当前位置: 仪器信息网 > 行业主题 > >

路德维希

仪器信息网路德维希专题为您整合路德维希相关的最新文章,在路德维希专题,您不仅可以免费浏览路德维希的资讯, 同时您还可以浏览路德维希的相关资料、解决方案,参与社区路德维希话题讨论。

路德维希相关的资讯

  • SGS集团收购加拿大路德维希集团
    世界最大的检测和认证机构SGS集团于9月10日收购了加拿大路德维希集团(LUDWIG GROUP),一家领先的材料和冶金测试机构,其总部位于卡尔加里和加拿大阿尔伯达省的埃德蒙顿。路德维希集团的优势主要在于石油和天然气行业,特别是石油和天然气基础设施和管道行业,路德维希能够提供全面的专业焊接工程必要的设计、制造、评估和维护技术及服务,也能够提供世界一流的物理测试和材料鉴别服务。 SGS CEO克里斯• 柯克表示,这次收购非常符合SGS的工业战略,将利用路德维希在北美进一步扩大SGS的业务,特别是在石油和天然气工业。
  • 国家市场监督管理总局对《微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量》等67项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《跨境电子商务独立站经营评价指南》等67项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月2日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001899,查询项目信息和反馈意见建议。2024年7月3日相关标准如下:#项目中文名称制修订截止日期1微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量修订2024-08-022微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第2部分:氢气含量修订2024-08-023敞开式直接电离质谱仪性能测定方法制定2024-08-024塑料扭转刚性试验方法修订2024-08-025激光器和激光相关设备 角分辨散射的试验方法制定2024-08-026光学和光子学 光学元件 复杂曲面光学元件几何参数测试方法制定2024-08-027医用输液、输血、注射器具检验方法 第2部分:生物学试验方法修订2024-08-028元素分析仪性能测定方法制定2024-08-02
  • 基于扫描电镜-拉曼联机系统的微细矿物快速识别与定量分析技术
    扫描电子显微镜(SEM,简称扫描电镜)是观测物质表面形貌的基础微束分析仪器,具有分辨率高、景深长、样品制备简单等特点,已成为地球和行星科学研究领域最常用的仪器之一。近年来,扫描电镜的空间分辨率已大幅度提升,分辨率优于1纳米,附属硬件的集成(如背散射电子探头、X 射线能谱仪、拉曼光谱等)和软件的开发极大地拓展了扫描电镜的功能,显著提高了人们认知矿物组成和微观结构的能力,促进了固体地球科学、行星科学等多个学科的发展。复杂样品的三维重构,微细复杂矿物的快速精准识别、定位以及定量分析,是扫描电镜分析技术的前沿发展方向。   中国科学院地质与地球物理研究所电子探针与扫描电镜实验室团队原江燕工程师、陈意研究员和苏文研究员等,基于2020年购置的扫描电镜-激光拉曼联机系统(RISE),开展了一系列技术研发工作。该仪器可快速精准地实现扫描电镜与拉曼光谱仪之间的切换,采集样品同一微区的形貌、成分及三维结构信息。克服了传统扫描电镜对熔体包裹体、有机质和同质多像矿物识别的困难,并将拉曼光谱分析拓展至亚微米和纳米尺度。   铌(Nb)是医疗、航空航天、冶金能源和国防军工等行业不可缺少的重要战略性金属资源。我国白云鄂博是超大型稀土-铌-铁矿床,氧化铌的远景储量达660万吨,占全国储量的95%。对富铌矿物的赋存状态开展研究,有助于查明铌的分布规律,提高铌矿床选冶效率。然而,白云鄂博矿床的铌矿物种类繁多,且具分布分散、粒度小、成分和共伴生关系复杂等特点,如何精准识别和定位这些矿物并进行分类,往往给科研人员带来困扰。该团队针对这一问题,在白云鄂博碳酸盐样品的基础上,建立了铌矿物快速识别、精准定位和定量分析方法。通过电子背散射图像灰度阈值校正、两次图像采集和两次能谱采集,极大地缩短了对铌矿物识别和定量分析的时间,15分钟即可实现118平方毫米区域内微米级铌矿物的快速识别和精准定位,整个薄片尺度可在3小时内完成。基于自动标记区域的能谱定量分析数据,结合主成分分析(PCA)统计学方法,即可实现不同铌矿物的准确分类。该方法也可用于稀土矿床中稀土矿物、天体样品中微细定年矿物等在大尺寸范围内的快速识别、精准定位和分类。   嫦娥五号月壤具有细小、珍贵、颗粒多、成分复杂等特点,平均粒径不足50微米。获取如此细小颗粒的全岩成分,是对微束分析技术的一次挑战。传统方法通常运用电子探针分析获取矿物平均成分,用面积法统计矿物含量,再结合矿物密度,计算出月壤的全岩成分。然而,月壤矿物(如橄榄石和辉石)普遍发育显著的成分环带,为矿物平均成分统计带来很大的不确定性。因此,传统方法不仅效率低,误差也大。   针对这一问题,该团队建立了单颗粒月球样品全岩主量元素无损分析方法。他们首先使用 MAC国际标准矿物为能谱定标,检测限为0.1 wt%,对于含量1 wt%的元素, 分析精度优于2-5%。在此基础上,通过能谱定量mapping技术,直接准确获得矿物的平均成分,再结合矿物含量与密度,最终可确定单颗粒月壤的全岩成分。将新方法运用于月球陨石NWA4734号样品,在误差范围内与其他化学分析方法的推荐值一致。该新方法已成功应用于嫦娥五号月壤样品研究。由于该方法不受样品形状的限制,不仅可用于月球、小行星、火星等珍贵样品的全岩成分分析,还可以针对薄片尺度内任意形态微区开展局部全岩成分分析。   扫描电镜技术在地球和行星科学领域分析仪器中具有不可替代的地位,随着搭载附件和软件的提升,其分析技术开发和应用将具有无限可能。将扫描电镜与大数据分析技术相结合,建立更为高清、高效、精确的图像和成分分析方法,是扫描电镜技术发展的重要方向。   研究成果发表于国际学术期刊Microscopy Research and Technique, Atomic Spectroscopy,Journal of Analytical Atomic Spectrometry上。研究受中科院地质与地球物理研究所重点部署项目(IGGCAS-201901、IGGCAS-202101)、实验技术创新基金(E052510401)和中科院重点部署项目(ZDBSSSW-JSC007-15)联合资助。
  • 创迈思trinamiX携手巴斯夫向饲料行业推出快速便携检测方案
    2021年10月, 德国路德维希港——世界500强德国巴斯夫动物营养业务部联合巴斯夫欧洲公司旗下全资子公司创迈思trinamiX 向饲料行业推出创迈思便携式近红外(NIR)光谱解决方案。该解决方案能够为整个饲料行业价值链上的客户提供快速、可靠的动物饲料和原料成分现场分析。  通过小型化传统的近红外光谱仪,创迈思已经成功为实现高性能“口袋里的实验室”奠定了基础。基于创迈思在移动式近红外光谱解决方案方面的专长,以及巴斯夫的动物营养知识,加速并简化饲料分析,使饲料分析和质检流程不再枯燥繁冗。  这个强大的解决方案可通过无线云端进行互联,轻触按键就可直接为客户提供样品质量和营养价值的相关数据分析,从而优化饲料配方并加强质量控制。巴斯夫动物营养通过该合作扩大了其数字化解决方案组合,不但为客户提供饲料添加剂相关的解决方案,同时也应对饲料行业更复杂严峻的挑战。  这套便携式的近红外解决方案,通过将精准分析的结果与灵活便携、口袋大小的移动设备相结合,让饲料加工厂、营养配料师和养殖户都可以得到一个快速测量的独立分析办法。无需特别的专业背景,单个样品的测量仅需不到几秒钟的时间就可在现场完成。测量结果可立即显示在智能手机应用程序中,并可通过 创迈思客户门户网站永久访问,以便进行后续深入评估,从而确保动物饮食的质量。  从现在起,用户们不再需要把饲料样品送到实验室并花时间等待结果。这是一次把实验室带到他们身边的科技革新。  解决方案适用于从饲料原料到成品饲料到草料的多种样品,可检测对饲料质量和牲畜健康至关重要的参数,如水分、蛋白质、脂肪和能量等。  未来,巴斯夫和创迈思还将继续合作,持续完善该解决方案。客户无需更换硬件,只需通过线上云技术持续获得更新的应用版本和新增功能。  关于巴斯夫  在巴斯夫,我们创造化学新作用——追求可持续发展的未来。我们将经济上的成功、社会责任和环境保护相结合。巴斯夫在全球拥有超过110,000名员工,为几乎所有国家、所有行业客户的成功作出贡献。我们的产品分属六大业务领域:化学品、材料、工业解决方案、表面处理技术、营养与护理、农业解决方案。2020年巴斯夫全球销售额约590亿欧元。巴斯夫的股票在法兰克福(BAS)证券交易所上市,并以美国存托凭(BASFY)的形式在美国证券市场交易。欲了解更多信息,请访问:www.basf.com。  关于 创迈思trinamiX  创迈思trinamiX 为消费电子设备和工业设计领域开发并销售尖端3D视觉和红外传感解决方案。旗下产品助力人类与机器更好地运用数据,提高决策力和安全性。成立于2015年的创迈思trinamiX 是巴斯夫欧洲公司旗下的全资子公司,总部位于德国路德维希港,在全球拥有170名员工。  请扫描下方二维码,马上预约测试,了解更多详情
  • 化工行业如何安全发展?看看德国的经验
    1921年9月21日,德国路德维希港巴斯夫公司奥堡工厂一存放有硝酸铵的库房发生剧烈爆炸,事故造成509人死亡,160余人失踪,1952人受伤,7500余人无家可归,堪称是德国化学工业史上最大的事故。2016年10月17日,同样是位于德国路德维希港的巴斯夫一工厂发生爆炸,造成 4 人死亡、6 人重伤。此次事故在短时间内直接影响到全球部分类别的化工产品供应,并在全球范围内造成波动。  纵观德国化工行业和化工园区的发展历史,有过辉煌的成绩,也有过惨痛的教训,对于的中国化工行业来说,如何借鉴其发展中关于安全生产的经验,值得讨论。  笔者曾赴德国汉堡参加安全监管监察研修培训。培训以欧盟重大事故危害控制为线索,穿插对政府监管部门、港口企业、第三方科研机构等单位的考察交流,这其中有很多经验可供学习。  法制健全  相对完善的法律法规体系,是构成德国化工园区安全环保工作的基础  《联邦污染防治法》是德国安全、环保工作的基本大法,与《联邦防泄漏法》《消防法》《联邦污染防护条例》《处理有害物质的特殊规定》,以及欧盟《塞维索指令》等共同构成化工企业安全、环保工作的基本法律法规框架体系。《联邦污染防治法》是一部全面的、综合性的法律,同时涉及企业生产过程中的安全和环保问题,由 36 个附属法规或细则构成,内容翔实、具体,可操作性强,与其他一些法规如《建设工地条例》《生产安全条例》《施工现场条例》等共同涵盖了化工企业从规划、建设、运行直至废弃物处置的全生命周期过程的安全、环保问题,是德国化工企业、化工园区安全、环保工作的基石。  统一完善的法律框架体系可有效避免法规不一、标准不一、政令不一的问题,有利于政府部门协调对化工企业、化工园区的安全、健康、环保、消防、设备等工作的监管,也有利于减轻企业负担。特别值得注意的是,德国现行的法律中,没有将安全与环保工作割裂开来分而治之,而是在法律层面的设计中就进行了有机结合,要求企业必须统筹管理。  园区集约  以市场为导向自发形成的化工园区发展模式  德国化工园区的发展始于20世纪90年代,大型化学公司为了与其他企业进行合作,或将一部分业务进行分离,开始在周边规划出一小块用地,吸引企业进入园区,经过不断发展形成了德国现今的主要化工园区。  目前,德国境内约有 60 个化工园区。化工园区在德国的发展主要得益于如下的优势:一是多个企业组成有效的生产链,使其处于共同的产业链上 二是生产环节之间距离短,既节约运输成本又降低了运输安全风险 三是共同存储(物流),节约生产成本 四是成立专门负责基础设施的经营管理公司,解决企业后顾之忧 五是灵活和优化的商务模式,使企业享受在时间和成本上的优势,把精力专注于核心业务 六是通过专业技术联盟,使企业获得新的技术能力 七是各个企业是上下游关系,相互了解,有利于树立共同的安全理念。  德国的化工园区是在老化工基地基础上发展起来的一种新的商业模式,是按照“产业集聚、用地集约、布局合理、物流便捷、安全环保、一体化管理”的原则发展起来的一个相对新生的事物,对于德国化学工业的持续、健康发展起到了至关重要的作用。  源头把控  严格的企业入园审批程序,将化工园区的潜在风险控制在可接受状态  德国从国家战略层面并未具体到条款的企业安全准入制度,企业进入园区主要是以产业链和市场需求为导向,各个园区根据自身的特点和利益要求,采取灵活的、适合自身的方式进行控制,做法也不尽相同。尽管如此,根据《联邦污染防治法》《塞维索指令Ⅲ》的要求,化工企业、化工园区在进行建设规划时,也应遵守严格的审批程序。《联邦污染防治法》第4-21条规定了哪些工业设备需要审批,第22-25条规定了哪些工业设备不需要审批。政府部门对项目的审批主要从技术和管理、适宜的外部距离、大规模人员疏散等三个层次考虑,并分成规划设计、编制申请、递交申请、申请审查、审批 5 个阶段。申请文件要向社会公布,并视情况召开听证会,周边居民、环保组织等任何感兴趣的人员均可提出质疑。适宜的外部距离审查是行政审批的重要方面,根据可能发生的事故类型,政府把相对合适的外部距离范围以安全距离表的形式给出,供研究机构和社会进行参考。  经济杠杆  运用以工伤保险为主的调节杠杆,有效促进德国化工等高危行业落实安全生产的企业责任  德国法律规定,化工等 13 个高危行业从业企业必须加入相应的同业公会组织,其中,化工行业所属的同业公会为原材料与化工同业公会。同业公会负责本行业从业企业职工的工伤保险,该保险的投保对象为企业职工,投保范围包含因生产安全事故、上下班道路交通事故造成的伤亡损失及职业病损害,保险费用由企业负担。一旦发生事故,因事故受到损害的职工将直接得到同业公会的赔付。同业公会则通过督促检查,使企业采取有效的措施预防事故发生,且根据企业安全生产管理业绩的状况核定下年度保费费率额度,依靠此手段来督促激励企业做好安全生产工作。在这种机制下,同业公会行业效益最大化和企业收益最大化的追求与生产安全业绩得到了统一,通过经济杠杆得以紧密连接在一起,有效避免了企业因事故赔偿而破产,帮助企业分担了风险,同时在经济上给予了从业人员保护,并通过行业监督的方式强化了高危行业企业安全生产主体责任的落实。特别是对监管部门来说,极大减轻了政府监管部门的监管压力,减少了政府监管部门需要承担的专业化监管工作。  行业自律  行业自律组织、科研机构高度发达  在化工等高危行业自律管理方面,如德国北威州鲁尔地区及其所辖的科隆市附近,就有覆盖全国的原材料与化工同业公会、科隆化工联盟、化工合作网等多个层级的行业性组织在发挥作用。行业自律组织的高度发达,不仅有效促进了行业高速发展,在安全技术研发推广、安全管理及行业自律监督等方面也发挥着重要作用。  德国的58所化学化工方面的综合性大学和24所应用技术大学(职业学院),47个马普协会(偏理论),23个弗劳恩学会(偏应用),6个赫姆豪茨联盟,5个莱布尼茨联盟等设立的研究所,为德国化学工业提供了顶级的技术研发和高素质的人才基础,确保了德国化学工业长期安全、健康和高品质发展。  职业教育  建立完善的工人职业教育体系,培养合格的产业工人  德国的产业工人职业教育水平在全球有目共睹。每名员工在进入工厂就业前,必须接受平均长达两年的职业技能教育,教育经费由政府提供,学员接受职业教育期间政府向其提供少量的生活补助。此举既可缓解从业人员的就业压力,又可为工厂提供素质过硬的从业员工,可有效降低工作期间人身伤害事故发生,同时提高了员工进厂工作的有效产出时间。  应急建设  完善以志愿者为主力的应急救援体系  德国灾难救援工作归口各州的内政与体育事务部统一管理,并设置应急办和应急指挥中心。全国 16 个州分别设置了州应急指挥中心,综合负责全州重大灾难如洪水、地震、化工事故等的救援指挥工作。消防队员、警察、民间救灾组织是德国灾难救援工作的主力。以园区企业共同投资组建的园区消防力量,在园区应急救援工作中发挥着重要作用。位于路德维希港市的巴斯夫总部设置的企业消防队,装备技术水平、人员数量、化工事故救援能力等综合实力远强于政府消防队。该企业消防队除承担本企业日常安全监控管理及事故处置外,还与地方政府消防机构密切配合,协助处置周边地区发生的化工事故。  以志愿者为主的民间救灾力量是德国应急救援工作的另一重要力量。如德国联邦国民灾难救援总署在全国设有668个基层国民灾难技术救援组织,共有8万多名训练有素的救援人员,其中99%为利用业余时间参加训练和救援工作的志愿者。  以志愿者补充救援力量,可使政府部门节省大量运行开支费用,从而可将资金用于技术装备的提高上。同时,志愿者的工作可以带动民众的广泛参与,也使得民众的安全意识水平、防灾减灾知识水平及自救技能得到明显提升。
