当前位置: 仪器信息网 > 行业主题 > >

纳米结构

仪器信息网纳米结构专题为您整合纳米结构相关的最新文章,在纳米结构专题,您不仅可以免费浏览纳米结构的资讯, 同时您还可以浏览纳米结构的相关资料、解决方案,参与社区纳米结构话题讨论。

纳米结构相关的资讯

  • 中法生物矿化与纳米结构联合实验室挂牌
    2010年9月6日,在中国科学院地质与地球物理研究所举行了“中-法生物矿化与纳米结构联合实验室(Laboratoire International Associe Franco-Chinois de Bio-Mineralisation et Nano-Structures, 简称LIA_BioMNSL)”第一届科学指导委员会会议暨实验室揭牌仪式。中-法生物矿化与纳米结构联合实验室由中国科学院、中国农业大学与法国国家科研中心、法国原子能总署的9个实验室联合成立。   中国科学院地质与地球物理所赵平副所长主持了会议和揭牌仪式。中国科学院院士、地质与地球物理所所长朱日祥研究员、中国科学院资源环境科学与技术局副局长常旭研究员、法国国家科研中心生命科学局副局长马蒂尼德费教授、法国驻华使馆科技参赞包若柏先生、生物局国际合作处处长弗兰克巴居斯教授出席了会议并讲话。   中国科学院资源环境科学与技术局常旭副局长和法国国家科研中心生物局马蒂尼德费副局长共同为“中-法生物矿化与纳米结构联合实验室(LIA_BioMNSL)”揭牌。   中-法生物矿化与纳米结构联合实验室的中方成员实验室包括:地质与地球物理所古地磁与年代学实验室、海洋所海洋微生物实验室、电工所生物电磁学实验室、中国农业大学农业生物技术实验室、福建物质结构所纳米尺度化学与生物学实验室。法方成员实验室包括:法国科研中心马赛地中海微生物所细菌化学实验室、图卢兹系统分析和结构实验室、法国能源总署生物环境和生物技术所细胞生物能源实验室、巴黎地球物理所古地磁学与矿物学实验室。
  • 理化所三维金属纳米结构飞秒激光加工获重要进展
    中科院理化技术研究所段宣明团队、日本理化学研究所河田聪团队通过合作,近日在利用飞秒激光多光子纳米加工技术进行三维微纳结构制备的研究中获得重要进展,成功突破了光学衍射极限,实现了纳米尺度的三维金属纳米结构加工。 近年来,利用飞秒激光直写技术进行三维纳米结构加工,已成为一个广泛受到关注的研究工作。该研究团队利用基于非线性光学原理的飞秒激光多光子直写纳米加工技术,突破衍射极限,利用多光子聚合反应成功地获得纳米尺度加工分辨率,并实现了功能性纳米复合材料的三维微纳结构加工。 金属纳米材料与结构在电子信息、生物检测等多个领域有重要应用前景,但是加工制备具有各种金属三维纳米结构,仍然是目前国际上研究开发的热点与难点。在利用飞秒激光多光子三维纳米加工技术进行金属纳米结构加工的研究中,加工分辨率长期徘徊在微米至亚微米尺度范围,未能实现突破光学衍射极限的纳米尺度加工。针对飞秒激光多光子还原制备金属纳米结构过程中,金属纳米粒子在激光作用下易于生长成为大块晶体的问题,研究团队提出了利用表面活性剂限制金属纳米材料生长,以获得三维金属纳米结构的思路。他们在硝酸银水溶液中添加了含有肽键的羧酸盐阴离子表面活性剂,使多光子光化学还原的银纳米粒子由微米及亚微米尺度不均一分布,成为尺寸约20纳米的均一分布,获得了仅为约激光波长六分之一的120纳米线宽的银纳米线,成功地突破光学衍射极限,实现了纳米尺度加工与三维金属纳米结构的加工。同时,激光加工所用功率也由数十毫瓦降低到了一毫瓦以下,为进行金属纳米结构的多光束平行快速加工奠定了技术基础。该项研究工作成果发表在5月18日出版的Small上。该研究工作所展示的任意三维金属纳米结构加工能力,使飞秒激光多光子三维纳米加工技术具备了在微纳电子器件的三维金属纳米布线与三维金属T型栅、人工介质材料、亚波长等离子光学器件、表面等离子生物传感器及太阳能三维纳米电极等纳米器件制备中获得广泛应用的可能性。 中国科学院、科技部国际科技合作计划、日本科学技术振兴机构对该研究工作给予了支持。
  • 可控生长InSb纳米低维结构及其高质量量子器件研究获进展
    窄带InSb半导体材料以高电子迁移率、大朗德g因子和强大的Rashba自旋轨道耦合特征而著称,成为自旋电子学、红外探测、热电以及复合半导体-超导器件中的新型量子比特和拓扑量子比特的材料候选者。   由InSb制成的低维纳米结构如纳米线或2D InSb纳米结构(或量子阱),也因丰富的量子现象、优异的可调控性而颇具潜力。然而,InSb量子阱由于大晶格常数,较难在绝缘基板上外延生长。解决这些问题的方法之一是自下而上独立生长出无缺陷的纳米结构。通过气-液-固(VLS)生长出的2D InSb纳米片结构具有非常高的晶体质量,显示出单晶或接近单晶的优异特性,而在以往研究中其生长过程几乎均是起源于单个催化剂种子颗粒,因而位置、产量和方向几乎没有控制。   荷兰埃因霍温理工大学与中国科学院物理研究所/北京凝聚态物理国家研究中心HX-Q02组特聘研究员沈洁等合作,开发出通过金属有机气相外延(MOVPE)在预定位置以预设数量(频率)和固定取向/排列生长2D InSb纳米结构的新方法(可控生长),并利用低温电输运测量其制备而成的量子器件,观察到不同晶体结构对应的特征结构。   在这一方法中,通过在基底上制备V型槽切口,并精确控制成对从倾斜且相对的{111}B面生长的纳米线进行合并来形成纳米片。纳米片状形态和晶体结构由两根纳米线的相对取向决定。TEM等分析表明,存在与不同晶界排列相关的三种不同的纳米片形态——无晶界(I型)、Σ3-晶界(II型)、Σ9-晶界(III型)。后续的器件制备和输运测量表明,I型、II型在输运上表现出良好的性质,有较好的量子霍尔效应,出现了量子化平台,也有较高的场效应迁移率。   与之相对,III型纳米线因特殊晶界的存在,出现了明显的迁移率降低和较差的量子霍尔行为,且在偏压谱中被观察到象征势垒的零偏压电导谷。这归因于Σ9晶界带来的势垒对输运性质的影响。   研究表明,通过这种方法制备的I型和II型纳米片表现出有潜力的输运特性,适用于各种量子器件。尤其是这种生长方案使得InSb纳米线与InSb纳米片一起生长,具有预定的位置和方向,并可创建复杂的阴影几何形状与纳米线网络形状。   这一旦与超导体的定向沉积相结合,便可用最少的制备步骤产生高质量InSb超导体复合量子器件,为拓扑量子比特和新型复合量子比特提供器件平台。此外,与通过分子束外延(MBE)生长的InSb纳米片相比,采用这一方法生长的InSb纳米片更薄,更有助于量子化现象的出现和增加可调控性。   2月8日,相关研究成果以Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、北京市科技新星计划和综合极端条件实验装置的支持。图1.(a)InSb纳米线和纳米片基底的示意图。在InP(100)晶圆上制作v型槽切口(“沟槽”),暴露出(111)B面。金颗粒在InP(111)B切面预先确定的位置上进行曝光制备,InSb纳米线在其上生长。通过在相反的InP(111)B切面上沉积Au颗粒,InSb纳米线将合并,形成(e)纳米桥和(f)纳米片。图2.三种类型的InSb纳米片的晶体取向与最终形貌的关系图4.三种纳米片的低温电输运测量。(a-c)显示了两端电导作为背门电压Vbg和磁场B的函数,即朗道扇形图。插图中显示的是假彩色SEM图像。纳米薄片被Al电极(蓝色)接触,Σ3和Σ9晶界分别用黄色和红色虚线标记。(d-f)为(a-c)在4T、8T和11T处扇图的截线,显示量子化平台存在与否。(g-i)为三种类型纳米片低磁场下微分电导dI/dV与Vbias和Vbg的函数关系,可以看出(i)中存在与晶界对应的零偏压电导谷。(j)由三种不同类型的纳米片制成的8个器件的场效应迁移率,显示三类纳米线不同的迁移率。
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 中国科大在生物质制备纳米结构材料方面取得系列进展
    近年来,中国科大合肥微尺度物质科学国家实验室俞书宏课题组在低温水热碳化生物质制备功能性碳基材料方面的研究取得显著进展,其中有关生物质水热碳化制备高活性富碳纳米功能材料的一系列工作引起国际关注。最近,该课题组应邀撰写观点透视综述论文,并以封面文章形式发表在Dalton Trans上,英国皇家化学会网站也进行了报道。 多功能碳基材料由于其在催化剂载体、固碳、吸附剂、储气、电极、碳燃料电池和药物传递等领域潜在的重要应用,使其合成技术研究成为一个热门课题。目前,该领域研究的重点已经从化石燃料转变到以生物质作为原料合成碳基材料,同时也有望为合理利用过剩的生物质,为储存碳能源和避免直接焚烧对环境的严重污染等提供新的解决方案。 该课题组研究发现,由非晶态纤维素组成软质的植物组织主要产生球状碳纳米颗粒,它们的尺寸很小,孔隙主要是间隙孔隙;由固定结构的晶态纤维素组成的硬质植物组织,能够保留外部形状以及大范围内宏观和微观结构特征,在纳米尺度上产生了显著的结构变化,形成介孔网状结构。同时,利用碳水化合物能够控制合成出具有特殊形态和结构的碳基纳米材料、多孔碳材料及复合材料,诸如纳米球、纳米纤维、亚纳米线、亚纳米管、纳米电缆和核壳结构等,而且富含能显著改善其亲水性和化学活性的官能团。所制备的碳基材料和复合材料具有优异的固碳效率、催化性质和电学性质,在固碳,色谱分离、催化剂载体和电极材料、气相选择吸附剂、药物传递等领域具有潜在的应用前景。 目前,该课题组正着力研究水热碳化过程机理和进一步提高碳化效率,为高效制备一系列多功能化、高活性碳基纳米结构材料及实际应用打下基础。
  • 金属所在高层错能金属中构筑超细纳米孪晶结构
    金属材料的强化是长期以来材料领域的核心研究方向。细晶强化(即Hall-Petch强化,包括晶界强化/孪晶界强化)是目前最常用且有效的强化手段之一,其内在机制是源于晶界/孪晶界对位错运动的阻碍。然而,当晶粒尺寸(d)和孪晶片层厚度(λ)达到某个临界尺寸(10-15nm)时,材料的主导变形机制将转变为晶界运动或退孪生,从而使其表现出Hall-Petch关系失效或软化效应(即材料强度随着d/λ的降低而不再增加甚至降低),成为了材料强度提升的瓶颈问题。  近期,金属所沈阳材料科学国家研究中心材料动力学研究部段峰辉特别研究助理(第一作者)、李毅研究员、潘杰副研究员和上海交通大学郭强教授合作,首次在高层错能金属Ni中实现了超细纳米孪晶结构的可控构筑,以及纳米孪晶Ni在10nm片层厚度以下持续强化。这一结果突破了人们对纳米晶金属材料在极小结构尺寸下发生软化的现有认知,为发展超高强度/硬度金属材料提供了可行途径。相关研究成果于6月30日发表在Science Advances杂志上。  纳米孪晶结构普遍存在于低层错能金属材料中,而在高层错能金属Ni(γsf=128mJ/m2)中引入高密度生长孪晶,特别是极小片层厚度的孪晶结构至今鲜有报道。研究人员采用直流电沉积技术,基于高沉积速率和镀层拉应力的协同作用,成功地在金属Ni中获得体积分数达100%的柱状纳米孪晶结构,实现了孪晶片层厚度从2.9 到81.0nm 的可控调节。我们的研究表明,λ图2 纳米孪晶Ni的持续强化行为。纳米孪晶Ni的强度随孪晶片层厚度的变化关系。作为对比,图中不仅包含了文献中不同晶粒尺寸或孪晶片层厚度纯Ni强度值,还包含了纳米孪晶铜的强度随孪晶片层厚度的变化关系。这些强度值都是通过单轴拉伸和压缩实验获得的。可以清楚的看到,在片层厚度小于10-20nm时,纳米孪晶Ni表现出持续强化现象,而纳米孪晶铜表现出软化行为。
  • 点赞 | 实现性能调控的纳米尺度结构设计
    p   在物理与材料研究领域中,众多问题的解决受限于样品质量、尺寸、探测极限等因素制约而搁置,而这些问题是可以通过电子显微学方法来实现突破。近年发展起来的球差矫正等先进电子显微学方法,为在纳米乃至原子尺度对众多物理量及其耦合关系的测量与表征提供了可能,也为实现性能调控的纳米尺度结构设计提供了依据。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/a8bbe64e-d38a-46f2-b984-3ba9190a2d19.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" style=" width: 450px height: 325px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 田鹤老师科研工作照 /span /p p   众所周知,大多数材料在温度变化时呈现热胀冷缩的性质,而有一类特殊的材料因其在温度变化时体积基本保持不变,被称为零膨胀材料。一直以来,零膨胀材料因其在高精度仪器、极端条件元器件等方面极具应用价值而备受关注。然而,目前发现的零膨胀材料仍非常稀少,设计制备宽服役温度范围、低膨胀系数的零膨胀材料是该领域的核心目标。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/84763b66-77b5-492c-be61-1be8b29b18d9.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 281" border=" 0" vspace=" 0" style=" width: 600px height: 281px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 研究图a /span /p p   针对这一问题,张泽院士带领下的田鹤团队进行了系统的原位实验及微结构研究,表明铁电材料中,封闭介孔内存在着正负铁电极化表面,这些表面分别由氧离子、氧空位的聚集而被屏蔽。这一特殊的自发铁电极化屏蔽机制使得介孔微区附近的铁电性消失,从而显示出正膨胀性能。这一特性与钛酸铅本征的负膨胀性质相协同,从而使单晶介孔钛酸铅纤维表现出零膨胀的特性。成功将大量纳米尺度的封闭介孔引入到单晶钙钛矿钛酸铅中,这有效地调制了热膨胀性能,其晶胞体积在极宽的温度范围内基本保持不变。这一研究揭示了铁电体内部表面微结构的构建及其铁电极化屏蔽机制对材料热膨胀性能起到了显著调控作用,为设计、制备性能优异的新一类单相零膨胀材料提供了新思路。