当前位置: 仪器信息网 > 行业主题 > >

纳米小镇

仪器信息网纳米小镇专题为您整合纳米小镇相关的最新文章,在纳米小镇专题,您不仅可以免费浏览纳米小镇的资讯, 同时您还可以浏览纳米小镇的相关资料、解决方案,参与社区纳米小镇话题讨论。

纳米小镇相关的论坛

  • 【原创大赛】纳米阵列电极简述

    【原创大赛】纳米阵列电极简述

    纳米阵列电极是多个纳米电极的集合体。根据单个纳米电极的组合方式,纳米阵列电极可分为有序纳米阵列电极(nanoelectrode arrays) 和无序纳米阵列电极( nanoelectrode ensembles) 。纳米阵列电极不仅具有单个纳米电极高传质速率、低双电层充电电流、小时间常数、小IR 降及高信噪比等优势,而且由于成千上万个单个纳米电极集中在一个基体上,克服了单个纳米电极响应信号过小、易受干扰和难以操作等缺点,能极大地提高测量的灵敏度和可靠性,降低操作难度和测量成本。特别是作为人工组装的纳米结构体系,纳米阵列电极更能突出研究者的设计和创新理念。人们能够通过设计和组装实现对纳米阵列组成、结构和性能的有效控制。因而,纳米阵列电极自20 世纪80 年代诞生起就受到人们的普遍关注。迄今为止,人们已相继设计制作出如圆盘状、井状、叉指状、圆柱形、圆锥形、截锥形、球形和半球形等多种形状的纳米阵列电极,所用电极材料包括金属、半导体、高聚物和碳纳米管等多种材料。其在电化学分析、微型生物传感器、电催化和高能化学电源等领域已日益显示出广阔的应用前景。1、纳米阵列电极的制备方法1. 1 模板法模板法是选择具有纳米孔径的多孔材料作为模板,在模孔内合成纳米阵列,然后组装成纳米阵列电极。此方法通过调整模板的参数,可以实现对纳米电极结构和尺寸的有效控制。可采用纳米阵列孔洞膜做模板,通过电化学沉积法、溶胶一凝胶法、溶胶一凝胶一聚合法、化学气相沉积法等技术将纳米结构基元组装到模板孔洞中而形成纳米管或者纳米线的方法。常用的模板主要是有序孔洞阵列氧化铝模板(AAO)和含有孔洞有序分布的高分子模板。多孔阳极氧化铝模板是通过高纯铝片在适当温度的酸性溶液中阳极氧化制得。依阳极氧化时所加的氧化电压、电解液类型、电解温度及电解时间的不同,可得到不同孔径、孔深和孔间距的膜,这种膜是典型的具有纳米孔阵列的自组装微结构。Keller等在1953年报道了多孔阳极氧化铝的理想结构模型如图1所示,该模型指出多孔层是由许多六角柱形结构单元紧密有序地排列而构成的。Martin等在模板法制备纳米线方面做了开拓性工作,1989年他们在阳极氧化铝模板的孔道内合成了金纳米线,并研究了它的透光性能。此后,模板法得到了迅速发展。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567915_3043450_3.jpg图1 多孔阳极氧化铝的理想结构模型纳米阵列电极的模板法制作过程如图2所示,大致是先在通孔的模板膜的一面用各种方法覆盖一层金属。这层金属膜较厚是为了保证电极能覆盖所有的孔。然后将覆有金属的一面与导电基体接触或者直接将金属膜作为导电基体进行电沉积。通过溶解或部分溶解模板控制纳米线的长度,可得到不同类型的纳米阵列电极。如图2b为纳米孔阵列电极,图2c为纳米盘阵列电极,图2d、e为纳米线阵列电极。用化学沉积的方法填充模板时不需事先镀覆金属膜。例如,在金属已充满膜的纳米孔洞之后继续沉积,可在模板膜的两面均得到一层金属膜,去除其中的一层,另一层留作阵列电极的基体,则得到典型的纳米盘阵列电极。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567916_3043450_3.jpg图2 纳米阵列电极的模板法制作过程示意图1.2 刻蚀法刻蚀法是基于化学腐蚀或光化学反应,对材料进行加工的一种方法。在纳米阵列电极制备过程中,主要通过对电极覆盖层、阵列模板或电极材料进行加工,从而制备出各种立体形状的电极,是目前制备形状可控的纳米阵列电极较为有效的方法。目前主要的刻蚀方法有化学刻蚀法和光刻法。化学刻蚀操作简便,只要控制得当就能得到理想的纳米阵列电极。Crooks等报道了通过刻蚀覆盖在平面电极上的绝缘层来获得纳米孔阵列电极的方法。他们制得直径为60~80 nm 的Au (111) 有序凹进并且高度对称的六边形纳米阵列。具体做法是:选择一定面积的Au(111),其余部分用蜡覆盖,电化学方法纯化45 min 后,欠电位沉积单层铜;再将硫醇化学吸附在上层的铜上形成硫醇自组装层;最后在氰化物溶液中用化学刻蚀的方法扩大硫醇自组装层的缺陷,以制成凹进的Au (111) 纳米阵列电极。光刻法在制备有序带状纳米阵列电极方面具有特殊的优势。典型的制作过程如下:首先设计阵列的形状,采用气相沉积在绝缘基体上沉积厚度约为100 nm的薄层金属,再涂上一层光刻胶,然后在其上覆盖光刻模板,通过光照和选择性化学溶解得到阵列。Finot等采用电子束光刻及离子刻蚀的方法得到纳米插指阵列电极。其中单个插指电极的宽度为100 nm、电极间距离为200nm、电极面积为100 m×50 m,如图3所示。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567917_3043450_3.jpg图3 金插指阵列电极SEM图(1000×)1.3 自组装法自组装法通过非共价键之间的相互作用使纳米粒子聚合在一起,自发地在基底表面形成有序纳米结构薄层的一种方法,是近年来非常活跃的研究方法之一。在纳米阵列电极制备过程中,自组装层可作为电极反应的活性部分,也可作为惰性覆盖层。汪尔康等采用自下而上自组装法制成金纳米粒子阵列电极。他们首先将云母基体在巯基的作用下表面功能化,再将云母浸入到金胶溶液中,云母表面的硫醇基团将12 nm的金颗粒固定。不同的浸入时间获得的金阵列的密度不同,时间越长,得到的纳米金粒子阵列的密度越高。Radford等采用自组装法将氧化还原活性物质单层膜固定在以金为基体的单层十二烷基硫醇自组装膜上,制成纳米阵列电极。其中活性部分是固定在直链硫醇自组装层终端的氧化还原类物质,每个活泼的氧化还原分子相当于单个纳米电极。这种电极灵敏度高,可用来研究以氧化还原介质作电子传递媒介的生物大分子氧化还原反应机理。2、前人相关纳米阵列制备的研究高度取向的纳米阵列是以纳米颗粒、纳米线、纳米管为基本单元,采用物理和化学等方法在二维或三维空间构筑的纳米体系。高度取向的纳米阵列结构除具有一般纳米材料的性质外,它的量子效应突出,具有比无序的纳米材料更加优异的性能。纳米阵列结构很容易通过电、磁、光等外场实现对其性能的控制,从而使其成为设计纳米超微型器件的基础。目前,有序纳米结构材料已经在垂直磁记录、微电极束、光电元件、润滑、传感器、化学电源、多相催化等许多领域开始得到应用。2.1TiO2纳米管阵列的制备及其研究目前TiO2纳米管的制备方法主要有包括利用多孔氧化铝、有机聚合物和表面活性剂作为模板的模板合成法和利用TiO2纳米粉在碱性条件反应的水热合成法。其中最主要的方法是多孔氧化铝模板法和碱性条件下的水热合成法。在多孔氧化铝模板合成法中,通过调节工艺参数来控制,不同模板的孔径尺寸,可以制备出不同管径的纳米管,但难以合成直径较小的纳米管;而水热合成法虽然操作简单,且可以制得管径较小的纳米管,但纳米管的特征却严重依赖于颗粒的尺寸和晶相。同时这两种方法制备的纳米管是一种分散状态,不能直接固定在电极的表面。从高级氧化技术应用角度来看,TiO2固定薄膜比悬浮颗粒更为实用。美国科学家Grimes利用电化学阳极氧化的方法制备了TiO2纳米阵列材料,采用阳极氧化技术制备的TiO2纳米管分布均匀,以非常整齐的阵列形式均匀排列,纳米管与金属钛导电基底之间以肖特基势垒直接相连,结合牢固,不易被冲刷脱落。TiO2纳米阵列材料是制备工艺流程如表1所示。表1 TiO2纳米阵列材料是制备工艺流程 步 骤操 作 工 艺Ⅰ金属钛在含有F-的酸性电解质中迅速阳极溶解,阳极电流很大,并产生大量Ti4+离子(反应式(1))。接着Ti4+离子与介质中的含氧离子快速相互作用,并在Ti表面形成致密的TiO2薄膜,电流急剧降低(反应式(2))。Ⅱ多孔层的初始形成阶段,随着表面氧化层的形成,膜层承受的电场强度急剧增大,在氟离子和电场的共同作用下,在TjO2阻挡层发生局部蚀刻,形成许多不规则的微孔凹痕(反应式(3)),此时,电流呈轻微增大趋势。Ⅲ多孔膜的稳定生长阶段,电流完全由发生在阻挡层两侧的离子迁移提

