当前位置: 仪器信息网 > 行业主题 > >

纳米成分

仪器信息网纳米成分专题为您整合纳米成分相关的最新文章,在纳米成分专题,您不仅可以免费浏览纳米成分的资讯, 同时您还可以浏览纳米成分的相关资料、解决方案,参与社区纳米成分话题讨论。

纳米成分相关的论坛

  • 欧洲食品纳米成分标记将写入立法

    欧洲食品纳米成分标记将写入立法来源: WTO检验检疫信息网 时间:2011-06-29 6 月25 日消息,欧洲议会上周通过一条有关食品标签纳米材料成分标记的临时协定。条约要求所有以纳米材料形式存在的食品成分必须清楚列入产品成分之内,并在材料前加标记号。 这条欧盟成员国协议将 engineered nanomaterial (纳米材料)定义为: “任何有意生产的一边或多变维度尺寸在 100纳米左右的物质,或由离散的功能部件组成,不论内部还是表面离散,具有约 100 纳米的一边或多变维度尺寸,包括100纳米尺寸以上但保留纳米级特征属性的的结构、团聚体或聚集物。 ” 协议认定,纳米级特征属性包含以下两种情况: • 涉及特定大表面积材料的属性 • 特定理化属性,有别于非纳米形式的相同材料 该协议将在 7 月通过欧洲议会全体会议投票表决,并在随后正式通过欧盟成员国同意。如果该临时协议最后通过立法,食品生产企业可获得 3 年缓冲期时间以适应新法。

  • 欧洲食品纳米成分标记将写入立法

    欧洲食品纳米成分标记将写入立法来源: WTO 检验检疫信息网 时间:2011-06-296 月25 日消息,欧洲议会上周通过一条有关食品标签纳米材料成分标记的临时协定。条约要求所有以纳米材料形式存在的食品成分必须清楚列入产品成分之内,并在材料前加标记号。这条欧盟成员国协议将engineered nanomaterial (纳米材料)定义为:“任何有意生产的一边或多变维度尺寸在100纳米左右的物质,或由离散的功能部件组成,不论内部还是表面离散,具有约100 纳米的一边或多变维度尺寸,包括100 纳米尺寸以上但保留纳米级特征属性的的结构、团聚体或聚集物。”协议认定,纳米级特征属性包含以下两种情况:• 涉及特定大表面积材料的属性• 特定理化属性,有别于非纳米形式的相同材料该协议将在7 月通过欧洲议会全体会议投票表决,并在随后正式通过欧盟成员国同意。如果该临时协议最后通过立法,食品生产企业可获得3 年缓冲期时间以适应新法。

  • 【分享】欧洲食品纳米成分标记将写入立法

    6月25日消息,欧洲议会上周通过一条有关食品标签纳米材料成分标记的临时协定。条约要求所有以纳米材料形式存在的食品成分必须清楚列入产品成分之内,并在材料前加标记号。这条欧盟成员国协议将engineered nanomaterial (纳米材料)定义为:“任何有意生产的一边或多变维度尺寸在100纳米左右的物质,或由离散的功能部件组成,不论内部还是表面离散,具有约100纳米的一边或多变维度尺寸,包括100纳米尺寸以上但保留纳米级特征属性的的结构、团聚体或聚集物。”协议认定,纳米级特征属性包含以下两种情况:• 涉及特定大表面积材料的属性• 特定理化属性,有别于非纳米形式的相同材料该协议将在7月通过欧洲议会全体会议投票表决,并在随后正式通过欧盟成员国同意。如果该临时协议最后通过立法,食品生产企业可获得3年缓冲期时间以适应新法。

  • 【求助】想做纳米颗粒的成分分析

    用EDS做过宏观整体的成分测试,但听测试老师说也只能做一个定性的有无的判断,不能定量分析现在想进一步获得元素在纳米颗粒中的分布情况,比如是在集中聚集在核还是富集在表面,纳米球的尺寸从几纳米到30纳米不等,不知道有没有办法进行这样的分析,比如自己查到得基于EELS的能量过滤系统可以进行类似的线扫面对元素分布进行成像?纳米球的主要元素有F还有Pb等大于40号的重金属元素,不知道能不能实现。特此请教,希望大家帮忙解答

  • 【求助】请教各位,有没有人知道用什么仪器可以测定纳米粒子的成分!

    【求助】请教各位,有没有人知道用什么仪器可以测定纳米粒子的成分!

    实验中发现样品表面附着有很多纳米粒子,粒径大概在10-30纳米左右,能谱测定区域太大,成分不准确,高分辨俄歇也做过,好象也没有做出它和周围区域成分上的差别来,请教各位,有没有人做过这方面的东西,能不能给点意见!万分感谢了![color=red]【由于该附件或图片违规,已被版主删除】[/color][img]http://ng1.17img.cn/bbsfiles/images/2007/06/200706282342_56649_1472541_3.jpg[/img]

  • 关于纳米中草药

    纳米中草药是指运用纳米技术制造的、粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂,具有增加药物对血脑屏障或生物膜的穿透性等特点。纳米中草药技术(nanotechnology)是指在纳米尺度下对物质进行制备、研究和工业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性的技术体系。纳米技术作为高新技术,可广泛应用于材料学、电子学、生物学、医药学、显微学等多个领域,并起着重要的作用。 一、纳米中草药的特点 1、原药纳米化后呈现新的药效或增强原有疗效中药被制成粒径0.1~100 nm大小,其物理、化学、生物学特性可能发生深刻的变化,使活性增强和产生新的药效。如灵芝通过纳米级处理,可将孢子破壁,并采用超临界流体萃取技术萃取出灵芝孢子的脂质活性物质,从而增强抗肿瘤的功效。 2、改善难溶性药物的口服吸收。在表面活性剂、水等存在下,直接将药物粉碎成纳米混悬剂,增加了药物溶解度,适于口服、注射等途径给药,以提高生物利用度。 3、增加药物对血脑屏障或生物膜的穿透性。纳米粒能够穿透大粒子难以进入的器官组织、血脑屏障及生物膜。如阿霉素α聚氰基丙烯酸正丁酯纳米粒(NADM)可以改变阿霉素的体内分布特征,对肝、脾表现出明显的靶向性,而血、心、肺、肾中的药物分布则减少。 4、靶向作用。在研究中发现,一味普通的中药牛黄,加工到纳米级水平后,其理化性质和疗效会发生惊人的变化,甚至可以治疗某些疑难杂症,并具有极强的靶向作用。 5、使药物达到缓释、控释。借助高分子纳米粒作载体等技术手段,可实现药物的缓释、控释。如雷公藤乙酸乙酯提取物固体纳米脂质粒有良好的缓释、控释功能。二、纳米中草药的制备技术及其进展 纳米中药的制备是研究纳米中药最基础的,也是最重要的问题。将纳米技术引入中药的研究,必须考虑中药组方的多样性、成分的复杂性,例如中药单味药可分为矿物质、植类药、动物药和菌物药等,中药的有效部位和有效成分又包括无机化合物和有机化合物、水溶性成分和脂溶性成分等,因此,针对不同的药物,在进行纳米化时必须采用不同的技术路线。此外,还必需考虑中药的剂型。纳米中药与中药新制剂关系十分密切,如何在中医理论的指导下进行纳米中药新制剂的研究,将中药制成高效、速效、长效、剂量小、低毒、服用方便的现代化制剂,也是进行中药纳米化所必须考虑的问题。纳米中药是针对中药的有效成分或有效部位进行纳米技术加工处理,开发中药的新功效。聚合物纳米粒可作为药物纳米粒子和药物纳米载体。药物纳米载体系指溶解或分散有药物的各种纳米粒,药物纳米载体包括纳米脂质体、固体脂质纳米粒以及纳米囊和纳米球。而对于不同类型的纳米中药,有不同的制备方法。三、纳米中草药的加工方法。 1、纳米超微化技术是改进某些药物的难溶性或保护某些药物的特殊活性,适用于不宜工业化提取的某些中药。如矿物药、贵重药、有毒中药、有效成分易受湿热破坏的药物、有效成分不明的药物。目前比较常用的是超微粉碎技术。所谓超微粉碎是指利用机械或流体动力的途径将物质颗粒粉碎至粒径小于10 μm的过程。根据破坏物质分子间内聚力的方式不同,目前的超微粉碎设备可分为机械粉碎机、气流粉碎机、超声波粉碎机。 2、机械粉碎法是利用机械力的作用来实现粉碎目的。边可君等采用自主开发的温度可控(-30~-50℃)的惰性气氛高能球磨装置系统制备纳米石决明。将石决明置于配有深冷外套的惰性气氛球磨罐中,同时装入磨球,磨球与石决明粉比保持在15:1~5:1范围,控制高能球磨机的转速(200~400 r/min)和时间(2~60 h),获得了平均粒度不大于100 nm的石决明粉末。 3、气流粉碎法是以压缩空气或过热蒸汽通过喷嘴产生的超音速高湍流气流作用为颗粒的载体。颗粒与颗粒之间或颗粒与固定板之间发生冲击性挤压、摩擦和剪切等作用,从而达到粉碎的目的。与普通机械冲击式超微粉碎机相比,气流粉碎产品粉碎更细,粒度分布范围更窄。同时气体在喷嘴处膨胀降温,粉碎过程中不会产生很大的热量。所以粉碎温升很低。这一特性对于低融点和热敏性物料的超微粉碎特别重要。 备注: 纳米中草药的常用方法较为普遍的有两种:一是喷雾干燥法,二是高能球磨法。   中药纳米超微化技术既丰富了传统的炮制方法,又能为中药的生产和应用带来新的活力。纳米产品目前已成为中药行业新的经济增长点。将这项技术应用于中药行业可以开发具有更好疗效、更优品种的纳米中药新产品。这将对中药行业的发展带来深远的理论和现实。