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/45816567-b796-4776-9c9f-f02335703bfd.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 455" border=" 0" vspace=" 0" style=" width: 600px height: 455px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 研究图b /span /p p   另一方面,由于尺寸、表面和界面效应以及量子效应等因素,材料中的有序结构,如铁磁有序、铁电有序等,通常在极限尺寸下被显著抑制。由于长程有序的尺寸限制,到目前为止,在室温下实现具有垂直于表面极化的原子厚度铁电薄膜仍然是一个艰巨的挑战,严重制约了高密度非易失性存储器件的发展与小型化。针对这一问题,我们团队利用球差矫正电子显微镜,在一个单位晶胞厚的BiFeO3薄膜中直接观察到了面外的强自发极化,并且实现了高达370% 的隧道电流变效应。这一发现证实了BiFeO3薄膜中的铁电临界厚度可以通过结构设计以实现突破,这对于高密度数据存储显示出巨大的应用前景,将为铁电基器件的小型化突破开辟可能性。 /p p   借助先进电子显微学方法,在纳米乃至原子尺度对众多物理量及其耦合关系进行研究的能力,可以为探索材料性能与微结构关系提供依据,为设计、优化功能性材料特性,实现纳米尺度结构设计调控宏观性能提供新的途径。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/59832007-ec42-4212-85c3-242933457bcf.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" height=" 275" border=" 0" vspace=" 0" style=" width: 600px height: 275px " / /p p   在此工作基础上,田鹤负责的“实现性能调控的纳米尺度结构设计”成功入围浙江大学“2018年度十大学术进展评选”活动。以下为该项目具体情况: /p p    strong 项目名称 /strong :实现性能调控的纳米尺度结构设计 /p p    strong 申报单位 /strong :材料科学与工程学院 /p p    strong 负责人 /strong :田鹤 /p p    strong 项目简介 /strong /p p   在过渡族金属氧化物这类强关联电子体系中,电子表现出的不仅是电荷,还有自旋、轨道这些复杂的属性,相互耦合诞生了如高温超导、庞磁电阻、多铁性等诸多具有重要应用前景的特性。但对电荷、轨道、自旋间的耦合关系,及其有序性与晶格的耦合、相互作用理解的依然不足,制约了对此类功能性材料性能有效调控的探索。 /p p   项目的主要特色是摆脱性能测试宏观、平均的限制,在纳米乃至原子尺度通过对各物理量间耦合关系的研究,直接构建微观结构对宏观性能的影响。通过纳米尺度结构设计,探索调控宏观性能的途径,为设计新型的功能性材料与器件提供了新的机遇。证实了针对性纳米尺度结构设计,对宏观性能的有效调控。成功研制了一种具有宽温度服役范围(低温、室温与高温区)的单相零膨胀系数材料,为航天、航空等领域,精密载荷关键部件的高精度、高稳定性需求提供了新的解决方案 在常温下实现了具有原子级别厚度,面外铁电极化的高密度纳米器件,打破了铁电薄膜临界厚度的认知。 /p p    strong 项目团队 /strong /p p   张泽院士领导的田鹤团队利用自主发展的电子显微学方法,在纳米乃至原子尺度对各物理量间耦合关系开展研究,有针对性的探知耦合本质与性能的依存关系,并探索性能调控的途径。揭示了在铁电材料内部,引入纳米尺度极化表面,对单相铁电材料宏观热膨胀行为调控的物理机制。与浙江大学韩高荣、任召辉团队合作,设计并制备出一种PbTiO3单相铁电介孔零膨胀系数材料 创新提出了一种调制铁电材料热膨胀系数的新途径,为设计、制备性能优异的单相零膨胀材料提供了新思路。(Nature Communications, 9 (2018) 1638 )进而,发现了晶格调控可突破极限尺寸对铁电极化的抑制作用。与新加坡国立大学陈景生团队合作,实现了四方相BiFeO3薄膜在室温二维极限尺度下的铁电序 证实了极限尺度下(一个单胞厚)的BiFeO3薄膜,所具有的超强铁电性与自发的面外极化 揭示了铁电极化产生、稳定和转化的物理机制 奠定了其作为高密度非易失性存储器的科学基础。(Nature communications 9 (2018) 3319) /p
  • 过程工程所开发出邻域纳米结构生物传感膜
    葡萄糖检测和实时连续监测,对于糖尿病等疾病的诊断和预防以及制糖和发酵过程中的可控生产至关重要。在这一过程中,以葡萄糖氧化酶(Gox)、普鲁士蓝(PB)、电极为核心的葡萄糖生物传感设备颇具前景。近日,中国科学院过程工程研究所生化工程国家重点实验室开发出具有邻域纳米结构的新型三维(3D)介孔生物传感膜,提高了葡萄糖生物传感设备中传感区域面积、PB利用率以及底物对传感区域可及性,具有优异的灵敏度和长期稳定性。相关研究成果发表在《先进功能材料》(Advanced Functional Materials)上。   由于PB形成速率快且极易团聚,使其在电极上的合成和分布难以控制,导致PB高密度无序堆积,形成传感区域面积小、PB利用率低且空间位阻大的逐层分布传感结构,传感灵敏度低且稳定性差。   针对上述问题,万印华团队以单宁酸-3-氨丙基三乙氧基硅烷-铁(TA-APTES-Fe)三元涂层作为结构导向剂,调控PB的固定化位置和组装速率,分别通过配位和共价作用将PB和GOx相邻固定在3D介孔碳纳米管(CNTs)膜电极中,制备出具有邻域纳米结构的介孔生物传感膜。与逐层纵向分布的生物传感器相比,新型传感膜将传感区域从2D平面扩展到3D介孔膜电极中,从而提高了PB的利用率以及葡萄糖和过氧化氢(H2O2)对传感区域的可及性。同时,这一结构拉近了级联传感单元间的距离,从而缩短H2O2到达传感界面的扩散距离,有效抑制H2O2向主体溶液中的扩散,降低其无效耗散。实验数据表明,在流通模式下,新型传感膜的灵敏度高达31.2 μA mM-1,可稳定连续监测蔗汁中的葡萄糖浓度长达8小时无电流响应漂移。   针对生物传感器污染问题,该团队基于PB的pH响应多酶活性,提出了利用GOx-PB级联反应依次产生微气泡和芬顿氧化来模拟“疏松-降解”膜清洁过程。原位产生的微气泡带来的剪切作用有助于疏松膜表面污染层,进而增加自由基对污染物的可及性,从而实现被污染的生物传感膜的自清洁。   研究工作得到国家重点研发计划和国家自然科学基金的支持。图1.受细胞膜上电子传递链结构启发,开发具有邻域纳米结构的三维介孔生物传感膜示意图。图2.生物传感膜“疏松-降解自清洁机制”示意图。
  • 《光学》:无标记染料或标签 解析光衍射极限纳米结构
    来自奥地利格拉茨大学的研究人员近日开发了一种新的测量和成像方法,可在不需要任何染料或标签的情况下解析小于光衍射极限的纳米结构。这种激光扫描显微镜新方法弥补了传统显微镜和超分辨率技术之间的差距,有朝一日或可被用来观察复杂样品的精细特征。  在国际光学出版集团的高影响力期刊《光学》上描述的这种新方法,是对激光扫描显微镜的改进,它使用强聚焦激光束照射标本。研究人员扩展了这项技术,不仅可以测量光与被研究标本相互作用后的亮度或强度,还可以检测光场中编码的其他参数。  “我们的方法可帮助扩展用于研究各种样品中纳米结构的显微工具箱。”研究小组组长彼得班泽说,“与基于类似扫描方法的超分辨率技术相比,我们的方法是完全非侵入性的,这意味着它不需要在成像前向标本中注入任何荧光分子。”  研究表明,新方法可测量金纳米颗粒的位置和大小,精度为几纳米,即使在多个颗粒接触的情况下也可做到。  在激光扫描显微镜中,光束在样品上扫描,并测量来自样品的透射光、反射光或散射光。大多数显微方法测量来自样品的光强度或亮度,但大量信息存储在光的其他特性中,例如它的相位、偏振和散射角。为了捕捉这些额外信息,研究人员检查了强度和偏振信息的空间分辨率。  研究人员表示,光的相位、偏振和强度,在空间上都会发生变化,这种变化方式包含了与之相互作用的样品细节,然而,如果只在相互作用后测量总体光功率,那么大部分信息都会被忽略。  研究人员研究了含有不同大小的金属纳米颗粒的简单样品,通过扫描感兴趣的区域,然后记录传输光的偏振和角度分辨图像展示了这种新方法。他们使用一种算法对测量数据进行评估,该算法创建了一个粒子模型,模型可自动调整,以尽可能精确地模拟测量数据。  班泽说,尽管这些颗粒及其距离比许多显微镜的分辨率极限要小得多,但新方法能够解决这一问题。更重要的是,该算法能够提供有关标本的其他参数,如颗粒的精确大小和位置。
  • 多功能显微镜助力一篇AFM!3D纳米几何结构新突破
    论文题目:Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printing发表期刊:Advanced Functional Materials IF: 19.924DOI: 10.1002/adfm.202310110【引言】 等离子体纳米颗粒由于具有特殊的光学特性被广泛应用于光电器件、化学和生物传感器等领域。若想调节纳米结构的等离子效应,则需要准确地制备出具有特定几何形状的3D纳米结构。目前,等离子纳米结构主要采用纳米颗粒或纳米颗粒阵列,通过纳米狭缝自组装法等手段,制备相应的等离子体纳米结构。可是,在制备等离子体纳米结构的过程中,由于受到了光刻等技术手段的限制,所制备的纳米结构多为2D平面结构。对于制备具有准确几何形状的3D等离子体纳米结构的相关研究尚属空白。【成果简介】 近日,格拉茨技术大学相关团队提出了基于聚焦电子束诱导沉积(Focused Electron Beam Induced Deposition,FEBID)方法制备具有准确纳米尺度3D几何结构的等离子体纳米结构。同时,作者通过FusionScope多功能显微镜和透射电镜(TEM)对相应的3D纳米结构进行了原位几何尺寸的表征。然后,使用扫描透射电子显微镜的电子能量损失谱仪(STEM-EELS)对所制备的3D纳米结构的等离子性能进行表征。所测量的结果与相关模拟计算结果相比,两者结果相互吻合,证明了通过FEBID的方法制备3D等离子体纳米结构的可行性。相关工作以《Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printing》为题在SCI期刊《Advanced Functional Materials 》上发表。 本文使用的FusionScope多功能显微镜创新性地将SEM和AFM技术深度融合,利用SEM进行实时、快速、精准导航AFM针尖,实现同一时间、同一样品区域和相同条件下的SEM&AFM原位精准定位与测量;测量时也可以实时观察AFM悬臂的尖端,在不需要转移样品的情况下,原位进行80° AFM与样品台同时旋转,对几乎所有样品(包括复杂样品)均可以实现无视野盲区观测;其丰富的功能选件如力曲线、导电原子力显微镜(C-AFM)和磁力显微镜(MFM)以及EDS能谱仪,可有效实现多维度同区域的高级测量。本文将简要阐述FusionScope多功能显微镜对不同平面结构的等离子体样品观测结果。 图1. FusionScope多功能显微镜【图文导读】图2. 制备、清除和3D加工能力展示。(a)气体注入系统(GIS)将金属气体前驱物分子(Me2(acac)Au(III))注入到基底附近,利用聚焦电子束形成在基底上形成沉积。(b-g)展示了FEBID制备复杂构型的3D纳米结构的能力。(h)运用聚焦电子束去除碳的过程。图3. 不同平面结构的等离子体测量结果。(a)利用FusionScope多功能显微镜的原位AFM功能测量的在制备后和清除后的微纳结构变化区别。(b)通过原位AFM测量的在去除前后所制备纳米结构的体积变化。(c)部分去除样品的STEM-EELS能谱。(d-l)不同设计下的等离子体测量结果。图4. 利用FusionScope多功能显微镜获取用于模拟的数据。(a-b)利用FusionScope多功能显微镜中的SEM对AFM进行引导,在放置在TEM网格上的Au纳米线进行测量。(c)对FusionScope所获得的数据和TEM所获得的数据进行相互验证。(d)FusionScope测量Au纳米线的高度为24 nm,半峰宽为51 nm。图5. Au纳米线的等离子性能的实验和模拟结果。(a) Au纳米线在不同能量损失下的EELS模拟结果。(b)Au纳米在不同能量损失下的EELS实验结果。(c)在纳米线的边缘部分(d)中蓝色区域的EELS实验和模拟对比结果。(e)为Au纳米线的中间部分(d)中绿色区域的EELS的模拟和实验结果。图6. 可进行光谱调谐的等离子体3D纳米结构的实验和模拟结果。(a)在3D纳米结构尖端部分的EELS结果,实线为实验结果,虚线为模拟结果。(b-c)不同形貌的3D纳米结构的实验和模拟结果。(d)不同形貌的纳米结构的三个显著共振峰位置的实验和模拟结果。【结论】 论文中,格拉茨技术大学相关团队通过FEBID的方法制备了具有纳米级精度的3D等离子体纳米结构。在制备相关纳米结构过程中,通过FusionScope系统对所制备的纳米结构进行了原位的几何结构表征,为模拟过程提供了数据支持。Quantum Design公司研发的FusionScope多功能显微镜,通过特有的共坐标系统,解决了原位联合显微分析中不同表征方式无法共享微区的问题,又通过优化AFM和SEM工作流给用户提供了一个清晰简单的操作流程,为原位微区信息的获取提供了极大的便利。此外,FusionScope还可以通过更换不同AFM探针,实现对样品三维形貌,力学性能,电学性能和磁学性能的综合物性表征。 样机体验: 为了更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室开放Fusionscope多功能显微镜样机体验活动,我们将为您提供样品测试、样机参观等机会,欢迎各位老师垂询!
