当前位置: 仪器信息网 > 行业主题 > >

浓度限值

仪器信息网浓度限值专题为您整合浓度限值相关的最新文章,在浓度限值专题,您不仅可以免费浏览浓度限值的资讯, 同时您还可以浏览浓度限值的相关资料、解决方案,参与社区浓度限值话题讨论。

浓度限值相关的资讯

  • 环保部通过空气质量新标准 增设PM2.5浓度限值
    周生贤主持召开环境保护部常务会议   12月30日,环境保护部部长周生贤主持召开环境保护部常务会议,审议并原则通过《环境空气质量标准》、《环境空气质量指数(AQI)技术规定》和“十二五”国家环境空气监测网建设方案,听取《全国土壤环境保护规划(2011—2015年)》编制情况汇报。   会议认为,现行的《环境空气质量标准》,在加强空气污染防治、保护公众健康方面发挥了积极作用。但随着我国经济高速发展,环境空气污染特征已由煤烟型向复合型转变,区域性大气细颗粒物和臭氧污染不断加重,一些城市经常出现长时间灰霾天气,空气污染对公众健康产生了严重威胁,同时,发布的评价结果与人民群众主观感受存在差异。为适应我国经济发展水平和人民群众对空气质量要求,落实以人为本,切实保障人民群众健康的要求,有必要在总结实践经验的基础上,对《环境空气质量标准》进行修订,进一步完善环境监测标准,增加大气污染物监测指标,改进环境质量评估办法。   会议指出,环境保护部高度重视《标准》的修订工作。2008年正式启动修订工作后,编制组深入研究了世界10多个国家、地区、组织的环境空气质量基准和标准,全面分析了我国经济社会发展阶段要求和空气质量特征和管理需求,在此基础上形成了标准初稿。2009年9月,环境保护部通过部网站公开征集社会各界意见,编制组认真研究吸纳了多方面意见,并对初稿进行了修改,完善了标准的有关内容。2011年8月,环境保护部常务会议听取了《环境空气质量标准》修订情况的汇报,审议了修订思路。编制部门根据会议决定,组织30多名大气环境科学领域院士、知名专家对草案进行了反复研讨,使标准草案的内容进一步完善。2010年11月和2011年11月分别两次向全社会公开征求意见。2011年12月,环境保护部党组召开会议,专门听取了标准草案修订情况汇报,原则通过了标准草案,要求编制部门根据会议讨论的意见进一步修改后提交部常务会审议。   会议经过认真讨论,原则同意修订后的《环境空气质量标准》。与现行标准相比较,新修订后的标准草案作了如下调整:   一是调整了环境空气功能区分类方案,将三类区(特定工业区)并入二类区(城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区)   二是调整了污染物项目及限值,增设了PM2.5平均浓度限值和臭氧8小时平均浓度限值,收紧了PM10、二氧化氮、铅和苯并[a]芘等污染物的浓度限值   三是收严了监测数据统计的有效性规定,将有效数据要求由50%-75%提高至75%—90%   四是更新了二氧化硫、二氧化氮、臭氧、颗粒物等的分析方法标准,增加自动监测分析方法   五是明确了标准实施时间。规定新标准发布后分期分批予以实施。会议决定,请编制部门根据会议讨论意见进一步修改完善、并抓紧履行相关的法律程序后,尽快发布。   会议原则通过了修订的《环境空气质量指数(AQI)技术规定》和“十二五”国家环境空气监测网建设方案。修订后的环境空气质量指数技术规定与现行规定相比,调整了指数的名称和分级分类表述方式,强调了AQI服务于公众健康指引的作用,增加了参与评价的污染物项目,完善了监测数据和空气质量指数发布方式。会议决定,《环境空气质量指数(AQI)技术规定》经进一步修改后发布实施。   会议听取了《全国土壤环境保护规划(2011—2015年)》编制情况汇报,明确了“十二五”时期土壤环境保护的指导思想、原则和目标,提出了土壤环境保护的主要任务、重点工程和保障措施。会议决定,请编制部门根据会议讨论的意见进一步修改后,按程序报批发布实施。   会议还研究了其他事项。   环境保护部副部长潘岳、张力军、吴晓青、周建、李干杰,纪检组长傅雯娟,党组成员胡保林、何捷,总工程师万本太,核安全总工程师徐庆华出席了会议。   机关有关司局主要负责同志列席了会议。
  • Fab区限制性酶切-nSMOL技术助力抗体药物血药浓度监测
    导读抗体药物在临床上主要用于癌症、自身免疫、代谢和传染病等疾病的治疗。与小分子药物相比,抗体药物在体内的吸收、分布、代谢及排泄具有独特的药代动力学特征。2020版《抗肿瘤生物类似药治疗药物监测药学专家共识》中多数专家强烈推荐对其进行监测,以实施个体化治疗策略。纳米表面分子导向限制性酶解- nSMOL(nano-Surface and Molecular Orientation Limited Proteolysis)技术是岛津开发的革新性技术,可以选择性酶解Fab 区域特征肽段,克服了全酶解技术及ELISA法诸多缺点,具有更好的选择性和重现性,是复杂基质中抗体药物定量的新利器。突破传统方案,nSMOL技术 – 抗体药物定量新视野以往对抗体药物的检测主要是采用ELISA试剂盒完成,但ELISA方法存在开发时间长、准确性一般、假阳性率高、线性范围窄等问题。而LC-MS/MS方法可以很好地弥补ELISA法的不足,但是如果前处理方法不够成熟,面对复杂的基质组分,常导致选择性和重现性不佳、检测耗时或灵敏度不理想的情况。01 技术原理nSMOL技术同时弥补了ELISA法及传统全酶解LC-MS/MS法的不足,技术原理如图1所示,其利用胰酶纳米颗粒与固化树脂之间孔径的差异,限制胰蛋白酶与抗体药物的接触区域,可以选择性酶解Fab 区域特征肽段。图1. nSMOL技术选择性酶解原理摘自Iwamoto N. et. al.Analyst, 2014, 139, 576-58002 技术优势nSMOL技术能确保获得靶标蛋白特异性肽段,降低样品的复杂程度,克服了传统溶液全酶解技术中存在的酶解产物复杂、酶解效率低、酶解重现性差,内源性干扰严重等问题,从而表现出良好的选择性和重现性。与ELISA法相比(见表1),其开发周期更短,定量特性更适合高灵敏、高特异性、多种抗体药物的高通量测定。03 应用广阔nSMOL技术开启了抗体药物定量分析的新视野,经过岛津与客户的不断研究探索,该技术已在不同治疗用途抗体药物的研发、质控、临床治疗药物监测中得到成熟应用。图2展示了国内外相关应用成果。截至目前,全球已上市100余种抗体类药物,nSMOL技术应用前景十分广阔。图2. 国内外相关应用创新临床应用,nSMOL技术实现多种炎症治疗性抗体药物同时监测临床上多种抗体药物均可用于炎症性免疫疾病的治疗,因此同时定量监测人血液中多种抗体药物浓度的分析方法,具有迫切的临床需求。01 nSMOL临床应用nSMOL技术发明人 - 岛津生命科学研究中心Takashi Shimada博士及其科研团队,2019年在《Journal of Immunological Methods》期刊上发表文章,使用nSMOL技术开发了9种抗体和Fc-融合蛋白(英夫利昔单抗、阿达木单抗、尤特克单抗、戈利木单抗、依库珠单抗、依那西普和阿巴西普、托珠单抗和美泊利单抗)的LC-MS生物分析方法,通过临床试验进一步论证了该技术在多种抗体药物浓度同时监测应用中的巨大价值。该文章中样品的处理方式采用了改进的nSMOL反应条件, 如图3所示。图3. 9种抗体和Fc-融合蛋白的nSMOL样本处理流程首先样品在缓冲液中与结合有Protein A的树脂混合,样品中的抗体被亲和富集。第二步,富集后的树脂与含固定化胰酶纳米颗粒混合,其表面固化的胰蛋白酶可以与树脂所富集抗体的Fab区域进行充分接触,特别是Fab区域中的CDR相关特征肽段被选择性酶解下来,洗脱后进行LC-MS/MS定量。为提高低敏抗体托珠单抗和美泊利反应效率,采用了250 mM TCEP-HCl水溶液的酸化还原加速条件进行处理,得到了良好的结果。9种抗体和Fc-融合蛋白通过特征肽段的LC-MS/MS检测,获得了其典型MRM色谱图(图4a,图4b),9种药物具有良好的灵敏度、色谱保留及峰形。图4. 9种抗体和Fc-融合蛋白药物典型MRM色谱图根据日本厚生劳动省药品和食品安全局评估和许可司发布的《药物开发中生物分析方法验证指南》进行了详细验证。验证结果显示该方案的定量灵敏度、线性范围、重复性、准确性等指标均满足该类抗体治疗药物监测需求。02 临床研究2017年11月至2019年1月,京都大学医院招募了45名患有类风湿关节炎(RA)或炎症性肠病(IBD)的日本患者参加这项研究。作者使用临床患者样本对比分析了9种药物同时监测与单个监测方法所得结果的相关性。部分结果见图5。图5. 两种方法定量结果相关性分析线性回归拟合Pearson相关分析表明,两种监测方法所得结果之间具有良好的相关性,且对照组各数据在95%置信区间内具有较高的重现性和较低的变异。作者经过严苛的方法学验证及临床实验,证明了基于nSMOL技术的LC-MS/MS法可以同时定量人血清中多种抗体及Fc-融合蛋白药物,并应用于治疗药物监测,助力患者个体化精准用药。结语nSMOL技术结合岛津三重四极杆质谱仪能够较好地解决单克隆抗体药物在定量分析中的难题,是抗体药物血药浓度监测不可或缺的高效工具。该方案为治疗性抗体药物的治疗药物监测(TDM)提供了更加简便高效、准确稳定的检测方法,期待其临床应用能够助力个体化治疗策略的探索与实践。撰稿人:任彪文中推荐技术方法方案仅用于医学专业人士技术交流,不作为临床诊断依据。如需深入了解更多细节,欢迎联系津博士sshqll@shimadzu.com.cn
  • 如何在高浓度CO2环境下准确测量CO浓度
    磨煤机是火力发电厂燃煤机组制粉系统的主要辅助设备,是将原煤磨碎至满足锅炉悬浮燃烧细度的动力机械。磨煤机在运行过程中,煤与空气接触被氧化形成CO气体和碳,同时摩擦产生的热量将首先引起煤粉的不完全燃烧,从而产生大量的CO气体。CO气体浓度在磨煤机内部有限空间的增加,降低了磨煤机内可燃混合物的着火点,增加了磨煤机着火或爆炸的危险性。通过在线检测CO气体的浓度,可以检测到煤粉着火(阴燃、冒烟)发生前的征兆。在磨煤机内部CO气体的分布是均匀的,而温度的分布是不均匀的,CO气体的浓度变化比温度更能真实、全面反应磨煤机内部的燃烧情况。事实上CO气体浓度的增加往往发生在可视烟火前的1.5h左右,即局部温度开始发生明显变化之前,磨煤机的CO气体检测是防止磨煤机着火或爆炸的有效手段。《DLT5203-2005火力发电厂煤和制粉系统防爆设计技术规程》要求:在燃烧爆炸感度和挥发分较高的烟煤和褐煤,采用中速磨或双进双出磨煤机直吹式制粉系统时,宜设置磨煤机CO监测系统。CO气体检测的主要方法有:红外线吸收法、电化学法、电气法(热导式和半导式)、色谱法,目前CO气体浓度在线检测通常使用红外线吸收法、电化学法。不难看出红外线吸收法无论在检测技术还是维护成本上较电化学法均有优势。除此之外,基于红外线吸收法的红外气体分析技术具有测量范围宽、灵敏度高、测量精度高、反应快、选择性好等优势,但在红外线法测量过程中也存在一些问题:水汽、CO2对CO气体的干扰。红外线吸收法与电化学法对比CO的红外吸收波长在4.6μm附近,CO2在4.3μm附近,水汽在1~9μm波长范围内,几乎有连续的吸收带。CO2和水汽与CO的特征吸收波长范围有重叠部分,且CO2和水汽的浓度远大于CO的浓度,这对CO的测量有着明显的干扰。因此需在测定前用制冷或干燥剂对样气进行脱水预处理,或在气体分析单元对水气进行特殊消除处理;同时通过设置滤波单元选择红外线波长,用窄带光学滤光片或气体滤波气室将红外辐射限制在CO吸收的窄带光范围内,以减少烟气中其他成分对测量值的影响,才可准确的测量出烟气中CO的浓度,保证磨煤机工业现场的安全。由四方仪器最新研制的烟气分析仪(低量程在线型)Gasboard-3000Plus,除配备了专门的样气预处理装置对样气进行消除水分的预处理;整个气体分析单元均配备了恒温装置,防止低温环境下气态水在气体分析单元内发生冷凝,影响测量结果外。传感器内还配备水分的补偿调节装置:在微流红外传感器上采用机械结构设计,改变前后膨胀气室的空间比例,增加传感器对被测气体的响应灵敏度;通过调节叶片及线性修正,对水汽干扰信号进行调整,使含有非冷凝水的气体与N2的信号一致,这样传感器前后膨胀气室受水汽的影响就相互抵消,保证了对CO浓度测量结果的准确性。 对于高浓度CO2的影响,Gasboard-3000Plus气体分析单元采用了特殊的CO2干扰减除装置,配置了专门吸收CO2波长的滤波气室,能够消除CO2对CO特征吸收波长的影响。同时还采用了滤波效果极佳的窄带光学滤光片,仅使具有CO特性吸收波长的红外辐射通过,可有效阻拦CO2红外辐射的影响,保证了对CO浓度测量结果的准确性。 带CO2滤波气室的CO微流传感器磨煤机内部CO气体的分布是均匀的,而温度的分布是不均匀的,对同一报警等级而言CO气体的报警时间要比温度的报警时间提前1个小时。因此,在磨煤机出口设置烟气分析仪(低量程在线型)Gasboard-3000Plus,对CO浓度进行准确的检测,通过合理的使用、科学的维护,当CO气体浓度达到限制可及时报警,提醒运行人员注意采取相应的措施,防止磨煤机着火或爆炸,保证发电机组安全运行。