  • 【原创大赛】Ni基纳米阵列的制备

    【原创大赛】Ni基纳米阵列的制备

    1、实验步骤(1)AAO模板前处理依次用丙酮,乙醇,去离子水对模板进行清洗,以除去表面油污和灰尘等杂质,以防阻塞纳米孔。然后,在模板的一侧进行喷金处理,根据本实验要求,选择喷黄金,喷金在真空条件下进行,时间为5min。前处理后,测得AAO模板喷金侧具有良好的导电性。 (2)电镀液的选取主要选用Ni的盐溶液作为电镀液使用,考虑到AAO模板易被腐蚀的特性,配制了酸性和中性两种电镀液配方进行实验。(3)电镀实验预处理用循环水泵抽真空,使电镀液充满氧化铝模板的孔洞。抽真空时间为12h左右,至溶液内不再有气泡冒出为止。 (4)电沉积 在室温条件下,采用两电极体系,Pt作为对电极。直流电源下电流密度恒定在8mA/cm2条件下制备得到了金属Ni纳米线。将所制备的样品用3MNaOH溶液进行充分溶解,除去多孔氧化铝膜,用去离子水反复长时间冲洗,将残留的NaOH去除干净。2、 结果与讨论2.1模板的微观形貌图1为AAO模板的电镜形貌图。AAO模板孔径为80~100nm。孔隙率,模板中孔洞的体积之和占模板总体积的百分比,用P表示。因模板孔洞平行排列,故孔隙率的大小可用垂直于模板孔洞生长方向的平面上,孔洞面积与总面积的比值来计算。所用模板孔隙率计算如下:α(孔密度)=n÷S总 (2·1)P(孔隙率)=S孔÷S总 (2·2)其中,n(孔数)应按选定的分析面积内完整孔洞的数目来计算。由于孔洞数目较多,且实际模板的孔洞并非理想的圆形,因此,可以考虑借助专门的图形分析处理软件对一些结构参数进行辅助分析计算,一方面可以提高工作效率,另一方面,结构参数分析的准确率也可以得到很好的保证。经计算得,实验所用AAO模板孔隙率约1011个孔/cm2。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567922_3043450_3.jpg图1 AAO模板的SEM图2.2制备Ni纳米阵列在室温下恒流电镀9h后,将AAO模板置于3M的NaOH中50min,进行模板的去除后,用SEM观察其微观形貌。图2为去除AAO模版后的纳米线的SEM图。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567923_3043450_3.jpg图2 Ni纳米线的SEM图从图2可以看出, Ni纳米线呈束状,有较大的长径比,大量纳米线互相接触,这是由于溶解时间过长,AAO模板全部被除去后,单独的纳米线无法独立支撑,未形成规整的阵列结构。Ni纳米线直径在80-100nm之间,这与AAO模板孔洞直径分布有关。AAO模板的制备过程中会因降压引起纳米孔洞底部变细小,镍纳米线的外形与氧化铝模板具有相似性,因此镍纳米线的根部会有分支、变细的现象。还可能是电沉积过程中,导电性能好的区域生长较快形成的。纳米线表面不光滑则说明Ni纳米线的生长为单晶结构,生长速度有一定的不可控性。图3为所制备的Ni基纳米线的俯视图,AAO模板全部去除,纳米线互相接触。可以看出,Ni纳米线具有很好的取向性且未发生断裂,表明纳米线刚性较好。在模板全部被去除的情况下,仍保持有一定的有序性。纳米线生长长度基本一致。纳米线呈束状集中也有可能是电沉积时间过长,导致所沉积的纳米线长度超过模板而在模板表面沉积而形成的。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567924_3043450_3.jpg图3 Ni基纳米阵列将AAO模板的去除时间缩短为35min,电沉积时间仍为9h,对制得的样品进行微观表征,如图4的a、b、c、d所示。由图4可知,模板部分去除后得到的Ni基纳米阵列,呈排列整齐的阵列结构,可用于下一步的纳米阵列电催化性能的研究。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567925_3043450_3.jpg图3·5 Ni基纳米阵列的SEM图依据上面的分析结果可知,为得到排列规整的Ni基纳米阵列,需对电镀时间和模板溶解时间进行调整。缩短模板溶解时间,使Ni纳米线底部不与基体脱离,使纳米线之间相互独立,保持模板去除前的间距,从而得到Ni基纳米阵列电极。3、结论通过AAO模板电沉积法制备的Ni基纳米线平行排列,高度有序,镍基纳米阵列中镍纳米线直径为80~100nm。

  • 在读博士首创“纳米探针” 打破国外技术封锁

    外观如同一支铅笔,能够探入癌细胞、H7N9等病毒内提取细胞质,还能作为手表齿轮等高精密加工的工具—凭借“纳米探针”的发明,不久前,江苏“星辰纳米”团队以机械能源小组第一名的成绩捧起了全国“创青春·优胜杯”的金奖奖杯,并获得多家创投机构的青睐,开始踏上高科技创新创业之路。  这支团队的带头人,就是师从中科院朱荻院士的南京航空航天大学在读博士生孟岭超。  传奇“学霸”—本科三转专业,包揽第一  传说中,孟岭超是一位叱咤南航的“学霸”:从大二开始三转专业,南航机电学院的工业设计、飞行器制造、航空维修工程和机械制造及其自动化共4个专业被他学了个遍,并且每个专业的综合测评都是No.1,多次获得国家奖学金以及校长通令嘉奖等。保送研究生后,他顺利成为江苏省精密与微细制造技术重点实验室的成员,师从中科院院士朱荻教授,从事精密、微细特种加工技术的研究。三年中已发表论文四篇、公开专利四项,并连续两年获得优秀研究生团队等称号。  “我这个人从小比较要强,什么事一旦认准就要做到最好。所以在别人‘喝咖啡’的时间,我边‘喝咖啡’边学习,就连坐校车往返于两个校区之间时,我也会看书温习。”孟岭超说,本科期间涉猎多个专业,为后来的研究打下了比较扎实的基础。  科创“狂人”—每天做试验,一站14个小时  当“学霸”并不是孟岭超的目标。他真正想做的,是开发自身“小宇宙”搞科创。  “从大一开始,我就加入了学校的一个科创基金团队,跟着研究生一起装机床、接线路、做实验、建模型、画图纸、查文献、拟仿真、改软件、修设备……就这样从一名科创‘小白’成长为了一枚科创‘狂人’。”他自嘲。  2010年,就读大三的孟岭超组建了自己的科创团队,开始了全新的科创之路。团队成员来自南航各个专业,在大家的共同努力下,他们的“AGV视觉导航小车”等科创作品获得了多项荣誉。  就读研究生后,孟岭超的科创课题转为微细特种加工技术。“我刚开始提出把碳纳米管制成加工电极的想法时,几乎没人相信我能成功,因为国内根本没有先例。”孟岭超说,从理论上论证可行后,他每天从早上8点就到实验室,常常一直干到晚上10点,试验平均每三分钟一次,每天要试验上百次,而且只能站着做。“就这样持续试验半年多、失败上万次后,我终于成功地把纳米和微米‘焊接’到了一起。”  2013 年“挑战杯”全国大学生课外学术科技作品竞赛上,他的作品《碳纳米管工具电极的制备与应用》由于突破了国内纳米探针制备技术的空白,打破了国外技术的垄断,得到专家评委的高度评价,获得了江苏省一等奖、全国二等奖。  创业“新兵”—要用“纳米铅笔”绘出星辰梦想  此后,孟岭超在导师的指导下,潜心研究、不断改进纳米探针制备技术。今年,由南航创业孵化中心为其团队提供工作场地,江苏星辰纳米科技有限公司宣告成立。目前,赵淳生院士团队以及南航的部分科研团队都在使用他们研制的纳米探针,公司还与国内8家高科技企业建立起合作关系。  “纳米探针运用于原子粒显微镜,可以实现对癌细胞、H7N9病毒等的探温乃至于提取的一系列过程。而在高精密加工方面,有了纳米探针这样的工具,我们才能生产出更多纳米级的产品。比如手表齿轮,未来如果使用这样的纳米探针制造,精度就会有明显的提高。再比如微型机器人的制造也离不开这样的工具。而一旦这样的微型医疗机器人问世,对于医疗界来说,将具有划时代的意义。”孟岭超告诉记者,过去,国内的研究存在空缺,而国外也常有技术封锁,我国高精密制造业存在“微米利用不足,纳米几乎为零”的发展困境。多年来,朱荻院士的研究就是为了改变这样的现状。  “星辰公司的目标就是成为国内首创、国际领先的纳米探针生产企业,实现国内微细制造技术从精密到超精密的突破性跨越。”孟岭超说,不久前有一家跨国企业希望购买他们的技术和整个团队,但被他婉言谢绝,“我们更想做一颗独立的星星,在群星闪耀的夜空中,绽放出属于自己的热量与光芒。”  说这话的时候,这个1989年出生的小伙子满脸绽放自信的光彩。

