当前位置: 仪器信息网 > 行业主题 > >

纳米表面

仪器信息网纳米表面专题为您整合纳米表面相关的最新文章,在纳米表面专题,您不仅可以免费浏览纳米表面的资讯, 同时您还可以浏览纳米表面的相关资料、解决方案,参与社区纳米表面话题讨论。

纳米表面相关的资讯

  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。   加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。   研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。   张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 石墨烯和石墨表面的共价修饰纳米图案
    石墨烯和石墨表面的共价修饰纳米图案研究人员在本文中展示了一种共价修饰的方法,并由此在石墨烯以及高定向热解石墨(HOPG)的表面成功地控制了纳米图案的形成过程。他们在对制得的样品进行了纳米级的表征后发现可以通过改变电化学反应的条件来调控所得纳米图案的尺寸。这种可以在表面构建纳米图案结构的方法使得目前电子产品微型化这一趋势可以进一步发展,同时也有益于其它各种各样纳米技术的应用。虽然目前已经存在一系列的自下而上的技术(也就是从单个分子的基础上搭建特定结构 )并被应用于在石墨烯以及HOPG基底上形成纳米图案结构。但是这些结构通常由非共价键形成,因此其稳定性受到很大的局限。 由来自比利时、越南和英国的科研人员组成的团队报道了一种通过共价修饰来控制纳米图案形成的方法。石墨的表面暴露在电解液中,而电解液包含了芳基重氮盐 NBD(4-nitrobenzenediazonium)以及TBD(3,5-bis-tert-butylbenzenediazonium)。然后在电化学池中通过循环伏安法以及计时电流法进行接枝反应。 研究人员通过原子力显微镜(AFM)和扫描隧道显微镜(STM)对样品进行了表征并在修饰后的石墨烯或HOPG表面发现了近乎圆形的斑点。这种结构被称为”nanocorrals”,研究人员认为其是由实验过程中在近表面形成的气泡引起的。AFM图像表明这种nanocorral的直径(约为45-130 nm)以及密度(20−125/μm2)可以通过分别改变电化学活化条件以及电解质比例的方法来进行人为调控。 这一实验方法可以十分便捷的制备出可调控的图形结构,可以在纳米约束反应中用作微小的“培养皿”。这种方法还可以促进超分子自组装领域以及其它表面反应的研究。Instrument usedCypher ES Techniques used研究人员通过循环伏安法制得样品后,借助了牛津仪器快速扫描AFM Cypher ES,以轻敲模式(tapping mode)对样品的表面形貌进行了纳米级的表征。Cypher ES具备着对样品环境进行精确控制的能力,在本实验中研究人员由此保持了样品处于32°C的恒温下。除了精确的多元环境控制功能,Cypher ES还具备着快速扫描、简单易用以及优于传统AFM的空间分辨率等优点。 Citation: Thanh Phan, Hans Van Gorp, Zhi Li et al., Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13, 5559 (2019). https://doi.org/10.1021/acsnano.9b00439 Note: The data shown here are reused under fair use from the original article, which can be accessed through the article link above.
  • 表面活性剂:从分子到纳米粒子
    p   韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。 /p p   表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。 /p p   现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。 /p p br/ /p
  • 布鲁克收购CETR 并入纳米表面仪器部
    9月12日,布鲁克公司宣布收购Center for Tribology(CETR)公司,具体收购金额未公开。按照惯例成交条件,预计该交易将于2011年第三季度末结束。CETR公司是一家私人控股公司,位于美国硅谷坎贝尔,2011年公司收入预计可以达到1000万美元,税息折旧及摊销前利润(EBITDA)则超过200万美元。   据了解,收购完成后,布鲁克计划继续在硅谷运行CETR公司,并将CETR的业务、研发、销售、支持服务等整合进布鲁克纳米表面仪器部。预计CETR将作为一个独立的摩擦学和压痕业务,加入AFM(原子力显微镜)和SOM(手写笔和光学计量)两大业务所属的布鲁克纳米表面仪器部。   布鲁克纳米表面仪器部总裁Mark R. Munch博士表示:“近二十年来,CETR在纳米压痕与微压痕、材料与摩擦学测试领域不断取得成功,我们很高兴CETR公司的核心技术能够加入布鲁克的原子力显微镜和光学测量技术产品中。”   CETR公司创始人、总裁兼首席执行官Norm V. Gitis博士说到:“目前,CETR公司已为客户提供了超过15年的创新压痕和摩擦学测试解决方案,而布鲁克拥有着享誉全球的仪器仪表产品组合与销售和技术支持系统,我们很高兴CETR公司完整的材料测试产品线能够加入布鲁克,这将使我们的技术可以拓展到新的地区和市场。”   关于CETR公司   美国Center for Tribology(CETR)公司,成立于1993年,是一家提供测试和咨询服务的高科技公司,目前在纳米机械与摩擦测试仪器领域占据领先地位。其产品服务范围广泛,包括生物医药、石油、微电子、能源、汽车等各个领域的基本材料研究和工业制造。欲了解更多关于CETR的信息,请访问www.cetr.com。
  • 布鲁克纳米表面与量测部门邀请您参加SEMICON CHINA 2024
