当前位置: 仪器信息网 > 行业主题 > >

纳米微粒

仪器信息网纳米微粒专题为您整合纳米微粒相关的最新文章,在纳米微粒专题,您不仅可以免费浏览纳米微粒的资讯, 同时您还可以浏览纳米微粒的相关资料、解决方案,参与社区纳米微粒话题讨论。

纳米微粒相关的论坛

  • Opt Express:纳米微粒“金星”可热杀肿瘤

    近日,西班牙国立研究委员会的R. Rodríguez-Oliveros和J. Sánchez-Gil在最新出版的《光学快报》上发表的一篇论文"Gold nanostars as thermoplasmonic nanoparticles for optical heating"证实:纳米“金星”可热杀肿瘤。“金星”是如此之小,以至于1000颗金星的跨度才相当于人类一根发丝的直径,然而它却能够成为一名有效的癌症斗士。之前的研究已经表明,金属或其他材料的微粒能够被送往一个肿瘤,进而被激光或磁场所操控,并最终通过加热恶性肿瘤细胞来消灭它们。如今,研究人员指出,金微粒如果被塑造成星状物则能够燃烧得更热。金已经是一种极好的辐射源,这是因为其表面上的电子能够有效捕获光线,但是当其表面变成长而尖的钉子状时——被激发的电子在尖上采集光线——则能够产生更高的温度,就像图中所展示的那样。研究人员在报告说,与球状微粒相比,一个有8个尖的星状物能够产生10倍于前者的温度。此外,它能够吸收能量较低的光,而这将使治疗被光线缠住的健康细胞变得更加容易。一个有20个尖的星状物甚至可能会更好,但科学家还没有完成这些计算。研究人员此前已经开发出一些有助治疗癌症的纳米微粒。在光动力疗法中,它可以携带大量光敏分子进入肿瘤,帮助杀灭癌细胞,其效果好于常规方法。

  • 【分享】多功能超临界微粒制备与结晶系统在国家纳米工研院一次安装验收成功

    法国多功能超临界流体微粒制备与结晶系统在国家纳米技术与工程研究院一次安装验收成功,可完成RESS(Rapid Expansion of Supercritical Solutions,超临界饱和溶液快速膨胀法)、SAS(Supercritical Anti- Solvent,超临界反溶剂法)和SEDS(Solution Enhanced Dispertion by Supercritical Fluids,超临界流体溶液增大分散法)等多种超临界流体微粒制备与结晶实验。更多信息欢迎垂询未来化学科技有限公司:http://www.futurechemtech.com

  • 【转帖】纳米微粒结合转铁蛋白 猎杀癌细胞

    美国北卡罗莱纳大学教堂山分校文理学院的首席化学教授约瑟夫—德西蒙博士领导的研究小组发现,人体中的一种正常的良性蛋白质,如果和纳米粒子相结合,就能瞄准并杀死癌细胞,而无须负载那些携带化疗药物的粒子。此前,研究人员曾认为,纳米粒子只有携带了有毒的化学载体才能达到这样的效果。转铁蛋白是人体血液中数量第四多的蛋白质,近20年来一直被作为肿瘤靶向载体用以递送治癌药物。纳米粒子通常也是无毒的,需要通过负载标准化疗药物来治疗癌症。然而,结合转铁蛋白的“打印”纳米粒子,不仅能识别它们,还能诱导癌细胞死亡。而不与任何纳米粒子结合的自由转铁蛋白,能从拉莫斯癌细胞中获得养料生长,即使在很高浓度下也不会杀死任何拉莫斯癌细胞。然而令人吃惊的是,转铁蛋白附着在纳米粒子表面后,其能有效地筛选标靶,攻击并杀死B细胞淋巴瘤。在许多迅速生长的癌细胞表面,蛋白质受体被过度表达,于是和转铁蛋白配体结合的治疗就能找到并瞄准它们,而结合转铁蛋白的纳米粒子被认为是安全且无毒的。德西蒙实验室发明了一种“打印”技术,能人为造出尺寸精确且形状符合预期的纳米颗粒。他们采用这种技术制作出一种可与人类转铁蛋白相结合的生物相容性纳米粒子,其能安全且精确地识别广谱癌症,除了B细胞淋巴瘤外,还能有效地指向非小型细胞,如肺、卵巢、肝脏和前列腺的癌细胞。研究人员目前正在进一步研究,携带转铁蛋白的纳米粒子如何及为何对于拉莫斯癌细胞是有毒的,而对其他细胞却无毒。化学治疗和放射治疗曾被认为是癌症的最有效疗法,但这些疗法通常会损害健康组织和器官。这一发现将可能发展出一种全新的策略来治疗某种类型的淋巴瘤,而副作用更小。不过,德西蒙承认,该研究也会引起一些人对不可预期后果的担忧,即一个设计好的针对某类癌症的靶向化疗载体是否会偏离目标。

  • 纳米医学畅想

    纳米医学畅想 纳米医学的研究内容十分广泛,最引人注目的是扫描隧道显微镜(STM)。这一非凡的仪器于80年代初研制成功,可以在纳米尺度上获取生命信息,研究者相继得到了左旋DNA、双螺旋DNA的碱基对、平行双螺旋DNA的STM图像。我国科学家利用STM成功的拍摄到表现DNA复制过程中一瞬间的照片。目前,研究已涉及到氨基酸、人工合成多肽、结构蛋白和功能蛋白等领域。 纳米使单位体积物质储存和处理信息的能力提高百万倍以上,人类有可能将存储了全部知识的纳米计算机安放在人脑中,或许有一天,图书馆就在我们的头脑内,每一个人都可能成为爱因斯坦、牛顿,老年性痴呆、记忆丧失等病症将会得到彻底治愈。纳米计算机可能用来读出人脑内的内容及品性,将一个脑内的信息转录到另一个脑内,这个脑可以是人脑,也可以是电脑。纳米医学也有可能改变人类自身,让人类成为能在天上飞、水中游,能进行光合作用或能在恶劣环境下生存的“超人”。将来,掌握纳米医学技术的医生,不仅能够“修理人”——治病,而且能够“改造人”——使其具有特殊功能。虽然这些设想有些离奇,但决非是毫无科学根据的幻想。即将进入临床应用的有:利用纳米传感器获取各种生化信息和电化学信息。已经取得重大成果的还有DNA纳米技术,主要应用于分子的组装。 已经在医药领域得到成功的应用。人们已经能够直接利用原子、分子制备出包含几十个到几百万个原子的单个粒径为1-100纳米的微粒。最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。在纳米铁微粒表面覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。由于纳米微粒比血红细胞还小许多,可以在血液中自由运行,因而可以在疾病的诊断和治疗中发挥独特作用。 当把二氧化肽做到粒径为几十纳米时,在它的表面会产生一种叫自由基的离子,能破坏细菌细胞中的蛋白质,从而把细菌杀死。例如用二氧化肽处理过的毛巾,只要有可见光照射,上面的细菌就会被纳米二氧化肽释放出的自由基离子杀死,具有抗菌除臭功能。 将药物粉末或溶液包埋在直径为纳米级的微粒中,将会大大提高疗效、减少副作用。纳米粒可跨越血脑屏障,实现脑位靶向。另外,纳米粒脉管给药,可降低肝内蓄积,从而有利于导向治疗。纳米粒中加入磁性物质,通过外加磁场对其导向定位,对于浅表部位病灶治疗具有一定的可行性。在影像学诊断中,纳米氧化铁在病灶与正常组织的磁共振图像上,会有较大的对比度。 纳米粒用作药物载体具有下述显著优点:(1)可到达网状内皮系统分布集中的肝、脾、肺、骨髓、淋巴等靶部位;(2)具有不同的释药速度。(3)提高口服吸收药物的生物利用度。(4)提高药物在胃肠道中的稳定性。(5)有利于透皮吸收及细胞内药效发挥。如:载有抗肿瘤药物阿霉素的纳米粒,可使药效比阿霉素水针剂增加10倍。目前已在临床应用的有免疫纳米粒、磁性纳米粒、磷脂纳米粒以及光敏纳米粒等。 医用纳米机械或纳米微型机器人可潜入人体的血管和器官,进行检查和治疗,使原来需要进行大型切开的手术成为微型切开或非手术方式,并使手术局部化。纳米医用机器甚至可以进入毛细血管以及器官的细胞内,进行治疗和处理。这类机器可以将对人体的伤害减小到最低程度。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人一旦制成,能在一秒钟内完成数十亿个操作动作。如果数量足够多,就可以在几秒或几分钟内完成现今需几天或几个月甚至几年、几十年才能完成的工作。 和细胞一样,作业中坏了的微型机械可以随时被更换或修理。微型机械发展的顶峰,或许是可以自己增殖繁衍的纳米机器人。别以为以上设想不可思议。纳米科学家们相信这种愿望能够实现。 不难想象,倘若人类能直接利用原子、分子进行生产活动,这将是一个“质”的飞跃,将改变人类的生产方式和空前地提高生产能力,并有可能从根本上解决人类面临的诸多困难和危机,开创医学新纪元。