  • 美开发可快速诊断肺结核的便携纳米设备

    用时不到3小时,同时确定是否存在耐抗生素菌株2013年05月07日 来源: 中国科技网 作者: 冯卫东 中国科技网讯 美国马萨诸塞州总医院(MGH)研究人员曾首个开发出癌症诊断便携设备,现在他们又在结核病和其他重要传染病的快速诊断技术上取得了新的进展。研究人员在《自然·通讯》和《自然·纳米技术》分别发表研究成果,该设备融合了微流体技术和核磁共振(NMR)技术,不仅能诊断出这些重要的传染病,还能确定是否存在耐抗生素菌株。 两篇论文的共同高级作者、MGH主任医师拉尔夫·惠斯勒博士表示,快速查明与传染病有关的病原体并对耐药性进行测试,对于诊断疾病和决定是否要对患者使用抗生素非常重要。新方法仅需2至3个小时即可完成上述过程,这比动辄需要两周时间才能提供诊断结果的标准培养法有了很大的进步。 MGH研究人员过去曾开发出能检测血液(或非常小的组织样本)中癌症生物标志的便携设备。靶细胞或分子首先由磁性纳米粒子进行标记,然后样本通过一个微型NMR系统,其能检测和量化靶标的量值。但是,要将该系统用于细菌诊断时存在难以找到抗体的问题,在早期研究中,抗体常被用以准确检出特定细菌。于是,研究团队转向将特定核酸序列作为靶标。 在4月23日《自然·通讯》中描述的新设备,可在少量痰标本中检出结核病菌的DNA(脱氧核糖核酸)。DNA从样品中提取后,使用标准程序对靶标序列进行扩增,然后由含有互补核酸序列的聚合物小珠捕获,并由磁性纳米粒子(其序列可与靶标DNA的其他部分进行绑定)进行标记。将微型NMR线圈纳入设备,即可检出样本中存在的任何结核病菌DNA。 对结核病患者和健康人群的对照样本进行的测试表明,该设备在不到3小时的时间内检出了所有的阳性样本,误报率为零。而现有的诊断程序则需数周时间,且漏报率高达40%。 研究人员在5月5日《自然·纳米技术》上描述了一种类似的新技术。该系统将核糖体RNA(rRNA)作为纳米粒子标记的目标。研究人员开发的普通核酸探针能检测许多细菌种群共有的rRNA区域,开发的另一组探针则将13种临床上常见的重要病原体的特定序列作为靶标,这些病原体包括肺炎链球菌、大肠埃希氏菌和耐甲氧西林金黄色葡萄球菌(MRSA)等。 该设备的灵敏度非常高,能检出10毫升血液试样中仅存的一两个细菌,从而准确地判断出细菌载荷。对感染患者血液样本的测试表明,系统在不到两小时内准确地识别了特定的细菌种类,还发现了标准培养技术无法检出的两个细菌种类。 惠斯勒表示,基于磁相互作用检测病原体是一种非常可靠的方法,其不用管样品的质量,这意味着在有限资源环境下的大范围净化措施将不再必要。而且,在几个小时内就能检测出细菌,这对控制结核病的扩散具有至关重要的意义。(冯卫东) 《科技日报》(2013-5-7 二版)

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • 【求助】纳米线阵列是否可以用XPS分析?

    在基底上沉积的膜(10几纳米左右,有孔洞)+纳米线阵列(1微米左右),想分析纳米线的成分,可否用xps?xps能够反映表面以内多深的信息?基底的信息会造成干扰么?膜呢?菜鸟一只,不要见笑。

  • 【求助】求纳米标准的下载链接

    GJB 1713-1993 纳米激光偏振干涉仪规范 JJF 1321-1990 250~2500纳米光谱辐射亮度和照度基准操作技术规范 JJF 1322A-1990 250~2500纳米光谱辐射亮度副基准操作技术规范JJF 1322B-1990 250~2500纳米光谱辐射照度副基准操作技术规范 JJF 1335-1990 800~2000纳米光谱反射比副基准操作技术规范 GB/T 18735-2002 分析电镜(AEM/EDS)纳米薄标样通用规范 GB/T 19345-2003 非晶纳米晶软磁合金带材 GB/T 19346-2003 非晶纳米晶软磁合金交流磁性性能测试方法 HG/T 3791-2005 氯乙烯-纳米碳酸钙原位聚合悬浮法聚氯乙烯树脂 GB/T 19588-2004 纳米镍粉 GB/T 19589-2004 纳米氧化锌 GB/T 19591-2004 纳米二氧化钛 GB/T 19619-2004 纳米材料术语 GB/T 20307-2006 纳米级长度的扫描电镜测量方法通则 HG/T 3819-2006 纳米合成水滑石 HG/T 3820-2006 纳米合成水滑石 分析方法 HG/T 3821-2006 纳米氢氧化镁 SC/T 7205.1-2007 牡蛎包纳米虫病诊断规程第1部分:组织印片的细胞学诊断法 SC/T 7205.3-2007 牡蛎包纳米虫病诊断规程第3部分:透射电镜诊断法

  • 【分享】疏水性荧光体掺杂微/纳米荧光探针的合成

    荧光体掺杂SiO2 微/纳米颗粒以其荧光强度高、光稳定性好、表面易修饰、生物毒性小等优点,为生物分析领域提供了新的荧光探针。迄今为止,用于掺杂的荧光体主要有荧光素衍生物、罗丹明衍生物、联吡啶钌等亲水性荧光体,通过StÖ ber 法和微乳液法[1]以共价或静电作用方式包埋于SiO2 微/纳米颗粒中。而对于许多光稳定性好、量子产率相对较高的荧光体,如芘(pyrene)、1,2,3,4,5-五苯基-1,3-环戊二烯(PPCP)、红荧烯(rubrene)等,由于疏水性强,不易衍生化,无法利用上述方法制备微/纳米荧光探针,限制了其在生物分析中的应用。

  • 【求助】(ok)如何测Ni纳米线阵列的磁性

    我在多孔氧化铝模板(AAO)中填充了Ni的纳米线阵列,老师让分别测试平行阵列方向和垂直阵列方向的磁性,请问该如何操作?(是不是在换算磁性物质的质量的时候必须把模板的重量扣除?)请高手赐教,谢谢!

