当前位置: 仪器信息网 > 行业主题 > >

纳米隧道

仪器信息网纳米隧道专题为您整合纳米隧道相关的最新文章,在纳米隧道专题,您不仅可以免费浏览纳米隧道的资讯, 同时您还可以浏览纳米隧道的相关资料、解决方案,参与社区纳米隧道话题讨论。

纳米隧道相关的资讯

  • 纳米隧道电穿孔技术可对细胞精确用药
    据美国物理学家组织网10月16日报道,美国俄亥俄州立大学科学家开发出一种名为“纳米隧道电穿孔”的新技术,或称为NEP。利用其给细胞注射基因治疗药剂时,不用针头,而是用电脉冲通过微小的纳米隧道,几毫秒内就能把精确剂量的治疗用生物分子“注射”到单个活细胞内。该研究发表在最近的《自然纳米技术》杂志网站上。   长期以来,在进行基因治疗时,人们对插入细胞的药剂数量无法控制,因为人体绝大部分细胞都太小,最小的针头也无能为力。而“NEP让我们能研究药剂和其他生物分子是怎样影响了细胞的生物和基因路径的,现有其他技术都无法达到这么细微的水平。”该校化学与生物分子工程教授詹姆斯李说。他们用这种方法,将定量的抗癌基因成功插入到白血病细胞中并杀死了它们。   研究人员用聚合物压制成一种电子设备样机,用DNA(脱氧核糖核酸)单链作为模板来构建纳米隧道。詹姆斯李发明了一种使DNA链解旋的技术,并使其按照需要形成精确结构。他们给DNA链涂上一层金涂层并加以拉伸,使之连接两个容器,然后将DNA蚀去,在设备内部留下一条连通两个容器的尺寸精确的纳米隧道。   隧道中的电极将整个设备变成一个微电路,几百伏特的电脉冲从一个装药剂的容器经纳米隧道到达另一个装细胞的容器,在隧道出口处形成了强大的电场,与细胞自身的电荷相互作用,迫使细胞膜打开一个小孔,足够投放药物而不会杀死细胞。调整脉冲时间和隧道宽度,就能控制药物剂量。   为了测试NEP能否递送活性药剂,他们把一些治疗用RNA(核糖核酸)插入了白血病细胞,发现5毫秒的电脉冲能递送足够剂量的RNA杀死这些细胞 而更长的脉冲,如10毫秒,能杀死几乎所有的白血病细胞。作为对照,他们还插入了一些无害的RNA到白血病细胞中,这些细胞都没死。   詹姆斯李指出,由于这种方法一次只能给一个或几个细胞注射,更适合用在实验室。目前他们正在开发一种机械式细胞装载系统,一次能给10万个细胞注射,有望用于临床诊断和治疗。   “我们希望NEP能最终用于早期癌症检测与治疗,比如在干细胞或免疫细胞中插入精确剂量的基因或蛋白质,引导它们分化改变,不必担心过量注射带来的安全问题,然后把这些细胞放回体内作为一种细胞基础疗法。”詹姆斯李说,这种方法还可能用于白血病、肺癌及其他肿瘤。
  • 第十一届扫描隧道显微学学术会议举办
    仪器信息网讯 2010年11月3日-5日,由中国科学院武汉物理与数学研究所承办的第十一届扫描隧道显微学学术会议在武汉举行。130余名来自全国高等院校、科研机构、企业的从事扫描探针显微学的专家学者参加了此次会议。仪器信息网作为独家支持媒体也应邀参会。 会议现场   扫描隧道显微学学术会议是由白春礼院士发起的全国性会议,每两年一届。会议开幕式由中国科学院武汉物理与数学研究所曹更玉研究员主持,中国科学院武汉物理与数学研究所党委书记詹明生研究员致开幕词。   中国科学院武汉物理与数学研究所 曹更玉研究员   中国科学院武汉物理与数学研究所党委书记 詹明生研究员   本次会议内容主要包括:扫描隧道显微学(STM)与物理、扫描隧道显微学与化学和材料科学、扫描探针显微学(SPM)在生命科学中的应用、扫描探针显微学技术进展。会议展示了最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果。   扫描隧道显微学与物理学   报告人:中国科技大学 杨金龙教授   报告题目:Theoretical studies of inelastic electron tunneling phenomena in STM   杨金龙教授介绍了课题组近几年在STM非弹性扫描隧道谱方面的理论研究工作:1. 非弹性电子在扫描隧道显微镜的应用中产生的许多现象;2.在常规的程序包中增加程序,并用于理论非弹性隧道谱和模拟实验的比较;3.研究非弹性电子在扫描隧道显微镜实验中所产生的表面分子化学运动,如旋转、激发、断键等;4.非弹性电子引起的 “分子开关”效应。   报告人:合肥微尺度物质科学国家实验室 董振超教授   报告题目:STM诱导的分子光电新现象   董振超教授指出扫描隧道显微镜不仅可以用来观察和操纵纳米世界的单个原子和分子,而且其高度局域化的隧穿电流可以激发隧道结发光,他介绍了自己如何通过分子光子态调控来实现分子隧道结的新光电效应。   报告人:中国科学院物理研究所 肖文德研究员   报告题目:Ru(0001)上外延生长单层石墨烯的电子结构和振动模式的STM研究   肖文德研究员介绍说虽然光电子能谱、拉曼光谱、红外光谱等技术可对石墨烯的电子和声子特性进行研究,但是这些技术通常获得的是样品表面较大范围的平均信息。而石墨烯通常都呈现一定的起伏和皱,应用高分辨扫描隧道显微镜的扫描隧道谱和非弹性隧道谱法,实现了对Ru(0001)上外延生长单层石墨烯不同区域的电子结构和振动模式的研究。   此外,来自合肥微尺度物质科学国家实验室的张汇博士介绍了利用扫描隧道显微镜研究Si(111)表面In原子链上的一种孤子,并利用第一性原理的计算得到了这种孤子的精确结构。大连理工大学吴永宽博士利用原子力显微镜对室温沉积的Ge2Sb2Te5薄膜进行实位温控成像研究。上海交通大学分析测试中心的邹志强研究员利用超高真空STM对Mn及其硅化物薄膜在Si(111)衬底上的固相外延和反应外延生长进行了详细研究。   扫描隧道显微学与化学和材料科学   报告人:华南理工大学材料科学与工程学院 邓文礼教授   报告题目:设计合成有机分子的纳米构筑和仿生纳米制造探索   邓文礼教授设计合成了1,3,5-苯三氧十三酸乙酯等化合物分子,并了在大气环境条件下,利用扫描隧道显微镜分别研究了合成化合物分子在固态表面的吸附和自组装行为。   此外,邓文礼教授重点介绍了对于爬山虎吸盘粘附作用的研究,通过探究其表面结构、所含的天然成分、生长过程等实现纳米仿生粘附材料的研制,并期望可以在航空航天、医学、建筑等领域发挥作用。邓文礼教授研究小组是目前国内唯一的从事相关研究的课题组。 报告人:中国科学院武汉物理与数学研究所 于迎辉副研究员   报告题目:Cu-Al(111)合金及其表面氧化铝薄膜的物性研究   于迎辉研究员通过在Cu(111)中引入杂志Al形成α相的Cu-Al合金,进而在合金表面生长有序的氧化铝薄膜做为脱偶层。利用俄歇电子能谱表征Cu-Al合金表面的Al含量、低能电子衍射和低温扫描隧道显微镜检测Cu-Al(111)合金表面原子结构及电子分布。   扫描探针显微学在生命科学中的应用   报告人:吉林大学超分子结构与材料国家重点实验室 张文科教授   报告题目:AFM在核酸-蛋白质相互作用研究中的应用   张文科教授利用原子力显微镜(AFM)成像原位观测核酸与蛋白质之间的相互作用,研究了双螺旋DNA的AFM单分子力学指纹谱,并利用该力学指纹谱研究DNA结合蛋白与DNA的相互作用、外力诱导下DNA构象转变的本质。最后,张文科教授以烟草花叶病毒为例,探索了单分子力谱在研究复杂体系中核酸-蛋白质相互作用中的应用。   报告人:暨南大学 蔡继业教授   报告题目:扫描探针显微学结合量子点标记研究细胞表面分子   蔡继业教授介绍说单分子探测是目前的一个研究热点,但大部分集中在材料和化学研究中,对于细胞中单分子的研究比较少。扫描探针显微镜克服了共聚焦显微镜、扫描电镜在细胞研究中的缺点,量子点标记解决了荧光漂白的缺点。将扫描探针与量子点标记相结合实现了特异性识别细胞表面的抗原和抗体,并探测它们之间的相互作用力。   对于扫描探针显微学在生命科学中的应用,东南大学曹黎黎博士介绍了利用AFM研究小分子药物作用于环状双链DNA分子所引起的DNA结构和构象的变化。武汉大学林毅副教授提出一种基于轻敲模式原子力显微术成像原理的在成像同时测量压缩弹性模量通用方法,并应用于单根双链DNA径向压缩弹性模量的测量。东南大学巴龙教授设计了原子力探针的磁力驱动线圈,用于研究聚电解质多层微囊的动态力学性质及其与结构的关系。   扫描探针显微学技术进展   报告人:北京航空航天大学 钱建强教授   报告题目:原子力显微镜自激振调频检测成像模式的研究   钱建强教授介绍了自行研制的基于自激励振荡音叉探针的调频成像模式原子力显微镜。采用石英音叉探针作为力检测敏感原件,通过对其驱动电极施加正反馈,在自激振荡控制下使其在谐振频率下工作。由于不使用外部的探针振荡检测器和外部的探针激振器,系统结构简单并且易于操作。通过实验表明仪器能够满足频率调制模式成像要求。   此外,将具有高空间分辨率的STM与化学分析能力较强的拉曼光谱结合是一种新型的表征手段。中国科学院苏州纳米技术与纳米仿生研究所钟海舰博士采用自主研发的基于扫描探针显微镜和拉曼光谱仪的扫描近场光电探针测试系统,研究了化学气相沉积方法生长的石墨烯,可在获得样品表面形貌的同时,进行样品原位的局域电学性质研究和光谱测试。中国科学技术大学张瑞博士介绍了实验室组建的结合STM的具有超高真空、低温环境的TERS(针尖增强拉曼光谱)实验设备,利用该设备实现了Au(111)上分子薄膜、单个分子的TERS检测,并在Au(111)台阶处几个分子上得到了约4nm的TERS空间分辨率。   会议同期还设置了论文墙报展及小型仪器展览会。布鲁克、安捷伦、天美科技、岛津、SPECS、NT-MDT、汇德信科技等仪器厂商和仪器代理商参加了展会。 论文墙报展    本届大会还评选了“青年科技奖”,用于表彰在扫描探针显微镜研究领域取得突出成就的青年学子,中国科学技术大学张汇博士、暨南大学李盛璞同学获此殊荣。中国科学院物理研究所徐文炎博士、厦门大学李纪军博士获得了本届大会的“优秀墙报奖”。据了解,第十二届扫描隧道显微学学术会议初步确定将由陕西师范大学承办。 颁奖现场 参会人员合影
  • 美研发出双扫描隧道显微和微波频率探针
    美国加州大学洛杉矶分校17日表示,该校纳米系统科学主任保罗维斯领导的研究小组开发出了研究纳米级材料相互作用的工具——双扫描隧道显微和微波频率探针,可用于测量单个分子和接触基片表面的相互作用。   过去50年中,电子工业界努力遵循着摩尔定律:每两年集成电路上晶体管的尺寸将缩小大约50%。随着电子产品尺寸的不断缩小,目前已到了需要制作纳米级晶体管才能继续保持摩尔定律正确性的地步。   由于纳米级材料和大尺寸材料所展现的特性存在差异,因此人们需要开发新的技术来探索和认识纳米级材料的新特征。然而,研究人员在研发纳米级电子元器件方面遇到的障碍是,人们没有相应的能力去观察如此小尺寸材料的特性。   元器件间的连接是纳米级电子产品至关重要的部分。就分子设备而言,分子极化性测量的范围涉及到电子与单个分子接触的相互作用。极化性测量有两个重要方面,它们分别是接触表面以次纳米分辨率精度进行测量的能力,以及认识和控制分子开关两个状态的能力。   为测量单个分子的极化性,研究小组研发出能够同时进行扫描隧道显微镜测量和微波异频测量的探针。借助探针的微波异频测探,研究人员将能确定单个分子开关在基片上的位置,即使开关处于“关”的状态也不例外。在开关定位后,研究人员便可利用扫描隧道显微镜变换开关的状态,并测量每个状态下单分子和基片之间的相互作用。   维斯说,新开发的探针能够获取单分子和基片之间物理、化学和电子相互作用以及相互接触的数据。维斯同时还是著名的化学和生化以及材料科学和工程教授。参与研究工作的还有美国西北大学的理论化学家马克瑞特奈和莱斯大学合成化学家詹姆斯图尔。   据悉,研究小组新的测量探针所提供的信息集中在电子产品的极限范围,而不是针对要生产的产品。此外,由于探针有能力提供多参数的测量,它有可能被研究人员用来鉴定复杂生物分子的子分子结构。
  • 国内首套太赫兹扫描隧道显微镜系统研发成功
    近日,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。THz-STM系统扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具,通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学教授Frank Hegmann,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等科研团队纷纷开展相关技术研究。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM)。该显微镜具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等领域。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科学技术厅、广州市、黄埔开发区等相关项目的资助。THz自相关脉冲和THz-STM电流信号硅重构表面原子分辨和金表面原子分辨
  • 突破!我国首台太赫兹扫描隧道显微镜系统研制成功
    2022年2月,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,为国内首套自主研制的太赫兹扫描隧道显微镜系统。扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具。通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域具有广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学Frank Hegmann教授,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等著名科研团队纷纷开展相关技术研究。但我国在该领域的研究一直处于空白。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM),具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等诸多领域,有望取得具有重要国际影响力的原创性科研成果。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科技厅、广州市、黄埔开发区等相关项目的资助。 THz-STM系统硅重构表面原子分辨(左),金表面原子分辨(右)
  • 一文看懂扫描隧道显微镜STM/AFM
