当前位置: 仪器信息网 > 行业主题 > >

粒子加速

仪器信息网粒子加速专题为您整合粒子加速相关的最新文章,在粒子加速专题,您不仅可以免费浏览粒子加速的资讯, 同时您还可以浏览粒子加速的相关资料、解决方案,参与社区粒子加速话题讨论。

粒子加速相关的论坛

  • 【分享】美国计划关闭伏特加速器 终止寻找上帝粒子(图)

    【分享】美国计划关闭伏特加速器 终止寻找上帝粒子(图)

    http://ng1.17img.cn/bbsfiles/images/2011/01/201101162248_274506_2193245_3.jpg位于伊利诺斯州的美国万亿电子伏特加速器将于今年9月关闭,而不是像之前专家建议的继续运行至2014年http://ng1.17img.cn/bbsfiles/images/2011/01/201101162248_274507_2193245_3.jpg万亿电子伏特加速器停止运行以后,大型强子对撞机将成为世界上唯一一台寻找“上帝粒子”希格斯玻色子的粒子加速器

  • 关于公开征求国家标准《粒子加速器辐射安全与防护规定(征求意见稿)》意见的通知

    为贯彻《中华人民共和国放射性污染防治法》和《放射性同位素与射线装置安全和防护条例》,规范和指导粒子加速器的辐射安全与防护的要求,我部组织编制了《粒子加速器辐射安全与防护规定(征求意见稿)》,现公开征求意见。征求意见稿及编制说明可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。  各机关团体、行业协会、企事业单位和个人均可提出意见和建议。有关意见请书面反馈我部,电子版材料请同时发至联系人邮箱。征求意见截止时间为2022年7月31日。  联系人:中国原子能科学研究院金潇  地址:北京市房山区新镇中国原子能科学研究院  邮编:102413  电话:13522607655  邮箱:jinxiao_hp@ciae.ac.cn  联系人:生态环境部辐射源安全监管司刘建隆  地址:北京市东城区东安门大街82号  邮编:100010  电话:(010)65646139  邮箱:hejishuchu@mee.gov.cn  附件:[url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220706577239919428.pdf]1.征求意见单位名单[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220706577240092449.pdf]2.粒子加速器辐射安全与防护规定(征求意见稿)[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220706577241374184.pdf]3.《粒子加速器辐射安全与防护规定(征求意见稿)》编制说明[/url]     [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202207/W020220706577241990485.pdf]4.征求意见反馈单[/url][align=right]  生态环境部办公厅[/align][align=right]  2022年7月1日[/align]  (此件社会公开)  抄送:生态环境部核与辐射安全中心。

  • 【原创】带电粒子在电磁场中的运动方程

    【原创】带电粒子在电磁场中的运动方程

    [center]一、带电粒子在电磁场中的运动方程[/center]带电粒子在电磁场中运动时,将受到电场力和磁场力的作用。根据牛顿第二定律,带电粒子在电磁场中的运动方程为:[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112113026_01_1623423_3.jpg[/img][/center] 在回旋加速器中粒子的轨道大多呈圆形或螺旋线形,所以,当讨论粒子在加速器中的运动时常采用圆柱坐标系。以z代表轴向,以r代表径向,以Ө 代表辐向,则(2。1)式可写成三个分量的运动方程式:[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211325_01_1623423_3.jpg[/img][/center]

  • “上帝粒子”希格斯玻色子六问

    2012年07月04日 14:04 新浪科技微博 http://i1.sinaimg.cn/IT/2012/0704/U5385P2DT20120704140352.jpg位于瑞士和法国边境的大型强子对撞机(LHC)设备,它是全世界最强大的粒子加速器设备  新浪科技讯 北京时间7月4日消息,据国外媒体报道,欧洲粒子物理研究所的科学家近日表示,他们已经接近发现希格斯-玻色子。研究人员们已经捕捉到一些线索,目前的工作就是做进一步的努力去最终确定这一发现。那么究竟什么是希格斯-玻色子?它又为何如此重要?以下是一些常见问题的解答:  什么是希格斯-玻色子?  希格斯粒子是一种亚原子粒子,也就是说,理论上认为它应当是构成宇宙的最基本组成部件之一。但是它仍然有待实验观测证实。科学家们提出的物理学标准模型预言了这种粒子的存在,其作用是解释为何其它粒子会拥有质量。根据这一理论,在宇宙大爆炸之后,一种看不见的力,即希格斯场和与之相对应的粒子——希格斯-玻色子一同形成。正是这个场赋予其它基本粒子以质量的属性。  为何这一粒子如此重要?  希格斯场赋予整个宇宙中其它粒子以质量的方式可以用游泳者在水池中受到的水的阻力来做比喻。如果粒子没有质量,它们便可以在宇宙中以光速前进,因为质量的本质便是对物体改变其速度的制约性。  这种粒子最早是什么时候被提出来的?  有关这一粒子的理论最早是在1964年由6位物理学家共同提出来的,其中就包括英国爱丁堡的皮特·希格斯(Peter Higgs)教授。他们当时提出这一粒子的目的就是为了解释质量的起源。  理论上,这一粒子的存在将正好补全描述整个宇宙如何运行的物理学标准模型的缺陷,因此它便显得尤其重要。但是和其它构成宇宙基础构建的基本粒子不同,希格斯粒子至今仍然隐匿无踪,没有能在实验中被观察到。  如何对其进行搜寻?  欧洲核子中心的大型强子对撞机(LHC)是人类有史以来建造的最强大的粒子加速器,它的工作原理是将两束质子流以接近光速的速度迎头相撞,在此过程中得到其它粒子。  在1989年至2000年之间,科学家们也曾使用同样位于欧洲核子中心的另一台加速器LEP进行搜寻工作,而在今年年初由于经费不足被关停之前,美国的Tevatron加速器也进行过对这一神秘粒子的搜寻工作。物理学家们表示,目前所收集的数据仍处于分析阶段,或许它们最终将会对搜寻玻色子产生有益的影响。  那么科学家们如何能知道自己究竟是否发现了这样的粒子呢?  如果在LHC加速器中进行的数以十亿计的对撞实验中真的产生了希格斯-玻色子,根据预测,它应当是不稳定的,会迅速衰变为更加稳定,质量更小的粒子。物理学家们需要对这些衰变产物进行分析,并且通过分析来推断这种被称为“上帝粒子”的神秘粒子是否存在。  在分析过程中,希格斯粒子是否存在会从数据图形的峰值中体现出来。然而即便科学家们发现了这样的峰值,他们也不能就此宣布发现了希格斯粒子,只有当他们确认这一信号是统计误差的概率低于100万分之一时才能比较有把握的宣布发现结果。  如果最终发现,或者没有发现这样的粒子存在,意味着什么?  如果希格斯粒子最终被证实完全符合理论预期,那么这样可能会让物理学家们有一点点失望,因为他们原本指望此次在LHC的实验将会拓展人类对于宇宙的认识。但是从另一方面来讲,如果实验确认这样的粒子实际上并不存在,那么现有的标准模型将需要彻底改写,而我们对于宇宙的认识也将发生革命性的改变。(晨风)