  • 纳米生物技术简介

    纳米生物技术简介 纳米(nanometer,nm)是一种长度单位,一纳米等于10亿分之一米、千分之一微米。从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。DNA链的直径就是一纳米左右。由于纳米材料表现出许多不同于传统材料的特殊性能,所以纳米科技被视为21世纪关键的高新技术之一。纳米技术包含下列四个主要方面:第一方面是纳米材料,第二方面是纳米动力学,第三方面是纳米电子学,第四方面是纳米生物学和纳米药物学。在纳米生物学和纳米药物学方面,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。当前纳米生物学和纳米药物学研究领域主要集中在以下几个方向:纳米生物材料、纳米生物器件研究和纳米生物技术在临床诊疗中的应用。

  • 【转帖】你所不知道的纳米技术

    提到纳米技术,很多人的反应都是"高科技","好深奥",其实,纳米技术并非象人们想象中地那么复杂和不可理解,最直接的解释其实从字面上就可以得到,所谓纳米,是一个长度单位,跟我们平时接触的厘米,分米一样,只不过1个纳米相当于一千万分之一的厘米,是肉眼所无法衡量的长度。[align=left] 普遍来说,所谓的纳米技术,只是指运用到了1个纳米到100个纳米长度范围内的结构,包括材料和设备。我们通常听到的什么纳米洗衣粉,指的就是洗衣粉的颗粒非常之小,小到纳米级的程度(事实上目前市面上的洗衣粉还没有小到这样的程度)。为什么要追求那么小的分子微粒呢?主要是因为,不同大小的分子微粒的性质其实是有差别的,我们不能一味地说“小”一定好,但是从普遍上来说,小分子的物质性质更活跃――相同体积的物质分子,小分子的颗粒的表面积更大,可以更有效的地同其他物质结合或者发生反应,但也是因为纳米级分子的过度“活跃”而导致其性能的不稳定。目前在实验室或者是研究室,甚或者市场上使用的大多是微米级分子颗粒,不仅是因为微米级分子的制作工艺比较成熟,比较容易获取,而且其性能也比较稳定。[/align][align=left] 纳米技术市场总的来说分为三大块,纳米材料,纳米工具和纳米仪器。根据BCC研究中心的数据显示,纳米材料在其中的比重达到了75%左右,纳米工具和纳米仪器分占4.3%和20.7%。比起多运用在医药和测试的纳米工具以及纳米仪器,纳米材料的市场最为广阔,也最容易商业化。[/align][align=left] 接下来重点说说纳米材料,目前纳米材料的运用范围已经非常地广泛了――在电子,生物医药,美容产品,能源等领域。在过去的五年中,纳米材料的市场每年的增幅超过50%。别看纳米微粒的应用可以大大地推动产品的性能,其实也正是因为个头的过“小”,纳米微粒对人体以及环境都有着极大的潜在危害:理论上来说,纳米微粒可以通过鼻子和皮肤进入到血液,再通过血液的流动到达人体的各个器官以及骨骼,德国的安联保险公司及经合组织认为,纳米微粒对人体的负面影响主要有两个方面:1)诱发呼吸道的炎症,导致组织坏损;2)通过血液传输到主要器官,引起心血管方面的疾病。虽然这份报告有点“骇人听闻”,但是这是对长期跟纳米微粒打交道的工作人员的防范指导,所有的物质用的不恰当都会产生危害,关键是看你如何使用它,以及如何保护自己。[/align]

  • 【资料】纳米新技术(共3讲)

    [B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。  从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。  纳米技术包含下列四个主要方面:   第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。   第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。   第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。   第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。  纳米技术是建设者的最后疆界,它的影响将是巨大的  在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:   把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。  由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。  生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。  通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。   运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官   去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。  提高太阳能电池能量效率两倍。

  • 【文献进展】纳米技术在生物医学中的应用

    摘 要 纳米技术与生物化学、分子生物学整合将对21世纪的生物医学产生深刻的影响。它将利用生物大分子进行物质的组装、分析与检测技术的优化、并将药物靶向性与基因治疗等研究引入微型、微观领域,用纳米生物技术检测是否患有癌症只用几个细胞。  关键词 纳米技术;纳米生物学;DNA纳米技术  20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美国《商业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100 nm的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术[1]。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。  1 纳米生物学的研究对象  有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1 nm~100 nm范围的微小结构。1纳米等于10-9m,即1m的十亿分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。

  • 科学家研制成功“纳米耳朵”