  • 【转帖】研究提出金属纳米线制备新方法

    金属纳米线具有优异的电、光、磁与热学性能,在微电子、光电子、催化与传感器等领域具有诱人的应用前景。目前,基于多孔模板合成金属纳米线的实验室方法主要有电沉积法与无电沉积法。然而,这两种方法都有其不可克服的缺点。前者在制备过程中需要消耗电能 后者在合成过程中必须添加有机表面活性剂或需要对模板的孔壁进行敏化与活化处理,不仅实验过程复杂繁琐,而且会造成一定的环境污染。  最近,中国科学院固体物理研究所许巧玲博士发明了一种简单、经济、绿色、普适的金属纳米线制备方法,实现了单一金属纳米线的成分、异质纳米线的段数与成分以及纳米线形貌的可控生长。该方法既不需要使用电源,又不需要添加任何有机表面活性剂,也不需要对模板孔壁进行复杂的敏化与活化处理,而只需将一面蒸金、周围带铝的阳极氧化铝模板浸泡在金属氯化物的水溶液中,借助原电池原理,便可在氧化铝模板的纳米孔道里形成相应金属的纳米线。  采用该方法,获得了多种具有不同成分或结构的金属纳米线,包括金属单质纳米线(如Au、Pt、Pd、Cu、Ni与Co纳米线)、金属合金纳米线(如AuPt合金纳米线)、由具有不同性能的金属或合金组成的纳米线异质结(如两段的Au-Ni与三段的Au-Ni-Au纳米线异质结等)以及分支形貌的金属型纳米线(如Y分支形)。这些成分与形貌可控的金属纳米线在纳米科技的许多方面具有广泛的应用前景。这种方法可以进一步开发与拓宽,用于大批量合成人们所需要的各种金属型纳米线。相关研究结果申请了中国发明专利,撰写的论文发表在材料化学领域重要期刊《材料化学》(Chem.Mater)(21,2397–2402,2009)上。  该工作得到国家科技部“纳米研究”重大科学研究计划(No.2007CB936601)、国家自然科学基金杰出青年基金(No.50525207)和中科院百人计划资助。(来源:中国科学院固体物理研究所)

  • 【求助】纳米线阵列是否可以用XPS分析?

    在基底上沉积的膜(10几纳米左右,有孔洞)+纳米线阵列(1微米左右),想分析纳米线的成分,可否用xps?xps能够反映表面以内多深的信息?基底的信息会造成干扰么?膜呢?菜鸟一只,不要见笑。

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][size=16px]基于此,仪器信息网[/size][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

  • 【分享】《中医处方临床纳米技术运用的安全性思考》之一

    [b]《中医处方临床纳米技术运用的安全性思考》之一[/b][size=2]从纳米机器人到纳米护肤霜,纳米服装全球目前已有300多种号称纳米技术的产品上市了,纳米技术真正地、真实地步入人们的生活圈,人们对纳米材料可能潜在的安全性问题都一直心有余悸,第243次香山科学会议上,40多名来自纳米科学生物化学、医学物理环境等多个领域的专家一致呼吁加强纳米材料和纳米技术的生特环境安全性研究,著名的纳米科学专家白春礼院士提出任何技术都有两面性的,纳米技术也可能同样是把双刃剑,美国的《科学此刻》、《自然》杂志对纳米安全性发出预警,报告提出游离的纳米颗和纳米管可能会穿透细胞产生毒性,对于人类的生态环境,纳米科技可能是柄双刃剑。纳米是一个长度计量单位,是1米的10亿分之一,大约上10个原子并列的宽度,纳米科技就是一门以0.1-100纳米这样的尺寸为研究的前沿科学,它以空前的分辨率为人类揭示了一个可观的分子世界,它是一种单个原子、分子制造物质的基础,当物质颗粒少到纳米量级后,这种材料被称作纳米材料,纳米也表出常规出品料材料所不具备差异特性和反常性,比如后来特质不具有的性能,小颗粒具备了,不导电的物质导电了,不发光的物质发光了,原本不具有的磁性具有磁性了,变化多端与神奇惊人,难以置信。从生物细胞学角度来谈,波导的生物在细胞核生物膜内就存在着纳米级结构,所谓的细胞纳米技术就是指0.1-100纳米的宽度内研究中子、原子和分子内的运动规律和特性的,具时代意义和颠覆性的崭新技术,人们从微电子等在内的微米技术到纳米技术,人们从微电子等在内的微米技术到纳米技术,人类真越来越向微观世界深入。美国、日本、英国等发达国家都对纳米技术给予高度重视,其研究结果使各行各业进入了一个跨世纪的飞跃,如在纳米电子器件的功耗上为矽器件的1/1000,在信息存储上一张不足巴掌大的5英光盘上,至少可以存储30个北京图书馆的全部藏书,还有可能预防伤风和流感,而且永运不用洗的服装,但任何科学都有他的两性,纳米技术同样端倪出它双刃剑的锋利。事实上针对纳米技术安全性的争议一直没有停止过,纳米材料的显著特点就是尺寸微小,这些材料会扩散沉积,这种作用过程对人体健康到底会产生什么样的后果,目前还没权威定论,许多研究表明纳米颗粒大小比表面积可能性和现面化学性能及电复性,单体混合体等因素,均能决定纳料材料是否有潜在危害,如当每立方米空气中直径2.5身米以下的颗粒污染的含量上升10微克。肺癌的死亡升就上升8%,在直径20纳米聚氟乙稀的空气中待一分钟,大多数实验鼠在随后的四小时内死亡,而另一组大鼠暴露在直径为120纳米颗粒的空气中则安然无恙。将纳米技术引入中药领域一定要考虑药组方的多样性,中药成份的复杂性、纳米颗粒级别的重要性,纳米中药不是简单地交吉药材料进行粉碎至纳米别,而是针对组成中药剂的合理的君臣作使有效配伍,成分进行纳米级的技术处理,赋予传统中药以新功能将中药制成高效、速效、长效、剂量小、毒性低、服用方便、稳定性好的现代制剂。[/size]