  • 物理学基本粒子“上帝粒子”身份获新证据支持

    物理学基本粒子“上帝粒子”身份获新证据支持  新华网日内瓦3月14日电(记者 吴陈 王昭) 欧洲核子研究中心(CERN)14日发布公告称,对更多数据的分析显示,该中心去年宣布发现的一种新粒子“看起来越来越像”希格斯玻色子。  CERN去年7月4日宣布,该中心的两个强子对撞实验项目——ATLAS和CMS发现了同一种新粒子,它的许多特征与科学家寻找多年的希格斯玻色子一致。  物理学标准模型预言了62种基本粒子的存在,其他粒子都已被实验所证实,只有希格斯玻色子未得到确认。由于它极其重要又难以找到,故被称为“上帝粒子”。  根据最新公告,科学家分析了比去年的研究多两倍半的数据,计算新粒子的量子特性以及它与其他粒子之间的相互作用,结果“强有力地表明它就是希格斯玻色子”。  但CERN表示,目前还无法判断它到底是标准模型中的希格斯玻色子,还是其他理论预测的好几个最轻的玻色子的组合。要弄清这个问题,还需要大型强子对撞机搜集更多数据,对各种衰变模式进行分析,“找到这个答案需要时间。”  希格斯玻色子得名于英国爱丁堡大学物理学家彼得·希格斯,他预言了这种粒子的存在。假设中的希格斯玻色子是物质的质量之源,其他粒子在希格斯玻色子构成的“海洋”中游弋,受其作用而产生惯性,最终才有了质量。  对这一重大发现做出重大贡献的大型强子对撞机已于今年2月中旬进入第一次长期停机维护,CERN将对包括大型强子对撞机在内的整个系列加速器装置进行维护和升级。  停机期间很多实验工作将继续进行,其中包括对大型强子对撞机收集的新粒子数据进行分析。大型强子对撞机预计于2015年再次启动,届时其对撞能量将提高到设计最高能量——每粒子束流7万亿电子伏特。

  • 【原创】加速器的分类

    【原创】加速器的分类

    加速器的种类繁多,不同类型的加速器有着不同的结构和性能特点,也有着不同的适用范围。除了依加速粒子的能量来划分加速器外,常常还依加速粒子的种类或加速电场和粒子轨道的形态来区分加速器。[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112111445_01_1623423_3.jpg[/img][/center] 电子是最常见的一种带电粒子,它易于以大量自由电子的形式获得,也易于加速,它的静止能量为,0.511MeV,是常见加速粒子中最低的(表1)。电子在加速时容易达到相对论速度,在相同的加速能量下,电子加速器的尺寸、规模和造价在同类加速器中往往是最低的。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211728_01_1623423_3.jpg[/img] 轻离子型加速器加速质子、氘和α粒子以及H-、D-等负离子。氢离子的静止能量为938MeV,是轻离子中最小的,而它的荷质比(电荷数与质量数之比)为1,比氘和α高,是各种粒子中最高的。 原子序数Z2的各原子的(正或负)离子称为重离子。一般重离子的荷质比小,飞行速度低,难于达到相对论的速度。现有的加速器可加速元素周期表上的各种重元素的离子,包括铀离子,但重离子的加速效率低,加速设备的规模一般都比较大,造价昂贵。 加速电场和粒子的轨道形态是反映加速原理,决定加速器结构的关键因素。这四类加速器分别适用于加速不同能量范围、不同粒子,它们在性能上各有特色,相互竞争,相互补充,不断发展完善,而许多大的粒子加速器设备则往往由多种不同类型的加速器互相串接组合而成。 直流高压型加速器是利用直流高压电场加速带电粒子,包括单级和串列静电加速器;后者按电源电路的结构又可分为串激倍压加速器、并激高频倍压加速器、Marx脉冲倍压加速器等。这类加速器的主要特点是可以加速任意一种带电粒子且能量易于平滑调节;然而这类加速器的加速电压直接接受介质击穿的限制,一般不超过30~50MeV的加速能量,因此,加速器的能量不高。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211100_01_1623423_3.jpg[/img] 电磁感应型加速器用交变电磁场所产生的涡流电场加速带电粒子,包括电子感应加速器和直线感应加速器。前者的能量范围在15~50MeV,具有流强低(一般不超过0.5μA)、不宜加速离子的缺点。后者在脉冲状态下工作,既可加速电子也可加速离子,脉冲流强可达数十千安培。 直线共振型加速器利用射频波导或谐振腔中的高频电场加速沿直线形轨道运动的电子和各种粒子,这类加速器的主要优点是粒子束的流强高,并且它的能量可以逐节增高,不受限制。加速器的工作频率随加速粒子的静止质量的增加而降低,加速电子的典型频率为3GHz,质子为200MHz,而重粒子则在70MHz以下。为了使加速器的长度比较合理,通常要求加速电场的振幅达1~10MMeV/m以上,结果导致加速器的高频功耗高达兆瓦级。近几年研发的超导直线加速器可使运行成本降低2/3~4/5,其加速电子的最高能量达50GeV,质子达800MeV。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112111025_01_1623423_3.jpg[/img] 回旋共振型加速器应用高频电场加速沿园弧轨道作回旋运动的电子、质子或其它粒子。1930年劳伦斯提出回旋加速器的理论后,经多次反复的研究后于1931年和他的研究生利文斯顿(M. S. Livingston)成功的研制出了世界上第一台回旋加速器,这台加速器的磁极直径为10cm,加速电压为2kV,可使氘离子加速到80keV。几年后,劳伦斯的回旋加速器所达到的能量已超过天然放射性和当时其它加速器的能量。此后,人们按劳伦斯理论建造的经典回旋加速器可产生44MeV的α粒子或22MeV的质子。然而,由于相对论效应所引起的矛盾和限制,经典回旋加速器的能量难以超过20MeV。后来,研究人员根据1938年托马斯(L. H. Thomas)提出的建议,到60年代后建造了新型的等时性扇形聚焦回旋加速器(Sector Focusing Isochronous Cyclotron),70年代后,建造了大批能加速相对论性粒子的回旋加速器,尤其是在质子同步加速器基础上发展起来的贮存环和对撞机,在质心系统的有效作用能可达到2~40TeV。电子同步回旋加速器由于同步辐射的限制,其能量不高于8GeV。