  • 揭密清洁验证中的最大残留限值(MCL)计算
    药品生产中清洗过程的主要目的之一,是去除产品或洗涤剂残留,以防止潜在污染转移到生产的下一产品中。确保不会出现这种情况的一个必要程序,是建立经科学证明的合格标准限值。本文专为使用TOC建立合格标准进行逐步讲解。合格标准的Sievers® 推导合格标准的Sievers推导是一个多步计算,并将碳和API贡献系数应用到最终的合格标准结果上。每一步骤的说明如下:1每日容许摄入量每日容许摄入量(ADI)被认为是安全水平,通常与毒性水平一起用于合格标准计算,以减少各批次之间的残留风险。根据生产的产品,通过应用安全系数,从未观察到作用剂量NOEL(Non-observed Effect Level)值计算至ADI 值。2后续产品中的最大残留限值(MCL, MaximumCarryover Limit)可计算MCL以显示后续产品B中产品A浓度的绝对量。此计算中的大多数系数可在法规档案、产品标签和公司规定的验证文件(如主计划、协议、认证或步骤)中非常容易找到。以下修正的公式(原来由Foreman和Mullen开发)给出允许的最大残留浓度。其中:MCL = 最大残留限值(mg)ADI = 每日允许摄入量(mg)B batch = 后续产品B的批量(mg)B max dose = 产品B的最大剂量(mg)3单位表面积的绝对限值计算MCL之后,下一步是确定共用生产设备的表面积上可能污染含量的残留限值。其中:MCL = 最大残留限值(mg)SSA = 用于生产产品A和B的设备的共用表面积(cm2)有时无法确定MCL计算中的某些系数。例如,在开发阶段,确定产品A和B的剂量规定可能太早。因此建议使用体积计算以确定正常运行时设备的处理容量。其中:MCL = 最大残留限值(mg)ADI = 每日允许摄入量(mg)矩形设备的容积=长 x 宽 x 深(cm3)圆柱形设备的容积=圆形面积 x 深(cm3)圆锥形设备(如V型混合器)的容积=圆形面积 x深/3(cm3)SSA = 用于生产产品A和B的设备的共用表面积(cm2)务必认识到此系数的推导,是假设所有产品残留体积均匀分布在设备的共用表面积。推导的下一步提供一种解决方案,通过验证的TOC分析方法确定所分析的擦拭或漂洗样品中的限值。4每个样品分析响应的绝对限值当为通过直接(擦拭)和间接(漂洗)样品的分析响应计算清洁验证样品中的绝对限值时,有两种选择。其中:SSA的限值 = 根据设备的共用表面积计算的MAC限值(mg/cm2)SA = 如果使用棉签,所擦拭的面积(cm2)V = 用于脱附棉签的体积,(从棉签顶部提取化合物)或漂洗的样品体积(mL)5API和碳贡献回收系数(专用于TOC分析)API和碳贡献回收系数可使用化合物的分子量进行计算。碳百分比(%C)从化合物的经验公式推导。其中:产品API% = 产品中API的浓度mg C = 分子式中的碳的量乘以12MW = 化合物的分子量每个样品的限值 = 样品中的浓度(mg/L,ppm)考虑到TOC是专用于测定溶液中碳浓度的分析方法,此步骤对于确定使用TOC清洁验证的合格标准至关重要。使用TOC合格标准进行产品分组在评测多个产品以及被认为是“最恶劣组份”的潜在化合物的合格标准之后,产品分组表和TOC一起使用,以确定适当的合适水平。在合格标准计算时,更改产品、批次、API和碳贡献,很容易实现。在计算出以不同的顺序分批的各产品组的结果后,应通过科学判断选择合格标准。表1显示在批次产品B之后的产品D,导致最恶劣的情况。因此,提倡基于最恶劣的情况,选择的合格限值。进一步说明科学地说,MCL定义为在最后批次产品“B”中产品“A”的总浓度。这只是假定产品“A”的所有残留将在产品“B”的指定批次均匀混合。最重要的是,产品知识、工艺、清洗剂、清洗过程和分析方法,为建立最好地显示清洗过程能力的标准,提供有力的支持,并确保后续的产品不会受到污染。使用包含碳百分比系数的Sievers推导,使得MCL公式可用于计算可量化的TOC限值;没有碳百分比系数时,MCL得到的是可量化的化合物浓度,而不是TOC浓度。参考资料:◆ ◆ ◆联系我们,了解更多!
  • 报告称北京PM2.5中砷浓度高于国标近3倍
    今天(4月23日),北京大学公共卫生学院与环保组织绿色和平共同发布了《北京PM2.5中重金属浓度检测研究》,该项研究通过对北京市大气及个体样本进行重金属浓度检测和分析发现,北京PM2.5中可致癌重金属砷的浓度偏高。该项研究建议,国家开展重点地区有毒空气污染物监测。 据主持此项研究的北京大学教授潘小川介绍,2012年12月3日至2013年1月18日,北京经历了有PM2.5监测数据以来最为严重的空气污染。在此期间,绿色和平用PM2.5个体采样器分别对北京地区9位志愿者的个体PM2.5暴露水平进行监测(共22天),并委托北大公共卫生学院在其6楼平台对同期中的15天大气中的PM2.5进行监测,并对大气及个体样品及其重金属含量进行检测和分析。 检测研究表明,检测期内,北京PM2.5中重金属砷浓度达到日均浓度中位数为23.08纳克/立方米。根据2012年2月发布的《环境空气质量标准》中砷的年平均参考浓度限值为6纳克/立方米,此次研究检测浓度为该限值的3.85倍。其中在重污染天浓度的中位数达到34.68纳克/立方米。其间最高日均浓度值达到70.91纳克/立方米。 检测研究透露,检测期间,9位志愿者在22天的检测日中,个体砷暴露浓度的中位数为12.13纳克/立方米。在重污染天,个体砷暴露日均浓度的中位数为24纳克/立方米。此外,在42人次的检测中,29人次的个体砷暴露浓度超过环境空气中砷的参考年平均浓度限值。 检测研究显示,北京市PM2.5中砷的浓度一直处在较高水平,远高于其他国际城市。而1981年世界卫生组织就将砷列为人类致癌物。 中国疾病预防中心环境流行病与健康影响室副主任尚琪研究员引用我国癌症死亡率的调查情况说,“2004年、2005年城市肺癌发病率增高,虽然目前确定不了人群发病率和大气污染之间的关系,但是,从调查情况看,城市的肺癌发病率逐年在走高,而且始终是比农村高,这是个间接的信号。” 该研究还表明,尽管多数人在环境污染物作用下仅有生理负荷的增加或出现生理性变化,但是仍有少数人会出现机体功能的严重失调、中毒,甚至是死亡。 两家机构认为,燃煤排放是大气中砷的主要来源之一。根据统计数据,京津冀地区2011年煤炭消费量达到38420万吨。其中仅河北省2011年的煤炭消费就超过3亿吨,占到京津冀地区的80%,超过欧洲第一大经济体德国。 两家机构建议,依据2012年10月国务院批复的《重点区域大气污染防治“十二五”规划》,环保部应尽快出台国家有毒空气污染物优先控制名录,完善有毒空气污染物的排放标准与防治技术规范。在此基础上,加强对各个地区PM2.5携带的有害物质的成分与来源的研究。在降低PM2.5浓度的同时,对于PM2.5中的重金属等有害物质的污染防治工作也应被重视。同时,尽早设置京津冀地区的煤炭消费上限,否则整个京津冀地区的空气质量将很难有明显改观。
  • 福岛核电站附近海水放射性碘浓度超标3355倍
    3月29日,日本首相菅直人在参议院预算委员会会议上在回答社民党党首福岛瑞穗的质询时表示,福岛第一核电站很可能会报废。日本经济产业省原子能安全保安院30日说,对29日从福岛第一核电站排水口附近采集的海水样本进行检测后发现,其中的放射性碘浓度已达法定限值的3355倍。   原子能安全保安院说,海水样本是29日下午从1号至4号机组排水口南330米处采集的,经检测发现放射性碘-131的浓度达到法定限值的3355倍,而26日下午在同一地点采集的海水样本中,这一浓度是法定限值的1850倍。   不过,原子能安全保安院同时强调,碘-131的半衰期仅为8天左右,即便考虑到它在海洋生物身上积聚的因素,人们真正接触到这种物质时,它已经过相当程度的衰变。
  • 燃煤电厂超低排放再获政策支持 明确超低排放限值
    国家发展改革委、环境保护部、国家能源局今日下发《关于实行燃煤电厂超低排放电价支持政策有关问题的通知》(发改价格[2015]2835号,以下简称《通知》),其中明确为鼓励引导超低排放,对经所在省级环保部门验收合格并符合超低排放限值要求的燃煤发电企业给予适当的上网电价支持。其中,对 2016年1月1日以前已经并网运行的现役机组,对其统购上网电量加价每千瓦时1分钱(含税) 对2016年1月1日之后并网运行的新建机组,对其统购上网电量加价每千瓦时0.5分钱(含税)。  《通知》中还对于目前颇具争议的超低排放限值进行了明确:超低排放是指燃煤发电机组大气污染物排放浓度基本符合燃气机组排放限值(以下简称“超低限值”)要求,即在基准含氧量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10mg/Nm3、35mg/Nm3、50mg/Nm3。  内蒙古某燃煤电厂技术负责人说,他们的电厂将于明年进行超低排放改造,根据《通知》规定,他们的电厂改造完毕之后应该能获得度电补贴 0.5分。然而,从全国范围来看,超低排放改造之后的总成本加上运维和财务费用,大约在2.5-2.7分左右,高的甚至能到3分。因此,此次补贴电价的出台将部分释放燃煤电厂的超低排放改造压力。  上述电价将于2016年1月1日正式执行。该文件被认为是继12月2日国务院常务会议决定在2020年之前对燃煤电厂全面实施超低排放改造之后的重要补充。  通知全文如下:  国家发展改革委 环境保护部 国家能源局关于实行燃煤电厂超低排放电价支持政策有关问题的通知  发改价格[2015]2835号  各省、自治区、直辖市发展改革委、物价局、环保厅、能源局,国家电网公司、南方电网公司、华能、大唐、华电、国电、国家电投集团公司:  为贯彻落实2015年《政府工作报告》关于“推动燃煤电厂超低排放改造”的要求,推进煤炭清洁高效利用,促进节能减排和大气污染治理,决定对燃煤电厂超低排放实行电价支持政策。现就有关事项通知如下:  一、明确电价支持标准  超低排放是指燃煤发电机组大气污染物排放浓度基本符合燃气机组排放限值(以下简称“超低限值”)要求,即在基准含氧量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10mg/Nm3、35mg/Nm3、50mg/Nm3 。