器、蠕动泵、加热管线等。其中冷凝器部分对于SO2的吸收占到10%-20%以上。即按照15mg/m3浓度的SO2,经过冷凝器,SO2的损失在3-6mg。目前一些地方环保厅已经要求,在超低排放项目中预处理系统对于SO2的吸收需要低于8%。所以这将可能成为以后众多环保验收的要求。 解决办法: 1、采用naflon管除水,优点,能够很好的避免对SO2的吸收。缺点,价格贵,是耗材,需要定期更换。 2、采用稀释法。优点,无需冷凝器,无需除水,解决了对SO2的吸收,同时系统简单,维护量少,可长期使用无需更换。缺点,初期投资成本较高。 1.2 传统非分散红外分析仪量程的影响 传统的非分散红外分析仪最小量程为0-100PPm,接近300mg/m3.而精度为满量程的2%。所以系统误差在6mg/m3左右。如果对于未来15mg/m3 左右的SO2排放。影响超过40%。1、 低浓度排放SO2监测的难度 1.1 烟气预处理系统对SO2的吸收 传统直抽法系统中,包含冷凝器、蠕动泵、加热管线等。其中冷凝器部分对于SO2的吸收占到10%-20%以上。即按照15mg/m3浓度的SO2,经过冷凝器,SO2的损失在3-6mg。所以这将可能成为以后众多环保验收的要求。 解决办法: 1.5 脱硝氨逃逸测量脱硝出口氨逃逸测量安装在除尘器前,粉尘含量高。用激光法测量会遇到激光穿透不过去,热膨胀导致激光打偏,无法校准等问题。解决办法:采用抽取发氨逃逸测量,避免了粉尘和热膨胀的影响。同时也可以通过通入NO进行系统校准等。
  • 863计划“工业排放重金属监测技术”项目通过技术验收
    近日,863计划资源环境技术领域“工业排放重金属监测技术”项目通过技术验收。  该项目开发了工业排放重金属监测技术和产品,在工业环境空气重金属的X射线荧光监测方法、固体废弃物重金属的激光诱导击穿光谱检测技术、废水重金属监测新型电极和复杂水样预处理、烟气重金属采样与快速分析技术等方面取得了实用性成果,开发了具有自主知识产权的工业环境空气重金属自动监测仪、固体废弃物现场快速监测仪和废水重金属在线监测仪,建立和完善了工业排放重金属监测器研发平台。  验收会上,验收专家组听取了关于项目执行情况的汇报,审阅了相关验收材料,并进行了质询。经讨论,验收专家组同意该项目通过技术验收。
  • 甲烷监测对比,谁才是农田气体排放监测的王者?
    项目背景甲烷 (CH4) 这种强温室气体的大气浓度近年来一直在以前所未有的速度上升,自 2020 年以来增长率创历史新高。甲烷在大气中的寿命约为 10 年,而二氧化碳 (CO2) 的寿命为 100 年,甲烷的温室效应是二氧化碳的25倍,主要来源包括农业、化石燃料开采和废弃物处理等。这些特点使得减少甲烷排放成为短期减少人为全球变暖的优先目标,精准测量大气中甲烷的浓度对于研究其环境影响和制定减排政策具有重要意义。本测试旨在对比HealthyPhoton公司生产的HT8600大气甲烷激光开路分析仪与另一款成熟的商用甲烷分析仪的性能。通过对比两款仪器在农田中甲烷排放的通量和浓度的测量结果,评估其在精准性、灵敏度和稳定性方面的表现。测试方法测试在济南的一片农田中进行,该区域为典型的农业生态系统,能够真实反映农业活动对大气甲烷浓度的影响。具体步骤包括:1. 在农田不同位置设置测试点,安装两款仪器。2. 在2024年7月7日至7月9日期间进行多次测量,记录数据。3. 分析数据,比较仪器的灵敏度、准确性和稳定性。测试表现浓度/EC通量对比1. 甲烷浓度 (CH4 Concentration):中间部分显示了两台仪器的甲烷浓度测量值,单位是ppbv。从图中可以看出,两台仪器的测量结果非常接近,但在某些时段会有略微差异。2. 湍流通量 (EC Flux):底部显示了两台仪器测量的湍流通量(μmol+1s-1m-2)的变化情况。两台仪器的测量值整体趋势一致,但在某些时段有较大的差异,尤其是在高通量时段。原始通量与校正后通量对比表明HT8600和商业甲烷分析仪在测量甲烷浓度和湍流通量时具有较高的一致性,但也显示了在不同条件下可能存在的一些差异。X轴是经过校正的商业分析仪的湍流通量(单位:μmol+1s-1m-2),Y轴是HT8600的原始湍流通量数据(单位:μmol+1s-1m-2)。图中的点基本上沿着Y=1.09X的回归直线分布,R² 值为0.9868,表示两者之间的相关性非常高。表明HT8600的原始通量与经过WPL校正的商业分析仪测量值具有很高的线性相关性和一致性,HT8600的性能得到了很好的验证,且数据处理过程更容易、由矫正过程造成的可能的误差更小。共谱密度对比图中的Y轴是标准化的共谱密度,X轴是标准化频率。三种测量方式的共谱密度在大部分频率范围内都非常一致,符合经典湍流谱理论(-4/3斜率线)。表明HT8600在不同频率下的共谱密度表现与商业分析仪和基准温度的共谱密度表现非常接近,表明HT8600在动态响应和频率分辨率方面具有良好的性能。测试小结HT8600与市面上较为成熟的商业甲烷分析仪在测量甲烷浓度和湍流通量时具有较高的一致性,且在动态响应和频率分辨率方面具有良好的性能。这两款仪器都展现了较高的测量精度和稳定性,为环境监测和科学研究提供了可靠的技术支持,为大气甲烷监测的理想选择。相关产品
  • “温室气体排放监测关键技术与设备” 十二五项目通过验收
    p   近日,受科技部社会发展科技司委托,中国21世纪议程管理中心在北京组织召开“十二五”国家科技支撑计划 “温室气体排放监测关键技术与设备”项目验收会,项目组织单位安徽省科技厅的同志参加了会议。验收专家组认真听取了项目汇报,详细审查了验收材料,对项目完成情况和经费使用情况进行了评价,一致同意项目通过验收。 /p p style=" text-align: center " img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/05f79d14-bf14-4bba-b611-42f234bf680b.jpg" / /p p   “温室气体排放监测关键技术与设备”项目旨在针对我国温室气体排放监测关键技术设备与技术规范的需求,研发多目标、多组分温室气体排放的监测仪器设备,在典型企业进行应用示范,并制定温室气体排放监测的有关技术规范。 /p p   项目实施以来,结合我国温室气体排放监测仪器设备的发展现状,通过产学研联盟的优势互补和技术高效转移模式,研制出了温室气体点源排放傅立叶变换抽取式监测设备、温室气体便携式傅立叶红外光谱检测设备、温室气体面源排放开放光路傅立叶红外光谱连续监测设备、多参数温室气体浓度场监测可调谐二极管激光吸收光谱(TDLAS)设备、工业燃煤CO2排放总量自动在线监测仪设备、非色散红外(NDIR)烟气CO2气体浓度检测技术与装备、烟气CO2排放计量在线监测设备等十余种大气和烟气温室气体监测装备。项目在马钢集团、山东碳素、大唐洛河电厂、华容电厂等企业开展了应用示范,并取得了良好的示范效果。 /p p   项目建立了科研院所、产业和行业用户之间长期的战略合作关系,实现了优势互补,形成了具有竞争力的温室气体监测仪器产业链。项目的实施为我国大气温室气体排放监管和碳排放交易提供了技术支撑,具有明显的社会效益和经济效益。 /p p & nbsp /p
  • 众瑞仪器助力“温室气体排放”监测
    导语2022年3月10日生态环境部办公厅印发《关于做好2022年企业温室气体排放报告管理相关重点工作的通知》。《通知》中对2022年企业温室气体排放报告管理有关重点工作内容与时间节点做了详细安排。为保证各设区的市级生态环境主管部门对重点排污行业的日常监管执行工作有序进行。青岛众瑞本期为大家推出碳监测仪与温室气体检测仪。
  • 四方仪器先进光学技术助力油气行业甲烷排放高精度监测
    1. 油气行业甲烷减排势在必行工业革命以来,大气中的甲烷浓度增加了一倍多,甲烷所产生的温室效应在全球变暖中贡献了约三分之一。甲烷虽然影响巨大,但它是一种短期的气候污染物,在大气中的寿命大约为10年。如此短的生命周期意味着,通过减少甲烷排放可以较快降低全球变暖效应,有效调节全球气候变化。因此,甲烷减排是实现《巴黎协定》1.5℃温控目标的关键支柱之一。国际能源署(IEA)统计,2023年全球甲烷排放量为3.49×108 t,能源部门占比为36.8%,其中油气行业占能源部门排放总量的62%,达到0.80×108 t。根据IEA评估,油气行业有75%的甲烷减排可通过现有技术和最佳实践措施来实现,其中40%的减排可通过零成本管理实现。因此,油气行业甲烷减排潜力极大,且易于实现。国际上,欧美针对油气行业甲烷减排正陆续出台更加具体且日益严格的监管要求。在美国,2021年11月美国政府出台指导性文件《美国甲烷减排行动计划》,2022年8月美国总统签署的《通胀削减法案》中首次提出将对石油和天然气行业甲烷排放进行收费,2024年3月美国环保署(EPA)发布《新的、重建和改造的排放源的性能标准以及现有排放源的排放指南:石油和天然气行业气候审查》修订文件,2024年5月EPA发布《温室气体报告规则 石油和天然气系统》修订文件。在欧洲,2020年10月欧盟委员会出台指导性文件《欧盟甲烷减排战略》,2024年6月欧洲议会和理事会正式签署发布了欧盟首部旨在遏制欧洲和全球能源部门甲烷排放的法规《欧洲议会和理事会关于能源部门甲烷减排和修订(欧盟)2019/942的法规》。在我国,2023年11月生态环境部联合11部门发布国家政策文件《甲烷排放控制行动方案》,该文件提出了“十四五”和“十五五”期间甲烷排放控制目标,并明确指出,在“加强甲烷排放监测、核算、报告和核查体系建设”和“推进能源领域甲烷排放控制”中油气行业需要承担多项重要任务。2. 油气行业甲烷减排行动中关于先进监测设备的市场需求油气行业甲烷排放主要来自勘探、生产、加工和储运分销环节中的逃逸、放空和火炬不完全燃烧。逃逸性排放是指在各种设施及部件上无意或意外产生的泄漏。放空和火炬排放是维护安全等原因导致的有组织排放。油气行业甲烷排放呈现以下特点:(1)排放点数量多:每个生产现场或设施可能由成千上万个部件组成,其中可能包含几个到数百个排放点。(2)排放点地理分布广:每个井场、压缩站、天燃气厂和管道段都是潜在排放源,这些设施经常散布在偏远地区。(3)排放率的可变性:受许多因素影响,类似设备和工艺的排放率可能存在较大差异;此外,一些排放点是间歇性的。(4)难以感知:甲烷排放经常是无色无味的,在不使用专用检测设备情况下很难识别和估计排放。油气行业甲烷排放的这些复杂性特点给甲烷减排行动中的排放监测带来了巨大挑战。泄漏检测和修复(LDAR)以及测量、报告和验证(MRV)是油气行业甲烷减排行动中的两种重要系统方法。表1总结了这两种系统方法的基本定义、主要作用及相关甲烷排放监测的发展方向、法规进展和设备需求。表1 LDAR和MRV的基本定义、主要作用及相关甲烷排放监测的发展方向、法规进展和设备需求在国内高度重视甲烷减排的政策背景下,国内油气生产企业正在积极推动企业级甲烷减排行动,在LDAR和MRV应用中必然需要使用大量先进的场站级和源级甲烷排放监测设备。然而,国内高精度甲烷传感技术长期落后于国际先进水平,还没有国内设备制造商能够系统提供这些先进设备。在部分油气企业的试点和研究项目中,还是主要依赖使用进口设备。进口设备不仅存在使用成本过高的问题,也难以响应国内特定应用需求。因此,面对国内油气企业甲烷减排行动中对先进设备的广泛应用需求,迫切需要国内设备制造商加快研发高精度甲烷传感技术,并提供具备自主技术的场站级和源级甲烷排放监测设备。3. 油气行业甲烷排放监测的整体解决方案四方光电(武汉)仪器有限公司(简称四方仪器)是专业研制气体传感器及仪器仪表的高科技企业。四方仪器依托气体传感技术研发平台基础优势,成功研制了高精度TDLAS甲烷传感器模组,并为油气行业甲烷排放监测推出了一套整体解决方案,能够为油气生产企业提高LDAR检测效率、助力温室气体核算和构建MRV技术体系提供高精度甲烷排放监测及准确的定性与定量分析结果。3.1 四方仪器整体解决方案的框架体系本方案框架分为监测感知层、数据解析层和业务应用层。监测感知层主要产品包括:场站级水平的甲烷排放连续监测系统、车载甲烷排放监测系统和无人机甲烷排放监测系统;源级水平的便携式红外热像仪和便携式大流量采样器。多款监测设备和传感器组合适用于天然气生产开采、加工、储存、运输等不同环节,全方位、全流程采集和测量甲烷排放浓度等关键信息。数据解析层的软件平台基于5G网络通讯实时传输并显示测量数据,实时计算排放率,并判定排放事件和量化排放。数据解析层各软件平台分析结果相互结合可为业务应用层的油气生产企业应用目标提供关键技术支撑。图1 四方仪器整体解决方案的框架体系3.2 高精度TDLAS甲烷传感技术可调谐半导体激光吸收光谱法(TDLAS)是一种特别适用于高精度探测空气中甲烷含量的先进光学技术。TDLAS基本原理为,使用可调谐半导体激光器发射出特定波长激光束穿过被测气体,通过测量激光穿透气体后的强度衰减度,可以定量地分析计算获得被测气体的体积浓度。图2 TDLAS传感器原理图四方仪器研制的高精度TDLAS甲烷传感器模组具有以下技术特点:测量精度高,最小检测限可达ppb级;响应快,最高检测频率可达10Hz;具有极高的甲烷选择性,抗干扰能力强;环境适应性强;使用寿命长;模块化设计,易于安装与集成。图3 四方仪器TDLAS甲烷传感器模组3.3 四方仪器场站级和源级甲烷排放监测设备的核心技术、主要功能和应用范围图4 四方仪器-油气行业甲烷排放监测整体解决方案的应用示意图3.4 油田生产区域的甲烷排放监测应用设计图5 联合站区域甲烷排放连续监测的网格化监测点位设计图6 油井区域甲烷排放连续监测的网格化监测点位设计图7 油田生产区域车载甲烷排放监测的行驶路线及甲烷浓度示意图立即扫码下载《天然气管网全域多维气体监测一站式解决方案》