  • 十问“上帝粒子”:新发现背后的谜团

    7月初,欧洲核子研究中心宣布发现了一种新粒子,其特征与号称“上帝粒子”的希格斯玻色子高度吻合,引起了学界的轰动和社会的关注。 但在新闻背后,感兴趣的读者或许会还冒出了不少问号:“上帝粒子”真是物理学家都梦寐以求的“圣杯”吗?它是否就隐藏在我们身边?为什么物理学大师霍金不相信它的存在?这次会不会又是一个类似“中微子超光速”的乌龙……带着这些疑问,科技日报记者采访了中国科学院高能物理研究所研究员、参与寻找希格斯玻色子的欧核中心CMS项目中国组成员陈国明。 “上帝粒子”并非一切物质的质量之源,而且只存在于宇宙大爆炸初期,科学家是要在实验室里“复活”它 科技日报:希格斯粒子为什么让物理学家如此关注? 陈国明:希格斯玻色子又称希格斯粒子,将它称为“上帝粒子”,是因为它是基本粒子的质量之源。 我们知道,物体由分子、原子构成,原子由质子、中子组成的原子核和绕核旋转的电子构成。而质子和中子都由夸克和胶子组成,夸克、胶子和电子等至今为止没有发现有更深层次的结构,因此被称为基本粒子。 简单地讲,有了希格斯粒子,基本粒子才有质量,有了质量才产生引力,才会有宇宙中的元素、恒星、行星和生命。 科技日报:今天宇宙中一切物质的质量是否都来自希格斯粒子,“上帝粒子”的称号是否名副其实? 陈国明:“上帝粒子”只是个通俗说法,不能说希格斯粒子给一切物质赋予了质量。 按照物理学标准模型,物质的质量来自两部分,一部分是夸克、电子等基本粒子的质量;另一部分则是基本粒子相互作用产生的结合能,这部分占的比重其实还要更大。 另外在物理学标准模型的62种基本粒子中,其他61种都已被实验证实了存在,只有希格斯粒子这关键一环仍然悬而未决,它的难以捉摸也让研究者多了几分敬畏。 科技日报:希格斯粒子为什么这样难找?如果它们就存在于我们身边的话,为什么这么多年都捕获不到它们的踪迹? 陈国明:根据物理学标准模型和大爆炸理论,我们的宇宙起始于一次大爆炸。大爆炸刚发生时,无数的正反粒子同时产生,轻子和夸克通过与希格斯场的相互作用获得了质量。这些粒子凝聚成物质,通过长时间的演化形成了星系。 而希格斯粒子的使命,在137亿年前的宇宙大爆炸初始就已经完成了。现在物理学家要再次寻获希格斯粒子的踪迹,就只有建造能量强大的对撞机,在里面给两束高能粒子进行加速、对撞,来模拟宇宙开始的时刻,在实验室里重新“复活”希格斯粒子。 然而每1012次的质子对撞,才可能产生一次希格斯粒子。就好比在一大堆沙子中,有一颗是金沙,需要找出来。更麻烦的是,这种粒子一旦产生就转瞬即逝,十亿分之一秒后就会衰变成光子和强子等其他粒子。 科学家只能通过观测这些粒子,反推它们会不会是希格斯粒子产生后又衰变出来的。 虽然时间仓促,但此次实验结果可信度足够高,而要确认“上帝粒子”现身可能还需继续投入巨资 科技日报:作为迄今最大、最昂贵的物理科研装置,大型强子对撞机(LHC)就是为了寻找希格斯粒子吗?为什么要造这么大的对撞机? 陈国明:LHC位于瑞士与法国交界处,加速器轨道总长27公里,投资30.68亿瑞士法郎,设计能量达14万亿电子伏(14TeV)。LHC设有4个对撞点——ATLAS、ALICE、CMS和LHCb,均有中国资金和学者的参与。其中两个主要实验ATLAS(超环面仪器)和CMS(紧凑缪子线圈)的目标,就是寻找希格斯粒子和其他新的物理现象。 对撞机的基本原理,是通过消耗大量能源给粒子加速,再让两束具有巨大动能的粒子对撞。能量越高,粒子相互轰击时发生的作用就越大,越容易产生希格斯粒子。此前费米实验室的Tevatron(万亿电子伏特加速器)和欧洲的电子对撞机从上世纪80年代开始运行,一直没找到希格斯粒子,后来发现就是因为能量太低。因此LHC从一开始就寄托着寻找希格斯粒子的最后希望。 科技日报:去年CERN格兰萨索实验室过早公布未经验证的“中微子超光速”错误结论,引起了学界的一些批评。这次CERN和费米实验室如此“高调”地公布发现新粒子,是否也有追求轰动效应,甚至说在欧债危机下争取公众支持、争取科研经费的考虑? 陈国明:此次所用的数据截止到今年6月中旬,而6月底就要完成数据处理,得出结论。这次公布结果,可以说在时间上确实很赶,很紧张,主要原因是为了在7月7日在澳大利亚开幕的世界物理学大会之前发布,在会上迎接全球同行的审议。另一方面恐怕也有争取公众支持的因素。 但与无心得出“中微子超光速”结论的OPERA项目不同,LHC的主要目的就是为了寻找希格斯粒子,自从2010年3月开始运转以来也取得了这一阶段所需的数据,而数据积累越多,实验灵敏度就越高,越有可能做出发现。应该说今年收获结果不算晚也不能算早,在预期时间之内。 此外,每个实验都从两个独立衰变到找到这个新粒子,而每个衰变道都有多个独立的研究小组得到一致的结果、CMS和ATLAS两个实验都取得了一致的研究结果,2012年的结果也与2011年的一致,加上确定性水平达到5西格玛(在统计学上为“真”的比率是99.99994%),出现“乌龙”的可能性应该说还是很小的。 至于美国费米实验室公布的结果,在灵敏度和价值上要低于LHC,而且他们的Teratron加速器去年底已经关闭了,这次是对以前数据重新分析。 科技日报:目前CERN也尚未确认这次发现的新粒子就是希格斯粒子,您认为要真正确认“上帝粒子”已经找到,还需要做哪些工作? 陈国明:虽然这次发现新粒子的一些特征,比如产率(出现几率)、衰变模型等与之前预言的希格斯粒子相吻合,但现在统计性太少,还不能确定这个新粒子的各种特性,因此这次也可能发现的是另一种新粒子。 以目前取得的数据,要最终确认希格斯粒子的存在恐怕还远远不够,仍然需要更多的实验数据积累。可能还需要再建一个高能量的直线正负电子对撞机,才能更仔细、准确地验证这个结果。不过要建这个对撞机,耗资会相当于数百亿人民币,跟LHC差不多,需要国际合作来实现。 并非所有物质理论模型都给“上帝粒子”留了位置,为了物理学的未来,必须搞清楚它的存在与否 科技日报:既然希格斯粒子被称为物理学家梦寐以求、苦苦寻觅的“圣杯”,为什么霍金此前坚持认为希格斯粒子不存在?为什么前几年寻找希格斯粒子的过程中,时常会出现一些怀疑之声? 陈国明:其实在物理学界,并不是所有人都相信希格斯粒子必定存在。像我是做实验物理的,此前也确实不完全相信它的存在。但毕竟希格斯粒子的存在与否,事关物理学标准模型的根基。无论相信、反对还是怀疑希格斯粒子的存在,大家都希望尽快把这个问题弄清楚,因此才会投入这么大的项目进行研究。 在理论物理学领域,标准模型并不是唯一的金科玉律。其他还有像超对称理论,认为存在多种希格斯粒子,且与标准模型当中的希格斯粒子有很大不同;而霍金等一些科学家则支持超弦理论,这种理论能把包括引力在内的自然界全部4种基本作用力统一起来,这是标准模型和超对称理论做不到的;但超弦理论中并没有希格斯粒子的位置。正因为这个,霍金才会出100美元跟人打赌说希格斯粒子并不存在,不过他打输了。 科技日报:如果这次能够确认发现了希格斯粒子,将对物理学有哪些意义? 陈国明:如果能证实这次发现的就是希格斯粒子,将是里程碑式的成就,使物理学迈出一大步。 粒子物理的标准模型之所以能被广泛接受,就是因为这个体系中的其他粒子都已经找到,和宇宙大爆炸也不冲突,证据基础非常扎实。而像超对称理论中预言每种已知的粒子都有一种伴子,但至今一种伴子都没有找到;超弦理论同样也没有证据。如果能确认希格斯粒子确实存在,物理学标准模型作为理论基础将更加坚实,从而推动物理学家探索其他前沿问题。 科技日报:当确认发现希格斯粒子之后,粒子物理学还要解释哪些悬而未决的问题? 陈国明:即使这次终于发现了希格斯粒子,仍远远不意味着粒子物理学即将画上圆满句号。物理学标准模型不是万能的,像暗物质、暗能量、物质与反物质不对称等问题,它都不能解释。而根据现有理论,我们的宇宙组成中有73%是暗能量,23%是暗物质,只有4%是目前理论所能解释的物质。 此外,目前人们认为夸克和轻子是最基本的粒子,它们是否还由更小的粒子组成,是否能组成不同于质子、中子的其他形态,也还需要进一步的研究。 科技日报:如果证明希格斯粒子不存在,或者这次发现了一种不符合现有理论的新粒子,是否会像19世纪末催生量子力学和相对论的经典物