  • 【原创大赛】碳纳米管表面负载后官能团红外振动峰的变化

    【原创大赛】碳纳米管表面负载后官能团红外振动峰的变化

    实验目的: 研究酸化后的碳纳米管表面负载金属粒子后表面官能团的振动峰的强弱是否会有变化。实验背景:金属粒子催化剂一般具有比较好的催化性能,例如燃料电池催化剂,水电解催化剂等,但是金属纳米粒子在制备过程中如果不分散,它的表面积会减小,影响对应的催化活性,所以提高他的分散性对于保证催化剂粒子的催化活性就很重要。一般来说,通过将纳米粒子负载于碳载体上,例如炭黑或者碳纳米管上,可以保证纳米粒子的分散性,保证它具有比较大的比表面积。然而,纳米粒子在未处理的碳载体上还是会发生团聚,现在研究表明,对碳载体进行酸化可以减少团聚,然而对于酸化碳纳米管上究竟什么样的官能团对于提高分散性有帮助,进行的红外光谱的研究。实验所用的测试手段:傅里叶变换红外光谱(BRUKER EQUINOX55)推测结果:经过负载后的碳纳米管表面官能团红外振动峰减弱。分析: 通过下图红外光谱分析结果可以看到,在3500和1250 cm-1位置对应的羟基以及碳氧双键的振动峰并没有发生明显的改变,但是位于1730 cm-1位置处对应的羧基的伸缩振动峰在负载之后却明显的减弱,这一实验结果说明,对于酸化后的碳纳米管,其金属离子主要负载于羧基官能团处,而且因为金属粒子的负载,使得碳纳米管表面的羧基的振动峰减弱,即会对其表面官能团有影响。http://ng1.17img.cn/bbsfiles/images/2015/08/201508252229_562842_2257998_3.jpg结论:经过酸化后的碳纳米管表面负载金属粒子后表面官能团的振动峰会减弱,主要是在羧基的位置上进行负载来提高分散性。

  • 纳米医学畅想

    纳米医学畅想 纳米医学的研究内容十分广泛,最引人注目的是扫描隧道显微镜(STM)。这一非凡的仪器于80年代初研制成功,可以在纳米尺度上获取生命信息,研究者相继得到了左旋DNA、双螺旋DNA的碱基对、平行双螺旋DNA的STM图像。我国科学家利用STM成功的拍摄到表现DNA复制过程中一瞬间的照片。目前,研究已涉及到氨基酸、人工合成多肽、结构蛋白和功能蛋白等领域。 纳米使单位体积物质储存和处理信息的能力提高百万倍以上,人类有可能将存储了全部知识的纳米计算机安放在人脑中,或许有一天,图书馆就在我们的头脑内,每一个人都可能成为爱因斯坦、牛顿,老年性痴呆、记忆丧失等病症将会得到彻底治愈。纳米计算机可能用来读出人脑内的内容及品性,将一个脑内的信息转录到另一个脑内,这个脑可以是人脑,也可以是电脑。纳米医学也有可能改变人类自身,让人类成为能在天上飞、水中游,能进行光合作用或能在恶劣环境下生存的“超人”。将来,掌握纳米医学技术的医生,不仅能够“修理人”——治病,而且能够“改造人”——使其具有特殊功能。虽然这些设想有些离奇,但决非是毫无科学根据的幻想。即将进入临床应用的有:利用纳米传感器获取各种生化信息和电化学信息。已经取得重大成果的还有DNA纳米技术,主要应用于分子的组装。 已经在医药领域得到成功的应用。人们已经能够直接利用原子、分子制备出包含几十个到几百万个原子的单个粒径为1-100纳米的微粒。最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。在纳米铁微粒表面覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。由于纳米微粒比血红细胞还小许多,可以在血液中自由运行,因而可以在疾病的诊断和治疗中发挥独特作用。 当把二氧化肽做到粒径为几十纳米时,在它的表面会产生一种叫自由基的离子,能破坏细菌细胞中的蛋白质,从而把细菌杀死。例如用二氧化肽处理过的毛巾,只要有可见光照射,上面的细菌就会被纳米二氧化肽释放出的自由基离子杀死,具有抗菌除臭功能。 将药物粉末或溶液包埋在直径为纳米级的微粒中,将会大大提高疗效、减少副作用。纳米粒可跨越血脑屏障,实现脑位靶向。另外,纳米粒脉管给药,可降低肝内蓄积,从而有利于导向治疗。纳米粒中加入磁性物质,通过外加磁场对其导向定位,对于浅表部位病灶治疗具有一定的可行性。在影像学诊断中,纳米氧化铁在病灶与正常组织的磁共振图像上,会有较大的对比度。 纳米粒用作药物载体具有下述显著优点:(1)可到达网状内皮系统分布集中的肝、脾、肺、骨髓、淋巴等靶部位;(2)具有不同的释药速度。(3)提高口服吸收药物的生物利用度。(4)提高药物在胃肠道中的稳定性。(5)有利于透皮吸收及细胞内药效发挥。如:载有抗肿瘤药物阿霉素的纳米粒,可使药效比阿霉素水针剂增加10倍。目前已在临床应用的有免疫纳米粒、磁性纳米粒、磷脂纳米粒以及光敏纳米粒等。 医用纳米机械或纳米微型机器人可潜入人体的血管和器官,进行检查和治疗,使原来需要进行大型切开的手术成为微型切开或非手术方式,并使手术局部化。纳米医用机器甚至可以进入毛细血管以及器官的细胞内,进行治疗和处理。这类机器可以将对人体的伤害减小到最低程度。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人一旦制成,能在一秒钟内完成数十亿个操作动作。如果数量足够多,就可以在几秒或几分钟内完成现今需几天或几个月甚至几年、几十年才能完成的工作。 和细胞一样,作业中坏了的微型机械可以随时被更换或修理。微型机械发展的顶峰,或许是可以自己增殖繁衍的纳米机器人。别以为以上设想不可思议。纳米科学家们相信这种愿望能够实现。 不难想象,倘若人类能直接利用原子、分子进行生产活动,这将是一个“质”的飞跃,将改变人类的生产方式和空前地提高生产能力,并有可能从根本上解决人类面临的诸多困难和危机,开创医学新纪元。

  • 纳米生物技术简介

    纳米生物技术简介 纳米(nanometer,nm)是一种长度单位,一纳米等于10亿分之一米、千分之一微米。从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。DNA链的直径就是一纳米左右。由于纳米材料表现出许多不同于传统材料的特殊性能,所以纳米科技被视为21世纪关键的高新技术之一。纳米技术包含下列四个主要方面:第一方面是纳米材料,第二方面是纳米动力学,第三方面是纳米电子学,第四方面是纳米生物学和纳米药物学。在纳米生物学和纳米药物学方面,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。当前纳米生物学和纳米药物学研究领域主要集中在以下几个方向:纳米生物材料、纳米生物器件研究和纳米生物技术在临床诊疗中的应用。