  • 【金秋计划】葛根芩连汤成分间自组装纳米粒改善伊立替康所致肠毒性作用研究

    中药汤剂是中医临床用药的重要形式,由于中药成分复杂多样,化学成分存在游离态、结合态、络合态等多种化学结构形态,因此,汤液常包含了真溶液、胶体溶液、混悬液等多种相态分散体系。现代对中药汤剂质量的研究大多集中于汤液中化学成分的种类和含量,但中药成分在煎煮过程中极易发生相互作用,成分间产生范德华力、氢键、静电作用、π-π堆积等物理相互作用,或美拉德反应、氧化反应、水解反应等化学反应[1],从而形成成分聚集体,影响汤液中中药成分的形态和含量。近年来,研究者发现中药汤剂中普遍存在纳米级颗粒[2],尤其是中药成分在煎煮过程经非共价键作用力自组装形成的颗粒、凝胶、纤维等聚集体,常表现出抗炎、镇痛、抗菌等生物活性[3]。如完茂林等[4]研究发现,22种中草药水煎液中均存在大量纳米级颗粒;Zhang等[5]研究发现黄连解毒汤(Huanglian Jiedu Decoction,HJD)中产生的聚集物主要由黄芩苷和小檗碱相互作用形成;Li等[6]证实了小檗碱可分别与黄芩苷、汉黄芩苷通过静电作用和疏水作用共同驱动自组装成纳米粒;Tian等[7]发现通过大黄酸氢键分层、小檗碱π-π堆积与静电相互作用,形成小檗碱在内、大黄酸在外的核-壳纳米结构。除此之外,有研究者证实HJD水煎中化学成分结合而产生的聚集物具有确切的抗神经细胞损伤和抑制神经细胞凋亡的作用,且聚集物的效果优于上清液[5];葛根芩连汤(Gegen Qinlian Decoction,GQD)的组成性聚集物比可溶性成分具有更强的降血糖和抗氧化活性[8]。关于中药汤剂成分互作形成纳米聚集体与其药效作用具有相关性,有待于进一步深入探索。 GQD出自东汉张仲景所著的《伤寒杂病论》,该方由君药葛根、臣药黄连、黄芩,佐使药甘草组成[9],主要包括黄酮类、生物碱类、三萜类及三萜皂苷类等成分。GQD临床常用于治疗急性肠炎、细菌性痢疾、肠伤寒、胃肠型感冒等属表证未解,里热甚者,现代研究发现其具有解热抗菌、抗炎止泻、降糖调脂、抗心律失常、抗缺氧和增强免疫功能等药理作用[10-11]。抗肿瘤药物伊立替康(CPT-11)[12]临床应用过程常引起患者严重肠毒性,即迟发性腹泻,导致病人产生脱水、营养不良、电解质失衡、感染等症状,进而可能导致肾功能障碍、心脏疾病或免疫破坏,甚至死亡。目前,临床常用洛派丁胺、醋托啡烷、布地奈德等药物缓解腹泻[12-14],但效果并不理想。课题组前期研究证实,GQD可显著缓解CPT-11所致的迟发性腹泻,通过降低小鼠腹泻发生率和死亡率,减轻小鼠肠道损伤,抑制炎症因子及降低肠道酶活性等来发挥减毒作用[15-16],但其药效物质基础及作用方式有待于深入研究。 基于中药汤剂中广泛存在成分间相互作用形成聚集体,本研究拟选用源自GQD的6种有效成分(小檗碱、巴马汀、汉黄芩苷、黄芩苷、葛根素、甘草酸),考察成分间组合形成自组装纳米粒的能力和特性,同时基于GQD有效缓解CPT-11肠毒性的药理作用,考察制备得到的几种自组装纳米粒药效作用,从成分互作角度揭示GQD物质基础与药效的相关性,为揭示中药配伍煎煮科学内涵提供新思路。 1 仪器与材料 1.1 仪器与试剂 Agilent1260型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],美国安捷伦科技有限公司;DF-101S型集热式恒温加热磁力搅拌器,上海邦西仪器科技有限公司;Litesizer 500型纳米粒度及ζ电位分析仪,上海安东帕商贸有限公司;HT7800型透射电子显微镜,日立高新技术(上海)国际贸易有限公司;Scientz-10N型冷冻干燥机,宁波新芝生物科技有限公司;A50型紫外分光光度计,翱艺仪器上海有限公司;Thermo Scientific Nicolet iS5型傅里叶红外光谱仪,美国赛默飞世尔科技公司;MK3型酶标仪,芬兰雷勃集团公司;Fresco17型冷冻离心机,美国Thermo Scientific公司;UPR-Ⅱ-10T型优普系列超纯水器,四川优普超纯科技有限公司。 盐酸伊立替康(CPT-11),批号A0813A,质量分数≥99%,大连美仑生物技术有限公司;对照品小檗碱(批号AZBI1408)、汉黄芩苷(批号AF21110611)、黄芩苷(批号AZCD1316)、葛根素(批号AFBL0953)、巴马汀(批号AFCB0951)、甘草酸(批号AFCE1008),质量分数≥98%,成都埃法生物科技有限公司;肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α,批号20230804)、白细胞介素-1β(interleukin-1β,IL-1β,批号20230628)、IL-10(批号20230628)的酶联免疫吸附(ELISA)试剂盒,成都诺舟生物技术有限公司;Bradford蛋白浓度测定试剂盒,批号032023230523,碧云天生物技术有限公司;水为实验室超纯水;甲醇、甲酸、磷酸,色谱纯,上海西格玛奥德里奇贸易有限公司;四氢呋喃、丙酮,色谱级,成都市诺尔施科技有限责任公司。 1.2 动物 ICR种雄性小鼠,体质量(20±2)g,购自斯贝福(北京)生物技术有限公司,生产许可证:SCXK(京)2019-0010。动物实验均按照中国国家科学技术委员会颁布的“实验动物管理条例”和成都中医药大学动物实验伦理委员会批准的议定书(批准文号2020DL-126)规范执行。 2 方法与结果 2.1 组分纳米粒的制备 GQD中有黄连、黄芩、葛根、甘草4种药味,黄连代表性有效成分小檗碱和巴马汀,黄芩代表性有效成分汉黄芩苷和黄芩苷,葛根代表性有效成分葛根素,甘草代表性有效成分甘草酸。采用溶剂挥发法,分别制备小檗碱-汉黄芩苷自组装纳米粒(berberine-wogonoside nanoparticles,Ber-Wog NPs)、小檗碱-葛根素自组装纳米粒(berberine-puerarin nanoparticles,Ber-Pue NPs)、黄芩苷-葛根素自组装纳米粒(baicalin-puerarin nanoparticles,Bai-Pue NPs)、黄芩苷-巴马汀自组装纳米粒(baicalin-palmatine nanoparticles,Bai-Pal NPs)、黄芩苷-甘草酸自组装纳米粒(baicalin-glycyrrhizic acid nanoparticles,Bai-GA NPs)。 精密称定小檗碱3.36 mg溶解于磷酸盐缓冲液(phosphate buffered saline,PBS),精密称定汉黄芩苷4.60 mg溶解于四氢呋喃,按照两者物质的量比为1∶1,将有机相缓慢匀速滴加至水相,边滴加边搅拌,滴加完毕后于在磁力搅拌器上37℃恒温400 r/min搅拌1 h,待有机溶剂挥尽后,0.45 μm微孔滤膜滤过,即得Ber-Wog NPs。同法,制备Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs。 2.2 组分纳米粒的表征 2.2.1 组分纳米粒理化性质 如图1所示,所形成的5种纳米粒均为透明溶液,其中Ber-Wog NPs、Ber-Pue NPs、Bai-Pal NPs呈淡黄色,Bai-Pue NPs和Bai-GA NPs呈无色,且静置稳定性较好。取10 μL样品溶液于碳膜铜网上,静置1 min后将多余液体从铜网边缘除去,将3%磷钨酸水溶液滴加1滴至铜网表面,负染2 min后用滤纸吸附多余染料,待液体挥干后采用透射电子显微镜(transmission electron microscope,TEM)拍摄其形态,结果见图1,TEM显示5种纳米粒均呈现出球状型。量取1 mL纳米溶液,采用Litesizer 500纳米粒度仪测定纳米溶液粒径分布,如表1所示,结果显示5种纳米粒平均粒径均在200 nm左右,多分散指数(polydispersity index,PDI)均小于0.25,粒径分布较均匀,分散性较好。 2.2.2 包封率与载药量的测定 (1)小檗碱、巴马汀、葛根素的HPLC色谱条件[17]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm)。流动相为水-甲醇,检测波长:346 nm(小檗碱、巴马汀),250 nm(葛根素);体积流量1 mL/min;进样量10 μL;柱温25 ℃;梯度洗脱:0~10 min,30%甲醇;10~15 min,30%~82%甲醇;15~18 min,82%~85%甲醇;18~20 min,85%~30%甲醇。 (2)甘草酸的HPLC色谱条件[18]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm);流动相为0.1%磷酸水溶液-甲醇(25∶75);检测波长250 nm;体积流量1.0 mL/min;进样量10 μL;柱温25 ℃;等度洗脱20 min。 (3)黄芩苷、汉黄芩苷的HPLC色谱条件[19]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm);流动相为0.1%甲酸水溶液-甲醇(35∶65);检测波长280 nm;体积流量1.0 mL/min;进样量20 μL;柱温30 ℃;等度洗脱10 min。 (4)包封率与载药量的测定:分别精密量取0.5 mL Ber-Wog NPs、Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs于超滤离心管中,在超速离心机上以30 000 r/min,离心半径为4.44 cm,超速离心20 min。取外管滤液0.2 mL,用甲醇定容至2 mL,超声20 min(频率40 kHz、功率100 W),按上述色谱条件测定游离药物质量浓度。 另取未经离心的纳米溶液0.2 mL,至2 mL量瓶中,按照“2.2.2”项下方法操作测定样品中小檗碱、汉黄芩苷、黄芩苷、葛根素、巴马汀、甘草酸的含量,根据公式计算包封率和载药量,结果如表2所示。 包封率=(投入药量-游离药量)/投入药量 载药量=(投入药量-游离药量)/投入总药量 2.2.3 组分自组装纳米的光谱特性 (1)紫外光谱测定:分子发生相互作用后,会影响共轭基团电子排布,因此可根据紫外可见光谱的变化推测物质相互作用规律[20]。 采用紫外-可见吸收光谱在200~500 nm对自组装纳米进行扫描,并与2种游离成分的光谱进行对比。结果如图2所示,小檗碱的特征吸收峰在228、263、344 nm,汉黄芩苷的特征吸收峰在205、273 nm,Ber-Wog NPs在206、271、343 nm处出现较强吸收峰,具有与游离小檗碱和汉黄芩苷的特征,但Ber-Wog NPs的吸收峰出现从游离汉黄芩苷273~271 nm的微小蓝移,从游离小檗碱的344~343 nm的微小蓝移,表明小檗碱和汉黄芩苷在Ber-Wog NPs中存在非共价键作用。 同理,Ber-Pue NPs紫外光谱也具有游离小檗碱和葛根素的特征吸收峰,但存在从游离小檗碱的228、263、344 nm吸收峰蓝移至204、262、331 nm处,而游离葛根素的203、252 nm红移,表明小檗碱和葛根素在Ber-Pue NPs中存在非共价键作用。Bai-Pue NPs紫外光谱也具有游离黄芩苷和葛根素的特征吸收峰,但存在从游离黄芩苷的286、317 nm吸收峰蓝移至206、271、316 nm处,而游离葛根素的203、252 nm红移,表明黄芩苷和葛根素在Bai-Pue NPs中存在非共价键作用。 