为鼓励引导超低排放,对经所在地省级环保部门验收合格并符合上述超低限值要求的燃煤发电企业给予适当的上网电价支持。其中,对2016年1月1日以前已经并网运行的现役机组,对其统购上网电量加价每千瓦时1分钱(含税) 对2016年1月1日之后并网运行的新建机组,对其统购上网电量加价每千瓦时0.5 分钱(含税)。省级能源主管部门负责确认适用上网电价支持政策的机组类型。超低排放电价政策增加的购电支出在销售电价调整时疏导。上述电价加价标准暂定执行到2017年底,2018年以后逐步统一和降低标准。地方制定更严格超低排放标准的,鼓励地方出台相关支持奖励政策措施。  二、实行事后兑付政策  超低排放电价支持政策实行事后兑付、季度结算,并与超低排放情况挂钩。省级环保部门于每一季度开始之日起15个工作日内对上一季度燃煤机组超低排放情况进行核查并形成监测报告,同时抄送省级价格主管部门。电网企业自收到环保部门出具的监测报告之日起10个工作日内向燃煤电厂兑现电价加价资金。对符合超低限值的时间比率达到或高于99%的机组,该季度加价电量按其上网电量的100%执行 对符合超低限值的时间比率低于99%但达到或超过80%的机组,该季度加价电量按其上网电量乘以符合超低限值的时间比率扣减10%的比例计算 对符合超低限值的时间比率低于80%的机组,该季度不享受电价加价政策。其中,烟尘、二氧化硫、氮氧化物排放中有一项不符合超低排放标准的,即视为该时段不符合超低排放标准。燃煤电厂弄虚作假篡改超低排放数据的,自篡改数据的季度起三个季度内不得享受加价政策。  三、政策执行时间  上述规定自2016年1月1日起执行,此前完成超低排放建设并经省级环保部门验收合格的,无论是否已经开始享受电价加价政策,自2016年1月1日起均按照新规定的加价政策执行。  国家发展改革委  环境保护部  国家能源局  2015年12月2日
  • 天木生物ARTP成功助力耐受高浓度甘蔗糖蜜酿酒酵母的选育
    本期为您推荐广西科技大学生物与化学工程学院牛福星副教授课题组发表在Microbial Cell Factories上面的文章:Key role of K+ and Ca2+ in high-yield ethanol production by S. Cerevisiae from concentrated sugarcane molasses。本研究利用常压室温等离子体进行诱变,筛选出对不同胁迫因素(高渗透压、高醇、高温、高盐离子以及高浓度甘蔗糖蜜)分别具有鲁棒性能的酿酒酵母菌株。其中由此所选育的对高浓度甘蔗糖蜜具有鲁棒性能的酿酒酵母乙醇合成产量达到目前物理诱变高水平(111.65 g/L,糖醇转化率达到95.53%)。最后结合酵母的细胞形态、发酵产能以及组学分析,揭示了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制性因素是K+和Ca2+同时存在的影响。 生物基乙醇的合成原料有很多,从环保、经济、富民的角度研发是重点。我国是人口大国,每年由于食品添加、工业应用等所消耗的糖量位居世界前列。甘蔗是糖分提炼的主要原材料之一,在提料糖分的同时会产生糖蜜,而且早期研究数据表明产3吨糖的同时可产约1吨糖蜜。糖蜜是一种混合物,成分复杂,直接排放或者用于田间施肥是为浪费且会造成环境污染,而且是为资源利用的不充分。但是利用糖蜜(非粮食)生物资源进行酿酒酵母的乙醇合成,却可以在不断满足人们对乙醇用量需求的同时,助推国家绿色低碳能源发展。酿酒酵母利用糖蜜进行乙醇发酵的工艺已经比较成熟,但是在利用高浓度的糖蜜来生产高浓度的乙醇效率方面却是一个挑战,究其原因便是各种胁迫性因素的影响。但是从科学研究的角度确切的阐述哪种才是限制性的关键影响因素早期还未有研究报道。 研究人员借助ARTP(室温等离子体)诱变、适应性进化以及高通量的基于三苯基-2H-四唑氯化铵(TTC)及前体物丙酮酸(或丙酮酸自由基离子)与Fe3+发生络合反应呈现黄色的双重高通量筛选方法(Py-Fe3+)获取了分别对高浓度甘蔗糖蜜(总糖浓度达到300 g/L)以及蔗糖添加模型下的高温(37℃)、高醇(10%)、高渗透压(400 g/L可发酵总糖)以及高浓度K+(15 g/L)、Ca2+(8 g/L)、K+&Ca2+(15 g/L &8 g/L)发酵环境下的七株鲁棒型酿酒酵母菌株(图1、表1)。通过各自鲁棒型菌株在高浓度甘蔗糖蜜环境下细胞形态比较(图2),乙醇合成的产率以及细胞数量(图3、图4)、鲁棒型菌株比较基因组学、比较转录组学GO、KEGG分析研究,得出K+、Ca2+同时存在才是限制酿酒酵母高浓度甘蔗糖蜜乙醇发酵的主要因素。图1 实验流程 表1 在相同发酵条件下与野生型J108相比产量差距图2 在250 g/L糖蜜发酵不同菌株的细胞形态A:NGCa2+-F1 B:NGK+-F1 C:NGK+&Ca2+-F1 D:NGTM-F1图3 不同菌株的乙醇合成率及细胞数图4.在5L发酵罐体系中利用250 g/L甘蔗糖蜜发酵, 菌株NGTM-F1的乙醇产量达到111.65 g/L 总结:甘蔗糖蜜对细胞的影响不仅仅局限于高浓度发酵,在低浓度情况下同样会对细胞的生长造成一定影响。该项目的研究是为初次从科学研究的角度准确阐述了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制因素,其结果对于以甘蔗糖蜜作为底物的生物合成具有重要指导作用。文章链接:https://doi.org/10.1186/s12934-024-02401-5
  • 山东攻克低浓度颗粒物测定 新方法填补国内空白
    日前,《山东省固定污染源废气低浓度颗粒物的测定重量法》发布实施,填补了国内低浓度颗粒物测定空白。要加快燃煤锅炉和工业炉窑现有除尘设施升级改造,确保颗粒物排放浓度稳定达标排放,新方法的出台无疑将大大推进山东节能减排工作进程。   &ldquo 《山东省固定污染源废气低浓度颗粒物的测定重量法》(以下简称《重量法》)的发布实施,填补了国内测定固定污染源废气中颗粒物浓度50mg/m3的方法空白,为执行最高允许颗粒物排放浓度限值10mg/m³ 以下提供了判别监测方法标准。&rdquo 山东省环保厅副厅长谢锋如是说。   据了解,《重量法》日前已由山东省环保厅和省质监局发布为山东省推荐性环境保护地方标准,并于日前实施。   原标准有缺陷 亟待制定新标准   按照国家《大气污染防治行动计划》和山东省《大气污染防治规划一期(2013~2015)行动计划》的要求,要加快燃煤锅炉和工业炉窑现有除尘设施升级改造,确保颗粒物排放浓度稳定达标排放。   山东省大部分单机装机容量30万千瓦以上机组采用了双室四电场静除尘器和炉外湿法脱硫的除尘技术,颗粒物浓度低于50mg/m³ 。部分电厂对现有除尘设施进行或将要进行升级改造,将静电除尘器改造为电袋复合除尘、纯布袋除尘、电除尘器内部改造或增加湿式电除尘,颗粒物浓度低于30mg/m³ ,有些甚至设计达到5mg/m³ 。同时,国家和山东省近期颁布的《火电厂大气污染物排放标准》(GB13223-2011)和《火电厂大气污染物排放标准》(DB37/664)等一系列标准中均把固定源废气中颗粒物排放浓度降至30mg/m³ 以下。   随着环境管理日趋严格和环境污染治理技术的不断进步,现有颗粒物监测方法GB/T16157,已逐渐暴露出不能准确测量和不适应低浓度颗粒物监测的缺陷,已不能满足对固定源颗粒物排放监管和环境管理的需要。   山东省从2013年开始,就已经在全国率先着手开展低浓度颗粒物的方法储备和现场实际验证,具备了比较丰富的监测经验,积累了大量的监测数据,取得了比较好的效果,为《重量法》的制定奠定了良好基础。   据了解,低浓度颗粒物的采样及分析技术在国外发达国家已开展了研究,检测方法主要是手工称重法。但目前国内还没有关于低浓度颗粒物检测的方法标准,所以无法对其进行规范。   国内大部分标准方法均将GB/T16157作为测量固定源颗粒物浓度的依据,方法测定低于50mg/m3的颗粒物时误差较大,在低浓度颗粒物采样和分析中,无法准确定量,产生的误差降低颗粒物采样准确度,对测定结果产生较大影响。因此,《重量法》的制定对山东省低浓度颗粒物的测定方法规范具有重要意义。   制定原则和测定方法有哪些?   《重量法》编制负责人、山东省环境监测中心站的潘光说,本着科学性、先进性和可操作性为原则,在原《固定污染源排气中颗粒物测定与气态污染物采样方法》基础上,按照国家《大气污染防治行动计划》和山东省《大气污染防治规划一期(2013~2015)行动计划》的有关要求,同时参考美国、欧盟的相关标准,在我国现有标准、规定和监测站实际工作要求的基础上,结合山东省实际情况和当前的科学技术水平,不断深入研究和完善,制定了《重量法》。   据了解,《重量法》技术要求的制定原则,一是方法的测定内容、基本要求、测定原理等需满足相关环境标准和环保工作的要求 二是测定方法具有可实施性,通过标准规定的检测方法,有效监测山东省地方规定的排放标准限值,保证高准确度,满足目前环保工作的需要 三是测定方法具有普遍适用性、功能完整性。   低浓度颗粒物测定的方法原理是遵循等速采样原理,使进入采样嘴排气的流速等于测点排气的流速 采用滤膜替代滤筒,以减少捕获颗粒物介质的自重,GB/T16157中使用的1#滤筒自重约2g,3#滤筒自重约1g,而直径47mm的玻璃或石英纤维滤膜自重0.2mg。由称重法确定颗粒物的质量和采集颗粒物的抽气体积来计算颗粒物浓度。   如何规范低浓度颗粒物测定?   《重量法》涉及到采样工况、采样位置和采样点,基本与GB/T16157的规定一致,但规定测孔直径为100mm,采样平台在GB/T16157的基础上提出了更具体的要求,特别强调在采样平台要设置低压配电箱,以满足采样时供电的需要。   采样时间是保证采集颗粒物样品的时间代表性,颗粒物量是保证称量的准确性。当排气中颗粒物浓度低时,需要通过延长采样时间或在规定的时间内增大采样体积获得足够质量的颗粒物。除加热采样系统中有关部件到选择的温度、滤膜的毛面朝上放置、每个样品采样时间不小于30min(对于执行颗粒排放限值低于20mg/m³ 的固定污染源,采样体积不小于1m3)外,其余应符合GB/T16157相关规定。在每个系列测量后制备一个全程空白样品。采样完毕后,用密封帽将采样嘴密封放回原容器中带回实验室。   在样品分析中,根据不同的测试需求可选用整体称重或分体称重,对两种称重方式做了详细的说明,要求全程空白值应当单独报告,不得从测量颗粒物结果中扣除全程空白值。   《重量法》提出,要注意标识、手套、测试工况、防止污染、滤膜托架加热、颗粒物测定结果判断、有效数据个数等事项。称重前对称量部件或盛称量部件的容器进行标识,每一个标识必须保持唯一性和可追溯性。采样前后,处理(放置、安装、取出、标记、转移)和称重称量容器以及称量部件时应戴无粉末、抗静电的一次性手套。应在排污企业设施正常运行,工况达到设计规模或稳定出力或有关大气污染物排放标准规定的条件下测试颗粒物浓度和排气参数。
  • 盐城爆炸事故环境最新检测:学校周边环境多项指标低于限值