  • 贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。  由于电磁增强作用,位于贵金属纳米结构表面的分子拉曼信号会得到数量级的增强,从而产生表面增强拉曼散射效应。表面增强拉曼散射技术具有分子“指纹”识别能力,在化学和生物分析等领域拥有广泛的应用前景。贵金属纳米结构表面具有大幅度增强局域电磁场的位置(一般位于10nm的间隙处)称为表面增强拉曼散射“热点”,是表面增强拉曼散射信号的主要来源。因此,在三维空间内增加“热点”的密集度将有效提高表面增强拉曼散射灵敏度。目前,构筑三维SERS基底的主要方式是将球形贵金属颗粒组装到非金属纳米结构阵列上。相关理论和实验研究表明,与球形贵金属纳米颗粒相比,带有棱角或尖端的贵金属纳米结构能够产生更强的局域电磁场,因而其组装体在间隙处更易产生“热点”。如果将这些纳米结构组装成三维SERS基底,有望得到高灵敏度SERS基底。  该研究团队以ZnO纳米锥阵列作为牺牲模板,使用含有贵金属离子和特定表面活性剂的电解液,采用电沉积方法构筑多种贵金属纳米结构单元组装的纳米管阵列,例如由银纳米片、金纳米棒、铂纳米刺和钯纳米锥等结构单元组装的纳米管阵列。这些纳米结构单元具有显著的棱角和/或尖端 由其组装的纳米管阵列具有大量间隙,在三维空间内产生高密度的“热点”。因此所构筑的纳米管阵列具有很高的表面增强拉曼散射灵敏度。例如,银纳米片组装的纳米管阵列能够灵敏地检测浓度低至10fM的罗丹明6G (R6G)。这种银纳米片组装的三维SERS基底对高毒性有机污染物多氯联苯也表现出高表面增强拉曼散射灵敏度,并能够检测两种多氯联苯的混合物,表明该三维SERS基底在检测环境中高毒性有机污染物方面具有应用前景。  相关工作得到科技部“973”计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。图1. 论文的相关图片被选作期刊封面  图2. (a)银纳米片组装的纳米管阵列的扫描电镜(SEM)照片 (b)折断的纳米管的SEM照片 (c)不同浓度R6G的SERS光谱 (d) 20μ M多氯联苯-77 (PCB-77)和10μ M多氯联苯-1 (PCB-1)的混合物溶液(曲线I) 以及30μ M的 PCB-1溶液(曲线II)的SERS光谱。
  • 金属所等在仿调幅分解结构高强度纳米金属材料研究中获进展
    近日,中国科学院金属研究所沈阳材料科学国家研究中心研究员金海军团队将脱合金与电沉积相结合,在完全互溶且热力学稳定不易分解的Cu-Au合金体系中构筑出类似调幅分解产生的纳米结构,形成仿调幅分解结构合金(spinodoid alloy)或人工调幅合金。这一新型纳米金属材料具有接近理论值的高强度,并表现出粗晶材料的塑性变形特征,为材料的强韧化和功能化设计提供了新思路。相关研究成果以Ultrastrong Spinodoid Alloys Enabled by Electrochemical Dealloying and Refilling为题,发表在《美国国家科学院院刊》(PNAS)上。科研团队利用脱合金腐蚀将固溶体Cu-Au中Cu(或Ag-Au中的Ag)选择性溶解,促使未溶解Au原子自组装形成纳米多孔Au,再用电化学沉积将Cu回填入纳米孔,形成全致密仿调幅分解结构Cu/Au合金。新材料保留了前驱体合金的粗大晶粒,其晶内由同为面心立方结构、晶体取向一致、且在纳米尺寸互相贯通Cu、Au两相构成;两相间呈三维空间连续、弯曲的半共格界面,相界上规则地排列着高密度的失配位错;两相特征结构尺寸可在纳米至亚微米区间变化。与多层膜等纳米材料在较高临界尺寸以下即发生软化不同,仿调幅分解结构Cu/Au合金的强度随尺寸减小而持续升高,直至接近其理论强度(失配位错弓出临界应力)。随着特征尺寸细化至50纳米以下,其塑性变形从传统复合材料向单相材料变形方式转变。在此临界尺寸以下,新材料在获得纳米材料高强度的同时,具备单相粗晶材料的变形行为特征,展现出综合力学和物理性能优化的广阔空间。本工作将理论计算与实验结合,通过分子动力学模拟,强调了界面曲率也是三维连续相界的重要结构特征,且对纳米材料力学行为产生重要影响。研究对Gyroid双相晶体进行的原子尺度模拟计算,揭示了零平均曲率半共格界面的结构,并从理论上澄清了该类光滑连通三维复杂界面与材料理论强度之间的关系,阐明了仿调幅结构双相纳米材料的强度上限。单相固溶体可通过调幅分解自发转变为晶体结构相同、成分在纳米尺度波动的双连续双相结构。而受制于热力学与动力学条件,该转变的适用合金体系极为有限,其成分调制幅度和界面形态结构难以控制与优化。本研究突破了传统调幅分解的固有限制,拓展了此类材料的合金体系、成分范围和性能空间,促进其研究和应用。此外,新材料的超高密度位错、近极小面三维连续相界、低能(半)共格界面、极低三叉晶界密度等独特结构也为探索纳米金属变形与稳定性中的一些基础科学问题、发展高性能结构功能一体化新材料提供了新机遇。研究工作得到国家自然科学基金、国家重点研发计划、沈阳材料科学国家研究中心基础前沿及共性关键技术创新项目的支持。南京理工大学科研人员参与研究。图1.仿调幅分解结构Cu/Au合金的制备及结构特征。(a)脱合金与电沉积结合形成仿调幅分解结构的示意图;(b)EBSD照片显示该材料粗大的晶粒尺寸,(c)TEM照片显示其双连续纳米双相结构,(d)HRTEM照片显示半共格界面和高密度失配位错。图2.仿调幅分解结构Cu/Au合金的分子动力学模拟。(a)典型Gyroid双相结构及其光滑连续半共格界面,(b)界面上大量失配位错组成的三维位错网络。图3.仿调幅分解结构Cu/Au合金屈服强度的特征结构尺寸效应,其强度随结构尺寸减小而持续上升,并逼近理论计算的理论强度。图4.仿调幅分解结构Cu/Au合金屈服强度的晶粒尺寸效应。(a)虽然该材料晶粒尺寸(d)比结构尺寸()高几个数量级,其强度仍表现出显著的晶粒尺寸(d)效应。(b-c)SEM照片显示晶界对剪切带有明显的阻碍作用,与强度的晶粒尺寸效应相一致。
  • 30纳米染色质高精度三维冷冻电镜结构成功解析
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp DNA如何包装成染色体,是科学家们一直努力破解的重要科学问题。近30年来,由于缺乏系统、合适的研究手段,作为染色质包装过程中承上启下的关键部分,30纳米染色质高级结构研究一直是现代分子生物学领域面临的最大挑战之一。 /p p style=" line-height: 1.5em "   科学家已经发现,染色质包装分4步完成,对应了染色质的四级结构:第一级结构是核小体 第二级结构是核小体螺旋化形成30纳米染色质纤维 第三级结构是30纳米染色质再折叠成更为复杂的染色质高级结构,即超螺旋体 第四级结构是超螺旋体进一步折叠形成在光学显微镜下可以看到的染色体。 /p p style=" line-height: 1.5em "   为解析30纳米染色质的高精度三维冷冻电镜结构,中科院生物物理所研究员李国红课题组及其合作者(朱平课题组和许瑞明课题组)在基金委重大研究计划“细胞编程与重编程的表观遗传学机制”支持下,自主建立了染色质体外组装和冷冻电镜技术(11埃)。利用这一技术,研究人员在国际上首次发现30纳米染色质纤维是以4个核小体为结构单元形成的左手双螺旋结构。同时,连接组蛋白H1在单个核小体内部及核小体单元之间的不对称分布及相互作用促成30纳米高级结构的形成,从而明确了H1在30纳米染色质纤维形成过程中的重要作用。 /p p style=" line-height: 1.5em "   2014年4月25日,在DNA双螺旋结构发现61周年的纪念日,《科学》杂志以Double Helix,Doubled(《双螺旋,无独有偶》)为题介绍了这项重要成果,并同期刊发英国剑桥大学教授Andrew Travers撰写的题为The 30-nm Fiber Redux(《30纳米纤维的归来》)的评论。该评论指出:(本文)结果明确地界定了染色质纤维中DNA的走向,解决了染色质到底是单股纤维还是双股纤维这个根本性的问题。本来似乎已经陷入困境的30纳米染色质纤维结构研究,又会重新成为生物学家们继续关注的焦点。该成果发表后受到国内外学术界的广泛关注,被多部世界知名最新版本教科书收录(《生物化学》《结构生物学》等)。 /p p style=" line-height: 1.5em "   据李国红介绍,在30纳米染色质纤维结构解析的基础上,他们通过与中科院物理所李明课题组合作,利用单分子磁镊技术对30纳米染色质纤维建立和维持的动力学过程进行了深入的探讨。在后续研究中,研究人员正在建立和完善描绘全基因组染色质结构的MNase-seq技术——gMNase-seq(细胞核内染色质结构分析方法),通过蛋白质融合或不同大小的金颗粒修饰和改造MNase,提高MNase-seq的空间分辨率,进一步描绘了细胞核内染色质纤维三维结构的动态调控及其分子机制。 /p p style=" line-height: 1.5em "   “30纳米染色质纤维结构”先后入选“十八大以来中国科学院重大创新成果”和“中国科学院‘十二五’标志性重大进展核心成果”。该研究成果表明我国科学家在攻克30纳米染色质纤维高级结构这一30多年悬而未决的重大科学问题上取得了重要突破,这使我国在染色质结构研究领域达到国际领先水平。同时,也为预测体内染色质结构建立的分子基础以及各种表观遗传因素对染色质结构调控的可能机理提供了结构基础。 /p p br/ /p
  • 全国纳标委低维纳米结构与性能工作组邀您参与3项国标制定
    p style=" text-indent: 28px line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 2005 /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 年 span 4 /span 月 span 1 /span 日,全国纳米技术标准化委员会( span SAC/TC279 /span )由国标委发文批准成立,主要负责纳米技术领域的基础性国家标准制修订工作。 span 2016 /span 年 span 11 /span 月 span 20 /span 日,经国家标准化管理委员会和中国科学院批准,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(以下简称“工作组”)正式成立,编号为 span SAC/TC279/WG9 /span ,负责组织协调全国低维纳米技术领域标准化工作。 /span /p p style=" text-indent: 28px margin-top: 15px line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 近年来,越来越多的低维纳米材料,如石墨烯、二硫化钼、氮化硼、二维黑磷单晶等被相继发现,以这些材料为基础的各种复杂结构,如异质结、堆垛结构等也不断产生;这些低维纳米材料与结构的新奇性质以及在光电、催化、传感等领域的应用前景引起了学术界和产业界的高度关注,也逐步进入了从实验室研发到产业化应用的阶段。统一的命名方式、测试方法、技术规范、性能评价等标准的建立,可为产业界和学术界交流提供统一的技术语言,促进低维纳米材料产业的健康、有序发展。 /span /p p style=" text-indent: 28px margin-top: 15px line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 2020 /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 年,工作组有 span 3 /span 项纳米技术国家标准项目计划通过审批 /span 。为确保标准编制工作顺利开展,特成立各项目的标准制定工作组,在标准制修订过程中牵头组织必要的技术研讨、关键技术研究及对比实验验证等工作,现公开广泛征集标准制定工作组成员,欢迎有关单位及专家共同参与。 /p p style=" margin-top: 15px line-height: 1.5em " span style=" color: rgb(0, 112, 192) " strong span style=" font-family: 微软雅黑, sans-serif " 一、《纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法》 /span /strong /span /p p style=" line-height: 1.5em margin-top: 15px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 计划号: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 20202906-T-491 /span /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 下达日期: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 2020-08-07 /span /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 主要起草单位: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 清华大学 /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 报名加入标准制定工作组: /span /strong span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) " a href=" http://tc279wg9-ldmas.mikecrm.com/6ZS0z85" http://tc279wg9-ldmas.mikecrm.com/6ZS0z85 /a /span /p p style=" text-align: center line-height: 1.5em margin-top: 15px " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " img style=" max-width: 100% max-height: 100% width: 186px height: 181px " src=" https://img1.17img.cn/17img/images/202012/uepic/4129d6cf-f195-4cdb-8bf0-92eac6533200.