Bai-Pal NPs在205、275、329 nm处出现较强吸收峰,具有游离黄芩苷和巴马汀的特征吸收峰,但存在从游离黄芩苷的286 nm吸收峰蓝移至275 nm处,317 nm红移至329 nm处,而游离巴马汀的201、274 nm红移至205、275 nm处,341 nm蓝移至329 nm处,表明黄芩苷和葛根素在Bai-Pue NPs中存在非共价键作用。Bai-Ga NPs紫外光谱也具有游离黄芩苷和甘草酸的特征吸收峰,但存在从游离黄芩苷的286、317 nm吸收峰蓝移至271、316 nm处,而游离甘草酸的258 nm红移,表明黄芩苷和甘草酸在Bai-GA NPs中存在非共价键作用。由此可得,5种制剂自组装纳米粒存在两两成分间非共价键相互作用。 (2)傅里叶红外光谱的测定:采用傅里叶转换红外光谱仪对5种自组装纳米药物的光谱性质进行测定,扫描范围为4 000~400 cm?1,与其组成成分游离形式进行对比,分析分子间非共价键力的类型。如图3所示,Ber-Wog NPs中具有类似于游离小檗碱和汉黄芩苷的特征吸收带,但小檗碱中C=N伸缩振动峰在1 601.58 cm?1处,在形成Ber-Wog NPs后向高波段移动至1 635.89 cm?1,汉黄芩苷中C-O伸缩振动峰1 129.50 cm?1,在形成Ber-Wog NPs后向高波段移动至1 145.97 cm?1,由此证明Ber-Wog NPs中小檗碱和汉黄芩苷存在π-π堆积作用。 同理,Ber-Pue NPs中具有类似于游离小檗碱和葛根素的特征吸收带,但小檗碱中的C-O伸缩振动峰在1 103.16 cm?1,在形成Ber-Pue NPs后向低波段移动至1 069.33 cm?1,葛根素中吡喃葡萄糖上的-OH的弯曲振动峰在1 407.22 cm?1,在形成Ber-Pue NPs后向高波段移动至1 457.19 cm?1,由此证明Ber-Pue NPs中小檗碱和葛根素存在氢键和π-π堆积作用。Bai-Pue NPs中具有类似于游离黄芩苷和葛根素的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pue NPs后向低波段分别移动至1 636.98 cm?1和1 394.63 cm?1,葛根素中的C=O的伸缩振动峰在1 632.42 cm?1,在形成Bai-Pue NPs后向高波段移动至1 636.98 cm?1,由此证明Bai-Pue NPs中黄芩苷和葛根素存在氢键和π-π堆积作用。 Ber-Pal NPs中具有类似游离黄芩苷和巴马汀的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pal NPs后向低波数移动至1637.54 cm?1和1 397.39 cm?1,巴马汀中的C=N的伸缩振动峰在1 604.41 cm?1,在形成Bai-Pal NPs后向低波段移动至1 554.87 cm?1,由此证明Bai-Pal NPs中黄芩苷和巴马汀存在氢键和π-π堆积作用。Ber-GA NPs中具有类似游离黄芩苷和甘草酸的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pal NPs后向低波数移动至1 626.67 cm?1,-OH向高波数移动至1 418.16 cm?1,甘草酸中的伸缩振动峰C=O在1 655.10 cm?1,在形成Bai-Pal NPs后向低波数移动至1 626.67 cm?1,由此证明Bai-GA NPs中黄芩苷和甘草酸存在氢键缔合。 2.3 组分自组装纳米的分子对接 PubChem数据库(https://www.ncbi.nlm.nih.gov/ pccompound/)下载小檗碱、汉黄芩苷、黄芩苷、葛根素、甘草酸、巴马汀的SDF文件。用OpenBabel-2.4.1将SDF文件转换为MOL2文件。AutoDock Tools 1.5.7优化小分子结构,利用软件AutoDock Vina 1.1.2进行分子对接,记录最低结合能,一般认为结合能越低,结合性越好,通常认为结合能低于0时,能自发进行,且分子结合能小于?17.78 kJ/mol,分子与靶点有一定的结合活性;小于?23.01 kJ/mol,分子与靶点有较好的结合活性;小于?33.47 kJ/mol,分子与靶点的结合具有强烈的活性。因此,选择结合自由能(binding free energy,G)最低的对接模型,作为最适合分子模拟的结合模型[21],并用PyMOL 2.5.7软件进行可视化处理。 结果如图4和表3所示,Ber-Wog NPs中存在分子间π-π堆积相互作用,小檗碱与汉黄芩苷的G为?17.15 kJ/mol;Ber-Pue NPs中存在氢键和π-π堆积相互作用,小檗碱与葛根素的G为?17.99 kJ/mol;Bai-Pue NPs中存在氢键和π-π堆积相互作用,黄芩苷与葛根素的G为?16.32 kJ/mol;Bai-Pal NPs中存在氢键和π-π堆积相互作用,黄芩苷与巴马汀的G为?18.41 kJ/mol;BAI-GA NPs中存在氢键,且黄芩苷与甘草酸的G为?24.27 kJ/mol。因此,采用分子对接模型表明所形成的5种自组装纳米的自组装机制均与成分间形成氢键和π-π堆积等非共价键作用相关。 2.4 组分自组装纳米缓解CPT-11所致迟发性腹泻作用研究 2.4.1 CPT-11致迟发性腹泻模型建立、分组与给药 取健康ICR雄性小鼠,体质量(20±2)g,实验开始前将小鼠适应性喂养1周,每天自由饮水、进食,随后分为7组,对照组、模型组、Ber-Wog NPs组、Ber-Pue NPs组、Bai-Pue NPs组、Bai-Pal NPs组、Bai-GA NPs组,每组各8只。除对照组外,其余组均以45 mg/kg剂量连续ip CPT-11,连续注射4 d,每天1次,建立CPT-11致迟发性腹泻模型[15,22],对照组注射等量生理盐水。 自第1天造模开始,Ber-Wog NPs组按照20.0 mg/(kg?d)小檗碱和85.4 mg/(kg?d)汉黄芩苷剂量给予小鼠ig;Ber-Pue NPs组按照20.0 mg/(kg?d)小檗碱和19.4 mg/(kg?d)葛根素剂量ig,Bai-Pue NPs组按照20.0 mg/(kg?d)黄芩苷和30.6 mg/(kg?d)葛根素剂量ig;Bai-Pal NPs组按照20.0 mg/(kg?d)黄芩苷和9.9 mg/(kg?d)巴马汀剂量ig;Bai-GA NPs组按照20.0 mg/(kg?d)黄芩苷和63.4 mg/(kg?d)甘草酸剂量ig,对照组和模型组ig等量蒸馏水,持续给药10 d,每天2次,至第11天断颈处死小鼠,同时取结肠组织,用于后续检测。在给药期间每天记录小鼠体质量、粪便、状态等用于疾病活动指数(disease activity index,DAI)评分,按照表4标准进行DAI评分,S1、S2和S3分别代表体质量减轻评分、粪便状态评分和血便评分,根据下列等式计算出DAI评分。 DAI=(S1+S2+S3)/3 通过SPSS 26.0软件分析多组数据之间的差异,实验数据用表示。计量资料采用独立样本t检验分析;多组间两两比较采用最小显著性差异(LSD)法检验。若P<0.05说明差异有统计学意义。 2.4.2 小鼠一般情况 如图5-A所示,对照组小鼠体质量在实验期间逐渐增加。与对照组比较,模型组小鼠体质量逐渐下降;与模型组比较,而各制剂组可在一定程度上减缓小鼠体质量的减少,第10天小鼠体质量平均值为对照组(38.71±2.13)g、模型组(22.10±1.31)g、Ber-Wog NPs组(25.80±2.54)g、Ber-Pue NPs组(24.10±2.79)g、Bai-Pue NPs组(25.73±3.84)g、Bai-Pal NPs组(23.94±3.95)g、Bai-GA NPs组(26.53±3.97)g。如图5-B所示,根据DAI评分可得对照组小鼠大便正常,而小鼠在注射CPT-11的4 d后大便逐渐出现便稀湿软色黄,肛周污秽。各制剂组一定程度可缓解小鼠腹泻情况,未见明显便血,症状轻于CPT-11组。如图5-C所示,与对照组相比,模型组存活率为37.5%,Ber-Wog NPs、Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs存活率分别为50.0%、75.0%、62.5%、62.5%、50.0%。如图5-D所示,对照组结肠壁厚薄适中,结肠黏膜完整且清晰可见成型的粪便,无红肿、充血等肉眼可见变化;与对照组相比,模型组结肠组织肠管缩小变细,其长度变短,结肠黏膜呈暗红色,充血水肿比较明显;与模型组相比,制剂组肠管稍变细,结肠黏膜比之色淡稍红,少见有充血、水肿和溃烂情况,可一定程度抑制CPT-11所致结肠萎缩,其中根据测量结肠平均长度发现制剂组中抑制CPT-11结肠萎缩的效果由高到低分别为Bai-Pue NPs、Ber-Pue NPs、Bai-GA NPs、Bai-Pal NPs、Ber-Wog NPs。 2.4.3 小鼠结肠组织病理形态学影响 如图6所示,对照组黏膜结构完整,基本无病变,细胞紧密排列,小鼠肠隐窝和绒毛清晰完整,胞核较清晰可见;模型组表示出严重的凝固性坏死,结肠黏膜可见缺损,黏膜肿胀,出血及炎性渗出,大量隐窝结构破坏,细胞核形态不一,并伴有大量细胞炎性浸润;Ber-Pue NPs组和Bai-GA NPs组黏膜组织无异常,基本无病变,且未看到黏膜中的炎性细胞浸润,隐窝及绒毛结构正常,细胞排列正常;而Bai-Pue NPs、Bai-Pal NPs、Ber-Wog NPs组均可见黏膜层少量细胞脱落,并伴有少量炎性细胞浸润,但与模型组相比,Bai-Pue NPs、Bai-Pal NPs、Ber-Wog NPs组可缓解结肠黏膜的出血及炎性渗出。 2.4.4 对小鼠结肠组织中TNF-α、IL-1β和IL-10含量的影响 CPT-11导致的迟发性腹泻发生时会有大量炎症细胞聚集,分泌大量炎症因子,其中TNF-α和IL-1β为促炎因子,IL-10为抑炎因子。各组对CPT-11所致的炎症因子的影响如表5所示,与对照组相比,模型组中TNF-α、IL-1β的表达显著升高(P<0.05),IL-10含量显著降低(P<0.05);与模型组相比,各制剂组均能降低TNF-α的含量(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05),Bai-GA NPs组相比Bai-Pal NPs组显著降低(P<0.05);与模型组相比,各制剂组均能降低IL-1β的含量(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05),Bai-GA NPs相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05);与模型组相比,各制剂组IL-10均显著升高(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs和Bai-Pal NPs这2个制剂组显著升高(P<0.05)。 3 讨论 自组装纳米粒主要通过π-π堆积、范德华力、氢键、静电相互作用、卤键等非共价键的相互作用力结合形成,尤其是分子间氢键,自主装作用力主要由氢键之间或其他非共价键的协同作用所构成。分子之间通过氢键作用力结合时,可形成单一氢键和多重氢键,氢键的多重性越强,分子之间的结合能和稳定性越强[23]。如Li等[24]通过氢键和疏水相互作用自组装形成双氢青蒿素纳米颗粒;Wang等[25]将紫杉醇和桦木酸通过氢键和疏水作用形成自组装纳米粒。在本研究中,通过紫外可见吸收光谱和红外光谱实验表明,5种纳米粒的组装均是通过分子间非共价键作用形成;分子对接模型进一步提示,其形成机制与分子间静电相互作用或氢键相关。 在本研究中,为证实GQD中的成分是否具有结合成纳米粒的趋向性,选取GQD中含量较高的的主要有效成分小檗碱、汉黄芩苷、葛根素、黄芩苷、