    p   江苏盐城市响水县天嘉宜公司“3· 21”特大爆炸事故中受损的10所学校在25日全部复课。当日晚,江苏省生态环境厅通报环境应急最新进展时表示,截至目前,学校周边空气质量多项指标低于限制。 /p p   通报称,24日起,现场环境监测人员已增至200余人,对新民河、新丰河、新农河上中下游(闸内)各断面开展了加密监测,监测指标为苯胺类、硝基苯、化学需氧量、氨氮、挥发性有机物。 /p p   根据生态环境部工作组要求,在目前监测方案的基础上,增加对事故区域地面残存污水、地下水、土壤监测布点,制定了布点、取样和监测方案。 /p p   在学校复课次日,环境部门对爆炸地周边陈家港王商小学、义新小学、六港小学、海安集实验小学和灌南堆沟港小学等复课学校开展了环境空气质量专项监测,共计投入15辆监测车、20余名监测人员、30余台监测设备。 /p p   监测结果显示:小学周边二氧化硫浓度范围为0.010~0.021毫克/立方米之间,低于标准限值0.5毫克/立方米 氮氧化物浓度范围为0.033~0.101毫克/立方米,低于标准限值0.25毫克/立方米 挥发性有机物苯的浓度范围在未检出~0.003毫克/立方米,低于标准限值0.11毫克/立方米 甲苯浓度范围在未检出~0.070毫克/立方米,低于标准限值0.2毫克/立方米 二甲苯浓度范围在未检出~0.038毫克/立方米,低于标准限值0.2毫克/立方米。 /p p   下一步,江苏省生态环境厅将继续贯彻落实生态环境部和省委、省政府工作部署,组织专人和物资驻守闸坝现场,扎实开展巡查,力保污水不外泄,同步做好受污染水体应急处置工作。 /p p   同时,将针对周边学校、社区、村庄等环境敏感目标,有针对性地开展大气、土壤采样监测 继续做好信息公开工作,积极回应社会关切。 /p
  • 浙江某电影院一氧化碳浓度超标 致63人紧急送医
    2月17日18时许,浙江省东阳市巍山镇新天地电影院一影厅有数人在观影时出现头晕、呕吐等身体不适情况,影厅内63人被紧急送往医院检查。2月18日,东阳市委市政府于官方微信公众号发布调查结果。结合现场环境检测及身体不适者血液检测结果,初步判断为一氧化碳浓度超标引起。一氧化碳(CO)是一种无色、无臭、无味的气体,人体经呼吸道吸入空气中的CO会引起头晕、恶心、呕吐等症状。较高浓度时能使人出现虚脱和昏迷,危害人体的脑、心、肝、肾、肺及其他组织,甚至导致死亡。我国关于室内空气质量的标准《GBT 18883-2002 室内空气质量指标》中规定,一氧化碳(CO)1小时均值浓度限值为10mg/m3。空气中一氧化碳(CO)的检测方法有非分散红外法、电化学法、气相色谱法等,可根据应用场景、气体浓度范围等选择相应的检测仪器。详情请见相关仪器专场:CO、CO2分析仪
  • 美国MAS发布ZetaFinder ZF400 高浓度Zeta电位分析仪新品
    ZetaFinder ZF400 高浓度Zeta电位分析仪产品特点:1)采用专门的电动声波振荡技术,该仪器可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限。2)提供数据快速准确而不需要稀释样品,从而避免了稀释器材的使用和错误(样品稀释,Zeta电位将彻底改变) 3)该仪器可同时测量Zeta电位、PH、电导、温度等指标。样品在测量时甚至可以进行滴定操作;4)坚固的、多功能的、镀金的Zeta浸入探头可以用于样品室或独立的容器中;5)自动滴定法用于简单的IEP测量;6)样品可被强烈搅拌或混合,因此不会产生沉淀物;7)高频电场采用非常短的脉冲,因此样品测量时不会产生错误;8)可实时测量实际样品;9)不使用光学技术,因此可以在任何pH值下分析固体、不透明或半透明样品;10)可测量水溶液、非水溶液分散系,分散系浓度范围从0.1% ~60%。非常轻松就可测量1nm到50um的样品颗粒;11)该仪器操作非常简单。它提供电脑控制、自动测量,不须特别的样品池,样品可随时从任何现场或实验中获取,可直接实时获得理想的数据ZetaFinder ZF400 高浓度Zeta电位分析仪技术参数:1)测量样品不需要稀释或样品准备,从而消除了操作失误和数据的不确定性,同时节省了时间;2)物有所值的谐振硬件设计;3)宽粒径测量范围:从1nm到30um;4)自动电位和容积测量用于简单快速的等电位(IEP)测定、表面活性剂的吸附效果和许多其他动态测定;5)由于机载样品混合和/或测量时的泵送能力,没有粒子沉降的不利影响;6)Zeta浸入探头可以用于样品室或独立的容器中,测量精确、重复性好,方便使用;7)可测量高粘度的样品,样品浓度可从0.1%到60%;8)可在0-14的pH值范围内进行测定;9)可同时测量Zeta电位、PH、电导、温度等指标;10)最小样品容量10ml,没有较大容量限制;11)微软支持的软件界面,带强大的数据管理功能;12)12个月的保质期和免费的技术咨询 创新点:ZetaFinder ZF400 高浓度Zeta电位分析仪 采用专门的电动声波振荡技术,该仪器可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限,该仪器可同时测量Zeta电位、PH、电导、温度等指标。样品在测量时甚至可以进行滴定操作; ZetaFinder ZF400 高浓度Zeta电位分析仪
  • 美环保署公布新标准 严控空气臭氧浓度
    美国环境保护署7日公布新空气质量标准提案,收紧布什政府时期关于空气质量的标准。   根据这一提案,空气中的臭氧浓度不高于0.060至0.070ppm(百万分之一)才算达标。按照2008年3月实施的原有标准,空气中的臭氧含量不高于0.075ppm就算达标。   据美国媒体报道,联邦政府的空气质量标准将对州一级和地方一级政府制定相关排放标准产生深远影响。发电厂和机动车等排放的氧化氮等污染物是地表臭氧形成的源头,新的联邦标准不但意味着对这些排放“大户”的限制将更严格,剪草机等排放“小户”也可能受到更严格的限制。地方政府将有最多20年时间来达到联邦政府的标准,否则将面临联邦拨款扣减等惩罚。   臭氧是空气中光化学烟雾的主要成分,会对人的肺部造成危害,使人易患呼吸系统疾病。环保署预计,要想达到提案中的新标准,全美将投入大约190亿至900亿美元改善空气质量,能减少130亿至1000亿美元的医疗开支。   根据美国《洁净空气法》,联邦政府需每5年评估一次空气臭氧标准。美国媒体报道,石油、电力行业等以损害经济为由反对更新这一标准。
  • 金域医学引领技术创新,破解药物浓度监测难题
    对于同一种药物,不同患者可能呈现出截然不同的反应。金域医学作为一家以第三方医学检验及病理诊断业务为核心的高科技服务企业,深知药物疗效和安全性在治疗过程中起着至关重要的作用。  打破质谱技术壁垒,应对药物浓度监测挑战  药物浓度监测通过血液中药物浓度的测定来评估治疗效果和安全性,为医生调整药物剂量提供了重要依据,以实现最佳疗效并避免潜在的风险。因此,为了确保患者接受的药物治疗既有效又安全,测定药物在体内的浓度显得尤为重要。在这一领域,高效液相色谱-串联质谱技术因其高灵敏度和稳定性而被广泛采用。然而,由于设备昂贵、专业性强,以及需要专业人员操作的限制,这一技术在医疗机构中的应用受到了一定的局限。  整合核心资源, 率先开展药物浓度监测服务  金域医学通过不断积累的“大平台、大网络、大服务、大样本和大数据”等核心资源优势,现已利用质谱技术平台率先开展了药物浓度监测服务,并建立了专业的报告解读团队。除了精准的药物浓度监测外,金域医学还引入了药物基因组学检测服务,将两者结合起来,与临床医生、检验技师和临床药师合作,为患者量身定制合理的个体化用药方案。  金域医学的药物浓度监测项目具有高分辨率、高灵敏度、高特异性和快速分析的优势,可检测超过200种药物的浓度。同时,其药物基因组学项目也具备多位点、高通量和快速周期的优势,数据分析更为便捷、快速和准确,报告周期缩短至3个工作日。  积极参与质评活动,不断提升服务质量  为保证服务质量,金域医学积极参与国内外室间质评和能力验证活动。目前已连续两年参与英国LGC药物浓度能力验证和卫健委室间质评活动,展现了其对服务质量的承诺和不断提升的态度。同时,金域医学致力于通过减少无效治疗和处理副作用,帮助患者减少医疗费用,提升患者对治疗方案的满意度和依从性。  随着药物浓度监测在临床中的认可度不断提升,金域医学凭借覆盖全国的服务网络和高质量的检测服务,在广州、杭州、长沙、昆明、郑州等7个城市建立了监测中心。每年超过40万例的药物浓度监测检测量,成功帮助临床解决了一些疑难杂症用药难题。  未来,金域医学将继续以“药物基因组学(PGx)+药物浓度监测(TDM)”为方向,辅助临床医生制定更具针对性的治疗方案。
  • 尾气排放新标实施 二噁英重金属等限值收严
    环保部与国家质检总局近日共同发布的《生活垃圾焚烧污染控制标准》规定,自今年7月1日起,新建生活垃圾焚烧炉需执行新标准的污染物浓度限值,自2016年起,现有生活垃圾焚烧炉也需执行新标准限值。 新标准进一步提高了污染控制要求,其中,公众最关注的二噁英类控制限值与欧盟标准一致,比现行标准收严了10倍;新标准的重金属等其他限值大多比现行标准严了30%。业内分析指出,环保门槛的提升可能会引发垃圾发电行业整合洗牌,一些中小企业会加速退出市场,拥有资金和技术优势的大公司有望在&ldquo 大浪淘沙&rdquo 中做大做强。 门槛提升促行业洗牌 过去几年,垃圾发电成为成长最迅速的环保细分板块之一。统计显示,仅2012年全国各地新上马的垃圾焚烧发电项目数量超过37个,总处理能力达37350吨/日,总投资164.4亿元,吸引了国有、民营、外资各路资本。 在A股市场,据Wind数据统计,有18家公司涉及垃圾发电概念。截至2013年底,垃圾发电行业板块总营收规模突破600亿元,净利润近60亿元,净利润同比增长76.2%,远高于环保其他细分领域。 但行业快速发展过程中也带来尾气排放污染大气环境的问题。中国环保产业协会一位专家介绍,旧的垃圾焚烧排放标准发布于2001年,其中关于尾气中二噁英等污染物排放标准明显偏低,因此带来不可避免的污染问题。在他看来,对垃圾焚烧发电行业来说,污染物排放新标准出台将力促行业规范发展。 目前新建和既有垃圾发电厂的规模各占一半,技术路线分为传统炉排炉和水泥窑协同一体化,这两年新建厂更多采用燃烧效率更加充分的水泥窑协同技术。&ldquo 标准的大幅趋严对于企业直接影响在于增加建设运营成本。&rdquo 广证恒生证券分析师姚玮表示,新标准的发布实施,将促进新建垃圾焚烧电厂后端烟气处理系统的完善和稳定运行,同时倒逼既有发电厂前端燃烧系统的提标改造,以及后端烟气处理系统的加装更新,这都会增加不少成本。&ldquo 仅加装尾气处理系统初始投资,就将增加大概20%的成本,后期尾气处理系统的稳定运行还有附加滚动成本。&rdquo 两百亿市场&ldquo 蛋糕&rdquo 待切 除促进行业整合外,新排放标准的实施还将使行业产业链得以延伸扩容,其中最先崛起的将是尾气处理系统市场,以及烟气在线监测设备市场。 据姚玮介绍,垃圾发电尾气处理系统领域过去一直为外商所垄断。近年来,国内部分公司通过自主研发掌握了烟气净化与灰渣处理核心技术,逐步实现了对进口设备的替代。但由于排放标准相对滞后,这一市场空间未充分释放。&ldquo 十二五&rdquo 期间垃圾焚烧发电厂烟气净化系统市场空间可达130亿元以上。除新建项目加装市场已启动外,既有项目的升级改造市场更为广阔。 事实上,不少上市公司已瞄准这一市场蓝海。工业除尘龙头之一菲达环保高管此前曾对中国证券报记者表示,垃圾发电及其尾气综合处理是一个系统工程,订单单体规模往往可达亿元以上。经测算,该类工程毛利率水平远高于目前的电厂粉尘处理设备市场,公司未来最大新增亮点就定位于这一细分市场。去年9月,公司连续中标位于合肥和北京的两个合同金额达1.95亿元的垃圾焚烧电厂烟气处理系统大单。 姚玮指出,除菲达环保外,盛运股份、杭锅股份、泰达环保等专业公司也将首先受益后续市场规模的释放。 另外,随着新标准实施带动环保监管逐步到位,未来垃圾发电厂尾气排放的数据将被要求实时公布,这将带动垃圾发电厂烟气在线监测市场需求空间。根据市场测算,到2015年,垃圾发电烟气在线监测设备及系统维护市场空间可达100亿元左右。 环保监测设备龙头之一的聚光科技相关人士对中国证券报记者指出,聚光科技在垃圾发电在线监测设备业务上有着丰厚的技术储备,尽管目前垃圾焚烧烟气监测产品收入占公司总收入的比重较低,但随着排放标准提升,其市场潜力被公司长期看好。