  • 再获殊荣 | IKA 再获德国“TOP100”创新奖
    IKA再次荣获德国中小企业“TOP 100”最佳创新奖,该奖项专注于表彰具有顶尖创新能力的中小型企业。这是IKA第五次以实验室前处理技术,分析技术和工业流程技术市场的领导者身份获此殊荣。在TOP 100奖项的评选过程中,IKA历经五项不同等级的120项评选标准的严格筛选。公司向组委会展示了促进创新的管理层、积极的创新文化、创新过程及成果,以及市场定位。同时,还重点强调了公司在应对新冠疫情方面做出的积极贡献。无论是在新技术还是生命科学领域高品质新产品的研发,IKA都获得了极高的赞誉。TOP 100 评审委员会科技总监Nikolaus Franke 博士对此印象深刻,他评价道:TOP 100 获奖企业通过不懈努力保持创新性。"Top 100" 主办方Ranga Yogeshwar先生将于11月26日在德国路德维希堡市举行的德国中小企业高峰论坛上为IKA颁发此项殊荣。关于IKA IKA是工业和科研领域全球领先的实验室仪器设备, 分析仪器设备和加工技术制造商之一。总部位于德国施陶芬, IKA的产品和技术服务于全球超过160个国家的客户。公司拥有超过900多名员工, 致力于为客户提供最好的技术, 帮助客户获得成功。同时,IKA还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。除了位于德国的总公司, IKA现在在美国, 中国, 马来西亚, 日本, 印度, 巴西,韩国, 越南, 英国和波兰均设有独立运营的全资子公司。
  • 斥资30亿欧元 巴斯夫与科宁化工达成收购协议
    6月2日讯 两位知情人士透露,全球最大的化学公司巴斯夫(BASF SE)已经与科宁公司(Cognis AG)所有人达成初步协议,收购这一特种化学品制造商。   其中一人披露,这家位于德国路德维希港的公司可能将向高盛集团(Goldman Sachs Group Inc. )和帕米拉集团(Permira Advisers LLP)支付30亿欧元(约合36亿美元)到35亿欧元,以购买科尼公司。因交易尚未公开,他不愿透露其姓名。这位人士表示,双方正就最后条款进行谈判,交易仍有可能破裂。   此人称,巴斯夫可能将于6月中旬宣布收购事项。这家世界上最大化学公司的交易谈判已经进行了一个多月。巴斯夫公司发言人詹妮弗穆尔-布朗(Jennifer Moore-Braun )拒绝发表评论。   科尼公司制造化妆品用化学品,此次交易可能是巴斯夫首席执行官于尔根汉姆布莱希特(Juergen Hambrecht)明年退休前的最后一次收购,巴斯夫昨日宣布,首席财务总监库尔特博克(Kurt Bock)明年将成为首席执行官。   科尼公司财务总监马可帕尼奇(Marco Panichi)5月26日表示,公司所有人也在探讨首次公开募股的可能性,已从今年初开始相关的准备工作。帕尼奇同时说,股份出售的时机选择是成功的基础。   今年第一季度该公司公布的净收入为4700万欧元,而去年同期则亏损3300万欧元。销售额增长11%,达到7.28亿欧元。
  • 巴斯夫2010年预计研发投入13.8亿欧元
    全球最大的化工企业巴斯夫今天宣布,公司预计2010年研发投入将高达13.8亿欧元。   2009年巴斯夫的研发经费接近14亿欧元,略高于2008年的13.5亿欧元。   巴斯夫董事会成员、研发总裁凯迈业在阐释企业的长期研发承诺时说:“只有通过不断创新,巴斯夫才能凭借竞争优势实现高于市场的增长。无论市场好坏,研发战略的连贯性都非常重要。”   他还补充说,巴斯夫的研发战略旨在加强现有产品组合,针对不同客户开发系统解决方案,以及提供解决方案应对未来因全球趋势而带来的挑战。“摆在我们面前的复杂问题包括如何为日益增长的人口提供水、食物、能源、交通运输及移动通讯。巴斯夫针对这些与技术和化学相关的全球趋势,为企业的战略研发定下了五大增长领域:作物生物科技、白色(工业)生物科技、纳米技术、能源管理和原材料变化。”   “全球研发部门9300多名员工正是推动巴斯夫实现远大研发目标的主要动力。在他们的努力下,3300多个项目正不断转化为巴斯夫的新业务。”凯迈业强调。   同时,巴斯夫也必须顺应化工行业正在发生的模式变迁。决定企业成败的,不再是新的分子,而是新效果、新系统及系统解决方案、 新成分及新功能材料。“只有通过国际合作和跨学科合作才能解决这些复杂问题。”他解释道。   巴斯夫向记者展示了其研发合作的三大成功案例,从中人们不难理解国际化知识网络在应对未来挑战方面的重要性。这三大案例分别是:推动有机电子技术发展的路德维希港生产基地联合创新实验室、致力于防护性生物薄膜研发的美国哈佛大学研究项目和海德堡大学的催化研发实验室(CaRLa)。   目前,巴斯夫这一和海德堡大学联合设立的实验室已经成为催化研究圣地,吸引着全球各地催化研发人员。在对催化研究实验室(CaRLa)的成绩进行评估后,今年年初,巴斯夫、海德堡大学和巴登-符滕堡州决定将实验室的运行时间和资助期限再延长五年。在这里,来自巴斯夫和海德堡大学的研发人员将就均相催化领域的基础和工业研究问题展开合作。自三年前建立以来,催化研究实验室已经成为商业与科学携手的一个突破性试点项目。   截至2008年底,巴斯夫全球销售额超过620亿欧元,员工近97,000名。2008年,公司在大中华区员工人数约6,300名,销售额约为42亿欧元,拥有19个巴斯夫全资子公司和10个巴斯夫合资公司。
  • 解读“生命之书” 新发现填补人类基因组图谱空白
    美国加州大学圣地亚哥分校(UCSD)的研究人员制作了一份人类基因组的单细胞染色质图谱,确定了240种多基因特征和与疾病特征相关的细胞类型,并注释了非编码DNA变异的风险,有利于更好地理解遗传学与疾病之间的联系。这一发现发表在12日的《细胞》杂志在线版上。  此前,科学家在公布最新的被称为“生命之书”的人类基因组图谱时称,更为精确的计算表明,人类基因数量实际在2万到2.5万之间。然而,这个估计并不能真正解释蛋白质编码基因构建过程的确切工作方式,或者不适用于患有疾病的情况。  UCSD细胞和分子医学教授、路德维希癌症研究所成员、表观基因组学中心主任任兵(音译)博士是DNA元素百科全书项目成员之一。他表示,人类基因组在20年前就已被测序,但解读这本“生命之书”的意义仍然很有挑战性。一个主要原因是,人类DNA序列中超过98%是非蛋白质编码的,我们还没有遗传密码来“解锁”这些序列中嵌入的信息。  DNA携带细胞的遗传指令。染色质中的主要蛋白质,称为组蛋白,有助于将DNA紧密包装成适合细胞核的紧凑形式。染色质捆绑DNA方式的变化与DNA复制和基因表达有关。  在对小鼠进行研究后,任兵及其合作者将注意力转向人类基因组中染色质的单细胞图谱。他们对来自多个供体的30种成人组织类型中取样的60多万个人类细胞进行了分析,然后将这些信息与来自15种胎儿组织类型的类似数据结合,揭示了222种不同细胞类型中约120万个候选顺式调控元件的染色质状态。  顺式调控元件是非编码DNA区域,调节相邻基因的转录。过去十年的研究已经证实,非编码DNA的序列变异是人类群体中多基因特征和疾病的关键驱动因素,如糖尿病、阿尔茨海默氏症和自身免疫性疾病。然而,解锁非编码DNA变异功能的一个主要障碍是缺乏人类基因组中转录调控元件的细胞类型特异性图谱,而新图谱填补了这一空白。  总编辑圈点  人类基因组图谱,被称为生命之书。那些关于人类生长、发育、衰老、遗传病变的秘密,随着基因组图谱的绘制,得以展现。人类不知道的很多事,基因都知道。但是,它是“生命之书”,也是“生命天书”,写出书很难,读懂书同样难。这本书的字里行间暗藏玄机。读者需要对基因这门语言足够了解,才能破译“天机”。此次,科研人员制作了一份人类基因组的单细胞染色质图谱,算是“天书”的辅导读本,有利于更好地理解遗传学与疾病之间的联系。
  • 创迈思与LUMILEDS和VIAVI合作开发世界上第一个用于智能手机的消费类光谱模块
    德国路德维希港/美国拉斯维加斯/美国亚利桑那州斯科茨代尔,2023年11月30日--创迈思trinamiX,智能手机小型化近红外光谱模块的先驱,开发了一种微型的光谱模块,可以与顶级技术合作伙伴:LUMILEDS(汽车行业LED照明和特殊照明解决方案的领先制造商)和VIAVI(光学滤光片制造领域的全球领导者,在消费电子市场拥有丰富的经验)一起集成到智能手机中。该近红外(NIR)光谱模块运行在高通公司最新的第三代骁龙参考设计上,并在2023年高通骁龙®峰会上首次亮相。未来,消费者将能够使用移动设备看到以前“看不见”的健康指标(即所谓的生物标记物),并随时随地进行无创式的身体检测。基于真实反应的分子测量,智能应用程序将为皮肤健康、营养和未来的许多其他应用提供有根据的个性化建议。在寻找最佳光源的过程中,创迈思找到了LUMILEDS作为理想的合作伙伴。LUMILEDS使用的荧光LED发射长波近红外范围内的宽带光,满足智能手机制造商在尺寸、能耗、寿命和稳定性方面的严格要求。VIAVI Solutions作为创迈思另一个强大的合作伙伴,它们的滤光片能够精确确定相关波长,以从光谱中提取生物标志物信息。其过滤器的卓越品质和精度使该公司成为整个价值链(从原型设计到大规模生产)中的可靠合作伙伴。探测器和读出电子器件由创迈思专门为智能手机兼容尺寸的模块开发。由于采用专利封装,高灵敏度红外探测器体积特别小,但坚固耐用。创迈思还贡献了光谱学和化学计量学专业知识,并开始将消费者光谱学集成到智能手机中。创迈思公司trinamiX GmbH北美和欧洲消费电子总监Wilfried Hermes博士表示:“如果没有LUMILEDS和VIAVI,创迈思个人消费类光谱不可能实现彻底改变我们理解和评估健康、营养等方面的方式。两位合作伙伴都多次突破技术的界限。和他们一起,我们共同创造了一项令人兴奋的技术,它将重新定义智能手机的使用。”Lumileds LED产品营销和管理主管Noman Rangwala表示:“创迈思和Lumileds之间的密切合作使集成在智能手机中的小型光谱仪成为了现实。这项创新在消费者医疗应用中实现的许多应用确实具有影响力。我们很高兴成为这个创新团队的一员。”VIAVI解决方案光学安全和性能产品组产品管理副总裁Adam Scheer表示:“VIAVI很荣幸能够成为行业领先的生态系统合作伙伴团队的一员,共同努力将光谱技术交付给消费者。在过去的十年中,我们已经开发出独特的能力,利用我们专有的磁控溅射镀膜平台,在智能手机规模上开发和制造具有卓越性能特征的光学滤光片。我们期待看到创迈思解决方案能够实现的所有消费光谱应用。”与生态圈伙伴的成功合作证明,创迈思可以为不同的甚至是高度专业化的应用实现量身定制的解决方案:例如可穿戴设备、物联网设备以及其他家用和消费电子产品等。
  • 或然生物完成 1500 万美元种子轮融资,推动癌症候选先导药物研发
    或然生物有限公司(ABio)今日宣布完成 1500 万美元的种子轮融资。这是一家私人控股以还未获得领域足够重视的化学修饰加工酶类为靶标研发新型药物的生物科技公司。此轮融资由红杉中国种子基金和斯道资本协同 F-Prime Capital 共同领投。筹得资金将用于搭建并发挥创新发现平台的作用以及推动公司目前针对最棘手癌症的候选先导药物的研发。  或然生物是一家由全球知名的科学家联合创办的企业,拥有信号转导、基因表达调控、癌症生物学和药物发现方面的专业技术。该公司的科学联合创始人分别为:蓝斐博士(复旦大学生物医学研究院教授、副院长、复旦大学附属中山医院双聘教授)、施扬博士(牛津大学及路德维希癌症研究所表观遗传学教授、美国人文与科学院院士、美国国家医学院院士)和 Or Gozani 博士(斯坦福大学莫里斯赫兹斯坦生物学教授)。三位博士共发表过逾 400 篇论文,包括数十篇对人类健康和疾病具有重要意义的高影响力研究。例如,施博士团队首次报道了 LSD1,揭示了组蛋白甲基化修饰是一个动态可逆的调控过程,这一重大发现结束了生物学界长达 40 多年关于甲基化是否可逆的争论,明确了甲基化信号传递的动态调控性。  上述几位联合创始人在实验室的研究成果促生过多家生物科技公司,包括由施博士任科学联合创始人和蓝博士任创始科学家的 Constellation Pharmaceuticals(2021 年被 MorphoSys 以 17 亿美元收购)、由 Gozani 博士和施博士任科学联合创始人的 K36 Therapeutics, Inc. 以及 Gozani 任联合创始人的 EpiCypher, Inc。  斯道资本的合伙人刘昕女士表示,“将这三位全球知名的科学家做出的前沿发现转化成突破性的疗法,蕴藏着巨大的发展潜力。斯道资本同 F-Prime Capital 的目标是与 ABio 携手,强力推动新药研发,将开创性的生物学成果转化为能拯救病人生命的药物。”  红杉中国董事总经理顾翠萍女士表示,“或然生物的创始团队由世界一流的生物学家、连续创业者组成,且均具备丰富的药品开发经验。我们非常高兴能与这样一支团队合作,共同探索未开发靶标新药研发的巨大潜力,推动新药研发进程。”
  • 分析实验室的下一步发展是什么?