    p    strong 扫描隧道显微镜 /strong (scanning tunneling microscope,缩写为STM),亦称为扫描穿隧式显微镜,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德· 宾宁及海因里希· 罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特· 鲁斯卡分享了1986年诺贝尔物理学奖。 /p p   它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。 /p p   它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持稳定的电流,依此来观测物体表面的形貌。 /p p   换句话说,扫描隧道显微镜的工作原理简单得出乎意料。就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片。 /p p    strong 原子力显微镜 /strong (atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscopy,SFM))是一种纳米级高分辨的扫描探针显微镜,是由IBM苏黎士研究实验室的比宁(Gerd Binning)、魁特(Calvin Quate)和格勃(Christoph Gerber)于1986年发明的。AFM测量的是探针顶端原子与样品原子间的相互作用力——即当两个原子离得很近使电子云发生重叠时产生的泡利(Pauli)排斥力。工作时计算机控制探针在样品表面进行扫描,根据探针与样品表面物质的原子间的作用力强弱成像。 /p center img alt=" " src=" http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100352076.jpg" height=" 210" width=" 459" / /center p style=" text-align: center " strong 世界上第一台原子力显微镜和发明人之一比宁 /strong /p p   以一种简单的方式进行类比,如同一个人利用一艘小船和一根竹竿绘制河床的地形图。人可以站在小船上将竹竿伸到河底,以此判断该点的位置河床的深度,当在一条线上测量多个点后就可以知道河床在这条线上的深度。同样道理绘制多条深度线进行组合,一张河床的地形图就诞生了。与此类似,在AFM工作时的,原子力传感器相当于人和他手中的竹竿,探针顶端原子与样品原子间作用力的大小就相当于竹竿触及河底时水面下的长度。这样,在一艘小船(控制系统)的控制下进行逐点逐行的扫描,AFM就可以绘制出一张显微图像啦。 /p p    /p center img alt=" " src=" http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100358209.jpg" height=" 283" width=" 388" / /center p style=" text-align: center " strong 普通原子力显微镜的原理示意图 /strong /p p   原理解释起来并不算十分复杂,但是AFM的发明、使用与改进汇聚了大批科学家们的辛劳努力和创造性思维。特别是拍摄到氢键实空间图像所使用的非接触式原子力显微镜,经过分子沉积、温度控制、防振、探针、真空、控制系统等多方面的摸索与改造才最终具有如此强大的分辨能力。 /p p & nbsp & nbsp & nbsp strong 1 基本原理 /strong br/ /p p   原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。 /p p    strong 2 /strong strong 成像模式 /strong /p p   原子力显微镜的主要工作模式有静态模式和动态模式两种。在静态模式中,悬臂从样品表面划过,从悬臂的偏转可以直接得知表面的高度图。在动态模式中,悬臂在其基频或谐波或附近振动,而其振幅、相位和共振与探针和样品间的作用力相关,这些参数相对外部参考的振动的改变可得出样品的性质。 /p p   1) strong 接触模式 /strong /p p   在静态模式中,静态探针偏转用做反馈信号。因为静态信号的测试与噪音和偏移成正比,低硬度探针用来增强外偏转信号。然而,因为探针非常接近于样品的表面,吸引力非常强导致探针切入样品表面。因此静态原子力显微镜几乎都用在总使用力为排斥力的情况。结果,这种技术经常被叫做“接触模式”。在接触模式中,扫描过程时保持探针偏转不变来使其探针和样品表面的作用力保持恒定。 /p p   2) strong 非接触模式 /strong /p p    /p center img alt=" " src=" http://upload.wikimedia.org/wikipedia/commons/5/5d/AFM_noncontactmode.jpg" height=" 291" width=" 350" / /center p style=" text-align: center " strong 原子力显微镜非接触模式 /strong /p p   在这种模式下,悬臂上的探针并不接触样品表面,而是以比其共振频率略高的频率振动,振幅通常小于几纳米。范德华力在探针距离表面样品1~3纳米时最强,它与其他在表面上的长程力会降低悬臂的振动频率。 /p p   通过调整探针与样品间的平均距离,频率的降低与反馈回路一起保持不变的振动频率或振幅。测量(x,y)每个数据点上的探针与样品间的距离即可让扫描软件构建出样品表面的形貌。 /p p   在接触模式下扫描数次通常会伤害样品和探针,但非接触模式则不会,这个特点使得非接触模式通常用来测试柔软的样品,如生物组织和有机薄膜 而对于坚硬样品,两个模式得到的图像几乎一样。然而,如果在坚硬样品上裹有一层薄膜或吸附有流体,两者的成像则差别很大。接触模式下探针会穿过液体层从而成像其下的表面,非接触模式下则探针只在吸附的液体层上振动,成像信息是液体和下表面之和。 /p p   动态模式下的成像包括频率调制和更广泛使用的振幅调制。频率调制中,振动频率的变化提供探针和样品间距的信息。频率可以被非常灵敏地测量,因此频率调制使用非常坚硬的悬臂,因其在非常靠近表面时仍然保持很稳定 因此这种技术是第一种在超高真空条件下获得原子级分辨率的原子力显微镜技术。振幅调制中,悬臂振幅和相位的变化提供了图像的反馈信号,而且相位的变化可用来检测表面的不同材料。 振幅调制可用在非接触模式和间歇接触领情况。在动态接触模式中,悬臂是振动的,以至悬臂振动悬臂探针和样品表面的间距是调制的。[来源请求]振幅调制也用于非接触模式中,用来在超高真空条件下使用非常坚硬的悬臂和很小的振幅来得到原子级分辨率。 /p p    strong 3)轻敲模式 /strong /p p    /p center img alt=" " src=" http://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg/285px-Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg" height=" 215" width=" 190" / /center p style=" text-align: center " strong 在不同的pH的溶液环境中使用轻敲模式得到的高分子单链的原子力显微镜图(0.4 nm 厚) /strong /p p   通常情况下,绝大部分样品表面都有一层弯曲液面,为此非接触模式下使探针足够靠近样品表面从而可以测试短程力,但是此时探针又容易粘贴到样品表面,这是经常发生的大问题 动态模式就是为了避免此问题而发明的,又叫做间歇接触模式(intermittent contact)、轻敲模式(tapping mode)或AC模式(AC Mode)。在轻敲模式中,悬臂通过类似于非接触下的装载在探针上的微小的压电元件做来上下振动,频率在其共振频率附近,然而振幅则远大于10纳米,大概在100~200纳米间。当探针越靠近样品表面时,探针和样品表面间的范德华力、偶极偶极作用和静电力等作用力会导致振幅越来越小。电子自动伺服机通过压电制动器来控制悬臂和探针间的距离,当悬臂扫描样品表面时,伺服机会调整探针和样品间距来保持悬臂的预设的振幅,而成像相互作用力则得到原子力显微镜轻敲模式图像。轻敲模式减少了接触模式中对样品和探针和损伤,它是如此的温和以致于可以成像固定的磷脂双分子层和吸附的单个高分子链。比如液相的0.4纳米厚的合成聚合物电解质,在合适的扫描条件下,单分子实验可以在几小时内保持稳定。 /p p    strong 3 优点与缺点 /strong /p p   相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。他就像盲人摸象一样,在物体的表面慢慢抚摸,原子的形状很直观的表现。 /p p   和扫描电子显微镜相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。 /p
  • 杨泽超:6年时间,研发高时空分辨变温扫描隧道显微镜
    在近日举行的首届“大走廊杯”中国杭州博士后科创精英赛总决赛中,杭州师范大学物理学院杨泽超教授团队带来的项目“高时空分辨变温扫描隧道显微镜的研发与制造”从来自美国、英国、德国等13个海外国家和北上广深等30余个城市的300多个青年博士后团队中脱颖而出,得到不少科研人员和投资者的关注。首届“大走廊杯”中国杭州博士后科创精英赛总决赛现场要实现弯道超车、跨越发展,科学研究就要更具前瞻性一位创投公司高级投资总监表示:“我很看好这个项目,觉得这个产品应用范围很广,而且有较高的技术壁垒,他们把分辨率做到了原子级。同时,此仪器还能对原子的运动过程进行毫秒级的实时捕捉。”物理学院杨泽超教授据悉,扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种空间分辨率可以达到原子量级的微观探测工具,它能使人类直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的物理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。杨泽超介绍,表面纳米结构在不同温度条件下表现出不同的物理化学性质,而扫描隧道显微镜因具有原子分辨率实空间成像能力,尤其适合用来研究这类材料的表面物性。但同时表面结构动力学过程通常发生在毫秒或微秒的时间尺度。因此,在变温条件下工作的同时具有高时间分辨率的扫描隧道显微镜已经成为世界上很多研究小组的研究项目。“目前基于超高真空环境的扫描隧道显微镜已经高度商品化,尤其是德国和日本公司的产品占据市场的统治地位。但是兼具高时空分辨的变温快速扫描隧道显微镜国内外尚未出现成熟商品化产品。”杨泽超瞄准了这个空白, 2016年在德国马普学会弗里茨-哈伯研究所开展博士后研究工作时,将精力和重心放在高时空分辨变温扫描隧道显微镜的研发与制造上。他说,要实现弯道超车、跨越发展,科学研究就要更具前瞻性。“光搭建这个显微镜设备就花了2年时间,如果算上前期研发设计,总共花了6年。我们每周工作70个小时以上,无论酷暑还是严寒,我们都坚守在实验室内,紧盯测试过程,饿了就几顿并作一顿,累了就趴在桌子上休息。”回忆起研发历程,作为团队核心成员的杨泽超非常感慨,“六年磨一剑,不仅要坐得住冷板凳,还要有不惧困难的勇气。下一步我们将继续优化仪器的软硬件设计,提高仪器操作的便捷性。”个人价值和国家需要相结合,是很有成就感的事2021年,在德国求学生活已过十年的杨泽超,做出了一个决定,结束自己的海外生涯,正式归国。他带着“高时空分辨变温扫描隧道显微镜的研发与制造”项目加入物理学院。“我们不仅针对性解决了传统扫描隧道显微镜在快速扫描时图像畸变和快速慢速扫描不易切换等硬件方面的问题,而且自主研发的扫描头和快速扫描控制系统,在保有原子分辨率的前提下可以达到120帧/秒的成像速率。可以系统地研究不同覆盖度下氧原子在 Ru(0001) 表面的扩散运动机制。仪器的工作温度范围也扩展到了(200-1000 K)。这套设备将成为研究纳米材料‘时间-结构-性质’构效关系的理想科研仪器,为表面物理和化学的研究提供更多的实验手段,在原位实时实空间研究表界面原子扩散、薄膜材料生长和化学反应等领域均具有重要意义。” 杨泽超自豪地介绍道,“作为杭师大的老师,我不仅想让这个项目在祖国落地,更想在我工作生活的杭州有所作为,能将个人价值和国家需要相结合,是很有成就感的事。”目前杨泽超已将他研发的高时空分辨变温扫描隧道显微镜放置在学校实验室内。“作为一名教师,除了基础的教学,我也想通过自己研发扫描隧道显微镜的经历引导学生了解前沿的技术动态和趋势,带给学生更多的启发。” 他动情地说,“物理学作为基础学科,对于国家的现代化建设和产业升级具有重要的推动作用,我愿为培养这样的基础学科人才而继续努力。”
  • 第十届全国扫描隧道显微学学术会议将在广州召开
    第十届全国扫描隧道显微学学术会议(STM&rsquo 10)将于2008年11月23-25日在美丽的花城广州召开。会议由暨南大学纳米化学研究所承办,在广东温泉宾馆举行,由中国科学院副院长白春礼院士担任本次学术会议主席。 扫描隧道显微学学术会议为全国性会议,迄今已成功举办了九届。1990年第一届全国扫描隧道显微学学术会议在北京举行,随后全国扫描隧道显微学学术会议每两年举办一次,最近几次分别在大连(2006)、天津(2004)、上海(2002)、厦门(2000)和合肥(1998)召开,在国内外同行中已形成良好影响。 本次会议是我国扫描探针显微学(SPM)研究领域同行的又一次聚会,探讨扫描探针显微学领域的国际发展新动向,交流扫描探针显微学理论、技术、仪器的最新进展和SPM技术应用的最新研究成果等。 会议时间: 2008年11月23-25日 会议地点: 广东温泉宾馆 承办单位: 暨南大学纳米化学研究所 协办单位:暨南大学化学系 会议主题:交流近年来我国在扫描探针显微学以及相关领域的研究成果 会议语言及发表方式:会议语言为中文。交流方式包括邀请报告,口头报告和墙报。口头报告和墙报论文均享有同等学术地位。组织委员会根据本人愿望和议程的可能,确定安排口头报告或墙报论文。会议将出版摘要论文集(附全文光盘),高质量论文(全文)将推荐到《电子显微学报》发表。 征稿范围 1、SPM技术及相关应用 2、纳米级结构和功能材料 3、新型分子电子器件 4、单分子生物学 5、分子传感器 6、其他相关研究 摘要要求和截止时间:论文摘要不超过600字,加上参考文献为A4纸一个版面,排版格式见附件1。截止时间为2008年7月31日。 投稿信箱:stm10@126.com;stm10@yahoo.cn 会议网站:http://sky.jnu.edu.cn/stm10/index.htm 咨询信箱:stm10@126.com;stm10@yahoo.cn 会议注册费:注册费一般代表每人950元,研究生代表每人650元(凭学生证)。 联系电话:+86-20-85223569;传真:+86-20-85223569 联系地址: 广东省广州市暨南大学化学系(510632) 联系人:蔡继业(教授):Tel:+86-20-85223569;Fax:+86-20-85223569 胡明铅(秘书):Tel:13242864096 陈家楠(秘书):Tel:13631332225 具体的第一轮会议通知及征稿通知可在我公司资料中心下载,或直接访问本次大会官方网站 http://sky.jnu.edu.cn/stm10/index.htm 。 Veeco公司诚挚地邀请您参加本届STM&rsquo 10学术会议!
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 磁光克尔效应系统再发Nature:全反铁磁隧道结新突破!