  • 【求助】HRTEM中非晶态金属粒子转变为晶态?

    各位作TEM的大侠有没有遇到过在HRTEM下非晶态的金属粒子因为电子束的作用转变晶态的情况?我的样品是纳米铜粒子,100nm以内,加速电压为200kv,电子束辐照不同时间后,电子衍射花样先是非晶那样的光晕,后来是类似多晶的圆环。分析后初步怀疑是电子束的作用使非晶结构转变为多晶结构,但还不敢肯定。不知各位大侠有没有类似的经历?如果真是非晶转变为多晶,还有哪些辅助手段可以证明?就凭电子衍射环吗?

  • 费米实验室观测到新中性粒子 有助理解夸克形成

    据美国物理学家组织网近日报道,美国能源部费米国家加速器实验室CDF组的科学家们宣布,他们观察到了一种新的中性粒子——Xi-sub-b(Ξb0),属于重子,由一个奇夸克、一个上夸克和一个下夸克三个夸克组成。此前,标准模型已预言到其存在,而观察到该粒子有助于加强我们对夸克如何形成物质的理解。  中性粒子Xi-sub-b将是重子家族中的最新成员,科学家们测出其质量为5.7878吉电子伏特/库仑2。重子是由三个夸克形成的粒子,最常见的重子是质子(由两个上夸克和一个下夸克组成)和中子(由一个上夸克和两个下夸克组成)。

  • 【分享】上帝粒子发现过程中出现诡异情况 信号突然消失

    近日,美国国家费米实验室(Fermilab)的物理学家们使用位于伊利诺伊州.巴达维亚市的费米实验室兆电子伏特粒子加速器(质子—反质子对撞机Tevatron),经过长达数个月的努力,以期证实希格斯玻色子这个“上帝粒子”的存在性。而希格斯玻色子(Higgs boson)则是粒子物理标准模型理论预言的粒子,同时也是标准模型中最后一种未发现的粒子。