    全球半导体行业规模最大的旗舰展览盛会—SEMICON CHINA 2024将于3月20日-3月22在上海浦东新国际博览中心隆重举行。此次展会汇聚了中外行业领军人物和技术大咖,将打造一个覆盖芯片设计、制造、封测、设备、材料、光伏、显示等全产业链的合作交流平台。本次大会上,Bruker 纳米表面与计量部将在展台N5 5176为大家展出四台先进的设备:具有大样品台、扩展功能强大的原子力显微镜Dimension Icon,具有专利的智能成像技术以及其他创新设计的Icon,能测试多种类型的样品并得到高分辨率、可重复的数据结果;集合纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的Dimension IconIR,在Icon的大样品台基础上,除了获得纳米级尺度的红外信息之外,还可以为材料领域的研究提供纳米尺度下的力学、电学和热学表征;用于表面三维形貌及粗糙度快速测量分析的三维非接触式光学轮廓仪Contour X,测量的准确性、鲁棒性以及强大的自动化测量功能,可极大提升用户的操作体验;以及用于表征纳米尺度表面的机械性能、摩擦磨损和薄膜结合力的纳米压痕仪TI980,其先进的控制模块和电子设计为纳米力学表征带来了更高水平的性能、功能和易用性。同时,多位来自布鲁克研发部门以及应用部门的资深专家将详细介绍我们的产品在半导体、LED、太阳能、触摸屏、通信、材料、化学、生命科学、物理以及数据存储等多领域的应用案例。仪器展示 为回馈广大用户长久以来的支持和帮助,我们将于3月20日-3月22日期间在展位N5 5176现场展开抽奖活动,300份精美礼品(包括键盘,罗技鼠标,洗漱包,膳魔师保温杯,膳魔师马克杯,多功能数据线,U型枕)等您来取,中奖率高,欢迎莅临,仅限现场抽奖和领取。
  • 直播| 原子力显微镜和纳米压痕在材料表面微观性能方面的应用
    纳米压痕仪您可以使用安东帕的多功能压痕仪精确得到薄膜、涂层或基体的机械特性,例如硬度和弹性模量。仪器可以测试几乎所有材料,无论是软的、硬的、易碎的还是可延展的材料。也可以在纳米尺度上对材料的蠕变、疲劳和应力 - 应变进行研究。载荷范围大:从纳米到宏观尺度安东帕的纳米压痕仪的载荷范围大,因此几乎提供市面上最多的功能且适用性最强的解决方案。这些专用的压痕测试仪涵盖纳米、微米和宏观尺度,可用于研究无数种材料,包括金属、陶瓷、半导体和聚合物等。纳米压痕测量纳米压痕测量让您能获得材料的机械性能,如硬度、弹性模量或蠕变。在压痕测试过程中,会持续记录载荷和位移,并在仪器的实时提供载荷和位移曲线。直接得到硬度和弹性模量与传统的微米硬度测试仪相反,安东帕压痕仪不仅能够得到样品的硬度,也能够基于高精度的仪器化压入测试 (IIT) 技术得到样品的弹性模量。独特的表面参比技术真正使安东帕压痕仪远远优于其他同类仪器的设计特性是其独特的表面参比系统。我们的仪器设计结合了涵盖整个压痕仪的顶表面参比技术,对大量的压痕测试提供一致的参比。高框架刚度得益于安东帕独特的表面参比技术,纳米压痕仪的将框架距离减至最小,提供极高的框架刚度,从而直接结果就是非常高的测量精度。原子力显微镜:Tosca 系列安东帕Tosca 系列以独特的方式将先进技术与高时效操作相结合,使这款 AFM 成为非常适合科学家和工业用户等群体的纳米技术分析工具。有两种不同的型号可供选择:Tosca 400 或 Tosca 200,前者适合大样品,属于高端 AFM,后者适合中型样品以及预算有限的用户。两者提供的性能、灵活性和质量水平相同。采用模块化理念,为未来的发展做好准备现在你获得的这款仪器已经可以满足未来的需求。其设计为为不远的将来能够扩展多种功能和可能性。可以在当前系统中添加新功能和模式。设计稳固,适用于工业应用安东帕 AFM 的设计专注于工业应用。仪器的机械和电子元件已经通过耐久性测试进行了全面检查。所有关键部件都必须通过这些测试,以确保能够在运行现场多年无故障运行。 紧凑型仪器,体积小巧仪器的两大部分——主机和控制器——在实验室空间和功能方面都做了优化。安东帕的 AFM 集先进的自动化与高精度于一体,同时只需要很少的空间。例如,压电陶瓷 驱动器仍留有充足空间用于安装其他模式或模块的电子扩展卡。 切尽在掌控安东帕 AFM 简化了与仪器的交互,操作非常简单。您只需将样品放在样品台上,安装悬臂梁,然后关闭仓门即可。其余的活动(比如样品定位、接触过程等等)均由软件来执行和控制。 数秒中内即可更换悬臂梁压电陶瓷驱动器 设计精巧,您可以使用我们的悬臂梁更换工具,非常轻松、快速地更换悬臂梁。只需将压电陶瓷驱动器放入工具中,然后向内或向外滑动悬臂梁。无需用镊子将悬臂梁放入压电陶瓷驱动器中,并且能保证悬臂处于最佳放置。
  • 布鲁克纳米表面仪器部精彩亮相上海SEMICON展会
    3月17-19日,SEMICON China 2015在上海新国际博览中心隆重开幕。布鲁克纳米表面仪器部作为表面观测和测量技术的全球领导者携NPFLEX三维表面测量系统、ContourGT 系列光学形貌仪和Dimension Edge原子力显微镜亮相展会,倍受参展观众的青睐,取得了圆满成功。 布鲁克展台参观人员络绎不绝,现场技术专家忙于为参观客户介绍公司产品。并有来自台湾客户对布鲁克公司非常满意,热情的要求跟工作人员合照。现场气氛火爆,在此次展会上收获颇丰。 布鲁克展台参观人员应用工程师为参观客户进行产品讲解 布鲁克应用专家黄鹤博士现场为客户进行样品测量 台湾客户主动要求跟布鲁克工作人员合照 客户服务热线:400 890 5666 邮箱:sales.asia@bruker-nano.com网址:www.bruker.com/cn 作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪和探针式表面轮廓仪系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。ContourGT 光学形貌仪广泛应用于触摸屏、高亮度LED、太阳能电池、模具、零部件测量等各种领域该系列包括基本型ContourGT-K,中端型号ContourGT-I,以及高端型号ContourGT-X和ContourGT-X8 PSS(该型号专为高亮度LED的质量保证/质量监控而设计)等。每一种型号为用户的不同需求提供解决方案,以满足在精密制造和特定行业的要求,如高亮度LED、触摸屏、太阳能电池、隐形眼镜、半导体、硬盘、汽车和骨科等。NPFLEX 三维表面测量系统为大尺寸工件精密加工提供准确测量布鲁克的NPFLEX 三维表面测量系统为大样品表面提供了灵活的非接触式测量方案,可广泛用于医疗植入、航空航天、汽车或精密加工上的大型、异型工件的测量。基于白光干涉原理,NPFLEX 为用户提供超过接触式方法所能达到的更大数据量、更高分辨率和更好的重复性,使它成为独立或者互补的测量方案。开放式的拱门设计克服了以往某些零件由于角度或取向造成的测量困难,可实现超过300度的测量空间。NPFLEX的超级灵活性、数据准确性和测试效率为精密加工行业提供了一种简单的方法,来实现其更苛刻的加工要求、更高效的加工工艺和更好的终端产品。 感谢您对布鲁克公司纳米表面仪器的继续关注!
