当前位置: 仪器信息网 > 行业主题 > >

免疫代谢

仪器信息网免疫代谢专题为您整合免疫代谢相关的最新文章,在免疫代谢专题,您不仅可以免费浏览免疫代谢的资讯, 同时您还可以浏览免疫代谢的相关资料、解决方案,参与社区免疫代谢话题讨论。

免疫代谢相关的资讯

  • 关注肿瘤免疫与代谢,这2场免费直播不容错过!
    肿瘤免疫是利用免疫学的理论和方法研究肿瘤的抗原性、机体的免疫功能与肿瘤发生/发展的相互关系、机体对肿瘤的免疫应答及其抗肿瘤免疫的机制、肿瘤的免疫诊断和免疫防治的科学,与肿瘤代谢特性及微环境重建有着十分密切的关系,其对研究肿瘤的发病机制、预防、诊断和治疗具有重要意义。能量代谢是生命体最基本的特征之一,代谢的重编程与癌症、免疫、神经退行性疾病、肥胖、糖尿病等息息相关。为此,从细胞能量代谢着手,探索生命现象的奥秘,寻找重大疾病的新疗法,已成为目前的热门研究领域。一文带你解读近期2场会议报告亮点,揭密那些隐藏的小细节! 6月15日—肿瘤免疫与代谢(点击日程即可报名参会)1.针对肿瘤和自身免疫性疾病等重大疾病,围绕树突状细胞囊泡转运相关分子和T细胞特异性抗原受体库开展系统免疫学研究2.针对肿瘤个体差异和肿瘤空间异质性的问题,发展的代谢组分子分型-代谢物异质分布空间可视化-精准粒子治疗策略,最大化的减少副作用,并达到更好的肿瘤抑制效果3.专注肿瘤免疫生物治疗以及相关代谢机制,在微小囊泡研究领域有一系列的原创性发现。4.安捷伦重磅新品在线赏,能量代谢分析技术强应用6月24日—转化医学之肿瘤免疫学(点击日程即可报名参会)1.重点介绍FOXP3+调节性T细胞功能可塑性及稳定性分子机制研究新进展,以及组织特异性Treg, 特别是自身免疫病,肥胖及衰老相关糖尿病以及肿瘤微环境中FOXP3+Treg功能与免疫疗法相关新进展2.通过研究免疫系统和肿瘤之间的相互作用,鉴定肿瘤特异的免疫细胞,尤其是识别肿瘤抗原的T细胞,以及肿瘤细胞抵抗免疫攻击的逃逸机制,从中发现新的治疗靶标,建立高效的肿瘤免疫治疗新方法3.肿瘤浸润淋巴细胞TIL疗法的进展与挑战4.Cytiva层析技术助力肿瘤免疫学研究 ♥更多精彩尽在网络讲堂:https://www.instrument.com.cn/webinar/
  • Nature | 小分子代谢产物也“跨界”?看GABA如何调控免疫反应
    当我们提到GABA(γ-氨基丁酸)的时候我们会想到什么?GABA是一种主要的抑制性神经递质,调节神经元间的通讯。在大脑之外,在肠道、脾脏、肝脏和胰腺中也检测到了GABA这种神经递质的存在【1,2】。但是GABA在免疫系统中是否会“跨界”发挥作用还不得而知。2021年11月3日,日本横滨理化研究所Sidonia Fagarasan研究组发文题为B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity,发现B细胞来源的GABA诱导巨噬细胞从而限制抗肿瘤免疫反应,为免疫系统中除了细胞因子和膜蛋白之外的小分子代谢产物的免疫调节功能提供了新的见解。小分子水溶性代谢产物不仅是细胞内生物化学反应过程的重要中间产物,也是释放到细胞外环境中的“信号分子”,从而影响临近的细胞【3-5】。淋巴细胞受到多种受体和可溶性小分子代谢产物的调节,但是仍然有很多小分子代谢产物的功能尚未被了解清楚。因此,作者们希望能够找出其中发挥关键调节作用的水溶性代谢产物,该代谢产物可能作为环境线索发挥作用从而介导免疫细胞之间的相互作用。为了找出参与免疫系统的小分子水溶性物质,作者们对处于稳态以及激活状态淋巴细胞中进行水溶性代谢产物的分析。这两种淋巴细胞之间有200种左右的代谢产物存在显著的不同。其中主要涉及的代谢特征的不同是丙氨酸、天冬氨酸以及谷氨酸通路的差异,另外嘌呤和嘧啶代谢以及三羧酸环也与免疫激活密切相关。在这些代谢产物中,一个以前被广泛认为在神经系统中发挥作用的因子GABA引起了作者们的兴趣。先前并没有研究表明B细胞能够产生GABA,因此GABA在免疫系统中的作用也很不清楚。首先,作者们确认了免疫系统中的B细胞的确是GABA产生来源,并且通过对GABA合成的关键酶分析发现小鼠和人类B细胞中GAD67(Glutamate decarboxylase 67)而非GAD65的表达水平会上升。该结果说明无论是小鼠还是人类中谷氨酸的代谢的确能够刻画B细胞谱系的变化。那么B细胞中所产生的GABA是如何在免疫系统中发挥作用的呢?为此,作者们采用了MC38结肠癌模型,该模型中B细胞已经被证明通过抗原非特异性机制抑制抗肿瘤T细胞反应【6】。作者们发现B细胞缺乏的小鼠品系中肿瘤的生长比野生型的肿瘤控制的更好。另外,与接受安慰剂的小鼠相比,植入缓释GABA颗粒会导致B细胞去除的小鼠肿瘤生长显著增加。通过加入GABA受体激动剂木防己苦毒素,作者们发现会限制肿瘤的生长并提高肿瘤浸润性CD8+T细胞的细胞毒性活性。因此,作者们发现减少GABA或影响GABA受体信号通路会增强细胞毒性T细胞反应和抗肿瘤免疫,而分泌GABA使宿主对肿瘤生长产生免疫耐受。那么GABA影响免疫功能系统的细胞生物学机制是如何的呢?先前的研究表明肿瘤相关巨噬细胞(Tumour-associated macrophages,TAMs)可以抑制抗肿瘤免疫反应。作者们发现GABA影响巨噬细胞生理的过程,促进向抗炎表型极化的反应。进一步地,作者们想知道GABA如何调节巨噬细胞。研究表明TAMs起源于单核细胞(Monocytes),因此,作者们猜测GABA是通过影响单核细胞向巨噬细胞的分化来调节巨噬细胞的。为了验证这一假设,作者们将GABA加入到培养基中,发现会导致细胞数量增加、细胞存活增加同时也促进抗炎巨噬细胞特征因子FRβ(Folate receptor β)的表达。基因转录本分析也证明细胞周期相关以及叶酸代谢相关的基因出现了明显地上调。因此,作者们确认GABA促进具有抗炎特性的巨噬细胞的分化、扩张和存活。进一步地,为了确认B细胞中GABA的作用,作者们构建了特异性在B细胞中敲除GAD67的小鼠品系,发现条件性失活GAD67后会导致B细胞中GABA含量显著降低,而且发现B细胞产生的GABA会显著限制抗肿瘤T细胞反应。总的来说,该工作发现作为代谢产物以及神经递质的GABA会通过激活的B细胞被合成和分泌出来,作为细胞间相互交流的线索影响机体免疫系统的响应。该工作说明B细胞谱系产生的小分子代谢产物具有炎症调节的作用,可能会成为未来免疫反应调节的药物靶点。原文链接:https://doi.org/10.1038/s41586-021-04082-1
  • 【安捷伦】聚焦代谢,安捷伦 Seahorse 在病毒免疫研究中的应用
    自新冠病毒爆发以来,治疗新型肺炎的药物和疫苗的研发进展备受瞩目。近期,连续传来好消息:浙江海正药业股份有限公司研制的“法维拉韦”(原名“法匹拉韦”)正式获得国家药监局批准上市、美国吉列德的“瑞德西韦”目前正在武汉金银潭医院等 11 家医院开展多中心临床试验验证、康复者的血浆抗体被用于治疗。在新药研发过程中,非常关键的一环就是评估药物引起的免疫反应,这将决定药物能否上市,能否用来治疗新型肺炎患者。免疫是人体的一种重要的生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的危险物质,如抗原、病原体(如病毒、细菌)和炎症刺激。人体免疫系统是人抵御外来感染的防线,而淋巴细胞就是这道防线的哨兵。淋巴细胞包括 B 淋巴细胞和T淋巴细胞。B 淋巴细胞亦称 B 细胞,主要功能是产生抗体,介导体液免疫应答;T 淋巴细胞亦称 T 细胞,发挥细胞免疫及免疫调节等功能。这两种淋巴细胞分工明确,共同杀伤和清除入侵体内的病原体。代谢是细胞合成和分解营养物质的过程,是所有活细胞维持生存、增殖和行使功能的必须生理过程。近些年来,代谢在免疫系统中的作用被越来越多的研究者发现。代谢被视为调控免疫细胞功能与分化的主要因子。在 T 细胞分化过程中,初始 T 细胞、效应 T 细胞和记忆 T 细胞对于能量的需求各异,因此这三种 T 细胞依赖氧化磷酸化和糖酵解的能力各不相同。由此可见,代谢对于免疫系统的功能至关重要。Seahorse 技术作为检测能量代谢的金标准,在病原体感染与免疫方向有着非常广泛的应用,为科学家提供强有力的武器来研究病毒与免疫系统的攻防。1、 巴尔病毒(EBV)诱导 B 细胞进行单碳代谢,驱动 B 细胞转化EBV 可以导致多种 B 细胞淋巴瘤。人们对 EBV 感染 B 细胞后,B 细胞如何快速增殖的机制知之甚少。剑桥大学和哈佛医学院的科学家们 2019 年在 Cell Metabolism 上发表的文章为大家揭开了这个谜题[1]。他们的研究发现,EBV 会重塑 B 细胞的代谢通路,诱导 B 细胞进行单碳叶酸代谢,从而促进 B 细胞获得营养,快速增殖。EBV 上调 B 细胞对外源丝氨酸的摄入,目的是为了支持线粒体的单碳代谢(图 1 )。他们的工作为开发新的线粒体单碳代谢抑制剂来治疗 EBV 的感染的 B 淋巴瘤提供了理论基础。图 1. Seahorse 的结果表明,丝氨酸的缺失会降低新感染细胞的呼吸作用。(E)EBV 感染 4 天的原代 B 细胞在含有丝氨酸和缺乏丝氨酸的培养基中生长,测量氧气消耗速率(OCR)。(F)根据图E的结果计算得到的代谢参数。2、 调控 CD8 阳性 T 细胞的代谢可以对抗流感病毒感染CD8 阳性 T 细胞在不同的分化阶段,由初始细胞向效应和记忆细胞转换的过程中,线粒体的呼吸是被精密调控的。代谢状态的改变可以满足不同种类 CD8 阳性 T 细胞对能量的需求,有利于它们进行增殖。美国佛蒙特大学的 Champagne 等研究者于 2016 年在 Immunity 上发表成果,揭示 MCJ 蛋白是 CD8 阳性 T 细胞线粒体呼吸的负调控因子(图 2)[2]。MCJ 缺陷的记忆 CD8 阳性 T 细胞对流感病毒的感染具有更强的保护能力。T 细胞代谢与流感病毒感染之间的关系由此可见一斑。此研究揭示 MCJ 可以作为一个治疗靶点来增加 CD8 阳性 T 细胞的反应。图 2. MCJ 缺陷的效应 CD8 阳性 T 细胞氧化磷酸化升高。野生型和 MCJ 缺陷的 CD8 阳性 T 细胞经 CD3 和 CD28 抗体激活 2 天。(A)细胞在无刺激培养基中静置 4 小时后 ATP 的浓度。(B)Seahorse 线粒体压力试验测量静置 12 小时的细胞的 OCR。(C)Seahorse 糖酵解压力试验测量细胞的 ECAR。3、 艾滋病病毒(HIV)感染和抗逆转录病毒疗法对免疫细胞功能的影响大家对 HIV 应该很熟悉了。HIV 是一种逆转录病毒,它能够攻击人体免疫系统,在慢性 HIV 感染中,免疫细胞会变得越来越不正常,最终衰竭。2019 年发表在 JCI Insight 上的一篇文章探讨了 HIV 感染以及相应的抗转录病毒疗法对免疫细胞代谢的影响[3]。德国杜伊斯堡大学 Korencak 等人的研究结果表明,在 HIV 感染时,大多数免疫细胞的呼吸作用都会大幅降低,而这种代谢的变化与慢性免疫激活和衰竭是联系在一起的。当用抗逆转录病毒疗法治疗 HIV 感染的患者时,除了 CD4 阳性 T 细胞以外,其他类型的免疫细胞的呼吸作用可以得到恢复(图 3 )。这一最新的研究成果为评估抗病毒药物对于人体免疫功能的副作用提供了一个很好的方法。图 3. 与 HIV 阴性的患者相比,HIV 阳性、未治疗的患者和抗逆转录病毒疗法治疗的患者显示基础呼吸和最大呼吸降低。(A)Seahorse 线粒体压力测试比较 HIV 阳性、未治疗和治疗患者,以及健康人的 CD4 阳性 T 细胞的基础和最大线粒体呼吸。(B)Seahorse 糖酵解压力测试结果表明,CD4 阳性 T 细胞的糖酵解能力在三组患者中没有显著性差异。免疫代谢是一个快速增长的研究领域。代谢与免疫细胞的功能息息相关,为研究免疫生物学提供了新的策略。安捷伦 Seahorse 在免疫学研究中的应用囊括了免疫学的各个方面。参考文献1. Wang, L. W. et al. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metab30, 539-555 e511, doi:10.1016/j.cmet.2019.06.003 (2019).2. Champagne, D. P. et al. Fine-Tuning of CD8(+) T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus. Immunity44, 1299-1311, doi:10.1016/j.immuni.2016.02.018 (2016).3. Korencak, M. et al. Effect of HIV infection and antiretroviral therapy on immune cellular functions. JCI Insight4, doi:10.1172/jci.insight.126675 (2019).推荐阅读:1. 战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究 https://www.instrument.com.cn/netshow/SH100320/news_522313.htm2. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.instrument.com.cn/netshow/SH100320/news_521879.htm 关注“安捷伦视界”公众号,获取更多资讯。
  • Front Immunol专题: 肿瘤微环境免疫代谢的特点和机制
    p    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 导读: /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 受Frontiers in Immunology杂志邀请,陆军军医大学第二附属医院(新桥医院)临床医学研究中心李咏生教授与肿瘤科朱波教授一起主编了“Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment”专题,于2019年3月21日正式发表。本专题旨在汇集一系列肿瘤免疫代谢的优秀论文,回顾癌细胞和免疫细胞代谢的进展和前景,激发研究人员对未来肿瘤免疫代谢的研究,以及为临床癌症治疗提供线索。 /span /p p   免疫编辑协调肿瘤的发生和发展。尽管最近免疫疗法的进展令人鼓舞,并且无数患者已经从中显著获益,但由于肿瘤微环境(tumor microenvironment,TME)的复杂性和多样性,大部分患者仍然对免疫疗法反应较弱。探索TME驱动的肿瘤发生和发展的潜在机制对于开发癌症治疗的潜在精确方法是亟待解决的科学问题。 /p p   细胞需要能量来维持其存活,并且多种代谢物自身也具有生物活性。代谢调节细胞的表型和生物学功能已被广泛认知。在TME中,肿瘤细胞和免疫细胞重编程其代谢模式以适应缺氧、酸性和低营养的微环境。例如,肿瘤细胞显示增强的有氧糖酵解(Warburg效应)但减少氧化磷酸化(OXPHOS)。巨噬细胞倾向于M2极化,表现出上调的脂肪酸合成和β-氧化。细胞毒性T淋巴细胞显示出下调的糖酵解,但OXPHOS增强。因此,肿瘤微环境中各种细胞的代谢重编程对肿瘤免疫编辑具有重要意义。了解肿瘤细胞和免疫细胞的代谢重编程将为调节肿瘤免疫提供新的方向。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/4c17f871-5c6d-449f-bdda-7274907c4744.jpg" title=" 1.png" alt=" 1.png" width=" 460" height=" 600" border=" 0" vspace=" 0" style=" width: 460px height: 600px " / /p p style=" text-align: center " strong 《肿瘤免疫代谢》专题电子书封面 /strong /p p   在这种背景下,受Frontiers in Immunology杂志邀请,陆军军医大学第二附属医院(新桥医院)临床医学研究中心 strong 李咏生 /strong 教授与肿瘤科 strong 朱波 /strong 教授一起主编了“ strong Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment /strong ”专题,于2019年3月21日正式发表(电子书链接: a href=" https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment" target=" _self" https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment /a )。本专题旨在汇集一系列肿瘤免疫代谢的优秀论文,回顾癌细胞和免疫细胞代谢的进展和前景,激发研究人员对未来肿瘤免疫代谢的研究,以及为临床癌症治疗提供线索。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/661bc123-fa6c-4ca4-b61b-6a30f3023e23.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " strong 电子书内容目录 /strong /p p   缺氧有助于致癌基因的激活和肿瘤抑制因子的丧失,这些抑制因子构成了Warburg效应的主要调节因子和许多其他代谢途径,例如谷氨酰胺酶水解。缺氧诱导因子通过增加血管内皮生长因子促进血管生成并调节TME中的细胞表型。 strong Sormendi和Wielockx总结了目前在癌症发展过程中缺氧重编程TME中癌细胞和免疫细胞代谢的进展及机制。内皮细胞(EC)介导血管新生用于向肿瘤组织输送氧气和营养物质。Zecchin等讨论了EC如何调整其代谢以在TME中形成血管。 /strong /p p   免疫和线粒体彼此紧密相关。线粒体是细胞能量代谢最重要的细胞器。它们调节免疫细胞的活化,分化和存活,以及释放信号,如线粒体DNA(mtDNA)和线粒体ROS(mtROS),以调节免疫细胞的转录。 strong Angajala等讨论了线粒体协调驱动不同免疫反应的潜在机制。 /strong /p p   甲羟戊酸代谢常由糖酵解推动,它是癌症干细胞和免疫细胞的关键代谢途径,可调控免疫监视。 strong Gruenbacher和Thurnher讨论了激活和分化诱导的代谢重编程如何影响免疫和癌细胞中胆固醇生物合成的甲羟戊酸途径。他们得出结论,虽然抑制肿瘤细胞中甲羟戊酸代谢可能会减弱生长和增殖,但先天免疫细胞如巨噬细胞中的甲羟戊酸途径可能有助于肿瘤免疫。 /strong /p p   芳烃受体(AhR)是一种重要的胞浆中配体依赖性转录因子,并且在癌症的起始、进展、侵袭和转移中起关键作用。AhR和免疫系统之间的相关性已被认识并被建议作为免疫抑制效应物。 strong Xue等综述了AhR在肿瘤免疫中的作用及其在TME中的潜在机制。 /strong /p p   T细胞是抗肿瘤免疫的主要成分。他们动态的代谢程序决定了其分化、激活和功能。目前,操纵T细胞代谢途径的重编程是一种治疗方法,特别是用于抗肿瘤免疫。 strong Kouidhi等介绍了一些与T淋巴细胞功能和分化有关的潜在细胞代谢途径。他们还总结了T细胞亚群特定的代谢需求和信号通路的前沿进展。 /strong /p p   总之,构成该专题的八篇文章提供了对TME中癌细胞和免疫细胞代谢的关键机制的见解。该专题将有助于激发研究人员探索代谢免疫学的问题,并有助于在临床癌症治疗中制定有效的策略。 /p p   span style=" font-family: " times=" " new=" "  References /span /p p span style=" font-family: " times=" " new=" "   1. https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment /span /p p span style=" font-family: " times=" " new=" "   2. Garaude J. Reprogramming of mitochondrial metabolism by innate immunity. Curr Opin Immunol. 2018 Oct 1 56:17-23. /span /p p span style=" font-family: " times=" " new=" "   3. Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG. Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metab. 2017 Jul 5 26(1):142-156. /span /p p span style=" font-family: " times=" " new=" "   4. Biswas SK. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity. 2015 Sep 15 43(3):435-49. /span /p p span style=" font-family: " times=" " new=" "   5. Kelly B, O& #39 Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015 Jul 25(7):771-84. /span /p p span style=" font-family: " times=" " new=" "   6. Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. Adv Exp Med Biol. 2017 1011:163-196. /span /p p span style=" font-family: " times=" " new=" " ------------------------------- /span /p p style=" text-align: center " strong span style=" font-family: " times=" " new=" " 欢迎关注 3i生仪社 公众号,了解更多生命科学资讯! /span /strong /p p style=" text-align: center " span style=" font-family: " times=" " new=" " img src=" https://img1.17img.cn/17img/images/201903/uepic/1ed19b9c-4c7b-4e26-81bb-7d9c586dfca6.jpg" title=" 3i生仪社二维码.jpg" alt=" 3i生仪社二维码.jpg" / /span /p
  • 安捷伦推出用于低丰度免疫细胞代谢分析的高灵敏度XF分析解决方案