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 186" height=" 181" / /span /p p style=" line-height: 1.5em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong span style=" font-family: 微软雅黑, sans-serif " 二、《纳米技术 亚纳米厚度石墨烯薄膜载流子迁移率及方块电阻测量方法》 /span /strong /span /p p style=" line-height: 1.5em margin-top: 15px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 计划号: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 20202801-T-491 /span /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 下达日期: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 2020-08-07 /span /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 主要起草单位: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 泰州巨纳新能源有限公司、中国科学院上海微系统与信息技术研究所、泰州石墨烯研究检测平台有限公司、东南大学、南京大学 /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 报名加入标准制定工作组: /span /strong span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) " a href=" http://tc279wg9-ldmas.mikecrm.com/4HXF5FP" http://tc279wg9-ldmas.mikecrm.com/4HXF5FP /a /span /p p style=" text-align: center line-height: 1.5em margin-top: 15px " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " img style=" max-width: 100% max-height: 100% width: 190px height: 190px " src=" https://img1.17img.cn/17img/images/202012/uepic/6fb0de26-ab1e-4ba8-85b1-08074a90df90.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 190" height=" 190" / /span /p p style=" line-height: 1.5em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong span style=" font-family: 微软雅黑, sans-serif " 三、《纳米技术 拉曼法测定石墨烯中缺陷含量》 /span /strong /span /p p style=" line-height: 1.5em margin-top: 15px " strong span style=" font-family: 微软雅黑, sans-serif " 计划号 /span span style=" font-family: 微软雅黑, sans-serif " : /span /strong span style=" font-family: 微软雅黑, sans-serif " 20204113-T-491 /span br/ /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 下达日期: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 2020-11-23 /span /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 主要起草单位: /span /strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 泰州石墨烯研究检测平台有限公司、东南大学、中国科学院大连化学物理研究所、泰州巨纳新能源有限公司、内蒙古石墨烯材料研究院、绍兴文理学院 /span /p p style=" line-height: 1.5em margin-top: 10px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 报名加入标准制定工作组: /span /strong span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) " a href=" http://tc279wg9-ldmas.mikecrm.com/dADKmru" http://tc279wg9-ldmas.mikecrm.com/dADKmru /a /span /p p style=" text-align: center line-height: 1.5em margin-top: 15px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp img style=" max-width: 100% max-height: 100% width: 194px height: 194px " src=" https://img1.17img.cn/17img/images/202012/uepic/1065d376-8e24-463d-97d4-c7fcf47fe6dc.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 194" height=" 194" / /span /strong /p p style=" line-height: 1.5em margin-top: 20px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 更多咨询请联系工作组秘书处: /span /strong /p p style=" line-height: 1.5em margin-top: 15px " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 全国纳标委低维纳米结构与性能工作组秘书处联系方式 /span /p p style=" line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 联系人:邵悦 span 13914543362& nbsp /span /span /p p style=" line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 固定电话: span 0523-82836717 /span /span /p p style=" line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " Email: standard@graphene-center.org, shaoyue@graphene-center.org /span /p p style=" line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 通信地址:江苏省泰州市凤凰西路 span 168 /span 号 span 5 /span 号楼 /span /p p style=" line-height: 1.5em " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 邮编: span 225300 /span /span /p
  • 飞秒激光烧蚀制备大面积均匀纳米结构进展
    最近,在中国科学院院士徐至展领导下,中山大学光电材料与技术国家重点实验室与中国科学院上海光机所强场激光物理国家重点实验室展开合作研究,在飞秒激光烧蚀制备大面积均匀纳米结构方面取得重要进展,相关成果发表在《光学快报》(Optics Express) (2008, 16, 19354-19365))。纳米科技领域国际著名期刊Small (2008, 4, No. 12, 2099)在News from the micro-nano world栏目以“大面积均匀纳米结构”(Large-area Uniform Nanostructures)为题专门报道了这项研究成果,并将它与美国科学家近期实现的“大面积组装单壁碳纳米管三维结构”并列为微纳结构合成制备新方法 另外,自然中国网站于2008年12月10日在Research Highlights栏目中也专栏推荐并重点介绍了该成果。   飞秒激光烧蚀具有低的破坏阈值及小的热扩散区的特点,可实现对材料的“非热”微加工,从而大大减小传统长脉冲激光加工中热效应带来的负面影响,显著提高加工精度,在光电器件微加工领域具有广阔的应用前景。但是由于传统激光直写方法的效率较低,目前飞秒激光烧蚀制备微纳结构在实际应用中尚不具备高的经济性。因此,探索如何直接用飞秒激光烧蚀高效地制备大面积均匀纳米结构是当前飞秒激光微加工领域的一个研究热点。   博士生黄敏及其导师徐至展等采用飞秒激光辐照自诱导亚波长纳米结构的途径,通过调控飞秒激光脉冲的波长、能量、偏振等条件并采用新颖的快速非相干调制技术,成功地在氧化锌、硒化锌等宽带隙材料及石墨表面实现了纳米光栅、纳米颗粒及纳米方块结构的大面积制备。这种利用飞秒激光烧蚀直接制备纳米结构的方法具有均匀性好,效率高,热效应小,通用性高,环保等优点,并克服了以往飞秒激光烧蚀制备纳米结构过程中的二度污染问题。更为重要的是,经过这种方法处理后,材料表面的光电特性发生了显著的改变,并可随纳米结构的改变而呈现不同的光谱特征。这种方法在新型光电器件等方面具有重要的潜在应用价值,有望提高LED照明器件的发光效率和增加太阳能电池的吸收效率。(来源:中科院上海分院)   (《光学快报》(Optics Express ),Vol. 16, Issue 23, pp. 19354-19365,Min Huang,Zhizhan Xu)
  • 天美公司参加第二届全国纳米材料与结构、检测与表征研讨会
    2010年5月10日至12日,第二届全国纳米材料与结构、检测与表征研讨会今天在厦门大学开幕。天美(中国)科学仪器有限公司作为特约赞助商参加了此次盛会。本届研讨会由中国微米纳米技术学会纳米科学技术分会主办,中科院、国家纳米科学中心、各大高校的纳米研究领域的知名专家学者,围绕纳米材料与纳米结构材料的制备技术、纳米材料与纳米结构性能与机理研究、纳米材料应用与纳米器件、低成本纳米材料和器件的开发和产业化、纳米检测技术标准化等内容做专题报告。     谢思深、薛其坤、江雷和田中群等多位院士参加了会议,其中薛其坤院士和江雷院士先后作了专题报告。     薛其坤院士作“拓扑绝缘体薄膜的MBE生长与奇特性质”的报告   科技部从2006年开始的国家重大研究计划(973) “纳米标准物质和检测用纳米标准样品的可控合成、量产及微加工标准化研究”,由国家纳米中心、中科院物理所和微电子所联合负责,目前已取得了多项科研成果,国家纳米科学中心和中科院微电子所的多位专家作了报告。     国家纳米科学中心的吴晓春研究员作“中国纳米标准物质/样品研究进展”的报告     中科院微电子所陈宝钦教授作“应用于电镜倍率校准的纳米尺度标准物质制造技术的研究”的报告   中国计量科学研究院李红梅研究员作了“纳米检测技术标准化对计量技术的需求”的报告   中国的扫描电镜的倍率校准标样和计量方法的推出已为期不远,这将改变电镜倍率校准只有行业标准、标准样品只能进口的现状,这对国内纳米尺度的检测有重要意义。      多个报告中引用了日立S-4800场发射扫描电镜的图片,可见日立S-4800电镜在纳米界的应用十分广泛。
  • ACS Nano:原子层沉积技术助力复杂纳米结构的合成和精准调控取得新进展
    MoS2(二硫化钼),由于其优异的带隙结构(直接带隙为1.8 eV),高表面体积比和的场效应晶体管(FET,field effect transistor)性能,已成为具代表性的二维过渡金属硫族化合物(TMDC, transition-metal dichalcogenide)。使用纳米晶(Nano-Crystal,NC)修饰MoS2,即可以保持每个组成部分的立特性,同时又提供了复合材料产生的协同特性,大的扩展了MoS2材料的应用领域。控制纳米晶(NC)在 MoS2基底上的形貌,包括浓度,尺寸大小和表面体积比,对电子器件的整体性能影响是至关重要的。原子层沉积技术(ALD,Atomic layer deposition)是基于自限制的表面化学反应,对缺乏表面活化学反应基团的二维材料可实现选择性表面纳米晶修饰,其中NC大小可以通过循环次数来控制。美国斯坦福大学化学工程学院的Stacey F. Bent教授,通过使用台式三维原子层沉积系统-ALD发现了一种合成ZnO修饰MoS2基杂化纳米结构(纳米片或纳米线)的新方法。ZnO纳米晶的特性,包括浓度、大小和表面体积比,可以通过控制ZnO循环次数以及ALD磺化处理得到的MoS2衬底的性能来进行系统的合成和调控。通过材料化学成分(XPS以及 Raman),显微镜观察(TEM, SEM)和同步加速器X射线技术(GIWAXS) 分析ZnO与ALD沉积次数的相互关系,并结合量子化学计算的结果,作者阐明了ZnO在MoS2衬底上的生长机理及其与MoS2衬底性能的关系。MoS2纳米片的缺陷密度和晶粒尺寸可以由MoO3的硫化温度进行控制,ZnO纳米晶会选择性地在MoS2表面的缺陷位置处成核,且尺寸随着ALD循环次数的增加而增大。ALD循环次数越高,ZnO纳米晶的聚结作用越强,使得ZnO在MoS2衬底表面的覆盖和自身尺寸大幅增长。此外,复合结构的几何形貌可以通过改变MoS2衬底的取向进行调控,即采用MoS2的垂直纳米线(NWs,nanowires)作为ALD ZnO NCs的衬底,可以大幅改善复合结构的表面体积比。该类材料有望用于一些新拓展的领域,尤其是依赖过渡金属卤化物和NCs相互耦合结构的,如基于p−n异质结的传感器或光电器件。该工作发表在2020年的国际知名期刊ACS Nano (2020, 14, 1757−1769)上。图1. (a)ZnO@MoS2复合纳米结构示意图;(b)800°C-MoS2表面的HR-STEM图像;(c)两步合成二硫化钼的工艺,即在三个不同的退火温度下(600,800,和1000°C)下使用H2S硫化ALD 合成的MoO3;(d)600 °C-, 800 °C-, 和1000 °C-MoS2的Raman光谱图,(e)Zn 2p XPS谱图(循环次数为50次),(f)相对原子比 Zn/(Zn + Mo),(g)TEM图像,(h)表面覆盖度,(i)MoS2表面ZnO颗粒的数密度及(g)GIWAXS(grazing incidence wide-angle X-ray scattering,掠入射小角X射线散射) 图样(不同沉积次数下);(k)800 °C-MoS2 纳米线的SEM,TEM和HR-TEM图像;(l)DEZ(diethylzinc,二乙基锌)反应的量子化学计算结果,在MoS2的边缘位和基面上进行DFT分析,黄色和绿色原子分别表示S和Mo。 上述工作中作者团队采用的原子层沉积设备来自于美国ARRADIANCE公司的GEMStar系列台式三维原子层沉积系统-ALD(如图2所示),其在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅实现在8英寸基体上膜厚的不均匀性小于99%,而且更适合对超高长径比的孔径3D结构等实现均匀薄膜覆盖,对高达1500:1长径比的微纳深孔内部也可实现均匀沉积。GEMStar系列ALD系统广泛应用于高深宽比结构沉积,半导体微纳结构制备,微纳粉末包覆等,服务于锂离子电池,超电容器,超电容器,LED等研究领域。图2. 美国ARRADIANCE公司生产的GEM-tar系列台式三维原子层沉积系统 参考文献:[1]. Il-Kwon, et al., Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS2 by Atomic Layer Deposition., ACS nano., 2020,14(2), 1757-1769.