    http://paper.sciencenet.cn/upload/news/images/2012/1/2012116743192820.jpg金纳米微粒(左)在一组光镊子中的运动被用来探测由周围其他纳米微粒的膨胀所触发的声波。图片来源:Ohlinger等,《物理评论快报》 你有没有想过一个病毒听起来像什么,或者一个细菌在宿主之间游走会发出什么噪音?如果答案是肯定的,那么由于世界上最小耳朵的发明,你或许很快就有机会搞清这一切。“纳米耳”——被一道激光束俘获的金微粒——能够探测到仅为人类听觉阈值一百万分之一的声音。研究人员认为,这项研究将开启“声学显微术”的一个全新领域,后者是利用生物体释放的声音对其进行研究的一门科学。纳米耳的概念起源于1986年被称为光镊子的一项发明。这种镊子利用一个透镜将一道激光束聚焦到一点,从而能够抓住微粒并移动它们。光镊子已经成为分子生物学和纳米技术的一种标准工具,帮助研究人员向细胞内注入脱氧核糖核酸(DNA),甚至在DNA注入后对其进行操作。光镊子还能够用来测量作用于微观粒子上的极小的力;一旦你用激光束控制住你的粒子——而不是由你来让其移动,你便只须用一台显微镜或其他合适的观测设备观察它是否在自动地运动。这也正是纳米耳遵循的道路。声波随着它们经过的介质粒子的前后移动来传播。因此为了探测声音,你需要对这种前后运动进行测量。德国慕尼黑大学光子学与光电学研究团队的光物理学家Jochen Feldmann和同事将一个直径60纳米的金微粒浸入水中,并用光镊子夹住了它。Feldmann的研究团队记录并分析了该粒子响应声振动所产生的运动——这种声振动由在附近水中的其他金纳米粒子的激光感应加热所导致。除了具有前所未有的敏感性外,他们的纳米耳还能够计算声音来自于哪个方向。研究人员提出,使纳米耳的三维阵列一道工作将能够用来监听细胞或微生物,例如细菌和病毒,随着运动和呼吸,它们都能够释放出非常微弱的声振动。Feldmann表示:“这里显然存在着医学上的可能性,我们可以用其来研究适当的人群,但我们首先必须搞清它是如何工作的。”丹麦哥本哈根市玻尔研究所光镊子实验室的生物物理学家Lene Oddershede对此印象深刻,并推测这篇论文会激发该领域的其他科学家在研究微生物时寻求声波的帮助。她说:“这真是一个有趣的想法,并且我们很容易做到这一点,但我们之前从未进行过任何尝试。”然而Oddershede警告说,“我只能说这篇论文从这个意义上将是很鼓舞人心的”,但在超声显微镜变为现实之前,这项试验的设置还需要显著细化,以改进其区分来自随机分子运动的声波的能力。但她对此表示乐观:“我相信他们能够相当快地改进这一设备。”研究人员在最新出版的《物理评论快报》(PRL)上报告了这一研究成果

  • 【转帖】纳米材料研究的现状、特点和发展趋势

    一、纳米材料研究的现状  自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。从研究的内涵和特点大致可划分为三个阶段。第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。纳米颗粒、丝、管可以是有序或无序地排列。如果说第一阶段和第二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。著名诺贝尔奖金获得者,美国物理学家费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子…,那将创造什么样的奇迹”。就像目前用STM操纵原子一样,人工地把纳米微粒整齐排列就是实现费曼预言,创造新奇迹的起点。美国加利福尼亚大学洛伦兹伯克力国家实验室的科学家在《自然》杂志上发表论文,指出纳米尺度的图案材料是现代材料化学和物理学的重要前沿课题。可见,纳米结构的组装体系很可能成为纳米材料研究的前沿主导方向。  二、纳米材料研究的特点  1、纳米材料研究的内涵不断扩大第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象又涉及到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶),例如气凝胶孔隙率高于90%,孔径大小为纳米级,这就导致孔隙间的材料实际上是纳米尺度的微粒或丝,这种纳米结构为嵌镶、组装纳米微粒提供一个三维空间。纳米管的出现,丰富了纳米材料研究的内涵,为合成组装纳米材料提供了新的机遇。  2.纳米材料的概念不断拓宽1994年以前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构的材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间的基体,因此,纳米结构材料内涵变得丰富多彩。   3.纳米材料的应用成为人们关注的热点 经过第一阶段和第二阶段研究,人们已经发现纳米材料所具备的不同于常规材料的新特性,对传统工业和常规产品会产生重要的影响。日本、美国和西欧都相继把实验室的成果转化为规模生产,据不完全统计,国际上已有20多个纳米材料公司经营粉体生产线,其中陶瓷纳米粉体对常规陶瓷和高技术陶瓷的改性、纳米功能涂层的制备技术和涂层工艺、纳米添加功能油漆涂料的研究、纳米添加塑料改性以及纳米材料在环保、能源、医药等领域的应用,磨料、釉料以及纸张和纤维填料的纳米化研究也相继展开。纳米材料及其相关的产品从1994年开始已陆续进入市场,所创造的经济效益以20%速度增长。  三、纳米材料的发展趋势  1.加强控制工程的研究  在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效应和渗流效应;三是通过设计纳米丝、管等的阵列体系(包括有序阵列和无序阵列)来获得所需要的特性。   2.近年来引人注目的几具新动向   (1)纳米组装体系蓝绿光的研究出现新的苗头。日本Nippon 钢铁公司闪电化学阳极腐蚀方法获得6H多孔碳化硅,发现了蓝绿光发光强度比6H碳化硅晶体高100倍:多孔硅在制备过程中经紫外辐照或氧化也发蓝绿光;含有Dy和Al的SiO2气凝胶在390nm波长光激发下发射极强的蓝绿光,比多孔Si的最强红光还高出1倍多,250nm波长光激发出极强的蓝光。  (2)巨电导的发现。美国霍普金斯大学的科学家在SiO2一Au的颗粒膜上观察到极强的高电导现象,当金颗粒的体积百分比达到某临界值时,电导增加了14个数量级;纳米氧化镁铟薄膜经氢离子注入后,电导增加8个数量级;  (3)颗粒膜巨磁电阻尚有潜力。1992年,纳米颗粒膜巨磁电阻发现以来,一直引起人们的关注,美国布朗大学的科学家最近在4K的温度下,几个特斯拉的磁场,R/R上升到50%,目前这一领域研究追求的目标是提高工作温度,降低磁场。如果在室温和零点几特斯拉磁场下,颗粒膜巨磁阻能达到10%,那么就将接近适用的使用目标。目前国际上科学家们正在这一领域努力。  (4)纳米组装体系设计和制造有新进展。美国加利福尼亚大学化学工程系成功地把纳米AU 颗粒组装到DM的分子上形成纳米晶分子组装体系;美国利用自组装技术将几百支单壁纳米碳管组成晶体索"Ropes",这种索具有金属特性,室温下电阻率小于10-4W/cm;将纳米三碘化铅组装到尼龙(nylon-11)上,在X射线照射下具有强的光电导性能,利用这种性能为发展数字射线照相奠定了基础。

  • 纳米材料的应用是怎样的?

    现如今借助于纳米材料的各种特殊性质,科学家们在各个研究领域都取得了性的突破,这同时也促进了纳米材料应用的越来越广泛化。催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒子作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2(优~锆~纳~米),粒径非常小,而且不团聚,分散性能好,没有任何沉淀,不含任何添加剂(香精),催化活性高,可以迅速的捕捉并分解室内的甲醛,苯,氨等有害气体,除味效果好,可以说其既有较高的光催化活性,又能耐酸碱,对光稳定,无毒。

  • 纳米二氧化硅在润滑油添加剂领域的应用介绍

    [font=&][size=18px]在润滑油添加剂领域纳米二氧化硅微粒表面含有大量的羟基和不饱键,可以在摩擦副表而形成牢固的化学吸附膜,而保护金属摩擦表面,显著改善润滑油的摩擦性能 。润滑油的承载能力在加入纳sio2后得到很大提高,当加人量为1 .5时,PB值增大了近1倍,sio2纳米微粒作为润滑油添加剂表现出优异的抗磨减摩性能,并对磨损表而起到一定的修复作用。 在润滑油添加剂领域在润滑油添加剂领域纳米二氧化硅微粒表面含有大量的羟基和不饱键,可以在摩擦副表而形成牢固的化学吸附膜,而保护金属摩擦表面,显著改善润滑油的摩擦性能 。sio2纳米微粒作为润滑油添加剂表现出优异的抗磨减摩性能,并对磨损表而起到一定的修复作用。[/size][/font]