    克斯汀瑟罗(Kerstin Thurow),海蒂弗莱舍(Heidi Fleischer)分析实验室的下一步发展是什么?今天传统的分析实验室的自动化程度仍然相对较低。然而,越来越多的样品和越来越大的成本压力也使得自动化在这一领域不可或缺。分析过程在过程步骤和所需实验室器具方面的复杂性需要新的概念和方法。自动化过程早已在生物筛选和制药行业领域建立起来。在环境分析、质量控制或食品行业的经典分析实验室领域,情况就大不相同了。除了用于分析测量的高度自动化分析仪外,大量的手动活动仍然占主导地位。这是通常更复杂的过程序列的结果,与生物样品相比,它涉及在分析测量之前进行大量的样品制备(例如,消化、固体溶解、使用腐蚀性或挥发性介质、在更高的温度和压力下工作、基质和分析物等的复杂分离)。另一方面,该领域没有针对样品容器的标准。与生物制药领域的标准微量滴定板 (MTP) 不同,分析测量技术中使用了大量容器,这些容器在体积、容器形状和所用材料方面存在差异。但即使在经典分析测量领域,也存在更高自动化的压力越来越大。造成这种情况的原因是越来越多的法规导致样品数量增加,成本压力越来越大,而且技术人员越来越短缺。虽然工业生产中的自动化通常致力于高样品量和统一过程,但分析解决方案更可能是灵活的解决方案,可以轻松适应不断变化的要求。这使得中小型公司对自动化解决方案感兴趣,因为它们经常面临不断变化的问题和较少的样本数量。因此,分析方法自动化领域具有超越经典生物制药过程的巨大发展潜力,并将在未来几年得到强劲发展。管处理的新概念虽然在生物制药领域使用微量滴定板的标准可用,它允许简单的编程,但在分析测量技术和相关过程中并非如此。分析测量技术中使用的大量不同的小瓶和试管需要新的处理策略。这里有不同的可能方式。一方面,存在一致的单个容器处理的可能性。这允许最大的灵活性,因为单个样品可以用不同的过程进行处理。同时,这个概念对系统的编程、控制和调度提出了最高要求。另一方面,也可以将样本组合成组,这些组排列在 MTP 足迹中。这允许使用符合 MTP 格式的经典自动化系统,例如移液器等。此外,可以实现更高的通量,因为可以省略单个样品的昂贵运输步骤(图 2)。为了将小瓶和试管输送到自动化系统和自动化子站,必须制定合适的程序。通常,可以使用通过传送带供应样品的系统。为了识别样本,可以使用带有条形码或 RFID(射频识别)的标签,其中在第一种情况下需要与方向无关的识别方法,以便将自动化系统的错误率降至最低。其他挑战包括所用容器的无差错识别,以及所含溶液的可靠确定和相界检测(图 3)。虽然这对于有色液体已经成为可能,但如果由于过程的特殊性,例如无法使用样品管内的电容测量,无色液体仍然是一个挑战。如果必须在管中检测颗粒并以有针对性的方式分离,则难度会增加。在所有情况下,都可以使用基于相机的方法。在这里,开发合适的图像处理算法来检测体积和相位以及将这些测量数据反馈到自动化系统(例如用于确定给药套管的浸入深度)是即将进行的开发的基本核心任务[1].双臂机器人的使用在过去,由于在高度管制的区域需要准确的协议,过程自动化通常受到限制。传统的自动化通常需要改变标准化流程,例如将配料流程从手动活塞冲程移液器(例如,Eppendorf)更改为自动液体处理器。然后不再给出程序的可比性。此外,还需要对现在的自动化程序进行广泛的重新验证。随着双臂机器人的引入,可以消除这些问题,并为这些领域提供自动化解决方案。由于两个手臂和高自由度,这些系统能够执行类似于人类的实验室过程,具有相同的实验室设备和过程步骤。这导致了 1:1 的自动化,即自动化系统中手动过程的完全相同的表示。由于类似人类的运动,甚至可以集成没有接口的实验室设备,例如由开关和旋钮激活的超声波浴。此外,气相色谱仪、液相色谱仪和质谱仪等测量系统的自动处理迄今为止一直是一个问题,因为这些系统通常不是为基于机器人的操作而设计的。这里也有许多手动过程,如移液,需要双臂之间的合作。两个机械臂的这种协调是将此类过程转移到机器人的现有挑战之一。此外,由于双臂机器人的工作范围有限,因此必须规划最佳的无碰撞路径。这通常通过示教程序完成。然而,最近的发展也依赖于计算机辅助模拟方法。要让机器人实现真正的 24/7 全天候运行,需要解决的另一个问题是将样品和实验室器具输送到系统的智能方法。全自动化与智能部分自动化如果经济上可行,完全自动化通常是所有自动化工作的目标。在分析测量技术领域,由于环境条件和安全要求,还存在子过程无法集成到复杂系统中的额外问题。例如,由于产生有毒气体而导致的微波消解需要适当的安全预防措施,例如在特殊通风橱下工作。为了在这种复杂的过程中实现完全自动化,使用移动机器人是一个显而易见的选择。这些可以接管部分自动化系统之间的样品和实验室器具的运输。当前和未来的研究领域包括所用移动机器人的导航和定位问题以及碰撞检测和避免方法。这里有不同的方法,例如可以使用激光扫描仪、紫外线或红外线检测器。特别是,移动系统准确抓取和放置样品的策略对于确保安全、无污染的运输非常重要。这需要对机器人手臂的运动学进行广泛的描述,作为其编程的基础。进一步的发展包括将移动机器人的活动范围从纯粹的运输功能扩展到样品的操作可能性(集成机器人)[3]。通过移动系统准确抓取和放置样品的策略对于确保安全、无污染的运输非常重要。这需要对机器人手臂的运动学进行广泛的描述,作为其编程的基础。进一步的发展包括将移动机器人的活动范围从纯粹的运输功能扩展到样品的操作可能性(集成机器人)[3]。通过移动系统准确抓取和放置样品的策略对于确保安全、无污染的运输非常重要。这需要对机器人手臂的运动学进行广泛的描述,作为其编程的基础。进一步的发展包括将移动机器人的活动范围从纯粹的运输功能扩展到样品的操作可能性(集成机器人)[3]。自动化系统的数据处理和管理自动化的主要目标是提高分析过程的吞吐量。为了防止在评估收集的数据时出现瓶颈,需要合适的自动化数据评估方法。为了实现尽可能高的平台独立性,基于 Web 的解决方案是此处的首选方式。测量结果的评估还必须允许组合单个样品的不同测量数据 [4]。对于未知样品的分析测量,这还包括从不同的单独测量及其组合中提取相关信息,以对化合物进行唯一识别。另一个问题是自动化系统的管理。如果不可能有一个完整的自动化系统,但必须协调不同的子自动化系统(可能包括移动机器人作为运输系统),则需要使用分层组织的工作流管理系统。这需要新的工作流控制解决方案,允许将各种异构自动化 IT 系统与移动机器人控制系统集成。对于工作流规划,提供了一个数据基础架构,支持在主数据和流程数据管理以及数据访问方面的流程建模和执行。通过使用图形规划编辑器,从人体工程学的角度来看,灵活的工作流程建模成为可能。需要为工作流控制开发用于解释工作流模型的优化策略。此外,总结未来的分析实验室将以更高程度的自动化为特征。除了可以接管完整流程序列的全自动系统外,如果出于经济或安全考虑,具有自动化岛的分布式解决方案也将被使用。机器人,即使是移动形式,也越来越多地成为实验室人员在样品和实验室器具的运输和操作方面的支持者。这可以同时实现更高的吞吐量和高度的灵活性。自动化系统也将引起中小型公司的兴趣。作者Prof. Dr.-Ing.。克斯汀瑟罗(Kerstin Thurow)1, Priv.-Doz.工学博士。海蒂弗莱舍(Heidi Fleischer)2隶属关系:1罗斯托克大学生命科学自动化中心。德国罗斯托克;2罗斯托克大学自动化研究所,德国罗斯托克个人简历Kerstin Thurow是罗斯托克大学(德国)生命科学自动化中心主任。她于 1995 年毕业于慕尼黑路德维希马克西米利安大学,并于 1999 年在罗斯托克大学获得测量与控制工程专业的资格证书。自 1999 年以来,她一直担任自动化技术/生命科学自动化领域的教授。研究领域包括机器人技术、移动机器人技术以及数据处理和管理领域。Thurow 教授发表了 200 多篇论文。她是汉堡科学院的创始成员和德国工程科学院 (acatech) 的成员。Heidi Fleischer是罗斯托克大学生命科学自动化中心“生命科学自动化 - 过程”研究领域的负责人。她在罗斯托克大学学习信息技术/计算机工程并获得博士学位。2011 年在这里。Fleischer 于 2016 年获得资格,并获得了“测量和自动化技术”领域的 Venia Legendi。她的研究领域包括用于分析研究的样品制备过程的自动化。原载:威利分析科学 Future Lab – The Automated Laboratory of the Future供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 分析实验室中的协作机器人
    有用的工具还是小玩具?• 克斯汀瑟罗(Kerstin Thurow)关于协作机器人的炒作真的有道理吗?Thurows 为您提供了她对该主题的看法。我们目前正在经历一场真正的协作机器人炒作。像谷歌这样的搜索引擎现在提供超过 861,000 个结果。今天每个人都在谈论协作机器人,他们对实验室自动化的兴趣也越来越大。但什么是协作机器人?它们是实验室自动化中真正有用的工具还是只是一个不错的玩具?“cobot”一词是“collaborative robot”的缩写,基本上是指在生产过程中不脱离人类,而是与人类一起工作的工业机器人。在 1997 年的专利中,JE Colgate 和 MA Peshkin 对协作机器人的定义如下 [1]: “一种在人与计算机控制的通用机械手之间进行直接物理交互的装置和方法”协作机器人的出现是经典工业机器人的重大进一步发展,它们通常完全独立于人工作。通过集成众多提高安全性的传感器(例如,在接触障碍物时关闭),协作机器人可以靠近人类工作或直接与人类一起工作。因此,可以省去昂贵的保护装置,例如外壳或光栅/光幕。标准 ISO 1028 第 1/2 部分以及 ISO / TS 15066 的当前版本也定义了协作机器人的安全要求 [2]、[3]、[4]。协作机器人将机器人的经典优势(如动力、高精度和可重复性和耐力)与人类特征(如经验、创造力或总体概况)相结合,开辟了全新的可能性和应用。合作?即使“cobot”一词源自协作一词,但人与机器人之间真正的协作也只是最接近的协作形式。人类和机器人在没有庇护所的情况下近距离工作的共存是最常见的,但人类和机器人不共享工作空间。如果人类和机器人共享一个工作空间,我们就称之为合作。这可以是例如转移站,人们转移零件、工件或样品,以便机器人可以拾取它们。人类和机器人在公共空间工作,但工作时间不同。最接近的操作模式是协作,其中人类和机器人同时在零件/工件上工作(尽管两者执行不同的任务)。近年来,许多协作机器人进入市场,最初以更通用的名称“轻型机器人”命名。Kuka、Universal Robots、ABB、Rethink、Kawasaki、Yaskawa、Franka Emika 或 Denso 等公司如今提供众多系统。协作机器人在实验室自动化中有多重要?由于其轻质结构,它们具有许多优点。实验室应用通常没有传统工业领域中存在的负载能力要求。传统的工业机器人通常在实验室中设计过度。这也对机器人系统的价格产生了重大影响。现代协作机器人是功能强大的系统,其特点还在于价格适中。可能省略安全外壳和光栅也是一个优势。因此,基于协作机器人的自动化系统占用的空间更少,并且还允许更灵活地使用集成的子组件,例如光学读取器、离心机或分析测量系统(GC、LC、MS),如果它们未在机器人过程中使用的话。但是协作机器人真的可以在实验室中以协作方式使用吗?不太可能。机器人和人类一起完成一项特定任务的流程数量可能非常少。很难想象移液、称重、摇动、提取或记录测量值等经典实验室工作将由人类和机器人一起处理。合作与共存仍然是可能的合作形式。在后者中,协作机器人用于自动化系统,其中在以前的概念中使用了经典的工业机器人。自动化的总体概念没有改变。由于成本较低,样品制备和测量技术的自动化现在可以在以前由于成本原因没有使用自动化的新领域实现。这使得实验室过程的自动化对中小型公司和研究机构来说越来越有趣和负担得起。在这里,灵活的全自动系统(自动化生产线)将成为关注的焦点,以便能够以更优惠的价格处理更多的样品。但需要注意的是,并不是所有的机器人都配备了合适的控制软件。软件组件可以从外部公司购买或必须在内部开发。根据任务的范围,可能会产生相当大的成本。更多协作机器人——更多问题?由于协作机器人的成本低,原则上也可以设想为不同的实验室设备配备机器人。特别是在测量系统、液体处理系统、振动器、加热器和其他实验室设备的情况下,这些设备可以充当传输单元,并将人工放置的样品输送到相应的设备,或者在相应的处理时间结束后再次取出它们已到期。这对应于合作模式,将使实验室工作变得相当容易。现有的实验室环境和结构可以得到很大程度的保留,不需要进行大规模的改造。使用此方法需要考虑几件事情。如果很多实验室设备要配备机器人,需要的协作机器人数量多,投资和维护成本高。然而,最大的问题是系统的控制。需要上级控制系统,特别是如果必须在多个站点处理样品并且必须管理和控制多个机器人和实验室设备。根据所需的选项范围和灵活性,这些工作流管理系统可能很快变得非常广泛,因此也很昂贵。概括那么当前的协作机器人炒作真的有道理吗?协作机器人是经典工业机器人的合理和合乎逻辑的进一步发展。它们的可能用途和使用类型(共存、合作、协作)在很大程度上取决于各自的应用。在实验室自动化领域,由于任务和要求,前两种可能性在未来几年肯定会盛行。在合作领域,一种特殊形式的协作机器人对不同的实验室站和站之间的运输很有意义:移动机器人。它们既可以只实现不同站点之间的传输任务,也可以接管向各个实验室设备供应样品。这可以限制所需机器人的总数。然而,对工作流程管理系统的要求仍然存在,并且因流动部分而额外增加。移动机器人目前被用于自动化领域。由于成本高(与经典工业机器人相比),它们还不是真正的替代品。参考文献:[1] Colgate, J. E. Peshkin, M. A.: Cobots. US Patent US 5952796 A. 14.09.1999 (https://www.google.com/patents/US5952796 )[2] ISO 10218-1:2011-07 Industrieroboter - Sicherheitsanforderungen - Teil 1: Roboter2011-0[3]DIN EN ISO 10218-2:2012-06 Industrieroboter - Sicherheitsanforderungen - Teil 2: Robotersysteme und Integration (ISO 10218-2:2011)[4]DIN ISO/TS 15066:2017-04 DIN SPEC 5306:2017-04 Roboter und Robotikgeräte - Kollaborierende Roboter (ISO/TS 15066:2016)关于作者克斯汀瑟罗(Kerstin Thurow)生命科学自动化中心,罗斯托克大学,罗斯托克,德国Kerstin Thurow 学习化学,并于 1995 年获得慕尼黑路德维希马克西米利安大学的博士学位。1999 年,她获得了测量和控制工程专业的资格。同年,她被任命为罗斯托克大学工程学院“实验室自动化”教授。自 2004 年以来,她一直担任罗斯托克大学“自动化技术/生命科学自动化”的主席,并且是生命科学自动化中心(罗斯托克大学)的主任。她的研究课题包括生命科学过程的自动化、机器人技术、移动机器人技术以及系统集成和系统工程。原载:威利分析科学 Cobots in the Analytical Laboratory供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 线上直播 | 氙离子FIB在半导体及其他领域的应用分享
    预告片Preview 第二期显微分析应用报告要开讲啦~本期将带您了解氙离子FIB在不同领域的应用成果:1、与传统的液态金属Ga离子FIB相比,AMBER Xe等离子体FIB具有更快的加工效率和尺度。2、由于表现在芯片外部的封装工艺研究在芯片产业链中的重要性进一步得到体现;更为先进的封装技术、更为高效的封装方案,必定会助推芯片行业更进一步发展,而3D IC 等新技术的发展使我们能将芯片集成到越来越小、更快、更低的功耗设备中。TESCAN将高通量 i-FIB+™ Xe 等离子 FIB镜筒与 Triglav ™ UHR 电子镜筒配对,以扩展 FIB 物理失效分析性能,并在超大面积和深度横截面加工实现突破。 精彩看点 本次直播,由来自TESCAN半导体研发实验室专家为大家介绍:◼ 从专业视角解读如何通过超大面积和深度横截面加工助力先进封装、微机电器件和光电集成产品的分析检测工作◼无镓(Ga)污染TEM样品制备、小于10 纳米制程芯片的高质量逐层剥离(delayering),和大尺度硅片晶圆导航观测,以实现微电子器件的高集成度、高密度和小型化。还有来自清华大学的徐晓明老师展示:◼与传统的液态金属Ga离子FIB相比,Xe等离子体FIB的某些技术特点和在不同领域的应用:如半导体失效分析,金属材料,锂电池等等,以及Xe等离子体FIB与其它附件(拉曼图像-RISE、TOF-SIMS)联用的一些实例,比如,实现原位的微区综合分析表征。 直播时间9月2日14:00-16:00扫描下方二维码即刻报名:时间主题讲师14:00 - 14:30氙等离子体FIB的技术特点及其在不同领域中的应用徐晓明 老师清华大学14:30 - 15:00氙离子FIB特点李景 应用专家15:00 - 16:00高效率聚焦离子束技术在传统FIB失效分析应用上的扩展性Lukas Hladik TESCAN失效分析半导体研发实验室,产品经理讲师介绍 Lukas Hladik TESCAN失效分析半导体研发实验室,产品经理多年从事与全球半导体行业失效分析检测研究工作。获得物理工程和纳米技术硕士学位后,于2012年加入TESCAN ORSAY HOLDING,担任Plasma FIB-SEM的应用专家,专注于FIB-SEM、表征和去层/电子探针解决方案。 徐晓明清华大学材料科学与工程研究院中心,高级工程师参与并完成了科技部的国家重大仪器设备开发专项子项目一项,国家科技基础条件平台建设项目一项。发表实验技术方法及仪器管理类文章7篇,申请专利和软件著作权共3项。主要科研方向为材料表征及实验技术方法的研究。 9月2日14:00与您相约直播间👇 记得提前注册报名!👇互动福利1. 转发此图文至微信群或朋友圈2. 加👇客服微信,备注:互动福利3. 截图给客服4. 审核通过,可加入抽奖群5. 抽奖时间:2021年9月1号(*最终解释权归泰思肯(中国)所属)关于高聚焦离子束扫描电镜扫描电子显微镜不仅可以用于样品观察,还可以使用聚焦离子束(FIB)实现精确地定位切削和沉积加工,是微纳尺度加工和制样必不可少的工具。TESCAN 是全球首家将等离子 FIB 集成到扫描电子显微镜(SEM)中的制造商,并于2019年底推出了新一代的 TESCAN AMBER X 和 TESCAN SOLARIS X。其中 TESCAN AMBER X 完美地结合了可用于样品精确加工的氙等离子体 FIB 和无漏磁的超高分辨成像的 SEM,适合于各类材料的显微结构表征。氙等离子体 FIB 与传统的金属镓离子的 FIB 相比,在小束斑的大离子束流上具有明显的优势。因此,TESCAN AMBER X 可以用更快的速度完成样品切削工作,并且仍然能完成精细加工和抛光,并实现15 nm的高分辨率成像。弗赖堡的阿尔伯特路德维希大学 (Albert Ludwig University of Freiburg) 是首批尝试使用这种新技术的机构之一。更多相关精彩视频,电镜原理教学,请前往“中国电镜用户之家”:
  • TESCAN 扫描电镜全球销量突破3000台
    TESCAN 全球第3000台扫描电镜 — TESCAN AMBER X 氙气等离子双束 FIB 已在德国弗莱堡大学(University of Freiburg)完成了安装调试。TESCAN AMBER X 是 TESCAN 公司近年来最新推出的第四代电镜中的一员,它完美地结合了超高分辨 SEM 和等离子 FIB,用于样品表面成像以及刻蚀加工等。 这台 TESCAN AMBER X 安装在弗莱堡大学的微系统工程系(IMTEK),近期实验室为新设备举办了技术讲座,除了扫描电镜的演示之外,还介绍了这款设备即将发挥重要作用的两个研究项目。第一个研究项目是弗莱堡大学正在研发的先进神经反馈义肢,将在假肢上集成有“感觉”的反馈系统来实现缺失的神经系统的功能,患者使用这种特殊的义肢接触物体后,就产生“触感”,例如可以感知到物体的表面信息和硬度等。另一个研究项目是燃料电池,最终目的在于能够发现新的解决方案。TESCAN 德国子公司的 Sven Gosda 总经理表示:“ TESCAN AMBER X 已经被证明广泛适用于各类科研。对于我们的电镜能为这两个宏伟的科研项目提供帮助,我完全无法抑制内心的喜悦。”去年,位于布尔诺的 TESCAN 工厂生产了近300台电镜,其中绝大部分出口到全球各大城市。TESCAN 全球营销总监 Maro? Karabino? 表示:“TESCAN 是全球著名的电子显微镜和聚焦离子束供应商,我们非常高兴看到这台对 TESCAN 具有重大纪念价值的电镜能够在德国安装,我们一向重视德国市场并有长期发展的计划。” 这也不是弗莱堡大学第一次选择 TESCAN 的产品,自2016年开始 TESCAN 第三代扫描电镜就已经是弗莱堡大学实验室设备中的一员。TESCAN 公司在德国一直有着良好的口碑。为了能够给客户提供更优质的服务,TESCAN 公司在2018年正式收购了原德国经销商 EOElektronen-Optik-Service GmbH ,成立 TESCAN 的德国子公司 TESCAN GmbH。关于扫描电镜扫描电子显微镜不仅可以用于样品观察,还可以使用聚焦离子束(FIB)实现精确地定位切削和沉积加工,是微纳尺度加工和制样必不可少的工具。TESCAN 是全球首家将等离子 FIB 集成到扫描电子显微镜(SEM)中的制造商,并于去年底推出了新一代的 TESCAN AMBER X 和 TESCAN SOLARIS X。其中 TESCAN AMBER X 完美地结合了可用于样品精确加工的氙等离子体 FIB 和无漏磁的超高分辨成像的 SEM,适合于各类材料的显微结构表征。氙等离子体 FIB 与传统的金属镓离子的 FIB 相比,在小束斑的大离子束流上具有明显的优势。因此,TESCAN AMBER X 可以用更快的速度完成样品切削工作,并且仍然能完成精细加工和抛光,并实现15 nm的高分辨率成像。弗赖堡的阿尔伯特路德维希大学 (Albert Ludwig University of Freiburg) 是首批尝试使用这种新技术的机构之一。关于 TESCAN 公司TESCAN 公司位于欧洲电子光学研发和制造基地捷克布尔诺市,主要研发和生产扫描电子显微镜。公司成立于1991年,由原世界电子光学设备制造的领航者 TESLA 的研发人员和售后工程师创建。TESCAN 于1996年推出了首台仪器 PROXIMA,并凭借该系列产品跻身世界知名设备供应商之列。2013年,TESCAN 与法国公司 ORSAY PHYSICS 组建控股公司 TESCAN ORSAY HOLDING,在全球范围内进行扩张并建立多家子公司,公司总部、生产和研发部门仍然位于布尔诺-科胡图维斯。每一台 TESCAN 扫描电镜都在布尔诺生产,其中大约95%会运往全球各地。TESCAN 的主要客户包括大学,研究中心以及各个行业的工业企业和生产企业。TESCAN ORSAYHOLDING 拥有600多名员工,各类电镜的年产量约为300台,每年的营业额达到20亿捷克克朗。 2018年,TESCAN 收购了 X射线CT 领域著名的制造商 XRE NV 公司,开始生产商业化可用于大尺寸样品三维、四维原位动态分析的 XCT 设备,可研究各种样品在真实环境(原位)下的材料演变,为科学研究及工业应用提供成熟的亚微米尺度分析解决方案。我们的 XCT 客户快速增长,截止2019年底,全球已有近20家科研院所和知名企业和 TESCAN 达成了合作协议并采购了 XCT,包括华威大学、鲁汶大学、CWI 研究所、美国国家能源技术实验室、加拿大国家研究院、沙特阿拉伯国王科技大学和 P&G 等高端科研和工业用户。TESCAN 公司不会停下前进的步伐,我们将致力于为更多的客户提供有价值的综合解决方案,以更好的产品质量以及应用售后团队服务于全球客户!