    巨磁阻效应自发现以来就被广泛应用于MRAM、磁传感器等自旋电子器件中。目前,基于巨磁阻效应的自旋电子器件主要是铁磁体磁隧道结,其研究和发展受限于铁磁体的使用。因此,为进一步提升自旋电子器件的磁阻比等性能,探究其他磁体开发的高效自旋电子器件的研究非常有必要。近期,东京大学的Satoru Nakatsuji团队对手性反铁磁体Mn3Sn组成的磁隧道结进行了深入探究。作者首先对Mn3Sn手性反铁磁态中自旋正极化、负极化和磁八极的投影态密度进行了表征,发现八极矩的大多数和少数能带之间存在明显的能量漂移,与铁磁性铁中自旋矩的大多数和少数能带的漂移非常相似,并根据第一性原理进行了模拟验证,结果表明Mn3Sn在基于隧穿磁阻(TMR)的器件(如MRAM)中具有巨大的应用潜力。此外,为了更好的观测其TMR效应,作者制备了基于Mn3Sn的磁性隧道结( MTJ ),测得室温下的隧穿磁阻(TMR)比率约为2%,出现在手性反铁磁状态下簇磁八极的平行和反平行构型之间。该成果以《Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction》为题发表在Nature上。图1 带簇磁八极的反铁磁隧道结(a)铁磁(FM)隧道结示意图(b)反铁磁(AFM)隧道结示意图(c)(d)铁磁隧道结和反铁磁隧道结的投影态密度图(pDOS) 本文中,作者使用了英国Durham公司的磁光克尔效应系统-NanoMOKE3,通过系统自带的磁滞回线测量功能,对反铁磁隧道结顶部和底部Mn3Sn电极的矫顽力进行了测量。图2 室温基于手性Mn3Sn反铁磁体的磁隧道结表征图 (a)高分辨率TEM表征图(b)磁光克尔测量示意图(c)顶部和底部Mn3Sn反铁磁体的磁滞回线图 英国Durham公司是依托于英国Durham大学的高科技企业。与Durham大学强大的磁光学研究相对应,Durham公司的Russell Cowburn教授(英国剑桥大学卡文迪许实验室主任,英国科学院院士)设计并研发了灵敏度能到10-12 emu兼具Kerr显微镜与回线测量功能的高精度磁光克尔效应系统——NanoMOKE3。相比于历代MOKE系统,NanoMOKE3系统将磁光克尔的光路部分集成在光学盒中,避免了实验人员测试前搭建光路的工作,大大减少了实验人员操作量。另外,光学盒中的光路经过特殊设计,可以同时实现极向克尔和纵向克尔的测量,无需调整光路,只需更换镜片即可完成极向克尔和纵向克尔的切换。左)NanoMOKE3磁光克尔效应系统;右)NanoMOKE3光学集成盒因其高集成度的系统设计和开放式的样品环境,NanoMOKE3具备丰富的拓展性。实验人员可以以NanoMOKE3系统为基础,与其他实验设备组合搭建,进行其他领域方面的测量。一、低温磁光克尔系统NanoMOKE3系统允许用户在样品台部分搭建低温恒温器,实现低温磁光克尔的测量。例如,下图所示为NanoMOKE3与美国Montana Instrument无液氦低温恒温器进行了组合使用,从而实现了10K以下的磁光克尔测量。NanoMOKE3的低温磁光克尔测量性能在国内外领域内具有极高的水平。此低温MOKE方案已在南方科技大学安装使用。NanoMOKE3 磁光克尔系统与 Montana Instrument无液氦低温恒温器组合使用示意图二、晶圆扫描探测系统如今,越来越多的晶圆检测设备采用非接触式的光学测量,取代了传统的接触式晶圆测试方法。其中,以磁光克尔效应原理进行晶圆检测的方法就因其操作简单、检测速度快而被广泛使用。Durham公司在现有磁光克尔系统基础上改造升级,推出了超高灵敏度的晶圆扫描探测系统(wafer mapper),专门用于测量整个晶圆表面的磁滞回线和磁畴图像。系统中集成的磁光克尔能对整个晶圆样品区域(可按X和Y轴自由移动)进行磁滞回线扫描和区域Mapping的测量,最终绘制得到晶圆样品整体区域的磁性分布图,从而完成晶圆样品的检测。该款晶圆级磁光克尔测绘仪选用NanoMOKE3特创的光学盒,继承了其测量速度快,操作简单的优点。整个测量过程可以通过系统自带的LX PRO3软件完成,无需进行繁琐的实验预设值,大大增加了实验效率。晶圆扫描探测系统装配图 Durham公司特创的NanoMOKE3磁光克尔光学集成盒是Cowburn教授从事MOKE系统研发和深耕多年的结晶。不但减轻了实验人员的操作繁琐度,更重要的是以磁光克尔效应为基础,为更丰富领域的测量提供了可能,有望助力各个领域科研人员实现更高水平的突破!参考文献:[1]. Chen, X., Higo, T., Tanaka, K.et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
  • 天美将携手Park参加“第十一届全国扫描隧道显微学学术会议”
    扫描隧道显微学学术会议是由白春礼院士发起的全国性会议,每两年一届,迄今已成功举办了十届。本次会议将于11月3日至5日,在美丽的江城武汉举行,由中国科学院武汉物理与数学研究所承办。本次会议的宗旨是展示最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果,并为与会者提供一个学术交流的平台。会议将邀请知名研究学者报告最前沿的研究成果。会议内容将涵盖SPM在各个领域的研究与应用,包括:1)STM与物理;2)STM与化学和与材料科学;3)SPM在生命科学中的应用;4)SPM技术发展;5)国内外SPM厂商仪器介绍与展示。 为了更好的满足国内高校和科研机构对扫描探针显微镜的需求,天美(中国)科学仪器有限公司将与Park Systems Corp. 共同赞助本次会议,并邀请Park Systems的应用科学家作大会邀请报告,介绍新技术如何更好的服务于前沿科学研究。 关于白春礼院士: 白春礼是中国纳米技术的领军人物、扫描隧道显微学的开拓者之一。 关于Park Systems: Park Systems是国际知名的原子力显微镜系统供应商,起源于原子力显微镜的诞生地&mdash &mdash 美国斯坦福大学,成长在孕育了无数世界顶尖高技术企业的加州硅谷。
  • 德科学家开发一种磁冷却扫描隧道显微镜:用于量子效应研究!
    仪器信息网讯 扫描隧道显微镜(STM)能够以原子精度捕获材料图像,可用于操纵单个分子或原子。多年来,研究人员一直在使用这类仪器来探索纳米尺度世界。近日, 德国Jülich研究中心(Forschungszentrum Jülich)的物理学家开发了一种新方法,这种方法帮助使用STM来研究量子效应创造了新的可能性。由于该技术方法采用磁冷却,他们的扫描隧道显微镜无需任何移动部件即可工作,并且在低至 30 毫开尔文的极低温度下几乎无振动。该仪器可以帮助研究人员解锁量子材料的特殊特性,这对量子计算机和传感器的发展至关重要。物理学家认为接近绝对零度的温度范围是一个特别令人兴奋的研究领域。热波动降至最低,量子物理定律开始发挥作用,揭示材料的特殊性质。电流自由流动,没有任何阻力。另一个例子是一种称为超流体的现象:单个原子融合成一个集体状态,并在没有摩擦的情况下相互移动。Stefan Tautz 教授(左下)、Taner Esat 博士(左上)和 Ruslan Temirov 教授(右)与Jülich量子显微镜,图片自:Forschungszentrum Jülich / Sascha Kreklau研究和利用量子效应进行量子计算也需要这些极低的温度。全世界以及 Jülich研究中心的研究人员目前正在全速追求这一目标。在某些项目上,量子计算机可能远远优于传统的超级计算机。然而,发展仍处于起步阶段。一个关键的挑战是寻找材料和工艺,使具有稳定量子位的复杂架构成为可能。来自 Jülich 研究中心的 Ruslan Temirov 解释说:“我相信像我们这样的多功能显微镜是完成这项迷人任务的首选工具,因为它能够以多种不同方式在单个原子和分子的水平上对物质进行可视化和操作。”量子物理研究的一个典型对象:在中心,可以看到一个单一的分子,它是通过显微镜尖端分离出来的。在接近绝对零的温度下,没有干扰图像的噪声。图片来源:Forschungszentrum Jülich / Taner Esat, Ruslan Temirov经过多年的工作,他和他的团队为此装备了带有磁冷却的扫描隧道显微镜。 “我们的新显微镜与所有其他显微镜的不同之处类似于电动汽车与内燃机汽车的不同之处,”Jülich 物理学家解释说。到目前为止,研究人员一直依靠一种液体燃料,即两种氦同位素的混合物,将显微镜带到如此低的温度。 “在操作过程中,这种冷却混合物通过细管不断循环,这会导致背景噪音增加,”Temirov 说。另一方面,Jülich 显微镜的冷却装置则是基于绝热退磁过程。这个原理并不新鲜。它在20世纪30年代首次用于在实验室中达到低于 1 开尔文的温度。 Ruslan Temirov 说,对于显微镜的操作,它有几个优点:“通过这种方法,我们可以通过改变通过电磁线圈的电流强度来冷却我们的新显微镜。因此,我们的显微镜没有移动部件,几乎没有振动。”Jülich 科学家是有史以来第一个使用这种技术构建扫描隧道显微镜的人。 “新的冷却技术有几个实际优势。它不仅提高了成像质量,而且简化了整个仪器的操作和整个设置,”研究所主任 Stefan Tautz补充说,由于采用模块化设计,Jülich 量子显微镜也对技术进步保持开放态度,因为可以轻松实施升级。“绝热冷却是扫描隧道显微镜的真正飞跃。优势非常显着,作为下步计划我们现在正在开发商业原型机。”Stefan Tautz 解释说,量子技术是目前许多研究的焦点,这种仪器也势必会吸引许多相关研究学者的关注。这项研究发表在《Review of Scientific Instruments》上,DOI: 10.1063/5.0050532。mK STM 设置的示意图布局,包括 UHV 室、承载 mK 棒的 ADR 低温恒温器和高容量低温泵。 主 UHV 系统,包括负载锁、制备室 1 和 2 以及转移室,通过柔性波纹管连接到低温恒温器。 要将 mK 棒从真空中取出,低温恒温器和 UHV 系统必须在虚线标记的平面上分开。 右下角:插图显示了从 UHV 中提取 mK 棒的过程。 支撑 UHV 系统的框架在垂直于主图平面的方向侧向平移以进行提取。mK 棒的渲染 CAD 模型。 左:mK 棒全长 156.5 厘米。 箭头表示不同温度阶段的位置。 右上角:mK 棒的头部,其机制将其锁定到垂直操纵器,将其加载到低温恒温器中。 用于与温度传感器和 STM 压电元件建立电接触的两个接触板也是可见的。 建立同轴偏置和隧道电流触点的第三个接触板位于背面。 右下角:4K 载物台下方的 mK 棒的图像细节,无需布线。 左图:自制 STM 的分解图。 STM 的顶部通过蓝宝石板与 STM 主体电隔离。 STM 主体包含一个单独的压电管,用于 STM 尖端的粗略和精细运动。 右图:压电管的剖视图,显示粘滑粗调电机。
  • 仪器进国博,中科院首台扫描隧道显微镜入藏国家博物馆
    p style=" text-indent: 2em text-align: justify " 提到中国国家博物馆,大家首先就会想到馆藏的历史文化珍宝,其中的“后母戊鼎”和“四羊方尊”更是通过小学的历史课本深深的印刻在中国人民的心中。但谁能想到,科学仪器可以被国家博物馆收藏呢? /p p style=" text-indent: 2em text-align: justify " 昨日,我国自主研发的首台扫描隧道显微镜CSTM-9000设备入藏了中国国家博物馆,中科院化学研究所向国家博物馆捐赠了这台设备。 /p p style=" text-indent: 2em text-align: justify " 据了解,CSTM-9000是在1987年、由我国科学院院士白春礼主持研制的,是我国第一台计算机控制、有数据分析和图像处理系统的数字化扫描隧道显微镜,这台仪器当时达到国际先进水平。CSTM-9000的研制成功,获1990年国家科技进步二等奖。更为重要的是,它使我国当时在探索物质表界面研究领域迈入了世界先进水平的行列,同时也开拓和促进了多个学科领域尤其是纳米科技的研究和发展。 /p p style=" text-indent: 2em text-align: justify " “CSTM -9000的研制成功,使我国当时在探索物质表界面研究领域迈入了世界先进行列。今天来看,它的性能与最新设备已经无法相提并论,但其彰显当代中国科技发展、留于后人思考的历史意义却十分重大。”中科院化学研究所副所长范青华说道。 /p p style=" text-indent: 2em text-align: justify " 中国国家博物馆副馆长陈成军表示,科技创新事业,是当代中国不断改革发展进步的重要动力,也是实现中华民族伟大复兴光辉历程不可或缺的组成部分。扫描隧道显微镜的入藏,丰富了国家博物馆在当代科技实物领域的馆藏,中国国家博物馆在拓展征集领域、积累新中国科技史馆藏过程中具有重大意义。 /p p style=" text-indent: 2em text-align: justify " 中国国家博物馆馆长王春法表示,国博和中科院两家单位将以此次捐赠为契机,进一步在当代中国科技发展物证的收藏、展览和研究等领域开展深入、多元的合作,共同记录当代中国科技工作者奋进创新的历史,为民族存史,为时代画像。 /p p style=" text-indent: 2em text-align: justify " 中国国家博物馆馆长王春法向中科院化学研究所副所长范青华颁发了收藏证书。 /p
  • 先进检测仪器助力隧道“体检” 获隧道界“奥斯卡”奖