  • 【原创】回旋加速器的工作原理

    【原创】回旋加速器的工作原理

    在回旋加速器中心部位的离子源(Ion Source)经高压电弧放电而使气体电离发射出粒子束流,该粒子束流在称为Dees的半圆形电极盒(简称D型盒)中运动。D型盒与高频振荡电源相联为加速粒子提供交变的电场。在磁场和电场的作用下被加速的粒子在近似于螺旋的轨道中运动飞行。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105351_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105415_01_1623423_3.jpg[/img] 在回旋加速器中心区域,粒子被拉出后经电场的加速而获得较低的初速度v1,同时,磁场也对这些粒子产生作用,两种场作用的结果是粒子在Dee间隙(gap)内按螺旋轨道飞行。经过非常短的时间后,粒子经gap进入另一个Dee电极盒,此后,粒子在该Dee电极盒一边飞行到等电势的另一边。每越过一个gap后,其轨道半径将比前一次的轨道半径大。粒子运动的瞬时轨道半径将随时间t的增加而增大,粒子运动速度的平方与粒子旋转的圈数成比例。被加速粒子运动的螺旋轨道半径r与运行时间t的平方根成正比。带电粒子经多次加速后,圆周轨道半径达到最大并获得最大的能量,在该点处粒子将被束流提取装置提取引出。 若粒子的质量为m,所带电荷为q,所具有的运动速度为v,运动方向垂直于磁感应强度为B的磁力线,粒子受到垂直于v和B的劳仑兹(Lorentz)力的作用,使粒子沿着曲率半径为r的轨道作圆周运动。不同能量的离子在等时性磁场中沿各自的平衡轨道运行时,其回旋的周期与高频电场的周期相等。已知,一个带电量为q的粒子在磁场B中的回旋频率为[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105649_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105726_01_1623423_3.jpg[/img] 粒子的能量、磁场强度和粒子轨道半径是加速器的三个主要参数 相同q/m的不同粒子,如氘核和氦核,用相同射频(RF)和磁场强度,可以加速到相同的速度,而氘核的动能是氦核动能的一半。在回旋加速器中,为了加速质子达到与氘核相同的速度,往往在设计中使磁场强度B减低一半。加速所需的高频频率F和磁场强度B取决于粒子的质量和带电电荷q。通常根据所需的核反应能量及粒子的质量来设计加速电场频率和磁场强度。但随着粒子旋转速度的提高和能量的增加,相对论作用使得粒子质量将不再是一个常数,即m≠m0,当粒子的速度增加时,它的相对质量(Relativistic mass)也增加。因此,在匀强磁场中其旋转周期也不是一个常数,并且粒子会逐渐进入减速状态。因此,为了使粒子获得较高的能量,或增加磁场强度或改变F,这在一个普通的回旋加速器中是不可能达到的,而且质子在这样的回旋加速器中是不可能被加速到20MeV以上。所以传统的回旋加速器只能加速粒子到一定的能量。为此出现了等时性回旋加速器或调频加速器。 在回旋加速器中,带电粒子经多次加速后,圆周轨道直径达到最大而接近Dees的边缘并具有最大的能量,在该点粒子被束流提取装置提取出。一个粒子从回旋加速器中心飞行到提取装置的总时间约为5ms。在PETtrace回旋加速器中,质子达到16.5MeV的能量约飞行200圈,氘核达到8.5MeV的能量约飞行80圈。

  • 【原创】常用的商品化回旋加速器的类型

    【原创】常用的商品化回旋加速器的类型

    [center]常用的商品化回旋加速器的类型[/center] 回旋加速器已成为现代分子核医学研究和应用的重要工具。分布在全世界PET中心的医用回旋加速器,根据加速粒子种类分为正离子回旋加速器、负离子回旋加速器;根据加速粒子种类的多少分为单粒子加速器(Single-particle accelerator)和多粒子加速器(Multi-particle accelerator);根据提供束流加速平面与地平面是平行还是垂直而分为水平加速平面回旋加速器(卧式加速器)(horizontal-cyclotron)和垂直加速平面回旋加速器(立式加速器)(vertical-cyclotron)。 正离子回旋加速器生产正电子核素的许多核反应是由正离子介入来完成的,因此可用正离子回旋加速器直接加速正离子来轰击(Bombardment)靶核生产正电子核素。但加速正离子后得到的高能粒子束需要由金属电极偏转板形成的偏转电场来完成束流的引出,在引出过程中,高能粒子束与金属电极板以及屏蔽材料之间发生碰撞会引起附加的辐射。 负离子回旋加速器则利用碳剥离膜(stripping foil)(简称碳膜)来完成高能粒子束的引出。碳膜被驱动装置定位在回旋加速器内粒子旋转轨道半径上,当粒子束流的能量达到所需的最大能量时,所有出现在提取碳膜区域的负离子束必须穿过碳膜,在穿过碳膜期间,两个约束松弛的外层电子被剥离,负离子失去电子,转变为正离子。由于轴向磁场恒定不变,改变了电极性的粒子束受到与原来相反方向的磁场力的作用而改变了在磁场中运动方向,从而被引出而进入靶室。提取膜的位置直接确定束流的能量,并能够调整引出的束流引导进入任意的同位素生产靶。 单粒子加速器仅加速单一的离子,如EBCO TR19和GE MINItrace回旋加速器以质子(p)为加速粒子,进行经p介入核反应来完成正电子核素的生产,如利用16O(p, α)13N和18O(p, n)18F核反应分别生产13N和18F正电子核素。多粒子加速器可以加速两种以上的带电粒子,以多种核反应谱来完成正电子核素的生产,如PETtrace回旋加速器可加速质子和氘核,利用不同的靶材料按特定的核反应谱来生产11C,13N,15O和18F正电子核素;SCANDITRONIX公司生产的MC32回旋加速器则是多能量、多粒子的回旋加速器,除生产用于PET研究的正电子核素外,还用于生产其他同位素。该加速器除可加速氢核和氘核的正负离子外,还可加速氦核-3和α粒子。 立式加速器有较好的场地和维修服务优势,其场地优势包括着地点(footprint)小和所需要的空间高度低;虽然立式加速器的机体比卧式加速器高,它的磁轭门(Yoke)可以单向水平打开,而卧式加速器需要较高的空间限度以保证Yoke向上提升,因此需要昂贵的液压起重系统。立式加速器的维修服务优势是容易对中心区域的装置进行顺畅地维修和更换。再者,立式加速器的靶位往往局域化,这样因靶位而产生的放射性局限在一个区域,而卧式加速器的靶位常常在回旋加速器的周边,因此,回旋加速器的四周都分布有放射性。图1所示国内常用的几种医用回旋加速器。[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112112145_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211220_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112112214_01_1623423_3.jpg[/img][/center]