  • 根据工艺能力判断合适的清洁验证总有机碳TOC限值
    观察根据擦拭和淋洗样品总有机碳(TOC)的历史或当前数据而采用工艺能力方法,能够证明清洁工艺及用于此工艺的限度是否可行、可实现、可检验。在下图所示的工艺中,上下游过程都使用1ppmC的“默认”限值,此限值将用于确定工艺能力。但是,TOC样品通常接近TOC方法的检测限(LOD)或定量限(LOQ),因此最可行的方法是使用单侧接受标准来显示工艺能力。对于单侧接受标准来说,工艺能力比率是Cnpk,而不是传统的CpK方法。评估限值对于任何清洁工艺来说,要评估两个清洁验证关键性质量属性(TOC擦拭和淋洗样品)的某个接受标准是否切实可行和可以实现,通常对于特定的生产工艺,使用工艺能力指数。如果从工艺中采集的历史或当前TOC数据满足特定的工艺能力比率,则TOC与对特定工艺的当前接受标准,适用于清洁验证。为表明这种判断,请看以下例子,表现了使用这个特定的设备,对特定的生产工艺进行的清洁工艺的合适程度。将评估以下TOC接受标准:&bull 上下游TOC擦拭样品:统计原理要评估已建立的接受标准是否切实可行和可以实现,需使用工艺能力指数。工艺能力指数旨在确定,考虑到已经观察到的当前与历史上的TOC擦拭与淋洗数据的变化率,该清洁工艺是否能够满足此接受标准。为了判断此方法是否合适,合适的工艺意味着,已建立的接受标准从统计学的角度来看,是合理的。合适的工艺是指能够确保工艺能力指数大于或等于1.25的工艺。此特定比率与传统的大1.33同,因为清洁验证接受标准是单侧规格1。为了选择工艺能力指数的正确计算方法,需同TOC擦拭和淋洗数据分布一起来考虑接受标准的类型(单侧或双侧)。如果TOC擦拭和淋洗接受标准确定TOC擦拭百分比分布目前用于特定产品清洁过程的清洁验证,使用对设备性能确认(PQ)或持续确认(定期监测)和产品转换所进行的整个清洁过程的TOC擦拭和淋洗数据。以上示例数据用直方图形式来确定正态分布。如上表所示,数据显示了同正态分布的明显偏离。大部分数据非常接近方法的检测限,因此将数据转换为近似正态分布是不合理的。所以,TOC擦拭数据要求用百分比分布来计算工艺能力比率,百分比分布应由统计程序来确定。 // 在此示例中,TOC擦拭数据的百分比分布确定了TOC擦拭数据的99.5%为0.8 ppm或800 ppb,TOC淋洗数据的百分比分布确定了TOC淋洗数据的99.5%为0.6 ppm或600 ppb。这些数值在用百分比分布来计算单侧规格工艺能力指数时很重要。对于新的清洁工艺,可升级或更换现行方法,用TOC来验证关键性的清洁工艺参数(TACT)。确定擦拭和淋洗样品的TOC工艺能力确定百分比分布之后,应使用以下公式来确定TOC擦拭和淋洗样品的工艺能力指数。对于单侧规格(如清洁验证应用中的规格),指数计算公式为:CnpK =(USL - 中位数)/(p(0.995) - 中数)其中:&bull Cnpk=非参数工艺能力指数&bull USL=Upper Specification Limit, TOC清洁验证擦拭和淋洗样品的规格上限值&bull 中位数=样品的50%百分比分布。由于TOC数据的50%非常接近检测限,因而TOC样品的中位数通常为0.1 ppm,或者0与检测限的中点值。&bull p (0.995)=数据的 99.5 %可以用此计算方法和相应的百分比分布(擦拭:0.8 ppm;淋洗:0.6 ppm)来计算工艺能力(Cnpk)如下:TOC擦拭:Cnpk=1.4;TOC淋洗:Cnpk=1.8单侧接受标准的合格工艺是指能力指数大于或等1.25的工艺,这表明清洁验证工艺及其关键性参数(时间、搅拌/速度、浓度、温度)能够满足TOC擦拭和淋洗所收集样品的参考文献1. Montgomery, D.C., (1991). Introduction to Statistical Quality Control, 统计质量控制入门, John Wiley and Sons New York, New York, 第373页2. NIST/SEMATECH e-Handbook of Statistical Methods, 统计方法手册, 第6.1.6节, What is Process Capability? 什 么 是 工 艺 能 力 ?http://www.itl.nist.gove/div898/handbook/index.htm◆ ◆ ◆联系我们,了解更多!
  • 蛋白质免疫亲和活性浓度绝对测量方法的建立
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: left text-indent: 2em " span style=" text-indent: 2em " 近期,中国计量科学研究院武利庆及其合作者杨屹、苏萍等发表系列文章(Anal.Bioanal.Chem. 412(2020)2777-2784、Talanta 178(2018)78-84、Microchem. J. 157(2020)104954),介绍了基于表面等离子共振光谱法和数字ELISA的蛋白质免疫亲和活性浓度绝对测量方法。 /span br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 蛋白质是一类重要的生物大分子,免疫分析是其常用的定量分析手段,在测量和质控中不仅关心目标蛋白的含量,更为关注它的活性与功能,其量值的准确对于保证人民大众健康与安全具有重要意义。活性浓度测量手段的匮乏限制了蛋白质产品活性量值的质控与标准的建立。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 针对这一难题,作者以G2-EPSPS、人肌红蛋白为例,通过表面等离子共振,在部分传质限制条件下,通过扩散速率等测定直接计算出可被抗体识别的目标蛋白浓度,即免疫亲和活性浓度;或采用寡聚核酸标记抗体,借助邻位连接技术和数字PCR技术,以数字ELISA的方式直接测定样本中目标蛋白的免疫亲和活性浓度。两种方法均无需外部标准品,是一种绝对测量手段。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 241px " src=" https://img1.17img.cn/17img/images/202010/uepic/06042747-02ad-460f-82a4-752c907691ff.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 241" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 图1 基于表面等离子共振技术的蛋白免疫活性浓度测定原理图 span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/82c05090-1aa2-4789-9467-c4fd8c632095.jpg" title=" 图片2.png" alt=" 图片2.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 图2 基于数字ELISA技术的蛋白免疫活性浓度测定原理图 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 蛋白质免疫亲和活性浓度的绝对测定将有助于准确表征蛋白质与其抗体之间的相互作用,保证免疫分析的准确可靠,同时有助于蛋白质产品的活性量值的质控与标准的建立。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站 a href=" http://tdmsqs.ncrm.org.cn" target=" _blank" http://tdmsqs.ncrm.org.cn /a 注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/c475b4b8-ad00-4d02-bdea-04a9663c0909.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 欢迎各位专家、同仁报名参会! /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong 学者简介: /strong /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 武利庆,研究员,中国计量科学研究院前沿计量科学中心蛋白质室主任 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 杨屹,教授,北京化工大学化学学院 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 苏萍,副教授,北京化工大学化学学院 /span /p
  • 用Sievers M9 TOC分析仪进行低浓度电导率线性研究
    介绍美国药典USP 要求报告制药用水的电导率。要求用校准的仪器准确测量制药用水的电导率,电导率必须符合USP 规定的规格和操作参数。配置了样品电导率检测功能的Sievers® M9总有机碳(TOC)分析仪可以同时报告阶段1电导率和TOC。M9分析仪完全符合USP 和规则要求。USP 规定的在25°C下的阶段1电导率限值为1.3 μS/cm。在如此低的电导率水平下,很难确认电导计和探头或在线测量装置的性能。低电导率的样品和标样容易被容器或空气中的二氧化碳所污染,污染物会溶解到样品中,并在样品中分解。为了避免对低浓度标样所受污染进行不必要的调查,同时确保电导率测量的可靠性和准确性,本文中的研究证明了M9分析仪在低电导率下的线性。而对于较高的电导率来说,可以在日常分析中确认仪器的性能。M9 分析仪在低电导率下的线性Sievers分析仪进行了以下研究,证明了Sievers M9 TOC分析仪在测量样品电导率时的线性和准确性,特别是在低电导率下测量样品电导率的线性和准确性。在Sievers“电导率和TOC两用样品瓶(DUCT,Dual Use Conductivity & TOC)”中,用高纯度的去离子水将市面上买得到的100 μS/cm氯化钠(NaCl)标样稀释至9种不同浓度。Sievers DUCT样品瓶带有专利的内涂层,可防止通过浸出或吸收,对电导率和TOC造成影响。测量结果如图1和图2所示。所有数据均经空白矫正,且温度补偿至25°C。图2具体显示了低于10 μS/cm的电导率测量值,表明了M9分析仪在低电导率水平下的线性和准确性。图1:1至100 μS/cm的实测与预期的电导率比较图2:1至10 μS/cm的实测与预期的电导率比较结论研究结果表明了Sievers M9 TOC分析仪在很宽的电导率动态范围内的样品电导率测量的高准确性和线性。因此,用户可以用M9分析仪来测量阶段1样品电导率以达到USP 要求,即使在低电导率水平下也可以放心使用M9分析仪。研究证明了M9分析仪对10 μS/cm以下的样品电导率的测量具有高线性度和准确性,而对于较高电导率水平(如25 μS/cm)来说,可以对M9分析仪的电导率准确性进行日常确认,以最大限度减少确认标样污染造成的影响。使用Sievers M9分析仪来同时测量TOC和电导率,可以简化实验室流程,帮助公司能够提高工作效率。Sievers分析仪,赞3◆ ◆ ◆联系我们,了解更多!