  • 纳米二氧化硅在润滑油添加剂领域的应用介绍

    [font=&][size=18px]在润滑油添加剂领域纳米二氧化硅微粒表面含有大量的羟基和不饱键,可以在摩擦副表而形成牢固的化学吸附膜,而保护金属摩擦表面,显著改善润滑油的摩擦性能 。润滑油的承载能力在加入纳sio2后得到很大提高,当加人量为1 .5时,PB值增大了近1倍,sio2纳米微粒作为润滑油添加剂表现出优异的抗磨减摩性能,并对磨损表而起到一定的修复作用。 在润滑油添加剂领域在润滑油添加剂领域纳米二氧化硅微粒表面含有大量的羟基和不饱键,可以在摩擦副表而形成牢固的化学吸附膜,而保护金属摩擦表面,显著改善润滑油的摩擦性能 。sio2纳米微粒作为润滑油添加剂表现出优异的抗磨减摩性能,并对磨损表而起到一定的修复作用[/size][/font]

  • 微纳米粉捕集装置

    微纳米粉捕集装置

    [font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]

  • 【转帖】未来纳米材料的发展方向

    5.纳米科学与技术 (1)研究方向:研究物质在纳米尺度上表现出的物理、化学和生物特性,单分子的特性和相互作用,为以原子、分子为起点,设计和构筑新的纳米结构、材料和器件,提供科学基础和理论准备。加强对纳米结构新的测试和表征方法的研究和探索,加深对纳米科技理论和方法的理解。 (2)应用方向,纳米技术的发展有5个主要方向:   以纳米材料(颗粒、C60、碳纳米管)为代表的方向;以从微电子向纳电子转化为代表的方向;以微光、机、电集成系统向纳光、机、电集成系统为代表的方向(MEMS――NEMS);以纳米生物学、系统为代表的方向;以纳米物理化学性质、制备、表征等为代表的方向。 (3)纳米技术在纺织领域的应用:   目前,纳米技术在纺织方面的应用主要表现在纳米复合纤维及纳米技术在纺织后整理等方面。   ①纳米复合纤维:化学纤维中加入纳米级添加剂,可以制造出新一代功能性更强的、不同用途的优良复合化学纤维。这种方法的技术难度比直接制造纳米纤维的难度要低,是近期内纳米技术在纺织领域中应用的主导方向。结合当前的实际情况,应考虑发展以下几类纤维:   ●抗紫外纤维   纳米TiO2和纳米ZnO等陶瓷粉,由于小尺寸效应,对光的吸收性很强。以它们为无机紫外线屏蔽剂制成的抗紫外线型纤维或织物,不仅可全面抵御UV-A、UV-B对人体皮肤的伤害,而且还能反射可见光和红外线,具有遮热功能,以此类纤维制成的织物,便于印染整理,手感柔软,透气凉爽,服用性好。目前从国内外研制生产的品种来看,涉及到涤纶、维纶、腈纶、锦纶、丙纶和粘胶纤维等。   ●抗菌、抑菌和除臭纤维   纳米级TiO2和ZnO等光催化无机抗菌剂可应用于超细纤维等特殊场合,是前景广阔的新型抗菌材料。它们可作为添加剂加到涤纶、丙纶、锦纶、腈纶、粘胶等化纤中,赋予各类纤维及其织物抗菌、抑菌、除臭功能,从而起到保健和美学作用,所制成的纤维不仅具有疏水导湿性、快干性、抗污性、密度小和手感柔软等特点,且抗菌性能持久。   ●导电纤维   将二氧化锡和氧化锌等白色纳米粉体与纤维高聚物混合纺丝或通过吸附法及浸渍化学反应使其覆盖于纤维表面上,制成白色导电纤维,可用来制作防护服、工作服和装饰性导电材料。   ●远红外纤维   此类纤维可以吸收太阳光和人体辐射的远红外线,也可以发射出波长和功率与其温度相适应的远红外线,因而使织物具有更好的保暖效果;它还能吸引人体自身向外散发的热量,并再向人体反射易吸收的远红外线。同时,由于特殊的物理效能刺激人体生理发生变化,还能达到保健和抑菌的作用。远红外纤维除了具有反射功能外,还兼有抗可见光、近红外线和抗紫外线的功能,可用来制作夏日服装、野外工作服、遮阳伞及装饰用布等,孕育着十分广阔的市场。   ●空气负离子纤维   奇冰石纳米复合粉是将多种天然矿石进行深度加工,并添加纳米TiO2等纳米粉体制成的性能奇特的超细粉体。添加了奇冰石的丙纶、涤纶纤维,可以产生空气负离子,发射远红外电磁波,还可以释放人体需要的微量元素,因此可制作保健服、内衣、室内装饰布、窗帘、家用纺织品、汽车装饰布等。它还可以为人体随时补充所需要的微量元素,实现了医药工程和纺织工程的完美结合,易被广大消费者接受,具有较大的市场潜力。   ●高强高模量纤维   纳米碳管的强度极高,弹性模量也很高,甚至可以弯曲后再弹回,可用于制备高强高弹性纤维。另外,粘土与聚合物的复合能够大大提高材料的强度和模量,北京服装学院利用纳米粘土的这种功能,与聚酰胺插层聚合开发尼龙纳米功能纤维,使纤维的强度和模量有很大的提高,尤其是模量,可以提高2倍,但纤维的纺丝性能没有明显的改变。   除了上述功能纤维以外,采用纳米粉体对纤维进行改性,还可以开发多种功能纤维,如变色纤维、耐热纤维、芳香纤维、磁性纤维、储能纤维、发光纤维、阻燃纤维、吸水吸湿纤维、防水拒油纤维等。   ②纳米技术在织物后整理中的应用   ●直接涂层法获得功能性涂层   先将纳米微粒直接加入到织物整理剂中,使其均匀分散,然后使织物通过包含纳米微粒的整理液,在粘合剂作用下直接涂覆在织物表面,形成功能性涂层。   ●接枝技术法获得功能性涂层   对于某些涂层牢度不够、功能性不持久的情况,可采用接枝技术。具体可采用两条技术路线:一是将对纳米材料有很强的配位能力的有机化合物接枝到棉纤维上,制成简单的有机分子模板,再将纳米团簇组装到纤维上;二是在制备纳米微粒时,用可接枝到纤维上的化合物作为捕获剂,使纳米微粒通过捕获剂进行表面修饰形成"团簇",再把"团簇"接枝到纤维上。   (4)纳米改性涂料   实验研究表明,在各类涂料中添加纳米材料,如纳米TiO2,可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,广泛应用于医院和家庭内墙涂饰;防紫外线涂料,用于生产防紫外线阳伞;吸波隐身涂料,用于隐形飞机、隐形军舰等国防工业领域及其他需要电磁波屏蔽场所的涂敷。在涂料中添加纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍提高,涂料的质量和档次大大升级。纳米二氧化钛超亲水性和超亲油性的开发应用将为涂层材料带来革命,使表面具有自清洁功效,防污、防雾、易洗、易干。纳米材料改性外墙涂料的耐洗刷性可由原来的1000多次提高到1万多次,老化时间延长2倍多,利用纳米材料的光学性能改性后的颜料色彩艳丽、保持持久且极易分散。   (5)纳米稀土   纳米稀土是目前国内纳米材料发展的热点之一。目前正在重点开发纺织纤维用纳米稀土材料、PDP\\LED用稀土发光材料、稀土荧光粉和高性能稀土合金。   纳米稀土的主要应用方向为汽车尾气催化剂(如纳米CeO2)、纺织纤维添加剂、高性能稀土发光材料、陶瓷及涂层等。   (6)纳米陶瓷   氧化钇锆是一种应用广泛的陶瓷材料,用纳米氧化钇和氧化锆能在较低温度下烧结成氧化锆陶瓷,具有很高的强度和韧性,可用作刀具和耐磨零件,也可制成陶瓷发动机部件。此外,稀土氧化物等纳米材料可以掺入普通陶瓷粉,喷涂在陶瓷基体上形成无机陶瓷腊(膜),代替聚四氟乙烯有机膜,做成耐热、无铅、不粘的日用陶瓷炊具。