  • VOCs走航监测:VOCs无组织排放监管的利器
    p   2020年是 “十三五”规划的收官之年,也是打赢打好污染防治攻坚战的决胜之年,针对目前的臭氧污染形势,生态环境部及各地市相继出台了相关工作任务。小编以部分政策为例,简述其内容: /p table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 156" valign=" middle" align=" center" strong 政策文件 br/ /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 78" valign=" middle" align=" center" strong 来源 br/ /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 369" valign=" middle" align=" center" strong 工作任务 /strong /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 156" valign=" middle" align=" center" p span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 《关于开展夏季挥发性有机物走航监测的通知》 /span /strong /span /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 77" valign=" middle" align=" center" strong 生态环境部生态环境监测司 /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 369" valign=" top"   各相关省(市)生态环境厅(局)组织本行政区内具备环境空气VOCs走航监测条件的相关地市生态环境部门,做好夏季环境空气VOCs走航监测工作。各省应积极争取大气污染防治专项资金、各省环保专项资金,支持VOCs走航监测和能力建设工作,充分发挥第三方监测机构的作用,切实做好夏季O sub 3 /sub 污染防治攻坚支撑保障。 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 157" valign=" middle" align=" center" span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(192, 0, 0) " strong 《2020年挥发性有机物治理攻坚方案》 /strong /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 77" valign=" middle" align=" center" strong 生态环境部 /strong br/ /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 369" valign=" top" & nbsp (1)大力推进智能监控和大数据监控,充分运用执法APP、自动监控、卫星遥感、无人机、电力数据、VOCs走航监测等高效监侦手段,提升执法能力和效率; p & nbsp (2)VOCs排放量较大、O sub 3 /sub 污染较重的城市,应优先开展VOCs自动监测,并实现与中国环境监测总站数据直联; /p p & nbsp (3)组织重点区域各省(市)对重点工业园区和企业集群开展走航监测,排查突出问题,评估整治效果; /p p & nbsp (4)鼓励各地开展VOCs来源解析,确定影响O sub 3 /sub 生成的主要VOCs物种和排放行业,提高精准治污水平。 /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 157" valign=" middle" align=" center" p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(192, 0, 0) " strong 《2020年夏秋季挥发性有机物治理达标排放百日服务行动方案》 /strong /span /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 77" valign=" middle" align=" center" p strong 广东省生态环境厅 /strong /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 369" valign=" top" & nbsp (1)深入推进VOCs重点监管企业销号式综合整治服务; p & nbsp (2)扎实开展加油站、储油库、油罐车排放达标行动; /p p & nbsp (3)推进敏感区、涉化工园区达标行动:开展重点区域、敏感点走航监测监控; /p p & nbsp (4)强化移动源达标管理; /p p & nbsp (5)加强对各地污染天气应对的指导:重点加强加油站、储油库、VOCs重点企业及移动源的巡查督查。 /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 157" valign=" middle" align=" center" span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(192, 0, 0) " strong 《山东省2020年夏秋季挥发性有机物强化治理专项行动方案》 /strong /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 77" valign=" middle" align=" center" strong 山东省生态环境厅 /strong br/ /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 369" valign=" top"   2020年6月至10月,在全省范围内以石化、有机化工、工业涂装、包装印刷和加油站(储油库)为重点领域,以工业园区、企业集群和重点企业为重点管控对象,全力抓好夏秋季VOCs强化治理,实现VOCs排放量明显下降。 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 157" valign=" middle" align=" center" p span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 《关于实施厂区内挥发性有机物无组织排放监控要求的通告》 /span /strong /span /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 77" valign=" middle" align=" center" strong 江苏省生态环境厅 /strong br/ /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 369" valign=" top" & nbsp (1)自2020年7月1日起,江苏省全面实施《挥发性有机物无组织排放控制标准》附录A“厂区内VOCs无组织排放监控要求”,实施范围为省内涉及VOCs无组织排放的现有企业及新建企业; p & nbsp (2)企业厂区内VOCs无组织排放监控点浓度执行特别排放限值; /p p & nbsp (3)如新制(修)订标准或发布标准修改单有关规定严于《挥发性有机物无组织排放控制标准》附录A“厂区内VOCs无组织排放监控要求”的,按照更严格标准要求执行。 /p /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 157" valign=" middle" align=" center" span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 《关于开展重点行业挥发性有机物(VOCs)专项执法检查行动的通知》 /span /strong /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 77" valign=" middle" align=" center" strong span style=" color: rgb(0, 0, 0) " 山西省生态环境厅 /span /strong br/ /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 369" valign=" top" p & nbsp (1)自6月开始,开展为期3个月的重点行业挥发性有机物(VOCs)专项执法检查行动; /p p & nbsp (2)仪器监测:指采用VOCs走航监测、便携式非甲烷总烃监测仪、VOCs 泄漏检测仪、微风风速仪等检测设备,开展实际监测,精准执法。 /p /td /tr /tbody /table p   在这些政策文件中,不难发现对挥发性有机物无组织排放监管是重点工作,且大都提及一种技术: strong VOCs走航。 /strong /p p   那么,什么是VOCs走航呢? /p p   VOCs走航是基于一台快速质谱,边行驶边对几百种 VOCs进行实时监测,GIS坐标与物种及浓度对应,监测数据处理结果可视化,可以快速全面了解区域的 VOCs浓度水平及特征因子的一种技术手段。总而言之,VOCs走航监测包含四大要素: /p p   1) 边行驶边监测; /p p   2) 多种VOCs同步秒级监测能力; /p p   3) GIS坐标与物种及浓度对应; /p p   4) 监测数据处理结果可视化。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/0f314cfb-2a98-4e23-94cb-93fc9c6e38fa.jpg" title=" 禾信.jpg" alt=" 禾信.jpg" / /p p   传统的挥发性有机物分析方法是在现场采样,然后进行气相色谱质谱分析,这种方法分析过程繁琐,分析周期长,所需人力物力投入都较大。相较于传统的分析方法,VOCs走航监测具备实时响应、快速解析、移动性强、维护少、能耗低以及污染快速定位等众多功能优势,可应用于区域污染走航摸排、区域边界走航、园区监测评估、环境污染应急监测及重大赛事活动保障等场景。 /p p   VOCs走航技术是由广州禾信仪器股份有限公司(以下简称“禾信仪器”)在2017年12月首次推出的,截至目前,禾信仪器VOCs走航监测已覆盖全国30个省、280多个地市,累计走航超30万公里。其走航技术具有响应速度快、检测限低、监测物质丰富、系统稳定等特点,可对VOCs实时在线走航监测,实现VOCs及单组分浓度3D-GIS可视化功能,可以给出走航路线上任意点位的VOCs及主要物种的浓度,为环境管理者提供了一种直观、“动态直读”的模式,使“挂图作战”成为可能。禾信仪器一直致力于正向研发,专注于质谱仪器研发、生产、销售及服务,针对目前复杂的大气污染形势,禾信仪器在已有的VOCs走航系统的基础上,充分结合其他技术手段,为大气污染物的监管打造一个全面的解决方案: /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ace780df-c4e0-49aa-aadd-543cff7ae991.jpg" title=" 走航监测车.jpg" alt=" 走航监测车.jpg" / /p p   未来,VOCs走航将实现常态化和业务化,一方面是用于常规走航监测,全面、快速、精准诊断大气环境VOCs污染的整体分布情况,获取不同物种浓度分布和变化规律,支撑臭氧污染防治精细化管理工作,另一方面是集成多种技术手段,为臭氧防治工作提供更加精细、科学的方案。同时,现已进入“后走航时代”,大数据的应用也将是大趋势,通过平台整合海量的监测数据,实现数据可视化、多元化、平台化,从找到基本问题出发,到支撑行业企业管理,将愈加智能化、精细化。 /p p   禾信仪器以实现VOCs无组织排放精准监管为目标,助力做到“问题精准、时间精准、区位精准、对象精准、措施精准”,系统地推出了VOCs走航监测解决方案、环境空气VOCs在线自动监测解决方案及工业园区VOCs无组织排放在线监管解决方案,提供精准施策和科学管控相结合的数据依据,推进各项污染源分类分时分段管控,助力做好挥发性有机物治理及臭氧污染防控工作,打赢打好污染防治攻坚战。 /p p style=" text-align: right " strong 供稿来源:广州禾信仪器股份有限公司 /strong /p
  • 污染物排放自动监测数据可作为法律依据吗?