  • 【资料】纳米新技术(共3讲)

    [B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。  从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。  纳米技术包含下列四个主要方面:   第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。   第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。   第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。   第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。  纳米技术是建设者的最后疆界,它的影响将是巨大的  在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:   把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。  由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。  生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。  通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。   运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官   去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。  提高太阳能电池能量效率两倍。

  • 纳米钻石“温度计”测量活细胞温度更精准

    有望提供一种新的治疗癌症的方法2013年08月01日 来源: 科技日报 作者: 陈丹 科技日报讯(记者陈丹)据《自然》杂志网站8月1日(北京时间)报道,纳米钻石可用于量子计算机中处理量子信息,而哈佛大学的研究人员利用纳米钻石的量子效应,将其变为“温度计”,测量出了人类胚胎干细胞内部的温度变化,精确度是现有技术的10倍。通过加入金纳米粒子,研究人员还能够利用激光对细胞的特定部分加热甚至杀死细胞,这有望提供一种新的治疗癌症而不损害健康组织的方法,以及研究细胞行为的新手段。研究论文发表在本周的《自然》杂志上。 在这项最新研究中,研究人员使用纳米线将直径约100纳米的钻石晶体注入一个人类胚胎干细胞中,然后用绿色激光照射细胞,使氮杂质发出红色荧光。当细胞内局部温度出现变化时,红色荧光的强度会受到影响。通过测量荧光的强度,便可以计算出相应的纳米钻石的温度。由于钻石具有良好的导热性,就可以像温度计一样显示出其所处细胞内部环境的即时温度。 研究人员同时还将金纳米粒子注入细胞内,然后用激光来加热细胞的不同部位,加热点的选择和温度升高多少都可由纳米钻石“温度计”来精确控制。“现在我们有了一个可以在细胞水平上控制温度的工具,让我们能够研究生物系统对温度变化的反应。”参与该研究的哈佛大学物理学家彼得·毛瑞尔说。 他指出,基础生物学涉及到的很多生物过程,从基因表达到细胞新陈代谢,都会受到温度的强烈影响,纳米钻石“温度计”将是一个有用的工具。例如,通过控制线虫的局部温度,生物学家可以了解简单有机体的发育。“你可以加热单个细胞,研究其周围的细胞是否会减慢或者加快它们的繁殖率。”毛瑞尔说。 目前也有一些其他测量细胞温度的方法,比如利用荧光蛋白或碳纳米管,但这些测量手段在敏感性和准确度方面都有欠缺,因为其中的一些成分会和细胞内的物质发生反应。毛瑞尔说,他们的纳米钻石“温度计”的敏感度至少提高了10倍,能够检测出细微到0.05开的温度波动。而且其还有改进的余地,因为在活细胞外部,该“温度计”的敏感度已经达到0.0018开的温度波动。 总编辑圈点 这样的“温度计”应该造价不菲,好在钻石是纳米级的。而其能够检测出细微到0.05开的温度波动,让其他测量细胞温度的方法难以望其项背,我们有理由相信,这项技术不仅仅只应用于医学领域。目前晶体管已经达到极小量度,在20或30纳米级别,离原子级别已经不远。然后,最重要的事情就是要理解热量散播和设备电子结构之间的关系,只有掌握这方面的知识,才能真正操控原子级设备,而纳米钻石“温度计”或许能派上大用场。 《科技日报》(2013-08-02 一版)

  • 纳米片材料性质

    [font=微软雅黑][size=10.5000pt]由于纳米单元层都是一个动力学独立的片状颗粒,其空间位阻被降到最低,因此可以与任意大小的微粒同纳米层实现组装,进而合成一系列利用常规方法不能抽取的插层化合物,特别是插入体积非常大的客体分子。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]此外,剥离得到的纳米层通过剥离[/font]/重组技术可以制备新的纳米功能薄膜、纳米功能积层材料、有效高比表面积的催化材料材料以及有机-无机复合材料等。[/size][/font][font=微软雅黑][size=10.5000pt]期待合成的纳米材料在磁性材料、选择性催化剂、选择性吸附剂,锂离子二次电池正极材料等方面得到广泛应用。[/size][/font][align=left][b][font=微软雅黑][size=12pt]层状化合物及分类[/size][/font][/b][/align][font=微软雅黑][size=10.5000pt]随着纳米复合材料的深入研究,另一类多功能的无机层状化合物已成为合成功能性复合材料重要的前驱物或基本组成单元。无机层状化合物的各类繁多,一般以层状主体是否带电来进行分类。[/size][/font][font=微软雅黑][size=10.5000pt]阴离子型层状化学物:是指层间具有可交换阴离子或中性分子的层状结构主体,且层状主体构架是带正电荷的。其中比较有代表性的主要是:水滑石、类水滑石。它们的主体成份一般是由两种金属的氢氧化物构成,因此又称其为双金属氢氧化物。[/size][/font][font=微软雅黑][size=10.5000pt]阳离子型层状化合物:是由带负电结构单元通过共用边、角、面形成的层状框架或网络。片层电荷补偿是通过层间可移动的阳离子如钾离子或者纳离子等或中性分子来实现。其中比较有代表性的是蒙脱土、绿土、磷酸盐、硅酸盐、钛酸盐和砷酸盐和铌酸盐。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]中性层状化合物:即层状主体结构是电中性的。这类化合物层与层之间是范德华力维持,研究较多的是石墨、层状双硫氧化物、[/font]V[/size][/font][sub][font=微软雅黑][size=10.5000pt]2[/size][/font][/sub][font=微软雅黑][size=10.5000pt]O[/size][/font][sub][font=微软雅黑][size=10.5000pt]5[/size][/font][/sub][font=微软雅黑][size=10.5000pt]等。[/size][/font]

  • 美国研发新型X光纳米显微镜成功

    据美国物理学家组织网近日报道,美国加利福尼亚大学圣地亚哥分校物理学家开发出一种新型X光显微镜,不仅能透视材料内部结构,而且洞察之细微达到了纳米水平。该显微镜有助于开发更小的数据存储设备,探测物质化学成分,拍摄生物组织结构等。研究论文发表在《美国国家科学院院刊》上。X光纳米显微镜不是通过透镜成像,而是靠强大的算法程序计算成像。“这种数学运算方法相当复杂,其原理有点像哈勃太空望远镜,就是让最初看到的模糊图像变得清晰鲜明。”领导该研究的加州大学圣地亚哥分校副教授奥里格·夏佩克解释说,X光探测到物质的纳米结构后,会生成衍射图案,计算机按照运算法则将这种衍射图案转化为可辨认的精细图像。为了测试显微镜透视物体的能力和分辨率,研究小组用钆和铁元素制作了一种层状膜。目前信息技术行业多用这种膜来开发高容高速、更微小的内存设备和磁盘驱动器。“这两种都是磁性材料,如果结合成一体,就会自然地形成纳米磁畴。”夏佩克说,在显微镜下面,能看到它们形成的磁条纹。层状的钆铁膜看起来就像一块千层酥,层层褶皱形成了一系列的磁畴,就好像一圈圈指纹的凸起。

  • 什么是纳米抗体?纳米抗体的特性有哪些?

    [font=宋体][b]什么是纳米抗体?[/b][/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/nanobody][b]纳米抗体[/b][/url]([/font][font=Calibri]nanobody, Nb[/font][font=宋体])是一种人工设计的抗体分子,又称为单域抗体([/font][font=Calibri]single-domain antibodies, sdAbs[/font][font=宋体])、[/font][font=Calibri]VHH[/font][font=宋体]抗体或[/font][font=Calibri]camelid[/font][font=宋体]抗体,是发现于羊驼、单峰驼等驼科以及鲨鱼、鳐鱼等软骨鱼中的一种天然缺失轻链的重链抗体([/font][font=Calibri]heavy-chain antibodies, HCAbs)[/font][font=宋体]。[/font][font=Calibri]1993[/font][font=宋体]年,比利时的科学家在骆驼的血清中发现了一种天然轻链缺失的重链抗体,分子量约[/font][font=Calibri]95 kDa[/font][font=宋体],其中包括两个恒定区([/font][font=Calibri]CH2[/font][font=宋体]和[/font][font=Calibri]CH3[/font][font=宋体])、一个铰链区和一个重链可变区([/font][font=Calibri]variable heavy chain domain, VHH[/font][font=宋体]),接着克隆得到只包含一个重链可变区的单域抗体,即[/font][font=Calibri]VHH[/font][font=宋体]抗体。[/font][font=Calibri]VHH[/font][font=宋体]抗体的晶体结构为[/font][font=Calibri]4 nm[/font][font=宋体]×[/font][font=Calibri]2.5 nm[/font][font=宋体]×[/font][font=Calibri]3 nm[/font][font=宋体]的椭圆形,分子量大小仅普通抗体的[/font][font=Calibri]1/10[/font][font=宋体],约[/font][font=Calibri]12-14 kDa[/font][font=宋体],是最小的完整抗原结合片段,因此又被称为纳米抗体。纳米抗体可用于肿瘤等疾病的治疗、疾病的检测、疫苗的研发等。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]纳米抗体特性:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]高耐热性和稳定性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]将不同的纳米抗体在[/font][font=Calibri]37[/font][font=宋体]℃放置[/font][font=Calibri]1[/font][font=宋体]周,结果其抗原结合活性均在[/font][font=Calibri]80%[/font][font=宋体]以上,表明纳米抗体在室温下保存相当稳定,这使其比常规抗体更易于储藏和运输。[/font][/font][font=宋体][font=宋体]比较了鼠单抗和纳米抗体在高达[/font][font=Calibri]90[/font][font=宋体]℃高温长时间处理的抗原结合活性,发现纳米抗体都保持了较高的活性仍能重新获得抗原结合能力,而所有常规抗体在[/font][font=Calibri]90[/font][font=宋体]℃处理后都丧失了活性,发生了不可逆的聚合。[/font][/font][font=宋体][font=宋体]在恶劣条件,如在高热、离液剂、存在蛋白酶和极度[/font][font=Calibri]pH[/font][font=宋体]值变性的条件下(如胃液和内脏中),正常抗体会失效或分解,而纳米抗体仍具有高度的稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]高抗原结合性:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体独特的结构决定了其高抗原结合特性:纳米抗体较长的[/font][font=Calibri]CDR3[/font][font=宋体],可形成一稳定的暴露的凸环结构(凸环中具有稳定结构的二硫键),能够深入抗原内部以更好的结合抗原从而提高了其抗原特异性和亲和力。[/font][/font][font=宋体][font=宋体]而传统抗体[/font][font=Calibri]Fab[/font][font=宋体]片段及单链抗体[/font][font=Calibri]scFv[/font][font=宋体]的抗原结合表面常形成凹形拓扑结构[/font][font=Calibri], [/font][font=宋体]通常只能识别位于抗原表面的位点,因此纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]单域具有更加广泛的抗原结合力,甚至当靶蛋白紧密包裹隐藏了普通抗体识别的位点时[/font][font=Calibri],[/font][font=宋体]纳米抗体也可以对其进行表位识别。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]较强的组织穿透力:[/font][/font][font=宋体] [/font][font=宋体]纳米抗体具有强而快的组织穿透能力,可以进入致密的组织如实体瘤发挥作用;并且多余未结合的纳米抗体能够很快的被清除,这相对于单克隆抗体组织穿透力差,不易被清除的不足,更有利于疾病的诊断。另外,纳米抗体能够有效的穿透血脑屏障,这样的特性为脑部给药提供了新方法,有望成为治疗老年痴呆症的新药。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]高水溶性、高表达性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]正常抗体[/font][font=Calibri]VH[/font][font=宋体]结构域单独表达时通常形成包涵体,或者暴露的疏水域相互黏附;而纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]由于其[/font][font=Calibri]FR2[/font][font=宋体]中的疏水残基被亲水残基所取代,使得纳米抗体的水溶性增加,聚合性减少;而且即使以包涵体形式表达,也很容易复性,这样可以大大提高作为药物的利用率。[/font][/font][font=宋体][font=宋体]因纳米抗体分子量小、结构简单,由单一的基因编码,所以它很容易在微生物中合成,能在噬菌体、酵母等微生物中大量的表达,而且其相对价格低廉、可进行大规模生产,易于普及和应用。有报道,可通过酵母反应器酿造将纳米抗体的产量提高,每公升可达[/font][font=Calibri]1[/font][font=宋体]克的产量。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的应用优势[/b][/font][font=宋体] [/font][font=宋体][font=宋体]①用于生物医药研发(基因工程药物研发、[/font][font=Calibri]ADC[/font][font=宋体]药物研发);[/font][/font][font=宋体]②用于临床体外诊断(胶体金法、酶联免疫吸附法、电化学发光法);[/font][font=宋体]③用于肿瘤研究、免疫学研究等基础研究;申请具有自主知识产权的发明专利及科研奖项;[/font][font=宋体]④拓展研究思路、发表国际知名学术刊物。[/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体是一种非常有前景的下一代治疗性抗体技术,受到越来越多的研究机构和制药公司的关注。为支持纳米抗体药物的早期发现,义翘神州利用噬菌体抗体库技术自主研发了纳米抗体开发平台,已成功开发了多个纳米抗体候选分子。另外,我们的高通量纳米抗体表达平台,已成功表达和生产了多种纳米抗体形式,包括单价、多价或多特异性[/font][font=Calibri]VHH[/font][font=宋体],满足客户的各种定制需求。[/font][/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/nanobody[/font][/font][font=Calibri] [/font]