  • 农药工业大气污染物排放限值及检测方法一览
    p   农药工业作为精细化工行业的一个分支,排放的大气污染物多为有毒有害物质,除颗粒物,氯气、氯化氢等无机物外,还有种类繁多的挥发性有机物(VOCs)。 /p p   目前国内农药工业废气管理执行的是《大气污染物综合排放标准》(GB16297-1996)(以下简称大气综排)、《恶臭污染物排放标准》(GB 14554-93)(以下简称恶臭标准)。大气综排和恶臭标准面向所有排污单位,没有与农药生产工艺特点和污染治理情况相结合,行业针对性不强,涉及农药行业的有毒有害特征污染物控制指标较少,且两个标准制定年代较早,随着目前治理技术进步,污染物排放限值应适当加严。 /p p   日前,生态环境部办公厅对《农药工业大气污染物排放标准(征求意见稿)》征求意见,本标准为首次发布,规定了农药工业的大气污染物排放控制要求、监测和监督管理要求。 /p p   本标准适用于现有农药工业企业或生产设施的大气污染物排放管理,以及农药工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后的大气污染物排放管理,也适用于供农药生产的农药中间体企业及其生产设施的大气污染物排放管理。农药工业企业或生产设施排放的水污染物、恶臭物质、环境噪声适用相应的国家污染物排放标准,产生固体废物的鉴别、处理和处置适用相应的国家固体废物污染控制标准。 /p p   新建企业自2019 年1 月1 日起,现有企业自2020 年7 月1 日起,执行表1 规定的大气污染物排放限值及其他污染控制要求。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/114545e4-a846-42cb-abf7-ec9097f56355.jpg" title=" 1-1.jpg" alt=" 1-1.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/b370ecc4-f884-4d91-a291-fea56a6639be.jpg" title=" 1-2.jpg" alt=" 1-2.jpg" / /p p   重点地区的企业执行表2 规定的大气污染物特别排放限值及其他污染控制要求。执行的地域范围、时间,由国务院生态环境主管部门或省级人民政府规定。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/3ef3d93d-f654-4a1b-9fcc-2f2120cc2c4b.jpg" title=" 2-1.jpg" alt=" 2-1.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/82110d02-0a86-4586-95ab-d93f9d1d493a.jpg" title=" 2-2.jpg" alt=" 2-2.jpg" / /p p   VOCs 燃烧(焚烧、氧化)装置除满足表1、表2 的大气污染物排放要求外,还需对排放烟气中的二氧化硫、氮氧化物和二噁英类进行控制,达到表3 规定的限值。利用锅炉、工业炉窑、固废焚烧炉焚烧处理有机废气的,还应满足相应排放标准的控制要求。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/b6457fa8-dfc5-4996-864e-a7a5e290a569.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   企业厂区内VOCs 无组织排放监控点浓度限值应符合表4 规定。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/13a2868d-c03d-4740-8eba-6e5668d768d0.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p   新建企业自2019 年1 月1 日起,现有企业自2020 年7 月1 日起,企业边界任何1 小时大气污染物平均浓度应符合表5 规定的限值。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/128b2816-2ae0-493d-be5a-5526030f2e3b.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p   大气污染物的分析测定采用表6 中所列的方法标准。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d830aeaa-eb8e-4ea3-a0ce-0dd19a8d82ea.jpg" title=" 6-1.jpg" alt=" 6-1.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/529c45d5-8066-4d1f-a8fd-e96800f2c78a.jpg" title=" 6-2.jpg" alt=" 6-2.jpg" / /p p   更多相关仪器请见专场》》》 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 环境监测仪器 /strong /span /a span style=" color: rgb(255, 0, 0) " strong / /strong /span a href=" https://www.instrument.com.cn/list/sort/25.shtml" target=" _blank" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 气体检测仪 /strong /span /a /p
  • 《重型柴油车污染物排放限值及测量方法(中国第六阶段)》有这些变化
    p   日前,生态环境部与国家市场监督管理总局联合发布国家污染物排放标准《重型柴油车污染物排放限值及测量方法(中国第六阶段)》,自2019年7月1日起实施。 /p p   自标准实施之日起,《装用点燃式发动机重型汽车曲轴箱污染物排放限值》(GB 11340-2005)中气体燃料点燃式发动机相关内容及《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)》(GB 17691—2005)废止。 /p p   本标准规定了第六阶段装用压燃式发动机汽车及其发动机所排放的气态和颗粒污染物的排放限值及测试方法,以及装用以天然气或液化石油气作为燃料的点燃式发动机汽车及其发动机所排放的气态污染物的排放限值及测试方法。 /p p   与GB 17691—2005相比,本标准加严了污染物排放限值,增加了粒子数量排放限值,变更了污染物排放测试循环 增加了非标准循环排放测试要求和限值 增加了整车实际道路排放测试要求和限值 增加了排放质保期的规定 增加了实际行驶工况有效数据点的氮氧化物排放浓度要求 增加了降低原机氮氧化物排放的要求等。 /p p   发动机机型(系族)按本标准进行型式检验时,要求进行的试验项目见表1 /p p style=" TEXT-ALIGN: center" img title=" 01.jpg" src=" http://img1.17img.cn/17img/images/201807/insimg/b201ca06-d14e-4424-8e9b-1757de7a8d66.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 02.jpg" src=" http://img1.17img.cn/17img/images/201807/insimg/439f74c3-fc79-41b7-9fb0-4a1f2987f615.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 03.jpg" src=" http://img1.17img.cn/17img/images/201807/insimg/11032f8f-3ace-489f-96e5-b304d8f525aa.jpg" / /p p style=" TEXT-ALIGN: center" strong 表4 整车试验排放限值 /strong /p p style=" TEXT-ALIGN: center" img title=" 04.jpg" src=" http://img1.17img.cn/17img/images/201807/insimg/29207d68-a2b0-4dea-b843-32d43328fef5.jpg" / /p p /p
  • 粤染色血燕检出高浓度亚硝酸盐(图)
    海关销毁退运多批“血燕” 专家提醒颜色很均匀很鲜红的血燕不要买   据《新闻晚报》报道:记者昨日从广东检验检疫局获悉,该局承担的“燕窝及其制品的真假鉴别方法研究”项目课题组首次从一些所谓 “血燕”、“黄燕”等染色燕窝中检出高浓度的亚硝酸盐,有的含量甚至达到几千毫克/公斤,对人体危害相当大!据此,各地海关销毁、退运了多批“血燕”。  广州市面血燕也有染色的  据介绍,查获的染色燕窝,大部分都是用白燕窝染色而成,“而且为了追逐更高的利润,不良商家所用的白燕窝都是质量差、外观不好看的低价白燕窝,所含的亚硝酸盐的含量都很高,有的甚至达到了几千毫克/公斤,对人体危害很大。 ”不过,并不确定是直接用亚硝酸盐染色,还是染色过程中发生化学反应而残留的。  我国《食品添加剂使用卫生标准》(GB2760-2007)严格限制亚硝酸盐仅作为肉类等少量食品的护色剂,限量为70毫克/公斤,其他食品(包括燕窝)不允许添加。  “广州市面上销售的血燕,确实也有由白燕窝染色而成的情况存在。因为白燕窝和血燕的平均差价,每公斤达到1000~2000元。”广州海味干果商会秘书长伍惠汉直接指出,如果街坊购买燕窝,不推荐购买血燕。  “5000美金可学燕窝染色”  据检验检疫系统的专家提醒市民,购买血燕,一定要警惕颜色很均匀的,很鲜红的,真正的血燕应该是褐色的,颜色不均匀的。 “现在燕窝染色的工艺很先进,而且不会掉色,在印尼,5000美金就可以学习燕窝染色。 ”  据介绍,燕窝主要产于印尼等东南亚国家,年产量已达数百吨。中国大陆已经成为第一大燕窝消费地,年销售额高达数百亿。但与蓬勃发展的燕窝市场相比,国内外相关检测技术滞后于市场消费。相关评价方法、评判标准和检测手段的缺失,导致市售的燕窝产品良莠不齐,消费者难辨真伪,政府监管部门无从执法。  该燕窝鉴别方法全国首创  “燕窝及其制品的真假鉴别方法研究”这一科技项目课题组近一两年多次从送检的一些所谓 “血燕”、 “黄燕”等染色燕窝中检出高浓度的亚硝酸盐,而该研究结果也是该课题组全国首次发现的,据此成果,各地检验检疫和海关销毁、退运了多批 “血燕”。  据介绍,方法确定采用分光光度法、液相色谱串联质谱与分子生物学结合来鉴定真假燕窝,可以有效分辨人为加入的掺假物质和天然存在的营养物质,而且还可用于大量样品的快速测定。  燕窝常见以次充好伎俩  染色:将卖相不好的燕盏染成血燕盏和黄燕盏;  漂白:将深褐或杂黑颜色的燕窝用双氧水全部或部分漂白;  掺涂胶体:将薯粉、鱼胶、果胶、猪皮胶、海藻胶、白木耳胶、树脂等掺涂在燕盏表面,令燕盏看起来光亮厚密,增加重量;  掺粘:将劣质的毛燕、草燕、燕饼掺粘到优质的燕窝上增加重量。  名词解释:亚硝酸盐  也被称为工业食盐,在食品生产中亦用作食品着色剂和防腐剂。但是具有很强的毒性,摄入过量会引起中毒甚至死亡,长期食用含有过量亚硝酸盐的食品将会增加患癌风险。
  • 陆上石油天然气开采工业污染物排放限值及检测方法一览