    2021年2月17日,北京——安捷伦科技公司 (纽约证交所:A)推出安捷伦 Seahorse XF HS 迷你板,可用于提高免疫细胞代谢分析。免疫学和疾病研究人员越来越多地使用稀有的体外基因工程细胞来建立更好的疾病模型。然而,此类细胞的生产数量有限,限制了研究人员可进行的细胞分析类型。XF HS Mini是安捷伦Seahorse XF平台系列的最新成员,可实时分析活细胞中的线粒体呼吸、糖酵解和ATP生成。这些代谢测量使研究人员能更充分地了解细胞的健康状况、功能和信号转导。高度灵敏的XF HS Mini分析仪可提高性能和精度、减少每孔所需细胞数量、改善悬浮细胞工作流程一致性,并简化分析。这些改进使研究人员能从免疫细胞等数量有限或呼吸速率低的细胞类型中可靠地生成XF数据,进行以往无法完成的测量。斯坦福大学干细胞移植与再生医学系儿科学副教授Katja Weinacht医学博士说道:“我们使用的是经过高度操纵的免疫细胞,其生命周期较短,生成成本较高且耗时费力。以更少的细胞数量获得更高的灵敏度是成败的关键,因此我们在疾病模型中使用安捷伦Seahorse XF技术。”安捷伦细胞分析事业部高级总监David Ferrick博士表示:“随着我们的客户努力在更复杂、更特殊的体内环境中进行生物学探究,对稀有细胞群的研究需求已愈发明确。XF HS Mini更高的灵敏度和精度将为客户开辟代谢分析的新领域。”关于安捷伦科技安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,致力于提供敏锐洞察与创新,帮助提高生活质量。我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2020 财年,安捷伦的营业收入为 53.4 亿美元,全球员工数为 16400 人。
  • “蛋白质组与免疫和代谢性疾病”专题研讨会(第二轮通知)
    为了积极促进我国蛋白质组学的研究与发展,由中国生物化学与分子生物学会蛋白质组学专业委员会主办、北京蛋白质组研究中心和德国慕尼黑国际博览集团承办的“蛋白质组与免疫和代谢性疾病”专题研讨会定于2012年10月16-18日慕尼黑上海分析生化展期间在上海新国际博览中心召开。   一、会议安排   本次研讨会主要以大会报告形式进行交流,将邀请国内外蛋白质组学及相关领域的著名专家、教授作大会报告,会议规模约200人。会议同期,第六届慕尼黑上海分析生化展(analyitica China 2012)将于2012年10月16-18日在上海新国际博览中心举办,与会代表可获取生命科学领域最新的仪器、设备和技术等信息。   会议初步日程安排   10月16日上午会议报到   10月16日下午大会开幕式暨学术报告   10月17日学术报告   10月18日参观展会   会议室地点:上海新国际博览中心(上海市浦东新区龙阳路2345号)N2-M42会议室   二、会议议题   蛋白质组与免疫和代谢性疾病:重点围绕蛋白质组学及其在免疫和代谢性疾病研究中的应用取得的新进展进行研讨。   三、会议语言:中文   四、邀请专家   Estela JacintoRutgers University   Garnett KelsoeDuke University Medical School   Yuan ZhuangDuke University Medical School   程金科上海交大医学院   冯新华浙江大学   刘明耀 华东师范大学   秦钧蛋白质组研究中心   苏冰上海交大   唐丽蛋白质组研究中心   杨芃原复旦大学   赵世民复旦大学   郑彪GSK Shanghai   五、会议组织   组织单位:军事医学科学院放射与辐射医学研究所   主办单位:中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)   承办单位:北京蛋白质组研究中心   德国慕尼黑国际博览集团   会议主席:张普民、苏冰   名誉主席:贺福初、杨芃原   六、会议注册费   2012年9月7日之前注册:一般代表1100元,学生代表600元   2012年9月7日之后注册:一般代表1300元,学生代表800元   注册请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm进行在线注册。   七、参会须知(指定酒店和交通路线)   互欣商务酒店   地址:上海市浦东新区浦建路1143号(锦绣路路口)   电话:021-51350666   住宿费用(标间/大床):RMB 300/晚(含早)   交通指南:   Ÿ 从浦东机场到酒店: 坐地铁2号线(徐泾东方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥机场到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥火车站到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海火车站到酒店: 坐地铁4号线到世纪大道站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海南站到酒店: 坐地铁3号线到中山公园站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   酒店预订和住宿请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm 进行在线注册。会务组将安排指定酒店与会场的往返班车,凭《参会代表证》乘坐。   六、汇款信息   帐 号:0200004909200041055   账户名称:北京蛋白质组研究中心   开户银行:工商银行北京市永定路支行   注:汇款时请务必注明学员姓名、单位和“蛋白质组与免疫和代谢性疾病专题研讨会”字样。汇款后将汇款凭据传真至中心(010-80705155),以确保汇款安全到账。   七、会务组信息   北京昌平区科学园路33号北京蛋白质组研究中心   电话: 010-66930223,80705166 80705888   传 真:010-80705155   联系人:隆凯云  张雪莉 周建平   上海市浦东新区源深路1088号葛洲坝大厦11层   电话:021-20205500*827   传真:021-20205688   联系人:洪燕   附录:参会注册表(含酒店预订)   中国生物化学与分子生物学会   蛋白质组学专业委员会   德国慕尼黑国际博览集团   2012年8月24日
  • “蛋白质组与免疫和代谢性疾病”专题研讨会 (第二轮通知)
    为了积极促进我国蛋白质组学的研究与发展,由中国生物化学与分子生物学会蛋白质组学专业委员会主办、北京蛋白质组研究中心和德国慕尼黑国际博览集团承办的“蛋白质组与免疫和代谢性疾病”专题研讨会定于2012年10月16-18日慕尼黑上海分析生化展期间在上海新国际博览中心召开。   一、会议安排   本次研讨会主要以大会报告形式进行交流,将邀请国内外蛋白质组学及相关领域的著名专家、教授作大会报告,会议规模约200人。会议同期,第六届慕尼黑上海分析生化展(analyitica China 2012)将于2012年10月16-18日在上海新国际博览中心举办,与会代表可获取生命科学领域最新的仪器、设备和技术等信息。   会议初步日程安排   10月16日上午会议报到   10月16日下午大会开幕式暨学术报告   10月17日学术报告   10月18日参观展会   会议室地点:上海新国际博览中心(上海市浦东新区龙阳路2345号)N2-M42会议室   二、会议议题   蛋白质组与免疫和代谢性疾病:重点围绕蛋白质组学及其在免疫和代谢性疾病研究中的应用取得的新进展进行研讨。   三、会议语言:中文   四、邀请专家   Estela JacintoRutgers University   Garnett KelsoeDuke University Medical School   Yuan ZhuangDuke University Medical School   程金科上海交大医学院   冯新华浙江大学   刘明耀 华东师范大学   秦钧蛋白质组研究中心   苏冰上海交大   唐丽蛋白质组研究中心   杨芃原复旦大学   赵世民复旦大学   郑彪GSK Shanghai   五、会议组织   组织单位:军事医学科学院放射与辐射医学研究所   主办单位:中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)   承办单位:北京蛋白质组研究中心   德国慕尼黑国际博览集团   会议主席:张普民、苏冰   名誉主席:贺福初、杨芃原   六、会议注册费   2012年9月7日之前注册:一般代表1100元,学生代表600元   2012年9月7日之后注册:一般代表1300元,学生代表800元   注册请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm进行在线注册。   七、参会须知(指定酒店和交通路线)   互欣商务酒店   地址:上海市浦东新区浦建路1143号(锦绣路路口)   电话:021-51350666   住宿费用(标间/大床):RMB 300/晚(含早)   交通指南:   Ÿ 从浦东机场到酒店: 坐地铁2号线(徐泾东方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥机场到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥火车站到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海火车站到酒店: 坐地铁4号线到世纪大道站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海南站到酒店: 坐地铁3号线到中山公园站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   酒店预订和住宿请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm 进行在线注册。会务组将安排指定酒店与会场的往返班车,凭《参会代表证》乘坐。  六、汇款信息   帐 号:0200004909200041055   账户名称:北京蛋白质组研究中心   开户银行:工商银行北京市永定路支行   注:汇款时请务必注明学员姓名、单位和“蛋白质组与免疫和代谢性疾病专题研讨会”字样。汇款后将汇款凭据传真至中心(010-80705155),以确保汇款安全到账。   七、会务组信息   北京昌平区科学园路33号北京蛋白质组研究中心   电话: 010-66930223,80705166 80705888   传 真:010-80705155   联系人:隆凯云  张雪莉 周建平   上海市浦东新区源深路1088号葛洲坝大厦11层   电话:021-20205500*827   传真:021-20205688   联系人:洪燕   附录:参会注册表(含酒店预订)   中国生物化学与分子生物学会   蛋白质组学专业委员会   德国慕尼黑国际博览集团   2012年8月24日
  • 【文献速递】肿瘤免疫治疗:靶向腺苷-A2AR代谢途径负反馈的特制纳米光热免疫抑制剂
    近日,同济大学医学院李永勇教授课题组证明了免疫抑制代谢物腺苷的增加在光热疗法(PTT)诱导的免疫原性细胞死亡(ICD)过程中起到负反馈调节作用,会严重抑制抗肿瘤免疫治疗的效果。在此基础上,该团队开发了一种具有强大抗肿瘤免疫效果的纳米系统,能够抑制原发肿瘤和异位肿瘤的生长,并减少其转移。相关研究成果已发表在国际知名期刊《Advanced Science》(IF: 16.806)。△ 图1国际知名期刊《Advanced Science》(IF: 16.806)肿瘤免疫治疗中,利用针对抗细胞毒性T淋巴细胞相关蛋白4(CTLA-4)和程序化细胞死亡蛋白1(PD-1)的免疫检查点抑制剂(ICB)治疗癌症,已在多种类型的肿瘤治疗中表现出显著疗效。但是,它们在实体瘤中效果有限。肿瘤微环境(TME)是肿瘤周围的细胞环境。研究发现,在TME中存在抑制免疫细胞的物质,其会导致肿瘤细胞逃脱免疫细胞的杀伤,影响ICB的治疗癌症效果。随着越来越多的难治性实体瘤患者出现,有必要对TME内的分子抑制机制有更深入的了解,开发更加有效的治疗手段。腺苷是TME中产生肿瘤免疫抑制的重要物质之一。由ATP分解,在TME中的含量是正常组织中的17倍,通过与免疫细胞和癌细胞上的腺苷2A受体(A2AR)结合,抑制免疫细胞的功能和免疫活性,使得肿瘤细胞逃脱免疫细胞的杀伤。已发现阻断腺苷-A2AR通路可增加TME中的NK细胞成熟,改善DC交叉呈递功能,并减少Tregs和MDSCs的肿瘤聚集。ICD是一种细胞死亡模式,通过促进抗原呈递细胞(APC)激活和触发抗原特异性CD8+T细胞反应,来增强抗肿瘤免疫反应。目前已经开发了多种组合策略,如PTT诱导的ICD、光动力疗法(PDT)诱导的ICD和化疗诱导的ICD。之前的研究表明,ICD效应不足以产生强大的抗肿瘤免疫。这意味着负反馈机制存在,就像在抗肿瘤免疫治疗中一样。考虑到ATP的显著升高是ICD的一个基本特征,可以假设腺苷-A2AR通路在ICD中起着关键的免疫抑制调节作用。基于上述背景,研究人员开展的实验发现PTT治疗导致肿瘤组织中腺苷的显著上调,这表明腺苷-A2AR途径起着平衡作用。在此基础上,研究人员开发了一种负载A2AR抑制剂SCH58261的聚多巴胺(PDA)纳米颗粒(NPs)载体,以实现肿瘤特异性递送和PTT增强的ICD免疫治疗。同时,为了增加A2AR拮抗剂的肿瘤积累,研究人员设计了一种酸响应的可拆卸PEG壳(PPDA)。当到达酸性肿瘤环境时,PEG壳被释放出来,呈现出负载抑制剂的PDA,其模仿贻贝的粘附性并将其粘连到肿瘤组织上,实现在肿瘤的滞留和聚集。代谢检查点A2AR的阻断降低了肿瘤浸润性免疫细胞中腺苷的代谢应激,并增强了ICD介导的有效抗肿瘤免疫反应(方案1)。该策略通过平衡腺苷的负反馈,为改善ICD免疫治疗提供了新的见解。△ 图2方案一:一种通过使用TME响应性PPDAIn(载有抑制剂SCH58261的PPDA)NPs阻断代谢检查点A2AR来增强ICD免疫治疗功效的策略。M1,M1型巨噬细胞。iDC,未成熟的树突状细胞。文章中,评估标记FITC的纳米材料在活体的分布代谢和肿瘤靶向情况,使用了博鹭腾多模式动物活体成像系统AniView100拍摄。△ 图3材料尾静脉注射后 24 小时后,主要器官和肿瘤的离体荧光图像(H)和荧光信号的定量分析(I)。论文链接https://doi.org/10.1002/advs.202104182广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了活体成像、分子影像、蛋白凝胶预制及印迹处理系统、发光检测四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 代谢组学进展|多团队成果揭示肠道调控中枢神经自身免疫性疾病易感新机制
    中枢神经系统的自身免疫性疾病,如多发性硬化、视神经脊髓炎谱系障碍,以慢性、进行性神经炎症、脱髓鞘和神经变性为特征。这些疾病在发病率和临床特征上都表现出强烈的女性倾向,其患者多为中青年女性。随着疾病的进展逐渐失去自主活动能力。已有的治疗药物多为对症治疗,选择品种有限且价格昂贵,无法得到根治,给家庭和社会带来巨大的负担。因此,迫切需要开发能够有效延缓这类疾病进展的药物,而目前对这类疾病认识有待更新,拓展研究思路是建立新的治疗方法的重要基础。  2023年11月21日,中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、神经科学国家重点实验室周嘉伟研究组、中国科学院分子细胞科学卓越创新中心宋昕阳研究组、中国科学院上海有机化学研究所生物与化学交叉研究中心朱正江研究组与上海交通大学医学院附属瑞金医院神经内科陈晟团队合作在Immunity上发表了文章Intestinal epithelial dopamine receptor signaling drives sex-specific disease exacerbation in a mouse model of multiple sclerosis(肠道上皮细胞多巴胺受体信号驱动雌性多发性硬化小鼠疾病进展),利用基因修饰小鼠和药理学实验方法以及多组学联合分析,他们发现,肠道上皮细胞多巴胺D2受体(IEC DRD2)过度激活可以选择性地在雌性小鼠中改变肠道菌群的组成及其代谢物水平,从而促进多发性硬化的发病。此研究聚焦中枢神经系统自身免疫性疾病研究前沿,独辟蹊径,通过跨系统研究,揭示了肠道远程调控中枢神经系统自身免疫性疾病易感性的新机制,为建立具有性别选择性的中枢神经系统自身免疫性疾病干预手段开辟了一条新途径。    已知,肠道微生物群失调促进多发性硬化的发展。在多发性硬化动物模型中,肠道微生物群在疾病的起始阶段、效应阶段和调节阶段以及个体对药物治疗的反应中都起着关键作用。然而,由于个体之间,肠道微生物群组成的差异很大,迄今,国内外医学界未能建立起具有广泛代表性的“核心微生物群表型”。肠道上皮细胞为胃肠道构筑了一条防线,不仅可以隔绝肠腔及其内容物,还可以整合肠腔内的多种菌群信号,以维持胃肠道正常生理功能。据报道,有多种与多发性硬化相关的肠道细菌可以产生多巴胺受体激动剂,因此,作者设想,肠道上皮细胞多巴胺受体介导了菌群和宿主相互联系,并且这种联系在多发性硬化发病过程中发挥重要作用。  为对上述设想予以验证,作者分别构建了在肠道上皮细胞分别特异性敲除多巴胺D2、D3、D4受体的小鼠,同时根据文献提供的肠道细菌产生大量的多巴胺受体激动剂苯乙胺这一线索,利用实验性自身免疫性脑脊髓炎作为多发性硬化动物模型,观察在上述基因缺失的情况下,小鼠行为学、病理学的变化,并作多组学分析,之后,使用小胶质细胞系和野生型小鼠对所发现的差异代谢物进行筛选,寻找和鉴定可以减轻动物模型发病严重程度的代谢物。同时收集多发性硬化患者和健康对照的粪便样品用于靶向代谢物检测,验证苯乙胺含量与多发性硬化发病之间的相关性及性别差异。  首先,通过代谢组学检测,作者发现,多发性硬化患者粪便中苯乙胺含量显著高于健康对照,且存在性别差异。通过条件性基因敲除等实验方法,观察到只有肠道上皮细胞多巴胺受体D2,而不是D3和D4基因缺失,可显著缓解多发性硬化小鼠模型发病的严重程度。通过与野生型对照组转录组的对比,发现DRD2敲除的多发性硬化小鼠模型中,肠道溶菌酶等抗菌肽表达量显著减少 同时通过16s rRNA测序,发现在造模前和发病高峰期肠道菌群组成出现显著差异 通过同笼饲养和抗生素处理,发现DRD2在多发性硬化小鼠模型的作用是肠道菌群依赖的 通过非靶向代谢学检测和代谢精准分析术 MetDNA,鉴定了47种只在雌性小鼠脊髓中存在差异的代谢物。之后,利用小胶质细胞细胞系BV2细胞和野生型小鼠对这些差异代谢物进行筛选,确定了N-乙酰赖氨酸可以在整体动物和体外培养细胞水平显著抑制炎症反应,从而缓解自身免疫性脑脊髓炎的发病。  为了进一步探究N-乙酰赖氨酸抑制炎症的分子机制,利用磁珠分选、流式细胞分选等方法,将脊髓中的小胶质细胞分离并进行转录组测序及单细胞测序。发现N-乙酰赖氨酸显著降低了多发性硬化相关小胶质细胞的比例,提高了增殖性小胶质细胞和稳态小胶质细胞的比例。表明N-乙酰赖氨酸有利于恢复多发性硬化小鼠模型失衡的中枢神经系统免疫稳态。  传统观点认为,性激素等在中枢神经系统自身免疫性疾病发病过程中发挥重要作用。本研究显示,肠道的苯乙胺-多巴胺D2受体-溶菌酶信号轴是决定雌性动物或中青年女性群体对多发性硬化发病易感性的重要因素,这是对传统观点的新的延伸和拓展。作者还揭示了肠道—微生物群——脑的相互作用是如何调控中枢神经系统免疫稳态,这一调控方式突出了宿主肠道细胞本身对肠道菌群的核心作用,为发展基于肠道上皮细胞活动调控的脑疾病干预方法提供了新的分子和细胞基础。N-乙酰赖氨酸的抑炎作用的发现为研发适用于女性多发性硬化患者的神经炎症治疗方法提供了新的机会。  该项工作由彭海蓉博士、邱佳倩、周勤明博士和博士研究生张彧锴在周嘉伟研究员、宋昕阳研究员、朱正江研究员和陈晟教授的指导下完成,课题组的其他成员积极参与,并得到了中国科学院上海营养与健康研究所肖意传、邱菊研究员的大力协助,因此,是众多课题组通力合作的结果。  在雌性小鼠中,粪便中较高的苯乙胺浓度会引起肠道上皮细胞中的DRD2过度激活,促进溶菌酶和防御素表达量增加。这些过量的抗菌肽,对细菌的杀伤力增强,因此,乳酸杆菌等对溶菌酶敏感的菌种在雌性小鼠体内减少。而乳酸杆菌产生的N-乙酰赖氨酸对小胶质细胞介导的炎症具有很强的抑制作用,是缓解中枢神经系统自身免疫性疾病,如多发性硬化的物质基础之一。  原文链接:https://doi.org/10.1016/j.immuni.2023.10.016
  • 682万!华南农业大学国猪免疫代谢前沿研究平台仪器设备采购项目
    一、项目基本情况项目编号:GZSW24156HG1083项目名称:2024TY001国猪免疫代谢前沿研究平台仪器设备采购采购方式:公开招标预算金额:6,825,600.00元采购需求:合同包1(实时荧光定量PCR等设备一批):合同包预算金额:3,025,600.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置实时荧光定量PCR1(台)详见采购文件720,000.00-1-2其他试验仪器及装置超声破碎仪1(台)详见采购文件390,000.00-1-3其他试验仪器及装置酶标仪1(台)详见采购文件390,000.00-1-4其他试验仪器及装置超低温冰箱4(台)详见采购文件248,000.00-1-5其他试验仪器及装置超微量紫外分光光度计1(台)详见采购文件150,000.00-1-6其他试验仪器及装置PCR仪3(台)详见采购文件141,000.00-1-7其他试验仪器及装置荧光计1(台)详见采购文件40,000.00-1-8其他试验仪器及装置超净台3(台)详见采购文件52,500.00-1-9其他试验仪器及装置连续加样器1(台)详见采购文件5,500.00-1-10其他试验仪器及装置细胞计数仪1(台)详见采购文件56,000.00-1-11其他试验仪器及装置细胞培养箱3(台)详见采购文件234,000.00-1-12其他试验仪器及装置移液枪(套)12(套)详见采购文件102,000.00-1-13其他试验仪器及装置真空浓缩仪2(台)详见采购文件180,000.00-1-14其他试验仪器及装置低温高速离心机2(台)详见采购文件310,000.00-1-15其他试验仪器及装置液氮罐1(个)详见采购文件6,600.00-本合同包不接受联合体投标合同履行期限:合同签订后90日内完成供货、安装调试和验收并交付采购人使用。合同包2(超高效液相高灵敏度质谱联用仪一台):合同包预算金额:3,800,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他试验仪器及装置超高效液相高灵敏度质谱联用仪1(台)详见采购文件3,800,000.00-本合同包不接受联合体投标合同履行期限:合同签订后90日内完成供货、安装调试和验收并交付采购人使用。二、获取招标文件时间: 2024年03月07日 至 2024年03月14日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南农业大学地 址:五山路483号联系方式:852800792.采购代理机构信息名 称:广州顺为招标采购有限公司地 址:广东省广州市越秀区环市中路205号自编B501-B505、B512-B525房联系方式:020-83592216-8073.项目联系方式项目联系人:邹小姐电 话:020-83592216-807
  • 免疫细胞缺陷或为衰老元凶!