    昝月稳在颁奖礼上  西南交通大学教授昝月稳团队凭借“高效快速检测隧道衬砌结构状态车载探地雷达新技术”,获得国际隧道与地下空间协会(ITA)颁发的2015年度技术创新奖。  这一被誉为隧道界“奥斯卡”的奖项今年吸引了全球103个项目参评,最终8个项目获奖。昝月稳团队的参评项目是中国今年获得的唯一奖项,也是ITA颁发的首个年度技术创新奖。这项检测技术,被ITA赞为“解决了国家铁路网隧道安全检查的重大问题,具有显著的社会效益”。  历时14年,研制出隧道新型“体检设备”  随着交通日益发达,地铁、公路隧道、穿山铁路隧道等地下交通在我们的生活中占有越来越大的比重。  不过,这些隧道开始运营之后,就像人体一样,会产生生老病死等各种问题,随之出现的落石、漏水、开裂等等,会对交通和安全产生不可估量的危险。因此,需要经常对这些隧道进行“体检”。但是,目前的体检方式还依赖于人工,检测人员操纵笨重的机器一步步的检测,有时仅仅一公里的隧道,一天都检测不完。  11月19日,国际隧道与地下空间协会在瑞士举行了一场颁奖典礼,由西南交通大学教授昝月稳、李志林等申报的“高效快速检测隧道衬砌结构状态车载探地雷达新技术”项目获得了年度技术创新大奖。这也是我国获得的唯一奖项。  这种车载探地雷达系统大大颠覆了现在的隧道检测技术,不仅解放了人力,还将检测成本至少降低了一半。而今年10月,这种检车方法已经在成都铁路局所属的达成铁路上应用了。  对比  老方法  检测人员手举天线一公里隧道一天都检测不完  “目前,隧道的运行周期是一百年,它会不断地老化,会产生各种问题。”12月18日上午,在西南交大,昝月稳教授介绍起了他的这项研究。  他说,隧道老化很正常,但列车在隧道运行的时候,最害怕的就是隧道掉块、漏水,掉块砸到列车,被迫停车,封锁线路十几个小时的事情都是有的。为了减少这种状况的发生,就需要经常对隧道进行体检。  而现在平常检查隧道的方法比较“原始”,主要依靠人工,拿着手电筒在隧道走上一遍,照一下重点方位,靠人判断是否有状况发生。  每隔一段时间,还会进行全面“体检”,通常用的是“探地雷达”,趁着列车行进的间歇,把机器开进隧道,由人工压着天线紧贴隧道墙壁,探头通过天线发射电磁波,检测人员再通过回波探测出墙下结构,分析墙面状况。这种人工检测的方法约莫需要七八个工作人员同时工作,检测时速在5公里左右,需要来回五次才能把整个隧道检测完毕。“因为检测必须在列车行进间歇进行,有时候一公里的隧道,一天都检测不完,”昝月稳说道。  新成果  6个探头安在列车尾部成都到西安一晚就能完成检测  同传统人工检测使用一个探头不同,昝月稳研究的“车载探地雷达设备”是安装在一节列车车厢的尾部,上方和左右两侧共有6个探头同时探测,与此同时,它的最高时速可以高达175km,只需要两名工作人员监控系统,就可以在正常的列车运行条件下完成整条线的检测。  “以前人工检测必须紧贴着墙壁,你看这个,安装在列车上的探头,距离墙壁的最远距离多达2.25米。”昝月稳指着图示解释说,以前的人工探测就像是照相机,而他的“车载探地雷达设备”就像是摄像机,列车一路行走,探头就能完成记录整个过程中的地质状况。“而为了保证质量,目前我们检测时列车运行时速为80公里。从成都到西安,坐在车上不用动,一晚上就可以完成整条线的检测。”  从间歇式的5公里/时到目前的80公里/时,从原来的紧贴墙壁到现在可透过空气检测,从原来的单线检测到现在的6个探头同时检测,不仅减少了人力,还把检测费用降低到了原有的一半,昝月稳的“车载探地雷达设备”彻底地改变了国家铁路网隧道病害不能普查和定期体检的现状。这项技术不仅节省了人力成本,还降低了检测费用。2015年,这项技术在西安铁路局全面推广并在成都铁路局达成铁路上应用。  应用  2002年开始测试今年已应用在成都线路上  这项技术是以昝月稳为主的科研团队从2002年开始研制,2012年,西南交通大学以此项技术申报国家发明专利,2014年4月获得国家发明专利权。  2013年1月,这项科研项目通过铁道部科技司课题验收,2015年,这项检测技术开始在西安铁路局所管辖的线路上进行全面推广,并进行了所有线路的检测。今年10月,在成都铁路局所管辖的达成线上完成检测。  “其实,这项技术不仅仅可以用在铁路隧道上的检测,在地铁隧道和公路隧道上,也具有广阔的应用前景。”这不,今年10月,这个项目还在广州地铁上进行了检测,测试效果也非常好。  背后故事  14年潜心研究  曾背着主机显示屏徒步10公里去测试  一个科研项目的成功,背后当然凝聚着研究人员的心血,而这项“车载探地雷达设备与技术”的成功,昝月稳整整用了14年的时间。  2002年,作为某单位里的唯一一名博士,他辞掉安稳的科长职务,开始专心研究车载探地雷达技术。当时,研究人员少、资金短缺,他就和几个科研人员背着显示器、计算机主机、探头、天线等一整套的探测雷达系统,走上10多公里的小路,到大山中的隧道中去探测。科研经费短缺,他就自己边赚钱边研究。  昝月稳说,因为需要跟着列车走,几天几夜吃住在车上的事情都是常有的。冬天内蒙古冷到零下28℃,那时候他就知道了手摸到铁皮要粘起来的感受。新隧道检测,里面全部是粉尘,他们就用被单把列车的车门、窗户全部蒙起来。  不过,这些苦还不是最大的挑战。最让他们焦心的是,研究过程中机器设备的耗损,一不小心就会坏掉,三更半夜到了车站,来不及休息,就到处敲门找人去修,“没办法呀,不修好所有数据都没了,这一趟真的是白跑了,那时候半夜去敲门的状况还是很多的。”最让昝月稳印象深刻的是一次事故,列车到了陕南的一小站,山间容易起雾,设备都是放在露天的车站,早上五六点发车,一启动,接收器全部都烧了,没有办法,只能白跑一趟,回去再全部重新定做机器。  昝月稳说,隧道的一般病态有漏水、断裂、腐蚀老化、掉块等,为保证运输隧道安全,需要对其进行病害普查,特别要对老龄隧道进行定期检查。该项目就是为铁路隧道提供“体检”的新设备与技术。
  • 岛津参加2011年中国国际纳米科学技术会议
    由国家纳米科学和技术中心组织,国家纳米技术指导委员会主办,科技部、教育部、国家自然科学基金会、中国科学院、中国科学技术协会协办的&ldquo 2011年中国国际纳米科学技术会议&rdquo 于2011年9月7日-9日在国家会议中心召开。此次会议旨在探讨纳米科学技术的前沿研究,聚焦于无机纳米材料、碳纳米材料、有机和高分子纳米材料、纳米复合材料的研究和应用,纳米器件、纳米系统、纳米生物技术及纳米医药的表征以及纳米结构的建模与仿真。来自世界各地的500多名专家、学者、研究生参加了此次会议。由于纳米领域密切的国际交流,本次会议从会议主持、专家报告到代表交流,全程采用英语直接交流,也成为本次国际会议的一大特色。 会场外的大厅里是40多家纳米领域分析试验仪器厂家的展台展示,陈列着各家&ldquo 纳米金刚钻&rdquo 。提到纳米技术就不能不提扫描隧道显微镜,它由IBM研究员、诺贝尔物理学奖获得者Gerd Binning(盖尔德· 宾尼)和Heinrich Rohrer(海因里希· 罗勒)这两位科学家于1981年率先开发,能够在原子水平观察材料表面,从而奠定了纳米技术研究的基石。 所以,最先亮相的当然非&ldquo 原子力显微镜&rdquo 莫属,原子力显微镜是继扫描隧道显微镜之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。 岛津公司于2011年5月新品推出了SPM-9700扫描探针显微镜 扫描探针显微镜(SPM)是在样品表面用微小的探针进行扫描,高倍率观察三维形貌和局部物理特性的显微镜总称。SPM-9700更是性能高、速度快、操作简单的新一代扫描探针显微镜。 专利技术的头部滑动机构,高稳定性&高速分析的保证 样品交换时也可保持激光稳定照射悬臂。照射稳定性优异,分析时间也大幅度缩短。 鼠标操作即可表现丰富的3D图像显示 可从不同角度放大拉伸图像进行确认。鼠标操作简单,更可进行3D断面形状分析。 X射线光电子能谱仪(X-ray Photoelectron Spectroscopy,下称XPS)是广泛应用于材料科学领域的高技术分析仪器,主要用于固体材料的表面(2~3nm深度)元素成分和价态的定性和定量分析,与成像功能和离子溅射刻蚀相结合,也可以用于固体表面元素成分及价态的二维面分析和深度剖析,在纳米材料、高分子材料、材料的腐蚀与防护、各类功能薄膜的机理研究、催化剂研究与失效等方面具有不可替代的作用。 通常情况下,纳米材料的颗粒直径均在100nm左右,原子排列仅具备短程序而无长程序,其表面特性与块状材料有很大不同。由于颗粒过于微小,其他分析手段如SEM或EPMA的信息深度在1&mu m左右,测量结果只能是多个颗粒由表及里的平均结果,因而只能使用XPS等表面分析手段进行材料最外层数个原子层的成分与价态表征。 相信岛津纳米分析领域的扫描探针显微镜(包含原子力显微镜、扫描隧道显微镜功能)、X射线光电子能谱的应用会令您的纳米研究如虎添翼!
  • mini扫描隧道显微镜系统研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 123" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " Mini & nbsp & nbsp 扫描隧道显微镜系统研制 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 中科院物理研究所 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 联系人 /p /td td width=" 177" p style=" line-height: 1.75em " 郇庆 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " qhuan_uci@yahoo.com /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 □通过小试 □通过中试 □可以量产 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " √技术转让 & nbsp & nbsp √技术入股 & nbsp □合作开发& nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/f0bed8ec-b171-4a82-9bae-a0e07ed68bd1.jpg" title=" mini STM.jpg" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / /p p style=" line-height: 1.75em " & nbsp br/ /p p style=" line-height: 1.75em " & nbsp & nbsp 这是一款工作在超高真空环境下的扫描隧道显微镜(STM)系统,具备样品的退火和溅射清理功能,并可以在原位情况下沉积各种有机/无机材料。可在从液氦温区(& lt 10K)到室温范围内工作,降温/升温速度快,特别适合材料及相关研究人员快速表征样品。同时,该系统具有很好的稳定性,具备稳定的原子分辨能力并可获得一阶和二阶电流微分谱,经扩展后可具备与光路连结的可能和AFM功能。其主要技术指标为: br/ & nbsp & nbsp & nbsp 背景气压:≤ 1x10-10Torr br/ & nbsp & nbsp & nbsp 工作温度范围:8K~350K br/ & nbsp & nbsp & nbsp 原位沉积:& nbsp 是 br/ & nbsp & nbsp & nbsp 扫描范围: br/ & nbsp & nbsp & nbsp 4.0μmx4.0μmx0.6μm @ RT br/ & nbsp & nbsp & nbsp 1.0μmx1.0μmx0.15μm @ 8K br/ & nbsp & nbsp & nbsp 分辨率:原子分辨& nbsp br/ & nbsp & nbsp & nbsp 灵敏度: br/ & nbsp & nbsp & nbsp XY: ≤200Å /V& nbsp & nbsp Z:≤30Å /V @ RT br/ & nbsp & nbsp & nbsp XY: ≤ 50Å /V& nbsp & nbsp Z:≤ 7.5Å /V @ 8K br/ & nbsp & nbsp & nbsp 恒温器类型:连续流 br/ & nbsp & nbsp & nbsp 降温时间(室温至≤10K): ~2小时 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 纳米表征和研究的重要工具,国内每年需求量在数十台。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 201510468456.5 br/ & nbsp & nbsp & nbsp 发明专利:200810114537.5和201410165949.7 /p /td /tr /tbody /table p br/ /p
  • 天美公司参加第十一届扫描隧道显微学学术会议
    为了帮助我国高校与科研机构更好更广泛的应用扫描探针显微技术从事科研及教学工作,Park Systems Corp. 与 天美(中国)科学仪器有限公司共同出资赞助并支持中国科学院武汉物理与数学研究所承办了&ldquo 全国第十一届扫描隧道显微学学术会议&rdquo 。该会议于2010年11月3日-5日在武汉成功举行。130余名来自全国高等院校、科研机构、企业的从事扫描探针显微学的专家学者参与了此次会议。 会议展示了最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果。 来自Pary Systems Corp. 的专家 Dr. Kim应邀在原子力显微镜应用部分作了题为&ldquo Advanced Nanotechnology Applications by Crosstalk Eliminated (XE) Atomic Force Microscope&rdquo 的主题报告,系统而深入的介绍了水平扫描器和垂至扫描器相分离带来的技术提升,已及该技术在成像方面的应用。此外,Dr. Kim还指出离子电导显微镜技术蕴含着开启纳米领域电生理学研究的潜能。
  • 高鸿钧院士团队成果:多探针扫描隧道显微镜分时复用切换技术
    科学仪器的发展,不断促进对新材料的探索,从而直接或间接影响各科技领域的方方面面。工欲善其事必先利其器,深化与落实科学仪器的自主研发,更是科技攻关的桥头堡。扫描隧道显微镜(STM),及一系列扫描探针显微镜(SPM) :原子力显微镜(AFM)、扫描近场光学显微镜(SNOM) 等,掀起一场纳米技术革命,广泛应用于材料表面纳米尺度局域电子态、形貌以及分子振动等丰富物性的研究。电输运性质作为材料的关键参数,被广泛关注。集成多个独立STM的多探针STM系统,通过施加电/力等调控手段,实现纳米尺度、原位表征材料局域电子态与局域电输运性质,有望加速后摩尔时代新器件的基础研究。四探针 STM 可实现微观体系的四端法测量,有效消除接触电阻带来的测量误差,获得材料的本征电导率。多个独立探针的协同操纵和成像,往往需要相同数量的多套STM控制系统。随着STM探针/压电驱动部件的增加,多探针控制系统的成本和复杂度急剧增加。因此,发展低成本、高效率、可扩展的通用控制解决方案,实现STM控制系统分时操纵多个探针、乃至探针阵列的技术十分必要。中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧研究团队多年来一直致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要成果。同时,他们也在相关高精尖仪器自主研制方面不断积累,奠定了扎实的基础。物理所技术部郇庆/刘利团队一直致力于科研仪器设备的自主研发,与所内外多个课题组紧密合作,在核心关键部件、成套系统等方面取得了一系列成果(包括一台商业化四探针系统的彻底升级改造【Review of Scientific Instruments, 88(6):063704, 2017】、光学-低温扫描探针显微镜超高真空联合系统【Review of Scientific Instruments 89, 113705 (2018)】和新一代高通量薄膜制备及原位表征系统【Review of Scientific Instruments 91, 013904 (2020)】的自主研制)。两个团队再次密切合作、联合攻关,共同指导N04组博士生严佳浩(已毕业,爱尔兰科克大学博士后)、马佳俊、王爱伟(已毕业,国家纳米中心博士后)、马瑞松(已毕业,物理所关键技术人才)等同学成功研制并搭建了一台多探针STM分时复用切换系统,完成单个STM控制系统依次操纵多个探针在纳米尺度下的成像与定位,以及维持探针位置后的局域电输运测量。该系统采用的核心思路为研发团队首次提出,软硬件均完全自主研发,采用了ARM + DSP + FPGA多核数字平台来兼备复杂切换逻辑、多路高精度高速并行采样与数据处理,涉及C/C++与Verilog HDL编程语言,并提供图形操作界面以提高易操作性,具备多项独特优点:1)单个探针内大、小扫描管及多个探针间的无缝切换,无瞬态抖动;2)皮安级电流切换;3)任意单个探针具备毫米级移动范围与原子级空间分辨;4)多个探针可无限靠近,最小距离仅取决于针尖曲率半径;5)原位、纳米尺度、相同区域内,STM成像与电输运测量。该联合研发团队用6年多时间对系统进行了反复地设计优化和改进,并进行了全面性能测试。该研发成果所涉及的多项关键技术,如微弱信号的放大与切换、高稳定电压保持、复杂控制逻辑等,是未来大规模探针阵列应用的重要技术基础。分时切换的核心思路具有可扩展性强、成本低廉的特点,有望在材料基因组研究高通量表征领域有广泛的应用。该系统的详细介绍发表在近期的《科学仪器评论》杂志上【Review of Scientific Instruments 92, 103702 (2021) doi: 10.1063/5.0056634】。该工作得到了中国科学院关键技术研发团队项目(GJJSTD20200005)、国家自然科学基金国家重大科研仪器研制项目(11927808)和国家自然科学基金委青年基金项目(12004417)等的支持。图1:分时复用切换方案图2:分时复用系统硬件设计图3:分时复用切换系统软件架构图4:分时复用切换系统部分图形用户界面图5:单STM探针空间定位图6: 多探针切换与空间定位附:Rev. Sci. Instrum. 92, 103702 (2021).pdf