  • 布鲁克纳米表面仪器部主赞助第十一届全国表面工程大会
    由中国机械工程学会表面工程分会主办,西南交通大学和表面物理与化学重点实验室承办的第十一届全国表面工程大会暨第八届青年表面工程学术会议于10月22-25日在成都金牛宾馆召开。值此二年一届的表面工程盛会之际,国内外1000多名专家参加了本次大会。布鲁克纳米表面仪器部作为大会的主赞助商,携NPFlex三维表面测量系统和TriboLab摩擦磨损测试系统亮相大会。大会承办方为我公司颁发了赞助证书。主赞助商证书会议期间,表面工程领域内的大量专家教授对我公司产品产生浓厚的兴趣,与我公司应用专家进行了深入的交流沟通。中国区应用技术支持主管黄鹤博士也在此次大会上做了技术报告。黄鹤博士现场做仪器演示另值此大会之际,布鲁克纳米表面仪器部在金牛宾馆举办了西南地区的用户会,黄鹤博士、陈苇纲博士、魏岳腾博士分别在用户会上做了相关产品的技术报告。黄鹤博士现场答疑陈苇纲博士做原子力显微镜产品报告魏岳腾博士做摩擦磨损测试系统产品报告
  • 贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。  由于电磁增强作用,位于贵金属纳米结构表面的分子拉曼信号会得到数量级的增强,从而产生表面增强拉曼散射效应。表面增强拉曼散射技术具有分子“指纹”识别能力,在化学和生物分析等领域拥有广泛的应用前景。贵金属纳米结构表面具有大幅度增强局域电磁场的位置(一般位于10nm的间隙处)称为表面增强拉曼散射“热点”,是表面增强拉曼散射信号的主要来源。因此,在三维空间内增加“热点”的密集度将有效提高表面增强拉曼散射灵敏度。目前,构筑三维SERS基底的主要方式是将球形贵金属颗粒组装到非金属纳米结构阵列上。相关理论和实验研究表明,与球形贵金属纳米颗粒相比,带有棱角或尖端的贵金属纳米结构能够产生更强的局域电磁场,因而其组装体在间隙处更易产生“热点”。如果将这些纳米结构组装成三维SERS基底,有望得到高灵敏度SERS基底。  该研究团队以ZnO纳米锥阵列作为牺牲模板,使用含有贵金属离子和特定表面活性剂的电解液,采用电沉积方法构筑多种贵金属纳米结构单元组装的纳米管阵列,例如由银纳米片、金纳米棒、铂纳米刺和钯纳米锥等结构单元组装的纳米管阵列。这些纳米结构单元具有显著的棱角和/或尖端 由其组装的纳米管阵列具有大量间隙,在三维空间内产生高密度的“热点”。因此所构筑的纳米管阵列具有很高的表面增强拉曼散射灵敏度。例如,银纳米片组装的纳米管阵列能够灵敏地检测浓度低至10fM的罗丹明6G (R6G)。这种银纳米片组装的三维SERS基底对高毒性有机污染物多氯联苯也表现出高表面增强拉曼散射灵敏度,并能够检测两种多氯联苯的混合物,表明该三维SERS基底在检测环境中高毒性有机污染物方面具有应用前景。  相关工作得到科技部“973”计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。图1. 论文的相关图片被选作期刊封面  图2. (a)银纳米片组装的纳米管阵列的扫描电镜(SEM)照片 (b)折断的纳米管的SEM照片 (c)不同浓度R6G的SERS光谱 (d) 20μ M多氯联苯-77 (PCB-77)和10μ M多氯联苯-1 (PCB-1)的混合物溶液(曲线I) 以及30μ M的 PCB-1溶液(曲线II)的SERS光谱。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 宝钢制订钢铁表面纳米尺度薄膜国家标准
    日前,由宝钢股份研究院负责起草的国家标准《辉光放电光谱法定量分析钢铁表面纳米尺度薄膜》,通过了全国微束分析标准化技术委员会的评审。评审专家还建议,鉴于该标准在国际上亦属首次提出,可在适当时候转化为国际标准。   对钢铁表面进行涂镀处理,是目前提高钢铁产品抗腐蚀性能的主要途径,如镀锌、彩涂产品等。随着涂镀工艺的发展,真空镀膜、闪镀等新的表面处理技术可以使薄膜厚度减薄至几百个到几个纳米,不仅降低了生产成本,而且减少了环境污染。但是,如何准确控制和分析纳米尺度薄膜的厚度及成分,国际上一直没有统一标准。   宝钢从2003年开始对纳米尺度薄膜的表征技术展开深入研究,并在国内冶金行业率先应用辉光放电光谱法,积累了丰富的经验。2007年,国家标准委下达了制订《辉光放电光谱法分析钢铁表面纳米尺度薄膜》国家标准的计划。宝钢因在这一领域起步较早,并已具备较强研发实力,理所当然地承担起了该标准的起草工作。   为做好标准的起草工作,宝钢研究院进行了大量的准确度和精密度试验,并与近20家高等院校、科研院所和钢铁同行开展了技术交流,最终完成了标准起草工作,并顺利通过国家评审。
  • 纳米纤维素表面处理对PMMA 复合材料的性能影响研究
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA 复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院 冯婷婷】纳米纤维素表面处理对PMMA 复合材料的性能影响研究纳米纤维素表面处理对PMMA 复合材料的性能影响研究上海和晟 HS-TGA-101 热重分析仪
  • Bruker纳米表面仪器部成立客户服务中心-开通400免费服务电话
    本着&ldquo 客户永远是第一位&rdquo ,从客户的实际需求出发,为客户提供真正有价值的服务,帮助客户更好地使用产品,布鲁克纳米表面仪器部在北京办公室成立客户服务中心(Custom Car Center,CCC)。  为广大用户提供最优质的客户服务、最先进的技术支持,建立密切合作的客户关系,树立强大的Bruker品牌。布鲁克纳米表面仪器部客户服务中心配备最专业的技术人员,及时地、全方位地关注客户的每一个服务需求,并通过提供广泛、全面和快捷的服务,使客户体验到无处不在的满意和可信赖的贴心感受。 布鲁克纳米表面仪器部客户服务中心: 地址:北京市海淀区中关村南大街11号光大国信大厦6层6203室 400免费服务电话:400-890-5666 E-mail:customer.care.asia@bruker-nano.com
  • 布鲁克纳米表面仪器部诚邀您参加在成都举办的全国表面工程大会
    由中国机械工程学会表面工程分会主办,西南交通大学和表面物理与化学重点实验室承办的第十一届全国表面工程大会暨第八届青年表面工程学术会议将于2016年10月22-25日在成都举行,将为我国表面工程学科的学术交流提供一个重要的平台。表面工程着眼于材料的表面性质,通过对材料表面的再设计和制造,使其被赋予特殊的表面性质,如表面功能化、表面强化、表面防护、表面装饰等。作为一门新兴的交叉学科,表面工程涉及面宽,应用面广。布鲁克纳米表面仪器部作为本次大会的主赞助商,将在会议现场展示三维表面测量设备和摩擦磨损测试设备。会议详情请进入官网了解www.2016ICSE.cn。值此大会之际,我们将于10月22日下午14:00-17:00在成都金牛宾馆举办用户会,诚邀您的参加。布鲁克的应用专家将向您展示表面测量分析的全系列产品及其强大的应用功能,以及最新的技术应用进展。报告人报告题目黄 鹤 博士布鲁克BNS中国区应用主管材料表面的直观观察与定量评定方法的探讨:功能材料的表层结构、结构材料的磨损前后陈苇纲 博士布鲁克AFM应用专家原子力显微镜的高级模式以及在多功能薄膜和镀层领域的应用魏岳腾 博士布鲁克TMT应用专家生物材料摩擦学研究方法若您对我们的用户会感兴趣,请致电010-58333257或发送邮件至min.cai@bruker.com报名参加。期待您的光临!更多信息或动态请关注我们的微信公众号
  • 用于表面增强拉曼散射检测的半包裹金纳米粒子