    近期,各地发生了多起这样的案件:某部的帮扶督察组到排污单位检查,通过检查污染物排放自动监测设备并拷贝自动监测数据,发现被检查的单位存在超标排放污染物的行为,就强令地方生态环境部门对这些排污单位实施行政处罚。排污单位自己花钱安装了在线监测设备,让主管部门来监控自己,还让人家将“监测数据”作为处罚自己的证据,排污单位感觉到心里不爽。地方生态环境部门似乎也体察到了企业的委屈,本来不想处罚,但又找不到不予处罚的法律依据。那么,排污单位的污染物排放自动监测数据是否可以作为行政处罚的证据呢?能或者不能,又各有什么理由呢?下面,就这一问题进行分析。一、污染物排放自动监测设备及自动监测数据的法律性质。关于“污染物排放自动监测设备”,相关法律进行了规定。如,《大气污染防治法》第二十四条规定:“重点排污单位应当安装、使用大气污染物排放自动监测设备,与环境保护主管部门的监控设备联网,保证监测设备正常运行并依法公开排放信息。”。《水污染防治法》第二十三条规定:“重点排污单位还应当安装水污染物排放自动监测设备,与环境保护主管部门的监控设备联网,并保证监测设备正常运行。”在《污染源自动监控设施现场监督检查办法》中,“污染物排放自动监测设备”被称为“污染源自动监控设施”。该办法的第二条规定:“本办法所称污染源自动监控设施,是指在污染源现场安装的用于监控、监测污染物排放的在线自动监测仪、流量(速)计、污染治理设施运行记录仪和数据采集传输仪器、仪表、传感器等设施,是污染防治设施的组成部分。”由此可见,“污染物排放自动监测设备”和“污染源自动监控设施”是不同设施设备的不同叫法。污染物排放自动监测设备的工作原理是:在计算机的控制下,设备的取样单元取得污染物的样品,然后对样品进行检验检测,设备先获得物理数据或者化学数据,然后再将该数据以电子数据的形式进行记录和存储,被记录和存储的电子数据可以即时反映到显示终端,也可以在需要时被拷贝或者调取出来。从污染物排放自动监测设备的工作原理可知,“污染物排放自动监测设备”属于“电子技术监控设备”,而“污染物排放自动监测设备”中的数据也显然属于“电子技术监控设备记录内容”。二、对“电子技术监控设备”及其“记录内容”的法律规定。2021年7月15日开始施行的《行政处罚法》第四十一条第一款规定:“行政机关依照法律、行政法规规定利用电子技术监控设备收集、固定违法事实的,应当经过法制和技术审核,确保电子技术监控设备符合标准、设置合理、标志明显,设置地点应当向社会公布。”根据上述规定,行政机关利用电子技术设备收集、固定违法事实的,应当经过“法制审核和技术审核”两个“审核”。这里并没有规定未经“法制和技术审核”“利用电子技术设备收集、固定违法事实”的法律后果。但该条第二款规定:“电子技术监控设备记录违法事实应当真实、清晰、完整、准确。行政机关应当审核记录内容是否符合要求;未经审核或者经审核不符合要求的,不得作为行政处罚的证据。”该款法法律明确规定,电子技术监控设备记录“未经审核或者经审核不符合要求的,不得作为行政处罚的证据”。根据上述规定,可以推理出,“利用”未经“法制和技术审核”的电子技术监控设备收集、固定的证据,也即监控设备记录的违法事实,即使这些证据经过了“审核”,显然也不能作为行政处罚的证据。三、未经审核的自动监测数据不能作为行政处罚的证据。通过第一步、第二步的分析,可以得出这样的结论:因为“污染物排放自动监测设备”属于“电子技术监控设备”,“污染物排放自动监测设备”中的数据属于“电子技术监控设备记录内容”;因为“电子技术监控设备”未经“法制和技术审核”或其“记录内容”“未经审核或者经审核不符合要求”,“不得作为行政处罚的证据”;所以,“污染物排放自动监测设备”未经“法制和技术审核”或“污染物排放自动监测数据”“未经审核或者经审核不符合要求”的,“不得作为行政处罚的证据”。四、新法施行前的自动监测数据能否作为行政处罚证据?有人问:新《行政处罚法》施行后未经审核的自动监测数据不能作为行政处罚的证据,那新法施行前的呢?正确答案是:同样不能。理由是:未经审核的自动监测数据不能作为行政处罚的证据,是因为这样的证据缺乏客观性,是因为无法确定这样的数据是不是通过可靠的设备取得,也无法确定数据的传输和存储是否可靠,更无法确定设备所采用的检测方法和所依据的技术规范是否符合相关要求。而这样的证据缺乏客观性,并非因为新《行政处罚法》有了规定才“开始”缺乏客观性,在有新法有规定之前,这样的证据本来就缺乏客观性。只不过,新《行政处罚法》明文规定:这样的数据根本就不能作为证据使用,根本就不具备证据资格,更遑论其证明力的大小了!五、如何理解《环境行政处罚办法》的相关规定及复函?《环境行政处罚办法》第三十六条规定:“环境保护主管部门可以利用在线监控或者其他技术监控手段收集违法行为证据。经环境保护主管部门认定的有效性数据,可以作为认定违法事实的证据。”根据上述规定,在线监测数据作为认定违法事实证据的条件是,要经过主管部门的有效性认定。换言之,没有“经过主管部门的有效性认定”的监测数据,不得作为认定违法事实的证据。原环境保护部办公厅《关于自动在线监测数据应用于环境行政执法有关问题的复函》中回复:根据《环境行政处罚办法》第三十六条和第三十二条的规定,污染源自动在线监测数据与其他有关证据共同构成证据链,可以应用于环境行政执法。与《环境行政处罚办法》相比,上述回复中“污染源自动在线监测数据与其他有关证据共同构成证据链”后才“可以应用于环境行政执法”的表述,对于“自动监测数据作为行政处罚证据”提出了更严格的要求。由上述分析不难看出,《环境行政处罚》和《复函》并没有赋予所有的“在线监测数据”以“行政处罚的证据资格”,“在线监测数据”作为环境行政处罚证据使用的条件是:“经过主管部门的有效性认定”和“与其他有关证据共同构成证据链”。六、执法部门如何将污染物自动监测数据作为行政处罚证据?执法部门如果想把排污单位的污染物自动监测数据作为行政处罚的证据,应当根据新《行政处罚法》第四十一条的规定,进行三个审核:(1)对自动监测设备进行法制审核;(2)对自动监测设备进行技术审核;(3)对监测数据进行审核。那么,如何进行上述审核呢?(1)对自动监测设备进行法制审核应当重点审核:①是否属于法律规定应当安装自动监测设备的排污单位;②自动监测设备取样是否符合适用的排污标准;③自动监测设备所采用的测定分析方法是否适用;④是否符合《行政处罚法》第四十一条的相关要求。(2)对自动监测设备进行技术审核可参照《污染源自动监控管理办法》第十二条的规定进行审核:①自动监控设备中的相关仪器是否检测合格;②数据采集和传输是否符合国家有关污染源在线自动监控(监测)系统数据传输和接口标准的技术规范;③自动监控设备是否安装在符合环境保护规范要求的排污口;④按照国家有关环境监测技术规范,环境监测仪器的比对监测是否合格;⑤自动监控设备是否能与生态环境部门的系统稳定联网;⑥是否建立了自动监控系统运行、使用、管理制度。(3)对监测数据进行审核应当重点审核:①监测数据是否符合《行政处罚法》第四十一条“真实、清晰、完整、准确”的要求;②是否符合电子数据的载体形式;③是否有调取电子数据的过程记录。
  • 利用成像光谱仪进行温室气体监测,以支持科学的碳排放决策和行动
    一台最先进的成像光谱仪将被用于测量温室气体(包括甲烷和二氧化碳)排放,其在被运送到美国旧金山Planet Labs洁净室进行测试与调整之后,将于近期安排发射任务。该成像光谱仪将使非营利组织Carbon Mapper能够精确定位和测量太空中的温室气体来源。该成像光谱仪可以监测温室气体——甲烷和二氧化碳该科学仪器由美国宇航局(NASA)位于南加州的喷气推进实验室(Jet Propulsion Laboratory)设计和建造,将成为非营利性组织Carbon Mapper领导的一项收集温室气体点源排放数据工作的一部分。该成像光谱仪是围绕为NASA机载活动和太空任务开发的技术而构建的,将提供有关“超级排放源(super-emitters)”的目标数据。“Carbon Mapper coalition”是一个公私合作项目,由Carbon Mapper组织及其合作伙伴领导,包括喷气推进实验室、Planet Labs、美国加州空气资源委员会、落基山研究所(Rocky Mountain Institute)、亚利桑那州立大学(Arizona State University)和亚利桑那大学(the University of Arizona)。该科学仪器是一种先进的成像光谱仪,可以测量地球表面反射并被地球大气中的气体吸收的数百个波长的光。不同的气体(包括甲烷和二氧化碳)吸收不同波长的光,留下的光就是成像光谱仪可以识别的光谱“指纹”。这些肉眼看不见的红外光谱“指纹”可以表明和量化大量温室气体排放的情况。在离开喷气推进实验室之前,该成像光谱仪经过了一系列关键测试,以确保它能够承受发射的严酷和太空的恶劣条件。工程师们让光谱仪经受了类似于火箭进入轨道时所承受的强烈振动,以及它在太空真空中所经历的极端温度。此外,还使用甲烷样本来测试位于喷气推进实验室真空室中的完整仪器的性能——该成像光谱仪产生了清晰的甲烷光谱“指纹”。根据在成像光谱仪测试期间采集的数据生成的甲烷光谱“指纹”(来源:喷气推进实验室)“我们很高兴看到记录的甲烷光谱特征数据。这对于即将进行的太空监测来说是个好兆头!”喷气推进实验室的仪器科学家罗伯特格林(Robert Green)说道。“这次交付对我们来说是非常令人兴奋的一步,因为我们的团队现在可以开始卫星集成的最后阶段。”Planet Labs新任务高级总监杰夫吉多(Jeff Guido)表示,“这一里程碑是政府、慈善事业和行业以创新方式发挥彼此优势以打造具有全球影响潜力的卓越能力的绝佳范例。”该成像光谱仪是Carbon Mapper更广泛努力减少温室气体排放的一部分,旨在调查全球甲烷和二氧化碳的点源排放。Planet Labs正在与喷气推进实验室合作建造第二台成像光谱仪,相关研发团队将继续并肩工作,以提供新的温室气体监测功能。关于Carbon MapperCarbon Mapper是一个非营利性组织,致力于促进及时采取行动以减少温室气体排放。其使命是通过在设施规模上提供精确、及时且可访问的数据来填补新兴的全球甲烷和二氧化碳监测系统生态系统的空白,以支持基于科学的决策和行动。该组织正在领导碳测绘卫星的开发,并得到由Planet Labs、喷气推进实验室、美国加州空气资源委员会、亚利桑那大学、亚利桑那州立大学和RMI组成的公私合作伙伴关系的支持,相关资金来自High Tide Foundation、Bloomberg Philanthropies、格兰瑟姆环境保护基金会,以及其它慈善捐助者。
  • 高中精度监测,摸清碳排放家底 打造碳监测评估体系“济南案例”