  • 扬州大学研制地铁隧道“体检仪”
    来自中国城市轨道交通协会的消息显示,2020年,我国内地累计有41个城市开通城轨交通线路7141.55公里。地铁已经成为城市日常出行必不可少的交通工具,但在地铁隧道中也会出现各种“病害”,威胁着人们的出行安全。  “当前,我国地铁隧道检测主要依赖人工检测和少量进口自动化设备,效率低、成本高,无法满足庞大的里程检测需求。”扬州大学信息工程学院(人工智能学院)副教授徐永安在接受采访时表示。  如何高效、准确、经济地检测出地铁隧道“病害”?在“科创导师”制的“牵线搭桥”下,扬州大学信息工程学院(人工智能学院)学生张雅欣等组建了大学生科技创新团队。由导师徐永安指导,团队研发了地铁隧道三维激光检测系统。“该系统检测速度可达国外同类设备的5倍以上。”张雅欣说。  将宝贝搬出实验室  在初中时期,受家人的影响,张雅欣萌生了创业的想法。2019年,正在上大二的她加入徐永安课题组,并组建了自己的大学生科技创新团队,选择了地铁隧道检测研究。  对张雅欣而言,导师不仅是科研路上的护航人,更是自己创业的榜样。记者获悉,在科技创新和科研成果转化路上,徐永安已经坚持了20多年。  1997年,在北京举办的中国国际机床展览会上,一个摆放着国外光学测量仪的展台被观众围得水泄不通,正在攻读博士学位的徐永安也是围观者之一。  从展会回来后,研制光学测量仪的想法一直萦绕在徐永安的脑海里。他随之改变了自己的研究方向,历经两年攻关,终于研制出国产光学测量仪。但在当时,他对科研成果转化还没有深刻的意识,便将这一宝贝成果“藏”在自己的实验室里。  “国外的设备那么贵,你有这么好的仪器,为什么不推向市场呢?”这样的声音越来越多,终于说服徐永安将宝贝搬出实验室。2011年,徐永安参与创办了一家公司,并将自主研发的光学测量仪设备推向市场。  当然,教书育人才是徐永安的本职工作。如何让学生在学习课本知识之外,学会创新思考,尝试自主研发技术并推动成果落地转化?20世纪90年代,扬州大学开启了“科创导师”制的探索之路,让学生在导师的指导下参与科技创新工作。  徐永安说:“过去,学生与导师的关系,主要是学生在导师的实验室开展科研,导师对学生的毕业设计进行指导。现在,导师不但要在科研上指导学生,还要带领学生开展科创工作。”  深入隧道后改变方法  谈及为什么选择地铁隧道检测研究,张雅欣告诉记者,目前,国内外地铁隧道自动化检测系统大多采用1个激光点绕隧道旋转的测量技术,检测速度慢。“好比一个电动机带着一个手电筒旋转,手电筒每次照射在物体表面时只能出现一个亮斑。这意味着每次只能采集一个点,效率太低。”  如何实现快速检测呢?经过一年多的攻关,以张雅欣为首的大学生科技创新团队研发出6条激光线扫描技术,360°环形激光线投射在隧道表面,8部每秒500帧高速数码相机实时采集隧道表面的激光线图像,并换算为隧道表面形状坐标。张雅欣解释道:“6条激光线同时工作,地铁隧道检测效率得到显著提高。”  然而,研发过程并非一帆风顺。在徐永安的指导下,张雅欣带领团队先后前往青岛、兰州、佛山等城市的地铁公司,深入地铁隧道,开展实践调研。团队在调研中发现,地铁公司对隧道快速检测系统有着迫切的需求。  在精准了解地铁隧道检测痛点后,张雅欣团队开始了与时间“赛跑”的测量工作。“我们只能在夜间12点到凌晨4点进入现场开展检测工作,因为这段时间地铁处于停运状态。另外,每天进入现场前的安检过程就要耗费半个多小时,实际的测量时间非常有限。”  经过近3个月的测量,张雅欣团队发现进展缓慢,于是做出了改变测量方法的决定,希望提高检测效率。经过徐永安的点拨,团队在实验室里自建了模拟隧道。“在模拟隧道里开展实验,不但提高了实验效率,缩短了研发周期,还解决了后期新冠疫情期间实地检测的困难。”张雅欣介绍说。  在解决了测量环境问题后,团队又遇到了由振动引起的测量误差问题。“测量车在轨道上运行会产生轻微振动,这种振动会带来一些误差。”张雅欣团队成员吴传昊告诉记者。为此,团队采用了基于特征面的方法对隧道测量数据进行纠偏,“这种方法可以大幅降低测量车振动对测量精度的影响,降低动态测量误差。”  “该系统检测速度最高可达每小时17.1公里,是国外同类设备的5倍以上,动态精度为±1.6毫米,检测密度小于2毫米,而价格只有国外设备的70%左右。”张雅欣表示,系统还可以根据用户需求制定检测速度、密度、精度。  徐永安透露,目前,该系统申请发明专利4项、登记软件著作权4项,通过了江苏省产品质量监督检验研究院质检,符合CMA中国计量认证标准。  大学生创业还需多磨砺  来自用户的消息显示,张雅欣团队研发的这套系统已在投入运营的地铁隧道进行了实地检测,在检测速度、精度以及密度方面均满足实际应用要求。目前,已有多家轨道交通公司与团队达成初步合作意向。  张雅欣表示,下一步团队将继续对产品进行优化设计,并计划注册成立公司。“地铁里程数较大的城市,可直接购买检测系统 地铁里程数小的城市,可购买检测服务。”  在张雅欣看来,虽然研发过程非常艰辛,但非常有意义。“一方面培养了我们解决问题的能力,另一方面还培养了我们团队建设、组织和管理的能力,对未来的创业起了铺垫作用。”  她感叹道:“大学生参与科创,要有顽强的毅力和勤奋刻苦的精神,对团队中不同的意见要善于倾听,脚踏实地攻克每一个难关。”  徐永安也指出,对于刚毕业的学生而言,如果没有成熟的技术积累和市场认知,可以先进入企业积累几年经验,对市场形成一定认知后再进行创业。  在他看来,高校“孵化器”应该实现良性循环,当政府和高校投入资金等支持后,若能实现良好的产出,投入的积极性也将越来越大,反之则可能陷入不良循环。“政府和高校还应进一步研究如何解决这一矛盾。”
  • 530万!东南大学微纳系统国际创新中心超高真空低温扫描隧道显微镜采购
    项目编号:JSHC-2022121159C6项目名称:东南大学微纳系统国际创新中心超高真空低温扫描隧道显微镜采购预算金额:530.0000000 万元(人民币)采购需求:东南大学微纳系统国际创新中心采购超高真空低温扫描隧道显微镜一套,主要技术要求如下:室温下技术指标:STM 模式下分辨率: 可在Au(111)样品上获得得到原子分辨率图像;扫描范围X/Y/Z:不小于10 × 10 × 1.5 µm;本底真空:3 × 10-10 mbar液氮温度下技术指标: 温度:样品温度 ≤78 K(标准样品台);STM 模式下分辨率: 可在Au(111)上得到原子分辨率图像;AFM模式下分辨率:可在NaCl(001)上得到原子级分辨图像;扫描范围对应的X/Y/Z轴:分别不小于4 × 4 × 0.4 µm 合同履行期限:详见采购文件本项目( 不接受 )联合体投标。
  • 2016年纳米科学卡夫利奖
    2016年纳米科学卡夫利奖纳米科学2016年卡夫利奖项的获奖者们和Park Systems的CEO在奥斯陆音乐厅参加颁奖典礼2016年纳米科学卡夫利奖的获得者依次为 Gerd Binnig(第三张图片左侧), Christoph Gerber(第二张图片左侧)和 Calvin Quate(第一张图片中间)。原子力显微镜的发明是测量技术和纳米雕刻的一大突破,推动着纳米科学和技术的发展。 原子力显微镜技术最先是由 Calvin Quate博士,, Gerd Binnig博士和 Christoph Gerber博士等研究员发明出来, Park Systems公司的创始人兼首席执行官Sang-il Park博士是斯坦福大学的研究人员之一,Park博士认识到AFM技术可以应用于广泛领域的潜力,成为将原子力显微镜商业化并成立公司的第一人,从那以后通过不断的与客户间的创新与合作,Park已成为原子力显微镜制造领域的全球领导者。原子力显微镜是怎么诞生的?- 卡夫利奖得主Calvin Quate博士叙述扫描隧道显微镜(STM)就是一项巨大的科学成就。发明家Binnig和Heinrich Rohrer就因发明了 扫描隧道显微镜(STM)所以在1986年获得诺贝尔物理学奖。但是STM有一个主要的限制,由于它依赖于样品表面和隧道针尖之间的电子隧穿流动,只能成像导电材料。此外,大部分导电材料(如金属和半导体)在环境条件下容易氧化,这就要求将STM放入真空室中。我邀请 Gerd Binnig和Christoph Gerber来斯坦福一年,在1985年他们加入我们时,我们想确认是否可以根据STM的原理制作显微镜,但是可以不考虑导电性对任何表面进行成像。我们发现的解决方案就是添加第二个探针。我们将尖锐的金刚石探针粘在悬臂上。我们将这个悬臂组件插入到样品表面和STM的隧道探针之间。这使得该设备不仅可以在金属上而且可在所有表面上工作。当悬臂的金刚石探针扫过样品表面时,样品表面与悬臂探针之间的原子间力导致悬臂弯曲。STM隧道探针测量悬臂的金属表面的弯曲运动。这样原子力显微镜就诞生了-A为原子力分辨率,F为悬臂,M为显微镜。我们在1986年3月的“物理评论快报”上发表了我们在1985年的成果。原子力显微镜技术的进一步发展,尤其是真空中的非接触模式,使原子力显微镜实现了单原子分辨率的梦想。随着纳米尺度对科学技术进步的影响越来越重要,原子力显微镜正在成为纳米技术产业的基础,并在纳米加工(微结构制造)方面发挥着重要作用。原子力显微镜现在使用导电悬臂测量样品中的电位,另外一些使用探针传送的电流来测量纳米级的电导率和传输。高技术一直都是半导体故障分析测试的一个组成部分。随着纳米材料如碳纳米管的兴起,原子力显微镜技术成为纳米结构和其他聚合物成像的首选工具。原子力显微镜能够准确地测量原子级别的相互作用和原子重新排列后样品性质的变化。原子力显微镜相比光学和电子显微镜有许多优点,它提供了三维地形数据并能以前所未有的空间分辨率测量各种物理特性。它几乎适用于任何类型的表面,即可在空气中,真空中或液体中操作。它在真空中实现原子分辨率,在空气中实现近原子分辨率,但唯一的限制是操作起来还很麻烦,而且比较慢。我希望在不久的将来原子力显微镜能够像光学显微镜一样便于使用,并有和电子显微镜一样高的生产量。
  • 武大干细胞时空隧道技术进展——突破瓶颈,点亮治愈糖尿病希望
    干细胞中胰岛素分泌细胞只占0.1%一0.5%,这远远不能满足糖尿病移植的需。获得的脱靶细胞越多,治疗上相关的细胞就越少,潜在风险性越大。干细胞治疗不存在短期危害,但容易导致胰腺癌,肝细胞癌的潜在风险性增高☆1,难以达到临床标准或满足临床需求。干细胞异群miRNA可通过时空隧道技术,通过分子之间耦合作用,快速传递给采集到的缺陷胰岛分泌细胞上,帮助其修复,并通过时间机器里微环境作用快速使胰岛α细胞向β细胞转化,促进胰岛β细胞的修复。干细胞时空隧道技术突破糖尿病瓶颈,为彻底治愈糖尿病提供了新方法。1. 干细胞治疗的未来前景近年来,糖尿病发病率“爆炸式”增长,并呈年轻化趋势。糖尿病并发症造成心、脑、肾、血管、神经等多脏器损害,已成为危害人民群众生命健康的第三号杀手。但随着基因技术、细胞技术和材料技术的进步,干细胞在治疗糖尿病显示了灿烂的前景,为糖尿病患者治疗提供了新的可期待的治疗途径。美国《时代》杂志把干细胞治疗糖尿病列为改变未来十年医疗的12大创新发明之一。在治疗糖尿病的领域里,干细胞的潜力得到充分认可。人类有望在不久的将来突破干细胞治疗糖尿病瓶颈,彻底治愈糖尿病。2.干细胞治疗糖尿病存的问题与挑战干细胞治疗糖尿病,目前主要有三种方法:自体骨髓干细胞移植、自体血液干细胞移植和脐血干细胞移植。干细胞技术的发展,组织工程的进步,再加上生物材料的发展,使得其离临床转化越来越近,成为最有潜力的糖尿病替代治疗策略。然而,干细胞治疗糖尿病关键技术和核心问题仍有待深入研究。第一,干细胞分化为胰岛细胞所使用的方法相当复杂,存在其分泌胰岛素的能力较低的现象。如需达到良好的降糖效果,需要的细胞数量非常庞大。实验证明, 人胚胎干细胞(ESC)在体外培养自发分化形成的细胞中胰岛素分泌细胞只占0 . 1%一0 . 5%。这远远不能满足糖尿病移植的需求,需要大约十亿个β细胞才能治愈一个糖尿病人。但是,如果制造的细胞中有四分之一实际上是肝细胞或其他胰腺细胞,而不是需要十亿个细胞,那么将需要12.5亿个细胞,这使治愈该疾病的难度提高了25%。获得的脱靶细胞越多,治疗上相关的细胞就越少☆2。第二,诱导后的胰岛细胞在体内能否长期存活,仍是未知数。第三,干细胞诱导后的胰岛细胞如何与体内原有的胰岛细胞协同工作,都是目前尚未解决的难题。相关文献也报道过干细胞治疗可能会导致肿瘤的发生发展。因此干细胞治疗糖尿病面临着许多困难和障碍。间充质干细胞外泌体,体外胰岛β细胞培育法或直接输入注射疗法治疗糖尿病技术,获得的脱靶细胞太多,如果不改变传统过旧的操作模式,以及干细胞过度治疗,则容易导致胰腺癌、肝细胞癌的潜在风险性,是难以达到临床标准或满足临床需求的。3.干细胞时空隧道技术我们研究发现虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们个个都具有强大的细胞生长因子。虽然胰岛素分泌细胞只能占0.1%一0.5%,但我们可以用一种独特形式方法,使所有不同细胞群体的miRNA快速转化成为同一胰岛细胞的方法。利用超滤膜可以从中筛选出专一人体内采集的β细胞及其分泌体miRNA;其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集到的缺陷胰岛素分泌细胞上,帮助其修复,并通过胰岛局部微环境作用诱导胰岛α细胞向β细胞转化,促进胰岛β细胞的修复。诸多研究表明,干细胞时空隧道技术能将2型糖尿病胰岛受损的功能性治疗提高到80%左右。生命时空隧道技术为干细胞治疗糖尿病临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等五个部分组成。将间充质干细胞、外泌体加进在生物时间机器透析外柱內,对透析柱內的人体内采集的缺陷胰岛素分泌细胞,通过溶液及半透膜在时间机器中进行生长因子、激发态物质交换,然后再回输到人体内修复改造胰岛β细胞的方法。将部分干细胞诱导分化,形成初级胰岛β细胞,然后在C臂监控下用导管经腹腔动脉送抵达患者胰腺,或微创手术与胰腺中部位建立起时空隧道技术,或将时空隧道技术改造的β细胞,自体干细胞移植于患者胰腺。人体内采集的细胞与时间机器交换后可监测安全有效性,生成胰岛增强β细胞后可再进一步纯化分离,然后再安全回输到患者胰岛细胞上,帮助其修复。利用细胞时间隧道透析机与胰岛组织缺陷β细胞进行胞质效应交换,能生产出强大的胰岛素分泌细胞,是干细胞再生医学崭新的方法。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话 15927431505参考资料☆1人脐带间充质干细胞治疗乙型肝炎肝硬化患者发生肝细胞癌的危险因素分析 http://www.cnki.com.cn/Article/CJFDTotal-XDKF201809009.htm☆ 2多能干细胞转化为胰岛素的β细胞“治愈”1型糖尿病的小鼠https://k.sina.com.cn/article_5895622040_15f680d9802000v9bn.html