    T 细胞可以保护人体免受病原体侵害,但一项在小鼠身上进行的研究表明,T 细胞也可能是加速衰老的元凶。而通过阻断细胞引起的炎症或增加关键代谢分子的供应,可以减轻小鼠体内一些与衰老相关的症状,该研究思路可能使老年人受益。该研究是 “把代谢、炎症和衰老直接联系在一起的绝佳结果”。澳大利亚墨尔本皇家理工大学免疫学家凯丽 奎恩表示 “他们做的工作非常彻底”,足以证明小鼠迅速老化是 T 细胞导致的。T 细胞会随年龄增长而表现不佳,人的抵抗力也会因此变得越来越弱,这是老年人更易受感染、对疫苗反应更差的原因。T 细胞表现不佳的原因之一是其内部 “发电厂”——线粒体因年龄渐长而出现故障。但 T 细胞不只是反映衰老,还可能正是衰老的成因。老年人出现的全身慢性炎症就是例子。研究人员指出,炎症会刺激衰老,而 T 细胞会释放炎症因子,触发炎症。为了验证这一假设,西班牙马德里自治大学分子生物学中心的玛利亚 米特尔布伦和同事通过基因编辑方法对小鼠进行处理,使其 T 细胞线粒体中的蛋白质缺失。这一改变会迫使 T 细胞采用效率较低的代谢机制。研究小组发现,出生后 7 个月本应是小鼠的壮年期,但基因编辑小鼠已经比普通小鼠显得更老。它们迟缓、笨拙、肌肉萎缩、虚弱,对感染的抵抗力也更弱。正如许多老年人一般,这些小鼠的心脏都很虚弱,且体内脂肪大量减少。此外,经编辑的小鼠 T 细胞释放出大量炎症因子,这可能是造成动物身体退化的部分原因。其结果表明,免疫系统的确在加快衰老进程中发挥了作用。那么,衰老的时钟有可能往回拨吗?研究者给小鼠服用了一种阻断肿瘤坏死因子 TNF-α(该因子可诱导炎症出现,且由 T 细胞释放)的药物,结果发现小鼠的抓地力有好转,且在迷宫中表现得更敏捷,心脏也更有活力。米特尔布伦等人还提供了另一种化合物,可提升高烟酰胺腺嘌呤二核苷酸(NAD+)水平,NAD + 对代谢反应至关重要。通过这一分子,代谢系统可利用细胞从食物中获得能量。通常,随着年龄增长,NAD + 细胞浓度会下降。研究人员发现,采用新方法后,老鼠体内的 NAD + 浓度有所增加,且心脏功能更活跃。面对类风湿关节炎和克罗恩病等,抑制 TNF-α的药物是标准治疗手段。目前,市面上有一些公司出售能提高 NAD + 水平的药物。研究者表示,对这一新方法进行临床试验,可确定靶向 TNF-α或 NAD + 是否能减少衰老带来的负面影响。也有人质疑该研究与正常衰老的相关性。美国西北大学芬伯格医学院生物学家纳夫迪普 钱德尔指出,转基因鼠的线粒体受损程度比老年人更严重,“对大多数人而言,我敢打赌 T 细胞的负面作用没那么大”。但钱德尔也指出,线粒体功能异常的 T 细胞会导致某些人早衰,其在相对年轻时就出现老龄化疾病。巴克老龄化研究所分子细胞生物学家朱迪斯 坎皮西对此表示同意。她说,这项新研究可以帮助人们更好理解免疫系统如何随年龄变化而变化,但 “不知道它在多大程度上模仿了自然衰老”。
  • 回放速递--“肿瘤微环境与免疫治疗”会议
    p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 仪器信息网于2020年08月19日举办了“肿瘤微环境与免疫治疗检测方法专题网络研讨会”,应广大网友呼应,现发布回放视频供大家查看。 /span /p p style=" text-indent: 0em text-align: center " span style=" text-align: justify text-indent: 2em " strong 点击对应报告图片即可跳转查看 /strong /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0a17c589-5468-42bc-80d2-004d06efa4ec.jpg" title=" 192042020200705.jpg" alt=" 192042020200705.jpg" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 肿瘤微环境(Tumor microenvironment, TME)不仅包括了肿瘤细胞本身,还有与肿瘤细胞有密切联系的成纤维细胞、免疫和炎性细胞、胶质细胞等各种细胞,同时也包括附近区域内的细胞间质、微血管以及浸润在其中的生物分子。而免疫和炎症是构成肿瘤微环境的两大核心。近年来, 随着多个PD-1免疫检查点抑制剂的获批上市以及多个肿瘤免疫临床试验获得的成功,带动了肿瘤免疫治疗的发展,然而肿瘤免疫治疗领域还存在很多未解决的问题, 如只针对某些特定的肿瘤有作用,总体临床应答率低, 肿瘤免疫联合治疗的安全性, 肿瘤免疫治疗后的复发等。& nbsp 针对肿瘤的耐药现象,医学研究做了大量的工作,包含耐药基因突变研究,肿瘤异质性等,目前肿瘤微环境作为一种新的概念也逐渐得到了临床的重视。肿瘤微环境长期以来都是肿瘤研究当中一个关键和核心的方向,对于认识肿瘤的发生、发展、转移等过程有着重要的意义,而且对于肿瘤的诊断、防治和预后亦有着重要的作用。 /span /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 1、 a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" 《Lipid Metabolic Reprogramming in Tumor-Associated Macrophages》--李咏生& nbsp |& nbsp 教授、主任医师-重庆大学附属肿瘤医院(点击查看回放) /a /span /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" span style=" text-align: justify text-indent: 2em " /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2733bcfa-945d-432c-8dd5-9cbe09c02a1c.jpg" title=" 李咏生.jpg" alt=" 李咏生.jpg" / /a /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 报告摘要: /span /strong span style=" text-align: justify text-indent: 2em " Metabolic reprogramming is critical for the polarization and function of tumor associated macrophages (TAMs) and carcinogenesis, whereas the underlying mechanism remains elusive. Here we show that monoacylglycerol lipase (MGLL) deficiency contributes to lipid accumulation in TAMs and tumor progression. MGLL regulates macrophage activation via CB2-TLR4 interaction. We also found that receptor-interacting protein kinase 3 (RIPK3), a central factor in necroptosis, is downregulated in hepatocellular carcinoma (HCC)-associated macrophages, which correlates with the promoted tumorigenesis, as well as the enhanced accumulation and M2 polarization of TAMs. RIPK3 deficiency in TAMs reduces reactive oxygen species (ROS) and significantly inhibits and caspase1-mediated cleavage of peroxisome proliferator-activated receptors (PPARs) that enables PPAR activation and facilitates fatty acid metabolism including fatty acid oxidation (FAO), as well as induces M2 polarization in the tumor microenvironment. Our findings provide the molecular basis for lipid metabolic reprogramming of TAMs and highlight potential strategies for targeting cancer immunometabolism. /span /p p style=" text-align: justify text-indent: 2em " strong a href=" https://www.instrument.com.cn/webinar/video_113336.html" target=" _blank" 2、《靶向T细胞代谢的肿瘤免疫治疗新探索》-武多娇& nbsp |& nbsp 副教授-复旦大学附属中山医院 /a (点击查看回放) /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113336.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ccc8bf7b-47aa-447f-b1ac-73f7151042e1.jpg" title=" 武多娇.jpg" alt=" 武多娇.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 免疫细胞代谢重组是调控机体固有性和适应性免疫反应的重要机制之一。代谢是免疫细胞执行功能的能量基础,同时也影响着免疫细胞表型分化、功能活化、增殖等关键过程。目前有研究提示在多种疾病中,比如自身性免疫疾病,慢性炎症或者肿瘤中免疫细胞功能的过度激活或者抑制与其异常代谢活动密切相关;免疫代谢的稳态失衡和异常调控促进疾病发生发展。因此全面阐明疾病中免疫代谢机制,不仅增强我们对疾病的理解,也提供跨越病种的创新治疗选择。通过靶向代谢性通路,选择性干扰或增强肿瘤免疫相关疾病的代谢活动,从而达到重塑免疫功能及肿瘤免疫精准治疗的目的。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113337.html" target=" _blank" strong 3、《载药囊泡激活的抗肿瘤免疫反应在肿瘤治疗中的应用》-唐科& nbsp |& nbsp 副教授-华中科技大学基础医学院(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113337.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2492654d-7307-42a0-bbc5-1fb4beb86b48.jpg" title=" 唐科.jpg" alt=" 唐科.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 细胞外囊泡因其包含丰富的生物活性物质在细胞间传递信号为大家所熟知,其中包含蛋白质,糖类,RNA分子乃至少量的DNA分子。基于此,我们通过细胞外囊泡包裹化疗药物来治疗恶性肿瘤,前期研究结果发现,载药囊泡除了可以靶向杀伤肿瘤细胞外,其可以有效的激活抗肿瘤免疫反应,在肿瘤的生物免疫治疗中发挥重要的作用。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113338.html" target=" _blank" strong 4、《NGS助力肿瘤免疫学和癌症转化研究》-王亚俊& nbsp |& nbsp 肿瘤市场经理-Illumina 因美纳(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113338.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e2037c2b-bb9f-44dc-bf5b-646157022800.jpg" title=" 王亚俊.png" alt=" 王亚俊.png" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 近年来,免疫肿瘤学作为肿瘤学的一个新兴领域,在抗击癌症过程中取得了突破性进展。这些发展得益于科学家对肿瘤如何逃避自然免疫反应的深入研究。对肿瘤逃避免疫反应机制的深入研究也为肿瘤免疫药物开发带来新的契机,这些疗法或者提高了免疫系统抗击癌症或者限制了肿瘤逃避免疫反应实现抗击癌症。领先的免疫肿瘤学研究人员正在利用新一代测序技术(NGS)研究免疫治疗反应因子,发现生物标记物,并将基因组学应用于个性化免疫治疗。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113334.html" target=" _blank" strong 5、《One& nbsp Tissue,& nbsp More& nbsp Answers”& nbsp ---& nbsp Cell& nbsp DIVE& nbsp 超多标组织成像分析技术最新进展及其应用分享》-谢晓哲& nbsp |& nbsp 细胞影像分析产品经理-Cytiva(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113334.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3ca8b65e-0f21-46de-9d07-386ea9fa4cc2.jpg" title=" Cytiva.jpg" alt=" Cytiva.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 本报告将从技术背景和应用场景等方面介绍全新的 Cell DIVE 超多标组织成像分析技术,能够在一张组织切片上对超过 60 个 Biomarker 进行成像和分析,深度挖掘组织微环境的空间位置信息,细胞间的相互作用关系及定位等信息,从而完成精准的可视化定量分析,助力肿瘤免疫治疗、用药指导、预后判断和病人分层等研究。 /p p style=" text-align: center text-indent: 0em " strong 仪器信息网肿瘤微环境交流群 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 191px height: 254px " src=" https://img1.17img.cn/17img/images/202008/uepic/e2e1218d-8140-4c1f-89b6-bb97025afb8a.jpg" title=" 交流群 肿瘤微环境.jpg" alt=" 交流群 肿瘤微环境.jpg" width=" 191" height=" 254" / /p
  • 肿瘤微环境调节免疫细胞功能机制获揭示
    p   华中科技大学科研团队揭示了肿瘤微环境中肿瘤细胞与免疫细胞相互调节机制。《临床研究杂志》近日在线发表了该成果。 /p p   近年来,随着肿瘤免疫治疗,特别是Car-T细胞免疫治疗技术和免疫节点治疗在临床上的成功,深入研究肿瘤微环境对免疫细胞功能的调节机制具有重要的基础研究意义。 /p p   华中科技大学基础医学院免疫学系杨想平团队的研究发现,在小鼠模型中,皮下移植的肿瘤细胞在小鼠中生长更快,尾静脉注射的肺腺癌肿瘤细胞向肺转移结节在小鼠中明显增多,血管增多,巨噬细胞向促肿瘤表型极化增强。 /p p   杨想平团队和病理系王国平团队合作发现,在人的临床肺腺癌患者组织中,肿瘤细胞能通过其代谢产物调控巨噬细胞囊泡水解酶表达,从而使肿瘤相关巨噬细胞在肿瘤微环境中编程重组为促进肿瘤生长的免疫细胞。 /p p   该研究还发现囊泡水解酶表达高低可作为肺腺癌重要的预后标志,因此具有重要的临床意义。 /p p /p
  • 清华大学药学院胡泽平:代谢组学与代谢流分析技术
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 代谢是生理的基础。近年的研究证明,绝大多数人类疾病,如癌症、糖尿病和心血管疾病等都与代谢异常相关。因此,针对疾病的代谢水平上的分子机制研究已成为基础生物、转化医学研究和药物研发的焦点之一,而代谢组学和代谢流分析是代谢研究重要技术手段。 br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 今天介绍的这位专家是清华大学药学院的胡泽平,其 span style=" text-indent: 2em " 课题组的主要研究方向是以先进的生物质谱为平台,发展高效、精准的新型代谢组学和代谢流分析技术;揭示生理、疾病及药物耐药性的代谢分子机制与功能;针对疾病及药物耐药性的代谢漏洞,设计新型药物治疗靶标和治疗方案;并以功能性生物标志物和药物代谢组学促进药物研发、实现精准治疗。以下内容整理自网络资源,以飨读者。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c22bd31-db8f-4927-a06a-643abb6f2757.jpg" title=" 胡.jpg" alt=" 胡.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 清华大学药学院 胡泽平研究员 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/bcc4f1f2-3e98-495b-ba32-e7fce58b1e48.jpg" title=" 胡2.png" alt=" 胡2.png" / /p p style=" text-indent: 2em line-height: 1.75em " strong style=" text-align: justify text-indent: 2em " Q:代谢组能让我们全面理解一个生物系统,它能为研究者提供许多功能性信息。请您介绍一下,目前代谢组学主要研究手段有哪些?该领域目前的研究及临床应用情况如何? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢是生物体进行生命活动的基础,代谢紊乱已被证明与糖尿病、肿瘤、炎症等诸多疾病密切相关。代谢组学是代谢研究的重要技术手段之一。 /p p style=" line-height: 1.75em "   从研究目的和方法的角度看,通常可将代谢组学分为非靶向代谢组学和靶向代谢组学两种类型。非靶向代谢组学致力于尽可能全面地对生物体系中的所有内源性小分子代谢物进行系统分析,而靶向代谢组学则更侧重于针对科研人员所感兴趣的一组特定的代谢物进行分析。此外,近年来,结合非靶向和靶向两种方法优势的“拟靶向”代谢组学方法也得到一定程度的发展。分析手段方面,代谢组学主要采用液相色谱-质谱联用(LC-MS)、气相色谱-质谱联用(GC-MS)、核磁共振(NMR)等分析平台,其中最为常用的是LC-MS平台。 /p p style=" line-height: 1.75em "   随着近年来人们越来越多的认识到代谢研究的重要性,代谢组学在生命科学和医药研究中也得到更为广泛的应用,包括细胞代谢调控、代谢新通路、疾病代谢机制、药物新靶标发现与确证、药物药效及毒性评价、疾病诊断或预后生物标志物、药物代谢组学、精准用药等领域。 /p p style=" line-height: 1.75em "    strong Q:我们看到目前代谢组学在促进药物研发、实现精准治疗的过程中,越来越受到重视,与其它研究方法相比,它的优势有哪些?还有哪些需要克服的困难? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢物处于生物系统中生化活动的终端,因此反映的是已经发生的生物学事件。此外,基因表达和环境因素的变化对生物系统所产生的影响都可在代谢物水平上得到最终的表型体现。因此,与其他组学相比,以小分子(通常指分子量& lt 1000)代谢物为主要研究对象的代谢组学能够更为准确地反映生物体的终端和整体信息。