    研究人员一直在努力开发高度可靠和灵敏的表面增强拉曼散射(SERS)基底,用于检测复杂系统中的化合物。在这项工作中,我们提出了一种用不完全包裹的普鲁士蓝(PB)构建Au核的策略,用于高可靠性和高灵敏度的SERS衬底。包裹的铅层可以提供内标(IS)来校准SERS信号浮动,而金岩心的暴露表面提供增强效应。信号自校准和增强之间的平衡(因此SERS可靠性和灵敏度之间的折衷)通过Au核上PB层的近似半包裹配置(即SW-Au@PB)来获得。提出的SW-Au@PB纳米粒子(NPs)表现出与原始Au NPs相似的增强因子,并有助于使用R6G作为探针分子的校准SERS信号的超低RSD (8.55%)。SW-Au@PB NPs同时实现的可靠性和灵敏度还可以检测草本植物中的有害农药残留,如百草枯和福美双,平均检测准确率高达92%。总的来说,这项工作主要为不完全包裹的纳米粒子提供了一种可控的合成策略,最重要的是,探索了在具有不同溶解度的危险物质的精确和灵敏的拉曼检测中的概念验证实际应用的潜力。a)IW-金@PB纳米颗粒的制造。b)IW-金@PB纳米粒子系统信号自校准能力的原理。c)模拟原始金纳米颗粒、IW-金@PB纳米颗粒和基于核壳的FW-金@PB纳米颗粒的局部电场分布。d)IW-金@PB纳米颗粒的拉曼光谱。e)具有不同铅包裹度的IW-金@PB纳米颗粒的典型TEM图像,包括LW-金@PB、SW-金@PB和NFW–金@PB纳米颗粒。f)原始金纳米颗粒、PB纳米颗粒和具有不同PB层包裹程度的IW-金@PB纳米颗粒的紫外/可见吸收光谱。g)关于IW-金@PB纳米颗粒红移的吸收光谱的放大图。R6G的典型SERS光谱,其中原始Au NPs、LW-Au@PB NPs、SW-Au@PB NPs和NFW–Au @ PB NPs作为SERS基底。b)当在硅片上蒸发SW-Au@PB NPs/R6G时,R6G特征峰(612cm-1)和IS峰(2155cm-1)的SERS强度以及它们在随机选择的15个点上的强度比。c)当在硅晶片上蒸发Au NPs/R6G时,R6G特征峰(612cm-1)的SERS强度穿过随机选择的15个点。d)硅晶片上SW-Au@PBNPs分布的典型SEM图像。e-f)硅晶片上蒸发的SW-Au@PB NPs/R6G (e)的校准SERS信号和Au NPs/R6G (f)的SERS信号的映射结果。g)疏水纸上SW-Au@PB NPs分布的典型SEM图像。h-I)SW-Au @ PB NPs/R6G(h)的校准SERS信号和Au NPs/R6G (i)的SERS信号在疏水纸上蒸发的映射结果。a-b)在硅片(a)和疏水纸(b)上具有不同R6G浓度的SW-Au@PB NPs/R6G的典型SERS光谱。c)R6G特征峰的校准SERS强度与R6G浓度的对数之间的对应关系。d)基于SW-Au@PB NPs和疏水纸,跨10个批次的R6G特征峰的相对SERS强度,在每个批次中随机选择5个点。e)长期储存SW-Au@PB NPs和疏水纸后R6G的典型SERS光谱。f)长期稳定性试验中R6G特征峰的相应相对SERS强度。a)基于SW-Au @ PB NPs/疏水纸系统的不同浓度百草枯的典型SERS光谱。b)百草枯特征峰的相对SERS强度与百草枯浓度对数的对应关系。c)基于SW-Au @ PB NPs/疏水纸系统的不同浓度的福美双的典型SERS光谱。d)福美双特征峰的相对SERS强度与福美双浓度的对数的对应关系。三种草本植物中百草枯(e)和福美双(f)的典型SERS光谱。相关成果以“Semi-wrapped gold nanoparticles for surface-enhanced Raman scattering detection”,发表在国际学术期刊“Biosensors and Bioelectronics”上。
  • 问传统求新知——用扫描电镜揭开铝电解抛光表面的各向异性纳米图案的神秘面纱
    金属的电解抛光,是一种传统而常用的表面处理技术,通过可控的电化学反应使金属表面溶解(凸起部分溶解速度快)来降低表面粗糙度。利用电解抛光技术,可以获得纳米级粗糙度的镜面光泽表面,而且可以去除前序机械加工遗留的表面和亚表面损伤层。不过,不为一般仅使用该技术的研究者注意的是,在一定的电化学条件下,电解抛光后的金属表面会出现纳米级的图案(pattern),其中对金属铝的研究较多。研究者发现,金属铝(Al)经短时间电解抛光处理后,表面会出现周期或特征周期为几十至一百多纳米的有序条纹状(stripe)、六边顶角状(hexagon)及点状(dot)等多种有序或无序图案。这一现象,已经引起了研究者对其在金属表面微纳工程、微纳模板加工、微纳电子学等领域应用的关注。研究者已经开始深入挖掘纳米图案形成的机理,关键是揭示材料表面结构和界面电化学行为决定纳米图案类型及周期的物理化学规律。但是,目前已经发表的研究,缺少对多晶和单晶铝表面纳米图案形成行为的系统实验研究,定性的多定量的少,零散的多系统的少,难以用来检验和改进现有的表面纳米图案形成理论。其中一个被长期忽略的关键问题,就是铝表面结构差异导致的纳米图案的各向异性。哈尔滨工业大学化工与化学学院的甘阳教授和他指导的博士生袁原(论文第一作者)、张丹博士、杨春晖教授及机电学院的张飞虎教授,首次采用电子束背散射衍射(EBSD)对电解抛光后的多晶铝和单晶铝进行了定量的表面晶体学取向分析,并采用蔡司的Sapphire Supra 55场发射扫描电镜(FE-SEM)和原子力显微镜(AFM)对纳米图案的类型(type)和周期(size)进行了系统表征和量化分析,揭示了铝电解抛光表面纳米图案的类型和周期对于表面结构和晶体学取向的依赖性的规律。同时,基于表面物理化学的理论框架,对结果进行了深入分析和讨论,定性解释了大部分的实验结果,并指明了下一步的研究方向。研究结果近期以长文形式发表于电化学领域的国际知名期刊Journal of the Electrochemical Society,国际同行评审专家认为该工作是对本领域的重要贡献。甘阳教授课题组首先对多种铝样品的电解抛光表面纳米图案进行了系统的研究:1)多晶铝(polycrystalline Al)中不同取向的晶粒;2)切割角可控的系列单晶铝(monocrystalline Al)样品。通过EBSD测试获得晶粒表面的晶体学取向图,并结合定位SEM表征,他们发现,铝电解抛光表面纳米图案对晶面取向具有依赖性(如图1所示为多晶样品中三个毗邻的晶粒)。(背景知识:描述铝表面晶体学取向的EBSD反极图三角(IPF triangle)中,可划分为围绕三个低指数晶面方向(primary direction,主取向)的晶体学主取向区域—[101] //ND,[001] //ND和[111]//ND,单个晶粒或单晶的表面取向偏离主取向的角度称为取向差角(misorientation angle)。)通过对数十个不同取向的多晶晶粒的逐一定位SEM表征,他们发现了一系列未被报道过的现象(图2):1)纳米图案类型和周期对晶面取向的依赖性是否显著取决于所属的主取向区域;2)在同一主取向区域内,纳米图案类型和周期随着取向差角的改变呈现渐变性规律;3)对于具有相同取向差角但偏向不同主取向的晶面,纳米图案类型和周期也发生变化;4)在两个或三个主取向的交界处,纳米图案类型和周期基本相同。他们进一步测试和分析了一系列取向差角可控的单晶铝样品(图3),证实了上述多晶样品的结果,并揭示出目前尚难以解释的单晶和多晶样品间的图案周期性大小的差异问题(图4)。图1 (a)电解抛光多晶Al样品的EBSD分析IPF图,(b)放大后的IPF图和IPF三角显示三个相邻的A、B、C晶粒及其所属的主取向区域和各自的晶面取向差角值,(c)三个晶粒的定位SEM形貌图像,相邻晶粒被晶界隔开并交于一点,(d–f)三个晶粒的AFM形貌图像和细节放大图及FFT分析图,(g–i)为对应AFM图中白线段的线轮廓分析图。图2 (a)电解抛光后不同晶面取向的多晶铝晶粒在IPF三角中的位置图,(b–y)不同晶粒表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图3 (a)不同晶面取向的单晶铝样品在IPF三角中的位置图,(b–s)电解抛光后不同单晶样品表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图4(a,b)单晶和多晶样品的表面纳米图案周期(L)随取向差角(θ)变化的L–θ图,上方刻图轴给出了三个主取向区域内与θ对应的所属表面的表面台阶宽度(w)。(c,d)单晶和多晶样品的各晶面在IPF三角中的对应位置图。