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][font=&][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][/font][font=&][size=16px]基于此,仪器信息网[/size][/font][font=&][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][/font][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

  • 纳米科学的介绍

    [font=微软雅黑][size=10.5000pt][font=微软雅黑]纳米科学是[/font]80年代初迅速发展起来的新的前沿科研领域,1990年在美国巴尔的摩召开的第一届国际纳米科学技术会议,并正式创办的《纳米技术》杂志,标志着纳米科学的诞生。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]纳米科学是指研究在[/font]0.1nm~100nm尺寸范围内物质具有的物理、化学性质和功能的科学,它包括纳米生物学、纳米电子学、纳米化学、纳米材料学和纳米机械学等新兴学科。[/size][/font][font=微软雅黑][size=10.5000pt]而纳米科技是指一种用单个原子,分子制造物质的科学技术,它以纳米科学为基础,进行制造新材料、新器件,研究新工艺的方法。在这里纳米不仅是一个空间尺度概念,而且表示了一种新的思考方式,即生产过程越来越精细。[/size][/font][font=微软雅黑][size=10.5000pt]人类通过在原子、分子和超分子水平上控制了纳米结构来发现纳米材料的奇异特性,以及学会有效地利用这些特性,使得人类能够按照自己的意志,在纳米尺度上直接操纵单个原子、分子的排布制造出具有特定功能的产品,最终能够仿照自然界生态中非常复杂的过程,这也是纳米科技的最终目的,换句话说,我们是为了更好地理解这个世界而研究纳米物质的。[/size][/font]

  • 纳米生物技术简介

    纳米生物技术简介 纳米(nanometer,nm)是一种长度单位,一纳米等于10亿分之一米、千分之一微米。从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。DNA链的直径就是一纳米左右。由于纳米材料表现出许多不同于传统材料的特殊性能,所以纳米科技被视为21世纪关键的高新技术之一。纳米技术包含下列四个主要方面:第一方面是纳米材料,第二方面是纳米动力学,第三方面是纳米电子学,第四方面是纳米生物学和纳米药物学。在纳米生物学和纳米药物学方面,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。当前纳米生物学和纳米药物学研究领域主要集中在以下几个方向:纳米生物材料、纳米生物器件研究和纳米生物技术在临床诊疗中的应用。

  • 纳米技术及应用

    信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向。 纳米是一个长度计量单位,它是一米的十亿分之一。纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料。纳米技术就是 指在纳米尺度范围内,通过操纵原子、分子、原子团和分子团,使 其重新排列组合成新物质的技术。其最终目标是直接以原子、分子的变化,使物质在纳米尺度上表现出新颖的物理、化学和生物学特性,制造出具有特定功能的产品。因为纳米材料的粒度非常微小,一般的显微镜是不能观察到的,所以纳米技术是在扫描隧道显微镜发明之后,才出现以0.1至100纳米尺度为研究对象的前沿科学。这可能改变几乎所有产品的设计和制造方式,实现生产方式的飞跃, 是新工业革命的核心。纳米技术也是信息和生命科学技术能够进一步发展的共同基础,将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。有人曾经预言说,七十年代搞微米技术的国 家,现在已成为发达国家;现在从事纳米技术研究的国家,将是二 十一世纪的先进国家。 纳米材料粒度非常微小,具有良好的表面效应,一克纳米材料的表 面积达到几百平方米,因此用纳米材料制成的产品,其强度、柔韧 度、延展性都十分优越,就象一种有成千上万对脚的毛毛虫,当它 吸附在光滑的玻璃面上时,由于接触面积大,12级台风也吹不掉 它。因此,在化纤中加入少量的金属纳米颗粒,就可摆脱磨擦引起的静电现象;在食品中采用纳米技术,可提高肠胃的吸收功能;在 涂料中运用纳米技术,可使外墙涂料的耐洗刷性从一千多次提高到一万多次,老化时间延长两倍多;许多化妆品因为加入纳米微粒, 而具备防紫外线功能;利用纳米技术可生产出色彩鲜艳、抗折性极 高的彩色轮胎;利用纳米粉末,可使废水变清。另外,纳米在医药 保健、计算机、化学和航天等领域都会引起新的、技术性革命。 作为纳米技术重要方面的碳纳米管,是1991年被人类发现的。它是由石墨碳原子层卷曲而成的碳管,管的直径一般为几个纳米到几十纳米,管壁厚度仅几个纳米,象铁丝网卷成的空心圆柱状的“笼形 管”。5万个“笼形管”排列起来,才有人的一根头发丝那么宽,长度和直径比非常高的纤维小。作为石墨、金刚石等碳晶体家族的新成员,碳纳米管的韧性很高,导电性极强,场发射性能优良,兼具 金属性和半导体性。其强度比钢高100倍,比重只有钢的1/6,称之 为未来的超级纤维,成为国际研究的热点。碳纳米管的用途十分诱 人。它可制成极好的微细探针和导线、加强材料及储氢材料。它使壁挂电视成为可能,并在将来可替代硅芯片。纳米芯片体积更小、 容量更大、重量更轻,将在纳米电子学中扮演极重要角色,并引发计算机行业的革命。不久前我国研制出的碳纳米管显示器样本,不但体积小,重量轻,而且显示质量好,从-45℃~80℃皆能正常工 作,而耗电只有现在的显示器的1%。 另外,作为纳米技术的应用之一,在我国西安已研制出的“纳米服 装”,不仅能阻隔95%以上的紫外线,还能阻隔同量的电磁波,且无毒、无刺激,不受洗涤、着色、磨损的影响,能有效地保护人体皮 肤不受辐射的影响。还有小鸭集团研制出的纳米洗衣机,就是利用 纳米抗菌材料研制出的自我清洁的洗衣机。它能够有效地抑制细菌 滋生,无论使用多长时间,都能够保持“净水洗涤”的状态。 目前,纳米技术在电线电缆中的应用已在开始。有人曾设想,能否运用纳米技术来提高绝缘材料的性能,从而提高电缆的绝缘、耐热 和抗老化等性能,减少电缆的外径,减轻电缆的重量。另外能否利 用碳纳米管的韧性高、导电性强的特点,制成超细电磁线,使微型 电机的体积象米粒那样大,甚至更小。 现在“纳米热”已遍及全球,从大西洋到太平洋,从日本到欧洲,各国都把它作为重要的未来发展战略。美国总统克林顿曾经发表过 一篇关于前沿科学技术的前瞻性的讲话,提出了美国今后要大力发 展纳米技术。美国已于2000年10月1日启动“国家纳米计划”,投资1997年的1.16亿美元增加到4.97亿美元。目前全球纳米技术的年 产值已达到500亿美元,预计到2010年,市场容量将达到14400亿美 元。我国已建立了10多条纳米材料和技术的生产线,以此为基础的企业已达100多家。预计在今后二、三十年内,它将远远超过计算机工业,并成为未来信息时代的核心。纳米技术导致的微形化趋势从根本上改变人类的处境,从而引起二十一世纪的又一次产业革命。