通过代谢组学分析,可以深入理解相关的代谢异常。 /p p style=" line-height: 1.75em "   尽管代谢组学在上述的研究领域取得了广泛应用,其自身的发展仍然存在一些需要解决的问题。由于代谢物种类多样且浓度差异大,代谢物的分析仍然存在多方面的挑战,如基质效应、离子化抑制、代谢物的鉴定等。与其他组学特别是已经很大程度上实现了标准化的基因组学和转录组学相比,代谢组学的应用受到了不同实验室间差异性的阻碍,涉及大样本量如临床样本的代谢组学研究更需要高度可重复的可靠代谢组学分析方法,因此亟需进一步推进代谢组学的方法学标准化,包括从样品采集、制备和处理到数据的分析和解释的整个过程,从而在各实验室之间实现更为一致和可重复的代谢组学研究,以更高的准确度和精确度检测代谢表型的微妙差异。此外,检测和鉴定更多低丰度代谢物以实现更广泛的代谢组覆盖是代谢组学的另一项技术挑战。如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常极少,需要超高灵敏度的方法来实现准确分析。另外,多组学数据整合正成为代谢研究的重大需求和技术瓶颈,需要开发新的生物信息学工具,将代谢组学与其他组学(基因组学、转录组学和蛋白质组学)相结合,并对多组学数据进行数据整合和预测建模,以加速大数据的多组学研究。 /p p style=" line-height: 1.75em "    strong Q:通过生物质谱发展超灵敏度的新型痕量代谢组学和代谢流分析技术是您的课题组研究方向之一,请您介绍下,为什么要发展超灵敏的痕量代谢组学方法?什么是代谢流分析?它的具体作用是什么? /strong /p p style=" line-height: 1.75em "   胡泽平:如前面提到的,如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常很少,需要超灵敏的方法来实现准确分析。这将为深入理解干细胞、疾病、发育和免疫细胞的代谢分子机制提供必需的技术支持,同时也将为捕捉早期肿瘤病人血液中细微的代谢变化、检测和鉴定更多低丰度代谢物以实现更广泛的代谢物覆盖、及发现早期诊断生物标志物提供技术基础。我们前期发展的基于三重四级杆质谱的超灵敏靶向代谢组学技术率先使在5,000-10,000个分离自小鼠的造血干细胞中进行代谢组学分析成为可能,并由此取得重要生物学发现,这充分证明了超灵敏痕量代谢组学技术的重要性。 /p p style=" line-height: 1.75em "   虽然代谢组学是研究代谢的重要技术手段,但由于代谢网络是复杂并且动态变化的,而代谢组学仅能提供静态的代谢物丰度信息,因此仍存在局限性。代谢流分析技术则可以很好地弥补这一局限。代谢流分析技术利用稳定同位素标记特定的化合物,通过分析下游代谢产物的稳定同位素标记模式,推算出该化合物在在细胞内代谢通路中的周转速率、方向和分布规律 通过对不同状态的生物体进行代谢流分析,即可得到生物体特定代谢通路的活跃程度,从而在动态水平上描述细胞的代谢活性。结合代谢组学和代谢流分析技术,可以更好地理解细胞内代谢网络的代谢物水平变化、流量分布和周转速率,发掘主要代谢异常通路及其生物学功能,并揭示其上下游相互调控机制。这可为理解疾病发生机制、药物靶点发现与确证等提供强有力的科学依据。代谢流分析已经广泛应用于代谢相关疾病如糖尿病、癌症、免疫、神经退行性疾病等的发病机制研究中。 /p p style=" line-height: 1.75em "    strong Q:我们了解到,您在2016年12月加入了清华大学药学院并建立了代谢组学与疾病代谢课题组。您认为您课题组的主要特色是什么?到目前为止,课题组进展怎样?已经取得哪些重要成果? /strong /p p style=" line-height: 1.75em "   胡泽平:我们课题组多年来致力于疾病的代谢机制研究与药物新靶标的发现与确证,重点专注于以发现和确证药物新靶标为导向,通过发展新型痕量代谢组分析(包括代谢组学和代谢流)技术,揭示生理、疾病、或耐药性的代谢异常新通路并深入阐释其分子新机制,来发现和确证新型药物靶标,逐步形成了“发展新技术、揭示新机制、鉴定新靶标”的主要研究特色。具体来说为: /p p style=" line-height: 1.75em "   发展并验证基于色谱-质谱联用技术(LC-MS和GC-MS)的超灵敏痕量代谢组学方法,用于分析痕量样本(尤其是干细胞、发育)中的代谢物变化规律 发展基于稳定同位素示踪的代谢流分析技术,用于分析代谢异常通路的动态周转速率与方向 /p p style=" line-height: 1.75em "   以所发展的代谢组学和代谢流分析技术,结合转录组学、生物信息学和分子 / 细胞生物学等方法,发掘与生理(干细胞、发育)、疾病(癌症、感染性疾病、心肌肥大)或药物耐药性相关的代谢重编程通路及其关键代谢酶,揭示其相应的功能与分子调控机制 /p p style=" line-height: 1.75em "   基于上述功能和机制研究,发现与疾病、耐药性相关的代谢漏洞(代谢脆弱性),确证其作为新药、克服耐药的新型分子靶标的可行性,进而用于新药研发或联合用药 发掘相应的生物标志物,用于指导临床精准用药。 /p p style=" line-height: 1.75em "   我们课题组目前已经发展了一系列基于色谱-质谱平台的代谢组学(靶向和非靶向)和代谢流分析技术方法。其中包括一种前面所提及的超灵敏的痕量靶向代谢组学方法,可在极少量(~5,000)细胞中进行代谢组学研究,并应用该方法与合作者揭示了造血干细胞异于其他造血细胞群的代谢特征及其生物学意义。此外,我们以所创建的代谢组学和代谢流分析方法为基础,进行了多项疾病代谢机制的合作研究,包括阐释了癌症细胞中新的代谢通路 非小细胞肺癌的发病、恶性黑色素瘤的转移、以及造血干细胞的代谢重编程及其分子机理,为深入理解癌症发病或转移机制,并发现新型治疗靶标提供了分子基础。 /p p style=" line-height: 1.75em "   在2016年12月回国以来的工作中,我们:1. 率先揭示了ASCL1低表达的小细胞肺癌(SCLC)亚型依赖于次黄嘌呤脱氢酶(IMPDH)介导的嘌呤从头合成的代谢机制,确证了IMPDH可作为该亚型SCLC治疗的药物新靶标,并发现了特异性靶向IMPDH的新药咪唑立宾,突破了数十年来SCLC治疗缺乏有效靶向治疗药物的瓶颈(Cell Metabolism, 2018) 2. 率先揭示了“发热伴血小板减少综合症”(Severe fever with thrombocytopenia syndrome, SFTS)病毒感染后引发精氨酸代谢异常,继而导致血小板减少和T细胞免疫功能抑制的潜在致病机制 并在临床试验中确证了“精氨酸补充疗法”可以促进患者恢复,为治疗这一致死率高达10-30%的病毒性传染病、降低病死率提供了重要的新理论和新策略(Science Translational Medicine, 2018)。另外,我们在非小细胞肺癌对EGFR TKI的耐药性、心肌肥大的代谢机制等研究中也取得了一些进展,目前相关工作正在顺利开展中。 /p p style=" line-height: 1.75em "    strong Q:在许多代谢过程中代谢产物的动态变化范围存在个体差异问题,且易受到饮食、环境、年龄等各种因素影响,所以代谢物作为生物标记物存在一定局限性。在高噪音背景下检测出代谢组生物标记物有一定难度。您在研究过程中是否遇到过类似情况?针对这一问题,研究人员有何对策? /strong /p p style=" line-height: 1.75em "   胡泽平:作为精准医学的“关键词”之一,生物标志物的发现已经成为当前医学领域的研究热点之一。包括代谢组学等在内的组学技术的快速发展为发现生物标志物带来了更大的可能性。如前所述,代谢物是存在于信号通路的终端产物,因此代谢组学所提供的信息与表型更为接近,更适于疾病分型和标志物发现的研究。但是在实际研究尤其是在人体研究中,不同代谢物的水平本身相差悬殊,并且容易受到年龄、性别、饮食、是否用药等其他因素的干扰。此外代谢组学常用的技术手段如质谱检测也容易受到其他杂质的干扰,表现为强烈的背景噪声,而且不同的检测和分析体系,有不同的噪音模式。因此,基于代谢组学的生物标志物发现需特别注意排除artificial的因素影响,而这一直以来都是相关研究的挑战和难题。从代谢组学分析技术层面来说,可通过利用高特异性、高灵敏度的平台,如液相色谱-串联质谱(LC-MS/MS)和高分辨质谱等,并采用严格的质量控制,来对包括低丰度次生代谢物在内的尽可能多的代谢物进行全覆盖分析,并进行可靠的代谢物鉴定。从生物学角度来说,单独某一种代谢物的升高,既可能是因为合成途径的增强,也可能是由于消耗途径的抑制。因此可通过分析代谢通路上、下游代谢产物来寻找一组(而不是单一的)相关性生物标记物 尤其重要的是,针对相关性生物标记物进行进一步的生物学功能和机制验证,从而实现“功能性生物标志物”的发现,将对疾病的准确诊断或预后发挥更为重要的意义。 /p p style=" line-height: 1.75em "    strong Q:您在清华大学药学院开展代谢组学分析技术和疾病代谢研究,您认为代谢组学分析技术在药物研发中所起的作用是什么?将来还可以应用在哪些方面? /strong /p p style=" line-height: 1.75em "   胡泽平:多年来的研究证实,代谢在疾病的发生、发展中起着重要作用。代谢组学研究生物体在受到病理生理刺激或遗传修饰后(包括基因或环境的改变),其内源性代谢产物的种类及数量变化,因此所有对生物体系有影响的因素均可反映在代谢组中。利用代谢组学技术对代谢组的静态和动态进行分析,可以帮助我们理解代谢异常的生物学变化过程,在疾病的病理机制、治疗靶点的发现和验证、药物的作用及毒性研究中发挥着重要作用。 /p p style=" line-height: 1.75em "   近年来,代谢组学在理解疾病(如肿瘤)的病理机制,以及药物的作用、毒性、耐药机制研究中的作用已经受到广泛关注。因此,代谢组学在新药靶标发现与确证,以及克服耐药性的研究,以及相应的药物研发中将发挥越来越重要的作用。此外,药物代谢组学在指导临床精准用药中也将扮演更令人鼓舞的角色。 /p p style=" line-height: 1.75em " br/ /p p style=" text-align: justify text-indent: 0em line-height: 1.75em "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 胡泽平课题组研究方向: /span /p p style=" text-align: justify text-indent: 0em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   基于色谱-质谱联用平台的新型代谢组学(靶向、非靶向)和代谢流分析(metabolic flux analysis)技术开发:创建和验证基于色谱-质谱联用平台(LC/MS和GC/MS)的高灵敏度、高特异性、高通量的代谢组学技术,用于分析和发现生物样本的代谢组特征与异常 创建稳定同位素示踪的代谢流分析技术,用于测量分析代谢异常相关通路的动态周转速率和方向。两者作为代谢水平上分子机制研究的互补有力工具。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 生理(干细胞、发育)、疾病(癌症、肥厚型心肌病、感染性疾病)、抗癌药物耐药性的代谢分子机制与功能:利用代谢组学和代谢流分析,结合转录组学、生物信息学和细胞、分子生物学等技术,发掘与疾病、干细胞或药物耐药性相关的代谢重编程与异常代谢通路,理解其功能与分子调控机制 并针对其代谢脆弱性发现新型药物或联合用药的分子靶标,用于新药研发、疾病分子分型和精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 基于分子机制的功能性生物标志物研究:基于代谢组学筛选和代谢分子机制研究,发现并验证高灵敏度和高特异性的功能性生物标志物,用于癌症早期检测或药物疗效预测 并对患者进行分层,以不同治疗方案实现精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 药物代谢组学(pharmaco-metabolomics)与精准治疗:以药物代谢组学分析用药患者代谢表型的个体差异及其与药物应答(药效和毒性)及药代的相关性,并揭示其分子机制,以指导临床用药、促进药物研发、实行精准治疗。 /span /p p style=" line-height: 1.75em " br/ /p
  • 酶联免疫分析仪|全新操作方法| 便捷的触摸屏输入【新品】
    点击了解更多→酶联免疫分析仪|全新操作方法| 便捷的触摸屏输入【新品】 酶联免疫分析仪(ELISA)是一种广泛应用于生物医学领域的免疫分析技术,主要用于检测和定量生物样品中的抗原、抗体或蛋白质等生物分子。在基础科学研究中,酶联免疫分析仪可以用于研究生物分子的性质、功能和相互作用。例如,通过检测抗体与抗原的结合能力,可以研究抗体的特异性、亲和力和抗原的构象变化等。此外,酶联免疫分析还可以用于研究细胞因子的表达和功能、免疫应答机制以及药物对细胞的影响等。 酶联免疫分析仪被广泛应用于临床诊断和疾病监测中。例如,可以检测和定量血清、尿液、脑脊液等生物样品中的肿瘤标志物、病毒抗体、药物代谢产物等生物分子。通过酶联免疫分析,医生可以根据检测结果对患者进行诊断和制定治疗方案。此外,酶联免疫分析还可以用于评估患者的免疫状态、病情进展和预后等。 酶联免疫分析仪可以用于食品安全和环境监测中。例如,可以检测食品中的细菌、病毒、农药残留等有害物质。通过酶联免疫分析,可以对食品进行快速、准确的检测和分析,保障食品安全。此外,酶联免疫分析还可以用于环境监测中,检测水体、土壤、空气等环境样品中的有害物质,评估环境污染程度。
  • 最新!卫健委发布《国家免疫规划疫苗儿童免疫程序及说明(2021年版)》
    近日,为贯彻落实《疫苗管理法》精神,国家卫生健康委组织对《国家免疫规划疫苗儿童免疫程序及说明(2016年版)》进行修订,在此基础上形成了《国家免疫规划疫苗儿童免疫程序及说明(2021年版)》。据悉,2021版主要有三个变化。第一,补种年龄由之前的14周岁延长至18周岁。第二,补充常见特殊健康状态儿童的接种细则。例如“人类免疫缺陷病毒(HIV)感染母亲所生儿童的儿童怎么接种?正在接受全身免疫抑制治疗者怎么接种?等特殊儿童接种问题。在2021版中,专门增加了一部分进行说明,接种医生也有了接种依据。第三,对一些疫苗有了更详细的要求。比如,乙肝接种中,对HBsAg阳性或不详产妇所生新生儿建议在出生后12小时内尽早接种第1剂,而之前的时间是24小时。具体说明如下国家免疫规划疫苗儿童免疫程序说明(2021年版)第一部分 一般原则一、接种年龄(一)接种起始年龄:免疫程序表所列各疫苗剂次的接种时间,是指可以接种该剂次疫苗的最小年龄。(二)儿童年龄达到相应剂次疫苗的接种年龄时,应尽早接种,建议在下述推荐的年龄之前完成国家免疫规划疫苗相应剂次的接种:1.乙肝疫苗第1剂:出生后24小时内完成。2.卡介苗:小于3月龄完成。3.乙肝疫苗第3剂、脊灰疫苗第3剂、百白破疫苗第3剂、麻腮风疫苗第1剂、乙脑减毒活疫苗第1剂或乙脑灭活疫苗第2剂:小于12月龄完成。4.A群流脑多糖疫苗第2剂:小于18月龄完成。5.麻腮风疫苗第2剂、甲肝减毒活疫苗或甲肝灭活疫苗第1剂、百白破疫苗第4剂:小于24月龄完成。6.乙脑减毒活疫苗第2剂或乙脑灭活疫苗第3剂、甲肝灭活疫苗第2剂:小于3周岁完成。7.A群C群流脑多糖疫苗第1剂:小于4周岁完成。8.脊灰疫苗第4剂:小于5周岁完成。9.白破疫苗、A群C群流脑多糖疫苗第2剂、乙脑灭活疫苗第4剂:小于7周岁完成。如果儿童未按照上述推荐的年龄及时完成接种,应根据补种通用原则和每种疫苗的具体补种要求尽早进行补种。二、接种部位疫苗接种途径通常为口服、肌内注射、皮下汪射和皮内注射,具体见第二部分“每种疫苗的使用说明”。注射部位通常为上臂外侧三角肌处和大腿前外侧中部。当多种疫苗同时注射接种(包括肌内、皮下和皮内注射)时,可在左右上臂、左右大腿分别接种,卡介苗选择上臂。三、同时接种原则(一)不同疫苗同时接种:两种及以上注射类疫苗应在不同部位接种。严禁将两种或多种疫苗混合吸入同一支注射器内接种。(二)现阶段的国家免疫规划疫苗均可按照免疫程序或补种原则同时接种。(三)不同疫苗接种间隔:两种及以上注射类减毒活疫苗如果未同时接种,应间隔不小于28天进行接种。国家免疫规划使用的灭活疫苗和口服类减毒活疫苗,如果与其他灭活疫苗、汪射或口服类减毒活疫苗未同时接种,对接种间隔不做限制。四、补种通用原则未按照推荐年龄完成国家免疫规划规定剂次接种的小于18周岁人群,在补种时掌握以下原则:(一)应尽早进行补种,尽快完成全程接种,优先保证国家免疫规划疫苗的全程接种。(二)只需补种未完成的剂次,无需重新开始全程接种。(三)当遇到无法使用同一厂家同种疫苗完成接种程序时,可使用不同厂家的同种疫苗完成后续接种。(四)具体补种建议详见第二部分“每种疫苗的使用说明”中各疫苗的补种原则部分。五、流行季节疫苗接种国家免疫规划使用的疫苗都可以按照免疫程序和预防接种方案的要求,全年(包括流行季节)开展常规接种,或根据需要开展补充免疫和应急接种。第二部分 每种疫苗的使用说明一、重组乙型肝炎疫苗(乙肝疫苗,HepB )(一)免疫程序与接种方法1.接种对象及剂次:按"0-1-6个月”程序共接种3剂次,其中第1剂在新生儿出生后24小时内接种,第2剂在1月龄时接种,第3剂在6月龄时接种。2.接种途径:肌内注射。3.接种剂量:①重组(酵母)HepB:每剂次10g,无论产妇乙肝病毒表面抗原(HBsAg)阳性或阴性,新生儿均接种10g的HepB。②重组[中国仓鼠卵巢(CHO)细胞]HepB:每剂次10g或20g,HBsAg阴性产妇所生新生儿接种10g的HepB,HBsAg阳性产妇所生新生儿接种20g的HepB。(二)其他事项1.在医院分挽的新生儿由出生的医院接种第1剂HepB,由辖区接种单位完成后续剂次接种。未在医院分挽的新生儿由辖区接种单位全程接种HepB。2.HBsAg阳性产妇所生新生儿,可按医嘱肌内注射100国际单位乙肝免疫球蛋白(HBIG),同时在不同(肢体)部位接种第1剂HepB。HepB、HBIG和卡介苗(BCG)可在不同部位同时接种。3.HBsAg阳性或不详产妇所生新生儿建议在出生后12小时内尽早接种第1剂HepB HBsAg阳性或不详产妇所生新生儿体重小于2000g者,也应在出生后尽早接种第1剂HepB,并在婴儿满1月龄、2月龄、7月龄时按程序再完成3剂次HepB接种。4.危重症新生儿,如极低出生体重儿(出生体重小于1500g者)、严重出生缺陷、重度窒息、呼吸窘迫综合征等,应在生命体征平稳后尽早接种第1剂HepB。5.母亲为HBsAg阳性的儿童接种最后一剂HepB后1-2个月进行HBsAg和乙肝病毒表面抗体(抗-HBs)检测,若发现HBsAg阴性、抗-HBs阴性或小于lOmIU/ml,可再按程序免费接种3剂次HepB。(三)补种原则1.若出生24小时内未及时接种,应尽早接种。2.对于未完成全程免疫程序者,需尽早补种,补齐未接种剂次。3.第2剂与第1剂间隔应不小于28天,第3剂与第2剂间隔应不小于60天,第3剂与第1剂间隔不小于4个月。二、皮内注射用卡介苗(卡介苗,BCG)(一)免疫程序与接种方法1.接种对象及剂次:出生时接种1剂。2.接种途径:皮内注射。3.接种剂量:0.1ml。(二)其他事项1.严禁皮下或肌内注射。2.早产儿胎龄大于31孕周且医学评估稳定后,可以接种BCG。胎龄小于或等于31孕周的早产儿,医学评估稳定后可在出院前接种。3.与免疫球蛋白接种间隔不做特别限制。(三)补种原则1.未接种BCG的小于3月龄儿童可直接补种。2.3月龄-3岁儿童对结核菌素纯蛋白衍生物(TB-PPD)或卡介菌蛋白衍生物 (BCG-PPD)试验阴性者,应予补种。3.大于或等于4岁儿童不予补种。4.已接种BCG的儿童,即使卡痕未形成也不再予以补种。三、脊髓灰质炎(脊灰)灭活疫苗(IPV)、二价脊灰减毒活疫苗(脊灰减毒活疫苗,bOPV)(一)免疫程序与接种方法1.接种对象及剂次:共接种4剂,其中2月龄、3月龄各接种1剂IPV,4月龄、4周岁各接种1剂bOPV。2.接种途径:IPV:肌内注射。bOPV:口服。3.接种剂量:IPV:0.5ml。bOPV:糖丸剂型每次l粒;液体剂型每次2滴(约0.1ml)。(二)其他事项1.如果儿童已按疫苗说明书接种过IPV或含IPV成分的联合疫苗,可视为完成相应剂次的脊灰疫苗接种。