  • analytica 2014聚焦塑料分析领域: 质量保证源于技术革新
    在我们的日常生活中,新型功能材料正发挥越来越重要的作用&mdash &mdash 从医疗器械和消费品到高科技电子和汽车产品都有赖于这些材料。 与此同时,复杂材料的测试和质量控制对设备的复杂度和先进方法的需求也越来越高。因此,这一话题将再次成为analytica展会(4月1&ndash 4日)的重要主题之一。   从实验室色谱和光谱分析,到快速、无损的便携分析仪:analytica 2014期间1100多家国际展商将推出自己的最新分析设备。&ldquo 塑料化学分析非常复杂,质量要求很高。除了聚合物之外,还需要分析里面所含的软化剂、阻燃剂、稳定剂、色素以及其他为数众多的添加剂,&rdquo 展会总监Susanne Grö dl解释说。&ldquo 塑料分析是今年analytica的主题之一,展会也以该领域最新技术发展和方法革新为主要焦点。&rdquo   实验室塑料定性分析   analytica为所有希望全面了解塑料分析技术的人士提供了最好的平台。除传统塑料分析仪器外,各种分析控制设备和附件&mdash &mdash 从计量器具和实验磨到参考材料和各种试剂&mdash &mdash 都能在展会上找到。Agilent, Axel Semrau, Mettler Toledo, Shimadzu和Bruker等各大领先厂商都将推出自己的最新设备。展会期间也将推出不少新开发的系统,如LUM的LUMIFrac。该系统可用于确定复合材料、多层复合材料和粘合部件的粘合力和抗拉强度。LUMIFrac的离心分离机采用了特殊转子,可以同时分析8个样本。分析仪不断给实验样本施加更大的离心力直至其断裂,几秒钟内转子中的电子设备就能将断裂时间和速度等信息传递到处理计算机中,通过软件计算出相应的材料抗拉强度。   此外,Oxford Instruments将在LOT Quantum Design 展台推出台式核磁共振分析系统MQC, 帮助样本制备过程进一步简化。该系统能用于工业质量控制,例如它可以确定PVC材料中软化剂的含量。   Fritsch将在展会上推出Analysette 28粒度分析仪,可用于分析粉末和大块固体物质的体积和形状。该分析仪配有4个高清晰度可更换镜头,能进行动态图像分析。其测量器尤其适合20微米到20毫米之间大小的粒状物质量控制。   聚焦:现场便携测量设备   复杂材料特性、多样的应用领域、法律方针、生态和经济:市场对塑料产品的多方面考量也对控制机构提出了极高的要求。因此,能够快速准确测量的便携设备正越来越成为市场焦点,方便检测难以运输的物品。相关展品方面,B&W Tek将在展会上推出NanoRam检测仪,它可以测量透明包装如玻璃或塑料中的物品。而ColorLite sph900和sph860则可以测量液体、粉末和其他固体物的色值。   analytica国际研讨会:研究成果全面展示   参加analytica的观众也不应该错过同期举办的analytica国际研讨会。会议在慕尼黑国际会议中心举行,集合了世界众多高水平科学家。塑料分析专业人员应该特别关注4月2日(14:30&ndash 15:00)星期三的会议。届时,Till Grü ndling将讨论&ldquo 气相色谱法&ndash 质谱法联用在聚合物表征分析中的难点及对应方法&rdquo ,着重介绍路德维希港巴斯夫公司所采用的MALDI-MS, LC(/MS), GC(/MS)和热解方法。会议详细信息均可登录:www.analytica.de/en/conference。analytica展会观众可免费入场。   现场实验室:塑料分析质量测试   参加B1大厅的现场实验室,观众能够充分了解塑料分析的挑战。在这里,科学家和用户将在真实实验室环境中介绍自己的专业经验。世界领先厂商也会实际演示自己的创新产品和解决方案。周二到周四的1:00, 13:00和15:00,以及周五11:00和13:00,大会将举办30分钟讲座,介绍具体应用、最新技术和先进方法:参加讲座可以帮助观众们了解质量控制、理想样本制备、分子重量确定和如何使用热物性分析等丰富知识。同时,大会还将推出现代混合分析方法、长期和短期风化及渗透测量等方面的讲座等活动。   关于analytica   analytica是分析、诊断、生物及实验室技术领域的国际盛会,每两年在德国慕尼黑召开一届。自1968年品牌创立以来,展会以发展成为全球分析、诊断、生物技术行业和科研及应用行业用户的重要交易平台。展会同期举办的analytica国际研讨会是全球领先的分析学术盛会,为科研界精英讨论化学、生化和实验室药物等问题提供绝佳机会。2012年共有30,481名观众和1,026家展商参加analytica。   更多展会和相关活动信息请访问:www.analytica.de/en   关于analytica China   analytica China(慕尼黑上海分析生化展)是analytica全球网络的一部分。2014年9月24-26日analytica China将在上海新国际博览中心N1、N2、N3馆隆重召开。展会规模将达30,000平方米,预计将吸引超过20个国家及地区约700家中外展商,集中展示包括分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备等在内的最新产品及应用,提供全方位的实验室技术解决方案。更多信息,敬请访问展会官网:www.a-c.cn   慕尼黑国际博览集团   慕尼黑国际博览集团是世界领先的展览企业之一。仅在慕尼黑一地,慕尼黑国际博览集团就每年组织近40场展览,涵盖资本货物、消费品及高科技行业等众多领域。每年有超过30,000家展商和近200万观众参加集团在慕尼黑展览中心、ICM-慕尼黑国际会议中心和慕尼黑MOC展览中心举办的展会。慕尼黑国际博览集团举办的领先国际展会均接受独立审计。   此外,慕尼黑国际博览集团还在亚洲、俄罗斯、中东和南非举办展览。集团在欧洲、亚洲和非洲拥有9家分公司,并在60多个国家设有代表处,服务于90多个国家,并形成自己的全球性业务网络。集团在可持续性方面也作出了突出贡献:我们是世界上第一家由TÜ V SÜ D 授予高能效认证的展览企业。
  • 2018年“科学突破奖”揭晓
    p   2018年美国“科学突破奖”获奖名单3日在位于旧金山湾区的美国航天局埃姆斯研究中心揭晓。今年全球共12名生命科学、基础物理学以及数学领域的顶尖科学家获得表彰,他们将分享总额为2100万美元的奖金。 /p p   2018年“ span style=" COLOR: #ff0000" strong 生命科学突破奖 /strong /span ”5个单项奖分别颁给同时为美国索尔克生物研究所和霍华德· 休斯医学研究所工作的乔安妮· 乔里、美国加利福尼亚大学圣迭戈分校路德维希癌症研究所的唐· 克利夫兰、日本京都大学的森和俊、英国牛津大学的金· 内史密斯和加州大学旧金山分校的彼得· 沃尔特5名学者。 /p p   今年的“ span style=" COLOR: #ff0000" strong 基础物理学突破奖 /strong /span ”由美国约翰斯· 霍普金斯大学的查尔斯· 贝内特,加拿大不列颠哥伦比亚大学的加里· 欣肖,美国普林斯顿大学的诺曼· 雅罗西克、莱曼· 佩奇和戴维· 斯珀格尔5名学者共同分享。 /p p   “ strong span style=" COLOR: #ff0000" 数学突破奖 /span /strong ”由美国犹他大学的克里斯托弗· 哈康和加州大学圣迭戈分校的詹姆斯· 麦克南两人分享。 /p p   除上述奖项外,包括恽之玮、张伟两名中国籍学者在内的7人获得面向年轻学者的“ span style=" COLOR: #ff0000" strong 新视野物理学奖 /strong /span ”和“ strong span style=" COLOR: #ff0000" 新视野数学奖 /span /strong ”,以表彰他们在科研生涯早期取得的成就。菲律宾科学高中学生希拉里· 黛安娜· 安代尔斯获得“ span style=" COLOR: #ff0000" strong 科学突破新锐挑战奖 /strong /span ”。 /p p   一年一度的美国“科学突破奖”是目前全球奖金额最高的科学奖,由谷歌公司创始人之一谢尔盖· 布林、脸书创始人马克· 扎克伯格、俄罗斯互联网投资公司DST创始人尤里· 米尔纳等人于2012年共同创立。中国腾讯公司董事会主席马化腾也是该奖的创始捐赠人。 /p p   “科学突破奖”下设“生命科学突破奖”5个奖项以及“基础物理学突破奖”和“数学突破奖”,每个单项奖金额为300万美元,自创立以来累计发放奖金约2亿美元。“科学突破奖”每年还面向年轻学者评选“新视野物理学奖”和“新视野数学奖”,面向青少年评选“科学突破新锐挑战奖”。 /p p /p
  • 诺华赛与instrAction将合作拓展紫杉烷类药物纯化解决方案
    两家公司将开发解决方案来改变新型和仿制抗癌化合物的制造模式   面向生命科学行业提供制造解决方案的领导者诺华赛 (Novasep) 和供活性药物成分 (API) 纯化工艺使用的创新性色谱固定相制造商 instrAction 今天宣布,他们已经拓展了其全球战略联盟,使之囊括了知名抗癌化合物紫杉烷类药物的纯化。   通过这项扩大的合作,诺华赛能开发和操作或提供最优化大规模色谱工艺,实现紫杉烷类活性药物成分及中间体的具有成本效益的纯化。这两家公司于2010年7月公布了一项非手性色谱战略联盟协议。拓展后的协议使诺华赛能通过紫杉醇类产品的工艺能力进一步加强其在生命科学行业广泛制造解决方案的能力。诺华赛的客户将受益于该合作,因为他们将能获得用于其紫杉烷类活性药物成分的经济型一步式纯化解决方案。   instrAction 根据其专有技术,在其拥有的3000种固定相中合成了 API 选择性固定相,该技术展现了对于紫杉烷类化合物纯化的巨大潜力。利用 instrAction 紫杉烷类选择性色谱固定相系列,诺华赛能开发多步式合成并优化纯化步骤。诺华赛接着能扩大优化工艺并生产用于临床和商业用途的活性药物成分。诺华赛还能选择性地向其客户提供具有性能保障、融合了诺华赛领先 Prochrom(R) 高效液相色谱 (HPLC) 柱及系统和 基于instrAction 选择性固定相的成熟工艺。对于成熟药物活性分子或仿制药,诺华赛和 instrAction 能额外提交与许可应用专利,以扩大对其客户产品的保护。   诺华赛在其经过美国食品及药物管理局 (FDA) 检查并获得 SafeBridge 认证的法国勒芒厂址开发并制造紫杉烷类 API 和高级中间体,专注于高效活性药物成分 (HPAPI) 的合成与纯化。   负责诺华赛合成业务开发的执行副总裁 Rene De Vaumas 表示:“由于 instrAction 的高度选择性色谱固定相和诺华赛在紫杉烷类合成与纯化方面20年的经验,我们正是通过这次合作为我们全球客户寻求解决方案的模式转变。”   instrAction GmbH 首席执行官 Thomas Schwarz 博士说:“我们很高兴能与紫杉烷类合成与纯化的领导者诺华赛扩大合作。这是在行业下游工艺中实施 instrAction 技术的另一个重要里程碑。我们坚信它未来将广泛应用于活性药物成分的工业纯化。”   诺华赛简介   诺华赛开发、营销并管理各种创新技术,这些技术使生命科学行业活性分子的制造不仅安全而且具有成本效益。诺华赛在全球提供的制造解决方案包括工艺研发服务、分离纯化设备和系统、合同生产服务以及复杂的活性分子。诺华赛产品的应用范围包括医药、生物制药、食品、功能活性成分和生物技术市场。   instrAction 简介   instrAction 由 Klaus Gottschall 博士于1997年创建,位于路德维希港的巴斯夫 (BASF) 所在地,致力于开发和生产 "InstrAction(R) Receptor Phase",作为新颖的 API-选择性色谱树脂。InstrAction(R) 技术实现了聚合物网络上广泛功能配合物的固定化,这些配合物表面覆盖着大相径庭的多孔骨架材料。小分子以及大分子被高选择性的可逆相互作用分离开来。instrAction 固定相的高选择性通过目标分子和固定相功能配合物之间的多价-多式相互作用实现,原理和锁-钥匙类似。
  • 重磅!2021年QS大学排名出炉:生命科学与医学榜单TOP100一览!内地北大、复旦在列
    今天,QS如期发布了2021年世界大学的专业排名。本次排名评估了1,440所国际高校(去年是1,368所),将石油工程、地质和地球物理学科加进排名后,涉及了51个细分学科,超过13000个大学项目被考虑纳入,是迄今为止最广泛的一次学科排名。本篇汇总了生命科学与医学大学排名TOP100供大家了解,内地大学北京大学与复旦大学在列。UCLA并列第8。1哈佛大学 United States98.62牛津大学 United Kingdom94.73斯坦福大学 United States94.44剑桥大学 United Kingdom93.55约翰霍普金斯大学 United States93.36麻省理工学院 United States92.97加州大学旧金山分校 United States91.18卡罗林斯卡学院 Sweden90.58加州大学洛杉矶分校 United States90.510伦敦大学学院 United Kingdom90.211耶鲁大学 United States89.812帝国理工学院 United Kingdom89.613多伦多大学 Canada89.114宾夕法尼亚大学 United States87.515华盛顿大学 United States87.216哥伦比亚大学 United States86.816杜克大学 United States86.816加州大学圣地亚哥分校 United States86.819哥本哈根大学 Denmark86.120康奈尔大学 United States8620加州大学伯克利分校 United States8622悉尼大学 Australia85.923伦敦国王学院 United Kingdom85.724爱丁堡大学 United Kingdom85.625墨尔本大学 Australia85.226密歇根大学 United States8527新加坡国立大学 Singapore84.728首尔国立大学 South Korea84.429不列颠哥伦比亚大学 Canada83.830华盛顿大学在圣路易斯 United States83.531麦吉尔大学 Canada83.332北卡罗来纳大学教堂山 United States83.233东京大学 Japan82.934鲁普莱希特 - 卡尔斯 - 海德堡大学 Germany82.835蒙纳士大学 Australia8236纽约大学( NYU ) United States81.936阿姆斯特丹大学 Netherlands81.938昆士兰大学( UQ ) Australia81.638芝加哥大学 United States81.640路德维希 - 马克西米利安 - 慕尼黑大学 Germany8140乌得勒支大学 Netherlands8142曼彻斯特大学 United Kingdom80.942苏黎世大学 Switzerland80.944伦敦卫生与热带医学院 United Kingdom80.845波士顿大学 United States80.746索邦大学 France80.646加州大学戴维斯分校 United States80.648匹兹堡大学 United States80.449鹿特丹伊拉斯谟大学 Netherlands80.349格拉斯哥大学 United Kingdom 5+ QS Stars80.351埃默里大学 United States80.252麦克马斯特大学 Canada80.153苏黎世联邦理工大学(瑞士联邦理工学院) Switzerland8053赫尔辛基大学 Finland8055鲁汶大学 Belgium79.855西北大学 United States79.855香港大学( HKU ) Hong Kong SAR79.858乌普萨拉大学 Sweden79.759瓦赫宁根大学 Netherlands79.660贝勒医学院 United States79.561德克萨斯大学安德森分校癌症中心 United States79.462北京大学 China (Mainland)7962得克萨斯大学达拉斯西南医学中心 United States7964布里斯托大学 United Kingdom 5+ QS Stars78.865巴塞罗那大学 Spain78.766新南威尔士大学( UNSW ) Australia推荐78.466Universitéde Paris France78.468俄亥俄州立大学 United States78.368慕尼黑工业大学 Germany78.370巴塞尔大学 Switzerland78.271莱顿大学 Netherlands77.971蒙特利尔大学 Canada77.971威斯康星大学麦迪逊分校 United States77.974圣保罗大学 Brazil77.874日内瓦大学 Switzerland77.874格罗宁根大学 Netherlands77.874范德比尔特大学 United States77.878伦敦大学皇后玛丽学院( QMUL ) United Kingdom77.678香港中文大学 Hong Kong SAR77.680隆德大学 Sweden77.580台湾大学 Taiwan77.582京都大学 Japan77.382诺丁汉大学 United Kingdom77.382根特大学 Belgium77.385奥胡斯大学 Denmark77.186伯明翰大学 United Kingdom7787明尼苏达大学 United States76.788纽卡斯尔大学 United Kingdom 5+ QS Stars76.388阿尔伯塔大学 Canada76.390博洛尼亚大学 Italy76.191维也纳维吉尼亚大学 Austria7691成均馆大学 South Korea7691卡尔加里大学 Canada7694奥克兰大学 New Zealand75.995米兰大学 Italy75.895伯尔尼大学 Switzerland75.895哥德堡大学 Sweden75.898复旦大学 China (Mainland)75.698延世大学 South Korea75.6100阿德莱德大学 Australia75.5