  • 纳米生物:创新在起跑线

    ——国家863计划纳米生物技术主题专家张阳德教授访谈录编者按:岁末年初,我国纳米生物领域出现了几件大事:2007年12月31日,中国医药生物技术协会纳米生物技术分会在深圳宣告成立。工程院院士何继善、科学院院士姚开泰等全国近百名专家参加。2008年2月,中国纳米生物技术分会在北京举行第一届委员大会,卫生部纳米生物技术重点实验室主任、卫生部肝胆肠外科研究中心主任、中南大学生物医学工程研究院院长张阳德教授,选举为首届主任委员。大会选举了中国工程院陈志南院士、中国科学院曾益新、魏于全、姚开泰院士、江雷教授5位专家为副主任委员。郭应禄院士等35名业内专家为常务委员。这个汇集我国纳米生物领域的医学、化学、微电子、精密机械加工的专家组成的强大团队,将整合科技界、产业界纳米生物技术的资源,开展国家“863计划”纳米生物技术研究的攻关和实施。为此,我们邀请张阳德教授阐述了我国开发纳米生物技术尤其是在医学应用的战略和关键问题。先发制人,后发制于人记者:科学的交叉与融合,产生了一些新兴的领域。其中纳米生物技术与医用材料,就属于这样的领域。作为国家863计划纳米生物技术的主题专家,你如何看待当今纳米生物技术的发展现状?张阳德:即使你比刘翔跑得还要快,你也得与对手站在同一条起跑线上。我们在现代科技与产业的一些方面,落后于西方发达国家,这并不是我们跑得不够快,而是因为没能站在同一个起点。纳米生物技术是纳米科技与当代生物医学多学科结合的产物,是当代生物技术的前沿和热点。尤其在医药卫生领域有着广泛的应用和巨大的产业化前景。当今国际,由纳米药物载体,纳米生物传感器,纳米生物临床检测诊疗手段引发的新技术革命方兴未艾。据预测,到2010年,纳米生物技术对美国GDP的贡献将达到万亿美元,在日本的市场规模也将达到30万亿日元。在中国这样的人口大国,市场前景更加不可限量。纳米生物技术在医学临床应用,将成为我国重要的战略高技术领域,直接影响着国民经济和社会发展,关系到国家安全和人民健康。记者:目前这一领域中各国的竞争趋势如何?张阳德:先发制人,后发制于人。抢占战略制高点,向来是发达国家发展战略高技术的一个原则。从2000年开始的美国国家纳米技术行动计划,将纳米生物医疗列为突破重点。美国国家卫生研究院(NIH)2001年专门组织了“纳米科技与生物医学”的研讨会,提出了“纳米科技将导致新的生物学和生物工程”的结论。美国NIH在2002年度科研项目计划中,超过50%%的经费是针对生物反恐怖的,其中多数项目的完成希望借助纳米科学技术。美国国家癌症研究所(NIC)的计划是希望借助纳米科学技术,主要包括纳米颗粒材料技术以及纳米传感器技术,形成一些新的、针对恶性肿瘤的早期诊断与治疗技术。欧盟2002年正式推出了第6框架计划(2002~2006年),旨在将科学发展的成果转化为产业界的实际竞争优势。纳米生物技术的研究重点包括先进的药物传递方式、具有生物实体的纳米电子学、生物实体的界面、生物实体的电子探测、生物分子或复合物的处理操纵和探测。

  • 扫描美国纳米生物专利技术

    扫描美国纳米生物专利技术  纳米生物技术是纳米技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。纳米生物技术所要研究的对象是生物分子、细胞、组织在纳米层次的结构变化,其主要的研究方向包括:生物材料(材料——组织介面、生物相容性材料),仪器(生物传感器、研究工具),治疗(药物和基因载体)等。  美国是世界上申请有关纳米技术专利最多的国家,搜索“纳米”可找到近8000个专利,日本排在其后,我国名列第三。相对而言,我国在纳米生物技术的理论研究和应用研究方面相比其他学科远远地走在了前面。为了更多地探知美国在纳米生物技术领域的研究现况,指导我国的研究策略,我们从公开申请的专利中去探知美国的研究状况,特别介绍一些国内研究人员比较感兴趣的技术和方法:

  • 中科院长春光机所全球首创“纳米荧光炸弹”

    近日,中科院长春光机所在国际上首次提出超级碳纳米点的概念,并研制出基于超级碳纳米点的水触发“纳米荧光炸弹”。复合该“纳米荧光炸弹”的纸可以实现喷水荧光打印、指纹汗孔荧光采集等多种实际应用。  荧光成像可作为一种有效的技术方法,在数据存储、数据安全和临床诊断等领域具有重要应用。该方法很大程度上依赖于新型智能发光材料的开发。近年来,一种新型的碳纳米材料,即荧光碳点的出现,使原本非发光的碳材料表现出优异的发光特性,引起国际上极大关注。  以往碳纳米点的研究主要针对单个碳纳米点的发光特性。中科院长春光机所研制出基于“超级碳纳米点”的水触发“纳米荧光炸弹”,使得碳纳米点材料成为一种新型的智能发光材料。这种“超级碳纳米点”遇水会分解成独立的小尺寸碳纳米点,进而会导致其光致荧光增强。这种“超级碳纳米点”的纸复合物,会产生快速的水诱导光致发光增强现象,“超级碳纳米点”复合纸可作为无墨打印纸进行喷水荧光打印,实现更加环保的信息存储和信息加密。这种成本低、环保、全新的碳基纳米材料,还可以用在医疗和诊断领域。通过在“超级碳纳米点”复合纸上按压手指,可以快速、精确地采集指纹上处于激活状态的汗孔分布图,实现个人指纹信息更加安全、可靠的采集及个人健康的诊断。

  • 【分享】美研发出测量纳米级材料相互作用的探针

    美国加州大学洛杉矶分校17日表示,该校纳米系统科学主任保罗·维斯领导的研究小组开发出了研究纳米级材料相互作用的工具——双扫描隧道显微和微波频率探针,可用于测量单个分子和接触基片表面的相互作用。   过去50年中,电子工业界努力遵循着摩尔定律:每两年集成电路上晶体管的尺寸将缩小大约50%。随着电子产品尺寸的不断缩小,目前已到了需要制作纳米级晶体管才能继续保持摩尔定律正确性的地步。  由于纳米级材料和大尺寸材料所展现的特性存在差异,因此人们需要开发新的技术来探索和认识纳米级材料的新特征。然而,研究人员在研发纳米级电子元器件方面遇到的障碍是,人们没有相应的能力去观察如此小尺寸材料的特性。

  • 什么是纳米抗体?纳米抗体的特性有哪些?