  • 广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题
    研究背景单分子分析技术在生物传感和生物医学中具有广泛应用前景。纳米孔作为最有前途的单分子传感技术之一,在超灵敏、易操作和无标记分析方面具有独特的优势。近年来,纳米孔技术在DNA测序、生物分子相互作用探索和生物分子检测方面得到了广泛应用。固态纳米孔是纳米孔技术中常用的一种的,其具备优异的机械稳定性和孔径灵活性。然而,由于其相对蛋白质纳米孔而言分辨率和选择性较低,在开发生物传感器进行单分子分析时,存在两个重大挑战:(1)尺寸较小(1~10nm)的化学或生物靶标物由于其与纳米孔的较弱相互作用而难以产生可识别的过孔信号;(2) 广泛存在于生物样品或缓冲液中的蛋白质干扰物会显著提升纳米孔的噪声水平,甚至淹没过孔信号。为解决这两大挑战,王家海教授带领团队中陈达奇老师共同设计了新型传感策略:1、以核酸立方体结构作为信号分子提升小目标的信噪比,实现了超高信噪比的过孔信号;2、利用CRISPR–Cas12a技术,将小片段核酸被测物的浓度成功转化为核酸立方体的数量,并耦合了PCR扩增技术进一步提升检测灵敏度,实现了对核酸片段超高灵敏度与选择性的检测,突破了上述两点技术瓶颈,并应用在HBV的检测中。图1 技术原理图:利用DNA立方体为信号分子,并应用CRISPR–Cas12a技术将目标核酸片段浓度转化为DNA立方体的数量,产生高信噪比、高选择性的过孔信号。王家海教授为第一作者、团队成员陈达奇老师为通讯作者,在国际知名期刊Analyst上发表题为“A signal on-off strategy based on the digestion of DNA cubes assisted by the CRISPR–Cas12a system for ultrasensitive HBV detection in solid-state nanopores”的研究工作,广州大学第一单位。工作亮点在本工作中,我们开发了克服固态纳米孔两大挑战的有效方法:1、将DNA立方体用作信号转换器,可以实现超高(50:1)信噪比(SNR)过孔信号,即使在富含蛋白质干扰物的缓冲液中,这种信号也依然能保持。为了探索信号最优的纳米结构,我们尝试了以下4种结构,分别为环形M13mp18 DNA、Lambda DNA、DNA四面体和DNA立方体。四种结构都可以在不含稳定蛋白的缓冲液中产生可见易位信号,但是DNA立方体是其中信噪比最高的。而当稳定蛋白在缓冲液中时,仅DNA立方体能维持稳定的过孔信号,其他三种核酸纳米结构作为信号分子的过孔信号都不同程度地淹没在玻璃纳米孔传感器的增强噪声中。因此,最终选择了DNA立方体来开发我们的传感策略,因为它具有极高的信噪比和强大的抗干扰能力。图2 在不同缓冲条件下,DNA立方体作为信号转换器的性能。(a) 环形M13mp18 ssDNA、Lambda DNA、DNA四面体和DNA立方体在含有或不含BSA的缓冲液中的过孔信号。(b) DNA立方体在含有不同浓度BSA的缓冲液中的事件率。DNA立方体的浓度均为30nM。2、在CRISPR-Cas12a技术的帮助下,实现了乙型肝炎病毒(HBV)靶点引发的DNA立方体裂解,从而构建出了一种传感策略。当HBV阴性时,过孔信号正常;当HBV阳性时,过孔信号消失;从而实现了HBV阳性或阴性分类,其检测限达到3aM。并且,这个方法选择性非常高,对其他病毒序列如HPV、HIV等均无假阳性现象。此外,利用我们的方法,本工作中的所有反应缓冲液都可以购买后直接使用,其成分无需为了纳米孔应用做进一步优化,这对固态纳米孔的商业化应用有很大帮助。图3 传感器在实际样本中的性能。对其他类型的病毒如HPV和HIV样本,均显示阴性。对于HBV样本,当浓度超过3aM,便可以识别出阳性结果。文章链接: https://pubs.rsc.org/en/content/articlelanding/2022/an/d2an01402e
  • 天美公司将参加第二届全国纳米材料与结构、检测与表征研讨会
    2010年5月9-12日由中国微米纳米技术学会纳米科学技术分会主办,全国纳米技术标准化技术委员会纳米检测技术标准化工作组协办,厦门大学和国家纳米科学中心联合承办的&ldquo 第二届全国纳米材料与结构、检测与表征研讨会&rdquo 在福建厦门大学举行。会议将邀请国内相关领域的知名专家做大会专题报告,会议期间还将召开纳米科学技术分会第二届理事会会议。 天美(中国)科学仪器有限公司将作为赞助商参加此次研讨会,展示天美公司用于&ldquo 表面及微结构&rdquo 、&ldquo 触摸纳米世界&rdquo 表征的综合方案,为促进我国纳米科学技术交流与合作,提升我国纳米科学技术的创新能力做出自己的贡献。 时间:2010年5月9-12日 地点:福建&bull 厦门大学
  • Nature | 我国科学家首次获得纳米级光雕刻三维结构
    14日夜,国际顶级学术期刊《自然》发表了我国科学家在下一代光电芯片制造领域的重大突破。南京大学张勇、肖敏、祝世宁领衔的科研团队,发明了一种新型“非互易飞秒激光极化铁电畴”技术,将飞秒脉冲激光聚焦于材料“铌酸锂”的晶体内部,通过控制激光移动的方向,在晶体内部形成有效电场,实现三维结构的直写和擦除。这一新技术,突破了传统飞秒激光的光衍射极限,把光雕刻铌酸锂三维结构的尺寸,从传统的1微米量级(相当于头发丝的五十分之一),首次缩小到纳米级,达到30纳米,大大提高了加工精度。这一重大发明,未来或可开辟光电芯片制造新赛道,有望用于光电调制器、声学滤波器、非易失铁电存储器等关键光电器件芯片制备,在5G/6G通讯、光计算、人工智能等领域有广泛的应用前景。
  • 科学家成功操控任意纳米结构,可用于夜视技术和医学检测等领域
    “我们证实了利用硅基光学超表面通过三次谐波在红外成像上的潜力,为通过非线性硅基纳米光子学来研发下一代红外成像技术迈出了重要一步。”英国诺丁汉特伦特大学教授徐雷表示。图 | 徐雷(来源:徐雷)当前,刚好也是光学超表面研究,从理论向应用转向的一个过程,因此本次成果非常及时。同时,在本次课题的理论设计上,徐雷等人利用连续体中的束缚态概念,来实现任意品质因子纳米结构的操控,这为降低光源强度依赖性提供了很好的思路。首先,本次成果可被用于夜视技术,从而集可见光、以及红外光成像于一体,利用普通的硅基探测器直接实现高性能的夜间红外探测。其次,本次成果可被用于医学检测,通过将红外光转到到可见光波段,根据光学探测蛋白质结合和构象变化、药物分子与靶标分子之间的相互作用等,从而在检测端口实现对于红外光背底噪声的完全抑制,进而助力于提高医学检测的灵敏度和性能。再次,本次成果可被用于食品检测和国防安全,即结合非线性超表面、以及可调谐非线性超表面,有望实现红外波段的超分辨成像技术。(来源:Opto-Electronic Advances)让红外图像转换为可见光一直以来,红外探测被广泛用于各个领域,比如通过测量材料对红外辐射的吸收,可以提供关于分子结构和化学键的信息,故在医学诊断、视频质量控制、环境监测、夜视和安全等领域都有着很大潜力。红外探测的不断创新和发展,将有望推动其在医疗、食品、环保和安防等方面的应用。然而,红外探测技术的当前挑战在于:红外探测器大部分基于热探测器,尽管成本较低但是速度较慢,而且灵敏度不足,严重限制了其性能。半导体探测器作为另一种选择,虽然具有高灵敏度的优势,但其常常需特殊冷却、以及复杂的处理工艺,要么就是需要极低温度来维持适当的性能水平。这些技术难题限制了红外成像系统的灵活性和可靠性,影响了其在各种应用场景下的性能。因此,红外成像领域迫切需要创新性解决方案,以克服当前技术的局限性。而这可能涉及新型材料的研发、更高效探测器技术的研发、以及新型冷却和处理方法的研发。过去十多年中,由亚波长尺度介质谐振器组成光学超表面结构,受到广泛关注。这种结构可以增强光电磁场的局域效应。通过巧妙设计这些结构,就能调控入射光的相位、振幅、偏振以及近场光局域的程度。同时,光学超表面具有高度的灵活性和功能性,并已经在光学领域取得许多新成果,例如替代传统光学元件的透镜、棱镜和偏振器,这不仅减小了传统光学系统的体积,还能带来性能的提高。通过非线性过程,可以实现红外光的频率转换,为将红外转换为可见光提供手段。这样一来,只需使用普通且廉价的硅基探测器,就能实现红外成像。此外,不同的非线性混频过程可以提高能量利用效率,为实现高效红外成像系统提供可能性。而对于超表面来说,它在微型化、灵活性和轻量化方面展现出的独特潜力,更是为实现新一代红外成像技术提供了很好的平台。以上,也是徐雷团队本次课题的出发点。研究中,他们利用结合非线性光学超表面的方法,通过非线性光学这一过程,可以让红外图像转换为可见光,从而让普通硅基探测器直接探测红外图像成为可能。(来源:Opto-Electronic Advances)当亲眼看到绿光的时候......据介绍,徐雷对于成像技术和非线性光学一直充满兴趣。此前在澳洲工作时,他就曾与当时的合作者使用二次谐波和频过程实现红外探测。在当时,他们是第一个开展该类尝试的科研团队。自 2016 年起,徐雷开始深入研究非线性纳米光子学。彼时,Mie 共振机制和理论,在纳米光子学领域的发展越来越快,这不仅为各种体系的应用提供了框架,还能为预测光的传播特性带来指导。期间,徐雷积累了不少关于非线性纳米光子学方面的知识。2020 年 9 月,他来到英国诺丁汉特伦特大学,与该校的莫赫森拉赫曼尼(Mohsen Rahmani)教授以及应翠凤讲师,共同组建了先进光学与光子学实验室。“Rahmani 教授偏重于样品加工,他对于材料领域以及相关应用的研究有着很深的功底。应翠凤女士则在纳米光学和生物探测上具有很丰富的经验。我们仨的技能正好互为补充、各有所长。”徐雷表示。在研究材料属性、结构设计、以及 Mie 共振等手段,在实现非线性光场增强和光场的操控之后,他们三位以及博士生郑泽开始考虑如何将非线性光学与解决实际问题相结合,随后不久启动了本次课题。结构材料与参数设计,是摆在面前的第一个问题。要想最终实现应用化,必须从非线性材料的角度,考虑后期器件的集成化。鉴于硅材料本身具有良好的非线性效应,再加上硅的加工工艺相对成熟,于是他们选择硅作为研究材料。原因在于:这样不仅能够考虑到非线性效应,还能充分利用硅的加工工艺,从而加工复杂的结构,进而增强红外光到可见光的转化效率。证明上述方案的可行性之后,他们开始进入实验阶段。由于徐雷自身的研究方向,介于理论与实验之间。因此,他一般会在实验前先进行理论模拟。但是,实验并非一帆风顺,尤其是最初得到的信号与预期不符。徐雷说:“可能大部分人会在这时候觉得比较受挫。但是,这些看似不成功的实验数据,实际上是我最感兴趣的部分,因为它们或许可以指出理论和实验上的待改善之处。”在他看来,如果所有实验结果都和理论预期保持一致,反而并不是最好的。科学史上的很多关键性进步,都是基于一些失败的实验数据启发而来。举例来说,他们在最初设计器件结构时,曾尝试通过高品质因子的结构来实现光局域增强。然而,实验结果显示高品质因子并非最佳选择。这种意外的实验结果,也促使他们进一步完善理论模型、以及改进实验方案,进而也引发了他们对于使用连续光和超快光,在成像以及传感上的思考,并为研发红外成像技术带来了一定启发。(来源:Opto-Electronic Advances)同时,完成本次课题组的过程,也是徐雷培养自己第一个博士生的过程。这名博士生便是前面提到的郑泽。研究中,师生之间形成了互相学习的良好互动。徐雷也有意识地让郑泽更多地参与光路搭建,以培养独立设计实验的能力。“尤其重要的是,我一直注重培养他的科研自信心,鼓励他提出独立的想法,以及相信自己的能力。”徐雷说。搭建非线性测试系统的时候,郑泽是第一次涉足这类系统的搭建。当他第一次看到非线性信号产生,并能亲眼看到绿光的时候,郑泽的兴奋之情感染了整个实验室。徐雷说:“作为导师,看到他如此投入和满足的表情,让我和 Mohsen 教授还有应翠凤女士都感到无比欣慰。”在三位老师以及郑泽的努力之下,本次成果显示了硅基光学超表面在非线性纳米光子学领域的应用前景,这不仅为非线性光学的实际应用提供了新思路,也为后续开展更深入的研究奠定了基础。最终,相关论文以《谐振硅膜超表面的三次谐波产生与成像》(Third-harmonic generation and imaging with resonant Si membrane metasurface)为题发在 Opto-Electronic Advances(IF 14.1)。郑泽是第一作者,英国诺丁汉特伦特大学的徐雷教授和莫赫森拉赫曼尼(Mohsen Rahmani)教授担任共同通讯作者。图 | 相关论文(来源:Opto-Electronic Advances)接下来,他们将在理论方面继续深入发掘,以期增强红外光的转换效率,同时不断压缩红外成像对于光源能量的要求。同时,也将重点考虑器件的集成化和多功能性、探索如何将图像信号处理和光谱信息提取等功能结合起来、以及如何利用超表面实现多功能成像芯片器件,从而更好地走向应用。徐雷继续表示:“另外,我想提到一点的是,每个人的技能不一样,对事物的看法不一样。有时一个纯实验工作者随口的一句话,可能会激发理论工作者的重要灵感。”而一个纯理论的学者,可能也会为实验方案起到画龙点睛的作用。就以数学研究和物理研究为例:物理中有很多不同的现象和机制。但是,一个数学家可能不会去关注不同的现象,而是直接从公式上看到各个现象和机制的关联之处。同时,这些关联往往也是实现物理突破的关键点。“有时候我们以为的非专业人士,反而给出更深刻的见解。因此,和不同知识背景的人合作,对于科研来说非常重要。”徐雷最后表示。
  • 小角X射线散射技术:研究纳米尺度微结构的重要手段