  • Nature:2013十大最受欢迎的《自然》故事
    12月16日,英国《自然》杂志网站公布了本年度最受读者欢迎的《自然》故事的评选结果,包括病毒大到可以同细菌相&ldquo PK&rdquo 历时69年才完成的实验以及我们的宇宙如何在一个四维恒星的崩溃中形成等等。   一、12月10日:《模拟支持宇宙全息图理论》   1997年,美国普林斯顿高等学术研究所的朱利安· 马达西纳首先提出了宇宙全息论。根据这一模型,宇宙中的引力是由不断震荡的&ldquo 弦&rdquo 产生的。这些&ldquo 弦&rdquo 是在一个更加平坦、简单的宇宙中发生的事件的全息影像。因此,我们所身处的宇宙其实是一幅全息影像。该模型认为,宇宙存在九个空间维度以及一个时间维度。尽管这一理论听上去非常新颖,但迄今未接受任何检验。不过,日本科学家最新得到的数学计算结果认为,这种全息影像理论可能是正确的。   在一篇论文中,日本茨城大学的百武庆文对黑洞的内部能量、该黑洞视界(黑洞和宇宙其他部分的边界线)的位置、熵以及弦理论所预测的其他属性和虚粒子(在空间中不断凭空产生和消失的神秘粒子)产生的影响进行了计算。而在另一篇论文中,他还对与其对应的更低维度的、没有引力的宇宙的内部能量进行了计算。结果表明,两个计算值非常匹配。   马达西纳表示,这两个看似完全没有联系的世界之间被证明存在着数学上的联系,表明量子理论与引力论有望统一。   二、1月3日:《比绝对零度还&ldquo 冷&rdquo 的量子气体》   听起来有点儿天方夜谭,但德国物理学家开创性地制造出了温度低于绝对零度的原子气体,新技术为制作负开尔文材料和新型量子设备提供了可能。   慕尼黑路德维希· 马西米兰大学的物理学家乌尔里希· 施奈德和同事利用激光和磁场将钾原子束缚在一种晶格排列中。在正温度状态下,原子互相排斥,达到稳定排布状态。随后他们迅速调整磁场,使原子间相互作用由排斥转为吸引。研究小组通过调整束缚原子的激光场,使原子在能态不变的前提下仍然被束缚在原来的位置,最终气体从略高于绝对零度的状态转变为低于绝对零度十亿分之几度。   绝对零下气体的另一个特异之处在于,它模拟了&ldquo 暗能量&rdquo 的作用。暗能量推动宇宙对抗内聚引力,向外膨胀。施奈德发现,在他们制造的气体中,原子间的引力使整个系统有向内坍塌的趋势,但并没有塌缩,因为负绝对温度帮助稳定了系统中的原子。   三、7月18日:《世界上移动最慢的液滴终于被照相机捕捉》   这是世界最古老的实验之一。1944年,都柏林圣三一学院的物理学家们曾试图测量常温下的沥青焦油黏度,并希望见证沥青从漏斗中坠落的那一瞬间。69年过去了,摄像头终于记录下了沥青液滴落下的时刻。物理学家们写道:&ldquo 沥青焦油的黏度是水的2300亿倍,或是蜂蜜的23万倍。&rdquo 通过这种方式,物理学家们不但可以测量出沥青的黏度,也向人们展示了固体材料也可以流动的事实。   四、9月5日:《水下火山是地球上最大的火山》   美国科学家最近在位于日本东部1000英里的太平洋海底发现了地球上最大的火山&mdash &mdash &ldquo 大塔穆火山(TamuMassif)&rdquo ,其占地面积12万平方英里,约有美国新墨西哥州那么大。据称,大塔穆火山的面积仅比太阳系中最大的火山&mdash &mdash 火星的奥林帕斯火山小25%。科学家们表示,大塔穆火山是一座单火山而不是火山群,它的形状不同于地球上此前发现的其他海洋火山,有望为我们提供大规模火山如何形成的线索。   五、9月13日:《超级黑洞真的孕育了宇宙吗?》   宇宙学家们最新提出的观点认为,我们的三维宇宙可能源自四维的黑洞。   加拿大圆周理论物理研究院的天体物理学家尼耶希· 阿夫肖迪和同事发展了德国慕尼黑大学的物理学家戈尔· 德瓦利2000年提出的一种假设模型&mdash &mdash 我们身处的三维宇宙是一张膜,在具有四个空间维度的&ldquo 体宇宙&rdquo 中漂浮。当他们为一个四维恒星的死亡建模时发现,恒星死亡时喷射出的物质会在三维视界周围形成一个三维膜,这个三维膜也会缓慢膨胀。他们据此假设,我们生活的三维宇宙或许正是这样的一个膜,而且,我们探测到的膜的生长被认为是宇宙的膨胀。   六、7月8日:《巨型病毒打开了&ldquo 潘多拉的魔盒&rdquo 》   法国科学家发现了已知最大的病毒:潘多拉病毒(Pandoravirus),其长度约为1微米,使其他病毒(大小在50到100纳米之间)相形见绌 此外,其脱氧核糖核酸(DNA)共有2500个基因,而大部分病毒DNA只有10个基因。   最令人震惊的是,潘多拉病毒的基因组中,有93%不能追溯到自然界已知任何的生物演化支系中。科学家们表示,这些独特的基因很可能是&ldquo 第四个生命域&rdquo 存在的证据。现在被广为接受的三域系统包括了细菌、古菌和真核生物,人类等复杂生命体都属于真核生物域。研究者称:&ldquo 三域系统很可能是错误的,潘多拉病毒的发现也显示了我们对地球微生物的了解有多么浅薄。&rdquo 详细中文报道   七、11月19日:《神秘人曾同我们的祖先杂交》   美国哈佛医学院进化遗传学家戴维· 瑞奇在英国皇家学会于11月18日召开的一次会议上表示,基因组分析表明,现代人、尼安德特人、丹尼索瓦人(Denisovan)以及一种未知的来自亚洲的人类祖先曾相互杂交。并未参与该项研究的伦敦自然历史博物馆的古人类学家克里斯· 斯特林格推测,这个新人种可能与海德堡人有关,后者是在约50万年前离开非洲并最终在欧洲形成尼安德特人的一个人种。他说:&ldquo 或许他们也曾在亚洲生活过。&rdquo 详细中文报道      八、4月22日:《动物权利激进分子破坏米兰实验室》   4月的一个周末,激进分子占领了意大利米兰大学的一个动物学实验室。他们放走兔子和老鼠,弄乱笼子的标签,以使实验无法进行下去。该实验室的很多动物都是神经病学方面的遗传学模型。研究人员表示,需要花数年时间来恢复这些工作。   这次搞破坏的是一个自称&ldquo 阻止绿山(Stop Green Hill)&rdquo 的动物权力保护组织,他们的另一个目标是关停意大利布雷西亚的绿山犬类育种机构。5名激进分子也闯入该校药理学学院的实验室。意大利媒体报道说,至少有60名科学家组织了自己的示威活动,以抗议&ldquo 阻止绿山&rdquo 组织的无知与野蛮行径。   九、10月28日:《岩浆库比预想的要更大》   科学家们表示,对黄石国家公园地震活动性勘测结果显示,该公园地下的超级火山岩浆库的体积是之前预想的2.5倍。尽管如此,黄石国家公园面临的最大地质威胁并非火山喷发,而是一场大地震。   十、2月24日:《印度洋底或有&ldquo 失落的大陆&rdquo 》   挪威奥斯陆大学的地质学家称,根据他们对毛里求斯海岸沙子的最新分析表明,在马达加斯加和印度次大陆之间的海洋下面,很可能埋藏着一个失踪久已的微型古大陆残骸,他们称之为&ldquo 毛里希亚(Mauritia)&rdquo 大陆。科学家们还指出,在世界各地的其他海洋盆地可能也含有此类&ldquo 幽灵大陆&rdquo 残骸。
  • 空气质量不达标、排放目标难实现 德国“环保先锋”标签难保
    p   一场突如其来的空气质量检查将包括德国在内的9个欧盟成员国推上了风口浪尖,也彻底撕掉了“低碳经济领军者”德国的最后一块“遮羞布”。 /p p   事实证明,德国这个被打上“光伏大国”、“环保先锋”标签的欧盟经济总量最高的国家,其环保减排实力恐怕只是“看上去很美”。 /p p   “2020年排放承诺要食言” /p p   路透社报道称,德国对于“2020年将温室气体排放水平降低到1990年60%”的承诺恐怕要食言。该国环境部部长BarbaraHendricks表示,德国无法按计划达到2020减排目标,尽管各方仍呼吁要努力实现,但恐怕是心有余而力不足。 /p p   1月底,德国被欧盟“点名”为空气污染严重的9个欧盟国家之一,并与法国成为垫底的“坏学生”,其它7国分别是英国、意大利、西班牙、匈牙利、罗马尼亚、捷克和斯洛伐克。欧盟已经向上述9国发出“最后通牒”:要么改,要么罚! /p p   欧盟早在2010年就引入了对可吸入颗粒物和二氧化氮的限制,但许多欧盟成员国特别是一些主要城市,其空气污染程度仍远远超出限制。欧委会最终忍无可忍,要求上述9国遵守欧盟标准并限期交出改善空气质量的方案,否则将诉诸法律。 /p p   欧委会主管环境、海洋事务和渔业的委员卡尔梅努˙韦拉强调:“我们提供帮助、建议和警告的期限太宽裕,现在是时候采取行动了。”欧委会指出,工业、交通和供暖是空气污染的主要来源,柴油、木材、煤炭等在德国、法国、波兰等国保持高消耗,给环境带来了巨大负担,欧盟平均每年有40万人因空气质量问题而过早死亡,其中德国、法国分别高达8万和4.8万。 /p p   对于这一警告,德国总理默克尔迅速予以回应,称将至少为20个空气污染最严重的城市制定具体的减排措施并提供一定帮助,如通过加大出租与公交等手段实现减排效果。她同时呼吁,应该继续监督对柴油车的改造,但对进展和结果表示担忧,因为德国柴油车数量庞大,很难制定立竿见影的方案。 /p p   去年8月,德国政府与汽车制造商达成一致,同意对德国数百万辆柴油车的发动机软件进行升级,以减少污染并努力修复柴油车的声誉。两个月后,德国政府推翻了这一协议,称软件升级花费较少、影响较小,呼吁汽车制造商对某些车型的发动机和排气系统进行整体升级。 /p p   有环保人士直言不讳,不执行柴油车禁令以及电动汽车补贴政策执行不力等因素,是导致德国无法实现2020年排放目标的促因。 /p p   德国《明镜》日前报道称,在欧盟“空气质量差”的严厉指责下,德国环境部、交通部最终拿出了新方案,2017至2020年间将增加电动汽车充电点以全面鼓励电动汽车在德国的发展,同时还将改善柴油公交车的排气系统。 /p p   BarbaraHendricks透露,已经就德国未来能源、环保政策的各项措施达成一致,计划投资15亿欧元资助产业整改,按部就班地降低各行业的排放量。“虽然将2020年排放目标推后数年,但仍维持2030年减排目标。”她强调。 /p p   据了解,德国计划2030年将可再生能源发电量占比从目前的30%提升至65%,原计划是2025年可再生能源电量占比45%至55%。 /p p   “多座城市空气污染严重” /p p   在降低温室气体排放方面,德国的确需要“特别关注”,甚至需要进行“自我检讨”。德国环境部日前发布的2017年德国环境测量报告显示,相较于西部和南部,东部污染最少,70个城镇空气中可吸入颗粒物含量超过最高规定限度,40个城镇空气中二氧化氮含量超标。 /p p   德国之声指出,鉴于柴油汽车是二氧化氮的主要排放源之一,且目前仍是德国汽车市场的主流,大部分城市二氧化氮浓度超过欧盟规定的40微克/立方米上限是意料中事。根据世界卫生组织的标准,二氧化氮含量全年最多只能有3天超标,但德国87%的监测站所测情况都高于这个上限。 /p p   德国第三大城市慕尼黑是该国空气污染最严重的城市,去年以年均二氧化氮含量78微克/立方米位居榜首。慕尼黑是德国主要的经济、文化、科技和交通中心,重工业尤以汽车制造实力较强,作为德国三大车企之一宝马的故乡,污染加剧的现状迫使慕尼黑必须直面环保挑战。 /p p   德国另外两大车企奔驰和保时捷的故乡斯图加特,空气污染程度紧随慕尼黑之后,去年年均二氧化氮含量73微克/立方米,虽然低于2016年82微克/立方米的水平,但空气质量情况仍不乐观。斯图加特是著名的汽车城,由于地形地势等原因,长期以来都遭受空气污染困扰。 /p p   德国第四大城市科隆以年均二氧化氮含量62微克/立方米的水平位列第三。以大教堂闻名遐迩的科隆是重工业城市,是德国重要的褐煤产地之一。距离斯图加特31公里的小城罗伊特林根,尽管人口只有约11.2万,但去年年均二氧化氮含量却达到60微克/立方米,程度与科隆不相上下。 /p p   汉堡、杜塞尔多夫、基尔、海尔布隆去年年均二氧化氮含量分别高达58微克/立方米、56微克/立方米、56微克/立方米和55微克/立方米。据了解,基尔是德国通往波罗的海的门户,也是重要的造船和海事基地,但优越的地理位置也没有让该市远离空气污染。 /p p   德国去年年均二氧化氮含量超过50微克/立方米的城镇还有以炼铁和机械为核心产业的工业城市达姆斯达特(约52微克/立方米)、路德维希堡(约51微克/立方米)、曾经的采煤炼钢城市多特蒙德(约50微克/立方米)。 /p p   此外,首都柏林、航铁枢纽法兰克福、美因茨等大城市的年均二氧化氮含量虽然并未超过50微克/立方米,但仍然确定超标,柏林达到49微克/立方米。 /p p   《南德意志报》指出,随着引入限速、街道收窄、奖励购买环保新车等措施,德国各城市空气污染虽然有所改善,但还是远远不够,冰冷的数字似乎是对自诩为“环保创新者”的德国的无声讽刺,进而更加折射出其在低碳能源转型之路上的举步维艰。 /p
  • 细/超细微颗粒物检测相关仪器设备取得阶段成果
    2016年6月15日下午,北京市基金办和北科院共同组织召开了联合资助项目交流研讨会。会议由北科院科研开发处李功越副处长主持。本次项目交流研讨会聚焦大气细颗粒物监测与健康风险评估,共有来自11家单位的近20位相关科研人员参会。北京大学、北京航空航天大学、中国疾病预防控制中心等单位的5位项目负责人分别介绍了项目研究进展和阶段性研究成果,其中健康评价研究方面已构建空气微细颗粒物暴露生物评价模型,细微颗粒物监测方面已研制出具有湿度自调节功能的颗粒物测量仪和能区分纳米级细颗粒物数目的原型样机。  与会科研人员围绕空气微细颗粒物成分精确监测、微细颗粒物人群暴露评价及干预机制、微细颗粒物与人体健康模型建立等方面展开了热烈讨论,建议在后续工作中应重点关注以下问题:(1)不同来源细/超细微颗粒物特征与生物毒理学效应 (2)细/超细微颗粒物在生物体内的表征方法学研究 (3)细/超细微颗粒物对生物体健康效应研究及动物模型的构建 (4)吸入细/超细微颗粒物引起呼吸和心血管系统损伤的内在机制研究 (5)细/超细微颗粒物分级精确检测相关仪器设备的研发。【原标题:市基金办-北科院组织联合资助项目交流研讨会】
  • 2023年科学突破奖公布,奖励蛋白结构预测、睡眠机制以及量子信息领域