  • 长生不老神丹妙药的炼丹技术一细胞时空隧道技术
    摘要:间充质干细胞,干细胞外泌体已经被广泛应用到了多个领域的临床研究中,是医药史上最为复杂的治疗性产品。间充质干细胞,外泌体直接输入注射治疗法永远也不可能修成正果,时间机器突破干细胞瓶颈所面临的重重困难和障碍,利用细胞时间隧道技术与衰老组织细胞进行胞质效应交换能生产出万能干细胞,是再生医学长生不老的“神丹妙药”。1、干细胞治疗技术尚不成熟面临一系列技术瓶颈近年来,间充质干细胞,外泌体已经被广泛应用到了多个领域的临床研究中,其中包括多项疾病的临床治疗在肝损伤、肾损伤等方面都展现出强大的修复再生能力。间充质干细胞外泌体具有间充质干细胞的生物学特性,并且其含有大量且种类繁多的蛋白质、细胞因子和生物活性物质。此外,间充质干细胞外泌体中的miRNA,可以调控基因表达,其比例比细胞更高,例如miR-155、let-7f、miR-199a、miR-221、miR-125b-5p和miR-22等,使得其能够参与多种生理和病理过程,起到对多项临床疾病的干预治疗。有望取代技术不成熟的间充质干细胞,成为细胞治疗时代的下一个风口。干细胞制品的复杂多能性,动态性、异质性问题从根本上挑战了药物的均一性、稳定性基本质量要求。是干细胞临床治疗技术绕不过去的一道弯。从以上资料中我们可以看到一方面是干细胞科研成果不断涌现,而另一方面又是干细胞治疗技术产品的不成熟,不断的遭遇到夭折。临床应用干细胞面临着一系列技术瓶颈,怎样突破干细胞技术瓶颈所面临的重重困难和障碍,去再创辉煌。这就要我们从干细胞基础领域里去做起寻找突破口。2、生命分子时间无处不在,干细胞与时间撞碰将化解所有的技术瓶颈自从H. G. Wells于1895年撰写了他的著名小说《时间机器》以来,时间旅行便成为一个流行的科幻小说主题,但是它能真的实现吗?建造一台把人运送到过去或是未来的机器可能吗?爱因斯坦企图解释时间,由于他提出测量时间要取决于观察者如何运动等苛刻条件,以至于未能完成对时间的真正理解。生命科学则不同,任何学者都能正确分辨DNA、蛋白质的时间。例如原核mRNA半衰期平均大约3min,真核mRNA的半衰期平均3h,有的寿命长达数天。正常的P53蛋白半衰期为20min,突变型P53-蛋白半衰期为2~12h,如人正常细胞一生只能分裂50~60次,而突变的癌细胞无限增殖性,成为“不死”的永生细胞。在分子端粒酶、糖蛋白糖链、P53蛋白半衰期上,生物时间概念无所不在,有了时间概念,时间机器也就不在话下了。然而这一切归根结底就还是干细胞临床应用基础理论出现了问题,干细胞目前还是处于分子遗传学水平,当干细胞临床应用真正踏入生命量子时代,基因对分子时间有了进一步认识。干细胞有了时间概念,终将化解当前临床转化所有的技术瓶颈。事实上干细胞逆分化也正是想要建造一座细胞逆时空隧道来低抗人类衰老。根据爱因斯坦的相对论,干细胞魂牵梦绕的时空隧道它会出现吗?3、分子遗传学细胞时空隧道技术分子遗传学己经成功制造了时间机器,但它却还不知道什么是时间机器。克隆羊“多莉”的诞生震惊了世界。多莉的诞生证明高度分化成熟的哺乳动物乳腺细胞,仍具有全能性,还能像胚胎细胞一样完整地保存遗传信息,这些遗传信息在母体发育过程中并没有发生不可恢复的改变,还能完全恢复到早期胚胎细胞状态,最终仍能发育成与核供体成体完全相同的个体。以往的遗传学认为,哺乳动物体细胞的功能是高度分化了的,不可能重新发育成新个体。与这一理论相反,多莉终于被克隆出来了,它的诞生推翻了形成了上百年的上述理论,实现了遗传学的重大突破,为开发新的哺乳动物基因操作提供了动力,是一个了不起的进步。但直到现在,人们仍然不知道这就是时间机器,它使已分化的成熟体细胞在卵母细胞的时光中穿梭获得胚胎发育新生(细胞胞质效应技术实际上就是时间机器技术)。 生命科学制造的时间机器已有了大量的成功案例,现举例如下:鸡红血细胞是终末分化细胞,其细胞核不合成RNA或DNA,在与人Hela干细胞融合后,其细胞核可被Hela干细胞的细胞质激活而合成RNA和DNA,说明细胞质在基因表达中起重要作用。Hela干细胞miRNA等小分子在胞质效应中时光穿梭,使鸡红血细胞核获得激活,这是一例非常经典的分子遗传学时空机器技术。尽管大量工作表明细胞核和细胞质在不同动物的不同发育期均起重要作用,但二者间的相互作用、相互依存是胚胎发育过程中调控基因活动最重要环节之一。原肠胚期细胞质开始激活核内不同基因的活动,最初的基因产物移至细胞质中合成专一性蛋白质,它们又可回到核内,参与染色质的合成与复制,并调控另一些基因的活动。通过反复的核-质间相互作用,使未分化的细胞相继分化为定型的细胞,真正做到了细胞时间旅行。 4、量子遗传学细胞时间机器技术量子时间机器原理:细胞核移植实验和细胞移植的医学实践都已有了大量的成功案例,积累了丰富的文献资料。早期伯尔格(Berger)和施瓦格(Shweiger)作了伞藻的核移植,用年轻的和年老的细胞质分别与年老和年轻的细胞核分别在体外培养,10天中移植进去的老核变得年轻起来,而新核移植到衰老的细胞中则会受影响而老化,这说明胞质对核能产生影响。年轻的胞质能使衰老的细胞核恢复青春,年老的细胞质则使年轻的细胞核老化,根据这一原理我们制作了DNA时间机器,让生物细胞分子在细胞质效应中穿越时光。DNA相对论(DNA、蛋白质时间、空间、质量、能量的科学理论)是允许这一时空旅行发生在生物这种特定的时空结构中:一个旋转的生物细胞质宇宙,一个旋转的细胞核柱体,以及非常著名的虫洞—半透膜一条贯穿空间和时间的隧道,它成功构建了第一台细胞时间机器。 溶液通过弥散超滤作用,使细胞内高激发态物质向激发态低一侧流动,而miRNA等小分子由渗透压低向渗透压高的流动过程,最终达到动态平衡。DNA时间机器是通过年老细胞质(时间半衰期短)使年轻(时间半衰期长)的细胞核老化。年轻(时间半衰期长)的细胞质能使年老细胞核时间回到年轻,为癌症、干细胞研究又打开了一扇新的窗口,真正做到了细胞时间旅行。DNA时间机器这项生物量子技术成果将开拓癌症根本性治疗、干细胞应用、病毒快速减毒,解决小分子miRNA两面派特性的新工具(利用紫外吸收光谱测能技术掌握增减DNA核能)具有划时代的重大意义。生物时间机器技术(专利号;201309120065447.0) 5、长生不老神丹妙药的炼丹技术一细胞时空隧道技术时间机器突破干细胞瓶颈所面临的重重困难和障碍间充质干细胞,干细胞外泌体,都被归类为不同组织中多种不同的细胞群生物学特性,并且其中含有大量且种类繁多的蛋白质、细胞因子和生物活性物质,是医药史上最为复杂的治疗性产品。干细胞供者遗传背景千差万别,各种组织来源及不同代次的细胞区别显着,而且不同的技术路径、试剂仪器、操作手法等也会对细胞生理状态存在显着影响,干细胞,外泌体制品的动态性、异质性面临着重重困难和障碍。间充质干细胞,外泌体直接输入注射治疗法永远也不会修成正果,生命时空隧道技术为干细胞临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为:时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等部分组成。将间充质干细胞,外泌体加进在生物时间机器透析外柱內对透析柱內里的人体内采集的某组织衰老细胞,通过溶液及半透膜在时间机器中进行生长因子,激发态物质交换,然后再回输到衰老人体内的方法。 细胞时间机器膜外柱为干细胞等外泌体激发态高的细胞物质通过小分子miRNA等溶质向膜内柱人体内采集的衰老细胞及外泌体物质,撞碰移动从而激发调整了衰老细胞DNA蛋白质激发时间,干细胞时间在年老的细胞质时间中穿梭,能真实的回到过去年轻细胞时间(DNA氢介子结合能一份份合成就是DNA逆时间)。生物时间机器时空结构简单:一个旋转的生物胞质小宇宙,一个旋转的柱体,以及非常著名的虫洞-半透膜所组成。超滤膜根据需要通过干细胞小分子miRNA的大小设计,从干细胞中分离出miRNA以及外泌体来。 最常见的过滤膜具有0.8μm、0.45μm或0.22μm的孔径,也有设计成微柱多孔硅纤毛结构以分离40-100nm的miRNA外泌体。但最为关健一点是要密切利用时间测能技术来监测“干细胞种子”以及“人体内采集的衰老细胞土壤”移植时能量高低的透析时间差问题,这样才能做到安全有效的细胞时间旅行。 虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们都具有强大的细胞生长因子。1、利用超滤膜可以中筛选出专一人体内采集的某细胞分泌体miRNA;2、其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集的专一衰老细胞上;3、人体内采集的细胞与时间机器交换后可再监测安全有效性;4、生成某组织增强干细胞后可再进一步纯化分离,然后再安全回输到衰老人体内组织中。利用细胞时间隧道透析机与衰老组织细胞进行胞质效应交换,能生产出万能干细胞是再生医学长生不老的神丹妙药。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话15927431505☆相关资料,《自然》:打破间充质干细胞神话https://xw.qq.com/cmsid/20180927A0A9PL/20180927A0A9PL00DNA相对论是生命科学的第一生产力http://post.blogchina.com/p/2545288
  • 南通大学附属中学建成纳米创新实验室
    p   10月9日,南通大学附属中学纳米创新实验室安装工作全部完成,教师培训工作也基本结束,至此,一间在国内尚属少见的高端纳米创新实验室终于顺利建成。 /p p   中学纳米创新实验室,目前在全国一些重点中学兴起,这种实验室旨在通过先进的纳米检测仪器,创建可供推广的纳米科学教育与传播课程,重点在实践性、实操性、实验性,以全新的科学探究式的教学方式做引导,把前沿的纳米科技与中学理科教学与实验室相结合,创建本校的纳米科技校本课程。 /p p    strong 纳米实验室是跨学科实验室,可同时进行理化生的教学和实验 /strong /p p   南通大学附属中学的纳米实验室实验可谓高科技实验室,可进行物理、生物、化学多学科教学实验活动。例如实验室配置的教学型扫描隧道显微镜在中学教学中可以应用广泛,比如物理学科中涉及到量子理论、诺贝尔物理学奖、物质的导电性能 化学教学中借助扫描隧道显微镜检测同族金属元素的原子半径大小,通过比较实验结果,帮助学生更直观地了解元素周期表的变化规律。 /p p   我们知道,中学初中和物理、化学课本中都提及了扫描隧道显微镜,其中在物理教学中有隧道效应和量子物理的理论,扫描隧道显微镜则作为隧道效应的验证和应用可以让学生直观理解这些抽象的概念 从化学课程中大家都知道世界是由微观粒子原子、分子、离子组成的,通过扫描隧道显微镜可以看到原子的形貌和测试原子和分子的尺寸大小。 /p p   通过使用扫描隧道显微镜、原子力显微镜可以看到原来光学显微镜或其他仪器不能看到的微观原子、分子及一些纳米结构等。在实验教学中不仅可以改变传统的模型教学,而让学生直观、形象地学习理化生基础知识,还可以培养学生团队合作精神和动手操作能力,提高学生纳米科技的理解。 /p p    strong 南通大学附属中学纳米实验室的配置了世界领先的超微型教学纳米显微镜 /strong /p p   在该校的纳米实验室里,最引人注目的就是世界上领先的最小的,超微型纳米显微镜,包括有扫描随点显微镜和原子力显微镜。 /p p    strong 高科技的超微型教学扫描隧道显微镜 /strong /p p   可以观察原子的真实微观结构 可以观测到导电材料的表面三维原子图像 分辨率达到pm级别(1pm=10-3nm) 最关键的是超微型一体化设计,安装简单,教学方便 可作为教具使用,携带方便,老师可以提携进任意一间教室为学生演示原子的形貌,所以是专为中学物理和化学、生物的教学实验而设计制造的。适用于初高中校本教材中纳米知识点的实验和教学,如“物质的组成“等,让学生看到真实的“原子”,是中学纳米实验室必备的的教学实验教具 /p p   由于操作简单,学生们还可以动手进行纳米观察实验,通过自己设计的小实验,运用仪器的辅助,更好滴学习纳米科技知识,提高动手和创新的能力。 /p p    strong 高科技的超微教学原子力显微镜 /strong /p p   可与教学型扫描隧道显微镜配套使用,功能互补,特别具备可以观测多类纳米材料的真实表面微观结构 可以观测到纳米材料表面的三维立体图像 分辨率横向达到0.3nm,纵向达到0.05nm 金属隔音防尘箱 CCD成像系统。 /p p   学生可以自行制作多种样品,根据样品设计多种纳米实验方案,更适用于高中的物理和化学教学和初中的探究课教学。由于可供检测观察的样品较多,除满足日常理科教学实验外,更适合组织尖子学生组成科学探究小组,进行多种纳米科学实验。 /p p   由于该校纳米实验室的设备是可以在大学科研上使用的,所以,该校还计划与大学和企业合作,进行产学研项目研究,给学生提供科研式和研究是学习的条件,培养科学探究精神和创新能力,成为未来的科学家。 /p p br/ /p
  • 扫描隧道显微镜助力“药物击靶”可视化:原来药物分子也会“玩乐高”