  • 美研究人员:每升瓶装水约含24万个塑料微粒

    [align=center][img=,425,264]https://img1.17img.cn/17img/images/202401/uepic/9127217f-7042-4490-9171-49a30f79c91f.jpg[/img][/align]据悉,美国哥伦比亚大学气候学院研究人员首次对瓶装水中的微小塑料颗粒进行了计数和识别。结果发现,[b]平均每升水中含有约24万个可检测到的塑料微粒,[/b]比之前主要基于较大尺寸塑料微粒的计数高出10倍到100倍。这项研究8日发表在《美国国家科学院院刊》上。微塑料被定义为尺寸从5毫米到1微米的碎片。作为参考,人类的头发直径约为70微米。纳米塑料是指小于1微米的颗粒,以十亿分之一米为单位测量。纳米塑料可以通过肠道和肺直接进入血液,并从那里到达包括心脏和大脑等在内的器官。它们可以侵入单个细胞,并通过胎盘进入未出生的婴儿体内。[b]全球每年塑料产量接近4亿吨,有超过3000万吨的塑料垃圾被倾倒在水中或陆地上。[/b]许多由塑料制成的产品在使用过程中会产生微小颗粒。与天然有机物不同,大多数塑料不会分解成相对无害的物质。它们只是简单地分解成化学成分相同的、越来越小的颗粒。除单分子外,理论上它们可以变得多小是没有限制的。这项新研究使用了受激拉曼散射显微镜技术。针对7种常见的塑料,研究人员创建了一种数据驱动的算法来解释结果。他们测试了在美国销售的3个受欢迎的瓶装水品牌,分析了尺寸仅为100纳米的塑料微粒。他们在每升水中发现了11万到37万个微粒,其中90%是纳米塑料,其余是微塑料。许多水瓶都是用聚对苯二甲酸乙二醇酯(PET)制成的。当瓶子被挤压或暴露在高温下时,这种材料可能会随着塑料碎片脱落而进入水中。最近一项研究表明,当反复打开或关闭瓶盖时,许多塑料微粒会随之进入水中。研究人员指出,[b]纳米塑料与微塑料相比,它们尺寸更小,更容易进入人体内。[/b][来源:科技日报][align=right][/align][align=right][/align]

  • 纳米片材料性质

    [font=微软雅黑][size=10.5000pt]由于纳米单元层都是一个动力学独立的片状颗粒,其空间位阻被降到最低,因此可以与任意大小的微粒同纳米层实现组装,进而合成一系列利用常规方法不能抽取的插层化合物,特别是插入体积非常大的客体分子。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]此外,剥离得到的纳米层通过剥离[/font]/重组技术可以制备新的纳米功能薄膜、纳米功能积层材料、有效高比表面积的催化材料材料以及有机-无机复合材料等。[/size][/font][font=微软雅黑][size=10.5000pt]期待合成的纳米材料在磁性材料、选择性催化剂、选择性吸附剂,锂离子二次电池正极材料等方面得到广泛应用。[/size][/font][align=left][b][font=微软雅黑][size=12pt]层状化合物及分类[/size][/font][/b][/align][font=微软雅黑][size=10.5000pt]随着纳米复合材料的深入研究,另一类多功能的无机层状化合物已成为合成功能性复合材料重要的前驱物或基本组成单元。无机层状化合物的各类繁多,一般以层状主体是否带电来进行分类。[/size][/font][font=微软雅黑][size=10.5000pt]阴离子型层状化学物:是指层间具有可交换阴离子或中性分子的层状结构主体,且层状主体构架是带正电荷的。其中比较有代表性的主要是:水滑石、类水滑石。它们的主体成份一般是由两种金属的氢氧化物构成,因此又称其为双金属氢氧化物。[/size][/font][font=微软雅黑][size=10.5000pt]阳离子型层状化合物:是由带负电结构单元通过共用边、角、面形成的层状框架或网络。片层电荷补偿是通过层间可移动的阳离子如钾离子或者纳离子等或中性分子来实现。其中比较有代表性的是蒙脱土、绿土、磷酸盐、硅酸盐、钛酸盐和砷酸盐和铌酸盐。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]中性层状化合物:即层状主体结构是电中性的。这类化合物层与层之间是范德华力维持,研究较多的是石墨、层状双硫氧化物、[/font]V[/size][/font][sub][font=微软雅黑][size=10.5000pt]2[/size][/font][/sub][font=微软雅黑][size=10.5000pt]O[/size][/font][sub][font=微软雅黑][size=10.5000pt]5[/size][/font][/sub][font=微软雅黑][size=10.5000pt]等。[/size][/font]

  • 纳米技术及应用

    信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向。 纳米是一个长度计量单位,它是一米的十亿分之一。纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料。纳米技术就是 指在纳米尺度范围内,通过操纵原子、分子、原子团和分子团,使 其重新排列组合成新物质的技术。其最终目标是直接以原子、分子的变化,使物质在纳米尺度上表现出新颖的物理、化学和生物学特性,制造出具有特定功能的产品。因为纳米材料的粒度非常微小,一般的显微镜是不能观察到的,所以纳米技术是在扫描隧道显微镜发明之后,才出现以0.1至100纳米尺度为研究对象的前沿科学。这可能改变几乎所有产品的设计和制造方式,实现生产方式的飞跃, 是新工业革命的核心。纳米技术也是信息和生命科学技术能够进一步发展的共同基础,将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。有人曾经预言说,七十年代搞微米技术的国 家,现在已成为发达国家;现在从事纳米技术研究的国家,将是二 十一世纪的先进国家。 纳米材料粒度非常微小,具有良好的表面效应,一克纳米材料的表 面积达到几百平方米,因此用纳米材料制成的产品,其强度、柔韧 度、延展性都十分优越,就象一种有成千上万对脚的毛毛虫,当它 吸附在光滑的玻璃面上时,由于接触面积大,12级台风也吹不掉 它。因此,在化纤中加入少量的金属纳米颗粒,就可摆脱磨擦引起的静电现象;在食品中采用纳米技术,可提高肠胃的吸收功能;在 涂料中运用纳米技术,可使外墙涂料的耐洗刷性从一千多次提高到一万多次,老化时间延长两倍多;许多化妆品因为加入纳米微粒, 而具备防紫外线功能;利用纳米技术可生产出色彩鲜艳、抗折性极 高的彩色轮胎;利用纳米粉末,可使废水变清。另外,纳米在医药 保健、计算机、化学和航天等领域都会引起新的、技术性革命。 作为纳米技术重要方面的碳纳米管,是1991年被人类发现的。它是由石墨碳原子层卷曲而成的碳管,管的直径一般为几个纳米到几十纳米,管壁厚度仅几个纳米,象铁丝网卷成的空心圆柱状的“笼形 管”。5万个“笼形管”排列起来,才有人的一根头发丝那么宽,长度和直径比非常高的纤维小。作为石墨、金刚石等碳晶体家族的新成员,碳纳米管的韧性很高,导电性极强,场发射性能优良,兼具 金属性和半导体性。其强度比钢高100倍,比重只有钢的1/6,称之 为未来的超级纤维,成为国际研究的热点。碳纳米管的用途十分诱 人。它可制成极好的微细探针和导线、加强材料及储氢材料。它使壁挂电视成为可能,并在将来可替代硅芯片。纳米芯片体积更小、 容量更大、重量更轻,将在纳米电子学中扮演极重要角色,并引发计算机行业的革命。不久前我国研制出的碳纳米管显示器样本,不但体积小,重量轻,而且显示质量好,从-45℃~80℃皆能正常工 作,而耗电只有现在的显示器的1%。 另外,作为纳米技术的应用之一,在我国西安已研制出的“纳米服 装”,不仅能阻隔95%以上的紫外线,还能阻隔同量的电磁波,且无毒、无刺激,不受洗涤、着色、磨损的影响,能有效地保护人体皮 肤不受辐射的影响。还有小鸭集团研制出的纳米洗衣机,就是利用 纳米抗菌材料研制出的自我清洁的洗衣机。它能够有效地抑制细菌 滋生,无论使用多长时间,都能够保持“净水洗涤”的状态。 目前,纳米技术在电线电缆中的应用已在开始。有人曾设想,能否运用纳米技术来提高绝缘材料的性能,从而提高电缆的绝缘、耐热 和抗老化等性能,减少电缆的外径,减轻电缆的重量。另外能否利 用碳纳米管的韧性高、导电性强的特点,制成超细电磁线,使微型 电机的体积象米粒那样大,甚至更小。 现在“纳米热”已遍及全球,从大西洋到太平洋,从日本到欧洲,各国都把它作为重要的未来发展战略。美国总统克林顿曾经发表过 一篇关于前沿科学技术的前瞻性的讲话,提出了美国今后要大力发 展纳米技术。美国已于2000年10月1日启动“国家纳米计划”,投资1997年的1.16亿美元增加到4.97亿美元。目前全球纳米技术的年 产值已达到500亿美元,预计到2010年,市场容量将达到14400亿美 元。我国已建立了10多条纳米材料和技术的生产线,以此为基础的企业已达100多家。预计在今后二、三十年内,它将远远超过计算机工业,并成为未来信息时代的核心。纳米技术导致的微形化趋势从根本上改变人类的处境,从而引起二十一世纪的又一次产业革命。