    p   我国油气田分布地域广,环境条件(容量和敏感程度)差异大,而且油(气)藏性质、地质构造、生产工艺、废水处理(置)方式有很大不同,直接导致了污染物产生和排放指标的不同。其中,污染物的排放及污染防治技术具有突出的行业特征。而我国现行的国家污染物排放标准主要是针对较普遍的污染源和污染物而制订的综合型标准,较少考虑行业的排污特点及污染防治技术经济条件,因此在执行过程中出现了一些问题。 /p p   《大气污染物综合排放标准》(GB16297-1996)的颁布实施为促进我国大气污染控制和防治起到了积极的、重要的作用。GB16297-1996 规定的SO2 排放浓度限值为:新源960 毫克/立方米 现源1200 毫克/立方米,同时还按不同排气筒高度限定了最高允许排放速率。由于没有针对天然气净化行业的专项标准,按照国家规定,天然气净化厂应执行《大气污染物综合排放标准》。天然气净化厂的硫磺回收尾气具有排气量小、SO2 浓度高、治理难度大、处理费用高昂等特点,为达到GB16297-1996 的规定,其硫回收率应达到99.6%~99.9%以上,这要求必须采用还原吸收类工艺或其他更高回收率的硫磺回收工艺,经济代价很大。 /p p   天然气作为一种优质、洁净、高效的能源,对环境保护有着特殊的意义,欧洲和北美等许多国家都把天然气净化厂作为特殊污染源看待。有鉴于此,原国家环保总局在深入调研的基础上,于1999 年2 月以“环函〔1999〕48 号“文提出将天然气净化厂SO2 排放作为特殊污染源制定相应的行业污染物排放标准。在行业污染物排放标准未出台前,暂执行GB16297-1996 的最高允许排放速率指标,同时尽可能考虑SO2 的综合回收利用。 /p p   随着国家环保要求的日益严格,需要制订行业污染物排放标准,对环保监控指标和企业排污行为进行规范。根据石油天然气开采工业特点,制订一套技术上先进、经济上合理,符合清洁生产原则和相关产业政策的环境标准,意义重大. /p p   日前,生态环境部办公厅发布关于征求国家环境保护标准《陆上石油天然气开采工业污染物排放标准(二次征求意见稿)》意见的函。陆上石油天然气开采工业污染物排放标准(二次征求意见稿)规定了陆上石油天然气开采工业企业及其生产设施的水污染物和大气污染物排放限值、监测和监督管理要求。陆上石油天然气开采工业企业及其生产设施排放的恶臭污染物、工业炉窑和锅炉及燃气轮机排放的大气污染物、环境噪声适用相应的国家和地方污染物排放标准 产生固体废物的鉴别、贮存和处置适用相应的国家固体废物污染控制标准。 /p p   本标准为首次发布。由生态环境部水生态环境司、大气环境司、法规与标准司组织制订。起草单位:中国石油集团安全环保技术研究院有限公司、中国石油天然气股份有限公司西南油气田分公司、中国石油大学(华东)、中国环境科学研究院。 /p p   现有企业自2021 年1 月1 日起执行表1 规定的水污染物排放限值。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/5d47dfdc-d08e-4ccf-b82c-1f9c646d8cee.jpg" title=" 01.jpg" alt=" 01.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/dd84a140-1c3a-496d-9740-89ac2344e40f.jpg" title=" 02.jpg" alt=" 02.jpg" / /p p   现有天然气净化厂自2022 年1 月1 日起执行表3 规定的二氧化硫排放限值。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e6d5f8e9-ec36-43f5-b770-5caa4a57f7a8.jpg" title=" 03.jpg" alt=" 03.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 环境监测-水质分析仪器大全 /strong /span /a br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/ca75ed30-0016-42a4-8195-9c48c4b3293b.jpg" title=" 04.jpg" alt=" 04.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/830fd00f-7cd8-4adf-abd6-f7b19f0a2063.jpg" title=" 05.jpg" alt=" 05.jpg" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201812/uepic/c455ee93-5039-46a6-b095-71938d3fb0d0.jpg" title=" 06.jpg" alt=" 06.jpg" / /p
  • 关于固定污染源低浓度颗粒物测定方法标准,你应该知道的几件事
    p    span style=" color: rgb(0, 112, 192) " 为什么要针对低浓度颗粒物测定制定一个新标准? /span /p p   目前,许多地方已根据政府工作报告中提出的“推进燃煤电厂低浓度排放改造”要求,确定了相关规定,明确颗粒物排放不得高于 10 mg/m3,某些省份规定不得高于 5 mg/m3。 /p p   我国现阶段颗粒物监测方法采用GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》,在颗粒物浓度较低、烟气湿度较大的情况下,此方法易造成监测结果不准确,主要原因是:(1)沉积在采样嘴及采样管前段的颗粒物无法回收,导致结果偏低 (2)在湿烟气情况下长时间采样容易造成滤筒纤维损失或破损,产生的误差降低颗粒物采样准确度。 /p p   为解决这些问题,满足现行污染源排放的监测需求,总站制定了《固定污染源废气 低浓度颗粒物测定 重量法》标准。 /p p    span style=" color: rgb(0, 112, 192) " 低浓度颗粒物方法标准的技术路线是什么? /span /p p   标准的技术路线为“烟道内过滤-恒温恒湿平衡-整体称重”。 /p p   烟道内过滤,就是在烟道或烟囱内对颗粒物进行等速采样,并将颗粒物截留在位于烟道或烟囱内的过滤介质上的方法。目前国际上主要有烟道内过滤和烟道外过滤两种方式,和烟道内过滤比,烟道外过滤存在仪器结构复杂,方法检出限高,现场工作量较大的缺点。 /p p   恒温恒湿平衡,就是样品在采样前后要在温度20± 1℃、湿度50± 5% RH的状况下稳定后称量,和以往的冷却干燥称量方式相比,恒温恒湿平衡可以有效减少称量波动,提高称量的稳定性。 /p p   整体称重,就是将滤膜封装在金属采样头内采样,并将采样头整体在采样前后进行称量的方式。这种方式能有效避免滤膜破损,并保证沉积在采样嘴及采样管前段的样品得到回收。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/c5fe7ff7-4aee-43fc-9f79-1fb023f4b0ec.jpg" title=" 微信图片_20170706105924.png" / /p p style=" text-align: center " 整体式采样头结构图 /p p    span style=" color: rgb(0, 112, 192) " 这个标准的方法检出限是多少? /span /p p   当采样体积为 1 m3(标准状态下的干废气)时,本标准方法检出限为 1.0 mg/m3。 /p p    span style=" color: rgb(0, 112, 192) " 什么是测量系列? /span /p p   本标准提出了测量系列的概念,测量系列指在工况基本相同、污染处理设施保持稳定运行的条件下,在同一采样平面内进行的一系列测量。也即是说,测量系列内的样品,采集时的锅炉和污染处理设施运行是基本相同的。 /p p    span style=" color: rgb(0, 112, 192) " 什么是全程序空白?它有什么意义? /span /p p   本标准提出了全程序空白的概念,全程序空白指除采样过程中采样嘴背对气流不采集废气外,其它操作与实际样品操作完全相同获得的样品。 /p p   采样全程序空白时,采样嘴应背对废气气流方向,采样管在烟道中放置时间和移动方式与实际采样相同。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次。为防止在采集全程序空白过程中空气或废气进入采样系统,必须断开采样管与采样器主机的连接,密封采样管末端接口。 /p p   全程序空白是一种质控措施,是衡量样品在测定过程中是否受到污染的一种手段。任何低于全程序空白增重的样品均无效。全程序空白增重除以对应测量系列的平均体积不应超过排放限值的10%。另外,颗粒物浓度低于方法检出限时,对应的全程序空白增重应不高于 0.5 mg,失重应不多于 0.5 mg。 /p p    span style=" color: rgb(0, 112, 192) " 什么是同步双样?同步双样的意义是什么? /span /p p   本标准提出了同步双样的概念,可作为衡量测定是否准确的一种质控措施。同步双样是指固定污染源颗粒物测量过程中,使用同一测量系列(使用同一采样孔采样时)或在同一时间使用两个对称的测量系列(使用不同的采样孔时)得到的两个样品。 /p p   也就是说,同步双样的两个样品在采集过程中的任何时刻均处于大致相同的位置(同一采样孔)或烟气状态基本相同、对于烟道采样平面基本对称的位置(不同采样孔)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/632eeb9a-5c45-4487-9709-3c4efa06f35d.jpg" title=" 微信图片_20170706105930.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/3746759c-aebf-4554-acf4-fc2c9109524d.jpg" title=" 微信图片_20170706105934.jpg" / /p p style=" text-align: center " strong 采样头现场安装 /strong /p
  • 京津冀首个统一强制环保标准“落地” VOCs含量限值史上最严
    p   进入6月,京津冀地区蓝天变多了,但臭氧浓度上升,多次成为大气首要污染物。作为PM2.5和臭氧的重要“气态前体物”,挥发性有机物(VOCs)控制迫在眉睫。于是,作为京津冀地区首个统一强制性环保标准,《建筑类涂料与胶黏剂挥发性有机化合物含量限值标准》(简称《标准》)正式公布了。即从今年9月1日起,京津冀三地将统一实施建筑类涂装环保标准,限制油漆和胶黏剂等VOCs的使用。 /p p   环境保护部表示,相对于二氧化硫、氮氧化物等,目前VOCs还是大气污染治理的“短板”。三地首先从重点领域入手,在全国率先推出区域统一环保标准,将起到较好的示范作用,不排除大范围推广的可能。 /p p    strong 高排放产品将在更多领域被限用 /strong /p p   京津冀首个统一强制性环保标准为何会“落”在建筑类涂料、胶黏剂上? /p p   据统计,随着我国城市化进程的加快和建筑业的蓬勃发展,建筑类涂料和胶黏剂使用量快速增长。以建筑类涂料为例,2000年我国建筑涂料产量为56.3万吨,2015年增加到516万吨,增长了8倍,年均增速超过15%。其中的溶剂型建筑涂料、胶黏剂含有大量VOCs,已成为城市VOCs的主要排放源之一。 /p p   以北京市为例,随着北京工业源、移动源控制水平不断提高,建筑类涂料和胶黏剂造成的VOCs排放所占比重增加。到2015年,北京VOCs排放量已达1.1万吨,约占城市面源的13%。 /p p   北京市环保局表示,建筑类涂料和胶黏剂多在敞开式环境中使用,无法收集处理。从国外经验来看,源头控制是有效的管理方式,即通过控制产品中挥发性有机物含量来降低VOCs的整体排放。 /p p   河北省粘接与涂料协会名誉会长、高级专家耿耀宗认为,随着京津冀VOCs管控收紧,油漆等高排放产品将在更多领域被限制使用。水漆等新型环保产品的应用范围、市场份额都将得到大大拓展。“油转水”大趋势下,包括建筑行业在内,涉及使用涂装与胶黏剂的行业都将受到较大影响。 /p p   strong  VOCs含量限值史上最严 /strong /p p   据介绍,此次《标准》属强制性的。未来在京津冀地区生产、销售的建筑类涂料和胶黏剂不仅VOCs含量要满足标准要求,包装标志也要满足标准要求。也就是说,从今年9月1日起,在京津冀区域内生产、销售本标准规定的产品,除原有产品说明外,还需在包装标志上补充标明各种内容,如产品所含挥发性有机化合物含量 施工时需稀释的产品,必须显示推荐的稀释溶剂和稀释比例。 /p p   该《标准》核心起草单位晨阳水漆技术总工胡中源认为,《标准》对建筑类涂料和胶黏剂VOCs含量提出了较严格的限值要求,基本上为我国现行相关标准中最严格要求,与国际相关标准水平基本相当。随着标准的落地实施,将优胜劣汰,加速涂装行业的洗牌。 /p p   北京市环保局也表示,在确定该标准VOCs限值时,已充分考虑了京津冀大气复合型污染防治的需求,并结合京津冀地区实际情况,在考虑技术可达性的同时,体现了标准的先进性。标准实施后,也将带动相关行业技术的提升。 /p p    strong 城市VOCs排放量将削减20%以上 /strong /p p   据介绍,9月1日后,生产和销售的建筑类涂料和胶黏剂VOCs含量不满足标准要求,将按照《大气污染防治法》第一百零三条规定,生产、销售挥发性有机物含量不符合质量标准或者要求的原材料和产品的,由县级以上地方人民政府质量监督、工商行政管理部门按照职责责令改正,没收原材料、产品和违法所得,并处货值金额一倍以上三倍以下的罚款。 /p p   尽管该标准依据行业技术发展现状,不同类型产品VOCs含量加严幅度不同,但胡中源表示:“保守估算,该标准的实施,将减少建筑类涂料和胶黏剂VOCs排放量20%以上。” /p p   《标准》起草单位河北海航企业管理咨询有限公司总经理李占广也表示,作为京津冀首个环保标准的发布实施,将有效推进三地VOCs的协同减排。但在河北,推行统一环保标准的难度较大,涉及的中小型污染企业较多。因此,对《标准》科普和应用还需加强。 /p p   为推进达标工作,目前京津冀100多家企业和科研院所率先成立“环雄安绿色健康产业联盟”,通过产学研等合作,实现建筑类涂料等产业绿色升级。 /p p br/ /p
  • 布鲁克EVOQ™ Qube高效测定牛奶中氯霉素浓度