L–θ图和IPF三角中的几条连线,表示的是连接了近似位于延某个主取向辐射出去的直线上的若干晶面(及IPF三角中的若干对应的点)。为了解释实验结果,他们建立了一系列不同取向晶面的表面原子排列的“平台–台阶”模型(图5),还特别关注了更复杂的“平台–台阶–扭折”表面结构(图6)。尽管尚没有考虑表面驰豫、重构等的影响,他们根据表面结构特征随取向差角的变化规律,解释了实验观察到的纳米图案类型和取向差角的关系。比如,在一个主取向区域内,随着取向差角的增大,表面台阶宽度逐渐减小而不是突变,界面能的变化也应该呈现渐变的特性,这就解释了纳米图案的类型随取向差角改变的渐变现象。此外,在两个或三个主取向区域的交界处,大取向差的晶面的表面结构(平台宽度和台阶处的原子排列)很相似,所以导致纳米图案的类型基本相同。而不考虑上述结构特征,就很难解释实验上观察到的现象。图5(a–f)[001]和[101]//ND主取向区域内6个不同取向差角的晶面的表面“平台–台阶”结构模型的正视图和侧视图。表面单胞用红色平行四边形或矩形表示。(g)6个晶面在IPF三角中的位置图。图6 (a–c)[001]//ND主取向区域内3个取向差角相等但偏向不同方向的晶面的表面“平台–台阶–扭折”结构模型的正视图。表面单胞用红色平行四边形表示,特别给出了平均台阶宽度。(d)3个晶面在IPF三角中的位置图。图7 在电解抛光过程中吸附分子在不同平台宽度“平台–台阶”表面的扩散和脱附行为差异的示意图。(a)宽平台表面;(b)窄平台表面。他们基于表面结构影响电化学溶解和界面分子吸附、扩散行为的理论框架,对文献中现有的“吸附–溶解”理论进行了深化,进一步提出了表面平台宽度和台阶位点的数量会影响电解抛光液中的表面吸附分子(如乙醇)在表面的扩散(以扩散系数表征)和吸脱附(脱附速率常数)行为。取向差角越大,平台宽度越窄(台阶密度也越大),分子在表面的扩散障碍越大,但同时脱附也更困难,这二者的竞争导致图案的周期先增加并逐渐达到峰值后减小。以外,他们还提出了一套结合SEM测量和图像的FFT处理的分析步骤,以此为基准来准确确定准无序纳米图案的平均周期大小,有效避免了单点测量的较大偏差。以上研究工作,对铝及其它金属(如Ti,Ta,Zn,W)及合金的电解抛光表面纳米图案化研究具有普通意义。甘阳教授课题组正在继续深入研究更多实验因素的影响、图案演化的计算机模拟及理论模型的建立,力图全面揭示金属电解抛光表面纳米图案的形成机理。该研究得到了国家自然科学基金重点项目、国家重点研发计划项目等的资助。恭喜哈尔滨工业大学化工与化学学院甘阳老师课题组使用蔡司场发射扫描电镜做科学研究,取得丰硕的科研成果!
  • 布鲁克纳米表面仪器部冬季原子力显微镜基础培训
    布鲁克纳米表面仪器部将于11月21-25日在北京举办原子力显微镜(AFM)基础培训,培训地点:北京海淀区中关村南大街11号光大国信大厦5楼培训室。本次培训的主要内容是AFM的基础应用,面向的对象是AFM初学者,欢迎新老客户莅临参加。为了保证培训质量,让每一位学员都有上机操作的机会,学到真正对自己的科研有价值的东西,本次培训课程席位有限,请根据实际需要选择课程。本次培训课后有认证考试,学员可以选择参加,通过认证考试者可获得Bruker颁发的BCSO(Bruker Certified SPM Operation)认证证书。本次培训课程对所有质保期内以及持有Service Contract的客户免费。欲了解培训报名详情,欢迎各位老师及同学拨打我们的客服电话021 5172 0837详询。布鲁克纳米表面仪器部,经过了二十多年的发展,始终在AFM领域里处于领先的地位。为了对客户在实验过程中遇到的各种问题进行快速响应,公司投入数百万美元在北京建成了客户服务中心,为中国数千名Bruker AFM用户提供电话咨询、远程协助和培训服务。为了减少宕机时间,公司在北京建成维修中心,提供主流AFM产品的本地快速检测和维修服务。
  • 布鲁克纳米表面仪器部开通优酷视频专辑
    布鲁克纳米表面仪器部开通优酷视频专辑 Bruker Nano Surfaces YouKu Channel &mdash 欢迎订阅优酷上Bruker Nano Surfaces的相关视频,观看最新的AFM产品和相关技术进展,以及历届网络研讨会和培训资料,精彩内容持续更新中! http://i.youku.com/u/UNDU0NDQ5MTEy
  • 岛津创新:纳米表面分子导向限制性酶解(nSMOL)技术
    对大多数研究团队或制药公司而言,生物基质中单克隆抗体药物的定量分析常常面临着两个棘手的问题:首先是由于样品前处理方法不合适导致的选择性、重复性不佳;其次,若使用LC-MS/MS 进行分析时,会出现耗时或灵敏度不理想的情况。 岛津公司生命科学研究中心一直致力于开发一类通用型前处理方法,以实现对单克隆抗体药物便捷、高效地分析。蛋白酶解方法是目前常用方法之一,其将单克隆抗体分子水解为多个多肽片段,通过对特征性肽段进行检测,从而实现对抗体药物的定量分析。然而,经该方法酶解得到的多肽片段种类数量众多,组分较复杂,因此大大减弱了检测灵敏度。为了简化该前处理方法, 岛津公司推出了一项全新的技术——纳米表面分子导向限制性酶解(nSMOL, nano-Surface and Molecular Orientation Limited Proteolysis)技术,该技术由岛津公司 Takashi Shimada 博士开 发,可用于所有单克隆抗体药物的定量分析。 nSMOL 技术可在近生理条件下,完成对抗体药物的选择性酶解,并获得与之相应的特征性肽段组分。其工作原理是利用抗体树脂对样品中单克隆抗体药物进行捕获,之后通过蛋白酶纳米颗粒对树脂上抗体成分进行限制性酶解,得到多肽片段。该酶解主要针对抗体的 Fab 区域,Fab 区域外余下部分不受酶解作用且仍保留在原树脂上(如图所示)。因此,nSMOL 技术不仅能够保证获得特异性的抗体序列片段,而且限制性酶解技术大大降低了样品的复杂性,缩短样品前处理时间,提高了检测灵敏度。 针对 LC-MS/MS 分析时出现耗时或灵敏度不理想的情况,岛津公司推出的新一代三重四极杆质谱仪 LCMS-8050 和 LCMS-8060,实现了灵敏度和速度的创新性突破。其全新的离子导向技术增强了离子聚焦能力和信号响应,30000 u/sec 超快的数据采集速度和 5 msec 极性切换速度,使 LCMS-8050 和LCMS-8060 在保证高灵敏度的同时还具有出众的分析速度。因此, LCMS-8050 和 LCMS-8060 的问世为复杂的生物分析提供了高灵敏度、高稳定性,并缩短了分析时间。 nSMOL 技术与 LCMS-8050 或 LCMS-8060 的完美融合,为单克隆抗体药物的定量分析铺平了道路,开拓了视野。基于该技术,岛津公司完成了人血浆中曲妥珠单抗、贝伐珠单抗、利妥昔单抗等单克隆抗体药物的分析,研究成果已在多个国际期刊中发表。 nSMOL 技术结合岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060 能够较好地解决单克隆抗体药物在定量分析中面临的问题,我们希望该技术能为有关从业人员提供新思路、新方法,也希望该技术能在抗体药物临床前及临床研究中发挥重要作用。岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060
  • 布鲁克纳米表面仪器部广州站AFM专题讲座
    12月7日上午,布鲁克纳米表面仪器部应用专家孙昊博士在中山大学进行了力学测量技术的新进展和峰值力扫描电化学显微镜专题讲座。中山大学的原子力显微镜用户参加了此次讲座。专题讲座主要介绍了两个专题:1. Advances in mechanical properties measurement of nano-materials characterization by Bruker AFM,主要介绍近两年布鲁克AFM在测量力学方面的一些进展,包括对力曲线和Force Volume的改进,对PeakForce QNM测量准确性的改进,以及新的Contact resonance, Ramp & Hold和Ramp Scripting。2.PeakForce SECM,主要介绍布鲁克扫描电化学显微镜PeakForce SECM的概念与原理以及在电化学活性、液体中导电性测量等方面的应用。布鲁克BNS应用专家 孙昊博士 中山大学AFM专题讲座同日下午,孙昊博士在华南理工大学进行力学测量技术的新进展主题讲座。接近20名AFM用户参加了此次讲座并参与讨论。华南理工大学AFM主题讲座 孙昊博士