  • 【资料】金纳米颗粒微观结构首次得到揭示

    [B]“这是一项应该被写入教科书的重要发现” [/B]纳米颗粒的广泛应用并不意味着科学家对它们的微观结构了如指掌。美国科学家的一项最新研究,首次揭开了科研中经常用到的一种金纳米颗粒的神秘面纱。相关论文以封面文章的形式发表在10月19日的《科学》杂志上。 由于金的活动性弱且对空气和光线都不敏感,实验室中经常用金纳米颗粒作为示踪剂,比如探测样本中是否存在某种DNA或者蛋白质。为了防止不同金纳米颗粒的原子之间形成化学键,科学家经常在金纳米颗粒表面覆盖一层保护性分子层,最常用的是含硫的分子团。如果改造这些含硫分子团,使其具有特殊的绑定位点或者荧光标记,观察和区分金纳米颗粒将更加容易。 尽管如此,科学家对金纳米颗粒的结构却没有清晰的认识,有认为金纳米颗粒是胶质的,形状杂乱,大小不一,还有认为它们是具有同一尺寸和结构的离散分子。 在最新的研究中,美国斯坦福大学Roger Kornberg领导的小组成功制备出了有单层硫醇保护的金纳米颗粒晶体,并利用X射线结晶学技术,首次对它们的精确结构进行了成像。值得注意的是,制备晶体和确定结构一样,都是突破性的进展。

  • 【分享】微结构决定的具有均一米状形貌的新奇银纳米颗粒的高产率合成

    金属纳米颗粒由于其良好的电学、光学、热导、催化以及磁学性质而得到广泛的研究。近年来,金属纳米颗粒奇异的光学性质引起人们极大的兴趣。其中,金银纳米颗粒由于在可见和红外光频区有着很好的表面等离子体共振性质而格外引人注目,在表面增强光谱、生物检测等方面具有巨大的应用前景。通过控制纳米颗粒的形貌可以有效的调制金属纳米颗粒的表面等离子体共振性质。因此,获得不同形貌的金属纳米颗粒是最近兴起的表面等离子体光子学研究领域中重要的研究方向之一。 最近,中国科学院物理研究所/北京凝聚态物理国家实验室徐红星研究员研究组的梁红艳同学和王文忠教授首次用多羟基醇还原法合成了一种外形为纺锤状的银纳米颗粒(Ag Nanorice),并与李建奇研究员研究组的杨槐馨副研究员合作,发现这种银纳米颗粒为六方相和立方相交生形成,内部存在孪晶,堆垛层错,多重调制等多种缺陷结构,并且缺陷密度在银纳米颗粒的不同部位有着明显区别,这种微结构突破了传统银纳米颗粒常规的单晶、孪晶特性,决定了具有均一米状形貌的新奇银纳米颗粒的高产率合成。该项研究的意义不仅在于为有效调制表面等离子体共振特性提供新的纳米结构,还在于这种堆垛结构可能打破晶体生长时晶体结构对形貌的限制,为设计合成所需形貌晶体带来曙光。这将丰富纳米晶体结构控制生长的内涵,深化对金属晶体生长规律的认识,拓展金属纳米结构在光谱分析、超灵敏检测等方向的应用,因而具有十分重要的实际意义。 该工作发表于近期的J. Am. Chem. Soc. 131,6068-6069(2009)上。此项研究获得国家自然科学基金委杰出青年基金,科技部重大项目,中科院知识创新工程和教育部的“985”和“211”等项目的资助。