    什么是碳监测?碳监测是指监测二氧化碳吗?还能监测其他气体吗?又是怎样监测?说到碳监测,不少人都抱有这样或那样的疑惑。齐鲁晚报齐鲁壹点记者走进山东省济南生态环境监测中心(以下简称省济南监测中心),带领大家一起了解“碳监测”这个新鲜事物。开展高中精度碳监测摸清城市碳排放量“家底”2021年9月,山东省济南市被生态环境部列为碳监测综合试点城市之一。作为一个全新的课题,碳监测开始进入省济南监测中心的工作范畴。“广义的碳监测不等同于二氧化碳监测,指的是包括二氧化碳、甲烷、氧化亚氮、六氟化硫、全氟化碳、氢氟化碳、三氟化氮等在内的多种温室气体监测。”据省济南监测中心监控与统计室副主任碳专班成员高素莲介绍,碳监测是指对温室气体排放强度、环境中浓度、生态系统碳汇以及对生态系统影响等碳源汇状况及其变化趋势进行监测。相比PM2.5等大气污染物,碳监测难度更高、对精确性要求更高。现阶段的碳监测,济南采用了“天空地”的立体监测方式,通过天基——卫星遥感监测,空基——无人机监测,地基——高精度监测、中精度监测、移动走航车监测、地基遥感监测等手段进行监测。“在地面监测中,目前国际上主流的碳监测网络采用的多是高精度监测方法。”高素莲表示,环境空气中微小的二氧化碳浓度变化对应着巨大的二氧化碳排放量,所以对精度要求比较高。“以二氧化碳为例,高精度监测设备精度能到0.05%,是常规二氧化硫监测设备精度(5%左右)的近百倍。”济南市作为8个综合试点城市之一开展城市温室气体监测评估工作,主要目标是通过开展地面大气主要温室气体浓度监测,探索自上而下的碳排放量反演方法,初步形成技术指南,做好可推广、可应用、可示范的技术储备,为城市碳排放量核算结果提供校验参考。高素莲表示,“自上而下”碳排放量同化反演的方法可与传统的“自下而上”的清单编制方法互相验证,更有利于摸清城市碳排放量“家底”。智能跟踪监测温室气体建立“天空地”一体化立体监测网络济南是全国8个山东省唯一一个碳监测评估综合试点城市之一,为城市碳监测评估体系建设做出了先行探索,初步建成的温室气体“天空地”一体化立体监测网络体系,实现全市域、多指标、长时段温室气体智能跟踪监测。“温室气体采样头通常设置在高度约为50米的高塔之上。”据高素莲介绍,基于监测站点建设的代表性、前瞻性等原则,济南市充分考虑城市现有整体布局,分别在二氧化碳高、中、低值区域及背景点设置监测点位。“同时还在新旧动能转换起步区单独设置监测点位,更加有利于低碳政策效果评估。”监测点位已经布设完成,那么,碳监测设备又是如何工作的呢?省济南监测中心预报室副主任付华轩对气体采样监测过程进行了详细介绍。“首先通过采样泵,将样品气经由采样管路抽进地面站房,在站房内,样品气要先经过一级除水设备在4℃条件下去除明水,而后利用冷阱将气体制冷至零下50℃左右,进一步除去其中的水汽。”付华轩表示,去除水汽之后,样品气才能进入高精度分析仪分析。“分析仪会对样品气中的二氧化碳、甲烷、氧化亚氮、一氧化碳、水汽等进行检测,并通过数据采集软件将分析数据实时上传至中国环境监测总站。这样一个碳监测过程才算完成。”据悉,目前济南市已建成20个二氧化碳中精度监测站点和35个甲烷中精度监测站点,二氧化碳中精度监测数据首个实现与中国环境监测总站联网传输。中精度监测结果为探究济南市二氧化碳浓度时间和空间分布特征提供第一手资料。温室气体仪器分析方法全国领先打造城市碳监测评估的“济南案例”目前,“天空地”一体化立体监测网络已经投入使用,初步获得了城市二氧化碳、甲烷等温室气体浓度变化特征,同时编制了二氧化碳、甲烷等温室气体排放清单,掌握了温室气体区域及行业排放特征。据介绍,济南市在重点行业企业试点开展温室气体自动监测,并依托现有环境监测监控平台开发温室气体管理模块,实现温室气体数据自动联网传输。目前已有4个重点行业25个监测点位实现温室气体自动监测和数据联网传输。在碳监测工作的探索实践中,省济南监测中心还探索建立温室气体仪器分析方法,实现一次进样同时分析CO2、CH4、N2O、SF6、CO共5种气体组分,在全国保持领先水平。完成国家环境保护环境监测质量控制重点实验室开放课题《环境空气 二氧化碳、甲烷、一氧化碳的测定 气相色谱法监测质控技术研究》,建立手工监测温室气体质量控制体系,填补了国内空白。不过,碳监测在我国尚处于起步阶段,监测技术体系尚不健全,相关的监测标准、规范、指南等也是在试点进程中不断完善和发展的。高素莲表示,济南的碳监测评估体系在建立过程中也是在摸着石头过河,实施方案经历过很多次修改完善和论证比选。值得关注的是,当前,碳监测技术人才相对缺乏,技术人员也是边学习、边提高、边应用,在项目实施过程中不断完善和丰富技术体系。下一步,济南将按照国家试点工作要求,继续推进各项试点任务,不断完善“天空地”一体化温室气体监测体系,深化数据挖掘和分析,加强经验总结和凝炼,为城市应对气候变化工作成效评估提供坚实的数据支撑,为城市碳监测评估体系建设贡献典型的“济南案例”。
  • 环保部就在线监测烟气排放执行标准作出解释
    关于在线监测系统烟气排放执行标准的有关问题,环境保护部经研究,近日作出解释,全文如下:   一、《火电厂大气污染物排放标准》(GB13223-2003)按火力发电锅炉的建设时间,分别规定了不同时段的大气污染物排放限值。对不同时段建设的锅炉,应选择适当的监控位置分别监测其大气污染物排放浓度,并执行相应的排放限值。   二、不同时段建设的锅炉,若采用混合方式排放烟气,且选择的监控位置只能监测混合烟气中的大气污染物浓度,则应执行各时段限值中最严格的排放限值。   环境保护部   (环函〔2010〕303号2010年10月12日)
  • 全球温室气体监测实施计划出台,加强对全球温室气体排放的检测
    早在1月份,世界气象组织(WMO)发布了全球温室气体监测(G3W)实施计划草案,供专家磋商,以制定一项促进气候行动的旗舰倡议。日前,世界气象组织(WMO)执行委员会以决议方式通过了全球温室气体监测(G3W)实施计划,旨在加强对全球温室气体排放的检测,以及服务于全球气候治理领域的有关政策制定。该计划将以世界气象组织长期协调的温室气体监测和研究工作为基础,分阶段实施。其中,2024年至2027年为试运行阶段,初步聚焦二氧化碳、甲烷和一氧化二氮三大主要温室气体,研究人类活动和自然现象对有关温室气体排放的影响。该实施计划出台前夕,WMO发布《WMO全球年度至十年气候最新通报》指出,在2024年至2028年,全球平均温度比工业化前时期高出1.5℃的可能性为47%。WMO副秘书长柯巴雷特表示:“这些统计数字背后隐藏着一个严峻的现实,就是我们远远偏离了实现《巴黎协定》所设定目标的轨道,我们必须紧急采取更多减少温室气体排放的措施,否则将付出越来越沉重的代价。更加极端的天气将导致数万亿美元的经济损失和数百万人遭受生命威胁,环境和生物多样性也将受到严重损害。”作为该实施计划的主要起草方之一,“全球大气观察”组织表示,全球温室气体监测实施计划的出炉,是多年以来大量团队努力的结果,得到了全世界温室气体科研群体的一致支持。该计划致力于帮助世界气象组织成员更好地落实《巴黎协定》,为其有关政策制定提供依据。鉴于各国在采取减缓气候变暖具体政策措施方面,受到信息不对称、不完整的困扰,WMO拟通过该计划打造全球温室气体排放数据库,作为公共产品帮助各成员更科学决策。全球温室气体监测实施计划致力于打造集成度高、有效性强的合作框架,整合当前天基和陆基观测系统,融合现有的观测数据和推算模型,最大程度汇聚当前技术,加强温室气体检测的质量。WMO在通过该实施计划的决议中还建议,今后所有的温室气体监测工作都应秉承全透明原则,并遵循WMO统一数据政策开展,以便各国能以地球系统数据为基础,开展自由且不受限制的国际合作。WMO对于通过更好集成力量获取更高质量数据寄予厚望,该实施计划负责人巴尔萨莫表示,当前基线观测站能够较好地测量二氧化碳浓度,但要想直接服务气候政策制定,还需要更精确、更及时的数据,目标是能按照月度频率更新全球二氧化碳流动和聚集情况,并且要有足够清晰的地理分布细节。根据决议,全球温室气体监测实施计划的推进,将始终在联合国框架下进行,世界气象组织基础设施委员会、研究委员会将共同组建联合顾问组,负责联络外部参与方,推进该计划的落地执行。为确保计划顺利实施,WMO呼吁各成员加大对联合顾问组专业人员的支持,使其更好保障计划的顺利推进。近期,WMO发布了半年度简报,强调要在可持续发展的未来展现出更大领导力,优先任务就是帮助并赋能各个国家和地区制定有效且针对性强的气变适应和减缓措施,WMO将在这一问题上发挥引领作用,并与志同道合者共同打造可持续发展的未来。
  • 赛默飞推出全新颗粒物排放连续监测系统
    上海,2014年3月3日— 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)宣布推出新的颗粒物排放连续监测系统 (PM CEMS),使工业污染排放的颗粒物连续监测成为可能,为节能减排和PM2.5来源分析提供了又一有利工具。 Thermo ScientificTM颗粒物排放连续监测系统综合了光散射法和质量微天平方法的优点,测量结果是可溯源至NIST标准的真正质量浓度,可以满足日益严格的精度要求,是一套在动态湿烟气条件下真正的质量浓度测量系统。 赛默飞世尔科技中国总裁兼全球环境和过程监测业务总裁迈世福先生表示:“近期,中国频频遭受雾霾天气,PM2.5再次成为全国乃至全世界关注的焦点。专家指出,在PM2.5的贡献中,工业排放占据了重大比例。赛默飞此次推出的颗粒物排放连续监测系统可以连续测量可过滤颗粒物,提供精确的测量结果,为节能减排和PM2.5分析提供有力武器。未来,赛默飞将继续为中国和全球市场提供有助于改善环境的技术和产品,帮助解决在经济发展过程中带来的环境问题。”Thermo ScientificTM颗粒物排放连续监测系统不受颗粒物大小、化学组成变化的影响,通过重量参比法进行线性修正。受电厂燃料、工艺过程、控制参数的影响,烟气颗粒物的变化性和动态特性变化非常强,该系统可以辨别质量浓度变化和其他特性变化。锥形微量振荡天平是质量传感器,对连续测量的光散射设备进行内部参比校正。系统采用稀释抽取法,允许更低的传输温度,可以减少维护量,提高系统使用寿命和运行时间。它由稀释抽取探头、Model 3880i探头控制器和气动电气管束组成。烟道流速可以通过模拟量、数字化通讯方式输入进入系统,仪表气清洁系统和机箱空调都是可选项。该系统的设计满足美国EPA性能规范PS 11和质量保证程序Procedure 2的要求,并通过了审核程序Method 5或17的验证。欲了解更多详情关于颗粒物排放连续监测系统(PM CEMS),请浏览:?http://www.thermo.com.cn/Product7030.html 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3,800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2,000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 锐意干货∣超低排放烟气成分监测技术汇总