如儿童已按免疫程序完成4剂次含IPV成分疫苗接种,则4岁无需再接种bOPV。2.以下人群建议按照说明书全程使用IPV:原发性免疫缺陷、胸腺疾病、HIV感染、正在接受化疗的恶性肿瘤、近期接受造血干细胞移植、正在使用具有免疫抑制或免疫调节作用的药物(例如大剂量全身皮质类固醇激素、烷化剂、抗代谢药物、TNF-α抑制剂、IL-1阻滞剂或其他免疫细胞靶向单克隆抗体治疗)、目前或近期曾接受免疫细胞靶向放射治疗。(三)补种原则1.小于4岁儿童未达到3剂(含补充免疫等),应补种完成3剂;大于或等于4岁儿童未达到4剂(含补充免疫等),应补种完成4剂。补种时遵循先IPV后bOPV的原则。两剂次间隔不小于28天。对于补种后满4剂次脊灰疫苗接种的儿童,可视为完成脊灰疫苗全程免疫。2.既往已有三价脊灰减毒活疫苗(tOPV)免疫史(无论剂次数)的迟种、漏种儿童,用bOPV补种即可,不再补种IPV。既往无tOPV免疫史的儿童,2019年10月1日(早于该时间已实施2剂IPV免疫程序的省份,可根据具体实施日期确定)之前出生的补齐1剂IPV,2019年10月1日之后出生的补齐2剂IPV。四、吸附无细胞百白破联合疫苗(百白破疫苗,DTaP)、吸附白喉破伤风联合疫苗(白破疫苗,DT)(一)免疫程序与接种方法1.接种对象及剂次:共接种5剂次,其中3月龄、4月龄、5月龄、18月龄各接种1剂DTaP,6周岁接种1剂DT。2.接种途径:肌内注射。3.接种剂量:0.5ml。(二)其他事项1.如儿童已按疫苗说明书接种含百白破疫苗成分的其他联合疫苗,可视为完成相应剂次的DTaP接种。2.根据接种时的年龄选择疫苗种类,3月龄-5周岁使用DTaP,6-11周岁使用儿童型DT。(三)补种原则1.3月龄-5周岁未完成DTaP规定剂次的儿童,需补种未完成的剂次,前3剂每剂间隔不小于28天,第4剂与第3剂间隔不小于6个月。2.大于或等于6周岁儿童补种参考以下原则:(1)接种DTaP和DT累计小于3剂的,用DT补齐3剂,第2剂与第1剂间隔1-2月,第3剂与第2剂间隔6-12个月。(2)DTaP和DT累计大于或等于3剂的,若已接种至少1剂DT,则无需补种;若仅接种了3剂DTaP,则接种l剂DT,DT与第3剂DTaP间隔不小于6个月;若接种了4剂DTaP,但满7周岁时未接种DT,则补种l剂DT,DT与第4剂DTaP间隔不小于12个月。五、麻疹腮腺炎风疹联合减毒活疫苗(麻腮风疫苗,MMR)(一)免疫程序与接种方法1.接种对象及剂次:共接种2剂次,8月龄、18月龄各接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml。(二)其他事项1.如需接种包括MMR在内多种疫苗,但无法同时完成接种时,应优先接种MMR疫苗。2.注射免疫球蛋白者应间隔不小于3个月接种MMR,接种MMR后2周内避免使用免疫球蛋白。3.当针对麻疹疫情开展应急接种时,可根据疫情流行病学特征考虑对疫情波及范围内的6-7月龄儿童接种1剂含麻疹成分疫苗,但不计入常规免疫剂次。(三)补种原则1.自2020年6月1日起,2019年10月1日及以后出生儿童未按程序完成2剂MMR接种的,使用MMR补齐。2.2007年扩免后至2019年9月30日出生的儿童,应至少接种2剂含麻疹成分疫苗、1剂含风疹成分疫苗和1剂含腮腺炎成分疫苗,对不足上述剂次者,使用MMR补齐。3.2007年扩免前出生的小于18周岁人群,如未完成2剂含麻疹成分的疫苗接种,使用MMR补齐。4.如果需补种两剂MMR,接种间隔应不小于28天。六、乙型脑炎减毒活疫苗(乙脑减毒活疫苗,JE-L)(一)免疫程序与接种方法1.接种对象及剂次:共接种2剂次。8月龄、2周岁各接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml。(二)其他事项1.青海、新疆和西藏地区无乙脑疫苗免疫史的居民迁居其他省份或在乙脑流行季节前往其他省份旅行时,建议接种1剂JE-L。2.注射免疫球蛋白者应间隔不小于3个月接种JE-L。(三)补种原则乙脑疫苗纳入免疫规划后出生且未接种乙脑疫苗的适龄儿童,如果使用JE-L进行补种,应补齐2剂,接种间隔不小于12个月。七、乙型脑炎灭活疫苗(乙脑灭活疫苗,JE-I)(一)免疫程序与接种方法1.接种对象及剂次:共接种4剂次。8月龄接种2剂,间隔7-10天;2周岁和6周岁各接种1剂。2.接种途径:肌内汪射。3.接种剂量:0.5ml。(二)其他事项汪射免疫球蛋白者应间隔不小于1个月接种JE-I。(三)补种原则乙脑疫苗纳入免疫规划后出生且未接种乙脑疫苗的适龄儿童,如果使用JE-I进行补种,应补齐4剂,第1剂与第剂接种间隔为7-10天,第2剂与第3剂接种间隔为1-12个月,第3剂与第4剂接种间隔不小于3年。八、A群脑膜炎球菌多糖疫苗(A群流脑多糖疫苗,MPSV-A)、A群C群脑膜炎球菌多糖疫苗(A群C群流脑多糖疫苗,MPSV-AC)(一)免疫程序与接种方法1.接种对象及剂次:MPSV-A接种2剂次,6月龄、9月龄各接种1剂。MPSV-AC接种2剂次,3周岁、6周岁各接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml。(二)其他事项1.两剂次MPSV-A间隔不小于3个月。2.第1剂MPSV-AC与第2剂MPSV-A,间隔不小于12个月。3.两剂次MPSV-AC间隔不小于3年,3年内避免重复接种。4.当针对流脑疫情开展应急接种时,应根据引起疫情的菌群和流行病学特征,选择相应种类流脑疫苗。5.对于小于24月龄儿童,如已按流脑结合疫苗说明书接种了规定的剂次,可视为完成MPSV-A接种剂次。6.如儿童3周岁和6周岁时已接种含A群和C群流脑疫苗成分的疫苗,可视为完成相应剂次的MPSV-AC接种。(三)补种原则流脑疫苗纳入免疫规划后出生的适龄儿童,如未接种流脑疫苗或未完成规定剂次,根据补种时的年龄选择流脑疫苗的种类:1.小于24月龄儿童补齐MPSV-A剂次。大于或等于24月龄儿童不再补种或接种MPSV-A,仍需完成两剂次MPSV-AC。2.大于或等于24月龄儿童如未接种过MPSV-A,可在3周岁前尽早接种MPSV-AC;如已接种过1剂次MPSV-A,间隔不小于3个月尽早接种MPSV-AC。3.补种剂次间隔参照本疫苗其他事项要求执行。九、甲型肝炎减毒活疫苗(甲肝减毒活疫苗,HepA-L)(一)免疫程序与接种方法1.接种对象及剂次:18月龄接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml或1.0ml,按照相应疫苗说明书使用。(二)其他事项1.如果接种2剂次及以上含甲型肝炎灭活疫苗成分的疫苗,可视为完成甲肝疫苗免疫程序。2.注射免疫球蛋白后应间隔不小于3个月接种HepA-L。(三)补种原则甲肝疫苗纳入免疫规划后出生且未接种甲肝疫苗的适龄儿童,如果使用HepA-L进行补种,补种1剂HepA-L。十、甲型肝炎灭活疫苗(甲肝灭活疫苗,HepA-I)(一)免疫程序与接种方法1.接种对象及剂次:共接种2剂次,18月龄和24月龄各接种1剂。2.接种途径:肌内注射。3.接种剂量:0.5ml。(二)其他事项如果接种2剂次及以上含HepA-I成分的联合疫苗,可视为完成HepA-I免疫程序。(三)补种原则1.甲肝疫苗纳入免疫规划后出生且未接种甲肝疫苗的适龄儿童,如果使用HepA-I进行补种,应补齐2剂HepA-I,接种间隔不小于6个月。2.如已接种过1剂次HepA-I,但无条件接种第2剂HepA-I时,可接种1剂HepA-L完成补种,间隔不小于6个月。第三部分 常见特殊健康状态儿童接种一、早产儿与低出生体重儿早产儿(胎龄小于37周)和/或低出生体重儿(出生体重小于2500g)如医学评估稳定并且处千持续恢复状态(无需持续治疗的严重感染、代谢性疾病、急性肾脏疾病、肝脏疾病、心血管疾病、神经和呼吸道疾病),按照出生后实际月龄接种疫苗。卡介苗接种详见第二部分“每种疫苗的使用说明”。二、过敏所谓“过敏性体质”不是疫苗接种禁忌。对已知疫苗成分严重过敏或既往因接种疫苗发生喉头水肿、过敏性休克及其他全身性严重过敏反应的,禁忌继续接种同种疫苗。三、人类免疫缺陷病毒(HIV) 感染母亲所生儿童对于HIV感染母亲所生儿童的HIV感染状况分3种:(1)HIV感染儿童;(2)HIV感染状况不详儿童;(3)HIV未感染儿童。由医疗机构出具儿童是否为HIV感染、是否出现症状、或是否有免疫抑制的诊断。HIV感染母亲所生小于18月龄婴儿在接种前不必进行HIV抗体筛查,按HIV感染状况不详儿童进行接种。(一)HIV感染母亲所生儿童在出生后暂缓接种卡介苗,当确认儿童未感染HIV后再予以补种;当确认儿童HIV感染,不予接种卡介苗。(二)HIV感染母亲所生儿童如经医疗机构诊断出现艾滋病相关症状或免疫抑制症状,不予接种含麻疹成分疫苗;如无艾滋病相关症状,可接种含麻疹成分疫苗。(三)HIV感染母亲所生儿童可按照免疫程序接种乙肝疫苗、百白破疫苗、A群流脑多糖疫苗、A群C群流脑多糖疫苗和白破疫苗等。(四)HIV感染母亲所生儿童除非已明确未感染HIV,否则不予接种乙脑减毒活疫苗、甲肝减毒店疫苗、脊灰减毒活疫苗,可按照免疫程序接种乙脑灭活疫苗、甲肝灭活疫苗、脊灰灭活疫苗。(五)非HIV感染母亲所生儿童,接种疫苗前无需常规开展HIV筛查。如果有其他暴露风险,确诊为HIV感染的,后续疫苗接种按照附表中HIV感染儿童的接种建议。对不同HIV感染状况儿童接种国家免疫规划疫苗的建议见附表。四、免疫功能异常除HIV感染者外的其他免疫缺陷或正在接受全身免疫抑制治疗者,可以接种灭活疫苗,原则上不予接种减毒活疫苗(补体缺陷患者除外)。五、其他特殊健康状况下述常见疾病不作为疫苗接种禁忌:生理性和母乳性黄疸,单纯性热性惊厥史,癫痫控制处于稳定期,病情稳定的脑疾病、肝脏疾病、常见先天性疾病(先天性甲状腺功能减低、苯丙酮尿症、唐氏综合征、先天性心脏病)和先天性感染(梅毒、巨细胞病毒和风疹病毒)。对于其他特殊健康状况儿童,如无明确证据表明接种疫苗存在安全风险,原则上可按照免疫程序进行疫苗接种。(图片来源:国家卫生健康委)
  • 创新融合,精准诊断 BCEIA 2021标记免疫分析分会圆满举办
    仪器信息网讯 第十九届北京分析测试学术报告会暨展览会(BCEIA2021)于2021年9月27-29日在北京中国国际展览中心(天竺新馆)盛大召开。作为BCEIA学术报告会的重要组成部分,9月29日,由中国分析测试协会标记免疫分析专业委员会主办的BCEIA 2021学术报告会标记免疫分析分会在学术会议区E301举行,会议为期一天,旨在推动标记免疫分析领域的发展,为国内外同行提供充分交流的平台,吸引逾百位学者与会。会议现场本次会议主席,也是中国分析测试协会标记免疫分析专业委员会委员颜光涛研究员为会议致辞。颜光涛研究员本次会议主题为“创新融合,精准诊断”,围绕“精准诊断新检测技术、新检验指标临床验证转化、检验质量控制、检验参考物质及溯源”4个专题方向,邀请了10位国内标记免疫领域权威专家,针对前沿热点领域的研究重点进行学术报告。以下是部分精彩报告摘要:上下半场会议主持人 (左上:崔丽艳 北京大学第三医院 右上:敬华 战略支援部队特色医学中心检验科 左下:陈建魁 解放军总医院第五医学中心 右下:徐国宾 北京大学肿瘤医院)张国军 首都医科大学附属北京天坛医院报告题目:一种新型缺血性卒中标志物(ACS)化学发光法及开发临床评价为了建立自动化学发光免疫分析法(CLIA)测定人体液中凋亡相关斑点样蛋白(ASC)的方法,探讨脑卒中患者血清ASC的临床意义,首都医科大学附属北京天坛医院张国军主任采用自行研制的CLIA法检测血清ASC浓度,评价新biomarker的临床意义。所在团队以磁性颗粒-FITC-FITC抗体为固相分离体系,FITC标记了一株抗ASC单克隆抗体,吖啶酯标记了另一株抗ASC单克隆抗体,建立了ASC自动CLIA检测方法。一共收集了167例急性缺血性中风(AIS)患者和238例健康对照者的血清。结果发现自行研制的ASC自动CLIA检测方法满足临床检测的要求。AIS患者血清ASC水平显著升高,是鉴别脑卒中患者的良好指标,可用于监测脑卒中的发病、治疗及预后。叶棋浓 中国军事科学研究院报告题目:肿瘤糖代谢基因表达控制癌症是严重威胁人类健康的常见疾病之一。葡萄糖代谢是最重要的代谢过程之一,包括葡萄糖的厌氧氧化、戊糖磷酸途径、三羧酸循环、糖异生和糖原合成。在恶性肿瘤转化过程中,糖代谢的重编程为癌细胞的生长和转移提供了能量和物质支持。中国军事科学研究院叶棋浓研究员在研究中发现,与正常细胞相比,肿瘤细胞葡萄糖摄取水平升高,需氧糖酵解和戊糖磷酸途径通量增加,三羧酸循环异常,糖异生水平下降。肿瘤细胞葡萄糖代谢的调节机制主要包括蛋白质的转录调控、转录后调控和翻译后修饰。癌细胞可以通过HIF-1、c-Myc、p53等转录因子调控糖代谢相关基因的表达。其所在团队发现SIX1是调控肿瘤糖酵解的关键转录因子,SIX1的翻译后修饰在调控糖酵解中发挥重要作用,SIX1是肿瘤诊断和治疗的候选靶标。刘向祎 首都医科大学附属北京同仁医院报告题目:新型质谱技术在临床检验实践核酸质谱技术已开始越来越被大家了解和熟悉,很多体外诊断产品在注册中。在报告中,首都医科大学附属同仁医院的刘向祎主任所在实验室利用MALDI-TOF技术,采用毅新博创的飞行时间质谱仪,在耳聋基因筛查、老年性黄斑变性和疫苗在人群有效性评估方面进行初步检测和评估,为尽快走向临床起到一定推动作用。周洲 中国医学科学院阜外医院 报告题目:高敏肌钙蛋白检测性能评价周洲教授主要研究方向为遗传性心血管疾病的分子机制研究及基因诊断方法开发。报告当天恰逢世界心脏日,中国医学科学院阜外医院周洲主任对高敏肌钙蛋白检测的性能评价等作了专业归纳与表述。周主任认为,高灵敏度肌钙蛋白检测方法的分析性能评价是临床应用的前提。评价标准应包括空白限、检出限、定量限、报告范围、印痕和一致性等,且不同样品类型和“目标”机器的一致性是必要的。宗金宝 青岛大学附属青岛市海慈医院报告题目:流式细胞术在淋巴细胞亚群及细胞因子检测的临床应用青岛大学附属青岛市海慈医院宗金宝主任对流式细胞术的原理及特点作了详细介绍。团队利用流式细胞术进行了淋巴细胞亚群检测,细胞内外细胞因子检测等一系列详实实验。结果表明流式细胞术是检测淋巴细胞亚群和细胞内细胞因子非常重要而且不可或缺的手段,此外流式细胞术也可以检测细胞外细胞因子,其中流式荧光技术将在细胞外细胞因子的检测中发挥重要作用。李海霞 北京大学第一医院报告题目:膀胱癌肿瘤异质性及液体活检的应用膀胱癌(BC)是一种异质性疾病,以基因组为特征,具有不稳定性和高突变率。液体活检技术是一项很有前途的技术,可以在多个时间点分析体液(如血液和尿液)中的肿瘤成分,并提供一种微创的方法,可以跟踪进化动态和监测肿瘤异质性。北京大学第一医院李海霞主任在报告中对膀胱癌基因组和转录水平上异质性的多重面,以及它们如何影响临床护理和结果进行了系统阐述。高艳红 解放军总医院第一医学中心报告题目:流式荧光技术在临床应用及发展精准医学模式对临床实验室诊断提出了越来越高的要求,要求其具有预防性、预测性、个体化以及参与性等。因此快速、灵敏、高通量对疾病的生物标志物进行定性和定量分析,是当今生命科学领域的研究热点。流式细胞术(FCM)是70年代初发展起来的一项采用流式细胞仪对细胞悬液进行快速分析的高新技术,是继化学发光、生物芯片技术之后的新一代高通量分子诊断技术平台。在报告中,解放军总医院第一医学中心高艳红详细介绍了流式细胞仪的基本原理以及在免疫学、肿瘤学等领域的应用。郭建巍 北京市第一中西结合医院报告题目:临床实验室助力肠癌的早期发现结直肠癌是全球发病率和病死率居首位的消化系统恶性肿瘤,平均每一分钟就有一人确诊结直肠癌,每两分钟就有一人死于结直肠癌。然而结直肠癌发生、发展需要十余年时间,所以早期筛查可以显著降低肠癌死亡率,让肠癌止步。传统的结直肠癌筛查方法使用粪便潜血试剂盒或者肠镜进行检测判断,但平均漏诊率高达41%。北京市第一中西结合医院郭建巍在报告中介绍了几类新型的结直肠癌筛查方法,并分别对比了其优缺点。最后他认为FIT+便DNA(单靶点或多靶点)模式为肠癌筛查的主要手段,DNA甲基化检测是主要方法,并号召提高医务人员认知,他认为这将在结直肠癌的防控中发挥不可或缺的重要作用。李永哲 北京协和医院报告题目:自身免疫病实验诊断技术临床应用进展北京协和医院李永哲主任介绍了自身免疫病实验诊断技术的临床需求,自身免疫病新标志物临床应用进展,检测技术临床应用现状及发展趋势。首先明确了检查的一些基本要素,如免疫细胞、免疫分子、基因分型、自然抗体等等。随后介绍了自身免疫指标的应用,作为伴随诊断提供疾病预警判断等。李永哲主任重点介绍了自身抗体在炎性疾病中的应用,自身抗体与中毒的关联性,狼疮脑病与类风湿关节炎等新型标志物,以及新冠病毒与自身抗体的关系。陆予非 安捷伦科技(中国)有限公司报告题目:超亮荧光蛋白拓展免疫检测新征程荧光藻胆蛋白(RPE)是由多个小亚基组成的生物大分子,是一种高吸收荧光分子,具有良好的检测性能。当高灵敏度对检测和准确性至关重要,荧光藻胆蛋白是首选的荧光色素。荧光藻胆蛋白偶联物用于流式细胞术、免疫测定、MHC四聚体测定和珠基测定。陆予非展示了安捷伦科技能够提供的链霉亲和素、藻胆蛋白和广泛选择的结合产品。会议设置颁奖环节,会务组为本次获得优秀论文的年轻科研学者颁发了荣誉证书。优秀论文获奖者合影部分报告嘉宾合影留念(一)部分报告嘉宾合影留念(二)
  • 黄超兰团队与合作者全面揭示新冠肺炎不同阶段的免疫分子图谱
    图. 免疫功能紊乱、胆固醇代谢障碍和心肌功能受损贯穿于新冠肺炎的不同阶段(BBA-Proteins and Proteomics期刊2022年度封面)研究者对来自不同疾病进展阶段的新冠肺炎患者的血清和尿液样本开展了基于DIA-PASEF方法的定量蛋白质组学分析。结果显示,与健康对照组相比,免疫反应在无症状患者中被激活,但在轻中症和重症患者中则出现不同程度的紊乱,免疫反应发生变化的转折点在于中性粒细胞功能的改变。此外,康复患者体内呈现出显著的免疫抑制,这一现象会一直持续到患者康复后的12个月。本研究表明,免疫反应、胆固醇代谢和心血管功能的长期失调可能是潜在后遗症发生的关键诱因,相关研究结果全面揭示了新冠肺炎不同阶段的免疫分子图谱,有助于未来进一步探索有效改善复杂疾病后遗症的早期干预策略。本研究基于具有超高鉴定深度和准确度的血清和尿液蛋白质组学数据,为全面探索新冠肺炎患者的预后评估提供了可靠的重要分子基础和机制信息。多组学中心在黄超兰教授的带领下,基于临床,前沿技术和基础学科的深度交叉融合,已在新冠科研攻关研究中取得了多个重要成果。此前黄超兰主任领衔的多组学中心团队与高福院士领衔的多学科团队紧密合作,发现早期新型冠状病毒感染主要为免疫抑制并或存在“两阶段”机制1,并通过描绘新冠刺突蛋白糖基化图谱,首次揭示了“O-Follow-N”的糖基化新规律2。此外,与本研究结果一致,黄超兰团队还与浙江大学第一附属医院郑敏教授团队开展合作研究,首次关注新冠肺炎康复患者的血清蛋白表达变化,提出康复患者在1个月后仍会出现胆固醇代谢紊乱和心肌受损3。在黄超兰教授的带领下,多组学中心团队始终坚持以具有重要意义的科学和临床问题为起源,开发质谱和蛋白组学的创新方法,探究和揭示生命科学的未知领域,得到能贡献生命科学和人类健康的真正产出。中国科学院高福院士,中国疾控中心病毒病所刘军研究员和北京大学医学部精准医疗多组学研究中心主任黄超兰教授为论文共同通讯作者,北京大学医学部精准医疗多组学研究中心陈扬副研究员、张楠博士,中国疾控中心病毒病所张杰博士,北京大学医学部精准医疗多组学研究中心郭江涛,湖北省麻城市疾控中心董少波研究员为论文共同一作。原文链接:https://www.sciencedirect.com/science/article/pii/S1570963921001424?via%3Dihub相关文章:1. Tian, W. M. et al. Immune suppression in the early stage of COVID-19 disease. Nat Commun 11, doi:10.1038/s41467-020-19706-9 (2020).2. Tian, W. M. et al. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an "O-Follow-N" rule. Cell Res 31, 1123-1125, doi:10.1038/s41422-021-00545-2 (2021).3. Chen, Y. et al. Proteomic Analysis Identifies Prolonged Disturbances in Pathways Related toCholesterol Metabolism and Myocardium Function in the COVID-19 Recovery Stage. J Proteome Res 20, 3463-3474, doi:10.1021/acs.jproteome.1c00054 (2021).