    “今天获奖的获奖者体现了基础科学的非凡力量,”尤里米尔纳说,“既揭示了宇宙的深刻真理,又改善了人类生活”。米尔纳是俄罗斯富商,是科学突破奖的创建者之一。“2023年科学突破奖”,主要奖励在蛋白结构预测、细胞组织机制以及量子信息领域做出开创性贡献的学者,他们将分享共计1575万美元的奖金。生命科学领域的三个突破性奖项被授予:克利福德布朗温(Clifford P. Brangwynne)和安东尼海曼(Anthony A. Hyman),以表彰他们发现了细胞组织的新机制;德米斯哈萨比斯(Demis Hassabis)和约翰乔普(John Jumper)开发AlphaFold,准确预测蛋白质的结构;以及伊曼纽尔米格诺特(Emmanuel Mignot)和柳泽正史(Masashi Yanagisawa )发现嗜睡症的原因。数学突破奖授予丹尼尔斯皮尔曼(Daniel A. Spielman),以表彰他在理论计算机科学和数学方面的多项发现。基础物理学突破奖由查尔斯贝内特(Charles H. Bennett),吉尔布拉萨德(Gilles Brassard),大卫多伊奇(David Deutsch)和彼得肖尔(Peter Shor),以表彰他们在量子信息方面的基础工作。早期职业科学家的重要贡献也得到了认可,6个物理和数学新视野奖,以及3个Maryam Mirzakhani新前沿奖,它发给了刚完成博士学位的女性数学家。“神经退行性疾病的突破、量子计算、人工智能解决蛋白质结构等等......”Google创始人谢尔盖布林表示,“这些都是令人难以置信的进步,值得庆祝”。“祝贺所有突破奖获得者,他们令人难以置信的发现将为科学发现铺平道路并刺激创新,”CZI联合创始人兼联合首席执行官Priscilla Chan和Mark Zuckerberg表示,“这些获奖者和早期职业科学家正在推动研究和科学的极限,我们很高兴能够表彰他们的成就”。如下分别介绍今年的诺奖者及获奖理由:2023年生命科学突破奖普林斯顿大学、霍华德休斯医学研究所克利福德布兰格温以及来自德国马克斯普朗克分子细胞生物学与遗传学研究所的安东尼海曼获奖理由:发现了由蛋白质和RNA相分离成无膜液滴介导的细胞组织基本机制。德米斯哈萨比斯(Demis Hassabis)和约翰乔普(John Jumper)获奖理由:开发了一种深度学习算法,该方法可快速准确地从其氨基酸序列中预测蛋白质的三维结构。伊曼纽尔米格诺特(Emmanuel Mignot)和柳泽正史(Masashi Yanagisawa )获奖理由:发现了嗜睡症是由一小群脑细胞的缺失引起的,这些脑细胞会释放促进觉醒物质,这为开发新的睡眠障碍治疗方法铺平了道路。022023年基础物理学突破奖2023年基础物理学突破奖获奖人为:IBM 托马斯沃森研究中心查尔斯贝内特、蒙特利尔大学吉尔布拉萨德、牛津大学大卫多伊奇以及麻省理工学院彼得肖尔。获奖理由:以表彰他们在量子信息方面的基础工作。032023年数学突破奖2023年数学突破奖获奖人为:耶鲁大学丹尼尔斯皮尔曼获奖理由:对理论计算机科学和数学的突破性贡献,包括对光谱图论、Kadison-Singer问题,数值线性代数的优化和编码理论。04科学突破奖简介科学突破奖(Breakthrough Prize) 创立于2012年,由俄罗斯亿万富翁尤里米尔纳夫妇、谷歌(google)联合创始人谢尔盖布林夫妇、阿里巴巴集团创建人马云和张瑛夫妇、脸书(Facebook)联合创始人马克扎克伯格夫妇、以及苹果公司董事长亚瑟莱文森等知名实业家共同设立,旨在表彰在生命科学、数学和基础物理学领域做出杰出贡献的人士。该奖项于2013年2月启动,下设“生命科学突破奖”、“基础物理学突破奖”和“数学突破奖”,并且面向年轻科学家设立“物理学新视野奖”、“数学新视野奖”和“青年挑战突破奖”,此外,2019年起开始设立“玛丽亚姆米尔扎哈尼新新前沿奖”(Maryam Mirzakhani New Frontiers Prize),颁发给在过去两年内获得博士学位并处于职业生涯早期的女数学家。科学突破奖的奖金十分丰厚,堪称科学界“第一巨奖”,并被誉为“科学界的奥斯卡”。其中,生命科学、基础物理学和数学突破奖三大奖项的获奖者,每人可获得300万美元奖金;新视野奖奖金为10万美元;“玛丽亚姆米尔扎哈尼新新前沿奖”的获奖者,可获得5万美元奖金。现在,科学突破奖由谢尔盖布林、马克扎克伯格夫妇、尤里米尔纳夫妇、基因技术公司23andMe联合创始人安妮沃西基、以及腾讯公司联合创始人马化腾赞助。科学突破奖近5年获奖情况2017年获奖情况:生命科学突破奖获得者:沙克生物学研究所、哈佛休夫医学研究所研究员乔安妮乔瑞(Joanne Chory);加州大学圣迭戈分校路德维希癌症研究所科研人员唐克利夫兰(Don W. Cleveland);日本京都大学科学研究院生物物理学教授森和俊(Kazutoshi Mori);牛津大学科研人员金内史密斯(Kim Nasmyth);加州大学旧金山分校彼得沃特(Peter Walter)。基础物理学突破奖获得者:由27名成员组成的WMAP实验团队,其中 5位获奖团队领导分别为:查尔斯贝内特(Charles L. Bennett), 美国约翰-霍普金斯大学物理&天文学系教授;美国天文学家和天体物理学家加里欣肖(Gary F. Hinshaw),来自不列颠哥伦比亚大学;美国物理学家和天体物理学家诺曼雅罗西克(Norman C. Jarosik ),来自普林斯顿大学;普林斯顿大学詹姆斯麦克唐纳物理学杰出大学教授莱曼佩吉(Lyman Alexander Page, Jr);美国理论天体物理学家,普林斯顿大学教授戴维斯佩格尔(David Nathaniel Spergel)。数学突破奖获得者:克里斯朵夫哈克(Christopher Hacon ),来自犹他大学;詹姆斯迈克凯南(James McKernan),来自加州大学圣迭戈分校。2018年获奖情况:生命科学突破奖获得者:哈佛大学科学家弗兰克本内特(Frank Bennett);美国科学家艾德里安科内纳尔(Adrian Krainer);麻省理工学院科学家安吉里卡阿蒙(Angelika Amon);哈佛大学华裔科学家庄小威(Xiaowei Zhuang);美国德州大学西南医学中心分子生物学教授陈志坚(Zhijian “James” Chen)。基础物理学突破奖获得者:宾夕法尼亚大学教授查尔斯凯恩(Charles Kane);宾夕法尼亚大学科学家尤金迈乐(Eugene Mele)。基础物理学特别突破奖:英国天文学家乔瑟琳贝尔(Jocelyn Bell Burnell )。数学突破奖获得者:法国国家科学研究中心和格勒诺布尔大学傅立叶研究所科学家文森特拉福格(Vincent Lafforgue)。 2019年获奖情况生命科学突破奖获得者:美国纽约洛克菲勒大学分子实验室、霍华德休斯医学研究所教授杰弗里M弗里德曼(Jeffrey M. Friedman);马克斯普朗克生物化学研究所研究人员F乌尔里希哈特尔(F. Ulrich Hartl);耶鲁医学院、霍华德休斯医学研究所科学家亚瑟L霍里奇(Arthur L. Horwich);加州旧金山大学生理学及分子生物学教授戴维朱利叶斯(David Julius);宾夕法尼亚大学研究人员弗吉尼娅曼仪李(Virginia Man-Yee Lee)。数学突破奖获得者:芝加哥大学的亚历克斯埃斯金(Alex Eskin)。 2020年获奖情况:生命科学突破奖获得者:华盛顿大学蛋白设计研究所和霍华德休斯医学院科研人员戴维贝克(David Baker);哈佛大学和霍华德休斯医学研究所科研人员凯瑟琳杜拉克(Catherine Dulac);香港中文大学医学院副院长卢煜明(Dennis Lo);美国国家卫生院理查德J尤尔(Richard J. Youle)。基础物理学突破奖获得者:华盛顿大学科研人员埃里克阿德尔贝格尔(Eric Adelberger)、詹斯冈拉克(Jens H.Gundlach)和布莱尼赫克尔(Blayne Heckel)。数学突破奖获得者:帝国理工学院科研人员马丁海尔(Martin Hairer)。 2021年获奖情况:生命科学突破奖获得者:斯克里普斯研究所科学家杰弗里W凯利(Jeffery W. Kelly);宾夕法尼亚大学科学家卡塔林考里科(Katalin Karikó)和德鲁韦斯曼(Drew Weissman);剑桥大学科学家尚卡尔巴拉苏布拉尼亚安(Shankar Balasubramanian)、戴维克勒纳曼(David Klenerman);生物技术公司AlphanososCEO帕斯卡尔迈耶(Pascal Mayer)。基础物理学突破奖获得者:日本东京大学科学家香取秀俊(Hidetoshi Katori);中国科学院外籍院士叶军(RIKEN Jun Ye)。数学突破奖获得者:日本京都大学数学家望月拓郎(Takuro Mochizuki)。华裔科学家获奖情况自科学突破奖2013年2月正式启动以来,获得过“生命科学突破奖”、“基础物理学突破奖”和“数学突破奖”三大奖项的华裔科学家共有8位,分别为:美国加州大学洛杉矶分校澳籍华裔数学家陶哲轩,2015年数学突破奖获得者,表彰其对调和分析、组合数学、偏微分方程和解析数论做出的诸多贡献。美国加州大学洛杉矶分校澳籍华裔数学家陶哲轩美国国家科学院院士、美国德克萨斯大学西南医学中心分子生物学教授陈志坚,2019年生命科学突破奖获得者,表彰其发现负责感应胞质溶胶内DNA的环鸟苷酸-腺苷酸合成酶(cGAS),了解DNA在细胞中如何激发先天免疫系统。美国国家科学院院士、美国德克萨斯大学西南医学中心分子生物学教授陈志坚中国科学院外籍院士、哈佛大学化学与化学生物、物理学双聘教授庄小威,2019年生命科学突破奖获得者,表彰其发明随机光学重建显微法(Stochastic optical reconstruction microscopy或STORM),超高分辨率显微镜之一。中国科学院外籍院士、哈佛大学化学与化学生物、物理学双聘教授庄小威中国科学院院士、实验高能物理学家王贻芳、加州大学伯克利分校教授、香港大学教授陆锦标及大亚湾核反应堆中微子实验团队,2016年基础物理学突破奖获得者,表彰他们发现和探究中微子振荡,揭开超越标准模型的物理学新领域。中国科学院院士、实验高能物理学家王贻芳加州大学伯克利分校教授、香港大学教授陆锦标美国宾夕法尼亚大学科学家李文渝,2020年生命科学突破奖获得者,表彰其发现TDP43积聚会引致额颞叶痴呆症和肌萎缩性脊髓侧索硬化症,以及α-突触核蛋白在不同细胞中拥有不同形态,且会导致帕金森症和多发性系统萎缩症。美国宾夕法尼亚大学科学家李文渝美国国家科学院院士、中国科学院外籍院士、物理学家叶军,2022年基础物理学奖获得者,表彰其发明超精密的原子钟光晶格钟。美国国家科学院院士、中国科学院外籍院士、物理学家叶军美国国家科学院外籍院士、香港中文大学医学院副院长、分子生物学临床应用专家卢煜明,2021年生命科学突破奖获得者,致力于研究人体内血浆的DNA和RNA,被誉为无创DNA产前检测的奠基人。美国国家科学院外籍院士、香港中文大学医学院副院长、分子生物学临床应用专家卢煜明参考资料1.维基百科. https://zh.wikipedia.org/wiki/Wikipedia2.Breakthrough Prize: About3. https://breakthroughprize.org/News4. 刚刚!2022科学突破奖公布,两位mRNA技术先驱与其他23名学者分享1575万美元奖金.深究科学
  • 第三届AQUATECH CHINA展特设污水领域四大专区
    ——暨第三届AQUATECH CHINA展会快报   第三届AQUATECH CHINA国际水展(荷兰阿姆斯特丹国际水处理展中国展)将于2010年6月2-4日上海世博会期间在上海展览中心开幕,展示面积达到25000平米,届时将来自超过30个国家的600余家展商呈献水行业污水与净水处理各个环节的全貌 全方位多角度的应用会议为水行业人士广开渠道,搭建绝佳的国际交流平台。   本届亮点:污水处理成展会主角   为了迎合污水处理市场日益扩大的趋势,主办方特别将本届展会的主题定为污水处理专题年,将污水处理作为展会的重头戏,在污水领域特设污水处理专区、泵管阀专区、仪器仪表专区以及水处理药剂专区,同类展品集中展示,为展商和观众创造更多便利。此外还有膜技术专区和末端净水专区,展商可以根据各自产品类别选择更为适合的展示空间,从而大大提高参展效果。   本届展会在污水领域将综合展示污水处理的产品设备、解决方案,并举办污水处理专题研讨会,就技术问题进行深入探讨,力求全方位地服务于污水处理行业。在本届展会上,既有重量级的全球领军污水企业如威立雅水务、ITT、格兰富、滨特尔、得利满技术、NORIT、亚什兰、多元环球水务、贝克吉利尼、梅鲁斯、蓝星东丽、时代沃顿、膜天膜、斯纳普、曼胡默尔、美能、唯赛勃、迈纳德、坎普尔积极参与,又有纬信达、江苏康尔、Nickel、德州德天、立昌、飞锐、安得膜、飞马膜等国内企业连年积极参与,众多污水处理行业展商将携带离心机、曝气机、压滤机、泵阀、药剂、膜、臭氧等应用于污水处理各个环节的产品,以及世界领先的专利技术和水处理解决方案到场展示。   除了产品设备,主办方与相关媒体合办的2010污水深度处理国际峰会特别值得关注。本次峰会由上海市政工程设计研究总院、同济大学环境科学与工程学院、上海城建设计研究院等单位共同主办,将针对国内外市政及工业污水深度处理产业的现状和技术趋势、工艺流程、经济技术分析等各方面的问题,邀请政府部门、设计单位、科研单位、各地排水部门、城市污水处理厂、工业企业以及污水深度处理设备生产厂家,进行深入交流,并与展商亲密接触。   泵管阀亮点产品集中展示   输送与储存是水处理环节不可缺失的重要组成部分,泵管阀作为一种通用机械产品,在中国有着巨大的发展空间。在本届展会的泵管阀展商阵容很好地体现了这一市场竞争格局:一方面是世界泵业巨头ITT、格兰富、滨特尔、协同罗普、宏田涂装、罗兰德、Topure等知名国际品牌,感受到AQUATECH CHINA良好的推广效果,他们积极参与。上海多蒙、上海东利、北京欧帝、飞瀚、弘凌等众多知名代理商带来泵阀行业全球知名品牌产品 美国司捷易兰姆布斯也将带来卓越品质和可靠性能的液位控制产品。另一方面,东方泵业、南方泵业、润新、佑利、得为、伟隆、开维喜、鼎瑞特、威瑞机电、柏繁、开利等民族品牌在技术上也取得了长足的发展,纷纷亮出各自的创新产品。   仪器仪表与自动化名企瞄准污水市场,竞相参与本届展会   近年来,仪器仪表和自动化控制技术不断地为水处理事业带来新的发展,这些技术的应用使管理更紧凑,削减运行成本,降低能耗,增大处理能力。随着中国水处理市场的不断扩大,对于仪器仪表和自动化控制设备的要求也越来越大。为了迎合市场的需求,在本届展会中,众多领先仪器仪表将企业集中展示最新的行业技术和领先的设备!哈希、英国豪迈集团、赛默飞世尔、拉尔分析仪器、欧玛、以色列爱瑞德、荷兰MicroLan、荷兰Tintometer、百瑞时代、汉华、金泰仪表、如达世纪、博取、温州合力、上海轻工业研究所、余姚仪表四厂、科瑞达等中外知名企业竞相参与。   同期举办的国际水工业测控技术论坛也将为国内外从事水工业测控技术的科学家和工程师们搭建一座交流前沿技术与成功经验的互动平台。   药剂产品与会议呈现更多污水解决方案   随着全球水供应关注程度的增加,水处理化学品市场快速增长。而随着我国工业的快速发展和国家加大环保整治力度的不断加大,中国成为全球水处理化学品和服务领域增长速度   最快的国家,分析表明,这一增长速度甚至超过了GDP增速。在此背景下,中国二氧化氯学会将与主办方共同合作,在第三届AQUATECH CHINA国际水展期间共同举办二氧化氯与水处理相关药剂专题会议,就二氧化氯等化学药剂在水处理中应用的相关问题展开研讨。会议与展会相互呼应,将产品、技术与解决方案完美地结合在一起。   亚什兰、德国梅鲁斯、朗盛、德国贝克吉利尼等众多国际知名企业纷纷加入到AQUATECH CHINA展商阵营中,其中德国贝克吉利尼有限公司是莱茵河畔路德维希港最古老的化学公司,掌握最先进的水处理理论和技术,拥有超过六十年的水处理经验 德国梅鲁斯拥有具有专利技术的梅鲁斯环等产品,诸多行业翘楚将在本届展会上一显身手。   其他领域产品关注水处理各环节   本届展会的展商涵盖了水处理的整个产业链,除了上述各种专区,还有很多散落在展馆各处的明珠,比如代表着深度处理发展趋势的紫外线消毒杀菌技术,德国贺利氏、飞利浦特殊光源、美国莱劭思既是该领域技术的佼佼者,又是AQUATECH CHINA的忠实展商,将展示广泛应用于市政饮用水、废水处理、工业用水、游泳池的紫外杀菌技术。雪莱特、达诠、康澈、嘉瀚等国内紫外线企业也积极参与其中,带来各具特色的技术设备。   此外,上虞普尔将带来用于脱盐软化之用的树脂产品、承德燕山冀北活性炭有限公司将展示水处理中广泛应用的活性炭产品,法国阿科玛、西班牙阿速德、宏田将带来管道涂装技术……毫无疑问,本届AQUATECH CHINA必将全面展示水处理技术的方方面面!   膜技术名企悉数到场,展示污水处理之热门技术   随着污水处理需求量的激增以及缺水情况的日益严峻,用于污水处理和海水淡化的各种膜产品的需求都在急速增长,世界各领先膜生产企业都纷纷看好中国市场。本届展会的膜技术专区可谓高手云集,领先企业悉数到场,欧美企业如美国GE、美国陶氏、荷兰诺芮特、美国滨特尔、德国迈纳德、德国倍世、德国滢格、法国得利满技术、荷兰IMT、美国艾欧史密斯等行业巨头各展绝技,阵容强大,包括艾欧史密斯在内的一批知名跨国企业也将其新业务目标锁定水处理膜市场,并在技术上取得了领先优势,此次将携带拥有众多专利技术的膜产品亮相展会,与膜领域众多高手一竞高下!日韩系企业也不甘示弱,以蓝星东丽、熊津化学、旭化成、株式会社久保田、三菱丽阳领衔的阵营,其中,日本东丽公司是反渗透膜元件制造和销售领域公认的先驱,拥有雄厚的技术实力,在与蓝星达成合作后,更是把AQUATECH CHINA国际水展视为拓展中国市场的重要一环,进一步扩大了展示面积。   膜技术在我国也备受重视,此次海南立昇、膜天膜、创新芳苑、时代沃顿、招金膜天、中水源、沛尔膜、森诺、洁弗、安得膜、乐普、唯赛勃、常州科迪、大连宇星、江苏鹏宇等一大批膜及膜配件厂商纷纷亮相,全面展示膜工业的技术水平。其中国内最大的膜生产商——海南立昇在对国内水处理行业的现有渠道经过悉心遴选后,对AQUATECH CHINA国际水展表现出极大的认可,早早签下逾百平米的展位。   可以预见,一场“膜界”盛会,即将热力呈献。   终端净水专区:百花齐放尽争妍   由于环境和水资源污染越发严重、人们收入水平的提高,人们的健康意识逐渐提升,了解自来水不能够解决健康饮水的问题。这给净水行业莫大的商机。有专家认为,净水行业已经进入黄金时期。由于水家电成为一个蓬勃兴起的行业,许多代理商纷纷加盟,市场形势一片大好。在此次AQUATECH CHINA展会上,既有美国怡口、美国伊瑞尔、美国滨特尔、德国BWT、美国可滤康、美国百诺肯、美国艾欧史密斯、美国凯优、美国派斯、美国润索、美国通用莫林这样的实力派欧美品牌,又有三菱丽阳集团、东丽比诺、世韩、承光、海狼星、韩国清湖等外形与实力兼备的日韩明星企业。国产民族品牌向来以物美价廉、性价比突出而牢牢地占据着庞大的市场份额,净水企业形成了广东和苏浙沪两大聚集区,此次展会更是两大中心民族品牌一竞高下的平台——广州地区以美的、安吉尔、海南立昇、科里、科绿士、耐德、容声电器、康宝、苏泊尔为代表,苏浙沪地区的企业阵营中则有开能、适达、沁园、复旦申花、沁尔康、南京世保康、朗诗德电器、锐普、灏钻、爱玛特、溢泰(康富乐)、中荷、先锋电器、奇迪电器等重量级企业。此外,台湾地区净水企业也再次以豪华阵容亮相——品亮、益锐、戴安娜、总馨、千毓、笠毅、全圣、国品等各方豪杰悉数到场,超强阵容联袂亮相,净水产品群星璀璨。   截至目前已报名的展商数已超过去年502家展商数总和,主办方预计本届展会将在3月份售罄,如有意向的企业尽早报名,详细信息请浏览www.aquatechchina.com