    p   8月5日,Science Advances期刊发表我国学者论文,其上登载了一张“药物击靶”显微镜照片。据论文通讯作者之一的中国医学科科学院基础医学研究所副研究员王晨轩介绍,这是科学家首次直观看到“药物击靶”的状态,可用于指导药物分子的设计。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 489px " src=" https://img1.17img.cn/17img/images/202008/uepic/a84d5415-9f82-46e6-9b7b-49dcd99b74d4.jpg" title=" 微信图片_20200813111429.png" alt=" 微信图片_20200813111429.png" width=" 500" height=" 489" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 363px " src=" https://img1.17img.cn/17img/images/202008/uepic/3faeb35b-438a-4004-a05c-ddb29962f12d.jpg" title=" 1b2fd81ff88d4487bc9adafb2c51ee14.jpg" alt=" 1b2fd81ff88d4487bc9adafb2c51ee14.jpg" width=" 600" height=" 363" border=" 0" vspace=" 0" / /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong   照片显示:当药物分子(硫黄素T)要与生命体内的靶蛋白结合、起药效时,不是像人们想象的单个分子去结合蛋白,而是自动像“乐高积木”一样组装后,合力“击靶”,这种“机灵劲儿”与之前人们的想象完全不同。 /strong /span /p p   本以为它只身赴命,没想到它两两成对、凑四成团、甚至6人成伍& #8230 & #8230 这个新发现可能带来哪些颠覆性改变?据王晨轩介绍:“教科书中有一个经典的‘锁钥模型’,是说药物分子能够‘击靶’必须要和蛋白严丝合缝,像一把钥匙开一把锁,但现在的显微镜观测结果表明,药物分子用寡聚态的方式‘工作’,或许我们只需要半个钥匙就能开锁。” /p p   “药物设计是个‘配钥匙’的过程。人们已知一个疾病相关的蛋白质结构,想设计一种反向性的药物,需要有机化学家、计算机辅助药物设计的理论化学家等一起构筑一个和蛋白质活性中心匹配的足够大的钥匙才能工作。药物合成越长越难,每个基团像“粘胳膊”一样,到了产业化的时候对工艺的要求更是指数级的增加。如果药物其实只需要合成原来的很小一段,1/4或者是1/8,那么难度将大大降低。此发现可以简化药物合成路径。 /p p   据悉,蛋白质的照片拍摄很困难,先是晶体衍射法,再是冷冻电镜的方法,但是至今仍不是所有的蛋白都能拍摄成功,原因是都必须要让蛋白排列成有序的阵列,才能满足成像要求。“这就好比,只有阅兵式上的解放军方阵才能成像,而后面的群众大联欢方阵是拍不上的。”王晨轩打了个特别形象地比方,因此要拍摄和药物分子结合的蛋白分子,就要用新的拍摄设备。 /p p   扫描隧道显微镜勇最初是物理学家用来探测原子、亚原子的微观结构,具有超高的分辨能力。王晨轩说,把物理设备引进生物领域是上世纪90年代的事情,需要完成对设备的硬件、软件、算法的全新研制,中国团队在国际上是较早进入这一领域的。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 400px " src=" https://img1.17img.cn/17img/images/202008/uepic/bdfe1e18-3132-4394-88b3-5eff33787fac.jpg" title=" 1597292515109044001.jpg" alt=" 1597292515109044001.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" / /p p   由于它是通过量子力学中的隧穿效应,通过记录穿越样品的电子直接捕捉蛋白质和药物分子的“模样”,最开始的扫描隧道显微镜操作必须在真空中。中国科学家团队很早解决了常态下用扫描隧道显微镜观测的问题,在世界上首次使用了扫描隧道显微镜,实现了在大气室温下对化学分子的观察。 /p p   为了拍摄首张“药物击靶”显微镜照,医科院基础所王晨轩、于兰兰、张文博,与国家纳米科学中心的王琛、杨延莲、方巧君团队等几代科研人打磨多年,不仅发明了蛋白质对基底的吸附技术、分子伴侣的固定技术、扫描探针的脉冲技术等一系列专利技术,还对整个“拍照”的流程进行优化和摸索。 /p p   “整套(拍照)技术非常复杂,很难形成照搬流程,只能像是匠人之间的口口相传,需要知识、经验和揣摩,专业人员可能需要一年或者几年的训练时间跟着走下来,才能系统掌握。”王晨轩说。 /p
  • 岛津倾情支持全国环境纳米技术大会
    4月9日,濛濛细雨中,在美如花园般的厦门大学,为期2天的“全国环境纳米技术及生物效应学术研讨会(National Symposium on Environmental Nanotechnology & Nanoimpact)”拉开帷幕。本次大会由江桂斌院士发起,中国化学会环境化学专业委员会和中国仪器仪表学会原子光谱专业委员会主办、厦门大学和中国科学院生态环境研究中心承办,来自全国各地的近500位行业专家与青年学者汇聚一堂,就纳米材料技术的发展与对环境和生物的影响展开了热烈的探讨。本次大会在厦门大学科学艺术中心召开开幕式前厦门大学学生以优美的弦乐四重奏迎接与会者大会现场传真著名专家学者出席大会  大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式。中科院生态环境研究中心江桂斌院士、国家自然科学基金委员会庄乾坤教授等致开幕词。他们在致辞中强调,纳米技术是国家重点开发技术,期待在大力发展纳米技术的同时,关注纳米材料环境安全性及生物效应。充分发挥纳米材料的特性,使其在环境领域大有作为,使天更蓝、水更清。并且,特别对岛津公司给予本次大会的热情支持表示了由衷的谢意。大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式中科院生态环境研究中心江桂斌院士致开幕词国家自然科学基金委员会庄乾坤教授致开幕词  随着纳米材料制备和相关应用技术的迅速发展,纳米材料对环境和生物的潜在影响已经日益受到科学界、政府乃至社会公众的关注。本届会议旨在引起学术界对纳米材料环境安全性及生物效应的进一步关注,牵引相关领域学者开展了深入研究,围绕着环境纳米技术 纳米环境过程、纳米生物效应及安全性评价 纳米调控、表征技术与方法 大气超细颗粒物环境过程与效应等议题进行了深入讨论。会议邀请了包括多位中国科学院/工程院院士、美国工程院院士做了大会报告 还邀请了众多本领域知名专家做了特邀报告。厦门大学的孙世刚院士做大会报告美国Rice University的Pedro J. J. Alvarez教授做大会报告北京大学的张远航院士做大会报告每个报告后都引起了与会者间的热烈讨论  岛津公司作为主赞助商携与纳米技术与环境相关的众多解决方案积极参与本次大会,受到与会者的关注。在岛津展台还设置了一个有趣的互动活动,与会者找到整个会场内任意能够体现岛津的元素并与之合影后,将合影照片、姓名、联系方式和单位名称发送至岛津微信公众号,在岛津展台向工作人员展示发送信息,就可领取一份纪念奖。活动结束后,还将根据收到的照片,评选出三位”最具创意奖”的获奖者,每人将另外获得奖品,许多年轻的学者参与了互动活动。岛津展台传真许多年轻的学者参与了互动活动  岛津公司企划部资深专家安国昱先生做了题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告。他在报告中首先简单介绍了岛津分析技术创新和发展。随后他在报告中指出扫描探针显微镜(SPM)包括扫描隧道显微镜(STM)模式和原子力显微镜(AFM)模式,以及从AFM模式派生出的各种电流、磁力、静电及显微力学等多种模式。SPM被认为是现代纳米材料和纳米技术研究的基础性分析设备,是人类凭借SPM第一次观察到原子、分子的图像。在报告中他特别强调了高分辨率扫描探针显微镜(HR-SPM)是采用频率调制(Frequency Modulation)的新一代扫描探针显微镜,实现了在大气、溶液环境下,达到原来只有在超高真空(UHV)条件下才能获得的原子、分子分辨率的观察图像。同时,HR-SPM首次实现了固液界面的水化作用层(Hydration)/溶剂化作用层(Solvation)的观察。与固体接触的液体形成层状结构,这种现象被称为溶剂化作用。如果液体是水,则称为水化作用。这种区别于体结构的特殊结构很大程度上左右着固液界面的各种作用变化,例如液相内的溶解、化学反应、电荷转移、润湿、热传导等。但是,水化作用层/溶剂化作用层非常薄,一般的实验手段很难测量,特别在表面分布不均一的构造,此前是无法测量的。HR-SPM开拓了获得环境科学中固液界面各种过程的分子信息的新领域。岛津公司安国昱先生做题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告与会者和安国昱先生探讨高分辨率扫描探针显微镜的相关问题  在本届大会开幕当日傍晚,岛津公司特为与会者设置了一个轻松交流的平台“岛津之夜”。与会者借此平台继续探讨学术问题,建立起友情。岛津公司分析测试仪器市场部曹磊事业部长为与会者致欢迎词,他在致辞中强调:“岛津公司做为世界顶级分析仪器供应商之一,自1875年创立以来,始终坚持“以科学技术为社会做贡献”的创业宗旨,不断创新,推出符合市场需求的高科技产品。岛津公司提供的环境全面解决方案,不仅包括常规色谱光谱产品、适用于各个领域痕量物质检测的ICP-MS和UFMS串联质谱系列产品,还包括可以检测到纳米级别的激光粒度仪和高分辨率扫描探针显微镜。这些产品和应用方案,一定能够助各位专家一臂之力,取得更为丰硕的成果!”岛津公司曹磊事业部长为与会者致欢迎词  本届大会设立了“研究生论坛”和“墙报展”,以吸引广大青年学子参会进行交流,并评选出“优秀青年科学家奖”和“优秀报展奖”。在大会闭幕式上,岛津公司分析测试仪器市场部胡家祥经理作为颁奖嘉宾分别向上述两个奖项的获得者颁奖,并向获奖者表示了真诚的祝贺。“优秀青年科学家奖”和“优秀报展奖”评奖结果发布岛津公司胡家祥经理作为颁奖嘉宾向获得者颁奖  关于岛津  岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。  更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。  岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 岛津倾情支持全国环境纳米技术大会
    4月9日,濛濛细雨中,在美如花园般的厦门大学,为期2天的“全国环境纳米技术及生物效应学术研讨会(National Symposium on Environmental Nanotechnology & Nanoimpact)”拉开帷幕。本次大会由江桂斌院士发起,中国化学会环境化学专业委员会和中国仪器仪表学会原子光谱专业委员会主办、厦门大学和中国科学院生态环境研究中心承办,来自全国各地的近500位行业专家与青年学者汇聚一堂,就纳米材料技术的发展与对环境和生物的影响展开了热烈的探讨。本次大会在厦门大学科学艺术中心召开开幕式前厦门大学学生以优美的弦乐四重奏迎接与会者大会现场传真著名专家学者出席大会 大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式。中科院生态环境研究中心江桂斌院士、国家自然科学基金委员会庄乾坤教授等致开幕词。他们在致辞中强调,纳米技术是国家重点开发技术,期待在大力发展纳米技术的同时,关注纳米材料环境安全性及生物效应。充分发挥纳米材料的特性,使其在环境领域大有作为,使天更蓝、水更清。并且,特别对岛津公司给予本次大会的热情支持表示了由衷的谢意。 大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式 中科院生态环境研究中心江桂斌院士致开幕词 国家自然科学基金委员会庄乾坤教授致开幕词 随着纳米材料制备和相关应用技术的迅速发展,纳米材料对环境和生物的潜在影响已经日益受到科学界、政府乃至社会公众的关注。本届会议旨在引起学术界对纳米材料环境安全性及生物效应的进一步关注,牵引相关领域学者开展了深入研究,围绕着环境纳米技术 纳米环境过程、纳米生物效应及安全性评价 纳米调控、表征技术与方法 大气超细颗粒物环境过程与效应等议题进行了深入讨论。会议邀请了包括多位中国科学院/工程院院士、美国工程院院士做了大会报告 还邀请了众多本领域知名专家做了特邀报告。 厦门大学的孙世刚院士做大会报告 美国Rice University的Pedro J. J. Alvarez教授做大会报告 北京大学的张远航院士做大会报告每个报告后都引起了与会者间的热烈讨论岛津公司作为主赞助商携与纳米技术与环境相关的众多解决方案积极参与本次大会,受到与会者的关注。在岛津展台还设置了一个有趣的互动活动,与会者找到整个会场内任意能够体现岛津的元素并与之合影后,将合影照片、姓名、联系方式和单位名称发送至岛津微信公众号,在岛津展台向工作人员展示发送信息,就可领取一份纪念奖。活动结束后,还将根据收到的照片,评选出三位”最具创意奖”的获奖者,每人将另外获得奖品,许多年轻的学者参与了互动活动。岛津展台传真许多年轻的学者参与了互动活动 岛津公司企划部资深专家安国昱先生做了题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告。他在报告中首先简单介绍了岛津分析技术创新和发展。随后他在报告中指出扫描探针显微镜(SPM)包括扫描隧道显微镜(STM)模式和原子力显微镜(AFM)模式,以及从AFM模式派生出的各种电流、磁力、静电及显微力学等多种模式。SPM被认为是现代纳米材料和纳米技术研究的基础性分析设备,是人类凭借SPM第一次观察到原子、分子的图像。在报告中他特别强调了高分辨率扫描探针显微镜(HR-SPM)是采用频率调制(Frequency Modulation)的新一代扫描探针显微镜,实现了在大气、溶液环境下,达到原来只有在超高真空(UHV)条件下才能获得的原子、分子分辨率的观察图像。同时,HR-SPM首次实现了固液界面的水化作用层(Hydration)/溶剂化作用层(Solvation)的观察。与固体接触的液体形成层状结构,这种现象被称为溶剂化作用。如果液体是水,则称为水化作用。这种区别于体结构的特殊结构很大程度上左右着固液界面的各种作用变化,例如液相内的溶解、化学反应、电荷转移、润湿、热传导等。但是,水化作用层/溶剂化作用层非常薄,一般的实验手段很难测量,特别在表面分布不均一的构造,此前是无法测量的。HR-SPM开拓了获得环境科学中固液界面各种过程的分子信息的新领域。岛津公司安国昱先生做题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告与会者和安国昱先生探讨高分辨率扫描探针显微镜的相关问题 在本届大会开幕当日傍晚,岛津公司特为与会者设置了一个轻松交流的平台“岛津之夜”。与会者借此平台继续探讨学术问题,建立起友情。岛津公司分析测试仪器市场部曹磊事业部长为与会者致欢迎词,他在致辞中强调:“岛津公司做为世界顶级分析仪器供应商之一,自1875年创立以来,始终坚持“以科学技术为社会做贡献”的创业宗旨,不断创新,推出符合市场需求的高科技产品。岛津公司提供的环境全面解决方案,不仅包括常规色谱光谱产品、适用于各个领域痕量物质检测的ICP-MS和UFMS串联质谱系列产品,还包括可以检测到纳米级别的激光粒度仪和高分辨率扫描探针显微镜。这些产品和应用方案,一定能够助各位专家一臂之力,取得更为丰硕的成果!”岛津公司曹磊事业部长为与会者致欢迎词本届大会设立了“研究生论坛”和“墙报展”,以吸引广大青年学子参会进行交流,并评选出“优秀青年科学家奖”和“优秀报展奖”。在大会闭幕式上,岛津公司分析测试仪器市场部胡家祥经理作为颁奖嘉宾分别向上述两个奖项的获得者颁奖,并向获奖者表示了真诚的祝贺。“优秀青年科学家奖”和“优秀报展奖”评奖结果发布岛津公司胡家祥经理作为颁奖嘉宾向获得者颁奖关于岛津  岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。  更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。  岛津官方微博地址http://weibo.com/chinashimadzu。