  • 岛津创新:纳米表面分子导向限制性酶解(nSMOL)技术
    对大多数研究团队或制药公司而言,生物基质中单克隆抗体药物的定量分析常常面临着两个棘手的问题:首先是由于样品前处理方法不合适导致的选择性、重复性不佳;其次,若使用LC-MS/MS 进行分析时,会出现耗时或灵敏度不理想的情况。 岛津公司生命科学研究中心一直致力于开发一类通用型前处理方法,以实现对单克隆抗体药物便捷、高效地分析。蛋白酶解方法是目前常用方法之一,其将单克隆抗体分子水解为多个多肽片段,通过对特征性肽段进行检测,从而实现对抗体药物的定量分析。然而,经该方法酶解得到的多肽片段种类数量众多,组分较复杂, 因此大大减弱了检测灵敏度。为了简化该前处理方法, 岛津公司推出了一项全新的技术——纳米表面分子导向限制性酶解(nSMOL, nano-Surface and Molecular Orientation Limited Proteolysis)技术,该技术由岛津公司 Takashi Shimada 博士开 发,可用于所有单克隆抗体药物的定量分析。 nSMOL 技术可在近生理条件下,完成对抗体药物的选择性酶解,并获得与之相应的特征性肽段组分。其工作原理是利用抗体树脂对样品中单克隆抗体药物进行捕获,之后通过蛋白酶纳米颗粒对树脂上抗体成分进行限制性酶解,得到多肽片段。该酶解主要针对抗体的 Fab 区域,Fab 区域外余下部分不受酶解作用且仍保留在原树脂上(如图所示)。因此,nSMOL 技术不仅能够保证获得特异性的抗体序列片段,而且限制性酶解技术大大降低了样品的复杂性,缩短样品前处理时间,提高了检测灵敏度。 针对 LC-MS/MS 分析时出现耗时或灵敏度不理想的情况,岛津公司推出的新一代三重四极杆质谱仪 LCMS-8050 和 LCMS-8060,实现了灵敏度和速度的创新性突破。其全新的离子导向技术增强了离子聚焦能力和信号响应,30000 u/sec 超快的数据采集速度和 5 msec 极性切换速度,使 LCMS-8050 和LCMS-8060 在保证高灵敏度的同时还具有出众的分析速度。因此, LCMS-8050 和 LCMS-8060 的问世为复杂的生物分析提供了高灵敏度、高稳定性,并缩短了分析时间。 nSMOL 技术与 LCMS-8050 或 LCMS-8060 的完美融合,为单克隆抗体药物的定量分析铺平了道路,开拓了视野。基于该技术,岛津公司完成了人血浆中曲妥珠单抗、贝伐珠单抗、利妥昔单抗等单克隆抗体药物的分析,研究成果已在多个国际期刊中发表。 nSMOL 技术结合岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060 能够较好地解决单克隆抗体药物在定量分析中面临的问题,我们希望该技术能为有关从业人员提供新思路、新方法,也希望该技术能在抗体药物临床前及临床研究中发挥重要作用。岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew.Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • Advanced Materials: 可调谐低损耗一维InAs纳米线的表面等离激元研究
    亚波长下光的调控与操纵对缩小光电器件的体积、能耗、集成度以及响应灵敏度有着重要意义。其中,外场驱动下由电子集体振荡形成的表面等离激元能将光局域在纳米尺度空间中,是实现亚波长光学传播与调控的有效途径之一。然而,表面等离激元技术应用的关键目标是同时实现:①高的空间局域性,②低的传播损耗,③具有可调控性。但是,由于金属表面等离激元空间局域性较小,在长波段损耗较大且无法电学调控限制了其实用化。可喜的是:近期,由中科院物理所和北京大学组成的研究团队报道了砷化铟(InAs)纳米线作为一种等离激元材料可同时满足以上三个要求。作者利用neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)在纳米尺度对砷化铟纳米线表面等离激元进行近场成像并获得其色散关系。通过改变纳米线的直径以及周围介电环境,实现了对表面等离激元性质的调控,包括其波长、色散、局域因子以及传波损耗等。作者发现InAs纳米线表面等离激元展现出:①制备简易,②高局域性,③低的传波损耗,④具有可调控性,这为用于未来亚波长应用的新型等离子体电路提供了一个新的选择。该工作发表在高水平的Advanced Materials 杂志上。图1 neaspec超高分辨散射式近场光学显微镜neaSNOM图2 InAs纳米线中表面等离激元的红外近场成像研究a) s-SNOM实验测量示意图;b) InAs纳米线的AFM形貌图;c) InAs纳米线的红外(901 cm?1)近场光学成像;d) 相应的模拟结果;e) c和d相应区域的界面分析;f) InAs纳米线的红外(930 cm?1)近场光学成像;g) InAs纳米线的红外(950 cm?1)近场光学成像;h) InAs纳米线的红外(930 cm?1)近场光学成像。该研究小组通过neaspec公司的散射型近场光学显微镜(s-SNOM)配合901–985 cm?1可调谐中红外QCL激光器,采用neaspec公司具有的伪外差近场成像技术的neaSNOM近场光学显微镜,对约为104 nm长的InAs纳米线的表面等离激元进行了研究。从近场成像图(图2 c)中可以看出,在930 cm?1红外光及AFM探针的激发下,表面产生的等离激元沿InAs一维纳米线传播,并从纳米线边缘反射回来产生相应的驻波图形。另外,可以通过定量分析表面等离激元传播的相邻的两个节点((λp/2)的空间距离来推断表面等离激元传播的波长(λp)。同时,作者也在不同的红外波长下(930, 950, 和985 cm?1,图2 f, g, h)对InAs纳米线的表面等离激元进行了纳米尺度近场光学成像研究,结果显示出相似的驻波图形。上述研究结果证实作者通过neaspec公司的散射型近场光学显微镜对InAs纳米线的近场成像研究成功观察到了InAs纳米线中的一维等离激元。该研究在通过s-SNOM红外近场光学显微镜展示了在InAs纳米线中等离激元的真实空间成像。作者的进一步研究表明其等离激元的波长以及它的阻尼都可以通过改变InAs纳米线的尺寸和选择不同基底来调控。研究显示半导体的InAs纳米线具有应用于小型光学电路和集成设备的巨大潜力。作者的发现开辟了一条设计与实现新型等离激元和纳米光子设备的新途径。同时,该研究也展示了neaspec公司的散射型近场光学显微镜在半导体一维或二维材料纳米光学研究中的广阔应用前景。截止目前为止,以neaspec稳定的产品性能和服务为支撑,通过neaspec国内用户不断的努力,neaspec国内用户2018年间发表了关于近场光学成像和光谱的文章共14篇:其中包括4 篇Advance Materials; Advance Functional Materials;Advance Science;Advanced Optical Materials和Nanoscale等。伴随更多的研究者信赖和选择neaspec近场和光谱相关产品, neaspec国内群的不断的持续增加,我们坚信neaspec国内用户将在2018年取得更加丰厚的研究成果。参考文献:Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,Yixi Zhou, Runkun Chen, Jingyun Wang, Yisheng Huang, Ming Li, Yingjie Xing, Jiahua Duan, Jianjun Chen, James D. Farrell, H. Q. Xu, Jianing Chen, Adv. Mater. 2018, 1802551 https://doi.org/10.1002/adma.201802551相关产品及链接:1、 超高分辨散射式近场光学显微镜 neaSNOM:https://www.instrument.com.cn/netshow/C170040.htm2、 纳米傅里叶红外光谱仪nano-FTIR:https://www.instrument.com.cn/netshow/C194218.htm3、 太赫兹近场光学显微镜 THz-NeaSNOM:https://www.instrument.com.cn/netshow/C270098.htm