    (2012年12月14日,北京)由布鲁克公司新近发布高性能三重四极杆液质谱系统——高性能EVOQ Qube™ 建立了一种简单、快速测定牛奶中氯霉素浓度的高效液相串联质谱法。利用EVOQ Qube™ 可以对牛奶基质中浓度低至0.02 ppb的氯霉素进行准确定性和定量分析。   高性能EVOQ Qube™ 建立了高效液相色谱串联质谱法测定牛奶中氯霉素浓度的方法,EVOQ QUBE LC-MS/MS方法在多反应监测(MRM)模式的运用中,仅需采用非常微量的样品便可监测以及跟踪牛奶中氯霉素。方法采用3通道MRM模式对氯霉素进行检测,一个通道用于定性,两个用于定量。分析方法的定量下限为0.02 ppb,定量线性范围为0.02 ppb-1.0 ppb的标准曲线,结果表明线性良好,R2=0.9980 (权重系数为1/X)。   氯霉素(CAP)是一种广谱抗生素,最早使用于1949年。氯霉素虽然价格便宜,但因其副作用大,故已不作为治疗人类疾病的一线药物。氯霉素能抑制骨髓细胞的长生,导致非再生性贫血和可能致命的再生障碍性贫血。此外,氯霉素是一种有效的非竞争性的微粒体酶抑制剂,能影响其它药物的吸收代谢。氯霉素也可当兽药应用,但由于它对人类有许多潜在的副作用,所以在许多国家被限制或禁止使用。欧盟2003/181/EC决议规定在牛奶中被检出任何水平的氯霉素都是不允许的,同时规定检测氯霉素的方法必须符合或优于0.3 ppb的最低要求。   布鲁克CAM市场部总监Meredith Conoley说:“EVOQ LC-MS/MS不同凡响的高性能设计令实验室可以进行高产量的定量分析。硬件和软件两方面的创新融合了革命性的技术,如主动排气,IQ的双重离子漏斗,VIP- HESI和最新PACER软件,这意味着EVOQ拥有可以提供给任何实验室进行常规分析的优势,其可应用在水和环境检测、食品检测、取证分析、毒性检测和运动医学检测等方面。”Conoley补充道,“这些应用标志着EVOQ拥有卓越的性能,可以在非常艰难的条件下满足实验室对高灵敏度的需求。”   图片说明: 布鲁克高性能 EVOQ Qube™ 的设计使数以千计的样品可以进行快速分析检测并提交结果报告,其应用广泛,可应用于水和环境检测、食品检测、取证分析、毒性检测和运动医学检测等方面。
  • 涉及这些仪器方法 铁路内燃机车及其发动机排气污染物排放限值(中国第一、二阶段)公布
    日前,生态环境部办公厅发布通知,对国家生态环境标准《铁路内燃机车及其发动机排气污染物排放限值及测量方法(中国第一、二阶段)(征求意见稿)》征求意见,征求意见截止时间为2024年1月21日。据相关内容介绍,十三五期间,我国完善了移动源排放标准体系建设,现已基本形成道路机动车和非道路移动源的污染物排放标准体系,涵盖汽车、摩托车、非道路移动机械、 船舶等多个领域。但目前,我国铁路内燃机车没有国家排放标准,仅有国家铁路局发布的中国铁道行业标准,最新版本为 2017 年修订的《牵引动力装置用柴油机排放试验》 (TB/T 2783-2017),等同采用国际铁路联盟 UIC ⅢA 排放标准,其限值与欧盟 EU ⅢA 一致。该标准对行业发展起到很强的指导作用,但由于其为推荐标准并非强制国标,实际作用有限。基于此,为完善我国移动源排放标准体系,落实国务院“十四五”节能减排方案中推动实施铁路内燃机车国一排放标准的要求,推动铁路内燃机车行业技术进步和发展,有必要制定铁路内燃机车及其发动机排气污染物国家排放标准。本标准为首次制订,由生态环境部大气环境司、法规与标准司组织制订,起草单位包括:北京交通大学、中国环境科学研究院、大连中车柴油机有限公司、天津内燃机研究所(天津摩托车技术中心)等。标准规定了铁路内燃机车及其牵引用柴油发动机所排放的气体和颗粒污染物的排放限值及测试方法,适用于新制造铁路内燃机车(含动力集中动车组的动力车)及其牵引用柴油发动机型式检验、生产一致性检查和在用符合性检查。不适用于标准执行日期之前已制造的铁路内燃机车及其牵引用柴油发动机。本标准在深入调研铁路内燃机行业排污现状的基础上,参考国内外相关标准及其他指导性文件,在选择污染物项目时依据如下原则: (1)选择排放量较大,且广泛存在的污染物; (2)选择可对人体造成直接伤害的污染物; (3)国内外相关标准中列为管控项目的污染物。 基于此,本标准将 NOx、HC、CO 和 PM 作为排气污染物控制项目,与美国、 欧盟、国际铁路联盟以及我国铁道行业标准相一致,也与我国移动源《船舶发动机排气污染物排放限值及测量方法(中国第一、第二阶段)》(GB 15097-2016) 和《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(GB 17691-2018) 排气污染物控制项目一致。铁路内燃机车(或发动机)系族按本标准进行型式检验时,要求进行的试验项目见表 1。参考国标《往复式内燃机 第 2 部分:气体和颗粒排放物的现场测 量》(GB/T 8190.2-2011)。本标准使用下列分析仪测量污染物组分:(1)测试 HC 的 HFID 或 FID 分析仪(2)测试 CO 和 CO2的 NDIR 分析仪(3)测试 NOx 的 HCLD 或 CLD 分析仪其中,测试 HC 的加热型氢火焰离子化探测器(HFID)和火焰离子化检测仪(FID) 是检测分析碳氢化合物的高灵敏度通用型检测器,几乎对所有有机物响应,是国际上检测内燃机车尾气中 HC 含量的常用仪器。非分散红外分析仪(NDIR)是测试 CO 和 CO2 具最常用的仪器,具有稳定性好、响应速度快、测量范围宽等优点。化学发光检测器(CLD)或加热型化学发光检测器(HCLD)是目前测定排气中 NOx的最好方法,也是各国法规规定的优选测试方法。CLD 敏感度高达 0.1 ppm,应答性好,在10000 ppm 范围内输出特性呈现线性关系,适用于连续分析。PM 浓度根据采样比、环境空气中的污染物含量和试验期间的总流量加以修正,经等比例采样稀释后,使用滤膜采样装置进行颗粒物的测量。附件:  1.铁路内燃机车及其发动机排气污染物排放限值及测量方法(中国第一、二阶段)(征求意见稿)  2.《铁路内燃机车及其发动机排气污染物排放限值及测量方法(中国第一、二阶段)(征求意见稿)》编制说明
  • 欧盟将限制首饰含铅量
    法国向欧洲化学品管理局(ECHA)风险评估委员会及社会经济分析委员会提交报告,建议限制在欧盟市场出售首饰的含铅量,以及消费品所含的二甲酯(DMF)。   报告建议根据《化学品注册、评估及许可规例》(REACH规例),限制各类在欧盟市场生产及/或出售的首饰的含铅量和铅复合物含量,即每小时每平方厘米释出的铅分不得超过0.09微克。首饰涵盖成人和儿童的贵重首饰和人造首饰。   法国有关当局担心,儿童吸啜或不慎吞入首饰会吸收当中的铅份,引致严重的健康问题。儿童中铅毒的普遍性可能被低估,因为一些症候如头疼或抽搐等并非中铅毒的独有症候,医生未必察觉真实病因。   对于儿童接触的铅份,目前尚未有科学断定的安全门坎。再者,消费者也很难辨别哪些首饰含铅。因此,法国的报告认为,防止儿童中铅毒的报告如获接纳,向欧盟出口首饰的生产商将须遵守更低的含铅量门坎。   至于二甲酯,法国建议把现行的临时限制变成REACH规例下的永久限制。现有的临时限制规定,成员国须确保市场没有出售含有DMF的物品。根据欧洲委员会第2010/153/EU号决议,限制有效期至2011年3月15日。   DMF主要用作防霉剂,避免物品在储存和运输时发霉。但是消费品若含有这种物质,却可导致严重的皮肤问题。假如永久禁用DMF,势将影响业者对欧盟的家具和衣履出口。   法国的建议限制如获接纳,所有DMF含量浓度超过每千克0.1微克的物品(以每个部件计算)将不能在欧盟出售。   到2010年10月,风险评估委员会及社会经济分析委员会的特派调查员会详细讨论报告内容 公众咨询则继续进行至同年12月21日。委员会将于2011年6月公布最终意见,届时欧洲委员会会决定是否及何时在欧盟实施限制。
  • 欧盟在消费品中设定 PFAS 限制
    2023 年 5 月 11 日,欧盟根据 REACH、POP 立法和 SVHC 清单制定了限制 PFAS 在消费品中使用的法规。正在制定更大的提案以涵盖更多的物质。欧盟正在采取多项监管行动来监管消费品中的全氟烷基物质和多氟烷基物质 (PFAS)。这些有毒物质由于其持久性高,也被称为“永远的化学品”。如果没有降解能力,它们在环境中的浓度将不断增加。接触这些物质会对人类和环境产生负面影响。PFAS 被定义为任何含有至少一个完全氟化的甲基 (CF3-) 或亚甲基 (-CF2-) 碳原子且未连接任何 H/Cl/Br/I 的物质。PFAS 是一组约 10,000 种主要人造物质,在欧盟的许多应用中使用。这些应用包括纺织品、食品包装、润滑剂、制冷剂、电子、建筑等等。在欧盟,一些 PFAS 已经受到 REACH 和 POP 立法(见表 1)和 SVHC 清单的监管,而其他群体正在提议限制(见表 2)。表格1 PFAS 在欧盟受限物质组文章中的限制适用于PFOA 和 PFOA 相关物质(各种 cas 编号)总含量为 25 ppb,PFOA 相关物质为 1000 ppb2020 年 7 月 4 日PFOS(各种 CAS 编号)1 microg/m 2对于处理过的物品,总含量为 0.1%(按重量计)2010 年 8 月 25 日PFCA 和 PFCA 相关物质(各种 CAS 编号)C9-C14 PFCA 及其盐类总量为 25 ppb,或 C9-C14 PFCA 相关物质总量为 260 ppb2023 年 2 月 25 日表格2 欧盟提议限制 PFAS 组物质组文章中的限制适用于全氟己烷磺酸PFHxS 及其盐类总量为 25 ppb,或 PFHxS 相关物质总量为 1,000 ppb仍在提案中全氟己烷磺酸PFHxA 及其盐类总量为 25 ppb,或 PFHxA 相关物质总量为 1,000 ppb仍在提案中当前更大的限制提案(见表 3)将涵盖更多具有特定豁免和针对特定用途的不同生效日期的物质。仅包含以下结构元素的物质被排除在拟议限制的范围之外:-CF3-X 或 X-CF2-X',其中 X = -OR 或 -NRR' 且 X' = 甲基 (-CH3),亚甲基 (-CH2-)、芳族基团、羰基 (-C(O)-)、-OR''、-SR'' 或 –NR''R''',其中 R/R'/R ''/R'''是氢(-H)、甲基(-CH3)、亚甲基(-CH2-)、芳基或羰基(-C(O)-)。表格3 更大的 PFAS 限制提案限制提案文章中的限制适用于选项1全面禁止仍在提案中,将有 18 个月的过渡期,不得减损。选项 2通过靶向 PFAS 分析测得的任何 PFAS 均为 25 ppb(聚合物 PFAS 不包括在量化中) 作为目标 PFAS 分析的总和测量的 PFAS 总和为 250 ppb,可选地预先降解前体(聚合 PFAS 不包括在量化中)PFAS 为 50 ppm(包括聚合 PFAS)如果总氟超过 50 mg F/kg,制造商、进口商或下游用户应根据要求向执法机构提供以 PFAS 或非 PFAS 含量测量的氟证明。仍在提案中,将有 18 个月的过渡期,某些用途会减损。为确保符合监管要求,相关企业应尽早熟悉这些要求,并调整其协议和手册以调查其产品中是否存在 PFAS。
  • 欧盟或将限制纺织品中的壬基酚
    欧洲化学品管理局最新消息称,7月29日,瑞典递交了一份关于壬基酚(直链和支链)和壬基酚聚氧乙烯醚(直链和支链)的新限制提案(REACH法规附件XVII提案)。   就在去年7月,德国提议将壬基酚纳入REACH法规高度关注物质清单,同年12月,在第八批高度关注物质清单中,出现了壬基酚,并定义为可能对环境有严重危害。   此次,瑞典提议将壬基酚纳入限制物质清单,限制投放市场的服装、纺织配件以及室内纺织品等有可能通过洗涤将壬基酚带入水中的产品,规定其不得含有大于或等于0.1%壬基酚(直链和支链)和壬基酚聚氧乙烯醚(直链和支链)或其混合物。   壬基酚(NP)和壬基酚聚氧乙烯醚(NPE),在纺织业中被用作表面活性剂广泛应用于印染、清洗的工序。有证据表明,NP为内分泌干扰物,是全世界公认的环境激素,会对水生环境产生持续累积的毒性,即便这种物质排放的浓度很低,也极具危害性。而NPEs一旦释放到环境中,会迅速分解成壬基酚(NP)。   2011年初,中国环保部和海关总署发布的《中国严格限制进出口的有毒化学品目录》中已首次将壬基酚(NP)和壬基酚聚氧乙烯醚(NPE)列为禁止进出口物质。然而国内大多企业并没有意识到该物质的有害性,仍然在纺织品等行业生产制造中使用该物质,于是壬基酚附着在各类纺织品上依旧漂洋过海远销国外。数据显示,今年1-7月,宁波地区服装等各类纺织品出口欧盟20680批次,货值达5.07亿美元,相比去年同期分别增长11.18%和14.89%。   检验检疫专家称,一旦瑞典的提案获准,欧盟市场范围内对纺织品中的壬基酚将从现有的通报备案原则上升为限制规管。因此,企业应密切关注欧洲化学品管理局的提案审批结果及进度,及时改进产品生产工艺 加大产品抽样检测力度,改善产品印染、清洗流程,将壬基酚残留控制在标准范围内 关注REACH等世界权威的化学物法规动态,用长久的眼光对待各类有害物质 主动探索研发更环保健康的生产工艺,在生产中尽量选用无污染或污染性更小的壬基酚替代物,避免使用发达国家已经禁用或限用的环境污染元素。
  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。   此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。   对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制