  • 纳米医学畅想

    纳米医学畅想 纳米医学的研究内容十分广泛,最引人注目的是扫描隧道显微镜(STM)。这一非凡的仪器于80年代初研制成功,可以在纳米尺度上获取生命信息,研究者相继得到了左旋DNA、双螺旋DNA的碱基对、平行双螺旋DNA的STM图像。我国科学家利用STM成功的拍摄到表现DNA复制过程中一瞬间的照片。目前,研究已涉及到氨基酸、人工合成多肽、结构蛋白和功能蛋白等领域。 纳米使单位体积物质储存和处理信息的能力提高百万倍以上,人类有可能将存储了全部知识的纳米计算机安放在人脑中,或许有一天,图书馆就在我们的头脑内,每一个人都可能成为爱因斯坦、牛顿,老年性痴呆、记忆丧失等病症将会得到彻底治愈。纳米计算机可能用来读出人脑内的内容及品性,将一个脑内的信息转录到另一个脑内,这个脑可以是人脑,也可以是电脑。纳米医学也有可能改变人类自身,让人类成为能在天上飞、水中游,能进行光合作用或能在恶劣环境下生存的“超人”。将来,掌握纳米医学技术的医生,不仅能够“修理人”——治病,而且能够“改造人”——使其具有特殊功能。虽然这些设想有些离奇,但决非是毫无科学根据的幻想。即将进入临床应用的有:利用纳米传感器获取各种生化信息和电化学信息。已经取得重大成果的还有DNA纳米技术,主要应用于分子的组装。 已经在医药领域得到成功的应用。人们已经能够直接利用原子、分子制备出包含几十个到几百万个原子的单个粒径为1-100纳米的微粒。最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。在纳米铁微粒表面覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。由于纳米微粒比血红细胞还小许多,可以在血液中自由运行,因而可以在疾病的诊断和治疗中发挥独特作用。 当把二氧化肽做到粒径为几十纳米时,在它的表面会产生一种叫自由基的离子,能破坏细菌细胞中的蛋白质,从而把细菌杀死。例如用二氧化肽处理过的毛巾,只要有可见光照射,上面的细菌就会被纳米二氧化肽释放出的自由基离子杀死,具有抗菌除臭功能。 将药物粉末或溶液包埋在直径为纳米级的微粒中,将会大大提高疗效、减少副作用。纳米粒可跨越血脑屏障,实现脑位靶向。另外,纳米粒脉管给药,可降低肝内蓄积,从而有利于导向治疗。纳米粒中加入磁性物质,通过外加磁场对其导向定位,对于浅表部位病灶治疗具有一定的可行性。在影像学诊断中,纳米氧化铁在病灶与正常组织的磁共振图像上,会有较大的对比度。 纳米粒用作药物载体具有下述显著优点:(1)可到达网状内皮系统分布集中的肝、脾、肺、骨髓、淋巴等靶部位;(2)具有不同的释药速度。(3)提高口服吸收药物的生物利用度。(4)提高药物在胃肠道中的稳定性。(5)有利于透皮吸收及细胞内药效发挥。如:载有抗肿瘤药物阿霉素的纳米粒,可使药效比阿霉素水针剂增加10倍。目前已在临床应用的有免疫纳米粒、磁性纳米粒、磷脂纳米粒以及光敏纳米粒等。 医用纳米机械或纳米微型机器人可潜入人体的血管和器官,进行检查和治疗,使原来需要进行大型切开的手术成为微型切开或非手术方式,并使手术局部化。纳米医用机器甚至可以进入毛细血管以及器官的细胞内,进行治疗和处理。这类机器可以将对人体的伤害减小到最低程度。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人一旦制成,能在一秒钟内完成数十亿个操作动作。如果数量足够多,就可以在几秒或几分钟内完成现今需几天或几个月甚至几年、几十年才能完成的工作。 和细胞一样,作业中坏了的微型机械可以随时被更换或修理。微型机械发展的顶峰,或许是可以自己增殖繁衍的纳米机器人。别以为以上设想不可思议。纳米科学家们相信这种愿望能够实现。 不难想象,倘若人类能直接利用原子、分子进行生产活动,这将是一个“质”的飞跃,将改变人类的生产方式和空前地提高生产能力,并有可能从根本上解决人类面临的诸多困难和危机,开创医学新纪元。

  • 纳米材料在隔热涂料中的应用

    当前,节能和新能源探索已经成为世界的重要课题。建筑能耗在人类整个能源消耗中所占的比例一般在30%~40%,它们绝大多数是采暖和空调造成的能耗,而通过门窗散失的热量约占整个建筑采暖及空调耗能的50%。因此,提高门窗的保温隔热性能是降低建筑能耗的有效途径。为节约能源,人们发明了多种节能方法,都是为了阻隔太阳光中多余的热辐射而达到降温的目的。但是有些产品有的隔热效果不佳,有的价格过于昂贵等多种原因在应用推广上有些困难。纳米材料由于具有宏观尺寸物体所没有的性质,能为新型涂料的研制带来意想不到的效果而成为研究的热点。透明隔热宝(UG-C06)是由优锆纳米新研发出的一种水性陶瓷类隔热保温涂料,采用最新复合陶瓷隔热技术和纳米二氧化钛材料,设计用来反射光能和辐射热能。在炎热的季节降低表面温度和内部温度;在寒冷的季节更好地保持室内温度;在使用空调的环境中降低能源消耗。不仅如此,透明隔热宝(UG-C06)独特的环保成分――液体纳米ATO,纳米二氧化钛更能消除周围环境中的异味,解甲醛和其他有害物质。透明隔热宝(UG-C06)中的4种陶瓷微珠能够产生魔术般的功效!第一种陶瓷微珠能够有效地阻隔紫外线达99%;第二种陶瓷微珠能反射90%以上的可见光;第三种陶瓷能够阻隔红外线达92.5%,而神奇的第4种陶瓷分子能够防止超量的水蒸汽进入,而允许正常数量的水分子的通过。由此极大增加整个建筑表面的防晒绝热能力。该产品采用先进的生产工艺将纳米超活性ATO ,TIO2做成适合在玻璃,瓷砖,金属,水泥、PE,PET,PC,PP,PVC等表面涂覆的纳米涂层材料。其透明性的超活性ATO,起到吸收红外线和阻隔紫外线功能。超活性ATO化学性稳定的对热,湿度等外部环境引起的物性变化小,所以能保持半永久性导电性质,能有效地阻止红外辐射和紫外线辐射,阻隔红外效果达95%,阻隔紫外效果达90%,该涂层材料与基材有极好的相容性,铺展,流平性能好,附着力强,持久不脱落。纳米隔热涂料(优锆纳米)不仅能够兼顾隔热与透光性,而且具有机械性能优异、耐老化、耐腐蚀等优点。纳米透明隔热涂料的开发应用能够很好地解决对采光玻璃既透明又隔热节能的技术要求,加上其自身的结构特点保证了该涂料的使用寿命长,因而纳米透明隔热涂料在普通玻璃、有机玻璃等透明载体表面的开发应用,不但环保节能,而且经济实用。在当今社会能源危机和环保压力日益增大的情况下,隔热涂料将具有很好的应用前景。

  • 学位论文:纳米级镀镍晶粒屏蔽织物的研究

    是从万方下载的西安工程科技学院的硕士学位论文,其研究内容应该算是本专业的前沿了,与朋友们共享。【 摘 要 】 电子产品的普及,给人类的生活带来了极大进步的同时,却使电磁辐射无处不在,危害到了人类的健康.开发电磁屏蔽织物已成为纺织业的一个研究热点,虽然已研制出了各种纳米级的兼具导电、导磁性能吸波材料,但吸波材料与织物相结合、用于个人防护的纳米级吸波纺织品仍是一个空白.该文首次将镀镍织物制成纳米级晶粒镀镍织物,由于纳米晶粒自身的特性,具有优良的吸波性能,能制得质量轻、厚度薄、吸收的频带宽、吸收能力强的织物.该文采用碱性预处理、敏化处理、活化处理,使织物表面具有催化活性.通过正交实验确定了粗化工艺的最佳温度、浓度和时间等工艺条件.分析研究了敏化液、活化液在不同浓度和时间对金属化织物增生的影响,从而确定了最佳预处理工艺.化学镀镍溶液以碱性的次亚磷酸钠为镀液,镀液在60℃的条件下者.考察了镀液pH值、施镀温度、氯化镍、次亚磷酸钠、柠檬酸钠、硼酸的用量,以及硫代硫酸钠浓度等因素对化学镀镍反应时间、镀速、增重率的影响,确定了最佳工艺.织物镀覆开始并经过一段时间后,反应会自动停止.对镀覆后镀液成分的分析表明,反应自发停止的原因是由于镀液pH值过低或镀液中次亚磷酸钠在施镀过程中被消耗,使其浓度下降到极低所致.该段时间定义为"反应时间",镀速用增重法,镀液成分用化学滴定法确定.该文首次采用在镀液化气中加入分散剂,并在搅拌的条件下进行化学镀,分别选用了扩散剂NNO、十二烷基苯磺酸钠、聚乙二醇4000作为分散剂,用扫描电子显微镜考察了分散剂对在织物上形成的金属镍晶粒的粒径尺寸的影响.上述分散剂单独使用无法得到纳米级晶粒,考虑到表面活性剂的协同作用,故对分散剂进行复配,结果表明,扩散剂NNO与聚乙二醇4000复配的镀液化学镀得到的金属镍晶粒粒径能达到纳米级.电磁波屏蔽性能测试,证明该纳米级晶粒镀镍织物比普通化学镀镍织物有更好的屏蔽效果,而且这种结构特征使该织物具有吸波频带宽、兼容性好、质量轻和厚度薄等特点.镀镍织物的抗菌效果测试证明该织物具有抗菌效果,这为已经形成的镀层具有纳米材料的特性提供了旁证.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34313]纳米级镀镍晶粒屏蔽织物的研究[/url]

  • 上海应物所发现金纳米粒子对果蝇代谢信号通路的调控作用

    金纳米粒子很可能是最早被用作药物的纳米材料,其历史甚至可追溯到几千年前的古埃及——炼金术士们将金熔化后制成金水供法老饮用,其中就含有金纳米粒子。直到中世纪的欧洲,贵族中也流行着类似的方法。现代的纳米研究表明,金纳米粒子细胞毒性很低,生物安全性良好,因而被广泛应用于纳米药物研究。科研人员猜想,进入动物体内的金纳米粒子是否可能产生其它独特的生物效应呢? 近期,中国科学院上海应用物理研究所物理生物学实验室樊春海、黄庆研究员和中国科学院系统生物学重点实验室宋海云研究员开展合作研究,课题组的科研人员王彬、陈楠和魏应亮以果蝇为动物模型的工作表明,经食物摄取的金纳米粒子能够显著增强胰岛素和生长因子下游的PI3K/Akt信号通路,促进细胞对食物中营养成分的吸收和利用。相关论文已于近日发表于自然出版集团的综合性杂志《科学报道》(Scientific Reports 2012, 2:563)。 PI3K/Akt信号通路是多细胞生物中高度保守的合成代谢通路。果蝇幼虫通过PI3K/Akt信号通路将摄入的营养成分以甘油三酯的形式储存,以满足成蛹期的能量需求。果蝇幼虫摄取掺入金纳米粒子的食物后,PI3K/Akt信号通路活性上升,并通过SREBP通路增加甘油三酯的合成。在能量限制(calorie restriction)导致PI3K活性下降的条件下,金纳米粒子的这一效应表现更加显著。如果在喂食金纳米粒子的同时抑制Akt信号通路,能够消除其对脂合成代谢的作用,说明金纳米粒子的代谢效应是通过促进PI3K/Akt信号通路实现的。进一步研究表明,金纳米粒子并没有改变果蝇的进食量,其促进PI3K/Akt信号通路的机制,一部分在于促进细胞对营养成分的摄取,一部分在于促进PI3K定位于细胞膜。 该研究揭示了金纳米粒子一种出人意料的生物学效应,预示了其在糖尿病等代谢紊乱研究中的应用前景。 该研究工作得到科技部、国家自然基金委和中国科学院的支持。http://www.cas.cn/ky/kyjz/201208/W020120823596824413298.jpg金纳米粒子对果蝇代谢信号通路的调控作用