  • 上海交大团队基于表面增强拉曼的纳米探针技术为分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。 该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。 另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。 该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • 粉体与纳米颗粒表面表征的最新进展技术讲座圆满结束
    9月20日,美国麦克仪器公司在中国石油大学青岛校区逸夫实验楼举办了题为&ldquo 粉体与纳米颗粒表面表征的最新进展&rdquo 的技术讲座,会议吸引了来自中国石油大学、青岛生物能源所以及附近相关研究人员100多人,麦克默瑞提克(上海)仪器有限公司总经理许人良博士就粉体与纳米颗粒表征进行了别开生面的讲解,从基础理论到具体表征方法,从广泛的应用领域到具体某个应用,许总做了深入浅出的诠释。会议期间,广大参会者踊跃提问,许人良博士一一做出解答,并针对常见的问题,给出合理的指导与解释,受到广大参会者的高度评价。会议结束后,广大与会者纷纷表示,收获颇多,希望能多多举办类似的讲座,扩展自己的知识面,解决实际应用问题。 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者,公司生产测量粉末和固体物理特性的自动化实验室仪器,可用于基础研究、产品开发、质量保证和控制的各个阶段。产品应用广泛,可用来检测包括粒度、颗粒形状、表面积、孔容、孔径及孔径分布、材料的密度、催化活性、程序升温反应。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室。
  • 2017年布鲁克纳米表面仪器部原子力显微镜武汉研讨会顺利召开
    p    strong 仪器信息网讯 /strong & nbsp 2017年12月8日,布鲁克纳米表面仪器部(BNS)原子力显微镜武汉研讨会在中国地质大学(武汉)顺利召开。会议吸引了高校、科研院所的专业人士近150人参与,此次研讨会反映热烈,大家针对原子力显微镜(AFM)的专业技术进行了细致沟通和探讨。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/07f8330b-38ed-4156-a472-f251a170d5d8.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 布鲁克纳米表面仪器部原子力显微镜武汉研讨会现场 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/bcba6862-3858-46a2-b7dd-2d184ec95f09.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 布鲁克纳米表面仪器部中国区总经理邹海涛先生作开幕致辞 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/580bc2ab-ed1e-491e-b02e-c917508efd79.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 布鲁克公司AFM研发部高级技术总监苏全民博士作报告 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/80872131-a534-4d04-8860-56c3db8b7c2f.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong 布鲁克纳米表面仪器部亚太区应用总监孙万新博士作报告 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/57fe4a22-83e7-4d49-89b8-93cb615651b2.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 布鲁克纳米表面仪器部资深应用科学家孙昊博士作报告 /strong /p p   布鲁克纳米表面仪器部(BNS)中国区总经理邹海涛作了开幕致辞并对布鲁克、BNANO集团及BNANO集团下设的纳米表面仪器部的发展历程和产品进行了介绍及展望。随后,研讨会进行三个技术报告。布鲁克公司AFM研发部高级技术总监苏全民博士作了题为“高分辨原子力显微镜用于物理和化学性能测量的原理和应用”的报告;布鲁克纳米表面仪器部亚太区应用总监孙万新博士作了题为“基于扫描探针显微镜和纳米压痕仪对材料在不同时间与空间尺度的粘弹性测量”的报告;布鲁克纳米表面仪器部资深应用科学家孙昊博士作了题为“纳米电学测量在半导体、高分子及二维纳米材料中的应用”的报告。 /p p   原子力显微镜(AFM)作为纳米尺度上的形貌表征以及量测设备一直以来被科研及工业界广泛接受,具有重要的影响力。随着近年来科技创新发展,现今的AFM在进一步提升成像分辨率以及操作智能化自动化的基础上,更拓展为测试材料及器件的力学,磁学,电学,电化学以及热学等诸多物性的综合表征系统,也为研究多物理场的耦合效应提供了很好的实验及测试平台。 /p p   编者采访了苏全民博士,他谈到,布鲁克下一步将在“定量化”做进一步攻关;另外一方面就是实现“多功能”,既能进行力学测量,同时也能做电学测量、化学测量,将所有的测量集中在一个平台上。苏博士还期许,下一步将在AFM的“易操作”上下功夫,实现操作的大众化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/0683cf15-58de-4000-8159-8e7f84d13cd7.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong AFM技术高级研讨答疑座谈会 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/6d1bbb9f-8cb2-4eb1-8014-1217d10316a1.jpg" style=" float:none " title=" 7.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/d84542d3-ad50-48bb-a5d0-3539b0623732.jpg" style=" float:none " title=" 8.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/34819178-3565-4d9a-9f4d-4e5b609b2a6a.jpg" style=" float:none " title=" 9.jpg" / /p p style=" text-align: center " strong 交流会现场用户进行广泛交流 /strong strong & nbsp /strong /p p   为进一步加深布鲁克与广大AFM用户群体的沟通交流以及探讨可能的合作机会,研讨会下午还进行了专家答疑座谈会,四位顶尖专家针对高分辨率原子力显微镜成像用于物理,化学,力学以及纳米电学等多领域的原理详解及应用案例分享,会后进行了用户交流。