  • 案例分享‖“深中牵手”成功!深中通道海底隧道顺利合龙
    6月11日凌晨,国家重大工程深中通道海底沉管隧道最终接头从E23管节顺利推出,与E24管节成功实现精准对接,标志着世界最长最宽钢壳沉管隧道正式合龙。最终接头长5.1米,宽46米,高9.75米,重约1600吨,套置于E23管节扩大段内,这种整体预制水下管内推出的结构装置为世界首创,进一步丰富了世界跨海沉管隧道的“中国方案”。该项目中要实现管道精准对接,首先要保证施工船舶稳定,船舶由于受到海面风浪的影响会不断地产生姿态变化,需要实时调节。同时施工船舶通过吊钩与沉管隧道连接,整个吊装、运输、下沉、对接过程,需要实时监测吊钩的应变应力以评估受力情况。某单位采用江苏东华测试DH59系列采集系统、表面式应变计、速度传感器,对吊钩进行应变应力实时监测以及施工船舶航向、转体、振动实时监测,为稳定船舶姿态、管道精准对接提供了技术保障。部分图文来源于网络
  • 隧道检测仪器保障地铁安全运营
    “从1969年10月1日北京地铁一号线试运行至今已经历50多年,我国地铁里程不断攀升。据中国城市轨道交通协会最新统计,2020年我国地铁运营总里程6200多公里,在建5000多公里,总历程达到超过一万公里。当前,我国北、上、广、深等特大城市,轨道交通里程处于世界前五的水平。”近日,北京交通大学副教授王耀东接受采访时说。  而地铁隧道病害与表面状态检测则是保障安全运营的重要内容之一。“否则,地铁隧道一旦发生事故,将会给生命财产带来巨大损失。”在4月22日举行的聚焦2021年北京地区广受关注学术成果报告会上,王耀东说。随着隧道病害检测技术的快速发展,他和团队正在尝试将机器视觉、先进传感等技术引入相关检测,让这一过程变得更加高效、智能。  隧道“体检”,从人工巡检到机器检视  地铁交通极大方便了城市居民的出行,但是地铁隧道中出现的各种“病害”,如隧道裂缝、渗漏水、沉降、衬砌剥落、掉块等,给电客车安全运营带来挑战。  以隧道裂缝为例,王耀东表示,其形成原因比较复杂,岩层性质、岩土压力、混凝土收缩、结构移位变形、侵蚀破坏、施工遗留等都是潜在诱因。别是南方的过江过河隧道或地下水较丰富区域的隧道,如果产生裂缝产生就会产生渗漏水,影响地铁运行的安全。因此需要定期巡检,及时养护、维修。  王耀东还记得2012年回国之初跟随地铁巡检人员做现场数据采集的情形。“凌晨1点到4点,夜深人静,地铁停运,才会开始人工巡检,要用肉眼观察、手写记录。”  他表示,尽管传统的超声波检测法、声发检测法、电磁波检测技术等不断提高检测精度,但速度低、效率慢,难以满足现代轨道交通快速发展的需求。而信息技术的发展,多维传感、机器视觉检测技术的使用则为这项检测工作的提速、高效提供了新的契机。  “机器视觉的特点是效率高、可移动、非接触,特别是信息处理自动化、智能化、数字化,也是隧道巡检的发展方向。”王耀东说。他和同事在不断尝试把机器视觉技术、图像处理技术、多维感知、人工智能等技术,应用在隧道病害检测当中,这些智能巡检技术可以逐步代替人工,完成隧道基础设施的自动检测。  裂缝识别,让机器拥有“人眼”和“大脑”  “裂缝检测智能巡检技术主要分两个步骤,第一步是图像裂缝采集,利用高速相机和特制的辅助光源,保证采集到高质量的隧道图像 第二步是裂缝病害图像处理,对所有原始图像进行预处理,包括:匀光处理、连通区域分块化、噪声滤波等,提取纹理目标进行特征判断,最后识别裂缝区域,为后续速调维护提供技术支持。”王耀东介绍。  这些听起来似乎很简单,但如何让机器像人眼一样,全面、精细采集图像,并像人脑一样准确地识别裂缝种类呢?每一步做起来都不简单,都需要精细化的算法研究和关键技术的攻克。  例如,他们研发了图像采集系统样机引入了线阵相机(进行连续拍摄形成二维图像,避免图像重叠和数据冗余)、面阵相机(针对隧道中照明不佳,进行大面积强光源补光)、定向运动设备(对隧道进行扫描式图像采集降低漏检率),来获得高质量的图像。他们还开发出一套表面裂缝图像的批量识别软件,设计出核心算法进行图像处理。  经过近十年的“磨剑”,王耀东及团队成员克服各种挑战,2018年在发表于《铁道学报》的论文研究中,首次报告了基于局部图像纹理计算的隧道裂缝视觉检测技术。他们研发的一套图像采集系统实验样机,将线状激光光源、高速线阵相机、激光发生器、图像采集卡,安装在可调节移动式视觉检测平台上,可在隧道中进行巡检。然后将高分辨率裂缝图像分成子区域,针对性地进行算法研究,完成最后的检测。  “这种智能巡检技术有助于解放人力,服务地铁运维。”王耀东说。他坦言,从综合指标看,目前这种技术对于背景简单的普通隧道裂缝识别率比较高,可以达到84%以上。但对于比较复杂环境下的裂缝,识别率还有待提高。”。  2018年至今,随着深度学习卷积神经网络深入发展,对海量隧道图像的计算性能有了数十倍的提升,识别率也有较大提高。然而,王耀东表示,对于复杂恶劣环境下,肉眼难以观察的微小缺陷仍然很难检测到。  增强自主创新,助力交通强国建设  王耀东希望,在未来检测算法上,加强对不同类型纹理噪声的识别,提高图像处理的计算效率,进一步提高隧道病害检测效率。  为此,他们建立了隧道病害样本库,基于深度学习,对隧道表面病害图像多分类智能识别。为了更好地采集图像,他们还对采集系统进行了模块化研发,并研制了隧道巡检机器人,对隧道裂缝、三维形变、沉降进行检测。  目前,他们还在研制多种类、移动式隧道检测平台,如低速便携手推式(0-10公里/小时)检测平台,到中速紧凑自主行走式检测平台(0-30公里/小时),再到高速车载式综合检测平台(0-100公里/小时)的,以及路轨两栖式综合平台(0-60公里/小时)。对隧道、轨道多维数据进行采集,并进行智能分析和大数据处理,最后生成区间报表提供给专业人员使用,用于隧道和轨道维护。  “目前,我国轨道交通运营里程已经位居世界第一位,智能运维也处于世界前列。”王耀东说,但仍然亟需加强自主创新。他举例说,我国轨道交通智能数据采集设备、高精尖传感器还需要从国外进口,这些设备有的一套系统单一功能,但因为技术被国外垄断,报价却达到数百万元,甚至上千万元。  “我们科技工作者还要继续努力,推动基础研究创新,将主动权掌握在自己手中。”他说,2035年我们国家要基本建成交通强国,这将推动我国城市轨道交通进一步向大数据、智能化、精准化方向去发展,让老百姓出行更安全、更便利,乘坐舒适性更高。
  • 干货锦囊 | 灭菌隧道降低细菌污染风险
    监管机构更倾向于对注射药物进行灌装后灭菌。但是对于某些产品,例如生物药品,无法进行灌装后灭菌,因为这会对产品产生不利影响。在这些情况下,必须在100级或ISO-5环境中对产品进行无菌灌装。样品瓶必须清洗以去除颗粒,然后在填充之前进行灭菌处理。从历史上看,如果对产品进行灌装后灭菌,通常的做法是将西林瓶从清洗机中直接转移到灌装室。但是,2018年4月发布的《ISPE基线指南第3卷无菌产品制造设施1》中建议对所有西林瓶进行灭菌处理,即使产品会进行灌装后灭菌也是如此。灭菌是从西林瓶表面去除热原的过程,包括消除细菌内毒素。有几种不同的方法可以对西林瓶进行灭菌处理。非常常见和有效的方法之一是使用烘烤干燥。将样品瓶暴露于250°C以上的温度会破坏热原。大多数灭菌过程被设计为至少使内毒素减少至千分之一,甚至百万分之一。灭菌的两种最常见方法是灭菌烘箱和灭菌隧道(见图1),但是这两种方法的风险水平不同。使用灭菌隧道所涉及的风险主要来自隧道内气流的控制。用烘箱灭菌有关的风险包括手动操作西林瓶以及灭菌与灌装之间的停留时间。本文讨论了这些风险和解决方案。 图1 灭菌隧道灭菌隧道与灭菌烘箱灭菌烘箱或灭菌隧道(见图1)都可以完成样品瓶的灭菌工序。在使用灭菌烘箱过程时,在准备区域(通常为C级或ISO-7洁净室)中清洗西林瓶,放在托盘上,然后手动装入烘箱。烘箱位于准备区域和灌装线之间。设计良好的灭菌烘箱有两道门,一道通往准备区,另一道通往灌装线隔离器或无尘室。灭菌过程完成后,西林瓶需要手动转移到灌装线上。灌装工序可能需要几个小时后才能开始。Haag2(2011)的论文中强调了在灌装过程中由于容器内表面暴露在空气中而造成污染的风险,并论证了开口西林瓶与污染风险增加的相关性,即使在A级无菌环境中也是如此。但是在高效的灭菌通道中处理的西林瓶,经过约15分钟的冷却过程,就会自动送入灌装机,污染的风险大大降低。举例说明:我们现在考虑每批生产10,000瓶样品,生产线速度为每分钟50个(假定生产效率为80%)。在常见的商业灌装线上,从开口的西林瓶离开灭菌通道开始,到开始加塞的时间大约为8分钟。但是对于灭菌烘箱,相同批次的最末尾一个西林瓶从烘箱中出来的时间算,暴露时间可能长达250分钟甚至更久。更长的暴露时间使污染风险增加了30倍,这还不包括操作人员手动操作带来的相关污染风险。Rick Friedman(FDA / CDER科学与法规政策副主任)在2019年ISPE无菌会议上的开幕词中,谈到了做出积极选择以最、大的程度降低污染风险,并评论说“所有新的无菌灌装线设计均应采用灭菌隧道而不是灭菌烘箱。”预灭菌西林瓶可能产生的风险购买预先消毒的西林瓶是厂内灭菌工艺的替代方法。在这种情况下,西林瓶的清洗和消毒在另外的地方进行,然后将西林瓶装进双层袋中,然后运到生产现场。供应链复杂性的增加带来了不可避免的风险。比如说,必须对西林瓶供应商进行监控,以确保其在整个灭菌和包装过程中均遵循一定的质量标准。用于包装的薄膜尽量是无颗粒的,并且洗涤,灭菌和包装过程是自动化的,以减少人工操作。下一个要考虑的风险来自运输过程,在运输过程中,玻璃瓶之间的摩擦和碰撞会产生难以清除的玻璃颗粒和碎屑。操作员在手动开包的过程中需要遵循特殊的消毒程序,以确保外部包装上的污染物不会转移到西林瓶中。灭菌隧道相关的质量评估对于大批量生产,灭菌隧道是个显而易见的*选择。但是,从降低风险的角度出发,对于较小的生产规模,也应考虑使用灭菌隧道。专门为小批量应用设计的西林瓶清洗机和灭菌隧道组合占用的空间极小,仅占8英尺(2.5m)。灭菌隧道的主要目的是实现内毒素的对级降低。在选择隧道制造商时,至关重要的是评估制造商的气流设计,以确保洁净室和盥洗室内的压力波动不会影响灭菌过程。对空气质量要求最严格部分是灌装部分。相对于空气质量要求较低的的区域,该区域应始终处于较高的气压下,以防止空气倒流。但是,例如在开关门时,空气处理系统的调节有滞后性,这个时候气压水平会发生波动。这种压力波动可能会影响设计不当的灭菌隧道的性能。一些隧道设计使气流从灌装区到清洗区进行分级流动(见图2)。灌装区域气压的波动会使得冷空气更多从寒冷区域进入热区域,消耗了高温灭菌所需要的热量。图2:从洁净室到热区的级联空气。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域更复杂的隧道设计会对隧道的加热灭菌区加压,从而西林瓶能够始终暴露于适当的温度下(见图3)。西林瓶传送带下方设计了一个气体返回装置,能够形成从冷却区直接到进料区的空气通道。此外,有些设计还配有风扇,可将新鲜空气从制备室通过预过滤器带入热区。对此气流进行严密监视,并精确调节风扇速度以抵消灌装室压力的任何变化。设计*的隧道,在热区加压的情况下,可以控制70Pa的灌装级联过程,而复杂程度较低的装置通常只能控制10-15Pa。热区加压的第二个好处是自然温度梯度,当热区空气与相邻区域的较冷空气混合时会出现自然温度梯度。这样可以提供逐渐变化的温度,从而将因温度剧变引起碎瓶的风险降低。图3:经过加压的热区。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域隧道设计中要考虑的另一个问题是穿过西林瓶传送带的空气速度。空气速度与温度成正比,因此从质量的角度来看,重要的是要尽量小化加热过程中的温度变化。对传送带上的风速进行统一控制的隧道,能够实现更好的过程控制和批次均一性。在隧道两侧都带有回风的隧道(与单侧回风相反)通常在整个传送带上的空气速度变化较小(见图4)。 图4 (左)两侧回风;(右)单侧回风一些单面回风隧道设计结合了气流控制,可以补偿压力梯度,并在传送带的整个宽度上产生非常一致的气流(见图5)。这样的设计能够产生极优结果,消除温度过低的位置,并提供一致的灭菌效果。 图5 速度补偿后的单侧回风 其次,应考虑对灭菌隧道中无法清除的颗粒数量进行原位监测。大多数灭菌通道的设计可在进料区和冷却区进行颗粒计数。但是,迄今为止,只有一家制造商提供了监视加热灭菌区中西林瓶颗粒数量的功能。从热区收集的空气通过热交换器流向颗粒计数器(以避免损坏传感器)。该过程通常记录冷区(灌装区)5秒钟的颗粒计数,再记录5秒钟的热区(加热灭菌区)颗粒计数,再记录5秒钟的进料区颗粒计数,然后在整个生产过程中重复该循环。该解决方案可对所有三个区域进行全面的原位颗粒监控,以实现极其*的过程中质量控制。总结生产注射药物时,必须始终将患者安全放在首位。药品的生产和包装过程很复杂,但是制药行业在降低产品污染风险方面已经取得了重大进展。操作人员是无菌过程中最常见的颗粒和污染物来源。自动化生产极大降低了人员污染的风险。自动化设备很容易用于大规模生产过程。但是,传统上较小规模的生产更多地是通过是手动过程进行的,因此受到污染的风险更高。随着生物药品的发展以及更多定制化药品的出现,药品每批次生产的数量随之降低,设备供应商也相应作出改变,提供机器人灌装设备为这类产线服务。在为小规模生产选择清洗和灭菌设备的时候,必须考虑质量控制问题。现在可以使用自动洗瓶机和灭菌隧道来适应这些高价值的小批量应用。在选择设备时,尺寸、处理量,还有气流设计,都是提供无菌和无颗粒物保证的关键考虑因素。SP隶属于SP Industries.Inc., 是一家知名的科学设备供应商,品牌包括SP VirTis,SP FTS,SP Hotpack,SP Hull,SP Genevac,SP PennTech,SP i-Dositecno等。涉及的产品包括冻干,无菌灌装生产线,离心浓缩,低温循环水浴,玻璃器皿清洗机,恒温恒湿箱等。SP的产品服务于制药,科学研究,工业,航空,半导体和医疗保健等行业。总部位于宾夕法尼亚州的沃明斯特(Warminster),在美国,西班牙和欧洲的英国设有生产工厂,提供遍布全球的销售和服务网络,并提供包括培训和技术支持在内的全面产品支持。参考文献 1.Baseline Guide Vol 3: Sterile Product Manufacturing Facilities, April 2018, ISPE. 2.Mattias Haag, 2011, Calculating And Understanding Particulate Contamination Risk. Pharmaceutical Technology Europe,Volume 23, Issue 3
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制