  • 【原创】带电粒子在电磁场中的运动方程

    【原创】带电粒子在电磁场中的运动方程

    [center]三、粒子特性参数与磁场参数间的关系[/center](一) 粒子封闭轨道的半径(rc)1. 轨道半径与粒子运动速度[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112115127_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021146_179775_1623423_3.jpg[/img][/center]2. 粒子轨道半径与粒子能量的关系 粒子在回旋加速器中运动的速度v通常较高,可与光速相比,因此须考虑相对论效应。根据相对论原理,粒子的运动质量与速度的关系为:设粒子的静止质量为m0,β为粒子的相对速度,则运动质量m为[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021150_179779_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021150_179780_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021150_179782_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021155_179786_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021156_179788_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021156_179790_1623423_3.jpg[/img][/center]

  • 科学家解析“上帝粒子” 或可进行时间旅行

    科学家解析“上帝粒子” 或可进行时间旅行

    http://ng1.17img.cn/bbsfiles/images/2012/07/201207051142_375967_1644522_3.jpg欧核中心的结果是否是最后的发现? http://ng1.17img.cn/bbsfiles/images/2012/07/201207051142_375968_1644522_3.jpg“上帝粒子”与上帝无关 http://ng1.17img.cn/bbsfiles/images/2012/07/201207051144_375969_1644522_3.jpg“上帝粒子”或是个大家庭 http://ng1.17img.cn/bbsfiles/images/2012/07/201207051144_375970_1644522_3.jpg“上帝”是否讨厌“上帝粒子” http://ng1.17img.cn/bbsfiles/images/2012/07/201207051146_375971_1644522_3.jpg曾被怀疑可进行时空旅行的“上帝粒子” http://ng1.17img.cn/bbsfiles/images/2012/07/201207051147_375972_1644522_3.jpg成为明星的“希格斯玻色子” 腾讯科技讯(Everett/编译)据国外媒体报道,2012年7月3日,似乎今天的人们都在为着同一样事件而等待,被喻为“上帝粒子”的希格斯玻色子让全世界为之疯狂。随着我们越来越接近这个神秘的基本粒子,在探索“上帝粒子”的过程中,一直不缺少关于该粒子的神话、谣言,而对于粒子物理学家而言,这项发现任务仅是至始至终的数学与理论模型。 在本周,欧洲核子研究中心大型强子对撞机(LHC)工作的物理学家们正在不懈地筹备一次大公告,这是否是我们一直等待的历史性时刻呢?在经典的量子物理模型中,百分之百的确认事件似乎将不太可能发生。当我们正在等待极为珍贵的“5西格玛”结果时,已经有了一些关于神秘的“上帝粒子”奇特的故事。自从大型强子对撞机的超导磁铁加速运转起来之后,“上帝粒子”古怪的行为已经被我们所认识、所困惑。 需要说明的是,寻找希格斯玻色子与“上帝”之间并不处在关联,希格斯也不是一个堪称“神圣”的事物,它由物理学家彼得·希格斯的名字命名,是一种自旋为零的基本粒子,并赋予了宇宙中物质的质量。因此,由于该粒子在标准模型中的地位,让我们认识到其中存在惊人的规律。 诺贝尔奖得主利昂·M·莱德曼(Leon M. Lederman)与科普作家迪克·特雷西(Dick Teresi)在1993年出版的书籍《上帝粒子:如果宇宙是答案,那什么才是问题?》中提到了令人难以捉摸的希格斯玻色子之谜。此后,主流媒体抓住了这个十分特别的名称,如同物理学家们努力寻找一个能解答宇宙终极规律的万能公式。虽然希格斯玻色子与上帝之间并不存在联系,但它却是宇宙万物的质量之源,是揭开宇宙中所有物质质量的关键步骤。 在2010年,美国费米国家实验室的万亿电子伏特加速器(Tevatron)工作的粒子物理学家提出了一个有趣的命题:希格斯玻色子是否还具有五种不同的类型,如果存在那么我们该如何命名它们呢?既然是被喻为“上帝粒子”,那么也许还有其他“孪生兄弟”粒子。该理论也被称为双希格斯子二重态模型(2HDM),暗示了宇宙中存在着更多希格斯玻色子,本项实验由费米实验室万亿电子伏粒子对撞机完成。但实验结果却令任何一个粒子物理学家感到惊讶,宇宙中可能不至存在一种希格斯粒子。 根据美国探索发现栏目工作人员詹妮弗(Jennifer Ouellette)调查,我们似乎对“上帝粒子”存在着潜在影响误解,许多物理学家认为“上帝粒子”不适合用于描述希格斯玻色子。费米实验室的科学家利昂·M·莱德曼在十多年前提出的这一词汇一直在此后的岁月中“误导”着一些人们,比如思想物理学家试图证明或者证伪与“上帝”存在有关的命题。如果希格斯玻色子是“上帝粒子”,那么许多粒子物理学家则是信奉多神教的人,因为希格斯玻色子可能不只一种。 从希格斯玻色子被提出到现在的发现成果看,该粒子在相当长的时间内逃避我们的探测,使得一些科学家们认为这是一个疯狂的发现之旅。在2009年,一位物理学家发表了一篇讲述为什么希格斯玻色子很难寻找的论文,其结果认为上帝讨厌希格斯玻色子的存在。 总的来说,该理论显得有些诡异,在希格斯玻色子被对撞机创造出来时,可发出特殊的传输信号,并在被探测器捕捉到之前却将加速器的信号磨灭了。因此,上帝并不想看到“上帝粒子”被人类所发现。而物理学家所希望的是通过对撞机实验发现“上帝粒子”所在的能量区间。 在1994年的科幻电影《时空特警》中,影片中的刺客进行了时间旅行,就如同回到过去的杀手将你的祖父杀死,而希格斯玻色子似乎被赋予类似的功能,甚至可进行时间旅行,在对撞机将其创造出来时它就进行了时间旅行,扼杀了向真实世界信号的发送。该情节酷似《时空特警》的续集。 根据范德比尔特大学理论物理学家汤姆·维勒(Tom Weiler)等介绍:“进行时间旅行的希格斯玻色子可能不会违背任何物理定律,基于该理论的希格斯粒子还会在同一时间形成一个被称为‘希格斯态’的粒子,可利用第五维时空进行时间旅行并回到过去。”根据相关研究人员的计算,这些“希格斯态”粒子的信号被送回到过去的某个时间上,因此该理论曾经被用于解释所有类型的“怪异的鬼把戏”。 对于“希格斯玻色子”成为一个类似名人效应的事物已经不不足为奇,尽管大多数的民众并不了解希格斯玻色子是何物,但这个曾经被假设的粒子显然更受到欢迎。有关“上帝粒子”的神话往往比真相来得更加夸张,并传出了似是而非的说法和传闻。而在欧洲核子研究中心宣布最新发现之际,该粒子已完全成为了世界的焦点。