  • 西湖大学医学院成立!免疫学家董晨院士担任院长
    近日,西湖大学董事会研究决定设立医学院,经校长施一公提名,医学院首任院长由中国科学院院士、著名免疫学家董晨教授担任。2018年2月14日,西湖大学正式获教育部批准设立。秉承“高起点、小而精、研究型”的办学定位,西湖大学坚持发展有限学科,办学前期优先建设生命科学学院、理学院、工学院,目前已面向全球引进206位博士生导师,在校博士生1400余人,本科生150余人,博士后及专职研究人员500余人,尖端科研全面展开。随着学校人才引进规模的不断扩大和科研实力的快速增强,创建医学院的基础和条件逐步具备:强大的生命科学研究为医学学科建设奠定了坚实的基础;具有广阔应用场景的医学,又可以有效促进理学、工学等相关学科的人才引进、跨学科交叉和人才培养。此外,年轻的西湖大学没有历史包袱,可以充分借鉴中外医学院建设的得失,在创建新型医学院方面具有得天独厚的优势。新成立的医学院将以培养顶尖医师科学家(Physician scientists)为目标,致力于医学创新和临床转化,重点聚焦微生物学与疫苗、免疫学与炎症、生理学与代谢、肿瘤生物学与治疗、医学遗传与罕见病、药物研发、公共健康等研究领域。所谓“顶尖医师科学家”,是指既具有优秀基础研究水平和卓越临床实践能力,又接受过系统的生物医学科研训练,并且能够同时驾驭基础研究和临床实践两者迥异的思维模式,推进医疗创新的复合型领军人才。施一公表示,创建新型医学院,既是西湖大学面向国家重大需求、面向人民生命健康的重要举措,也是学校学科发展和人才引进的重要抓手,“我们将努力构建西湖医学教育新体系,积极探索研究型医学院建设新途径,为中国和世界医学发展贡献西湖力量。”目前,医学院已面向全球启动公开招聘,详见下方网址。学术人才:https://www.westlake.edu.cn/Careers/OpenPositions/FACULTY/202311/t20231106_35040.shtml行政岗位:https://app.mokahr.com/social-recruitment/westlake/43525#/jobs?zhineng=86536&department%5B0%5D=2083620&page=1&anchorName=jobsList医学院首任院长董晨个人简介中国科学院院士美国科学促进会会士中国医学科学院学部委员西湖大学讲席教授、副校长兼医学院院长1989年本科毕业于武汉大学,1996年获美国阿拉巴马大学伯明翰分校博士学位,1997至2000年在美国耶鲁大学免疫学系从事博士后工作。曾任美国得克萨斯大学MD Anderson 癌症中心免疫学系终身讲席教授、炎症与肿瘤中心主任。2013年回国工作后,历任清华大学免疫学研究所所长、医学院院长,上海市免疫治疗创新研究院院长、上海交通大学校长助理等。主要致力于免疫学的研究,在T细胞分化和自身免疫疾病领域做出了多项开创性贡献,给免疫性疾病的治疗带来了深远影响,也给肿瘤免疫治疗提供了新的思路。其中定义Th17和Tfh细胞的工作,在2021年被Nature Reviews Immunology列入“免疫学过去20年最重要的20项突破”,也在2022年被Nature Milestones列入“T细胞领域历史上的20个重大里程碑”。目前已发表论文280篇,总被引用次数37000余次,曾七次被评为全球“高被引科学家”。曾获得2009年美国免疫家学会BD Bioscience研究者奖、2019年国际细胞因子与干扰素协会Biolegend-William E. Paul Award奖,吴阶平医药创新奖、吴杨医学奖等,并担任国家自然科学基金委“炎症生物学与疾病”创新群体负责人。现任Current Opinion in Immunology和hLife的共同主编,Frontiers in ImmunologyT Cell Biology主编,中国科学生命科学常务副主编,Advances in Immunology副主编,Annual Review in Immunology、Immunity、Med、Journal of Experimental Medicine和Cell Research等期刊的编委或科学顾问。西湖大学医学院教授招聘创办于2018年的西湖大学(前身为浙江西湖高等研究院)是一所社会力量举办、国家重点支持的非营利性新型研究型大学。学校定位于高起点、小而精、研究型,以博士研究生培养为起点,现设立生命科学学院、理学院、工学院、医学院四个学院。西湖大学坚持发展有限学科,注重学科交叉融合,努力培养具有社会责任感的拔尖创新人才,力争在基础科学研究、技术原始创新、科技成果转化方面实现重大突破,为国家科教兴国和创新驱动发展战略作出贡献。西湖大学医学院成立于2023年10月,以培养世界一流医师科学家为使命,致力于医学创新和临床转化,为医学发展和人民健康贡献西湖力量。我们正在全球范围公开招募以下领域(包括但不限于)相关研究方向的杰出学者:微生物学与疫苗、免疫学与炎症、生理学与代谢、肿瘤生物学与治疗、医学遗传学、临床医学、药学和公共健康学。西湖大学医学院尤其诚挚欢迎有优秀科研水平和临床实践能力的医师科学家加盟。申请人须持有博士(Ph.D.)、医学博士(M.D.)或等同学位,并具备博士后经历和令人服膺的学术成果。学术人才岗位分为以下不同级别:助理教授、副教授、长聘副教授、正教授、讲席教授。西湖大学将参照国际一流大学相应职位,并结合实际情况,为入选者提供具有国际竞争力、能够使其安心于学术研究的协议薪酬和福利待遇,包括但不限于良好的住房保障、高端家庭医疗保险等。上述薪酬福利制度的设计参考了美国私立研究型大学的标准。此外,学校将参照国际一流大学相应职位的标准,为入选者提供有国际竞争力的科研启动保障,包括但不限于充足的长期科研经费,宽裕的实验空间,一流的仪器设备与科研保障。西湖大学坚实的资金支持和综合保障将为每项旨在拓展人类知识边界的科研项目和每位俯身求索的科研同仁保驾护航。如有意向,请将完整的申请材料编辑至同一份PDF文件并发送邮件至西湖大学医学院人才招聘邮箱:somtalents@westlake.edu.cn。邮件主题请标明“姓名+医学院+学科方向”。申请材料清单如下:1. 求职信(Cover Letter)2. 个人简历,需包含公开发表文章列表和谷歌学术链接3. 研究成果与未来研究计划(3-5页)4. 三封推荐信(由三位推荐人直接发送至上述邮箱)欢迎联系医学院学术人才招聘邮箱somtalents@westlake.edu.cn或西湖大学学术人才招聘邮箱talents@westlake.edu.cn,我们会及时解答应聘问题和相关政策咨询。
  • 新品上市|高效样品前处理之法宝-复合型免疫亲和柱
    据世界粮农组织的调查,世界上每年有25%粮食受到已确认的霉菌毒素的污染。霉菌毒素是霉菌在食品或饲料里生长所生产的代谢产物,对人类和动物都有害。霉菌也称丝状真菌,是菌丝体比较发达但没有较大子实体的小型真菌的统称,是微生物中的高级生物,其形态和构造比细菌复杂。月旭科技现特别推出Welchrom® 新品复合型免疫亲和柱帮助大家轻松应对各种毒素的检测01 产品用途及原理Welchrom® 复合型免疫亲和柱用于从样品中分离、纯化真菌毒素,原理是基于抗原与抗体之间的特异性反应。免疫亲和柱中的抗体通过共价键作用悬浮在凝胶中,特异性吸附样品中的真菌毒素。如果供检测的样品中含有真菌毒素,样品通过免疫亲和柱时,毒素被抗体捕捉结合。所有其他物质,被从免疫亲和柱中清洗出去。甲醇作为洗脱液,将真菌毒素从抗体上洗脱。02 产品优势• 可同时测定多种真菌毒素含量,减少工作量。• 采用高特异性和高亲和力的的单克隆抗体。• 柱容量高,有效提高纯化效率。• 达到真菌毒素检测的国内外限量标准。• 良好的稳定性和可靠性,回收率高。• 纯化后直接用于ELISA法,高效液相色谱法,荧光光度法等。• 稳定性:12个月。• 可以用于复杂样品检测,包括食品、饲料、调味品等多种复杂基质。• 参考国家标准,检测结果准确可靠,满足客户的不同需求。03 样本处理步骤及亲和柱操作步骤(AOZ三合一免疫亲和柱为例)【样本处理步骤】(一)花生、玉米、大米、小麦及其制品、中药和饲料┅┅ 称取5g粉碎的样品,加入1g氯化钠,再加入甲醇-水(8:2)溶液20mL。┅┅ 涡旋或振荡提取20min。┅┅ 4000r/min离心5min或用定量滤纸过滤。┅┅ 取10mL滤液并加入40mLPBS混匀(中药材根据品种,可能需加入PBS-吐温20溶液),用玻璃微纤维滤纸过滤。┅┅ 取10ml过滤后液体过免疫亲和柱净化。稀释倍数:2(二)啤酒、黄酒等酒类┅┅ 称取脱气酒类试样(含二氧化碳的酒类样品使用前先置于4℃冰箱冷藏30min,过滤或超声脱气)或其他不含二氧化碳的酒类试样10g,用PBS定容至50mL,混匀。┅┅ 以均质器高速搅拌(10000r/min及以上,均质器速度较慢时,应适当延长提取时间),提取2min;也可采用摇床(200r/min以上)振荡、超声提取和涡旋提取20min的方式进行提取。用玻璃微纤维滤纸过滤。┅┅ 取10ml过滤后液体过免疫亲和柱净化。稀释倍数:0.5(三)酱油和醋等液体样品┅┅ 称取25g样品,以甲醇-水(8:2)溶液定容至50mL。┅┅ 以均质器高速搅拌(10000r/min及以上,均质器速度较慢时,应适当延长提取时间),提取2min;也可采用摇床(200r/min以上)振荡20min、超声提取20min和涡旋提取15min的方式进行提取。┅┅ 4000r/min离心5min或用定量滤纸过滤。┅┅ 取10mL滤液并加入40mLPBS缓冲液稀释,用玻璃微纤维滤纸过滤。┅┅ 取10ml过滤后液体过免疫亲和柱净化。稀释倍数:1【亲和柱操作步骤】┅┅ 将免疫亲和柱连接于10mL注射器下。按照样本处理步骤的上样量进行过柱。┅┅ 将空气压力泵与注射器连接,打开亲和柱下帽,调节压力使溶液以约1-2滴/秒的流速缓慢通过免疫亲和柱,直至液体排干。┅┅ 以10.0mL的PBS缓冲液淋洗柱子2次,弃去全部流出液,并通过5-10ml空气,吹干亲和柱。┅┅ 准确加入1.0mL洗脱液(甲醇-乙酸(98:2)溶液)洗脱,流速为1 mL/min ~2mL/min,收集全部洗脱液于玻璃试管中,供检测用。【结果判定】经免疫亲和柱净化后,收集到的洗脱液可直接使用荧光计或者HPLC检测,也可使用薄层色谱或者酶联免疫试剂盒进行检测。洗脱液中各种毒素的检测结果乘以相应的稀释倍数,即为样品中对应毒素的浓度。04 色谱图经过AOZ三合一免疫亲和柱处理过的样品,在各自液相条件下的图谱:05 适用范围及性能用于检测谷物、酒类、中药等食品和饲料等样本中的真菌毒素。柱容量:AFB≥200ng,OTA≥100ng,DON≥1000ng,ZEN≥1000ng。回收率:≥80%。06 贮藏条件贮藏条件:可于2-8℃储存,不可冻存。保存期:该产品有效期为12个月。07 免疫亲和柱小贴士┅┅ 真菌毒素危害极大,应戴手套操作。┅┅ 不要使用过了有效日期的免疫亲和柱。┅┅ 洗脱液可以直接使用色谱级甲醇洗脱,但可能会降低赭曲霉毒素A回收率。┅┅ 多毒素检测中,呕吐毒素因为是水溶性,过柱操作时免疫亲和柱对有机溶剂耐受性低,所以组合中包含有呕吐毒素的免疫亲和柱前处理方法会相应复杂一些。黄曲霉毒素、玉米赤酶烯酮、赭曲霉毒素A的组合,前处理方法基本一致。09 订货信息
  • BCEIA 2021学术报告会标记免疫分析分会会议通知
    第十九届北京分析测试学术报告会暨展览会(BCEIA2021)将于2021年9月27-29日在北京中国国际展览中心(天竺新馆)召开,本届会议将继续秉承“分析科学 创造未来”的愿景,围绕“生命生活 生态——面向绿色未来”的主题开展学术报告会、论坛和仪器展览会。本届大会主席由中国科学院院士、环境化学与生态毒理学国家重点实验室主任江桂斌研究员担任,学术委员会主席由中国科学院院士、中国科学院基础医学与肿瘤研究所所长谭蔚泓教授担任。为推动标记免疫分析领域的发展,为国内外同行提供充分交流的平台,2021 年 9 月 29日,BCEIA 2021学术报告会标记免疫分析分会将在北京• 中国国际展览中心(天竺新馆)学术会议区E301举行。分会主题为“创新融合,精准诊断”,围绕精准诊断新检测技术、新检验指标临床验证转化、检验质量控制、检验参考物质及溯源”4个专题方向,邀请了国内外标记免疫领域权威专家,将针对前沿热点领域的研究重点进行学术报告,欢迎标记免疫研究及应用各领域相关人员踊跃参加!时间:2021年9月29日地点:北京• 中国国际展览中心(天竺新馆)学术会议区E301会议主题:创新融合,精准诊断会议主席:颜光涛研究员 解放军总医院报告专家编号报告人/报告题目 标记免疫分析分会大会主席颜光涛 解放军总医院主持人敬 华 战略支援部队特色医学中心检验科崔丽艳 北京大学第三医院1张国军首都医科大学附属北京天坛医院报告题目:一种新型缺血性卒中标志物(ACS)化学发光法及开发临床评价2叶棋浓中国军事科学研究院报告题目:肿瘤糖代谢基因表达控制3刘向祎首都医科大学附属北京同仁医院报告题目:新型质谱技术在临床检验实践4周洲中国医学科学院阜外医院 报告题目:高敏肌钙蛋白检测性能评价5高艳红 解放军总医院第一医学中心报告题目:流式荧光技术在临床应用及发展主持人陈建魁 解放军总医院第五医学中心徐国宾 北京大学肿瘤医院6郭建巍北京市第一中西结合医院报告题目:临床实验室助力肠癌的早期发现7宗金宝青岛大学附属青岛市海慈医院报告题目:流式细胞术在淋巴细胞亚群及细胞因子检测的临床应用8李海霞北京大学第一医院报告题目:膀胱癌肿瘤异质性及液体活检的应用9李永哲北京协和医院报告题目:自身免疫病实验诊断技术临床应用进展10陆予非 安捷伦科技(中国)有限公司报告题目:超亮荧光蛋白拓展免疫检测新征程日程联系人:陈吉波 18611998500 bjmy_2021@sina.com扫描下方二维码注册参会
  • 安捷伦推创新细胞分析解决方案 助力免疫疗法研究
    p style=" text-align: justify "   2019年5月9日至13日,美国免疫学家协会(AAI)第 103 届年会 Immunology 2019在美国加利福尼亚州圣迭戈成功举办,大会期间 strong 安捷伦科技公司 /strong 宣布为免疫疗法研究人员推出统一的产品组合并展示该创新解决方案。 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/5715b9df-a310-4ffe-817a-fbc0b54cf991.jpg" title=" AAI大会官网首页.png" alt=" AAI大会官网首页.png" / /p p style=" text-align: center " strong Immunology 2019官网主页 /strong /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 安捷伦科技公司细胞分析事业部高级总监David Ferrick博士 /strong /span 表示:“免疫疗法正在改变癌症治疗的格局,但大多数可用工具都经过了调整,因为它们并非专为这种以细胞为中心的工作流程而设计。因此,我们非常重视基于细胞的创新解决方案的组合和统一。我们想要帮助研究人员和开发人员克服重重挑战,在这一快速发展的领域中攫取先机。” /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 宾夕法尼亚大学佩雷尔曼医学院和艾布拉姆森癌症中心免疫疗法教授、医学博士Carl June /strong /span 谈道:“现在,通过安捷伦提供的工具,我们可以在流式细胞术、活细胞代谢的动力学测量以及量化T细胞在一段时间内杀死靶标的能力等方面开展研究,寻找我们需要的答案。任何一种基于细胞的分析方法,只要能够提高获得有效细胞结果的概率,都将是人们所期望和需要的。” /p p style=" text-align: justify "   细胞分析业务是安捷伦的关键战略规划之一,其对于理解疾病和发现潜在治疗方法至关重要。安捷伦致力于成为细胞分析行业的领军者,积极推动生物产业发展。安捷伦的这款新产品包括四款专门设计的组成部分,它们相辅相成以提供最佳性能: /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong Agilent SureGuide 化学合成 sgRNA /strong : /span 提供最佳向导,充分发挥 CRISPR 在细胞工程和免疫疗法中的潜力。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong NovoCyte Quanteon 流式细胞仪 /strong : /span 使用市面上最灵敏的硅光电倍增检测器技术,通过多达 25 个荧光通道快速准确地进行免疫表型分析。体验流式细胞术的新标准。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 428px height: 217px " src=" https://img1.17img.cn/17img/images/201905/uepic/1ab75ca7-3dba-4408-9782-2c1e618a23de.jpg" title=" quanteon流式细胞仪.jpg" alt=" quanteon流式细胞仪.jpg" width=" 428" height=" 217" / /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/zt/liushixibaoyi" target=" _blank" NovoCyte Quanteon 流式细胞仪(点击进入流式细胞仪专题) /a /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px color: rgb(12, 12, 12) " 该流式细胞仪具备以下特点:1、检测能力大大扩展,多至27个参数;2、超群的FSC/SSC和荧光分辨率,可以用于尺寸小至0.1μm的颗粒检测,可以轻松识 别和分析血小板,细菌和各种亚微米颗粒;3、无需微球,直接进行绝对计数,既不需要对液路系统进行复杂的校准也不需要昂贵且需要数量换算的计数微球;4、具备智能化设计简化工作流程。内置质量控制:快速运行每日QC,自动生成全面的QC报告,并通过Levey-Jennings图表方便地跟踪仪器性能。 自动化质量控制测试不仅可以确保日常的性能监测,而且可以对仪器性能进行长期监测。 /span /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong xCELLigence RTCA eSight /strong : /span 捕获动态细胞行为,追踪费时费力的终点测定可能无法检测到的生物学行为,从而实时定量分析癌细胞杀伤等重要事件。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 471px height: 314px " src=" https://img1.17img.cn/17img/images/201905/uepic/c58843e9-ea5f-4b33-8821-a89cf01bae52.jpg" title=" xCELLigence RTCA eSight细胞分析仪.png" alt=" xCELLigence RTCA eSight细胞分析仪.png" width=" 471" height=" 314" / /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/list/sort/126.shtml" target=" _blank" xCELLigence RTCA eSight无标记细胞分析系统(点击进入细胞生物学仪器专场) /a /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px color: rgb(12, 12, 12) " 该款仪器主要特点如下:1、可以使活细胞成像和实时生物传感器测量可以在相同的细胞群上进行;2、xCELLigence技术采用专利E – Plate板,在每个板的底部嵌入微金电极,非侵入性地量化细胞行为;3、测量速度非常快,提供精确的时间分辨率,因此所有相关响应都可以用秒、分钟、小时或天来测量。 /span /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 安捷伦 Seahorse XF 分析仪 /strong : /span 研究并调谐免疫细胞代谢,以获得持久且可靠的抗肿瘤反应。XF 分析仪是市面上针对此类工作的领先仪器。以下为三款Seahorse XF分析仪: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/83fbe92b-b5c6-4922-a854-bd0a71a9910c.jpg" title=" 安捷伦Seahorse XFe96细胞能量代谢分析仪.jpg" alt=" 安捷伦Seahorse XFe96细胞能量代谢分析仪.jpg" / /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/netshow/C279107.htm" target=" _blank" 安捷伦Seahorse& nbsp XFe96细胞能量代谢分析仪(点击查看该仪器信息) /a /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/343b0082-aadc-4f71-b95a-adecc9bc1b37.jpg" title=" 安捷伦Seahorse XFe24 细胞能量代谢分析仪.jpg" alt=" 安捷伦Seahorse XFe24 细胞能量代谢分析仪.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C279108.htm" target=" _blank" strong 安捷伦Seahorse XFe24 细胞能量代谢分析仪(点击查看该仪器更多信息) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C279109.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/36f6995b-78fa-4d1f-802c-c0385d73dbce.jpg" title=" 安捷伦Seahorse XFp 细胞能量代谢分析仪.jpg" alt=" 安捷伦Seahorse XFp 细胞能量代谢分析仪.jpg" / /a /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/netshow/C279109.htm" target=" _blank" 安捷伦 Seahorse XFp 分析仪(查看仪器更多信息) /a /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " Seahorse XF 分析仪通过测定多孔板中活细胞的耗氧率 (OCR) 和胞外酸化率 (ECAR) 审查线粒体呼吸和糖酵解等关键细胞功能。XF 分析仪可实时进行化合物添加和混合,免标记分析检测,并自动测定 OCR 和 ECAR。(信息源:安捷伦科技) /span /p p style=" text-align: justify "    strong 关于安捷伦科技公司 /strong /p p style=" text-align: justify "   安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2018财年,安捷伦的营业收入为49.1亿美元,全球员工数为14800人。 /p p style=" text-align: center " span style=" text-decoration: underline " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: center " span style=" text-decoration: none color: rgb(0, 112, 192) " strong 扫码关注 span style=" text-decoration: none color: rgb(192, 0, 0) " 3i生仪社 /span ,解锁更多生命科学相关资讯 /strong /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/87876a06-cb72-4e5d-ab6a-d4a74455ab30.jpg" title=" 小icon.jpg" alt=" 小icon.jpg" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/bf7fe01d-8654-45d0-9383-6f068d6752fd.jpg" title=" 企业微信截图_20190520102956.png" alt=" 企业微信截图_20190520102956.png" / /p
  • 明日开播|第六届代谢组学前沿—空间代谢组学专题报告抢先看!