    “十三五”开局以来,国内逐步开始了燃煤电厂超低排放改造的战略布局,随着超低排放改造的实施,烟气水分含量增大,烟气特性发生了较大改变,对烟气成分监测的精确性提出了更高要求。因此,分析对比各种烟气监测技术的性能特点与实用价值,提出适用于超低排放改造的在线烟气成分监测技术,为燃煤电厂烟气监测系统的选型提供参考,对“十三五”燃煤电厂超低排放改造具有重要的指导意义。 据《煤电节能减排升级与改造行动计划(2014-2020年)》改造后烟气中二氧化硫、氮氧化物排放的限值执行标准分别为35mg/m3、50 mg/m3。因此,国内烟气成分监测设备必须满足烟气中二氧化硫、氮氧化物的低量程测定需求。下面介绍几种烟气成分监测技术,分析总结适用于超低排放烟气成分的在线监测技术,以供大家选型。1 二氧化硫监测技术 常见的二氧化硫单一组分检测方法包括:碘量法、溶液电导率法、定电位电解法以及紫外荧光法等。其中紫外荧光法较适用于烟气中氮氧化物体积浓度的连续在线监测。1.1碘量法 碘量法是在采样前把淀粉指示剂加入碘标准溶液中,采用过程中生成硫酸根离子与碘发生反应,使溶液由颜色变成无色,达到反应终点。通过控制吸收液的温度和控制气体介质中二氧化硫、吸收液中碘的反应时间(3~6min)以及采样气体流量,防止电挥发损失,保证测量结果的准确性,此种方法又称为直接碘量法。另外采样器是利用间接碘量法,利用溶液吸收二氧化硫,然后加淀粉指示剂,最后由碘标准溶液滴定至蓝色终点。该检测方法检测下限为0.01umol/mol。1.2 溶液电导率法 溶液电导率法是利用溶液在温度恒定时,有与其浓度相对应的电导率。当该种溶液吸收气体或与气体发生反应时,其电导率发生变化,测出电导率从而求出气体浓度。检测二氧化硫所用的溶液为硫酸酸性双氧水溶液或碘溶液,吸收气体介质中的二氧化硫,二氧化硫被双氧水或碘氧化成硫酸,然后由标准电极(铂电板)和工作电极测出溶液增加的电导率从而求出二氧化硫的浓度。1.3 定电位电解法 采用该检测方法的仪器核心是二氧化硫传感器,当待测气体介质进入传感器气室,通过渗透膜进入电解槽,使在电解液中被扩散吸收的二氧化硫在规定的氧化电位下进行定电位电解,根据电解电流求出二氧化硫浓度。当工作电极达到规定的电位时,被电解质吸收的二氧化碳发生氧化反应,产生电解电流,在一定范围内其大小与二氧化硫浓度成正比。1.4 紫外荧光法 紫外荧光法适用于SO2浓度在线监测,根据物质分子吸收光谱和荧光光谱能级跃迁机理,采用zn灯照射SO2气体分子,使其吸收波长为190mm-230mm的紫外光成为激发态分子SO2*,由于SO2*不稳定,会瞬间返回基态,发射出波长为330nm的特征荧光。在低湿度条件下,浓度在0~143mgm3范围内时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。这种方法可长距离输送气体介质,不用加热保温,易于维护、管理。1.5 小结 碘量法检测准确度高,但操作复杂,硫化氢等还原性物质对其测定结果影响较大,分析样品的时间相对较长,不适用于连续在线监测;溶液电导率法设备费用较低,易于推广,但抗干扰性能较差,需经常标定,长期使用易出现误差且不易于维护;定电位电解法在湿法操作上维护管理方便,但像所有电化学传感器一样,电解传感器的输出信号随着时间的推移会逐渐衰降或“老化”,使用年限一般为1-2年,需要经常更换。因此,这三种检测方法均较适用于二氧化硫浓度的短期检测。而紫外荧光法具有操作简单、精度较高、抗干扰强、分析速度快等特点,是检测烟气中二氧化硫浓度的理想仪器,可广泛应用于电力、石油、化工、环保等具有燃煤锅炉的排污现场,能够过对污染源的排放情况进行有效的连续在线监测。2 氮氧化物监测技术 常见的氮氧化物单一组分检测方法包括:盐酸萘乙二胺比色法、激光诱导荧光法、原电池库仑滴定法、压电石传感器、气体敏感元件传感器以及化学发光法等。其中化学发光法较适用于烟气中氮氧化物体积浓度的连续在线监测。2.1 盐酸萘乙二胺比色法 用冰醋酸,对氨基苯磺酸和盐酸萘乙二胺配成吸收液,当气体通过吸收液时,其中的二氧化氮被吸收并转变成亚硝酸和硝酸,亚硝酸又与对氨基苯磺酸发生重氮化反应,此反应再与盐酸萘乙二胺耦合成玫瑰红色的偶氮染料,反应最终产物在540nm出的吸收光度与其浓度成正比,因此可用分光度法进行测定。最低检出浓度(以NO2计)为0.025mg/m3。2.2 激光诱导荧光法 用特定波长的激光束,激发NO2(或NO)分子到较高能级成为激发态分子,激发态分子NO2*(或NO*)跃迁回基态时会以光子发射的形式释放能量成为荧光。荧光强度与其浓度成正比,可由光强判定其浓度。该方法属于光学法,可实现较低的检测极限,可达3-17ppb。2.3 原电池库仑滴定法 库仑池中有两个电极,一是活性炭阳极,二是铂网阴极,池内充0.1mol/l磷酸盐缓冲溶液(pH=7)和0.3mol/l碘化钾溶液。当进入库伦池的样气中含有NO2时,则与电解液中的i-反应,将其氧化成I2,而生成的I2又立即在铂网阴极上还原为I-,便产生微小电流。如果电流效率达100%,则在一定条件下,微电流大小与样气中NO2浓度成正比。最低检测出浓度(以NO2计)为0.03mg/m3。2.4 气体敏感元件传感器 利用n型金属氧化物半导体(如ZnO,SnO2等)的电导率对环境变化十分敏感的特性,以SnO2为基体材料,采用厚膜工艺研制成的NOx气敏元件具有良好的物理性,化学性稳定,灵敏度高,最低检出浓度为0.1ppm。2.5 化学发光法 在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2跃迁返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成正比,光电转换器吸收光子产生光电流,光电流强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。为得到NO2的浓度,可把NO2预先转化为NO。其检测极限和灵敏度都可达到1ppb以下。2.6 小结 盐酸萘乙二胺比色法是一种传统的化学检测方法,不能实现连续在线分析,只能采样测量。激光诱导荧光法,响应速度快,灵敏度高,可实现很低的检测极限,但系数过于复杂和精密,造价太高。原电池库仑滴定法响应时间变长,连续运行能力差,不适宜连续在线监测。气体敏感元件传感器具有较好的稳定性,选择性,灵敏度高,成本较低,但随着使用时间的推移,响应时间变长,灵敏度降低,元件属于易消耗品,一般只能使用1-2年,需要经常更换。化学发光法测量精度与灵敏度高,响应时间短,线性范围宽,稳定可靠,是目前主流的氮氧化物测定方法之一,可实现氮氧化物体积浓度的连续在线监测。3 二氧化硫/氮氧化物多组分监测技术 目前光谱吸收法目前国内应用最为广泛的烟气多组分监测技术,其中非分光红外吸收光谱法应用较多,还包括少部分非分光紫外吸收光谱法,又称差分吸收光谱法。这类技术是基于朗伯-比尔(Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。这两种监测技术均可实现对烟气中二氧化硫、氮氧化物多组分的连续在线监测。3.1 非分光红外吸收光谱法 非分光红外吸收光谱法(ndir)是目前国内应用最为广泛的烟气成分在线监测技术。该监测技术是基于被测介质对红外光有选择性吸收而建立的一种分析方法,属于分子吸收光谱分析法。红外光线通过检测气室后,通过测定被气体吸收部分波长后的红外辐射强度来测量被测气体的浓度。该气体分析方法具有如下特点: 1)可测量多组分气体,除单原子的惰性气体和具有对称结构无极性的双原子分子外; 2)测量范围宽,上限可达100%,下限可达几个ppm的浓度,当采取一定措施后,甚至可以进行ppb级的分析; 3)测量精度高,一般都在±2%fs; 4)响应时间快,一般在10s以内; 5)选择性好,特别适合对多组分烟气气体中某一待测组分的测量,而且当烟气中一种或多种组分浓度发生变化时,并不影响对待测组分的测量。3.2 非分光紫外吸收光谱法 非分光紫外吸收光谱法(DOAS)是一种光谱监测技术,其基本原理是利用空气中气体分子的窄带吸收特性来鉴别气体成分,并根据窄带吸收强度来推演气体浓度。DOAS基于朗伯-比尔定律,将气体的吸收截面分为随波长的慢变化部分和快变化部分。通过多项式拟合高通滤波方法去除光谱中的慢变化部分,剩下的则由于分子的窄带吸收造成的光源衰减。由于基于朗伯-比尔定律具有线性性质,烟气中气体的吸收可看做是线性叠加,故可采用最小二乘拟合方法,用气体标准差分吸收截面对测量得到的差分吸收光谱进行拟合,反演出烟气中气体的浓度。 该气体分析方法具有:高灵敏度,可实现多组分实时在线监测;机械、电子部件较简单、无气路、维护简便;开放式光程测量方法,无需采样,高精度非接触测量;适用于活性较大的物质测量等特点,十分适宜烟气中二氧化硫、氮氧化物等多组分气体浓度的连续在线监测。3.3 小结 由于排烟环境及烟气成分复杂,传统非分光红外吸收光谱法对烟气成分的检测结果极易受环境温度、水分含量、hc等因素干扰,从而无法实现对二氧化硫、氮氧化物低浓度的准确测量,因此必须对传统红外吸收光谱法进行技术创新升级,排除温度、水分、HC等因素对其检测结果的影响,才可实现烟气成分的低量程检测。如新款烟气分析仪(低量程在线型)Gasboard-3000plus在传统红外吸收光谱气体分析技术的基础上,将微流红外吸收光谱气体分析技术与隔半气室设计相结合,并采用整体恒温、水分调节、hc干扰减除、自动调零等装置,可实现红外光谱吸收法对超低排放烟气成分的实时在线监测。微流红外技术+隔半气室设计原理图 非分光紫外吸收光谱法灵敏度高、检测下限低、选择性好,较适用于超低排放烟气多组分的实时在线监测,如紫外烟气分析仪(超低量程)Gasboard-3000UV基于国际紫外差分光谱吸收气体分析技术,采用独特的算法,长光程多次回返气体室,检测下限达到1mg/m3,抗干扰能力强,测量精度高,同样可满足超低排放烟气监测市场的需要。烟气分析仪(低量程在线型)gasboard-3000plus4 总结 可用于测量烟气中二氧化硫、氮氧化物的监测技术有很多,但如果是在符合HJ/T76(按超低排放限值计算,二氧化硫和氮氧化物量程应不大于175mg/m3和250mg/m3)标准条件下,对烟气单一组分的浓度进行测定,测量二氧化硫浓度可考虑采用紫外荧光法,测量氮氧化物浓度可考虑使用化学发光法;此外,红外/紫外吸收光谱气体分析技术用于对烟气单一组分的测量也十分适宜。如果是对烟气多组分的浓度进行测定,那么升级版的非分光红外吸收光谱法与非分光紫外吸收光谱法均可作为超低排放烟气在线监测技术的选型参考。(来源:微信公众号@工业过程气体监测技术)
  • 烟气排放连续监测系统技术培训会议在宁顺利召开
    2007年11月6日至11月8日,由华北电力科学研究院主办的烟气排放连续监测系统技术规范和运行维护技术培训会议在南京顺利召开。来自华北电网有限公司及所属火电厂、大唐国际发电股份有限公司及直属与控股火电厂、中国神华能源股份有限责任公司国华电力分公司及所属火电厂和京津唐各电厂的环保与热工专业人员参加了此次会议,赛默飞世尔科技(Thermo Fisher Scientific)环境仪器空气质量部技术人员也受邀参加此次会议。 此次会议以电力行业为主,行业针对性强,为厂家和用户建立了一个非常好的交流平台。会上,赛默飞世尔科技环境仪器空气质量部技术人员就CEMS(污染源烟气连续自动监测系统)和在场同行相互交流意见。与会的各大电厂中有16家正在使用赛默飞世尔科技的CEMS系统。CEMS采用独特的稀释技术,与各种直接采样技术相比有着明显的优势。根据美国1990年清洁空气法案的要求,稀释法为污染源在线监测的首选方法,在美国已安装的2000多套污染源系统中,有1800多套采用稀释法,其中1600多套采用的是Thermo Scientific的系统。在中国,Thermo Scientific不仅提供了第一套稀释系统,而且占有国内稀释法的大部分市场,广泛应用于电厂污染源烟气排放及脱硫系统监测,钢厂动力锅炉烟气排放的监测,纸浆厂动力锅炉及碱石灰的烟气排放监测及脱硝系统烟气监测等。 screen.width-300)this.width=screen.width-300" border=0