    [font=宋体][b]什么是纳米抗体?[/b][/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/nanobody][b]纳米抗体[/b][/url]([/font][font=Calibri]nanobody, Nb[/font][font=宋体])是一种人工设计的抗体分子,又称为单域抗体([/font][font=Calibri]single-domain antibodies, sdAbs[/font][font=宋体])、[/font][font=Calibri]VHH[/font][font=宋体]抗体或[/font][font=Calibri]camelid[/font][font=宋体]抗体,是发现于羊驼、单峰驼等驼科以及鲨鱼、鳐鱼等软骨鱼中的一种天然缺失轻链的重链抗体([/font][font=Calibri]heavy-chain antibodies, HCAbs)[/font][font=宋体]。[/font][font=Calibri]1993[/font][font=宋体]年,比利时的科学家在骆驼的血清中发现了一种天然轻链缺失的重链抗体,分子量约[/font][font=Calibri]95 kDa[/font][font=宋体],其中包括两个恒定区([/font][font=Calibri]CH2[/font][font=宋体]和[/font][font=Calibri]CH3[/font][font=宋体])、一个铰链区和一个重链可变区([/font][font=Calibri]variable heavy chain domain, VHH[/font][font=宋体]),接着克隆得到只包含一个重链可变区的单域抗体,即[/font][font=Calibri]VHH[/font][font=宋体]抗体。[/font][font=Calibri]VHH[/font][font=宋体]抗体的晶体结构为[/font][font=Calibri]4 nm[/font][font=宋体]×[/font][font=Calibri]2.5 nm[/font][font=宋体]×[/font][font=Calibri]3 nm[/font][font=宋体]的椭圆形,分子量大小仅普通抗体的[/font][font=Calibri]1/10[/font][font=宋体],约[/font][font=Calibri]12-14 kDa[/font][font=宋体],是最小的完整抗原结合片段,因此又被称为纳米抗体。纳米抗体可用于肿瘤等疾病的治疗、疾病的检测、疫苗的研发等。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]纳米抗体特性:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]高耐热性和稳定性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]将不同的纳米抗体在[/font][font=Calibri]37[/font][font=宋体]℃放置[/font][font=Calibri]1[/font][font=宋体]周,结果其抗原结合活性均在[/font][font=Calibri]80%[/font][font=宋体]以上,表明纳米抗体在室温下保存相当稳定,这使其比常规抗体更易于储藏和运输。[/font][/font][font=宋体][font=宋体]比较了鼠单抗和纳米抗体在高达[/font][font=Calibri]90[/font][font=宋体]℃高温长时间处理的抗原结合活性,发现纳米抗体都保持了较高的活性仍能重新获得抗原结合能力,而所有常规抗体在[/font][font=Calibri]90[/font][font=宋体]℃处理后都丧失了活性,发生了不可逆的聚合。[/font][/font][font=宋体][font=宋体]在恶劣条件,如在高热、离液剂、存在蛋白酶和极度[/font][font=Calibri]pH[/font][font=宋体]值变性的条件下(如胃液和内脏中),正常抗体会失效或分解,而纳米抗体仍具有高度的稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]高抗原结合性:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体独特的结构决定了其高抗原结合特性:纳米抗体较长的[/font][font=Calibri]CDR3[/font][font=宋体],可形成一稳定的暴露的凸环结构(凸环中具有稳定结构的二硫键),能够深入抗原内部以更好的结合抗原从而提高了其抗原特异性和亲和力。[/font][/font][font=宋体][font=宋体]而传统抗体[/font][font=Calibri]Fab[/font][font=宋体]片段及单链抗体[/font][font=Calibri]scFv[/font][font=宋体]的抗原结合表面常形成凹形拓扑结构[/font][font=Calibri], [/font][font=宋体]通常只能识别位于抗原表面的位点,因此纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]单域具有更加广泛的抗原结合力,甚至当靶蛋白紧密包裹隐藏了普通抗体识别的位点时[/font][font=Calibri],[/font][font=宋体]纳米抗体也可以对其进行表位识别。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]较强的组织穿透力:[/font][/font][font=宋体] [/font][font=宋体]纳米抗体具有强而快的组织穿透能力,可以进入致密的组织如实体瘤发挥作用;并且多余未结合的纳米抗体能够很快的被清除,这相对于单克隆抗体组织穿透力差,不易被清除的不足,更有利于疾病的诊断。另外,纳米抗体能够有效的穿透血脑屏障,这样的特性为脑部给药提供了新方法,有望成为治疗老年痴呆症的新药。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]高水溶性、高表达性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]正常抗体[/font][font=Calibri]VH[/font][font=宋体]结构域单独表达时通常形成包涵体,或者暴露的疏水域相互黏附;而纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]由于其[/font][font=Calibri]FR2[/font][font=宋体]中的疏水残基被亲水残基所取代,使得纳米抗体的水溶性增加,聚合性减少;而且即使以包涵体形式表达,也很容易复性,这样可以大大提高作为药物的利用率。[/font][/font][font=宋体][font=宋体]因纳米抗体分子量小、结构简单,由单一的基因编码,所以它很容易在微生物中合成,能在噬菌体、酵母等微生物中大量的表达,而且其相对价格低廉、可进行大规模生产,易于普及和应用。有报道,可通过酵母反应器酿造将纳米抗体的产量提高,每公升可达[/font][font=Calibri]1[/font][font=宋体]克的产量。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的应用优势[/b][/font][font=宋体] [/font][font=宋体][font=宋体]①用于生物医药研发(基因工程药物研发、[/font][font=Calibri]ADC[/font][font=宋体]药物研发);[/font][/font][font=宋体]②用于临床体外诊断(胶体金法、酶联免疫吸附法、电化学发光法);[/font][font=宋体]③用于肿瘤研究、免疫学研究等基础研究;申请具有自主知识产权的发明专利及科研奖项;[/font][font=宋体]④拓展研究思路、发表国际知名学术刊物。[/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体是一种非常有前景的下一代治疗性抗体技术,受到越来越多的研究机构和制药公司的关注。为支持纳米抗体药物的早期发现,义翘神州利用噬菌体抗体库技术自主研发了纳米抗体开发平台,已成功开发了多个纳米抗体候选分子。另外,我们的高通量纳米抗体表达平台,已成功表达和生产了多种纳米抗体形式,包括单价、多价或多特异性[/font][font=Calibri]VHH[/font][font=宋体],满足客户的各种定制需求。[/font][/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/nanobody[/font][/font][font=Calibri] [/font]

  • 纳米材料综述

    1,概述一纳米等于十亿分之一米,相当于人的头发丝直径的八万分之一。纳米材料被誉为“21一世纪最具有前途的材料”,与信息技术和生物技术并成为21世纪社会经济发展的三大支柱之一和战略制高点。材料的结构决定材料的性质,纳米材料的特殊结构决定它具有一些特异性质,从而纳米材料具有常规材料没有的性质,从而使纳米材料得到更广泛的应用。纳米材料在化工,工程材料,信息,生物医学,军事等领域都得到了充分的应用。现在纳米技术尚在初期阶段,但于社会效益与经济效益都产生的巨大的影响,在未来纳米材料必定大显身手。纳米科技是研究结构尺度在1(0.1)~100nm范围内材料体系的运动规律,相互作用及实际应用的科学技术。其基本内涵是在纳米尺寸范围内认识和改造自然,通过直接操作原子,分子创造新的物质。纳米技术在材料学,生物学,电子学,化学,物理学,测量学,力学的若干领域得到应用。纳米技术是许多基础理论,专业工程理论与当代高新技术的结晶。以物理学,化学的微观理论为基础,以现代高精密检测仪器和先进的分析技术为手段。美国IBM首席科学家曾经说到:“正像微电子技术产生了信息革命一样,纳米技术将成为下一代信息的核心。”我国著名科学家钱学森也指出:“纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而引发21世纪的一次新的产业革命。”纳米技术具有极大的战略意义,世界上许多国家都将其纳入重点发展项目。本文将从纳米材料的现状,发展趋势及应用三方面加以主要叙述。2,定义 纳米材料是指特征尺寸在纳米数量级(1~100nm)的极细颗粒组成的固体材料。广义上讲,纳米材料指三维空间尺寸中至少有一维处于纳米量级的材料。发展历史纳米材料的概念可以追溯到1959年,诺贝尔奖获得者理查德·费曼(Richard Phillips Feynman)_在一次名为“There is plenty of room at the bottom”演讲中提到的。他构想人类可以使用宏观上的机器制造比其体积小的机器,进而制造更小的机器,这样一步步缩小生产装置,逐步达到分子尺度,到最后人类可以按照自己的意愿来排列原子,制造产品。尽管当时的科学界抱以普遍的怀疑态度,但不久之后,他的理念得以证实, 1980年H·Gleiter教授在一次穿越澳大利亚的沙漠旅行时引发的构想,他不同于当时的常规想法,即具有完整空间点阵结构的实体即晶体视为主体,而将空间点阵中的空位,置换原子,间隙原子,相界,位错和晶界视为晶体材料中的缺陷。他将“缺陷”视为主体,制造出一种晶界占有极大体积比的材料。1984年,他领导的研究组用惰性气体凝聚法制备了具有具有清洁表面的黑色纳米金属粉末粒子,并以它为结构单元制成了纳米块体材料。 1987年美国国家实验室的西格尔(Siegel)等人使用气相冷凝法制备纳米陶瓷材料TiO2,并观察到纳米材料在室温和低温下具有良好的韧性。1990年7月,在美国巴尔的摩召开国际第一届纳米科技学术会议,正式把纳米材料科学作为材料科学的一个新的分支公布于世,表明了纳米材料科学已经成为一个比较独立的学科。1994年在美国波士顿召开的MRS秋季会议上正式提出了纳米材料工程。是纳米材料的新领域,是纳米材料研究的基础上通过纳米合成,纳米添加发展新型的纳米材料,并通过纳米添加对传统材料进行改性,扩大纳米材料的应用范围,开始形成了基础研究与应用研究并行的局面。纳米材料发展有三个阶段:第一阶段(1990年之前)主要是在实验室探索,用各种手段制造各种材料纳米颗粒粉体,合成块体,研究表征方法,探索纳米材料的性能。第二阶段(1990~1994年)。人们

  • “纳米食品”安全存疑

    纳米材料大家都不陌生吧,纳米食物大家听说过么? 目前市场上就出现了大批的纳米食品:包括珍珠粉、黄瓜粉,到花生甚至白酒等都可以加上纳米标签! 个人觉得所谓的纳米食品存在以下问题:[b]1,大批量制作问题。[/b]殊不知现在的纳米材料制作上还没有达到随心所遇的地步,别说食品中了,很大程度上应该只是商家宣传的噱头。[b]2,安全性方面。[/b]纳米食品进入人体内之后,如何被人体吸收,是否会有各种不良反应?现在这方面还没有研究结果。而且所讲的各种效果也是靠个厂商自己吹嘘出来的,并没有实质证明。安全性方面的数据还需要厂商自己拿出过硬的数据来,而不是单纯的忽悠。[b]3,标准方面。[/b]目前还没有类似的标准来规范纳米食品。相关部门及专家能否在新事物之初就涉及进来,组织研究相关的标准,规范市场。[b]4,监管方面。[/b]没有经过科学证明的食物不能在市场上销售,希望相关部门行动起来,不要到时候触犯了法律,落的个监管不严的一并处罚。为了自己的乌纱,为了百姓的健康,提前行动起来吧。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091358_531780_2972800_3.jpg 科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091400_531781_2972800_3.jpg 益择网讯(慕雪/编译)科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 【分享】什么是纳米科技?

    纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。纳米科技的研究内容 创造和制备优异性能的纳米材料 设计、制备各种纳米器件和装置 探测和分析纳米区域的性质和现象 什么是纳米?  纳米是尺寸或大小的度量单位:千米(103 )→米→厘米→毫米→微米→纳米( 10-9) 4倍原子大小,万分之一头发粗细 纳米科技研究什么问题?  生物科学技术、信息科学技术、纳米科学技术是下一世纪内科学技术发展的主流。生物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界不存在的生物;信息科学技术使人们可以坐在家中便知天下大事,因特网几乎可以改变人们的生活方式。  纳米科学是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 还原论:把物质的运动都还原到原子、分子这一层面上。原子论和量子力学取得了巨大的成功。有机合成;分子生物学;转基因食品、克隆羊;原子光谱和激光;固体电子论和IC;几何光学到光纤通讯。 宏观世界上经典物理、化学、力学的巨大成就:计算机和网络、宇宙飞船、飞机、汽车、机器人等改变了人们的生活方式  科学技术有认识上的盲区或人类知识大厦上的裂缝。裂缝的一边是以原子、分子为主体的微观世界,另一岸是人类活动的宏观世界。两个世界之间不是直接而简单的联结,存在一个过渡区--纳米世界。例:分子合成 ≤1.5nm, →活体 微电子技术在0.2μm,显微外科只能连接大、小、微血管≤ PM10和PM1.5的微粒几十个原子、分子或成千个原子、分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质。这种“组合”被称为“超分子”或“人工分子”。“超分子”性质,如熔点、磁性、电容性、导电性、发光性和染、颜色及水溶性有重大变化。当“超分子”继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去,像真是一些长不大的孩子。  在10nm尺度内,由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合及探测、应用它们---纳米科学技术的主要问题。 原子和分子的微观世界和宏观世界的过渡区内的新现象和新规律 探测纳米长度内物理、化学生物信息的新原理和新方法 新概念和新理论:强关联、强场、快过程、少粒子的量子体系 应用 新科学还是老理论的翻版?历史悠久的新科学技术西汉铜镜和黑漆鼓徽墨漆器催化剂材料感光材料和彩色胶片含有高岭土颗粒的轮胎WHY?不清楚近十年,计算机和材料设计;探测技术STM、AFM、SNOM;IC和生命科学的推动;制备技术发展;理论的发展高强度和高韧性、可自修复、有智能、可再生→新一代纳米材料 为什么小尺寸会有如此重要的影响? 表面效应 小尺寸效应 量子限域效应 研究目标和可能的应用 材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复; 微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统; 医学与健康快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物“导弹”技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统 航天和航空低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料 环境和能源发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境;孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料 生物技术和农业在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等

  • 纳米技术及应用

    信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向。 纳米是一个长度计量单位,它是一米的十亿分之一。纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料。纳米技术就是 指在纳米尺度范围内,通过操纵原子、分子、原子团和分子团,使 其重新排列组合成新物质的技术。其最终目标是直接以原子、分子的变化,使物质在纳米尺度上表现出新颖的物理、化学和生物学特性,制造出具有特定功能的产品。因为纳米材料的粒度非常微小,一般的显微镜是不能观察到的,所以纳米技术是在扫描隧道显微镜发明之后,才出现以0.1至100纳米尺度为研究对象的前沿科学。这可能改变几乎所有产品的设计和制造方式,实现生产方式的飞跃, 是新工业革命的核心。纳米技术也是信息和生命科学技术能够进一步发展的共同基础,将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。有人曾经预言说,七十年代搞微米技术的国 家,现在已成为发达国家;现在从事纳米技术研究的国家,将是二 十一世纪的先进国家。 纳米材料粒度非常微小,具有良好的表面效应,一克纳米材料的表 面积达到几百平方米,因此用纳米材料制成的产品,其强度、柔韧 度、延展性都十分优越,就象一种有成千上万对脚的毛毛虫,当它 吸附在光滑的玻璃面上时,由于接触面积大,12级台风也吹不掉 它。因此,在化纤中加入少量的金属纳米颗粒,就可摆脱磨擦引起的静电现象;在食品中采用纳米技术,可提高肠胃的吸收功能;在 涂料中运用纳米技术,可使外墙涂料的耐洗刷性从一千多次提高到一万多次,老化时间延长两倍多;许多化妆品因为加入纳米微粒, 而具备防紫外线功能;利用纳米技术可生产出色彩鲜艳、抗折性极 高的彩色轮胎;利用纳米粉末,可使废水变清。另外,纳米在医药 保健、计算机、化学和航天等领域都会引起新的、技术性革命。 作为纳米技术重要方面的碳纳米管,是1991年被人类发现的。它是由石墨碳原子层卷曲而成的碳管,管的直径一般为几个纳米到几十纳米,管壁厚度仅几个纳米,象铁丝网卷成的空心圆柱状的“笼形 管”。5万个“笼形管”排列起来,才有人的一根头发丝那么宽,长度和直径比非常高的纤维小。作为石墨、金刚石等碳晶体家族的新成员,碳纳米管的韧性很高,导电性极强,场发射性能优良,兼具 金属性和半导体性。其强度比钢高100倍,比重只有钢的1/6,称之 为未来的超级纤维,成为国际研究的热点。碳纳米管的用途十分诱 人。它可制成极好的微细探针和导线、加强材料及储氢材料。它使壁挂电视成为可能,并在将来可替代硅芯片。纳米芯片体积更小、 容量更大、重量更轻,将在纳米电子学中扮演极重要角色,并引发计算机行业的革命。不久前我国研制出的碳纳米管显示器样本,不但体积小,重量轻,而且显示质量好,从-45℃~80℃皆能正常工 作,而耗电只有现在的显示器的1%。 另外,作为纳米技术的应用之一,在我国西安已研制出的“纳米服 装”,不仅能阻隔95%以上的紫外线,还能阻隔同量的电磁波,且无毒、无刺激,不受洗涤、着色、磨损的影响,能有效地保护人体皮 肤不受辐射的影响。还有小鸭集团研制出的纳米洗衣机,就是利用 纳米抗菌材料研制出的自我清洁的洗衣机。它能够有效地抑制细菌 滋生,无论使用多长时间,都能够保持“净水洗涤”的状态。 目前,纳米技术在电线电缆中的应用已在开始。有人曾设想,能否运用纳米技术来提高绝缘材料的性能,从而提高电缆的绝缘、耐热 和抗老化等性能,减少电缆的外径,减轻电缆的重量。另外能否利 用碳纳米管的韧性高、导电性强的特点,制成超细电磁线,使微型 电机的体积象米粒那样大,甚至更小。 现在“纳米热”已遍及全球,从大西洋到太平洋,从日本到欧洲,各国都把它作为重要的未来发展战略。美国总统克林顿曾经发表过 一篇关于前沿科学技术的前瞻性的讲话,提出了美国今后要大力发 展纳米技术。美国已于2000年10月1日启动“国家纳米计划”,投资1997年的1.16亿美元增加到4.97亿美元。目前全球纳米技术的年 产值已达到500亿美元,预计到2010年,市场容量将达到14400亿美 元。我国已建立了10多条纳米材料和技术的生产线,以此为基础的企业已达100多家。预计在今后二、三十年内,它将远远超过计算机工业,并成为未来信息时代的核心。纳米技术导致的微形化趋势从根本上改变人类的处境,从而引起二十一世纪的又一次产业革命。

  • 纳米分离度

    Waters Empower 3.0进行方法编辑处理时,二极管阵列检测器那块有一个“纳米分离度”的设置,有四个选择“1.2nm,2.4nm,3.6nm,4.8nm”。这个设置有什么意义,设置大小不同的值会对检测产生什么影响吗