    本文由马尔文帕纳科医药行业应用专家陈丽供稿本文摘要本文将简单介绍研究纳米尺度微结构的重要手段:小角X射线衍射(Small Angle X-Ray Scattering, SAXS)技术原理及相关产品。X射线衍射与小角X射线散射 X射线是具备相应波长的电磁波或带有相应能量的光子束。X射线的波长和能量介于γ-射线和紫外线之间。其波长范围为0.01-10nm;对应的能量范围为0.125-125Kev。小角散射(Small Angle X-ray Scattering,SAXS):如果样本具有不同电子密度的周期性结构,X射线被不相干散射,散射 X 射线的角度就与入射 X 射线的角度相差很小(一般2θ≤ 5°),称为小角X射线散射效应。主要用于研究亚微米尺度的固态及液态样品结构。小角散射效益来自物质内部1~100nm量级范围内电子密度的起伏,通过对小角X射线散射图或散射曲线的计算和分析即可推导出微结构的形状、大小、分布及含量等信息。这些微结构可以是孔洞、粒子、缺陷、材料中的晶粒、非晶粒子结构等。广角散射(Wide Angle X-ray Scattering,WAXS):如果样本具有周期性结构(晶区),X射线被相干散射,入射光和散射光之间没有波长的改变,这个过程称为 广角X射线衍射。主要用于研究较晶体结构和非晶体结构。与小角散射相比,广角散射的散射角度较大,可以覆盖从几度到几十度的范围。通过检测广角散射信号,可以获得关于晶体晶格参数、晶胞体积、颗粒尺寸和颗粒形貌等信息。SAXS - WAXS表征Empyrean Nano版锐影Empyrean Nano版锐影多功能 X 射线散射系统基于Empyrean平台和Pre-FIX预校准概 念,为纳米材料研究/小角散射专家特殊定制的 高性能多功能散射研究平台操作简单,无需校准高性能散射研究平台,但不局限于散射(1D/2D SAXS/WAXS;USAXS;GI-SAXS;PDF;CT)多种配置可选多功能 X 射线散射系统Empyrean Nano版+PIXcel3D 基于铜靶应用Empyrean Nano版+GaliPIX3D 兼顾对分布函数(PDF)分析高分辨光管+聚焦透镜+ScatterX78+3D探测器2D WAXS, 最低2theta 0.1°, 最高±22°(PIXcel)或±30°(GaliPIX)变温毛细管样品架,温度范围5-70℃ Scatter X78 样品架能实现液体,固体,纤维等纳米材料分析,仪器自动校准光路,真空启动3分钟即可测试样品。
  • Nature Protocols揭示纳米材料生物冠的秘密:从结构解析到应用前景!
    【科学背景】随着纳米技术的快速发展,工程纳米材料(ENMs)引起了广泛关注。ENMs是具有独特物理和化学特性的材料,它们与其大块材料相比,表现出显著不同的性能。例如,ENMs在靶向药物递送领域具有巨大的应用潜力,通过设计特定的表面化学特性,ENMs可以实现高效的药物靶向和递送。这些特性同样适用于纳米农药的精准递送,旨在减少污染和温室气体排放。然而,要将这些技术从实验室应用到实际的临床或农业领域,仍然面临着诸多挑战。其中一个主要问题是ENMs在进入生物或环境系统后,容易发生生物转化,形成一层由生物分子组成的生物冠。生物冠的形成不仅改变了ENMs的表面特性,还影响了其在生物和环境中的行为和命运。生物冠包括蛋白质(蛋白冠)和其他生物分子如核酸和代谢物。尽管目前大多数研究集中在蛋白冠上,因为蛋白质比其他生物分子更容易监测和表征,并在受体结合和信号传递中发挥关键作用,但代谢物在信号传递中同样扮演着重要角色。为了解决这一问题,英国伯明翰大学Zhiling Guo, 国家杰出青年科学基金获得者,中国科学院纳米生物效应与安全性重点实验室副主任陈春英教授、 中国科学技术大学环境科学与工程系Iseult Lynch团队在“Nature Protocols”期刊上发表了题为“Analysis of nanomaterial biocoronas in biological and environmental surroundings”的最新论文。他们提出了一套详细的工作流程,用于分离和生物物理表征生物分子冠成分(蛋白质和代谢物)。这套流程通过质谱、先进的结构技术(如透射电子冷冻显微镜和同步辐射X射线吸收近边结构)以及分子动力学模拟来模型化ENM-生物冠相互作用。通过规范不同实验室数据的获取,这一流程提高了数据的可重复性,并有助于预测较少表征的ENM获得的生物冠。本研究解决了ENMs生物冠形成、组成和演变的机制性问题。研究人员通过简化制备、分离、鉴定和表征生物冠的程序,使不同实验室的研究结果更加可比。具体而言,研究团队描述了如何可重复地制备和表征生物分子包裹的ENMs,特别指出了需要针对不同类型ENMs优化的步骤。研究使用常规方法(如透射电子显微镜、动态光散射、电泳–质谱和液相色谱–质谱)以及先进技术(如透射电子冷冻显微镜、同步辐射X射线吸收近边结构和圆二色性),来表征生物冠的结构和组成。同时,研究还讨论了如何使用分子动力学模拟来研究和预测ENMs与生物分子之间的相互作用及其导致的生物冠组成。【科学亮点】1. 实验首次通过综合使用质谱、透射电子冷冻显微镜、同步辐射X射线吸收近边结构以及分子动力学模拟,详细描述了生物分子涂层(生物冠)的制备与表征方法。实验针对工程纳米材料(ENMs)的生物冠层进行了全面的分析,涵盖了蛋白质和代谢物的分离及其生物物理特性。这些方法能够提供关于生物冠层的结构、组成和动态的深刻洞察。2. 实验通过优化的工作流程,提高了数据获取的规范性和重复性,使得不同实验室之间的数据可以进行有效比较,并可以预测其他未表征ENMs的生物冠。研究设计了一套标准化的流程来简化生物冠的制备、分离、鉴定和表征。通过这些技术和方法,能够更准确地理解ENMs与生物分子之间的相互作用及其对生物冠组成的影响。这一流程不仅提升了研究的可重复性,还为生物医学和农业应用提供了新的理论依据,并有助于更好地评估ENMs在环境中的影响。【科学图文】图1:生物冠确定协议的五个主要部分概述。【科学结论】本文通过系统化地研究生物冠的制备和表征,为工程纳米材料(ENMs)的生物学和环境研究提供了重要的科学价值。首先,本文揭示了生物冠在ENMs与生物体或环境系统相互作用中的核心作用,强调了生物冠对ENMs生物学和环境行为的决定性影响。这一发现不仅拓展了对ENMs表面生物分子层的理解,也为精准控制ENMs的生物学功能和环境行为提供了理论基础。其次,本文介绍了通过质谱、透射电子冷冻显微镜、同步辐射X射线吸收近边结构等先进技术以及分子动力学模拟来表征生物冠的方法,展示了如何结合多种技术手段深入研究生物冠的结构和组成。这种综合方法的应用,不仅提高了数据的准确性和重复性,也为其他研究提供了可复制的实验流程。这种方法的标准化,有助于不同实验室之间的结果比较,促进了ENMs研究的全球合作和数据共享。此外,本文还指出了生物冠的制备和分析步骤在提高数据质量和可比性方面的关键作用。这为纳米材料在生物医学和农业领域的实际应用奠定了坚实的基础,使研究人员能够更准确地预测和评估ENMs的生物学和环境效应。总之,本文的研究为纳米材料领域的科学家提供了新的视角和工具,推动了ENMs应用的理论和实践进展,具有广泛的学术和实际意义。原文详情:Zhang, P., Cao, M., Chetwynd, A.J. et al. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01009-8
  • Nature Communications:AFM-IR研究铁电纳米晶极化所罗门环结构
    所罗门环是数学扭结理论中的一个重要拓扑结构,它由两个分量和四个交叉点组成。最近人们发现,这种拓扑结构可以通过化学和生物分子的自组织形成。本研究中来自北京理工大学和清华大学的学者首次在BiFeO3铁电纳米晶体中观察到了极化所罗门环,并且极化所罗门环和中心型四瓣畴之间的拓扑相变可以通过电场可逆调控。AFM-IR测量结果显示两种拓扑极性结构具有不同的太赫兹红外吸收行为,这一特征可以用于设计具有纳米级分辨率的红外显示器。相关成果以Polar Solomon rings in ferroelectric nanocrystals为题,发表在Nature Communications上。在本项研究中,作者采用了几种先进的理论和实验方法,包括压电力显微镜,相场模拟分析和纳米红外技术来验证BiFeO3纳米晶的拓扑结构,电场可逆调控和红外吸收特性。图1所示,采用压电力显微镜,作者在自组装BiFeO3纳米晶中观察到极化所罗门拓扑畴结构,该结构由两个三维涡旋环组成:R+ 4 ,R-3 ,R+ 2 ,R-1(蓝色环)和R- 4 ,R+ 3 ,R- 2,R+ 1(红色环);两个涡旋相互扭抱,在三维空间共有四个交点。通过相场模拟分析(图2),作者表征了极化所罗门环的拓扑特性。通过计算纳米岛各层中畴结构的三维极化分布,验证了纳米岛极化所罗门环的存在,并通过计算极化缠绕数验证其拓扑特性。进一步的测试表明,通过施加外部电场,BiFeO3铁电纳米晶体的畴可以在极化所罗门环和中心型四瓣畴之间可逆地转变(图3)。未施加偏压下,纳米晶的极化畴呈所罗门环结构;-4V偏压下,环形结构消失,出现中心型四瓣畴结构;施加2V翻转偏压后,中心型筹结构又转变为所罗门环结构;增加偏压至3V,所罗门环结构转变为中心收敛的筹结构;继续施加翻转偏压-2V后,又变回所罗门环结构。通过AFM-IR探索了极化所罗门环结构与中心型四瓣畴结构不同的太赫兹红外光吸收性能(图4)。AFM-IR光谱显示两种筹结构在1100cm-1处存在出宽的吸收带,对应O-Fe-O键的倍频信号。向上和向下的四元域对该波段吸收更强,所罗门环吸收较弱。1100cm-1处的AFM-IR成像也证实了具有不同拓扑结构的BiFeO3纳米晶体的相对吸收强度的差异。铁电纳米晶筹结构对红外光的吸收取决于极化方向与红外光偏振方向的相对角度,以及畴壁的体积分数。所罗门环和中心型筹结构与红外光平行或反平行,吸收都较强。但所罗门环的畴壁的体积分数更大,畴壁对红外波段不活跃,因此,在所罗门环中观察到的光吸收最弱。在进一步的实验中(图5),选择具有极化所罗门环的大面积BiFeO3纳米晶体阵列作为弱的红外光吸收基体,向纳米晶体交替施加电压以产生交替的中心型畴和所罗门环。高分辨率红外图像清楚的显示出交替的强吸收和弱吸收。证实了所罗门环和中心型畴之间的可逆相变。通过外加电场调控BiFeO3纳米晶阵列畴结构类型,在纳米红外吸收图像中显示出”BIT”字样。本研究在实验和计算上证实了极化所罗门环的存在和电学调控,AFM-IR验证了两种筹结构不同的光吸收响应,这种具有不同光吸收特性的新型可控拓扑极化结构,可能为红外显示器的设计铺平道路。
  • 爱尔兰科学家在纳米材料结构分析领域取得突破
    p   2017年7月底,《科学》杂志发表了爱尔兰圣三一大学牵头完成的一项研究成果:纳米铜膜表面不可能是平的。文章指出,构成铜表面的晶体颗粒不可能完美契合,相互之间有倾斜和角度变化,造成错位和表面粗糙。英国、美国科学家和英特尔公司的研究人员也参与了此项研究。 /p p   材料的电子、温度和机械等特性一般是由组成材料的晶粒的构成方式决定的。过去普遍认为这些晶粒象积木块一样组合起来,相互之间会有些隙缝。爱尔兰的研究人员重点研究了集成电路中广泛使用的纳米级金属铜,用扫描隧道显微镜测量其三维结构,包括相邻晶粒间的角度,发现晶粒间是有旋转角度的。因此,纳米膜的表面不可能是绝对平滑的。 /p p   这项研究将对纳米级材料的设计产生前所未有的影响。课题组找到了如何通过控制晶粒的旋转从而操控材料性能的方法。如,通过设计减少电阻,从而延长手机等移动终端的电池寿命。除消费类电子产品外,该项研究对医学植入和诊断等也有应用价值。 /p p /p
  • 爱尔兰科学家在纳米材料结构分析领域取得突破
    p   2017年7月底,《科学》杂志发表了爱尔兰圣三一大学牵头完成的一项研究成果:纳米铜膜表面不可能是平的。文章指出,构成铜表面的晶体颗粒不可能完美契合,相互之间有倾斜和角度变化,造成错位和表面粗糙。英国、美国科学家和英特尔公司的研究人员也参与了此项研究。 br/ /p p   材料的电子、温度和机械等特性一般是由组成材料的晶粒的构成方式决定的。过去普遍认为这些晶粒象积木块一样组合起来,相互之间会有些隙缝。爱尔兰的研究人员重点研究了集成电路中广泛使用的纳米级金属铜,用扫描隧道显微镜测量其三维结构,包括相邻晶粒间的角度,发现晶粒间是有旋转角度的。因此,纳米膜的表面不可能是绝对平滑的。 /p p   这项研究将对纳米级材料的设计产生前所未有的影响。课题组找到了如何通过控制晶粒的旋转从而操控材料性能的方法。如,通过设计减少电阻,从而延长手机等移动终端的电池寿命。除消费类电子产品外,该项研究对医学植入和诊断等也有应用价值。 /p p br/ /p
  • ETH Zurich Norris教授课题组:3D纳米直写技术助力任意形貌六方氮化硼(hBN)纳米3D结构的制备