  • 船舶污水排放标准征求意见 监测投资需46亿?
    日前,环保部发布了《船舶水污染物排放标准(征求意见稿)》。2003年,原国家环保总局在“关于公布2003年度环境标准编制单位名单的通知”中明确要对《船舶污染物排放标准》(GB3552-83)进行修订。历经十三年,多次征求各部门意见,《船舶水污染物排放标准(征求意见稿)》终于正式发布。  本次标准调整了标准适用范围,由含油污水、生活污水、船舶垃圾的排放控制调整为含油污水、生活污水、含有毒液体物质的污水、船舶垃圾的排放控制,主要的监测物质和监测标准如下:  另一点值得注意的是,增加了标准的实施与监督要求。此标准可以说是“水十条”中控制交通污染很重要的一项配套标准。  “水十条”中提出增强港口码头污染防治能力的要求,位于沿海和内河的港口、码头、装卸站及船舶修造厂,分别于2017年底前和2020年底前达到建设要求。为落实“水十条”,交通运输部于2015年8月31日发布了《船舶与港口污染防治专项行动实施方案(2015~2020年)》,要求沿海和内河港口、码头、装卸站(以下简称港口)、船舶修造厂分别于2017年底前和2020年底前具备船舶含油污水、化学品洗舱水、生活污水和垃圾等接收能力,并做好与城市市政公共处理设施的衔接,全面实现船舶污染物按规定处置,按照新修订的船舶污染物排放相关标准,2020年底前完成现有船舶的改造,经改造仍不能达到要求的,限期予以淘汰。  要完成此目标,标准编制组对经济投入的估算如下:附原文:  环境保护部办公厅函  环办水体函[2016]1853号  关于征求《船舶水污染物排放标准(征求意见稿)》意见的函  各有关单位:  为贯彻落实《环境保护法》《水污染防治法》和《海洋环境保护法》等法律法规,深入实施《水污染防治行动计划》,保护环境,防治污染,促进船舶制造和水上交通运输行业污染治理技术进步,我部决定对《船舶污染物排放标准》(GB3552-83)进行修订。现将交通运输部水运科学研究所等标准编制单位起草的《船舶水污染物排放标准》(征求意见稿)及编制说明(见附件)印送给你们,请研究提出书面意见,并于2016年11月4日前反馈我部。  联系人:环境保护部水环境管理司 韩雪娇  电话:(010)66556339  传真:(010)66556334  地址:北京市西城区西直门内南小街115号  邮编:100035  邮箱:marine@mep.gov.cn  附件:1.征求意见单位名单  2.《船舶水污染物排放标准(征求意见稿)》  3.《船舶水污染物排放标准(征求意见稿)》编制说明  环境保护部办公厅  2016年10月20日
  • 【干货】火电厂超低排放烟气在线监测技术探讨
    p   火电厂实施超低排放改造后,对污染物在线监测的精确性提出了更高要求。本文通过对比几种应用于二氧化硫、氮氧化物和烟尘的典型监测技术,提出了适用于超低排放改造的 a title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S02005-T000-1-1-1.html" strong 烟气 /strong /a 在线监测系统优化配置方案,为火电厂超低排放改造中烟气在线监测系统的选型提供参考。 /p p   1引言 /p p   自《煤电节能减排升级与改造行动计划(2014-2020年)》(发改能源[2014]2093号)发布后,国家出台了一系列文件、措施和鼓励性政策支持火电厂实施超低排放改造,并在东部地区进行了试点。经过试点后,“十三五”期间将在全国范围内实施火电厂超低排放改造,改造后烟气排放限值执行标准为烟尘 10mg/m3、二氧化硫35 mg/m3、氮氧化物50 mg/m3。 /p p   火电厂实施超低排放改造后,烟气污染物浓度大幅降低,烟气水分含量增大,烟气特性发生了较大改变,对污染物在线监测的精确性提出了更高要求。因此,在现阶段总结超低排放试点电厂烟气在线监测系统(CEMS)的运行情况,分析对比各种烟气监测技术的性能特点,对于“十三五”火电厂超低排放改造中CEMS的选型具有积极作用。 /p p   2 火电厂烟气在线监测技术现状 /p p   2.1 非分散红外/紫外吸收法SO2和NOX监测技术 /p p   “十一五”和“十二五”期间,国内在脱硫和脱硝上应用最为广泛的是非分散红外吸收法监测技术,有少部分紫外吸收技术。这类技术是基于朗伯-比尔 (Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。即: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/ba5ac4a7-c3d8-4993-9dac-f4185deda181.jpg" title=" 11.jpg" / /p p   式中:I—光被介质吸收后的辐射强度 /p p   I0—光通过介质前的辐射强度 /p p   K—待分析组分对辐射波段的吸收系数 /p p   C—待分析组分的气体浓度 /p p   L—气室长度(待测气体层的厚度)。 /p p   2.2 紫外荧光法SO2监测技术 /p p   紫外荧光法基于分子发光技术,在一定条件下,SO2气体分子吸收波长为190~230nm紫外线能量成为激发态分子,激发态的SO2分子不稳定,瞬间返回基态,发射出波长为330 nm的特征荧光。在浓度较低时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/f0f3e27d-62a0-4250-ba79-e190032bf99c.jpg" title=" 22.jpg" / /p p   2.3 化学发光法NOX监测技术 /p p   化学发光法是在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/79153f86-4b97-4e01-a90b-e0dcc5971bfa.jpg" title=" 33.jpg" / /p p   2.4 烟尘监测技术 /p p   2.4.1 光透射法烟尘监测技术 /p p   光透射法技术基于朗伯-比尔定律,即光穿过含尘烟气时透过率与烟尘浓度呈指数下降关系。在实际应用中有单光程和双光程两种类型的仪器,光透射法的准确性受颗粒物粒径分布影响较大,且灵敏度不高,一般用于烟尘浓度高(大于300mg/m3)、烟道直径大且烟气湿度低的工况。 /p p   2.4.2 光散射法烟尘监测技术 /p p   光照射在烟尘上时会被烟尘吸收和散射,散射光偏离光入射的路径,散射光强度与烟尘粒径和入射光波长有关,光散射法就是采用测量散射光强度来监测烟尘浓度的。在实际应用中有前向散射、后向散射和边向散射三种类型。该技术灵敏度高,能够测量低至0.1mg/m3的烟尘浓度,最低量程可达到0-5mg/m3,适用于烟尘浓度低、烟道直径小的情况。但该技术同样容易受水汽影响,不适宜烟气湿度高的工况。 /p p   2.4.3电荷法烟尘监测技术 /p p   所有烟尘颗粒均带有电荷,颗粒物接触或摩擦时将产生电荷交换,电荷法就是用电绝缘传感探针测量探头和附近气流或直接与探头碰撞的颗粒物之间的电荷交换来测量烟尘浓度的。该技术除受烟尘粒径变化、组分变化和烟气湿度影响外,还受烟气流速影响,主要用于布袋除尘的泄漏检测和报警等定性测量,少在CEMS中应用 。 /p p   2.4.4 贝塔射线吸收法烟尘监测技术 /p p   & amp #946 射线具有一定穿透力,当它穿过一定厚度的吸收物质时,其强度随吸收物质厚度的增加逐渐减弱,通过测量穿过物质前后的& amp #946 射线强度,即可得出吸收物质的浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/70107fe8-94e7-475f-826f-0bc4e290f1ef.jpg" title=" 44.jpg" / /p p   式中:I—通过吸收物质后的射线强度 /p p   I0—未通过吸收物质的射线强度 /p p   & amp #956 —待测吸收物质对射线的质量吸收系数 /p p   x—待测吸收物质的质量浓度。 /p p   该技术基于抽取式测量方式,不受烟尘粒径分布、折射系数、组分变化、烟气湿度等影响,可用于烟尘浓度低、烟气湿度大的工况。但抽取式测量属于点测量,不适合烟气流速变化大、烟尘浓度分层的场所。 /p p   2.5 烟气预处理技术 /p p   基于非分散红外/紫外吸收法技术的CEMS系统多数采用直抽法取样,为防止系统堵塞和水分对测量的干扰,需要对烟气进行除尘和除水处理。预处理装置的效果直接影响CMES的整体性能,通常以处理后的烟气露点作为重要指标来判定预处理的性能。 /p p   在实际应用中,“过滤+冷凝”的预处理方式较为广泛。其中烟气过滤除尘技术较为成熟,常用的有金属滤芯、陶瓷烧结滤芯和膜式过滤器。在采样探头处初步过滤,样气进分析仪前深度过滤,至少过滤掉0.5-1微克粒径以上的颗粒物。 /p p   烟气冷凝除水技术较为常用的有压缩机冷凝和半导体冷凝,可将烟气露点干燥至5℃。新兴技术中有高分子膜式渗透除水技术,采用高分子聚合亲水材料,具有高选择性除水性能,不改变烟气中SO2和NOX污染物因子成份,可将烟气露点干燥至-5℃以下。 /p p   3 几种烟气在线监测技术的性能比较 /p p   国内火电厂烟气在线监测产品众多,本文结合各种产品的运行情况,参考了拥有该种技术典型品牌产品的说明书,对超低排放较为关注的量程、精度等重要指标参数进行对比。其中最小量程指的是最小物理量程,而非软件迁移的量程。 /p p   3.1 SO2和NOX监测技术的比较 /p p   几种主要SO2测量技术的简单参数对比表见表1。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/0a6a0a06-ef1a-4c64-9c06-8ef7296c45d7.jpg" title=" 55.jpg" / /p p   几种主要NOX测量技术的简单参数对比表见表2。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/9a723c58-4207-4427-9a0b-c88d4ca6bf09.jpg" title=" 66.jpg" / /p p   根据《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测系统技术要求及检测方法》(HJ/T76),按超低排放限值计算,SO2和NOX量程应不大于 175mg/m3和250mg/m3。 