  • 【转帖】纳米限域研究取得新进展

    分子在纳米孔道限域环境中扩散和反应显示了非常独特的物理化学特性,理论工作者已经进行了大量的计算和模拟。近日,中科院大连化学物理研究所包信和研究员带领的“界面和纳米催化”研究组(502组)在自行研制的一套与固体核磁共振仪耦合的动态催化反应系统中,采用激光诱导超极化129Xe技术,首次在模拟催化反应条件下直接观察到了甲醇分子在孔径为0.8nm的CHA分子筛孔道扩散和脱水过程,并精确获得了分子扩散和反应的动力学参数。相关方法和实验结果以研究论文形式(Article)发表在最近一期的《美国化学会志》(J. Am. Chem. Soc., 131(2009)13722-13727),被认为是“一种对纳米孔催化反应研究具有重要意义”的发明。  纳米限域效应在光学、电子器件以及催化反应等领域具有很大的应用前景,分子在纳米限域空间中的吸附和反应动力学一直受到理论和实验研究者的广泛关注。理论研究已经预示,限域在纳米空间中物质将会显示出与自由状态下明显不同的物理化学特性,但是,由于在真实条件下分子的扩散速度很快,而且纳米孔道中分子浓度极低,实验研究需要发展原位-动态和高灵敏的检测手段。该研究组张维萍、包信和和博士研究生徐舒涛等对商用核磁共振“魔角旋转”(Magic Angle)的探头进行改进,自行研制了一套与固体核磁共振仪器相耦合、适合于分子扩散和催化研究的高温原位-动态研究系统,并将国际上已广泛采用的激光诱导超极化129Xe技术引入动态反应过程的研究,使NMR的检测灵敏度提高了1万多倍,从而使固体核磁采谱时间缩短到10秒以内。将该技术成功用于研究甲醇在CHA纳米分子筛笼内的吸附、扩散和脱水反应过程,首次获得了接近真实反应条件下纳米孔道中活性位在反应过程中的动力学参数,大大加深了对甲醇在分子筛孔道中酸助脱水和转化过程机理的理解和认识。  近年来,该研究组系统地将高灵敏核磁共振技术用于催化反应过程和材料合成过程的原位-动态研究,不断取得重要进展 (J. Am. Chem. Soc., 130(2008)3722,J. Am. Chem. Soc., 131(2009)10127)。

  • 【分享】巧夺天工!纤维纳米发电机(图)

    【分享】巧夺天工!纤维纳米发电机(图)

    [img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008441608_01_1633307_3.jpg[/img]图:(a)低倍扫描电子显维照片显示两个互相缠绕的、表明长有氧化锌纳米线阵列的纤维,其中一个镀有金。(b)高倍扫描电子显维照片显示两纤维界面处的纳米线对纳米线结构。(c)显示多根纤维组成的纤维纳米发电机的串/并连式连接来提高输出电压/电流。(图片来源:王中林实验室) 从2006年开始,王中林小组相继发明了纳米发电机、直流发电机。在2006年他首次提出了压电电子学(Piezotronics)的概念和新研究领域。由于氧化锌具有独特的半导体和压电性质,弯曲的氧化锌纳米线能在其拉伸的一面产生正电势,压缩的一面产生负电势。氧化锌半导体和金属电极之间的肖特基势垒则能控制电荷的积累与释放,从而实现机械能到电能的转化,并有效释放。   2007年初,基于压电电子学原理,王中林研究小组用超声波带动纳米线阵列运动,研制出能独立从外界吸取机械能、并将之转化为电能的纳米发电机模型。在超声波带动下,这种纳米发电机已能产生上百纳安的电流。但是,在实际环境中,机械能主要以低频震动形式存在,如空气的流动、引擎的震动等。要让纳米发电机能广泛应用于各方面,一个关键的问题就是要降低纳米发电机的响应频率,让纳米线阵列在几个赫兹的低频震动下也能将机械能转化为电能。   为了实现这一目标,王中林教授和王旭东博士及秦勇博士组成研究小组。利用溶液化学方法,他们将氧化锌纳米线沿径向均匀生长在纤维表面,然后用两根纤维模拟了将低频震动转化为电能的这一过程。为了能实现电极与氧化锌纳米线之间的肖特基接触,他们采用磁控溅射在一根纤维表面镀了一层金膜作为电极,而另一根表面是未经处理的氧化锌纳米线。当两根纤维在外力作用下发生相对运动时,表面镀有金膜的氧化锌纳米线像无数原子力显微镜探针一样,同时拨动另外一根纤维上的氧化锌纳米线;所有这些氧化锌纳米线同时被弯曲、积累电荷,然后再将电荷释放到镀金的纤维上,实现了机械能到电能的转换。   相对于之前的直流纳米发电机,新成果实现了如下突破:首先,通过让氧化锌纳米线在纤维之上生长,为实现柔软,可折叠的电源系统(如“发电衣”)等打下了基础;其次,基于纤维的纳米发电机能在低频震动下发电,这就使得步行、心跳等低频机械能的转化成为可能;再次,由于其合成方法简单,条件温和,这就大大扩展了基于氧化锌纳米线的纳米发电机的应用范围。根据目前的实验数据,他估计,如果能用这些纤维编织成布在极端优化的条件下,每平方米这样的布可能输出大约20-80毫瓦的电能。   王中林说,目前这种由两根纤维组成的纳米发电机的输出功率还很小,这主要是由于纤维的内阻较大以及纤维之间接触面积较小造成的。目前,他们正努力提高这种基于纤维的纳米发电机的输出能量。例如,通过在纤维上预先镀一层导电材料然后生长氧化锌纳米线,可以明显降低纳米发电机的内阻,进而可提高纤维基纳米发电机的输出电流;也可以通过增加纤维的数量来提高纳米发电机的输出能量。   文章的审稿人认为:“这是一项很有创意、具有突破性的研究……作者的思路是革命性的。”王中林认为,新成果将为纳米发电机在生物技术、纳米器件、个人携带式电子设备以及国防技术等领域的应用开拓更为广泛的空间。    “今天,纳米科技已经从早期对纳米材料结构和基本物理化学特性的研究,发展到利用纳米材料的优良特性有目的地制造纳米器件,各种各样的纳米器件被纷纷制造出来,如纳米传感器、纳米电动机甚至纳米机器人等。”王中林说,“但与此同时,为这些微型化、集成化的纳米器件提供能量的仍是传统电源,如电池。因此,迫切需要开发出纳米尺度的电源系统,为纳米器件的进一步小型化、集成化提供基本能源。”   目前,已经有BBC、NBC、PBS、《国家地理》等多家国际权威新闻媒体对这一重要的科学成果进行了报道。

  • 【原创大赛】【微观看世界】纳米操纵

    【原创大赛】【微观看世界】纳米操纵

    1.实验讲叙:纳米操纵是搬运纳米零件、组装纳米器件、最终实现纳米制造的基础工艺技术。纳米尺度空间所涉及的物理层次,是即非宏观又非微观的相对独立的中间领域,被人称之为介观研究领域。它是在纳米空间尺度内操纵原子和分子,对材料进行加工,制造有特定功能的产品或对某物质进行研究。掌握其原子、分子的运动规律和特性的崭新高技术科学。同时也是现代科学和现代技术结合的产物。本文讲叙以某种纳米粉末颗粒为试验材料,基于SPM的Nanoman(纳米操纵)技术上对纳米颗粒进行神奇搬迁拼图的全过程。2.实验仪器:采用bruker(布鲁克)公司的扫描探针显微镜(型号:Nanoman VS)3.实验材料:未知的纳米颗粒平均宽度170nm,高度44nm4.实验原理:通过探针对纳米颗粒拨动达到使粉末颗粒搬迁,如图http://ng1.17img.cn/bbsfiles/images/2013/11/201311202204_478477_2224533_3.jpg

  • 【求助】纳米激光粒度仪的激光问题

    我看到动态光散射纳米粒度测量的原理图,其中在激光发生器后加了起偏器,是否说明要求激光是线偏振的?什么类型的偏振对纳米颗粒的测量有什么影响吗?还有在光电倍增管前会有一组小孔光阑,这里小孔光阑的作用是什么?哪位高人知道的还请不吝指教。

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][size=16px]基于此,仪器信息网[/size][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制