  • 纳米技术改善难溶性药物吸收前景光明

    纳米技术改善难溶性药物吸收前景光明  近日,由中国药学会和美国药学科学家协会主办、沈阳药科大学和辽宁省药学会承办的“第二届亚洲阿登制药技术研讨会暨中国药学会药剂专业委员会2010年学术年会”在沈阳召开,会议主题为“难溶药物的剂型策略”。在为期3天的研讨中,与会专家表示,改善难溶性药物的溶解度,促进药物的吸收,提高药物的生物利用度是药剂学领域亟待攻克的难题,而纳米技术这一助推器有助于加速该难题的解决,我国学者应加强相关研究。  溶解度成为制约瓶颈  药物的溶解性是影响药物生物利用度的重要因素之一,难溶性药物因在水中的溶解度小,难以被机体吸收,导致生物利用度较差。随着组合化学、基因技术、高通量筛选技术等在药物研发中的广泛应用,大量具有活性的候选药物被发现。但是,沈阳药科大学崔福德教授表示,由于存在水溶性差的缺陷,四成左右的侯选药物不能上市而限制了其在临床充分发挥疗效。据估计,全球每年约有650亿美元的药品因生物利用度差而造成治疗费用与疗效比例的严重失调。而实际上,许多难溶性药物有着很强的生物活性,在治疗肿瘤、心血管疾病等领域有着良好疗效。因此,如何提高药物的溶解度和吸收率,成为药剂学研究的热点与难点,迫切需要发展新的制剂技术和剂型来解决这一问题。  崔福德介绍,当前,在药剂学研究中提高难溶性药物的溶解度和溶解速率有多种方法,如加入助溶剂、增溶剂和亲水性介质(适用于液体制剂);制成固体分散体和包含物(适用于固体制剂);制成微粒分散系统(适用于液体和固体制剂);还可以采取减少粒径的措施,比如做成药物的纳米结晶(适用于各种剂型)。  “但是这些方法都有一定的局限性。”中国药学会药剂专业委员会主任委员、北京大学药学院张强教授具体分析说,比如成盐类的方法就只适用于一些难溶性弱酸或弱碱类药物,而不适用于所有分子结构的药物;加入助溶剂和亲水性物质的方法,可供选择的溶剂等也是有限的;增溶剂主要是表面活性剂,毒性问题也限制了其使用;包合物同样存在可供选择的品种较少和毒性问题;固体分散体也有老化现象和需要使用大量赋型剂的缺陷;而费用较高和稳定性问题又限制了微粒化方法的使用。  新技术助力难题解决  解决上述问题,纳米技术的应用优势日益显现:纳米化使药物的粒度大大减小,表面积大大增加,水溶性差的药物在纳米载体中可形成较高的局部浓度;药物的黏附性增强,在吸收部位的滞留时间延长;纳米载药系统可以提高药物的透膜能力和稳定性,也有利于提高药物的生物利用度,特别是对于生物药剂学分类体系(BCS)Ⅱ类(低溶解度、高通透性)和Ⅳ类(低溶解度、低通透性)的药物,这一技术越来越受到国内外一些研究机构、制药公司的青睐。  在药剂学领域,一般将制剂中纳米粒子的尺寸界定在1~1000纳米范围,主要包括纳米载体与纳米药物两个方面。纳米载体是指溶解或分散有药物的各种纳米粒,如纳米乳、聚合物纳米粒(纳米囊或纳米球)、脂质纳米粒等;纳米药物则是指直接将原料药物加工成的纳米粒,实质上是微粉化技术、超细粉技术的发展。  张强介绍,纳米乳/微乳是一种由水、油、表面活性剂和一些复合表面活性剂自组装成的粒径小于100纳米的半透明溶液,其易于制备、相对稳定,而且可使大多数水不溶性药物的生物利用度提高显著。自1943年被报道以来,纳米乳/微乳已经得到了广泛的研究,但上市的产品却不多,1995年诺华公司上市了环孢素A的微乳产品,在临床迅速得以推广。现在上市的同类品种还有雷帕霉素自微乳化给药系统。  纳米粒(纳米球或纳米囊)一般是指由天然或合成的高分子材料制成的、粒径在纳米级的固态胶体微粒,可用于包裹亲水性药物,也可包裹疏水性药物,具有在胃肠道中稳定、药物不易被破坏,以及能够调整药物的理化性质、释放和生物学行为等优点。自1976年Birrenbach等人首先提出了纳米粒和纳米囊的概念后,目前以合成高分子材料为聚合物的纳米粒研究得最为广泛。但张强遗憾地表示:“30多年来,这个研究领域没有取得实质性的突破,无论是口服制剂还是注射制剂都没有产品上市。”而天然聚合物的纳米粒所使用的材料包括壳多糖、白蛋白、右旋糖苷、明胶等,其中以口服壳聚糖纳米粒的研究最为广泛。值得一提的是,白蛋白结合紫杉醇纳米粒注射混悬液2005年上市,成为制剂领域的一个重大突破;但口服给药方面仍没有产品面市。  脂质纳米粒是以生物相容性良好的脂质材料为载体,将药物溶解、包裹于脂质核或是吸附于纳米粒表面的新型载药系统。第一代脂质纳米粒是固体脂质纳米粒(SLN),其性质稳定、制备较简便,具有一定的缓释作用,主要适合于难溶性药物的包裹;随后又发展了第二代纳米结构脂质载体(NCL),解决了第一代脂质纳米粒载药量不佳的问题,稳定性也更好。张强谈到,近年来,对脂质纳米粒的研究也相当广泛,特别是第二代脂质纳米粒自1999年开始研究以来,在外用领域如化妆品领域进展很快,开发程度好于脂质体,但至今还没有用于临床的产品。  在表面活性剂和水等附加剂存在下直接将药物粉碎加工成纳米微粒,可以提高药物的吸收或靶向性,特别适合于大剂量的难溶性药物的口服吸收和注射给药,能增加溶出度,提高生物利用度,增加稳定性。此外,它无需载体材料,只有少量的表面活性剂,安全性更高。此类技术分为纳米混悬剂和纳米结晶制备技术。其中,纳米结晶制备技术发展较快,目前已有5种产品利用这种技术生产并在美国上市,包括惠氏公司的Rapamune(西罗莫司)、默克公司的Emend(阿瑞吡坦)、雅培公司的Tricor(非诺贝特)以及Par公司的Megace ES(甲地孕酮)等。

  • 纳米材料诱发的化学发光(一)