  • 《纳米化学》

    纳米化学[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15594]纳米化学[/url]

  • 【求助】HRTEM中纳米相标定

    【求助】HRTEM中纳米相标定

    照了一个氧化物界面中的纳米颗粒的HRTEM 图像,如下图所示,能看见有明显的周期条纹:1)选中该颗粒的区域后,通过FFT,然后IFFT 转换后感觉变换后的图像没有出现论坛中,或文献中那么清晰地条纹啊?2)量这些条纹间的距离,(d=2.841),然后如何确定物相什么的呢? 成分是(Fe,Cr,Mo)xOy 。新手,望各位老师给予帮助。谢谢http://ng1.17img.cn/bbsfiles/images/2011/06/201106191423_300514_1608108_3.jpg

  • 【求助】求纳米标准的下载链接

    GJB 1713-1993 纳米激光偏振干涉仪规范 JJF 1321-1990 250~2500纳米光谱辐射亮度和照度基准操作技术规范 JJF 1322A-1990 250~2500纳米光谱辐射亮度副基准操作技术规范JJF 1322B-1990 250~2500纳米光谱辐射照度副基准操作技术规范 JJF 1335-1990 800~2000纳米光谱反射比副基准操作技术规范 GB/T 18735-2002 分析电镜(AEM/EDS)纳米薄标样通用规范 GB/T 19345-2003 非晶纳米晶软磁合金带材 GB/T 19346-2003 非晶纳米晶软磁合金交流磁性性能测试方法 HG/T 3791-2005 氯乙烯-纳米碳酸钙原位聚合悬浮法聚氯乙烯树脂 GB/T 19588-2004 纳米镍粉 GB/T 19589-2004 纳米氧化锌 GB/T 19591-2004 纳米二氧化钛 GB/T 19619-2004 纳米材料术语 GB/T 20307-2006 纳米级长度的扫描电镜测量方法通则 HG/T 3819-2006 纳米合成水滑石 HG/T 3820-2006 纳米合成水滑石 分析方法 HG/T 3821-2006 纳米氢氧化镁 SC/T 7205.1-2007 牡蛎包纳米虫病诊断规程第1部分:组织印片的细胞学诊断法 SC/T 7205.3-2007 牡蛎包纳米虫病诊断规程第3部分:透射电镜诊断法

  • 纳米气敏传感器研究进展

    转载一篇文章[url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url][color=blue][b]纳米气敏传感器研究进展[/b][/color]1引言纳米技术是研究尺寸在01~100nm的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术[1]。纳米技术的发展,不仅为传感器提供了优良的敏感材料,例如纳米粒子、纳米管、纳米线、纳米薄膜等,而且为传感器制作提供了许多新型的方法,例如纳米技术中的关键技术STM,研究对象向纳米尺度过渡的MEMS技术等。与传统的传感器相比,纳米传感器尺寸减小、精度提高等性能大大改善,更重要的是利用纳米技术制作传感器,是站在原子尺度上,从而极大地丰富了传感器的理论,推动了传感器的制作水平,拓宽了传感器的应用领域。纳米传感器现已在生物、化学、机械、航空、军事等方面获得广泛的发展。湖南长沙索普测控技术有限公司研制成功电阻应变式纳米压力传感器,这种电阻应变式纳米膜压力传感器,测量精度和灵敏度高、体积小、重量轻、安装维护方便,是一种稳定和可靠的测量压力参数的科技创新产品。利用一些纳米材料的巨磁阻效应,科学家们已经研制出了各种纳米磁敏传感器[2]。在生物传感器中,用纳米颗粒、多孔纳米结构和纳米器件都获得了令人满意的应用[3]。在光纤传感器基础上发展起来的纳米光纤生物传感器,不但具有光纤传感器的优点,而且由于这种传感器的尺寸只取决于探针的大小,大大减小了测微传感器的体积,响应时间大大缩短,满足了单细胞内测量要求实现的微创实时动态测量[4]。 2纳米气敏传感器的研究现状随着工业生产和环境检测的迫切需要,纳米气敏传感器已获得长足的进展。用零维的金属氧化物半导体纳米颗粒、碳纳米管及二维纳米薄膜等都可以作为敏感材料构成气敏传感器。这是因为纳米气敏传感器具有常规传感器不可替代的优点:一是纳米固体材料具有庞大的界面,提供了大量气体通道,从而大大提高了灵敏度;二是工作温度大大降低;三是大大缩小了传感器的尺寸[5]。2.1基于金属氧化物半导体纳米颗粒的纳米气敏传感器 在气敏传感器的研究中,主要方向之一是在气体环境中依靠敏感材料(例如金属氧化物半导体气敏材料以SnO2,ZnO,TiO2,Fe2O3为代表)的电导发生变化来制作气敏传感器。目前已实用化的气敏传感器由纳米SnO2膜制成,用作可燃性气体泄漏报警器和湿度传感器。在这些纳米敏感材料中加入贵重金属纳米颗粒(例如Pt和Pd),大大增强了选择性,提高了灵敏度,降低了工作温度。其性能的具体改善程度与加入贵重金属纳米颗粒的晶粒尺寸、化学状态及分布有关。北京大学王远等人[6]制成一种TiO2/PtOPt双层纳米膜作为敏感材料探测氢气的气敏传感器。其敏感材料的制备方法是先在玻璃衬底上覆盖上一层由Pt纳米颗粒构成的表面氧化的多孔连续膜,其中Pt的纳米颗粒直径大约13 nm,膜厚大约100 nm,然后在PtOPt膜上覆盖TiO2膜,其中TiO2纳米颗粒的直径尺寸从34 nm到54 nm,平均直径41 nm。传感器的工作温度在180~200 ℃,PtOPt多孔膜作为催化剂使TiO2纳米膜对氢气产生部分还原作用,从而使传感器在空气中,甚至在CO、NH3、CH4等还原性气体存在的情况下,对氢气都表现出很高的灵敏度和选择性,比较以前的钛基探测氢气的传感器有显著的提高。Raül Dìaz等人[7]用非电镀金属沉积法沉积Pt在SnO2纳米颗粒的表面,结果证明这种方法对改善气敏传感器催化剂的性能有很大帮助。Pt和Pd作为两种主要的贵重金属添加物,它们与衬底有不同的相互作用,Pd倾向于嵌入纳米SnO2晶粒中,而Pt倾向于形成大的金属颗粒团簇。与传统方法相比,用非电镀沉积法形成的催化剂的不同化学状态,为研究催化剂对气体探测机制的影响提供了一种新的方法。2.2用单壁碳纳米管制作气敏传感器碳纳米管具有一定的吸附特性,由于吸附的气体分子与碳纳米管发生相互作用,改变其费米能级引起其宏观电阻发生较大改变,通过检测其电阻变化来检测气体成分,因此单壁碳纳米管可用作气敏传感器。J.kong等人[8]用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法在分散有催化剂的SiO2/Si基片上可制得单个的单壁碳纳米管,如图1(a)所示,两种金属被用来连接一SSWNT时,形成金属/SSWNT/金属结构,呈现出p型晶体管的性质。气体探测试验是把SSWNT样品放在一个带着电引线的密封的500 mL的玻璃瓶中,通入在空气或者氩气中稀释的NO2((2~200)×10-6)或者NH3(01%~1%),流速700 mL/min。检测SSWNT的电阻变化,得到的I/V关系曲线如图1(b)和(c)所示,在NH3气氛中其电导可减小两个数量级,而在NO2气氛中电导可增加3个数量级。其工作机理是半导体单壁碳纳米管在置于NH3气氛中时,使价带偏离费米能级,结果使空穴损耗导致其电导变小;而在NO2气氛中时,使价带向费米能级靠近,结果使空穴载流子增加从而使其电导增加。由于金属/SSWNT/金属结构类似于空穴作为主要载流子的场效应管,所以在源极和漏极之间的电压一定时,电流随着栅极电压增大而减小(如图2所示)。图2中,b曲线是未通入任何气体的栅电压电流关系曲线,曲线a和c的栅电压电流关系曲线分别是NH3和NO2气氛中测得的。未通入任何气体时,在栅电压为0 V时,电流是15 μA,若通入有NH3的气氛中时,电流则几乎变为0 A。那么,如果测NH3气,我们就将初始栅电压设置在0 V,则由上图可知样品的电导将减小两个数量级。若测NO2气体,先将栅电压设置在+4 V,未通入NO2气体前则电流几乎为零,NO2通入后,电流大大增加,则其电导增加了3个数量级。这样可以使传感器在复杂的气体环境中具有选择性。

  • 扫描美国纳米生物专利技术

    扫描美国纳米生物专利技术  纳米生物技术是纳米技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。纳米生物技术所要研究的对象是生物分子、细胞、组织在纳米层次的结构变化,其主要的研究方向包括:生物材料(材料——组织介面、生物相容性材料),仪器(生物传感器、研究工具),治疗(药物和基因载体)等。  美国是世界上申请有关纳米技术专利最多的国家,搜索“纳米”可找到近8000个专利,日本排在其后,我国名列第三。相对而言,我国在纳米生物技术的理论研究和应用研究方面相比其他学科远远地走在了前面。为了更多地探知美国在纳米生物技术领域的研究现况,指导我国的研究策略,我们从公开申请的专利中去探知美国的研究状况,特别介绍一些国内研究人员比较感兴趣的技术和方法:

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制