  • 大型强子对撞机最新发现“美丽粒子”

    http://photocdn.sohu.com/20120504/Img342377026.jpg大型强子对撞机的紧凑渺子线圈探测器发现了Xi(b)*存在的证据  【搜狐科学消息】据国外媒体报道,大型强子对撞机(LHC)最近在进行原子粉碎实验时检测到了一个新的亚原子粒子,这是一个美丽的粒子。新发现的粒子早已被理论所预言,但从未被发现。  新的粒子被称为Xi(b)* ,是一个重子。据悉,重子是由三个更小的被称为夸克的物质组成。组成原子核的质子和中子也是重子。Xi(b)* 粒子属于所谓的美重子,其包含一个底夸克,亦称美夸克。虽然发现Xi(b)*未必见得是一个惊喜,但这一发现应有助于科学家解决“物质是如何形成的”这一更大的难题。进行大型强子对撞机实验的美国康奈尔大学的物理学家詹姆斯•亚历山大(James Alexander)说:“这是墙上的另一块砖。”  不同于质子和中子,美重子的寿命极其短暂,Xi(b)*存在不到一秒钟就衰变成其它21个短命粒子。美重子需要极高的能量才能创造出来,所以它在地球上除了原子加速器的中心,如坐落于日内瓦欧洲核子研究中心(CERN)的大型强子对撞机,其它地方都找不到。  大型强子对撞机的科学家不是直接发现这个新的粒子,而是他们看到了它衰变的证据,大型强子对撞机的紧凑渺子线圈(Compact Muon Solenoid,CMS)探测器捕捉到新粒子在质子和质子碰撞后的凌乱余波中衰变的过程。CMS的物理学家文森佐•奇欧奇阿(Vincenzo Chiochia)说:“寻找这个粒子真的很辛苦,在这样一个混乱的状况下寻找这种复杂的衰变,使我们对自己的能力充满信心,未来我们也可以找到其它新粒子。”  CMS的科学家表示,这个新粒子的存在已被证实,研究人员有99.99%的信心认为这一结果不是因为偶然。没有参与这项研究的费米实验室的科学家帕特里克•卢肯斯(Patrick Lukens)说:“这一发现进一步证实物理学家对夸克如何结合在一起的理解在本质上是正确的。”  这个粒子曾被物理学中非常成功的理论模型预言,被称为量子色动力学(quantum chromodynamics),该模型演示了夸克如何结合,以及如何创造更重的粒子。然而,卢肯斯说,发现Xi(b)*对寻找希格斯玻色子没有影响。希格斯玻色子可以解释为什么质量存在于宇宙中,它也是由量子色动力学模型所预言的粒子。(尚力)

  • 黑洞可化身新型粒子探测器 科学家提出证明“轴子”存在新方法

    中国科技网讯 据物理学家组织网6月18日报道,寻找新的粒子通常需要很高的能量,因此需要构建大型加速器等设备,其可将粒子加速至接近光速的速度,但也存在着其他创造性的粒子找寻方式:维也纳技术大学的科学家就提出了一种方法,能够证明假想的亚原子粒子——“轴子”的存在。这些轴子能够在黑洞周围积聚,并从中汲取能量。这一过程将放射重力波,并能被探测出来。相关研究报告发表在近期出版的《物理评论D》杂志上。 维也纳技术大学理论物理系的丹尼尔·格鲁米勒表示:“轴子的存在一直未被证明,但学界普遍认为它很可能存在。”轴子的质量极其微小,根据爱因斯坦的理论,质量与能量直接相关,因此生成轴子只需要极低的能量。 在量子物理中,每个粒子都被描述为一种波。波长则与粒子的能量相关。较重的粒子波长较短,而低能量的轴子的波长可达数千米。格鲁米勒等人的计算结果显示,轴子能环绕在黑洞周围,就像电子能围绕原子核运动一样。而与连接电子和原子核的电磁力不同,万有引力才能将轴子和黑洞联系起来。 此外,原子中的电子和环绕黑洞的轴子仍存在着巨大的不同:电子是费米子,这意味着两个电子永远不会处于同一个态;而轴子属于玻色子,这表示大多数轴子都能在同一时间占据相同的量子态。它们能在黑洞周围创造出“玻色子云”,这种云将连续不断地从黑洞中汲取能量,从而增加云中的轴子数量。 格鲁米勒表示,这种云并不十分稳定,其也能够突然崩塌。而最令人兴奋的是,坍缩时很可能测量到“玻色—新星”(bose-nova)爆发,即由玻色—爱因斯坦凝聚态所诱发的、非常小的、超新星状的爆发。这一事件能够催生时空的振动,放射出重力波。科学家因此可借助相关探测器,对其进行捕获。新的计算结果也显示,这些重力波不仅能够为我们提供有关天文学的新见解,也有助于科研人员更好地了解新型粒子的特性。(张巍巍) 《科技日报》(2012-6-21 二版)