    3月15日-16日,仪器信息网将举办“第六届代谢组学前沿”主题网络研讨会,共邀请18位国内知名科研院校和仪器企业的相关专家进行探讨交流。3月16日上午,中国科学院深圳先进技术研究院罗茜研究员、中国医学科学院药物研究所贺玖明研究员、中国科学院深圳先进技术研究院赵超副研究员和振电(苏州)医疗科技有限公司首席执行官王璞博士4位专家将围绕空间代谢组学技术在环境污染、生物医药和肿瘤疾病前沿应用以及相干拉曼散射成像技术在空间代谢组学研究新进展等进行报告分享。点击报名》》》 精彩报告重磅来袭 罗茜 中国科学院深圳先进技术研究院 研究员《空间代谢组学研究环境污染对健康的影响》3月16日 09:30-10:00中国科学院深圳先进技术研究院生物医学与健康工程研究所研究员,博士生导师。2008年在香港浸会大学获得博士学位。现担任深圳市单分子检测技术与仪器开发工程实验室副主任,中科院深圳先进院平台支撑处处长,中科院所级中心暨分析测试中心主任,中科院深圳先进院P3实验室主任。主要从事空间代谢组学的质谱新方法和新技术研究。发表SCI文章近50余篇;中国及PCT专利20余项;主持国家自然科学基金委重大仪器研制项目(自由申请)和重大研究计划(培育),国家发改委平台建设、科技部重点研发专项、中科院仪器研制项目、广东省和深圳市基础重点、技术攻关和科研平台建设等20余项以及负责筹建中科院深圳先进院P3实验室设施。【摘要】污染物不仅对生态环境造成损害,也对人类健康产生巨大风险。暴露于污染物可能产生不同的生物效应,如发生免疫和炎症反应、氧化应激、代谢紊乱和遗传损伤等增加患病风险。基于高分辨质谱的代谢组学技术可为污染物对生物体造成的影响提供更深入的分子机制的理解。质谱技术、质谱成像和AI数据解析的发展,在空间原位代谢信息基础上对污染物暴露引发的小分子代谢异常、脂质代谢异常和代谢通路异常进行非靶向、拟靶向和靶向的分析。『报名观看』王璞 振电(苏州)医疗科技有限公司 首席执行官/CEO《基于相干拉曼技术的空间代谢组学新进展》3月16日 10:00-10:30王璞,博士,现任北京航空航天大学生物与医学工程学院特聘教授、生物医学高精尖中心研究员,博士生导师,入选第十四批国家海外青年人才项目。王璞本科毕业于复旦大学物理系,2009-2014年博士就读于普渡大学生物医学工程学院,师从于非线性成像专家程继新教授。博士期间主要工作是生物光子学医疗器械的开发以及非线性显微镜的开发与应用。已发表SCI论文20余篇,专利5项。王璞以第一或通讯作者在Nature Photonics,Science Advances,Light:Science & Applications, Nano letters等领域内一流期刊均有发表。王璞曾主持开展多项美国小企业创新奖励基金(SBIR/STTR award),并代领团队完成多项科研转化工作。其中包括相干拉曼显微镜的产业化,光声成像在乳腺以及心血管的器械转化等等。目前王璞教授主要研究工作为非线性拉曼显微镜的开发以及在先进材料、单细胞代谢的表征方案,以及光致超声器件在生物医学中的应用。同时担任振电(苏州)医疗科技有限公司CEO,致力于开发推广最先进的分子光谱成像技术。【摘要】相干拉曼散射成像技术是一种新型的光学成像技术,通过激光的非线性效应,将样品中的分子振动信息转化为图像信息,从而实现对样品的定性及定量分析。该技术具有无标记、高分辨率、超灵敏、快速成像等优点,因此在生物医学、材料科学等领域得到了广泛应用:如生物医学领域的细胞成像、组织成像、病理诊断、合成生物学以及超多重免疫组化等方面;也可以用于材料科学领域的材料表征、成分分析、离子动态等方面,如钙钛矿研究、锂电池电极分析和光催化研究等。随着技术的不断发展,非线性分子光谱成像技术将会在更多领域得到应用。『报名观看』贺玖明 中国医学科学院药物研究所 研究员《空间代谢组学技术创新与生物医药应用研究进展》3月16日10:30-11:00博士,博士生导师,药物分析专业;中国医学科学院北京协和医学院药物研究所天然药物活性物质与功能国家重点实验室 研究员,主要研究方向:质谱成像空间分辨代谢组学新技术新方法及其生物医药应用研究。开发出空气动力辅助离子化及质谱成像新技术和空间分辨代谢组学新方法,建立了以空间分辨代谢组学技术为特色的新药代谢研究平台。近5年,发表了包括Nat. Commun., Adv. Sci., PNAS,APSB,JPA,Theranostics,CCL,Anal. Chem.等Q1区论文10余篇。曾获 2010 年北京市科学技术奖二等奖(2)、CAIA2019 特等奖(2)。国家药品监督管理局创新药物安全与评价重点实验室学委委员;担任《药学学报》、Acta Pharm Sin B、J Pharm Anal青年编委,Molecules、TMR Modern Herbal Medicine和《药学研究》编委;中国医药生物技术协会药物分析技术分会常务委员,中国质谱学会常务委员。【摘要】待定 『报名观看』赵超 中国科学院深圳先进技术研究院 副研究员《临床超声指导的质谱空间组学用于肿瘤代谢》3月16日11:00-11:30赵超,中国科学院深圳先进技术研究院副研究员,中国科学院大学博士生导师。 研究方向为质谱多组学和质谱成像方法开发、环境污染物的生物体暴露和健康危害机制研究、肿瘤代谢机制等。以一作/通讯作者在国际期刊(Nucleic Acids Res., Sci. Bull., Mass Spectrom. Rev., The Innovation 等)发表论文 30 余篇。主持国自然面上、青年基金、广东省面上基金、深圳市基础研究重点项目等。入选广东省引进高层次人才计划(珠江人才)、深圳市海外高层次人才计划、香江学者计划。担任Journal of Analysis and Testing(IF 4.7)、Journal of Pharmaceutical Analysis (IF 8.8),Phenomics 青年编委。 【摘要】多数生物和化学成像技术依赖于样品的固有属性对目标物进行可视化。迄今为止,很难在复杂生物过程中获取较为全面的可视化信息。多模态策略旨在克服单个技术的局限性,获取更多的“隐藏”信息,为研究复杂生物过程中的高维光谱、空间信息提供新的视角。通过整合质谱成像(MSI)等多种影像技术,提出基于MSI的多模态融合策略能够帮助我们更好的理解疾病发生发展的分子机制。『报名观看』 会议日程 “第六届代谢组学前沿”网络研讨会报告时间报告方向专家单位3月15日上午09:00-09:30《质谱驱动的精准代谢组学技术》朱正江研究员中国科学院上海有机化学研究所生物与化学交叉研究中心09:30-10:00《组学金规—基于Orbitrap Exploris 480的代谢组学方案》史碧云资深应用工程师赛默飞世尔科技(中国)有限公司10:00-10:30《基于代谢组学的新药靶点和生物标志物发现》胡泽平研究员清华大学10:30-11:00《布鲁克4D-脂质组学方案以及前沿应用介绍》张荣应用工程师布鲁克(北京)科技有限公司11:00-11:30《基于质谱的代谢物鉴定与功能研究》林树海教授厦门大学11:30-12:00《基于点击化学质谱探针技术的DEHP体内代谢示踪研究》朱泉霏教授武汉纺织大学3月15日下午13:30-14:00《集成化分离-质谱联用平台用于靶向代谢组学分析》刘震教授南京大学14:00-14:30《脂谱探寻:基于脂质介质的生物标志物研究》Winnie HUANG液质应用专家安捷伦科技(中国)有限公司14:30-15:00《慧眼分析—EAD电子活化解离助力代谢分子结构精准解析》刘婷高级应用流程经理SCIEX中国15:00-15:30《多模态分子科学交叉融合驱动的功能代谢组学转化医学研究》吕海涛终身教授香港浸会大学15:30-16:00《岛津4in1技术方案及其在代谢组学中的应用》任彪应用工程师岛津企业管理(中国)有限公司16:00-16:30《识别代谢物干扰现象提高代谢物鉴定结果的准确性》陈立青年研究员复旦大学代谢与整合生物学研究院16:30-17:00《代谢物与神经障碍》房中则教授天津医科大学17:00-17:30《仪采通让仪器选型更轻松》李茹买家服务运营经理仪器信息网3月16日上午09:30-10:00《空间代谢组学研究环境污染对健康的影响》罗茜研究员中国科学院深圳先进技术研究院10:00-10:30《基于相干拉曼技术的空间代谢组学新进展》王璞首席执行官/CEO振电(苏州)医疗科技有限公司10:30-11:00《空间代谢组学技术创新与生物医药应用研究进展》贺玖明研究员中国医学科学院药物研究所 天然药物活性物质国家重点实验室11:00-11:30《临床超声指导的质谱空间组学用于肿瘤代谢》赵超副研究员中国科学院深圳先进技术研究院扫码加入代谢组学交流群(发送备注姓名+单位+职位)温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵编辑:13331136682,zhaoyw@instrument.com.cn
  • 【安捷伦】一种评估细胞代谢的创新方法——安捷伦 Seahorse XF 底物氧化检测
    什么是能量代谢?代谢,是生命最基本的特征之一,机体从外界摄取营养物质,包括碳水化合物、脂肪、蛋白质、微量元素、水及维生素等,同时经过体内分解吸收将其中蕴藏的化学能释放出来转化为组织和细胞可以利用的能量,再通过利用这些能量来维持正常的生命活动。我们把这种代谢过程中所伴随的能量的释放、储存和利用称为能量代谢。细胞,作为构成生命体最基本的结构和功能单位,对其功能的研究,比如细胞的增殖,分化等,可以为多个研究领域提供有价值的信息,包括癌症、免疫功能障碍、心血管疾病、神经退行性疾病等。在过去的若干年中,涌现出大量文章及数据,说明能量代谢如何支持细胞生物学的各个方面,以及代谢的变化如何影响重要的细胞功能。安捷伦 Seahorse XF 技术,作为目前细胞能量代谢检测的金标准,可以在不侵入,不破坏样本的前提下,实现实时、高通量、多样本来源的活细胞能量代谢检测,从而为评估细胞功能及研究代谢机制,提供了强有力的技术手段。除了细胞样本,安捷伦 Seahorse XF 技术可以支持多种类型的样本检测,包括新鲜的组织切片,微生物,模式动物等等。当下新冠状病毒肆虐,我国针对病毒的疫苗及特效药的研发也在争分夺秒的进行中,安捷伦 Seahorse 技术同时可以为抗病毒药物和疫苗的研发奠定理论基础。我们已经在之前两篇系列文章(具体请参见文末推荐阅读)中介绍了安捷伦 Seahorse 助力抗病毒研究的相关内容。为什么要研究细胞底物氧化水平?细胞能量代谢与多种疾病息息相关,因此,许多领域的研究人员都对研究能量代谢产生了浓厚的兴趣,其中了解并知道在代谢过程中满足细胞能量需求所依赖的燃料成为了一个重要的研究方向。众所周知,生物体所需的三大营养物质为脂肪、糖类和蛋白质,对于细胞来说,长链脂肪酸(LCFA),葡萄糖(glucose)/丙酮酸(pyruvate)和谷氨酰胺(glutamine)是提供能量的三种最主要的底物。许多领域(例如癌症、免疫学、干细胞生物学)的研究人员已经证明这些底物的氧化水平会对细胞命运、功能以及适应性产生深远影响。癌症研究人员对研究癌细胞对于底物的依赖性很感兴趣,最常见的是癌细胞对于谷氨酰胺的依赖[1,2],这种依赖性可以揭示癌细胞的弱点,从而为找到药物靶点提供依据;免疫学研究人员则对研究诱导免疫细胞分化和激活的底物感兴趣,最常见的是脂肪酸氧化[3]。很多研究发现不仅提供了新的生物学见解,而且还揭示了干预和开发成功疗法的新方法。免疫代谢研究领域领军人物 Dr.Erika L. Pierce 的团队发表在 Trends in Immunology 上的综述性文章[4] 就是这样一个例子。在本文中,他们着重讨论了通过调控 T 细胞代谢(包括脂肪酸氧化)从而治疗癌症和免疫疾病的各种方法,为现在热门的免疫治疗提供了重要依据。文章提到代谢重编程对于 T 细胞激活和功能是必须的,比如抑制氨基酸的转运,可以限制效应 T(effector T)细胞的扩增;抑制脂肪酸的合成,可以削弱 Th17 细胞的分化并且促进调节性 T 细胞(Treg)的发展;增强脂肪酸氧化可以促进调节性 T 细胞或者记忆 T 细胞(T memory)的发展。因此,调控 T 细胞的代谢是提高靶向 T 细胞功能的一种方法。再来看一篇来自癌症研究领域,2019 年发表在 Nature Metabolism 上的文章。美国贝勒医学院的科学家揭示了前列腺癌,这种常见于中老年男性泌尿生殖系统癌症类型的发生机制,其中有部分前列腺癌与雄性激素分泌紊乱有关[5]。文章中指出雄激素受体驱动的前列腺癌细胞所需的能量来源依赖于线粒体丙酮酸氧化,其中 Seahorse 数据证实了抑制负责将丙酮酸转运到线粒体内的转运子(MPC),可以有效抑制细胞的氧化磷酸化水平,揭示了这种癌细胞的底物利用机制,从而提示 MPC 可能是这种前列腺癌的潜在治疗靶点。如何检测细胞底物氧化水平前面我们已经介绍了研究细胞对于底物氧化依赖的重要性,安捷伦 Seahorse 为此提供了一套完整的检测方法,可通过评估活细胞的耗氧速率(OCR)变化来测定细胞底物的氧化水平。这些快速而对样本无侵入损伤的检测方法使研究人员能够研究细胞如何氧化三种主要的底物:长链脂肪酸,葡萄糖/丙酮酸和谷氨酰胺。利用特定底物氧化通路的抑制剂,结合 Seahorse XF 线粒体压力测试,可以对线粒体功能进行全面评估,在底物需求较少(即基础呼吸)和底物需求较多(即最大呼吸)的条件下研究细胞功能,其中在底物需求较多时细胞更多地依赖特定底物(图 1)。该测定方法基于已被广泛熟知并认可的 Seahorse XF 线粒体压力测试,可提供直观的功能性参数,非常适合研究细胞在基础条件下以及在压力状态下能否升高对底物的需求,从而对细胞底物的偏好性以及依赖性进行全方面评估。使用这些试剂盒能够更方便快速的研究活细胞中特定底物的氧化过程,从而有助于研究细胞如何转换对于特定底物的依赖,以执行关键的细胞功能。图 1. 安捷伦 Seahorse XF 底物氧化压力测试曲线。在添加或不添加抑制剂时,连续添加化合物,测定基础呼吸参数、对抑制剂(Etomoxir、UK5099 或 BPTES)的急性响应以及最大呼吸参数。值得注意的是,虽然在基础条件下可以检测到较小的变化,即急性响应,但在高底物需求条件下(如 FCCP 的加入),往往会出现更大的响应,从而显示出细胞氧化所研究底物的能力的差异。产品信息:每个试剂盒均包含三个一次性试剂袋。每个试剂袋包含各一瓶以下试剂:底物通路抑制剂(Etomoxir 或 UK5099 或 BPTES),寡霉素(oligomycin),FCCP 和鱼藤酮/抗霉素 A(rotenone/antimycin A)混合物。每个试剂袋包含足够的试剂,可用于一块完整的 XF96 或 XF24 测试板。为了获得最佳实验结果,建议使用 pH 7.4 的 Seahorse XF DMEM 或 RPMI 检测液和 Seahorse XF 底物(葡萄糖,丙酮酸和谷氨酰胺)。Seahorse XF 底物氧化压力测试与 XF/XFe96 和 XF/XFe24 分析仪兼容。推荐阅读:1. 战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究 https://www.instrument.com.cn/netshow/SH100320/news_522313.htm2. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.instrument.com.cn/netshow/SH100320/news_521879.htm3. 聚焦代谢,安捷伦 Seahorse 在病毒免疫研究中的应用 https://www.instrument.com.cn/netshow/SH100320/news_523220.htm关注“安捷伦视界”公众号,获取更多资讯。
  • 首届标记免疫分析学术峰会在京召开
    仪器信息网讯:2016年6月19日,首届标记免疫分析学术峰会在北京市解放军总医院国际会议中心顺利举行,来自全国各地院校、医院、企业的委员和其他代表三百余人参加了会议。本次会议由中国分析测试协会标记免疫分析专业委员会主办,中国人民解放军总医院承办。本次峰会邀请了全国政协、国家科技部、卫计委、工信部等相关政府部门领导、国内外相关领域专家、国家级科研院所、医疗机构、标记免疫分析相关领域企业与机构代表、中国分析测试协会标记免疫专业委员会全体委员、常委及首届会员单位代表就建立我国标记免疫分析“产学研医用”协同创新平台,促进标记免疫分析技术跨学科、跨领域技术整合对接、建立认证体系和相关质量标准规范、形成面向产业化的共性关键技术平台进行了深入的研讨。  峰会伊始,全国政协副秘书长、中国农工民主党中央专职副主席何维教授以“疾病的精准分类分型分析测试—精准医疗的前提”为报告题目,向参会人员详细介绍了精准医学的概念、疾病的研究与诊断分析测试的演进过程及标记免疫分析的作用等内容。全国政协副秘书长、中国农工民主党中央专职副主席何维教授  解放军总医院生化科主任颜光涛教授在报告中介绍了标记免疫分析专委会工作构想,包括专委会下步工作的指导思想和重点。其中,专委会下步工作重点主要包括:建设标记免疫分析技术与产业的“国家智库” 组织国家和行业标准、质量认证体系与实验室规范研究 搭建共性关键技术研发和转化合作平台 搭建标记免疫分析技术产品临床转化医学与评价研究平台。解放军总医院生化科主任颜光涛教授  工信部消费品司医药处王学恭在报告中详细介绍了我国医药产业发展现状、面临的形势和重要产业政策方向等内容。其中,体外诊断产品包括:高通量生化分析仪、免疫分析仪、单分子基因测序仪及新型即时检测设备(POCT)等,这些仪器作为医药规划医疗器械发展重点不可忽视。工信部消费品司医药处王学恭  科技部国家科技基础条件平台中心卢凡处长从分析测试创新体系建设、存在的问题与思考和提升协同创新的设想三个方面做了精彩报告,其中,国内分析测试创新体系面临的主要问题包括:研发基础薄弱、产学研合作机制不清晰、企业规模过小和质量管理体系不健全等。科技部国家科技基础条件平台中心卢凡处长  国家食品药品监督管理总局医疗器械标准管理中心黄颖研究员在报告中分别介绍了IVD-MD国家标准、行业标准现状与标准化改革 IVD-MD产品风险分类和分类管理 关于标记免疫分析试剂盒产品质量控制的思考。国家食品药品监督管理总局医疗器械标准管理中心黄颖研究员  南京大学陈洪渊院士在报告中介绍了微纳流控的30余年发展历程、微流控技术与各学科的关系及其在生物医药前沿和临床中的应用。陈院士在报告最后总结指出,微纳流控技术在转化医学中有广阔的应用前景,采用该技术必将加速转化医学的发展。南京大学陈洪渊院士  华西医科大学魏于全院士在报告中详细介绍了生物标志物在靶向药物治疗上的应用,魏院士指出基因组学、蛋白质与代谢组学等的发展为生物标志物与治疗靶点带来了新的机遇,其中基因组学正逐渐步入临床视野,也将推动肿瘤靶向治疗及个体化治疗。华西医科大学魏于全院士  在本次峰会的大会分领域学术研讨环节,解放军总医院颜光涛教授、中国计量院李红梅研究员、北大肿瘤医院徐国宾教授、军事医学科学院张贺秋教授、清华大学林金明教授、烟台澳斯邦王兆强董事长和苏州博源董事长虞留明教授就标记免疫分析的协同创新机制、有机小分子到大分子化合物纯度定值技术、肿瘤标志物、CTC和ctDNA临床检测、基于抗体标记免疫检测产品的研发与转化、均相免疫分析与化学发光技术、免疫活性细胞液态监测技术进行了演讲和讨论互动。    中国计量科学研究院化学所李红梅所长则在报告中首先介绍了IVD行业测量量值溯源体系,随后详细阐述了有机纯物质计量技术研究在化学生物测量中的重要作用、国际计量委员会发展规划、中国计量科学研究院的纯物质研发工作及未来技术挑战。中国计量科学研究院化学所李红梅所长  北京大学肿瘤医院徐国宾教授在报告中介绍了目前我国肺癌的发病和死亡情况,并介绍了肺癌血清学肿瘤标志物的疗效评价参考标准、CTC检测结合CT检查应用于晚期肺癌化疗评效的临床价值和肺癌血浆ctDNA检测的应用及不同方法检测的一致性研究等。北京大学肿瘤医院徐国宾教授  军事医学科学院张贺秋教授以“乳腺珠蛋白单抗研究及转化应用”为题,介绍了乳腺珠蛋白的特性、检测方法,重点介绍了乳腺珠蛋白A单抗的相关研究,包括:在乳腺癌转移、血清学检测、CTC检测及靶向单抗修饰纳米药物载体中的不同应用。军事医学科学院张贺秋教授  清华大学林金明教授在报告中分别介绍了体液分析的主要检测方法、化学发光研究的发展趋势、化学发光免疫分析固相分离技术及光激化学发光免疫技术,并总结指出,新型仪器的研制将进一步促进化学发光分析方法在各领域的应用。清华大学林金明教授  企业专家苏州博源医疗公司虞留明董事长和烟台澳斯邦公司王兆强董事长也分别就“均相免疫技术在小分子定量分析中的前景”和“精准医疗的新机遇-免疫活性细胞液态监测技术”进行了主题报告。苏州博源医疗公司董事长虞留明教授烟台澳斯邦公司王兆强董事长
  • 260万!华南理工大学活细胞代谢检测分析仪采购项目
    项目编号:GZZJ-ZFG-2023061项目名称:华南理工大学活细胞代谢检测分析仪采购项目预算金额:260.0000000 万元(人民币)最高限价(如有):260.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1活细胞代谢检测分析仪1套主要用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定和分析。细胞能量代谢技术近年来已经发展成为细胞相关研究中的重要工具,该设备可广泛应用于食品科学、生命科学和医学的前沿领域:能量代谢学,线粒体,生理、生化,免疫功能和监控研究,干细胞研究,药理学和新药筛选,环境监控,神经生物学,血液学,肿瘤学等260经政府采购管理部门同意,本项目(活细胞代谢检测分析仪设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • IVIS视角 | 醛缩酶B介导的果糖代谢诱导了结肠癌肝转移过程中的代谢重组