此外,布鲁克的应用工程师还针对性对AFM进行仪器实操讲解与展示,用户积极参与。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/3597edb6-240f-4f4e-970f-7c65a04c2402.jpg" title=" 10.jpg" / /p p style=" text-align: center " strong 应用工程师对AFM进行仪器实操讲解与展示 /strong /p p   2017年初,布鲁克收购纳米力学仪器制造商Hysitron(海思创),将Hysitron纳米机械测试仪器添加到BNS部门中。此外加上BNS独有的AFM、表面轮廓仪、摩擦学和机械测试系统等产品组合,以及连续多年的业绩攀升,布鲁克这个纳米表面仪器部门正向外界透露出难以忽视的创新实力。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/d362c7ac-6a1a-48da-8208-92e2bdc43a58.jpg" title=" 11.jpg" / /p p style=" text-align: center " strong 布鲁克公司纳米表面仪器部亚太区销售总监时晓明先生 /strong /p p   布鲁克公司纳米表面仪器部亚太区销售总监时晓明先生向编者谈到,通过与用户开展交流会,进一步培养布鲁克的潜在用户群体,将AFM技术深入到国内外的AFM专业技术团队中。国内政策的科技投入持续增加,同时,工业界半导体等领域也是布鲁克的强项,布鲁克的纳米领域完全符合国内的发展形势,布鲁克纳米表面仪器部机遇将大于挑战。此外,布鲁克一直在很多地区建立自己的办事处,同时拥有自己的专业技术团队及技术支持团队,进驻到当地的科研院所开展广泛的合作,解决专业问题。时晓明总监也向仪器信息网坦言,布鲁克纳米表面仪器也将进一步加大和国际领先团队的合作,促进科技创新发展,布鲁克并将在亚太地区及“一带一路”沿线起到辐射作用和良好的带动作用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/367133c9-7473-4b80-9a94-3ba678cf3a02.jpg" title=" 12.jpg" / /p p style=" text-align: center " strong 与会人员合影 /strong & nbsp /p p & nbsp /p p strong 附:布鲁克公司纳米表面仪器部简介 /strong /p p   作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪、探针式表面轮廓仪以及摩擦磨损测试系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。 /p p br/ /p
  • 粉体与纳米颗粒表面表征的最新进展技术讲座在复旦大学圆满结束
    3月29日,复旦大学化学西楼1楼多功能厅济济一堂,美国麦克仪器举办了题为&ldquo 粉体与纳米颗粒表面表征的最新进展&rdquo 的技术讲座,会议聚集了来自华东理工大学、上海师范大学、复旦大学、东华大学、上海电力大学、上海交通大学等知名高校以及一些国际国内知名企业参与。此次讲座热度远超我们预期,讲座刚刚开始,会议室就已经爆满,但仍有很多人慕名前来,其中还有孕妇不怕旅途颠簸仍坚持来参加我们的讲座,会议室已经到了站都站不下的地步。面对大家如此强烈的需求,为了不让大家失望,我们和学校联系另开辟了一间会议室,两个会议室讲座同期进行。 爆满的会议室 讲座开始,麦克默瑞提克(上海)仪器有限公司总经理许人良博士首先对我们公司做了简单的介绍,接下来,应用部经理钟华博士做了颗粒粉体表征技术的讲座,主要介绍了物理吸附和化学吸附的一些应用知识,对应用过程中一些常见问题以及数据处理的技巧做出讲解,在座人员认真聆听并积极提出自己的疑问,钟华博士耐心解答,逐一解释,受到广大用户的好评。 麦克默瑞提克(上海)仪器有限公司总经理许人良博士就粉体与纳米颗粒表征进行了别开生面的讲解,从基础理论到具体表征方法,从广泛的应用领域到具体某个应用,许人良博士做了深入浅出的诠释。会议期间,广大参会者踊跃提问,许人良博士一一做出解答,并针对常见的问题,给出合理的指导与解释,受到广大参会者的高度评价。会议结束后,仍有部分用户在会议室和许人良博士热烈讨论问题,许人良博士渊博的知识让与会者印象深刻。大家纷纷表示此次会议受益匪浅,讲座中讲到的一些应用技巧可立即应用到实际工作中去。并表达了希望能多举办此类活动的愿望。 许人良博士在讲座现场 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者。1962年,美国麦克仪器研制出世界上第一台自动表面积分析仪,1965年,研制出世界上第一台压汞仪,1966年,研制出世界上第一台沉降式粒度分析仪。1982年,研制出世界上第一台全自动物理吸附仪,同年开发出第一台全自动化学吸附仪,1986年,研制出世界第一台六站吸附仪,1991年,研制出第一代带内置控制器的吸附分析仪,......2012年,研制出世界上第一台高精度同时三站微孔物理吸附仪。美国麦克仪器迈着坚实的脚步,引领行业的发展;通过自身研发,创造出一个又一个的奇迹。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室。
  • 纳米级近场光学成像对钙钛矿太阳能电池表面涂层电子迁移和载流子浓度的研究进展
    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置, 其中以光电效应工作的晶硅太阳能电池为主流。虽然通过掺杂及表面覆盖抗光反射层能提高晶硅太阳能电池的效率,但是超过能带间隙和一些特定波长的光反射造成了巨大的光能量损失,反而限制了晶硅太阳能电池的效率。 Y.H. Wang等利用有机金属三溴纳米粒子(CH3NH3PbBr3)涂层吸收部分短波长太阳光,使其转化成化电场。该化电场可以通过促进分子重排而增强有机-晶硅异质结太阳能电池的不对称性,从而增加表面活性载流子密度,终将有机-晶硅异质结太阳能电池的效率从12.7%提高到了14.3%。 苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。 d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图 2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用neaspec公司的近场光学显微镜neaSNOM,次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。图2. SNOM测量钙钛矿结构纳米粒子涂层的载流子密度。a. AFM形貌图;b, s-SNOM光学信号图-未加光照;c, s-SNOM光学信号图-光照30min;d, s-SNOM光学信号图-光照60min 作者预见,该研究对于设计新型太阳能电池,提高其转化效率具有重要意义。同时,该研究还提出了一种使钙钛矿结构材料和晶硅太阳能电池相结合的研究方法,为之后的研究和应用提供了解决新思路。相关参考文献1.Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.2.Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. AdvancedMaterial 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.相关产品链接超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm德国Neaspec纳米傅里叶红外光谱仪 http://www.instrument.com.cn/netshow/SH100980/C194218.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制