    【引言】六方氮化硼(hBN)单晶纳米片的原子平滑表面,为光电应用领域带来了革 命性的突破。在纳米光学方面,hBN的强非线性、双曲线色散和单光子发射等特性,为相应的光学和量子光学器件带来一些有性能。在纳米电子学领域,良好的物理,化学稳定性和较宽的禁带,使hBN成为二维电子器件的关键材料。目前,对hBN的研究重点局限于二维扁平结构,尚未涉其3D立体结构对性能的影响。如果能根据需求对hBN纳米片的高度做出相应调整,将为下一代光电器件中调节光子流,电子流和激子流等性能提供一个有效的方法。 【成果简介】近日,Norris教授课题组利用3D纳米直写技术和反应离子刻蚀的方法制备出可任意调控形貌的hBN纳米3D结构。此类hBN纳米3D结构在光电子器件研究领域尚属次。得意于3D纳米结构高速直写机(NanoFrazor)在光刻胶上能实现亚纳米精度的加工,Norris教授课题组运用该方法制备了光电子学相板、光栅耦合器和透镜等元件。获得的元件通过后续组装过程制备成高稳定、高质量的光学微腔结构。随后,通过缩小图形长度比例的方法,引入电子傅里叶曲面,在hBN上实现复杂的高精度微纳结构,展现了NanoFrazor在3D纳米加工领域的潜力。【图文导读】图1. 使用NanoFrazor制备hBN纳米3D结构流程图(a)左图为利用NanoFrazor在光刻胶表面上实现3D结构制备,右图为通过反应离子刻蚀方法将光刻胶上的3D结构转移到hBN的流程;(b)Mandelbrot分形图案刻蚀在光刻胶上的结果。黑色代表图形的 高处,白色为 低处;(c)光刻胶上的Mandelbrot分形图案通过图(a)中的过程转移到hBN上的结果;(d)图(c)中hBN的SEM(倾转30o)表征结果。图2. 利用NanoFrazor在hBN上制备任意形貌的纳米3D结构(a)白色中线左侧为准备的高密度图形样图,右侧为通过NanoFrazor将高密度图形转移到hBN后的实际结果;(b)将图(a)中的图形转移到hBN后的SEM表征结果;(c)AFM测量图(a)中红色虚直线所示部分的表面形貌;(d)hBN纳米3D结构的高分辨成像,左下角厚度为95 nm,右上角厚度为50 nm;(e)AFM测量hBN中高密度方形结构(29 nm)周期性图样结果,体现了NanoFrazor对制备结构的高度可控性;右上角插图是该周期性结构的快速傅里叶变换(FFT)结果。 图3. 利用NanoFrazor制备的hBN光学微纳元件(a)在130 nm厚hBN上制备螺旋相位板阵列的光学表征结果;(b)单个螺旋相位板的AFM结果;(c)具有球形轮廓的hBN微透镜光学显微照片;(d)微透镜理论图样(左侧)和实际制备结果(右侧)比较;(e)光学微腔的示意图,镜、底镜、hBN微透镜(蓝色)和带横向限制(黑色箭头)的腔模式(红色);(f)拥有hBN微透镜的微腔角分辨光谱结果;(g)根据制备的微腔几何结构所计算的横向Ince-Gaussian模分布结果;(h)测量的横向Ince-Gaussian分布结果。图4. hBN上制备的电子傅里叶曲面(a)具有六边形晶格的电子傅里叶曲面位图;(d)将两个六边形晶格与一个在平面上旋转10°的晶格叠加而成的位图;(g)两个叠加的六边形晶格的位图,周期分别为55和47 nm,无平面内旋转;(j)将九个位图分别在平面内旋转0、20、40、60、80、100、120、140和160°后的叠加效果;(b)、(e)、(h)、(k)为使用NanoFrazor在光刻胶上制备(a)、(d)、(g)、(j)中图形时所获得的结果;(c)、(f)、(i)、(l)、是把(b)、(e)、(h)、(k)中的图案刻蚀在hBN上的AFM测量结果;(a)-(l)中的插图代表着相应图案的FFT结果。【小结】本文利用NanoFrazor有的3D纳米直写技术在hBN上实现了复杂高精度纳米3D结构的制备,为光电器件性能的应变调控和能带结构调控带来了新的研究方向。这一研究结果表明,NanoFrazor在开拓双曲线超材料、化电子、扭转电子、量子材料和深紫外光电器件等领域新的研究方向上有着重要的作用。
  • 2021年全国纳标委低维纳米结构与性能工作组年会及委员扩大会议成功召开
    2021年10月9日,在2021年第四届低维材料应用与标准研讨会(LDMAS2021)期间,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(以下简称“工作组”)2021年会及委员扩大会议成功召开。会议对工作组2021年重要工作进行了总结,并就相关国际标准、国家标准的申报和起草等事项展开讨论。工作组主任、南京大学教授王欣然主持会议工作组秘书长梁铮汇报2021年工作组年报低维材料应用与标准研讨会(Symposium on Low-Dimensional Material Application and Standardization, LDMAS)是由工作组发起的全国性学术会议,每年举办一届。LDMAS2021重点关注纳米能源与催化材料等低维材料以及低维半导体电子/光电子器件等领域的研究、应用及标准化,旨在为相关领域的专家学者及企业家交流最新研究成果、探讨产业发展方向提供平台。2021年,工作组重点开展了4项标准的起草工作,并计划新增4项国家标准的立项申请;组织召开线上、线下标准编制讨论会,走访低维纳米材料相关企业;参加其他标准化活动,互相交流。工作组副主任丁荣宣读工作组章程修改说明随即,《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》国家标准项目启动,并由中国科学院半导体研究所所长谭平恒介绍项目整体情况和工作计划。谭平恒介绍《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》国家标准项目情况《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》(计划号20212960-T-491)国标由中国科学院半导体研究所起草。二硫化钼是二维层状材料中过渡金属硫化物的代表性材料,具有优异的电学、光学、力学、热学、润滑、催化等性能,以及半导体或超导性质,应用前景及其广阔。然而,二硫化钼薄片的物理和化学性质会随着其层数或厚度的改变而改变,其层数将显著影响光学和电学等性能,因此,二硫化钼薄片层数是其商业产品的重要指标参数研究表明,拉曼光谱法是一种表征二硫化钼薄片层数的简单、可行、高效、无损的方法。谭平恒所长详细介绍了本项目的先进性、创新性,以及标准编制的工作计划安排。该标准的发布实施将为生产企业提供二硫化钼薄片层数表征的质检控制标准,规范行业,有效筛除不合格产品;为科研院所和高校进行二硫化钼薄片基础科学研究提供保障,推动其持续、健康、有序发展;可拓展到其他二维半导体材料等产品;引领国际标准,在国际竞争中占据制高点。工作组副秘书长吕俊鹏介绍三项国际标准研究解读与转化目前,《纳米技术 纳米尺度薄膜厚度评估 椭圆偏振技术应用指南》(项目号:IEC/TR 63258:2021)、《纳米技术 石墨烯及相关二维材料的特性及测量方法矩阵》(项目号:ISO/TR 19733:2019)、《纳米技术 石墨烯结构表征 第1部分:石墨烯粉末及分散》(项目号:IS0/TS 21356-1:2021)三项国际标准在国内无相关标准,为填补国内空白,进一步提升工作组在低维材料领域的话语权,工作组将对上述标准进行采标与转化。工作组部分委员合影
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew.Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 全国纳标委低维纳米结构与性能工作组2020年会暨标准化论坛成功召开
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 2020年12月7日,在下一代电子信息材料与器件高峰论坛暨第三届低维材料应用与标准研讨会(LDMAS2020)期间,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(以下简称“低维工作组”)年会及委员扩大会议在无锡成功召开。会议对低维工作组2020年重要工作进行了总结,并公开广泛征集新立项国家标准编制工作组成员;会议结束后随即举办标准化论坛。来自国家纳米科学中心的全国纳标委副主任葛广路、秘书长王孝平等领导出席了本次活动。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/0fb2e880-1799-4614-8cf4-a9789ddeaacb.jpg" title=" 会议.JPG" alt=" 会议.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 会议现场& nbsp /strong /p p style=" line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/dd1043ca-c873-4d9c-ac96-d317960f8426.jpg" title=" 葛广路.JPG" alt=" 葛广路.JPG" / /strong /p p style=" text-align: center line-height: 1.5em " strong 全国纳标委副主任、国家纳米科学中心研究员葛广路 /strong /p p style=" text-align: left margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 会议由低维工作组主任、南京大学教授王欣然主持。葛广路简要介绍了国际标准化工作,低维工作组秘书处汇报了工作组2020年工作总结及2021年工作计划。 /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 今年,低维工作组筹划举办了2020年低维材料应用与标准研讨会,该系列研讨会(Symposium on Low-Dimensional Material Application and Standardization, LDMAS)是由低维工作组发起的全国性学术会议,始于2018年,目前已成功举办三届, LDMAS2018在江苏南京召开,LDMAS2019在陕西西安召开,LDMAS2020近日在江苏无锡召开。此外,在2020年,低维工作组有3项国家标准项目计划通过审批,组织申报IEC标准项目2项。& nbsp /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 自低维工作组成立以来,一直面向社会各界征集热衷于从事低维纳米技术标准化的专家学者。为进一步加强低维工作组的技术力量和专业覆盖面,增强工作组影响力,本年度增补工作组委员6位,副主任委员2位,副秘书长1位,单位成员4家,以及通讯成员7位。同时,为更好地了解国内低维纳米技术的研究及发展情况,工作组秘书处特走访了部分拟计划增补的工作组委员单位和单位成员单位,并积极参与多个其他标准化活动,与同行互相交流学习。 /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 展望2021年,低维工作组将积极开展各类标准的申报及编制工作,加强标准化项目的征集,继续办好LDMAS系列会议以形成行业特色,组织举办各类标准化活动,并加强工作组工作成果宣传,进一步吸纳更多企业及个人加入工作组。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/feb0e489-3b33-4b41-a498-a90ac6e319a9.jpg" title=" 王孝平.JPG" alt=" 王孝平.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 全国纳标委秘书长、国家纳米科学中心王研究员王孝平 /strong /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 王孝平介绍了低维工作组2020年新立项的3项国家标准,包括《20202906-T-491 纳米技术& nbsp 小尺寸纳米结构薄膜拉伸性能测定方法》,《20202801-T-491 纳米技术& nbsp 亚纳米厚度石墨烯薄膜载流子迁移率及方块电阻测量方法》,《20204113-T-491 纳米技术& nbsp 拉曼法测定石墨烯中缺陷含量》,并欢迎相关单位及专家加入以上国家标准编制工作组,共同参与完成标准制定工作。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/912292e9-8ca5-4907-8fb9-a17a5598c033.jpg" title=" 丁荣.JPG" alt=" 丁荣.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 全国纳标委低维工作组副主任、泰州巨纳新能源有限公司董事长丁荣 /strong /p p style=" text-align: left margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 最后,低维工作组副主任丁荣介绍了工作组成员增补的具体情况,其中,增补中科院半导体所研谭平恒研究员、东南大学孙立涛教授为副主任委员,东南大学教授吕俊鹏为副秘书长。葛广路、王欣然与丁荣共同为与会的新成员代表颁发证书。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/8ae6ac7e-3dc6-4491-9cb3-45999912a18d.jpg" title=" 低维聘书.JPG" alt=" 低维聘书.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 自左至右:丁荣,王欣然,谭平恒,吕俊鹏,葛广路 /strong /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/41d8fffb-af21-4771-bac9-6a495933f2df.jpg" title=" 会员.JPG" alt=" 会员.