从表1和表2可以看出,传统非分散红外吸收法分析仪SO2和NOX的最小量程分别为286mg/m3和308mg/m3,不能满足超低排放污染物在线监测的要求。 /p p   非分散紫外吸收/差分法分析仪的最小量程满足HI/T76标准要求,但CEMS系统的整体性能不但与分析仪本身性能有关,还受烟气预处理系统性能的影响。预处理部分的比较将在后文专题论述。 /p p   从表1和表2还可看出,紫外荧光法和化学发光法测SO2和NOX的最小量程可达到0.1mg/m3,检出下限极低。紫外荧光法和化学发光法是分子发光气体分析技术,属于ppb级的气体分析技术。该种技术以分子发光作为检测手段,具有灵敏度高、选择性好、试样量少、操作简便等优点,已在生物医学、药学以及环境科学等方面广泛应用,也是EPA(美国环境保护署)认证中明确推荐的SO2和NOX浓度监测技术。该技术采用抽取稀释法(常用稀释比为100:1)对烟气进行预处理,避免了烟气水分、烟尘对测量的影响,在超低排放烟气监测上具有较好的适应性。 /p p   3.2 烟尘监测技术的比较 /p p   几种主要烟尘测量技术的简单对比表见表3。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/f0168a55-67d8-413e-84b8-0eb3052375e4.jpg" title=" 77.jpg" / /p p   在火电厂超低排放改造中,烟尘浓度一般要达到10mg/m3以下。尤其以湿式除尘改造为主要技术路线的烟气中水分含量较大,给烟尘的准确监测带来挑战。在实际应用中一般是将烟气等速抽取,经升温加热使水分雾化不出现液滴,再通过光散射等低浓度测量方法进行测量 另一种是将烟气等速抽取,将加热干燥的空气与其按一定比例混合稀释,从而降低烟气中的水分含量,再通过光散射等低浓度测量方法进行测量,结合混合气体的稀释比计算出烟尘浓度。这种方式采用低浓度测量原理,优化了烟气采样和预处理,有效解决目前超低排放改造中高湿低浓度烟尘在线监测的问题,在湿式除尘后已有广泛应用。 /p p   3.3 烟气预处理技术的比较 /p p   火电厂实施超低放改造后,烟气污染物浓度大幅降低,在线监测的适应性取决于系统的检出下限,而CEMS 的检出下限受分析仪本体和烟气预处理装置两部分制约。在实际应用的烟气预处理中,直接抽取+冷干法占70%,均采用冷凝除水技术。该技术在冷凝过程中,冷凝水会吸收携带部分SO2和NOX,以致在超低浓度工况下的监测数据严重失真甚至无检测数据,不能满足HJ/T76标准的技术要求。表4为不同水分含量下不同预处理方式对SO2测量影响的实验对比表。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/2a5c2e14-a1a8-4109-8997-00c3fa7c0203.jpg" title=" 88.jpg" / /p p   注:标气SO2浓度500ppm,样气温度120℃,测量数值单位ppm。 /p p   从表4可看出,水分含量越高对测量结果影响越大,其中渗透膜除水技术对SO2测量的影响远小于其它除水技术,其除水效果优于其他技术。也可由此而知,在直抽法采用紫外吸收/差分法分析仪时,应同时选用除水效果更好的烟气预处理技术,否则监测数据可能严重失真甚至检测不出数据。 /p p   在稀释法取样中,预处理侧重于对稀释气体的处理,通常配备专门的压缩空气净化装置或者发生装置,经精密过滤和干燥,可将露点降至-40℃,不需要加热采样管线。在CEMS中,稀释抽取法通常与紫外荧光和化学发光技术配套使用。 /p p   4 结论与建议 /p p   (1)超低排放改造实施后,进出口烟气特性差异较大,烟气监测对CEMS的系统配置提出了更高、更具体的要求,建议在可研或技术规范书里明确各测点不同污染物对烟气取样方式、预处理、分析仪的测量原理、量程、检出下限等主要参数和选型的具体要求。 /p p   (2)在超低排放改造中,脱硫脱硝入口CEMS仍可采用常规的预处理装置和非分散红外技术测量SO2和NOX浓度,除尘器前可采用光透射法测量烟尘浓度。 /p p   (3)在脱硫脱硝出口特别是湿式除尘后,SO2和NOX的测量优先采用紫外荧光法和化学发光法技术 若采用直抽法非分散紫外吸收/差分法分析仪时,应同时配备除水性能更优越的膜渗透烟气预处理技术。 /p p   (4)在脱硫出口特别是湿式除尘后,优先采用抽取高温光散射法测量烟尘浓度。 /p
  • 监测碳排放--中国碳卫星获取首个全球碳通量数据集
    8月15日,记者从中国科学院大气物理研究所获悉,基于我国第一颗全球二氧化碳监测科学实验卫星中国碳卫星的大气二氧化碳含量观测数据,来自该所等单位的研究人员利用先进的碳通量计算系统,获取了中国碳卫星首个全球碳通量数据集。这是一个里程碑式的结果,标志着我国具备了全球碳收支的空间定量监测能力,是国际上继日本、美国之后的第三个具备该技术的国家。相关研究成果在线发表于《大气科学进展》杂志。 二氧化碳是地球大气的重要组成部分,因其会产生较强的温室效应,被认为是造成气候变化的关键原因。为减缓二氧化碳过度排放造成的气候变化,1992年以来,《联合国气候变化框架公约》逐步对各国碳排放状态加强约束。《巴黎协定》提出,2023年起,每五年进行一次全球盘点的计划,以评估各国的实际行动在减缓气候变化中的贡献。  “随着大气探测和模型模拟技术的飞速发展,通过大气二氧化碳浓度观测溯源碳排放的方法,被认为是评估温室气体减排成果的有效方法。”中科院大气所副研究员杨东旭说。  大气二氧化碳浓度测量法依赖于观测和模拟。在观测方面,卫星遥感由于特殊的观测地点和方式,可以在二氧化碳全球观测中发挥较大作用,特别是在全球覆盖高分辨率的观测上,能够做到看得广、看得清;而模拟则主要是通过大气输送模型,利用高性能计算机,模拟出大气二氧化碳传输过程和每一个时刻、每一个地方大气二氧化碳的含量。  为了观测大气中的二氧化碳浓度,日本于2009年成功发射了国际上第一颗温室气体专用探测卫星GOSAT,美国OCO-2紧随其后,于2014年发射升空。2016年12月22日,中国碳卫星在酒泉卫星发射基地成功发射升空并在轨运行,成为国际第三颗温室气体卫星,其目标是实现对全球大气二氧化碳浓度的高精度监测,为碳排放科学研究提供卫星资料。  “有了自己的碳卫星以后,对于某一个时刻、某一个地方的二氧化碳含量,我们会得到一个观测值和一个模拟值。这两个数据必然会存在差异。为了减小误差,我们会使用‘数据同化’法,得到最接近真实的数值。”杨东旭说。  这项研究中,研究人员将碳同化系统与全球化学输送模式相结合,成功同化卫星观测数值与模拟数值,得到了最接近真实情况的数值。研究结果表明,与先验通量相比,不确定度减少了30%—50%。  更重要的是,利用中国碳卫星观测资料,科研人员估算了2017年5月至2018年4月共12个月的全球陆地碳净通量。估算结果与利用日本GOSAT卫星和美国OCO-2卫星资料的估算结果大体一致。这表明我国首颗碳卫星具有了全球碳通量监测的能力。  对此,杨东旭表示,中国碳卫星是我国第一代温室气体监测专用卫星,实现了空间温室气体高精度监测的从无到有,迈开了重要且艰难的第一步。未来,我国将以碳卫星的研究成果为基础,研发新一代的温室气体监测卫星,服务于全球和我国双碳目标的实现。
  • 燃煤电厂烟气排放连续监测系统家底大揭秘
    p   今天,我们将和您一起回顾一个话题——中国燃煤电厂的烟气排放连续监测系统的运营情况。 /p p   自1986年广东沙角B发电厂引进第一套烟气排放连续监测系统(以下简称“CEMS”)开始, a style=" COLOR: #0070c0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/zc/310.html" target=" _self" span style=" COLOR: #0070c0" strong CEMS /strong /span /a 在我国电厂的安装和应用逐渐普及起来,目前全国燃煤电厂基本全部装设了该系统。通过CEMS监测到的数据实时传送到省、市环保监管机构及电力调度部门,已经成为政府、企业掌握污染排放情况的“眼睛”。 /p p   但是受一些因素影响,不同地区环保机构对监测数据的认可、使用程度不同,并没有充分发挥好CEMS的应有作用。而污染物排放数据真实可靠不仅决定一个企业是否依法达标排放,对国家有关部门掌握污染排放情况,科学制定法规、政策、标准具有重要意义。 /p p   为了摸清CEMS从采购安装、调试验收、运营维护、到联网数据使用和误差测量等方面的情况,2014年,《中国电力减排研究2014》对全国386家燃煤电厂开展了CEMS摸底调查,涉及1038台燃煤机组。 /p p   一、调查结果 /p p   1、安装条件 /p p   在调查的386家电厂中,满足或基本满足CEMS安装条件的电厂有339家,占比达到87.8% 不满足安装条件的电厂有47家,占比为12.2%。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115000054.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/ba1c8d13-ec4f-4dda-a974-3a9d0e8662ba.jpg" / & nbsp /p p   2、验收情况 /p p   在调查的386家电厂中,有332家电厂已完成CEMS验收,占比为86.0%,其余电厂尚未完成验收(包括正在申请或准备验收的电厂)。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115001280.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/2db0fd27-f88d-4912-8549-87ccf3b79e48.jpg" / & nbsp /p p   3、环保检查情况 /p p   在调查的386家电厂中,环保监管机构近2年环保检查情况如下:颗粒物CEMS不合格的电厂有31家,占比为8.03% 二氧化硫CEMS不合格的电厂有22家,占比为5.7% 氮氧化物CEMS不合格的电厂有27家电厂,占比为6.99% 流量CEMS不合格的电厂有32家,占比为8.29%。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115002671.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/596f2fe4-f0a7-4042-93b8-2cd841b4ef7d.jpg" / & nbsp /p p   4、日常维护、保养情况 /p p   每周至少维护、保养一次的电厂有245家,占比达到63.5%。