    以下是我写的综述的部分内容,望得到大家的指教4 纳米体系化学发光4.1纳米材料参与的电致化学发光广义的化学发光也包括电致化学发光(ECL),电致化学发光是指对电极施加一定的电压进行电化学反应,电极反应的产物之间或与体系中的某种组分发生化学反应,产生激发态物质,激发态物质回到基态时产生的发光[42,43]。它不但具有化学发光分析的许多优点,还具有电化学方法的一些特点,如电发光反应过程控制性强,选择性好等优点[44,45]。近年来,将纳米材料引入分析化学研究中已成为分析化学的一个研究热点,并取得许多创新性研究成果[46,47]。4.1.1半导体纳米粒子电致化学发光机理4.1.1.1半导体纳米粒子直接接受电极提供的能量生成激发态传统ECL是利用电极原位(in situ)产生试剂,这些试剂在溶液中反应,完成较高能量的电子转移而生成激发态的分子,不稳定的激发态分子回到基态过程中以光辐射形式释放能量[48-50]。同理,当电极施加双阶跃正负脉冲(或电位循环)时,半导体纳米粒子(A)在正电位阶跃时被氧化为A+,接着在负电位阶跃时被还原为 A-,A+ 与 A- 反应生成激发态的 A*,激发态的 A* 回到基态过程中时产生了化学发光[24,51-55]。对应的反应过程可以用(4.1)—(4.3)式表示。值得注意的是通过该机理产生发光的必要条件是:产生的还原态 A- 或氧化态 A+ 在溶液中,要能够稳定存在一定时间,从而使得A+ 能够与 A- 相遇、碰撞并产生激发态的 A*[24]。 A → A+ + e- (4.1) A + e- → A- (4.2) A+ + A- → A* (4.3) A* → A + hv (4.4)较典型的例子是He气氛下,在含有0.1mol/L THAP乙腈溶液中,对Pt电极施加双阶跃正负脉冲电位,并在 +2.7 V 和 -2.1 V循环阶跃,在正电位阶跃时,粒径为2-4nm的Si纳米半导体被氧化成稳定的 Si(NCs)+,接着电位阶跃负方向产生Si(NCs)-,并与Si(NCs)+ 碰撞产生激发态的Si(NCs)*,Si(NCs)* 回到基态时产生640nm的光发射[24]。4.1.1.2 半导体纳米粒子电化学产物与共反应物(coreactant)发生ECL反应若体系中含有共反应物(还原性或氧化性物质)时,仅在工作电极上施加正或负电压,即可生成激发态的A*而发光[24,53,56-58]。其反应过程可以用(4.1)—(4.3)式表示。产生的还原态 A- 或氧化态 A+也要能够稳定存在于溶液中一定时间,才能发生发光[24]。 A → A+ + e- (4.1)A+ + Re → A* + Ox (4.5)A* → A + hv (4.4)或 A + e- → A- (4.2)A- + Ox → A* + Re (4.6) 其中较为典型的例子是Zou[56]等将纳米CdSe沉积在石墨充蜡电极表面上并成膜,纳米CdSe膜在循环伏安下产生两个ECL通道(ECL-1和ECL-2)。并用ECL-1,在事先通N2 25min 含有0.1mol/L KNO3 pH 9.3 磷酸缓冲溶液中,扫描速率为0.06V/S 下,对H2O2进行了测定,线性范围: 2.5×10-7 ~ 6×10-5 mol/L,检测限: 1.0×10-7 mol/L。他们也提出了ECL的机理(式4.7—4.11)。CdSe NCs + ne → nR• - (4.7)O2 + H2O2 + 2e → OOH- + OH- (4.8)2R• - + OOH- +H2O → 3OH- + 2R* (4.9)or2R• - + H2O2 → 2OH- + 2R* (4.10) nR* → CdSe NCs + hv (4.11) 4.1.2 纳米金粒子对电致化学发光体系的催化作用 因纳米具良好的“生物相容性”和高的催化特性,近来人们对纳米金催化等特性的研究进展迅速[59]。崔华[60]研究小组,已将纳米金用于化学发光体系研究,报道了纳米金粒子的催化作用对液相电致化学发光的影响,发现纳米金的催化作用和电化学活性既可以增强两个阳极ECL发光通道,又导致了两个新的阴极ECL发光通道的产生。最近,Liu[61]等发现纳米金可以催化Ru(bpy)32+- pentoxyverine (喷托维林)体系的电致化学发光,将电致化学发光分析法与毛细电泳技术联用,在毛细电泳柱端成功测定了喷托维林,检测限为:6nmol/L;并将该方法用于喷托维林和人血清白蛋白结合常数的测定,测定值为:1.8×103 L/mol。4.1.3 纳米材料作为化学发光试剂的固载。钱柯君[62]等用反胶束法水解正硅酸乙酯(TEOS)合成球形luminol/ SiO2复合纳米微粒;再用壳聚糖修饰已合成的纳米微粒并标记DNA作为DNA探针,构建的DNA探针与固定在聚吡咯修饰电极上的靶DNA杂交。用ECL法对DNA杂交情况进行评估,仅互补序列DNA才可以与DNA探针形成双链DNA(dsDNA)并产生强的ECL。发现3个碱基错配互补靶序列和非互补靶序列产生的ECL可以被忽略,ECL强度与互补序列DNA的浓度在5.0×10-12~1.0×10-9 mol/L范围内呈线性关系,对互补序列DNA的检测限为:2.0×10-12 mol/L。4.2 纳米材料参与的化学发光传统的化学发光研究一般仅限于分子和离子体系。最近,纳米粒子在化学发光中的行为研究已经引起了人们的重视:无论是半导体纳米粒子还是金属纳米粒子在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应中都表现出特殊的活性。4.2.1纳米金参与的液相化学发光4.2.1.1 纳米金作为化学发光反应的微尺度平台Cui[26]等首次报道了,粒径为68-nm 的纳米金与KIO4—NaOH—Na2CO3之间的反应能够产生化学发光现象,该化学发光的光谱具有三个明显的发射带,分别位于380—390 nm, 430—450 nm和490—500 nm;该体系的化学发光强度随着溶液中

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091358_531780_2972800_3.jpg 科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091400_531781_2972800_3.jpg 益择网讯(慕雪/编译)科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 【分享】什么是纳米科技?

    纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。纳米科技的研究内容 创造和制备优异性能的纳米材料 设计、制备各种纳米器件和装置 探测和分析纳米区域的性质和现象 什么是纳米?  纳米是尺寸或大小的度量单位:千米(103 )→米→厘米→毫米→微米→纳米( 10-9) 4倍原子大小,万分之一头发粗细 纳米科技研究什么问题?  生物科学技术、信息科学技术、纳米科学技术是下一世纪内科学技术发展的主流。生物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界不存在的生物;信息科学技术使人们可以坐在家中便知天下大事,因特网几乎可以改变人们的生活方式。  纳米科学是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 还原论:把物质的运动都还原到原子、分子这一层面上。原子论和量子力学取得了巨大的成功。有机合成;分子生物学;转基因食品、克隆羊;原子光谱和激光;固体电子论和IC;几何光学到光纤通讯。 宏观世界上经典物理、化学、力学的巨大成就:计算机和网络、宇宙飞船、飞机、汽车、机器人等改变了人们的生活方式  科学技术有认识上的盲区或人类知识大厦上的裂缝。裂缝的一边是以原子、分子为主体的微观世界,另一岸是人类活动的宏观世界。两个世界之间不是直接而简单的联结,存在一个过渡区--纳米世界。例:分子合成 ≤1.5nm, →活体 微电子技术在0.2μm,显微外科只能连接大、小、微血管≤ PM10和PM1.5的微粒几十个原子、分子或成千个原子、分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质。这种“组合”被称为“超分子”或“人工分子”。“超分子”性质,如熔点、磁性、电容性、导电性、发光性和染、颜色及水溶性有重大变化。当“超分子”继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去,像真是一些长不大的孩子。  在10nm尺度内,由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合及探测、应用它们---纳米科学技术的主要问题。 原子和分子的微观世界和宏观世界的过渡区内的新现象和新规律 探测纳米长度内物理、化学生物信息的新原理和新方法 新概念和新理论:强关联、强场、快过程、少粒子的量子体系 应用 新科学还是老理论的翻版?历史悠久的新科学技术西汉铜镜和黑漆鼓徽墨漆器催化剂材料感光材料和彩色胶片含有高岭土颗粒的轮胎WHY?不清楚近十年,计算机和材料设计;探测技术STM、AFM、SNOM;IC和生命科学的推动;制备技术发展;理论的发展高强度和高韧性、可自修复、有智能、可再生→新一代纳米材料 为什么小尺寸会有如此重要的影响? 表面效应 小尺寸效应 量子限域效应 研究目标和可能的应用 材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复; 微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统; 医学与健康快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物“导弹”技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统 航天和航空低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料 环境和能源发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境;孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料 生物技术和农业在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等

  • 【原创】激光粒度仪中亚微米及纳米的粒度检测

    在激光粒度仪的性能指标中测试下限标称为0.1甚至为0.02等,那么这部分粒度是怎么检测出来的呢?如果下限为0.1微米,那么探测器所能接收的前向角度至少要达到70度,或是有后向探测器.如果下限为0.02微米必须要应用后向散射技术,而且还要看后向激光器的波长,如果是普通的红光激光器,波长范围大概为600-800nm的激光器将无法区分纳米级颗粒后向的散射信号区别.所以必须采用波长更短的激光器,比如蓝光激光器,波长405nm等,这样纳米颗粒的后向信号区别会比较明显,但还要有特殊的采样与处理方式,否则测量下限0.02也是无法做到的.具体的方法不便说出,但用户可以采用纳米级颗粒去验证,最好中位径范围在0.05um以下的几种颗粒,比如中位径分别为0.02,0.03,0.04,0.05等几种接近单分散样品,确实在实际中这种验证比较困难,这里只是建议方法而已,希望用户能选择到一款性价比较高的仪器!尤其是检测中位径在0.2-0.02um的用户尤其要注意!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制