  • 聚合酶链式反应自动化
    聚合酶链式反应 (The polymerase chain reaction ,PCR) 彻底改变了 DNA 分析和扩增的方式。自 20 世纪 80 年代推出以来,PCR 已发展成为分子生物学中最重要的技术之一。它是一种快速、定向扩增特定 DNA 序列的方法,基于 DNA 变性、引物杂交和耐热 DNA 聚合酶合成 DNA 的原理。PCR 在科学和医学领域有着广泛的应用。在基因表达分析中,它可用于量化特定基因的表达并研究其调控。在基因分型中,PCR 能够识别基因变异并将基因型分配给特定性状或疾病。在法医 DNA 分析中,PCR 还可用于放大 DNA 的微小痕迹,并利用它们来识别嫌疑人或分析亲属关系。PCR也用于传染病的诊断。这样可以快速、准确地检测病毒或细菌等病原体,从而实现早期诊断和针对性治疗。在产前诊断中,PCR 还用于识别未出生婴儿的遗传异常或染色体疾病。PCR 基础知识PCR 由几个步骤组成。在第一步变性中,双链 DNA 通过加热分离,形成单链。当溶液冷却时,短的合成 DNA 引物特异性结合两条单链并标记要扩增的区域(退火)。在随后的延伸过程中,DNA 聚合酶与标记位点结合并沿着模板合成新的 DNA 链。该酶通过添加核苷酸(DNA 的组成部分)来激活。通过重复变性、退火和延伸步骤,复制的 DNA 片段数量可以呈指数增长。因此,经过多次PCR循环后,原始DNA序列可以被扩增成数千或数百万个拷贝。PCR 可以通过多种方式进行修改,以适应特定的应用,例如,通过使用特定的酶或标记。PCR 具有许多优点,使其成为现代分子生物学中不可或缺的工具。这里首先要提到的是高灵敏度和低材料要求。PCR 可以扩增最少量的 DNA 或 RNA,从而可以非常灵敏地检测病原体或特定序列。为此只需要少量的 DNA 或 RNA,这简化了采样和样品制备,并减少了所需起始材料的数量。通过使用与精确定义的 DNA 或 RNA 序列结合的特异性引物,PCR 可以非常具有特异性并选择性地扩增目标材料。快速获得结果;扩增过程通常可在数小时内完成。自动化 PCRPCR 的最大优势之一是其自动化能力,可以更轻松地检查大量样本并减少相关工作量。自动化 PCR 包括自动化系统和仪器执行的所有经典子步骤。所需试剂(DNA 模板、引物、DNA 聚合酶、核苷酸和缓冲溶液)的精确配量和添加是在受控环境中进行的,以最大程度地减少污染。热循环仪用于精确控制温度循环,包括变性(将 DNA 分离成单链)、退火(引物与目标 DNA 结合)和延伸(由引物合成互补 DNA 链)的步骤。 DNA 聚合酶)。现代自动化 PCR 系统可以实时检测和评估 PCR 结果。这可以使用与特定 DNA 序列反应的荧光探针或染料来完成。该系统在 PCR 过程中检测荧光信号,以确定目标 DNA 的存在和定量。使用特殊软件分析从自动 PCR 获得的数据。该软件可以解释 PCR 结果、计算扩增曲线、确定阈值以及对目标 DNA 进行定量。市场上有各种各样的自动化 PCR 仪器,每种仪器都提供不同的功能和功能。Thermo Fisher Scientific(美国沃尔瑟姆)是提供各种自动化 PCR 系统的领先供应商之一,其中包括 Veriti Dx 96 孔热循环仪以及 Applied Biosystems QuantStudio 3 和 5 实时 PCR 系统。这些系统具有从实时 PCR 到数字 PCR 的各种功能,可用于研究实验室和临床环境。Bio-Rad(美国赫拉克勒斯)也是著名的实验室仪器制造商,提供自动化 PCR 系统,例如 CFX Opus 实时 PCR 检测系统和 QX200 微滴式数字 PCR 系统。除此之外,这些系统能够实时或以数字液滴格式进行精确的 DNA 扩增和检测。Roche Diagnostics(瑞士巴塞尔)提供用于实时 PCR 的 LightCycler 仪器。这些仪器可快速扩增和检测 DNA 序列,广泛应用于分子诊断。Illumina(美国圣地亚哥)是新一代测序 (NGS) 领域的领先公司,其产品组合中拥有自动化 PCR 系统。MiseqDx 仪器是一款自动测序仪,可在一个集成系统中实现基于 PCR 的扩增和 DNA 测序。为了进一步提高自动化程度,可以通过提取、清洗和选择性片段化来制备 DNA。Maxwell 仪器(Promega,麦迪逊,美国)等适合此目的,因为它能够自动提取和纯化可用于 PCR 的核酸。QIAcube 自动化系统(Quiagen,希尔登,德国)还可以自动纯化 DNA 样品。还有许多其他制造商提供自动化 PCR 系统。该领域的市场正在迅速发展。因此,在选择系统时,建议考虑具体要求、所需功能以及与计划应用程序的兼容性。自动化 PCR 系统应具有几个重要特性,以实现高效可靠的 PCR 结果。这首先包括精确的温度控制。它对于正确实施 PCR 各个步骤(变性、退火和延伸)至关重要。该系统应提供对温度循环的精确控制并保持严格的耐受温度范围。自动化 PCR 系统必须提供可靠的检测技术来测量 PCR 结果。这可以通过荧光探针、染料或其他检测方法来实现。检测的高灵敏度、特异性和重现性对于准确的 PCR 结果至关重要。质量保证和污染控制机制还应结合起来,以确保结果的准确性和可靠性。这可以通过使用阴性对照、自动移液、封闭反应管或其他方式来实现。其他要求包括灵活性和适应性。该系统应支持不同的 PCR 格式(例如实时 PCR、数字 PCR 或等温 PCR),并提供设置和定制不同 PCR 反应和方案的可能性。根据应用,必须保证与常用试剂和耗材的适当兼容性。与不同 PCR 试剂盒制造商和试剂的兼容性是能够使用各种测定和方案的优势。自动化 PCR 系统还应该具有可扩展性,以适应 PCR 反应的通量以满足要求。它们应该提供并行处理大量样品以实现高通量的可能性。用户友好的软件具有直观的用户界面,是易于操作的标准配置。该软件应该能够对 PCR 方案进行编程、监测反应进度并分析数据。通常内置用于量化、阈值和分析扩增曲线的强大数据分析功能。与手动实施相比,自动 PCR 具有多种优势。通过使用热循环仪和 PCR 机器人等自动化系统可以提高 PCR 的准确性和重现性。温度循环的精确控制和试剂的准确剂量可以提高效率并减少错误和污染。此外,自动化允许同时进行多个 PCR 反应,从而节省大量时间。自动化还可以实现复杂的 PCR 方案,例如多重 PCR [1] 和巢式 PCR [2],广泛应用于研究和诊断。图 1:自动 PCRPCR 技术的最新发展 尽管 PCR 是分子生物学中的一项成熟技术,但它仍在不断得到进一步发展,以提高效率、灵敏度和应用领域。与经典 PCR 相比,等温 PCR 保持恒定温度,这使得过程更容易、更快 [3]。环介导等温扩增 (LAMP) 等等温 PCR 技术无需热循环仪即可扩增 DNA。这些方法用于快速诊断传染病和遗传性疾病。此外,数字PCR(dPCR)的发展进一步扩大了PCR的可能性[4]。DNA 不是在单个反应中扩增,而是被分解为数千或数百万个单独的反应。对结果进行统计分析可以精确确定 DNA 拷贝的绝对数量。dPCR 可用于检测癌症中的微小残留病、测定基因拷贝数以及准确测定病毒载量等应用。数字液滴 PCR (ddPCR) 是数字 PCR 的一种变体,其中 PCR 反应分为数千或数百万个水滴 [5]。每个液滴都含有一个或几个 DNA 拷贝。通过分析阳性和阴性液滴可以精确确定DNA拷贝的绝对数量。ddPCR 具有高灵敏度、精确度和重现性,可用于非侵入性产前诊断和癌症液体活检等应用。小型便携式 PCR 系统的开发使得 PCR 可以在实验室外使用。即时 PCR 设备用于医疗诊断,特别是在偏远地区或快速诊断传染病。这些系统易于使用,不需要复杂的基础设施,并能在短时间内提供可靠的结果。PCR 和 NGS 技术的结合彻底改变了 DNA 测序 [6]。通过使用基于PCR的方法,例如测序前的PCR扩增,可以有针对性地扩增和分析特定的DNA序列。这样可以识别突变、遗传变异,并对 DNA 序列进行详细研究。参考文献[1] Hasan, M. R., Kalikiri, M. K. R., Mirza, F. (2021). Real-Time SARS-CoV-2 Genotyping by High-Throughput Multiplex PCR Reveals the Epidemiology of the Variants of Concern in Qatar. International Journal of Infectiuos Diseases. 112, pp. 52-54. DOI: 10.1016/j.ijid.2021.09.006.[2] Green, M.R. (2019). Nested Polymerase Chain Reaction (PCR). Cold Spring Harbor Protocols. DOI:10.1101/pdb.prot095182.[3] Asielle, P. J., Baeumer, A. J. (2012). Miniaturized isothermal nucleic acid amplification, a review. Lab Chip, 11, pp. 1420-1430, DOI:10.1039/C0LC00666A.[4] Morley, A.A. (2014). Digital PCR: A brief history, Biomolecular Detection and Quantification, 1(1), pp. 1-2, DOI: 10.1016/j.procbio.2012.11.007.[5] Kojabad, A. A., Farzanepour, M. Galeh, H. E. G. et al. (2021). Droplet digital PCR for viral DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology, DOI: 10.1016/j.bdq.2014.06.001.[6] Ladetto, M., Brüggemann, M., Monitillo, L. et al. (2013). Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders, Leukemia, 28, 1299-1307, DOI: 10.1038/leu.2013.375.关于作者Kerstin ThurowCenter for Life Science Automation, Universität Rostock, Rostock, DeutschlandRostock, Germany教授、博士、工程师。于 1995 年在慕尼黑路德维希马克西米利安大学获得博士学位。1999 年,她取得了测量与控制工程的资格。同年,她被任命为罗斯托克大学工程学院“实验室自动化”教授。自 2004 年以来,她一直担任罗斯托克大学“自动化技术/生命科学自动化”系主任,并担任罗斯托克大学生命科学自动化中心主任。她的研究主题包括生命科学过程的自动化、机器人技术、移动机器人技术以及系统集成和系统工程。原文:Automation of Polymerase Chain Reaction (PCR),Wiley Analytical Science newsletter,8 February 2024供稿:符 斌
  • 岛津应用:贻贝中脂质成分的全二维分析方案
    在代谢组学中将对整体脂质进行系统分析称为脂质组学。脂质是生物的能量之源,是生物膜的主要构成成分,也担负着参与生物体内信号传导的重要作用。但是,构成脂肪酸的种类和不饱和度的组合多种多样,因此,在同时检测中很难进行全面的分析。对生物样品进行整体脂质提取后,通常先根据脂质的种类采用正相或HILIC(亲水相互作用色谱)进行分离,再对各部分脂质进行LC/MS分析。该方法的缺点是耗时较长。 全二维液相色谱仪可组合一维和二维不同的分离模式,并根据其分离特性,在各维的单独分析中对难以分离的组分进行高度分离。本文向您介绍使用可有效对多脂质组分进行全分离的岛津Nexera-e系统对贻贝中的脂质进行分离的分析示例。在一维系统使用HILIC色谱柱进行半微量分离,在二维系统进行超快速反相分离,并联用了岛津离子阱飞行时间质谱仪(LCMS-IT-TOF)作为检测器。Nexera-e和LCMS-IT-TOF联用可以得到受外部环境影响而变化的整体脂质的属性信息,从而可以对海洋生物的生物标记物及其脂质组分的变化进行更深层次的分析。 了解详情,敬请点击《Nexera-e 和LCMS-IT-TOF 联用对贻贝中脂质成分进行全二维分析》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 德国卓越科技的秘密:资金流动+集群炸弹
    p style=" text-align: center " img title=" 20179141229163900.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/0614875a-436a-4a2d-8ac3-53d157b8774b.jpg" / /p p style=" text-align: center "   图片来源:Sean Gallup/Getty /p p   物理学家出身的德国总理默克尔,知道科研的价值在哪里。不管询问哪位德国研究人员,为何该国的科学基础正在蓬勃发展,他们肯定会提到德国总理安格拉?默克尔。他们说,这位世界上最强大的女性,并没有忘记她作为东德物理学家的根。 /p p   在全球金融动荡的10年里,默克尔政府用一个稳定、可预测、典型的德国方式增加了年度科学预算。刺激了大学之间的竞争,并改善了与该国独立公共资助研究机构的合作。在默克尔的领导下,德国在可再生能源和气候等领域保持了世界领先地位,而在对基础研究的大力支持下,对其他部门的影响也在增加。 /p p   于是,外国研究人员越来越多地选择在德国发展自己的事业,而不是选择像美国或英国这样的传统“大脑磁体”。随着国家准备在9月24日举行全国选举,大多数旁观者预计这种乐观趋势将继续下去。 /p p   实际上,德国的成功背后的原因不仅仅是科学预算的增加,或者是某种默克尔效应。也是德国主要的大学研究资助机构DFG的副总裁。德国马普学会税收法律研究所所长、德意志研究联合会(DFG)副会长Wolfgang Schon说,“像默克尔一样,这个国家有着深厚的科学根基。” /p p   在20世纪的动荡之前,德国在科学和技术方面处于世界领先地位 它确立了许多国家仍然遵循的传统。而现在德国的研究仍一如既往的强大,尤其是在一个似乎越来越对科学漠不关心的全球舞台上。纽约哥伦比亚大学的政治学家Kenneth Prewitt表示:“如果我们的科学政策和预算决策人愿意从今天的德国吸取经验教训,我将很乐意。” /p p   德国为第二次世界大战付出沉重代价。1949年,德国被重新建立为两个国家,在对立的政治体制下仍重建了各自的科学实力。至今仍然有效的西德民主宪法宣布:“艺术和科学、研究和教学应该是免费的。”为了确保权力的集中和滥用再也不会发生,它创造了一个高度联邦化的国家,在这个国家里,文化、科学和教育的责任都与联邦或国家有关——这一特征对大学的发展有负面影响,也有积极影响。 /p p   相比之下,共产主义的德意志民主共和国采取集中研究模式并将其置于严密的控制之下。默克尔就在这个体系中长大。1978年,她毕业于莱比锡的卡尔· 马克思大学,获得了物理学学位,随后进入柏林的中央物理化学研究所,并获得了荣誉博士学位。她对物理学的热情并没有扩展到所需要的政治教育。在德意志民主共和国,获得博士学位需要有研究马列主义的附带证明,而默克尔关于这个问题的论文以最低及格分数被接受。 /p p   1990年,当德国统一时,专门委员会评估了德意志民主共和国科学家的能力。许多人失去了工作,但默克尔的丈夫Joachim Sauer被接受转到柏林的洪堡大学。默克尔也开始投身民主政治,很快就加入了中间偏右的基督教民主联盟(CDU)。她顽强地进入了党高层,并于2005年成为德国首位女总理。 /p p   默克尔在2009年和2013年的联邦选举中获胜,并仍有望保住自己的位置。(在德国,作为政府首脑,没有时间限制。)今年3月,她表示:“我自己来自基础研究,总是告诉自己,你不能预测那里的事情,只需要留下空间。” /p p strong   稳定的支持 /strong /p p   德国公共科学经费被分为五大支柱:大学及其四个独特的研究机构,每一个都以德国历史上的科学巨人命名。 /p p   马克斯· 普朗克学会成立于1948年,现在管理着81个基础研究机构,该机构有巨额预算和自由支配权利。弗劳恩霍夫协会成立于1949年,致力于应用研究。它是以巴伐利亚物理学家、精密光学的先驱Joseph von Fraunhofer的名字命名的。若干国家研究中心主要根据政府的优先考虑开展大规模战略研究,现在隶属于亥姆霍兹联合会——以物理学先驱Hermann von Helmholtz名字命名。其他科学机构和设施则被打包成一个以博学家 Gottfried Wilhelm Leibniz命名的协会。 /p p   按照1949年签署的协议,联邦政府与国家共同分担研究机构的费用。但总的来说,国家必须自己资助大学。“这种结构的明确性和透明度获得了德国人的喜爱。”马普学会煤炭研究所所长Ferdi Schü th说。“这也让外部人士(包括政界人士)更容易理解。” /p p   尽管德国统一时问题重重,但政治家一直保持着对科学的坚定和强有力支持。直到2015年,政府增加了所有研究机构和DFG每年5%的预算,联邦政府和国家目前的“研究与创新协议”将一直持续到2020年,增幅仍保持在3%。 /p p   “未来资金的安全性使我们能在长期内真正规划研究策略。”马普学会主席、化学家Martin Stratmann说,“这是很少国家能拥有的巨大优势。” /p p strong   资金流动 /strong /p p   20世纪70年代末,免疫学家Dolores Schendel前往慕尼黑路德维希马克西米利安大学(LMU)进行博士后工作,一开始她只计划帮助LMU的骨髓移植计划建立一个小鼠实验室。 /p p   但这些设施是诱人的,随着Schendel的研究开始越来越多的转化,而不再适合出高知名度论文后,她知道她可以依靠当地的资金支持。后来,她搬到了亥姆霍兹中心,以扩大她的工作。 /p p   然后,当Schendel创立的一家初创公司被收购后,她成为慕尼黑一家免疫治疗公司的首席执行官和首席科学官。现在她正在进行候选癌症疫苗的临床试验。 “我不确定我是否能在美国实现这一目标,因为在美国,资金往往更不稳定。”她说。 /p p   但Schendel是一个罕见案例。尽管德国在工程领域是无可争议的世界领袖,但它在新兴领域(如生物技术)实际应用转化上鲜有成功案例。1990年新生国家不得不解决一些系统性问题,比如缺乏跨机构合作。 /p p   1999年,默克尔政府修改了一项法律,要求政府向大学“放权”,从分配预算到进行学术研究。国家一个接一个地开始允许大学管理自己的事务。 /p p   同样的政府也提议对大学进行重大改革。德国在2005年启动了“卓越计划”,鼓励大学竞争联邦资金促进顶级研究。在所有类别中胜出的大学在获得“精英”称号的同时,也有额外的现金。 /p p   默克尔政府也提议联邦政府直接资助大学研究,并允许大学提供高薪吸引或留住最好的科学家。 /p p   自2005年以来,物理学家Axel Freimuth一直是科隆大学校长,他说这所大学已经变得面目全非,他也见证了“卓越计划”和“大学教学改革”的必要性。随着大学自治的到来,Freimuth说:“这里有一种全新的精神。” /p p strong   集群“炸弹” /strong /p p   与此同时,研究集群热已经占领了德国。时任该国教育和研究部部长 Annette Schavan启动了7项全国性创新计划。最引人注目的是,她在亥姆霍兹协会的创建了一个国立卫生研究院网络,将诸如神经变性或代谢性疾病等健康领域的全国研究能力聚集在了一起。 /p p   柏林也在试验将Charite教学医院和亥姆霍兹协会的马克斯· 德尔布吕克中心的健康研究进行整合,并将其纳入一个名为柏林健康研究所的科研转化机构。 /p p   “这些集群带来了巨大优势。”拥有海德堡大学和德国癌症研究中心联合职位的神经学家Hannah Monyer说。尽管它要求研究人员花更多时间来讨论和组织,但她说,“这是我们现在能做的最好事情”。 /p p   不过,这些深受研究人员喜欢的进步有时会受到行政和道德秩序的挑战。柏林健康创新计划血管生物学家Holger Gerhardt提到,他经常发现自己一直在提醒合作伙伴不要创建不必要的组织结构。因为,在德国,使用人类胚胎干细胞进行研究,除了一些旧的细胞系外,是禁止的——在这一点上,默克尔仍不可动摇。 /p p   总的来说,数字有力地证明了德国为科研作用的努力。德国大学的外国学者比例从2005年的9.3%跃升至2015年的12.9%。目前,在全世界引用率排名前10%的论文中,德国的排名高于美国。 /p p   当然,德国还有很长的路要走。例如,在基础设施方面,大学设施显得非常破旧。语言障碍也让有些科学家感到无力。而且,德国在提高女性在研究中的地位上还有很多工作要做。在大学里,担任高层学术职位的女性比例从2005年的10%上升到了2014年的17.9%,这仍然远远低于欧盟的平均水平。 /p p   但科学家相信,情况将继续稳步改善。默克尔的竞选纲领承诺继续支持研究和创新,并将年度预算提高到4%。每天,总理下班回到她位于洪堡大学附近的公寓里,和化学药剂师丈夫一起度过剩下的时间。Sauer说,“她知道什么是科学家、研究的价值是什么。这完全取决于她的根。”(张章编译) /p p /p
  • 仪器新应用!Kerr显微镜揭示二维铁磁体FGT中的CIDWM现象
    【科学背景】随着自旋电子学的发展,将电流转化为自旋电流的能力成为自旋电子学中至关重要的一环。自旋电流能够携带自旋和可能的轨道角动量,从而产生扭矩,用于操控局部磁化。这些扭矩的来源包括自旋转移和自旋轨道相互作用,它们构成了实现新型自旋电子学器件的基本构建模块。其中,基于磁性纳米线的竞赛轨道存储器设备,利用自旋转移扭矩和/或自旋轨道扭矩驱动的电流诱导的畴壁运动,被认为是下一代高速、高密度、低能耗的非易失性记忆器件的主要候选者。特别地,Fe3GeTe2(FGT)因其金属性质、可调谐的居里温度和强的垂直磁各向异性而备受关注。最近,FGT中观察到了各种手性磁性纳米结构,这些纳米结构需要DMI的来源。虽然曾有界面DMI的假设,但考虑到FGT薄片的相当厚度,这种假设似乎不太合理。相反,研究者认为这些手性自旋纹理的起源可能是体积型的。最近的研究表明,FGT晶体具有破缺反演对称性的晶体结构,这为体积型DMI提供了有力证据。然而,对于FGT的电流诱导磁化操控的研究还处于初步阶段,现有的研究主要采用了间接探测方法。直接成像受限于厚度较大的FGT样品,并且观察到的高速电控畴壁运动速度较慢。因此,研究人员需要一种更具挑战性的方法来解决这一问题。有鉴于此,马丁路德大学物理学研究所Stuart S. P. Parkin教授、安徽大学材料科学与工程学院Tianping Ma等人在“Nature Communications”期刊上发表了题为“Cur3t-induced domain wall motion in a van der Waals ferromagnet Fe3GeTe2”的研究论文,引起了不小的关注!本研究旨在利用磁光克尔显微镜(MOKE)技术探索FGT异质结中的高速电控畴壁运动CIDWM,并观察其在不同条件下的行为。通过将FGT与重金属铂(Pt)或钨(W)层结合,作者研究了畴壁运动的机制,并发现畴壁驱动的竞争行为。此外,作者还发现,作者的方法可以获得比以前报告的速度更高一个数量级的畴壁速度。【科学亮点】(1)实验首次探究了Fe3GeTe2(FGT)中的高速电控畴壁运动(CIDWM),并取得了重要发现。&bull 通过使用Kerr显微镜,作者观察到了在FGT薄片中实现的CIDWM现象,这是首次在该材料中进行的。&bull 在Pt或W层覆盖的FGT异质结中,作者证明了畴壁可以通过自旋转移和自旋轨道扭矩的组合进行移动。(2)实验结果表明CIDWM的速度比以前的研究中报告的速度高一个数量级,并揭示了畴壁运动的新机制。&bull 作者发现在异质结中,畴壁的驱动方式既可以是由STT单独引起,也可以是由STT和SOT的竞争机制共同作用引起。&bull STT和SOT之间的竞争导致畴壁运动方向的变化,随着注入电流密度的增加而发生改变。【科学图文】图1:由自旋转移力驱动的FGT中的CIDWM。图2. FGT/Pt和FGT/W异质结中的电流诱导磁化翻转。图3:在T = 70K下,FGT(8.1 nm)/Pt(3 nm)异质结中的电流诱导DW运动。图4:FGT/W异质结和原始FGT中DW速度随纵向磁场的变化。【科学结论】作者通过磁光学克尔显微镜成像研究了二维铁磁体FGT中的CIDWM现象。基于STT的CIDWM得到了清晰展示。作者观察到了在20K时畴壁的最高速度为5.68 m/s。畴壁运动的纵向磁场依赖性揭示了原始FGT中由DMI诱导的尼尔型畴壁。在FGT表面沉积了Pt和W薄膜,形成了重金属/铁磁体异质结。Pt和W中的自旋霍尔角的相反符号导致了SOT诱导的磁化翻转方向相反,以及CIDWM的不同行为。在FGT/Pt中,STT和SOT之间的竞争导致了较低的畴壁速度和随着电流密度增加而畴壁运动方向的改变,而在FGT/W中,STT和SOT互相促进,并导致与原始情况一样有效的畴壁运动。这样的DMI源于FGT薄片中铁原子空位的无序和铁原子的插层。作者的工作为基于二维磁体的功能自旋电子学器件的发展提供了启示。原文详情:Zhang, W., Ma, T., Hazra, B.K. et al. Cur3t-induced domain wall motion in a van der Waals ferromagnet Fe3GeTe2.Nat Commun 15, 4851 (2024). https://doi.org/10.1038/s41467-024-48893-y
  • 全国首批!又两项石墨烯相关二维材料国家标准正式发布
    近日,国家市场监督管理总局(国家标准化管理委员会)发布2021年第7号国家标准公告,批准发布386项推荐性国家标准和3项国家标准修改单,其中包括两项石墨烯相关标准:由泰州巨纳新能源有限公司牵头起草的国家标准GB/T 40071-2021《纳米技术 石墨烯相关二维材料的层数测量 光学对比度法》,以及由中国科学院半导体研究所牵头起草的国家标准GB/T 40069-2021《纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法》。以上两项标准同属于我国石墨烯领域首批国家标准计划项目,将于2021年12月1日起正式实施。石墨烯相关二维材料是层数不超过10层的碳基二维材料,包括石墨烯、双层石墨烯、少层石墨烯、氧化石墨烯等,具有优异的电学、光学、力学、热学等性能,引起了学术界和工业界广泛的研究兴趣。石墨烯相关二维材料的层数是影响其性能的关键参数。准确测量石墨烯相关二维材料的层数对于材料的研究、开发和应用意义重大。光学对比度法与拉曼光谱法因其快速、无损和高灵敏度等优势,被广泛应用于测量石墨烯、双层石墨烯、少层石墨烯等石墨烯相关二维材料的层数。《纳米技术 石墨烯相关二维材料的层数测量 光学对比度法》由泰州巨纳新能源有限公司、东南大学、泰州石墨烯研究检测平台有限公司等单位主导起草。利用光学对比度法测量石墨烯相关二维材料层数时,测量结果会受到硅(Si)衬底表面二氧化硅(SiO2)层的厚度、显微物镜的数值孔径、数据的处理方法等各种测试条件的影响。为提高层数测量结果的可靠性和一致性,该标准规定了光学对比度法(包括反射光谱法和光学图片法)测量石墨烯相关二维材料的层数的步骤、仪器参数要求、数据分析、层数判定准则。《纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法》由中国科学院半导体研究所 、贝特瑞新材料集团股份有限公司 、河北大学 、东南大学等单位主导起草。该标准规定了拉曼光谱法测量石墨烯相关二维材料层数时的样品制备、仪器参数要求、表征步骤、图谱分析及结果表示等内容,并列出基于本标准规定的方法测量某几个石墨烯薄片样品的实例。以上标准是重要的石墨烯相关二维材料层数测量方法标准,将为石墨烯相关二维材料的生产、应用、检验、流通、科研等领域,提供两种快速、无损和高灵敏度的测量方法,为石墨烯相关产业健康发展起到积极的推动作用。科技创新,日新月异,只有成为先进标准的制定者,才能在激烈的全球化竞争中增强产业核心竞争力,才能抢占战略性新兴产业发展制高点。值得一提的是,本次标准牵头起草方之一的泰州巨纳新能源有限公司,曾牵头制定我国首个石墨烯国家标准GB/T 30544.13-2018《纳米科技 术语 第13部分:石墨烯及相关二维材料》,该标准已于2019年11月起实施。泰州巨纳新能源有限公司成立于2010年,是国内最早从事石墨烯研究、检测、应用、标准化工作的公司之一。截至目前,公司获批国际标准2项,国家标准项目4项(2项已发布),江苏省地方标准2项,编制联盟标准项目7项(3项已发布);率先发布全国首批石墨烯检测技术领域19项企业标准。2013年组织召开了全国首届石墨烯标准化论坛。2016年12月,经国家标准委和中国科学院批准,承担全国纳米技术标准化技术委员会低维纳米结构与性能工作组(编号为SAC/TC279/WG9)秘书处,负责协调和组织全国低维纳米材料的标准化工作。2017年,被评为泰州市标准化先进集体。2018荣获泰州市首届标准创新奖。2020年被评为泰州市专利标准融合创新示范企业,同年获批承担全国微细气泡技术标准化技术委员会微细气泡技术应用工作组(编号为SAC/TC584/WG3)秘书处。从2013年起举办多项全国性标准化活动,打造了行业知名的LDMAS国际会议品牌,在全国乃至国际上形成了巨大的影响力。
  • 香港10月份仪器仪表出口同比下降近9%
    继2012年9月份录得15.2%的按年升幅后,2012年9月份转口与港产品出口合计的商品整体出口货值为2,970亿元,较2011年同月下跌2.8%。其中10月份转口货值为2,922亿元,下跌2.7%,而港产品出口货值为48亿元,跌幅为8.2%。同时,继2012年9月份录得14.9%的按年升幅后,2012年10月份商品进口货值为3,397亿元,较上一年同月上升3.3%。2012年10月份录得有形贸易逆差427亿元,相等于商品进口货值的12.6%。   2012年首十个月的商品整体出口货值较2011同期上升1.0%。其中转口货值上升1.3%,而港产品出口货值则下跌12.7%。同时,商品进口货值上升2.6%。2012年首十个月录得有形贸易逆差3,857亿元,相等于商品进口货值的12.0%。   经季节性调整的数字显示,截至2012年10月止的三个月与对上三个月比较,商品整体出口货值录得3.6%的升幅。其中转口货值上升3.6%,而港产品出口货值亦上升0.7%。同时,商品进口货值上升6.1%。   按主要货品类别分析   2012年10月份与2011年同月比较,部分主要整体出口货品类别的货值录得跌幅,尤其是「电动机械、仪器和用具及零件」(减67亿元,跌8.3%)、「衣物及衣物配件」(减28亿元,跌15.9%)和「专业、科学及控制用仪器及器具」(减8亿元,跌9.6%)。   同期,部分主要进口货品类别的货值录得升幅,尤其是「通讯、录音及音响设备和仪器」(增89亿元,升17.7%)、「办公室机器和自动资料处理仪器」(增52亿元,升17.7%)和「杂项制品(主要包括婴儿车、玩具、游戏及运动货品)」(增19亿元,升7.2%)。   2012年首十个月与2011同期比较,部分主要整体出口货品类别的货值录得升幅,尤其是「通讯、录音及音响设备和仪器」(增352亿元,升7.4%)、「办公室机器和自动资料处理仪器」(增260亿元,升8.1%)和「电动机械、仪器和用具及零件」(增124亿元,升1.7%)。   同期,部分主要进口货品类别的货值录得升幅,尤其是「通讯、录音及音响设备和仪器」(增683亿元,升15.7%)、「办公室机器和自动资料处理仪器」(增309亿元,升10.2%)和「专业、科学及控制用仪器及器具」(增86亿元,升13.5%)。   评论   政府发言人表示,商品出口货值在九月份显著加快后,十月份按年再现温和跌幅。商品出口货值的按年变幅在过去数月大幅波动,反映外围经济气候反覆不定。   发言人续指,虽然近月美国经济数据较为正面,而内地经济亦有加快迹象,但外贸环境仍然甚不明朗。欧元区经济再度步入衰退,而美国经济前景仍受财政悬崖逼近所困扰。我们要保持警觉。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制