说明燃烧电厂对CEMS日常巡检、维护和保养比较重视。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115005543.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/4dc072a3-39af-4b9d-9dd8-95f8dc82ff21.jpg" / /p p   5、运维方式 /p p   在调查386家电厂中,委托第三方运维是目前电厂CEMS设备采取的主要方式,所占比约为71.3%,这种运维方式更加专业 其次为电厂自运维,占比为22.5%,主要由电厂热控(工)、仪表、检修等部门承担。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115010816.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/34cbf2aa-b8fe-489c-a525-07c3f482ccbd.jpg" / & nbsp /p p   6、设备运维过程中存在的问题 /p p   调查发现电厂CEMS运维过程中存在一些问题,主要问题包括仪器故障、运维人员不足、相关管理制度不完善、第三方运维相应满、维护费用高等。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115013287.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/a72f0194-043b-4290-95da-55104ecc925b.jpg" / & nbsp /p p   7、数据联网情况 /p p   调查的386家燃煤电厂CEMS数据通过宽带、光纤或无线等方式上传到省、市级环保主管部门、省电力调度中心、集团公司等,仅4家电厂未上传或正在办理中,占比约1.0%。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115015299.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/ae91f4df-c1f3-460d-a546-fe05149c831b.jpg" / & nbsp /p p   8、数据有效性 /p p   根据《固定污染源烟气排放连续监测技术规范》中对“CEMS有效数据捕集率每季度应达到75%”的规定,调查电厂中有386家电厂符合要求,占比约99.2%。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115020175.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/41d4c9d7-466a-4312-833a-e30e6dd759f7.jpg" / & nbsp /p p   9、数据效力 /p p   调查的386家燃煤电厂的CEMS数据作为其排污收费的依据,占比约89.6% 其余40家电厂的CEMS数据不作为排污收费的依据,占比约10.4%。相关统计见表6.20。 /p p style=" TEXT-ALIGN: center" img title=" 2015102115021469.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/6db6504b-08d7-4fe9-a64b-1c0846f4dc62.jpg" / & nbsp /p p   二、中美两国CEMS使用对比 /p p style=" TEXT-ALIGN: center" & nbsp img title=" 2015102115023683.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/2a3bc069-b2f7-46d6-b6f4-00b1f92a982f.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 2015102115024268.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/e2cf546a-6b74-48e9-a71c-a3ff18f81c0e.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 2015102115030147.jpg" src=" http://img1.17img.cn/17img/images/201510/noimg/32c91cdc-53ae-4bd5-8dd6-ce5c2538037e.jpg" / & nbsp /p p   1法规政策层面,美国联邦和地方层面政策法规分工明确,相互支撑。中国CEMS相关法规政策过多,但缺少系统性,法规政策标准间存在重复、交叉、缺失和不一致方面。 /p p   2在运维方面,美国CEMS运行和维护多由电厂自行管理 中国CEMS运维以委托给第三方为主,虽然更加专业,但存在响应不及时的问题。 /p p   3数据使用方面,美国CEMS数据得到了全面的使用。中国电厂CEMS数据只作为排污费的依据。 /p p   4美国包含了对二氧化碳的监测,且监测数据用于对二氧化碳总量监督的依据。中国尚未要求采用CEMS数据进行发电企业的二氧化碳排放监测。 /p p   5中美CEMS测量技术水平相当。 /p p   三、结论 /p p   1中国对火电厂安装CEMS有严格要求,燃煤电厂基本全部安装了CEMS。 /p p   2绝大多数燃煤电厂CEMS安装符合技术规范要求。 /p p   3燃煤电厂基本能够按规定运行维护CEMS,但问题依然存在。 /p p   4燃煤电厂CEMS基本与监管部门联网并有效传输,但作为法定数据使用还有较大差距。 /p p   5现有燃煤电厂CEMS测量技术的误差限,特别是对低浓度颗粒物测量误差限,难以支撑“特别排放限值”及“超低排放”下的烟尘排放监测及监督。 /p p   四、建议 /p p   1加强CEMS监管,发挥CEMS作用。 /p p   2充分发挥火电企业的主体作用。 /p p   3加强行业自律,研究解决行业共性问题。 /p p   4规范CEMS市场,建立公平有序的市场环境。 /p
  • 挪威教授利用机器人监测土壤气体排放
    田野机器人和配上基于平面的遥感传感器可以通过观测地球和大气层来监测影响气候变化的气体。  深入土壤的监测  这款拥有三个大轮子,不会陷入泥土里的Field Flux机器人可以将用放置在它的大臂上的采样器,监测土壤中少量的一氧化二氮(N2O)含量,完成监测环境污染的工作。  尽管人们更熟悉二氧化碳在气候变化中的影响,但其实N2O使全球变暖的潜力比二氧化碳高300倍。换句话说,一分子N2O的破坏能力与300分子的CO2相当。  来自挪威大学生命科学院的微生物生态学家Lars Bakken教授说:“对N2O排放的量化有一个巨大困难在于,其数值会因为时间和地点的不同而产生巨大变化。”目前,Bakken教授正在与挪威一家名叫Adigo的公司合作,为NORA项目尝试找到一个监测土壤中N2O排放量的方法,并降低其排放。  教授表示:“这也是我们为什么要做田野机器人的原因。如果你想要在一片试验田中量化N?O的排放量,你必须在一块地上反复不断地测量。”(图为Field Flux机器人样机,图片来源:NORA)  使用田野机器人可以大大提升工作效率,一个本来需要27个小时手工检测的土地只需要1小时就能完成测试。这种方法在控制 N2O 方面非常重要,因为它使得农民可以在必要时进行翻土工作。在土壤没有较好地暴露在空气中时(比如下大雨或者土壤非常紧实时),一些土壤中的微生物(多数是细菌)就会使用氮氧化物而不是氧化物来进行呼吸,从而产生 N2O。但是还有少量细菌可以进行 N2O 的呼吸作用来吸收掉,因为它们有一种特殊的酶——N2O还原酶。NORA 项目的研究员们发现,这种酶会因土壤的酸性过大或土壤中铜离子的不足而消失。  挪威大学生命学院的另一位教授,同时也是 Marie Sk?odowska -Curie Actions项目的合作者 Asa Frostegard 说道:“我们探究了这些微生物的生物活动,研究它们产生 N2O 的生化过程。结果表明,不同微生物之间的作用方式有着很大差别。”(图片来源:ADIGO)  这些研究结果或许可以帮助农民通过改变土壤酸性或土壤铜离子的含量来减少 N2O 污染。这就意味着,我们可以在耕作中使用富含铁镁的岩石或矿物质来中和土壤酸性,而不是使用传统的会导致 N2O 污染的撒石灰方法。
  • 燃煤锅炉整治有望开启烟气排放连续监测市场
    全面整治燃煤小锅炉是大气污染防治行动计划的主要内容之一。业界预计,未来五年该市场需求将达400亿元。   分析认为,工业锅炉整治将造就数个CEMS(烟气排放连续监测系统)市场,雪迪龙等有望受益。   全国工商联环境服务业商会秘书长骆建华表示,锅炉脱硫、燃煤改燃气、关停是整治燃煤小锅炉的主要路径。   据悉,此前市场普遍认为燃煤锅炉整治的市场将面临资金以及行政力量不足的局面。证券分析师认为,随着相关政策的次第出台,市场对于锅炉整治的偏见将被逐步纠正。同时,工业锅炉整治将带来CEMS市场的成倍增长。   &ldquo 目前,锅炉脱硫存在的主要问题是设施运行率低&rdquo ,骆建华称,脱硫设施的安装率已经达到较高的水平,但运行率低是导致燃煤锅炉排放污染物多的主要原因。   据统计,目前国内的工业锅炉基数约为62万台左右,其中安装脱硫设施的数量较为可观。据上述分析师测算,假设5-10%的锅炉进行脱硫,将至少带来5万台CEMS的新增需求,过去10年销售的CEMS仅1.2万台,5万台相当于再造数个CEMS市场。   雪迪龙作为烟气监测仪器市场的龙头,将从中受益。该公司在火电、钢铁、水泥等行业监测仪器的市场占有率大约为35%。该分析师认为,公司原市场将随着脱硝高峰期的结束而萎缩。而燃煤锅炉整治将带来数倍于火电行业的新增监测仪器需求。   另外,聚光科技、先河环保也是烟气连续排放监测仪器的生产商。   与此同时,骆建华还指出,燃煤锅炉改造的另一大重点在于开展&ldquo 煤改气&rdquo 工作,需要大力勘探和开发、以及增加天然气进口数量。   继6月14日,国务院发布大气污染防治十条措施以来,环保部部长周生贤此前透露,《大气污染防治行动计划》(下称《计划》)全文将于近期发布。该计划涵盖10条35项具体措施,将投资1.7万亿元用于大气治理工作,将重点严控高耗能、高污染行业新增产能,严格治理机动车污染、提升燃油品质,提高清洁能源比重。   而作为《计划》的纲领性文件,大气污染防治十条措施在第一条就提出要整治燃煤小锅炉。根据中信证券发布的研报显示,预计2013-2017年,燃煤工业锅炉治理需求有望达400亿元。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制