    癌症导致的死亡中,大部分是由恶性肿瘤转移而引起的,在临床上仍然是一个挑战。转移性癌细胞通常与原发癌细胞相似,但它们可能会受到所转移器官附近环境的影响。本文揭示了结直肠癌(CRC)细胞在转移至肝脏(一个关键的代谢器官)后经历代谢的重组过程。特别是肝转移细胞通过GATA结合蛋白6抗体 (GATA6) 上调醛缩酶B (ALDOB)的表达,提高果糖代谢,为肿瘤细胞增殖过程中的主要中心碳代谢提供能量。靶向ALDOB或降低膳食果糖可显著降低肝转移性生长,但对原发肿瘤几乎没有影响。本文的研究结果表明,转移细胞可以在新的微环境中利用代谢重组,尤其是在代谢活跃的器官,如肝脏中,对相关通路的操纵可能会影响转移性生长的过程。原发性肿瘤逐渐累积遗传性改变,并受其肿瘤微环境的影响,直到获得能转移到远处器官的能力(Gupta和Massague, 2006 Valastyan和Weinberg, 2011)。这一过程的典型特征是,结直肠癌(CRC)经过腺瘤到癌的顺序发展,最终导致转移(Barker et al., 2009),(约70%的患者) 优先转移到肝脏这个部位 (Rothbarth和van de Velde, 2005) 。在这个阶段,该疾病变得很难治疗,并对大多数形式的联合治疗产生耐药性,使得结直肠癌(CRC)转移成为癌症相关死亡的主要原因。无法进行手术的肝转移患者对化疗干预治疗效果较差,中位生存期为6至9个月 (Alberts et al., 2005) 。目前针对晚期结直肠癌的化疗并不针对肝转移。部分原因是由于观察到CRC转移与任何特定的基因突变并不一致 (Jones et al., 2008) ,而且它们通常与原发肿瘤中的细胞相似。然而,新出现的证据表明,非遗传改变,如表观遗传和代谢重组,可能促进癌症转移。将这种机制作为研究的目标可能为开发结直肠癌转移的治疗方法提供新的途径。在本研究中,来自临床样本和经盲肠移植的体内CRC转移模型的数据表明,结直肠癌(CRC)肝转移瘤的特定代谢通路发生了改变。特别是,肝转移会上调ALDOB的水平,这是一种参与果糖代谢的酶。肝内植入表明肝环境导致CRC细胞上调ALDOB。代谢组学和13C标记的果糖追踪研究表明,ALDOB促进果糖代谢,促进糖酵解、糖异生和戊糖磷酸途径。降低ALDOB或限制饮食果糖会抑制CRC肝转移瘤的生长,但不抑制原发肿瘤或肺转移瘤的生长,这突出了肿瘤微环境的重要性。1、在结直肠癌CRC肝转移中BALDOB表达升高为了证实ALDOB在肝转移中的上调,作者将3株CRC细胞株:HCT116和2株肝转移患者来源的异种移植(PDX)细胞株CRC119和CRC57植入NOD/SCID小鼠的盲肠末端。细胞携带双标记报告基因结构,稳定表达荧光蛋白(mCherry或GFP) 和荧光素酶。在盲肠注射前,流式细胞分选(FACS)分析显示,这些CRC细胞株中KHK、ALDOB和HK表达均为单峰。注射盲肠后,CRC细胞在2周内首次形成原位肿瘤。随后,它们在5周内发生了CRC肝转移。收集原发性盲肠和肝转移肿瘤后,利用荧光流式细胞仪(FACS)分离CRC细胞。肝转移瘤的ALDOB水平明显高于原发性转移瘤,而KHK和HK水平基本保持不变(图3B-3D) 。20%至40%的小鼠也出现肺转移,尽管与原发性盲肠肿瘤相比,肺转移中ALDOB没有上调。Figure 3. 肝转移使体内ALDOB表达升高为了研究肝脏微环境是否引起CRC细胞中ALDOB的表达上调,本文将HCT116、CRC119和CRC57细胞同时直接注入小鼠肝脏和盲肠。CRC肿瘤迅速在肝脏和盲肠中形成,注射10天后,分别采集肿瘤。肿瘤经盲肠转移至肝脏之前,在盲肠注射模型中需要3~5周(图3E)。从采集的肿瘤细胞中,利用荧光流式细胞分选(FACS)分离出CRC细胞。Western blot检测证实,从肝脏分离的CRC细胞中ALDOB水平高于盲肠分离的细胞,而KHK和HK水平保持相似(图3F-3H)。另一方面,Transwell迁移实验中迁移和非迁移的CRC细胞表达了相似的ALDOB水平,这表明ALDOB与迁移能力的增强无关。此外,在体外培养后,肝脏和盲肠分离的肿瘤细胞表达相似的ALDOB水平。综上所述,这些数据表明肝脏微环境可导致CRC细胞上调ALDOB的表达。2、ALDOB促进CRC肝转移瘤的生长HCT116、CRC119和CRC57细胞中ALDOB 的表达下调(RNA干扰下调表达),不影响体外含葡萄糖或果糖培养基中培养的CRC细胞迁移 。尽管盲肠移植HCT116、CRC119或CRC57细胞与对照载体均可有效发展肝转移(3个细胞系的5只小鼠中有5只发生了转移) ,但在盲肠注射模型中,ALDOB下调表达可抑制CRC肝转移。经shRNA1干扰的ALDOB的HCT116、CRC119或CRC57细胞分别在5只小鼠中仅有2只、2只和2只出现可检测到的肝转移,而经shRNA2敲除的小鼠分别为2、1和2只(图5A-5E) 。此外,从ALDOB 下调表达细胞中的肝转移比对照细胞中的肝转移肿瘤少得多,且小得多。然后进行肝内注射,观察ALDOB是否促进肝内CRC的生长。对照载体的HCT116、CRC119和CRC57细胞在肝脏中生长明显大于ALDOB表达下调的细胞(图5F-5H) 。Figure 5. RNA干扰ALDOB表达可抑制CRC肝转移3、靶向果糖代谢抑制肝转移接下来考虑的是,果糖摄入量的水平是否会影响肿瘤的生长,尤其是在肝脏。注射CRC至盲肠后 (每组5只小鼠) ,高果糖饮食的小鼠显示CRC肝转移增加,而不含果糖饮食的小鼠相对于对照组显示肝转移减少(图6A-6D) 。随后将这两种治疗方法结合起来。对小鼠注射ALDOB基因敲除剂后,然后按规定对其喂食不含果糖的饮食。这正如预期的那样,抑制了CRC的肝转移(图6A-6D) 。将CT26细胞注射到具有免疫功能的BALB/c小鼠的盲肠中,在果糖饮食对肝转移瘤的影响方面也显示出类似的结果。一直以来,高果糖饮食降低了老鼠的存活率,而低果糖饮食和低碳水化合物能延长老鼠的存活率。用相同shRNA结构转染LV-HCT116细胞,下调ALDOB的表达。与盲肠注射模型一致,ALDOB下调表达和果糖限制饮食抑制了肝脏中CRC肿瘤。关于抑制肝脏LV-HCT116肿瘤,ALDOB下调和果糖限制似乎比5-氟尿嘧啶或奥沙利铂更有效,这两种药物都是晚期和转移性CRC的一线化疗。与ALDOB敲除或果糖限制饮食不同,5-氟尿嘧啶或奥沙利铂在肿瘤抑制或生存方面几乎没有益处。因此, 针对ALDOB和果糖代谢的调节可能会影响肝转移瘤的生长,并对目前的化疗作为一个补充策略。Figure 6. 饮食果糖限制抑制CRC肝转移关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 免疫组化(IHC)的 "疑难杂症" 再也不愁
    免疫组化简介免疫组织化学又称免疫细胞化学,是指带显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应 和组织化学的呈色反应,对相应炕原进行定性、定位、定量测定的一项新技术。它把免疫反应的特异性、组织化学的可见性巧妙地结合起来,借助显微镜(包括荧光显微镜、电子显微镜)的显像和放大作用,在细胞、亚细胞水平检测各种抗原物质(如蛋白质、多肽、酶、激素、病原体以及受体等)。免疫组化基本原理免疫组化技术是一种综合定性、定位和定量;形态、机能和代谢密切结合为一体的研究和检测技术。在原位检测出病原的同时,还能观察到组织病变与该病原的关系,确认受染细胞类型,从而有助于了解疾病的发病机理和病理过程。 免疫酶组化技术是通过共价键将酶连接在抗体上,制成酶标抗体,再借酶对底物的特异催化作用,生成有色的不溶性产物或具有一定电子密度的颗粒,于普通显微镜或电镜下进行细胞表面及细胞内各种抗原成分的定位,根据酶标记的部位可将其分为直接法(一步法)、间接法(二步法)、桥联法(多步法)等,用于标记的抗体可以是用免疫动物制备的多克隆抗体或特异性单克隆抗体,最好是特异性强的高效价的单克隆抗体。直接法是将酶直接标记在第一抗体上,间接法是将酶标记在第二抗体上,检测组织细胞内的特定抗原物质。目前通常选用免疫酶组化间接染色法。那么,显色常用的酶为辣根过氧化物酶(HRP),常用的显色底物为DAB(3,3’-二氨基联苯胺),偶尔用AEC(3-氨基-9-乙基咔唑)。碱性磷酸酶(AP或AKP)也是目前免疫诊断试剂最常用的标记酶之一,稳定性好、灵敏度高。表1. 免疫组化(IHC)显色系统的选择免疫组化注意事项1. 组织取材为避免蛋白丢失及组织受损引起的非特异试剂吸附,取材须快速(组织块也不宜太大)且要尽量避免人为损伤。2. 固定固定要及时、彻底,但也不能固定过久。实验证明甲醛固定时间越久的组织越容易出现自发荧光及非特异性染色。一般以 12~36 小时最好。3. 石蜡片与冰冻片的选择石蜡片制作对设备要求较冰冻片低,组织结构更好,保存条件简单时间也久。但对部分蛋白有较强烈的破坏作用,对蛋白保护较冰冻片差。冰冻片对蛋白的保护较石蜡片好,制作起来也较快。4. 灭活过氧化物酶(HRP)系统的一定要做内源性过氧化物酶的灭活,而对于碱性磷酸酶(AP)系统和免疫荧光这个步骤不需要做。5. 抗原修复不同的样本、不同的蛋白其最佳的抗原修复方式会有所区别,热修复(酸性修复液(柠檬酸盐修复液)、碱性修复液(EDTA 修复液)及酶修复(蛋白酶)都可做尝试。对于陈旧的样本要增加修复强度,比如延长修复时间。6. 封闭常用的封闭液有 5% BSA 和血清。BSA 是通用型的封闭液。血清应选择与二抗同源的血清。7. 抗体孵育一抗一定要与实验及样本匹配的,孵育条件以 4 ℃ 过夜最佳。二抗应匹配一抗,37 ℃ 孵育半小时即可。8. 显色DAB 显色建议在镜下控制反应时间,在阳性及背景之间选择平衡点。免疫组化常见问题分析1.脱片产生的原因有哪些 1、烤片时间不够,或温度不够,可以延长烤片时间和提高烤片温度; 2、多聚赖氨酸玻片质量的问题。 3、组织切的不好,切片机的问题例如比较老的旧的机器切的厚或者不均匀,或者切片者手法不好等。 4、修复的问题:抗原修复的时候高压时间过长了,或者放进100度的修复液时手法不好,咚的一声就丢进去了,这样超容易脱片。此外,用EDTA修复比柠檬酸容易脱片,但是你要用到EDTA的时候也没办法,只有从另外的问题上着手。 5、操作的时候甩的太猛了,有脱片嫌疑的片子最好不甩或轻轻甩,用卫生纸从边缘上慢慢吸水。 6.组织的问题,我用的组织癌症的很多,越是癌症组织有坏死之类越容易脱。2.边缘效应1、组织边缘与玻片粘贴不牢,边缘组织松脱漂浮在液体中,每次清洗不易将组织下面试剂洗尽所致. 解决办法:制备优质的胶片(APES或多聚赖氨酸),切出尽量薄的组织切片,不厚于4微米,组织的前期处理应规范,尽量避免选用坏死较多的组织;2、切片上滴加的试剂未充分覆盖组织,边缘的试剂容易首先变干,浓度较中心组织高而致染色深。解决办法:试剂要充分覆盖组织,应超出组织边缘2mm。用组化笔画圈时,为了避免油剂的影响,画圈应距组织边缘3-4mm。3.切片染色后背景太深,如何区分特异性sing与非特异性着色全片着色是指整个切片全都染上了颜色,着色的强度可深可浅,总之,分不清那些组织是阳性那些组织是阴性。出现这种现象的原因有:(1)抗体浓度过高:一抗浓度过高是常见的原因之一。解决办法是,每次使用新抗体前应当对其工作浓度进行测试,使每一抗体个体化,找到适合自己实验室的理想工作浓度,既使是即用型的抗体也应如此,不能只简单的按说明书进行染色。(2)抗体孵育时间过长或温度较高:解决办法是,严格执行操作规程,最好随身佩带报时表或报时钟,及时提醒,避免因遗忘而造成时间延长。现在流行的二步法(Polymer)敏感性很高,要求一抗孵育的时间不是传统的1小时,而是30分钟,因此,要根据染色结果进行调整。(3)DAB变质和显色时间太长:DAB最好现用现配,如有沉渣应进行过滤后再用。配制好的DAB不应存放时间太长,因为在没有酶的情况下,过氧化氢也会游离出氧原子与DAB产生反应而降低DAB的效力,未用完的DAB存放在冰箱里几天后再用这种似乎节约的办法是不可取的。DAB的显色最好在显微镜下监控,达到理想的染色程度时立即终止反应。不过当染色片太多时或用染色机时,这样做似乎不现实,但至少应对一些新的或少用的抗体显色时进行监控,避免显色时间过长。(4)组织变干:修复液溢出后未及时补充液体、染色切片太多、动作太慢、忘记滴液、滴液流失等都是造成组织变干的原因。解决的办法是操作要认真仔细,采用DAKO笔或PAP Pen在组织周围画圈,可以有效的避免液体流失,也能提高操作速度。(5)切片在缓冲液或修复液中浸泡时间太长(大于24小时):原因上不清楚,但现象存在。有的实验室喜欢前一天将切片脱蜡至修复,第二天加抗体进行免疫组化染色,如果将装有切片和修复液的容器放在4º C冰箱过夜,对结果无明显影响,如果放在室温,特别是炎热的夏天,会出现背景着色,因此,不可存放时间太长。(6)一抗变质、质量差的多克隆抗体:注意抗体的有效期,过期的抗体要麽不显色要麽背景着色。用新买的抗体时最好设立阳性对照和用使用过的抗体作比较。4.免疫组化染色呈阴性结果1、抗体浓度和质量问题以及抗体来源选择错误;2、抗原修复不全,对于甲醛固定的组织必须用充分抗原修复来打开抗原表位,以利于与抗体结合;建议微波修复用高火4次*6min试试。有人做过实验,这是最佳的时间和次数。若不行,还可高压修复;3、组织切片本身这种抗原含量低;4、血清封闭时间过长;5、DAB孵育时间过短;6、细胞通透不全,抗体未能充分进入胞内参与反应;7、开始做免疫组化,我建议你一定要首先做个阳性对照片,排除抗体等外的方法问题。5.背景1、考虑一抗浓度高;2、然后调整DAB孵育时间;3、也要考虑血清封闭时间是否过短;4、适当增加抗体孵育后的浸洗次数和延长浸洗时间等。
  • 零糖也不健康?Nature论文:常用人工甜味剂或抑制免疫系统
    随着经济发展和生活水平的提高,在全世界范围内,肥胖已经成为了一个主要公共健康问题。据世界卫生组织(WHO)统计,全球有近20亿人超重或肥胖,从1975到2016年,全球肥胖率翻了近3倍,每年因超重或肥胖导致的死亡高达280万。全球范围内肥胖率的快速增加很大程度上是因为高糖饮食等生活因素的影响,为了减少糖对健康及肥胖的影响,越来越多的人开始使用人工甜味剂代替正常糖类(代糖),这些人工甜味剂具有糖类的甜味,但通常不能被人体转化,因此不产生热量。人们认为其可作为一种健康的饮食方式,已被广泛应用于食品和饮料中,以降低糖和热量摄入。三氯蔗糖是许多食品中的常用代糖,它没有热量,并且比蔗糖甜600倍。三氯蔗糖通常被认为是安全的,但也有人对长期食用包括三氯蔗糖在内的人工甜味剂提出了担忧。2023年3月15日,英国弗朗西斯克里克研究所的研究人员在Nature期刊发表了题为: The dietary sweetener sucralose is a negative modulator of T cell-mediated responses 的研究论文。该研究发现, 高剂量的人工甜味剂三氯蔗糖会降低小鼠免疫反应 。这些发现没有提供证据表明正常剂量的三氯蔗糖摄入可能产生免疫抑制性。但该研究强调了高剂量三氯蔗糖对免疫反应和小鼠机能的一个意外影响。研究团队认为,三氯蔗糖对免疫系统中T细胞的影响可能是可逆的,这意味着我们将来可能使用三氯蔗糖来治疗T细胞过度活跃导致的自身免疫疾病。为了调查过量食用三氯蔗糖的影响,研究团队给小鼠服食了高剂量的三氯蔗糖。这一剂量同比高于正常人类饮食中的三氯蔗糖摄入,接近该甜味剂的每日可摄入最大剂量(欧洲食品安全局为15mg/Kg,美国食品药品监督管理局为5mg/Kg)。小鼠表现出了T细胞增殖和分化水平下降,表明其免疫系统受到调节。三氯蔗糖被发现影响T细胞的细胞膜,降低其有效释放信号的能力。喂食三氯蔗糖的小鼠还表现出在感染、肿瘤和免疫模型中功能性T细胞反应的不同程度下降。这些发现表明,高剂量三氯蔗糖会改变小鼠的免疫响应。三氯蔗糖治疗限制体内T细胞特异性反应总的来说,这项研究显示,大量摄入 常见 的人造 甜味剂三氯蔗糖会降低小鼠T细胞活性 ,还需要更多研究来确定三氯蔗糖对小鼠的影响是否可以在人体中重现。研究团队表示,三氯蔗糖对小鼠T细胞的影响似乎是可逆的,如果在人体内也是如此,那么我们就 可以利用三氯蔗糖来改善过度活跃的T细胞导致的自身免疫疾病。2023年2月27日,美国克利夫兰医学中心的研究人员在国际顶尖医学期刊Nature Medicine上发表了题为:The artificial sweetener erythritol and cardiovascular event risk 的研究论文。这项研究表明,常用的人工甜味剂赤藓糖醇可能与心脏病事件相关。赤藓糖醇是一种天然物质,一些蔬菜和水果中也少量含有,我们的身体难以代谢这种物质,因为其具有甜味,而被用作人工甜味剂。近年来一些爆火的主打零糖零脂零卡的饮料,实际上就是大量添加了赤藓糖醇。监管机构一般也认为赤藓糖醇等人工甜味剂是安全的,人们也常建议将其作为代谢疾病(例如糖尿病和心脏病)患者的代糖,但很少有研究调查过其长期健康影响。这些人工甜味剂对人体到底有没有影响?它们真的是健康的吗?研究团队在1157名经过心脏病风险评估、有3年结局数据的人群中进行了初步研究。通过分析血液中的化学物质,研究团队观察到多种看似人工甜味剂(尤其是赤藓糖醇)的化合物水平在三年随访中与未来心脏病和中风风险增加有关。这一相关性在独立阵列研究中得到证实,该阵列研究在美国(n=2149)和欧洲(n=833)进行了选择性心脏评估。研究团队进一步发现,全血或血小板中的赤藓糖醇导致了血栓形成加速,这在动物模型研究中得到了确认。赤藓糖醇促进体内血栓形成研究团队还在8名健康志愿者中进行了一个前瞻性干预研究。在志愿者摄入30克赤藓糖醇饮料后检验其血浆水平,发现所有志愿者赤藓糖醇水平持续增加,在2-3天里超过了凝血风险增加的阈值。研究团队认为,这项研究或表明赤藓糖醇水平提高与血栓风险升高相关。但他们也指出,因为他们研究的阵列中心血管风险因子发生率偏高,仍需确认对明显健康的受试者进行更长期随访中是否能观察到类似结果。值得一提的是,一项近期的研究显示,人工甜味剂(例如糖精、三氯蔗糖) 会显著影响人体肠道菌群,进而改变人体血糖水平。2022年8月,魏茨曼科学研究所的研究人员在国际顶尖学术期刊Cell上发表了题为:Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance 的研究论文。该研究证实,长期以来被认为是健康的并得到广泛使用的人工甜味剂在人体内并不是惰性的,它们会显著影响人体肠道菌群,从而改变人体血糖水平。早在2014 年,魏茨曼科学研究所的Eran Elinav团队就发现,人工甜味剂会影响小鼠的肠道微生物组,从而影响它们的血糖反应。而这一次,他们进一步探索了人工甜味剂对人类的影响。研究团队仔细筛选了1300多名在日常生活中严格避免使用人工甜味剂的人,并从中确定了120人参与后续实验。这些参与者被分成六组:两组对照组和四组实验组,四组实验组分别摄入糖精(Saccharin)、三氯蔗糖(Sucralose)、甜菊糖苷(stevia)和阿斯巴甜(Aspartame),这些摄入量低于FDA允许的每日摄入量标准。两组对照组分别摄入等量葡萄糖或不额外摄入。结果显示,在食用人工甜味剂的参与者中,可以很容易观察到他们的肠道微生物组成和功能以及分泌到外周血中的分子出现了非常明显的变化。这似乎表明了人体内的肠道微生物对这些甜味剂中的每一种都相当敏感。在这几种人工甜味剂中,糖精和三氯蔗糖能够更显著地影响健康成年人的葡萄糖耐量。而且,肠道微生物组的变化与人们血糖反应的变化是高度相关的。这些研究提示我们,人工甜味剂并不像我们之前认为的那样安全,有必要通过进一步研究评估人工甜味剂的长期安全性。论文链接:1. https://www.nature.com/articles/s41586-023-05801-62. https://www.nature.com/articles/s41591-023-02223-93. https://www.cell.com/cell/fulltext/S0092-8674(22)00919-9
  • 贺玖明团队在空间组学新技术研发及肿瘤代谢互作研究取得重要突破
    中国医学科学院药物研究所贺玖明与齐鲁工业大学(山东省科学院)孙成龙、北京大学肿瘤医院季加孚/步召德、上海市生物医药技术研究院戴文韬等多个课题组密切合作,在空间分辨多组学新技术研发及肿瘤代谢交互作用研究方面取得重要进展。研究成果以“Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer”为题,于2023年5月10日在Nature Communications杂志上在线发表。论文链接:https://www.nature.com/articles/s41467-023-38360-5近年来,组学技术的发展极大地推动了人们对肿瘤的认识和临床精准诊治。然而,基于组织匀浆或单细胞解离的组学分析技术会破坏组织中细胞和分子所处的空间位置,无法获得高异质性肿瘤组织(微环境)中的分子和细胞的分布及相互作用信息。在前期自主研发的空间代谢组学(Spatially resolved metabolomics)技术的基础上,进一步整合空间脂质组学(Spatially resolved lipidomics)和空间转录组(Spatially resolved transcriptomics)测序技术,在同一肿瘤组织样本的相邻切片上,实现了肿瘤组织微区中代谢组、脂质组和转录组数据的原位精准联合分析;并鉴别细胞种类,构建代谢物/脂质和上游调控基因的关联网络,实现了肿瘤组织微环境中肿瘤细胞、免疫细胞和基质细胞等代谢调控及交互作用的原位表征;为肿瘤代谢的深入研究提供了创新的有效方法、工具和新视角。进一步对临床术后胃腺癌组织进行了空间多组学分析,发现胃癌肿瘤细胞中精氨酸和脯氨酸代谢、磷脂合成及代谢、脂肪酸生物合成等通路在代谢和转录水平上均发生了显著的异常改变;发现肿瘤细胞的氧化磷酸化代谢水平发生逐渐上调,下游代谢物如磷酸化葡萄糖、苹果酸、琥珀酸、组胺、硫苷酯等分子随着胃癌的进展发生持续变化;尤其发现了一个富含免疫细胞的狭长“肿瘤边界区域,tumor interface region”,该区域中免疫细胞发生了代谢重编程,相比正常组织中的免疫细胞,其谷氨酰胺代谢、多不饱和脂肪酸表达都显著上调,提示肿瘤免疫屏障(逃逸)可能与谷氨酰胺代谢和多不饱和脂肪酸代谢密切相关。这些各类细胞特异的代谢重编程在胃癌的发生发展和免疫逃逸等过程中发挥重要作用,有望成为肿瘤精准治疗的潜在靶点。齐鲁工业大学(山东省科学院)孙成龙研究员(药物所2018届博士生)、北京大学肿瘤医院王安强副教授、药物所硕士生周晏合为本文共同第一作者。中国医学科学院药物研究所贺玖明研究员、北京大学肿瘤医院季加孚教授、步召德教授和上海市生物医药技术研究院戴文韬副研究员为本文的共同通讯作者。本研究受到国家自然科学基金、中国医学科学院医学与健康科技创新工程、山东省泰山学者计划等项目的资助;得到上海欧易、鹿明生物和维科托(北京)在空间转录测序、生信分析和空间代谢组分析仪器研制等技术支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制