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 低维工作组新成员单位 /strong /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 低维工作组年会及委员扩大会议结束后,全国纳标委秘书处高洁、中科院微系统所王浩敏、武汉大学高恩来、Wiley出版集团蒋方圆、东南大学于远方带来精彩主题报告。 br/ /p p style=" margin-top: 15px line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3fc63dd0-7320-4c0a-8d4b-1131f169addc.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center margin-top: 10px line-height: normal " strong 报告人:全国纳标委秘书处 高洁 /strong /p p style=" text-align: center line-height: normal margin-top: 5px " strong 报告题目:全国纳米技术标准化委员会(SAC/TC279)情况简介及标准制修订 /strong /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 全国纳标委成立于2005年4月,主要负责纳米技术领域的基础性国家标准制修订工作,旨在通过标准促进产学研结合,助推企业发展。为保证标准质量,推进标准项目按期完成,纳标委对标准项目进行全过程管理,2020年组织了48项标准的征求意见、预审查、审查、投票、报批及颁布。此外,纳标委还组织了国家标准外文版翻译项目;与国内相关标委会深入沟通合作,建立了紧密联系;并从10个重要考核指标出发,反思总结其整体工作;积极参与ISO/TC229、IEC/TC113标准化活动。报告中,高洁还对纳标委的立项推荐要点与立项评估程序,以及国家标准的制定流程做了详细介绍。 /p p style=" margin-top: 5px line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/c8e80801-6988-42a2-9144-869499db2900.jpg" title=" 2.JPG" alt=" 2.JPG" / /strong /p p style=" margin-top: 5px text-align: center line-height: normal " strong 报告人:中科院微系统所 王浩敏 /strong /p p style=" margin-top: 5px text-align: center line-height: normal " strong 报告题目:石墨烯薄膜载流子迁移率及方块电阻测量方法 /strong /p p style=" margin-top: 5px line-height: normal " strong /strong /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 石墨烯具有极高的载流子迁移率,在电子学领域具有重要的应用前景。目前,制备石墨烯薄膜的方法众多,电学特性测量方法各异,造成产品性能难以比对,限制了该材料的推广和应用。霍尔测量方法具有结果精准,因而受到广大研究人员的认可,但该测量方法在产业界却没有形成统一的标准和规范操作。王浩敏在报告中,提出了一种能够广泛适用的石墨烯电学特性的测量方法,拟与产业界达成共识,形成国家与国际标准。 /p p style=" margin-top: 5px line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/d484bba4-5141-4584-9f24-e173714e88cb.jpg" title=" 3.jpg" alt=" 3.jpg" / /strong /p p style=" margin-top: 5px text-align: center line-height: normal " strong 报告人:武汉大学 高恩来 /strong /p p style=" margin-top: 5px text-align: center line-height: normal " strong 报告题目:小尺寸纳米结构薄膜拉伸性能测定方法 /strong /p p style=" margin-top: 15px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 纳米结构薄膜如石墨烯、碳纳米管薄膜等,具有优异的力学性能(强度可达~1-10GPa) , 且在导电、导热、过滤分离等领域有多功能应用。拉伸性能是纳米结构薄膜质量控制和应用开发的核心指标,其准确表征和测量是纳米结构薄膜材料研究、开发和应用的基础。现有的测试纳米结构薄膜力学性能的方法中,所用的测试样品(形状、尺寸)和方式(固定、加载)各异,测试过程具有夹持效应、尺寸效应和应变率效应。因此,测试方法不规范,缺乏相关国际、国家与行业标准。高恩来在报告中,提出了一种规范小尺寸纳米结构薄膜的刚度、强度、韧性等力学性能的测量方法,填补了此领域的空白。 /p p style=" margin-top: 5px line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1ed453d8-708f-45b8-bfe3-9911fa2fa18a.jpg" title=" 4.jpg" alt=" 4.jpg" / /strong /p p style=" margin-top: 5px text-align: center line-height: normal " strong 报告人:东南大学 于远方 /strong /p p style=" margin-top: 5px text-align: center line-height: normal " strong 报告题目: /strong strong NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS – Graphene – Measuring layer-number distribution of CVD graphene by& nbsp optical contrast method /strong /p p style=" margin-top: 5px line-height: normal " strong /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 通过化学气相沉积法(CVD)制备的大面积石墨烯在科研和工业方面具有广阔的应用前景。在生长过程中, CVD 石墨烯样品上出现的多层晶畴会导致额外的散射来源,严重降低载流子迁移率,影响样品的光学特性。因此,准确表征层数分布情况是研究、开发和应用 CVD 石墨烯的关键。光学对比度法是一种快速、无损且精确的表征手段,但在利用光学对比度法表征层数分布时,显微镜的光场分布、硅衬底表面氧化层厚度和物镜的数值孔径等因素都会影响测量结果;因而,在产业迸发前期,亟待进行 CVD 石墨烯层数分布率测定方法的标准化。 /p p style=" margin-top: 5px line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e32f7819-30e7-4b0d-8db5-1f16c9da318a.jpg" title=" 5.jpg" alt=" 5.jpg" / /strong /p p style=" margin-top: 5px line-height: 1.5em " strong /strong /p p style=" text-align: center line-height: normal " strong 报告题目:审稿标准化:如何做一名优秀的审稿人 /strong /p p style=" text-align: center line-height: normal " strong 报告人:Wiley 出版集团蒋方圆 /strong /p p style=" line-height: normal margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 审稿人的工作不仅对论文本身,同时也对该专业领域和整个科学界做出了贡献。期刊希望审稿人能给出及时、客观、专业的评审意见,在帮助期刊筛选合适的发表稿件的同时,又能助力被评审的研究工作锦上添花。本报告从专业编辑的角度,对审稿人的评审流程、评审注意事项等方面作了相关介绍和探讨。 /p p style=" line-height: normal margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 为了激励及培养年轻科研人员的工作热情,大会特设立研究生论坛,优选出12位研究生代表分别作各自研究领域的学术报告。大会共评选出5项优秀研究生报告奖,低维工作组副主任、东南大学物理学院院长倪振华,东南大学材料学院副院长陶立,江南大学教授肖少庆为获奖的研究生颁奖。 /p p style=" line-height: normal margin-top: 15px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/36e7bc47-5f98-490a-afa4-9ce9077c2cce.jpg" title=" 刚刚.jpg" alt=" 刚刚.jpg" / /p p style=" line-height: normal margin-top: 15px text-align: center " strong 研究生报告掠影 /strong /p p style=" margin-top: 15px line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/9ff359c2-b877-4a99-92af-e0c20754e025.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" margin-top: 15px line-height: 1.5em text-align: center " strong 优秀研究生报告奖 /strong /p p style=" line-height: 1.5em margin-top: 25px " 更多LDMAS2020精彩内容,详见: /p p style=" margin: 0px padding: 0px color: rgb(34, 34, 34) font-family: 微软雅黑 font-size: 24px white-space: normal line-height: 1.5em " a href=" https://www.instrument.com.cn/news/20201206/566823.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong span style=" color: rgb(0, 112, 192) font-family: arial, helvetica, sans-serif font-size: 16px " 12位院士领衔 下一代电子信息材料与器件高峰论坛暨LDMAS2020盛大开幕 /span /strong /span /a /p p style=" margin: 0px padding: 0px color: rgb(34, 34, 34) font-family: 微软雅黑 font-size: 24px white-space: normal line-height: 1.5em " a href=" https://www.instrument.com.cn/news/20201207/566956.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong span style=" color: rgb(0, 112, 192) font-family: arial, helvetica, sans-serif font-size: 16px " LDMA2020盛会来袭!聚焦大会首日精彩报告 /span /strong /span /a /p p style=" margin: 0px padding: 0px color: rgb(34, 34, 34) font-family: 微软雅黑 font-size: 24px white-space: normal line-height: 1.5em " a href=" https://www.instrument.com.cn/news/20201207/566955.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong span style=" color: rgb(0, 112, 192) font-family: arial, helvetica, sans-serif font-size: 16px " 低维材料与器件盛会LDMAS2020圆满闭幕 2021相约北京 /span /strong /span /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制