  • 【原创】回旋加速器的发展史

    【原创】回旋加速器的发展史

    早期的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。为此,象R. Widerö e等一些加速器的先驱者在20年代,就探索利用同一电压多次加速带电粒子,并成功地演示了用同一高频电压使钠和钾离子加速二次的直线装置,并指出重复利用这种方式,原则上可加速离子达到任意高的能量。但由于受到高频技术的限制,这样的装置太大,也太昂贵,也不适用于加速轻离子如质子、氘核等进行原子核研究,结果未能得到发展应用。 1930年,Earnest O. Lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。1931年,他和他的学生利文斯顿(M. S. Livingston)一起,研制了世界上第一台回旋加速器,这台加速器的磁极直径只有10cm,加速电压为2kV,可加速氘离子达到80keV的能量(图1),向人们证实了他们所提出的回旋加速器原理。随后,经M. Stanley Livingston资助,建造了一台25cm直径的较大回旋加速器,其被加速粒子的能量可达到1MeV。回旋加速器的光辉成就不仅在于它创造了当时人工加速带电粒子的能量记录,更重要的是它所展示的回旋共振加速方式奠定了人们研发各种高能粒子加速器的基础。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625814_1623423_3.jpg[/img] 30年代以来,回旋加速器的发展经历了二个重要的阶段。前20年,人们按照劳伦斯的原理建造了一批所谓经典回旋加速器,其中最大的可生产44MeV的α粒子或22MeV的质子。但由于相对论效应所引起的矛盾和限制,经典回旋加速器的能量难以超过每核子20多MeV的能量范围。后来,人们基于1938年托马斯(L. H. Thomas)提出的建议,发展了新型的回旋加速器。因此,在1945年研制的同步回旋加速器通过改变加速电压的频率,解决了相对论的影响。利用该加速器可使被加速粒子的能量达到700MeV。使用可变的频率,回旋加速器不需要长时间使用高电压,几个周期后也同样可获得最大的能量。在同步回旋加速器中最典型的加速电压是10kV,并且,可通过改变加速室的大小(如半径、磁场),限制粒子的最大能量。 60年代后,在世界范围掀起了研发等时性回旋加速器的高潮。等时性回旋加速器(Isochronous cyclotron)是由3个扇极组合(compact-pole 3 sector)的回旋加速器,能量可变,以第一和第三偕波模式对正离子进行加速。在第一偕波中,质子被加速到6 MeV~ 30 MeV, 氘核在12.5 MeV~25 MeV, α粒子在25 MeV~50 MeV, He3 +2离子在18 MeV ~62 MeV 。磁场的变化通过9对圆形的调节线圈来完成,磁场的梯度与半径的比率为(4.5 – 3.5)×10-3 T/cm。磁场方位角通过六对偕波线圈进行校正。RF系统由180°的两个Dee组成,其操作电压达到80kV,RF振荡器是一种典型的6级振荡器,其频率范围在8.5 - 19 MHz 。通常典型的离子源呈放射状,并且可以通过控制系统进行遥控,在中心区域有一个可以活动的狭缝进行相位调节和中心定位。使用非均匀电场的静电偏转仪(electrostatic deflector)和磁场屏蔽通道进行束流提取,在偏转仪上的最大电势可达到70 kV 。对30 MeV强度为15 mA质子在径向和轴向的发射度(Emittance)为16p mm.mrad 。能量扩散为0.6%,亮度高,在靶内的束流可达到几百mA。用不同的探针进行束流强度的测量,这些探针有普通TV的可视性探针;薄层扫描探针和非截断式(non-interceptive)束流诊断装置。系统对束流的敏感性为1mA,飞行时间精确到0.2 ns 。束流可以传送到六个靶位,可完成100%的传送。该回旋加速器最早在1972年由INP建造,它可使质子加速达到1 MeV,束流强度为几百mA,主要用于回旋加速器系统(离子源、磁场等)的研究。 70年代以来,为了适应重离子物理研究的需要,成功地研制出了能加速周期表上全部元素的全离子、可变能量的等时性回旋加速器,使每台加速器的使用效益大大提高。此外,近年来还发展了超导磁体的等时性回旋加速器。超导技术的应用对减小加速器的尺寸、扩展能量范围和降低运行费用等方面为加速器的发展开辟新的领域。目前的同步加速器可以产生笔尖型(pencil-thin )的细小束流,其离子的能量可以达到天然辐射能的100,000倍。通过设计边缘磁场来改变每级加速管的离子轨道半径。最大的质子同步加速器是Main Ring(500GeV)和Tevatron(1TeV)在Fermi National Accelerator Laboratory Chicago;较高级质子同步加速器的是在Geneva的European Laboratory for Particle Physics (CERN)安装应用的SPS(Super Proton Synchrotron), 450 GeV。(图2,3所示的超导加速器)[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211241_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211258_01_1623423_3.jpg[/img]

  • 【原创】回旋加速器的组成

    从前面的原理中发现,为了保证回旋加速器顺利地加速粒子并将达到终能量的粒子引到外靶上,其应具有的基本组成为:(1)产生直流磁场的磁体:(2)包括D形盒的高频电压发生器; 加速器依靠这二者产生一个共振加速的环境并为加速粒子提供必要的电磁聚焦。 (3) 产生离子的离子源或离子注入系统; (4) 将加速完毕的离子引到外靶的偏转引出系统; (5) 真空系统; (6) 供电与控制系统。 不同型号的回旋加速器结构有较大的差异,但它们的基本组成相同,一般由磁场系统(Magnet System)、射频系统(Radio Frequency System RF)、真空系统(Vacuum System)、离子源系统(Ion Sounce IS)、提取系统(Extraction System)、诊断系统(Diagnostic System)、靶系统(Target System)、冷却系统(Cooling System)和屏蔽系统(Radiation Shield System)等主系统组成。这些系统运行状态的好坏,完全取决于日常的维护和保养。一台维护保养良好的回旋加速器可持续运行30~40年。因此,要求每一位操作者在掌握了回旋加速器操作原理的前提下,完全了解并掌握每台加速器的性能参数,认真作好日常维护和保养工作,以便提高加速器的使用率,适应并满足正电子显像的临床应用与研究需求。

  • 【分享】为寻找"上帝粒子" 欧洲大型对撞机延长运行一年

    欧洲核子研究中心的科学家准备让世界最大的粒子加速器大型强子对撞机(LHC)额外多运行一年,持续工作至2012年年底再关闭休整。他们相信,在这段时间里,LHC定能再接再厉,不负众望地找到希格斯粒子(或称希格斯玻色子),也就是传说中赋予其他粒子质量的“上帝粒子”。  按照原定计划,位于瑞士日内瓦边境地底长达27公里遂道内的LHC将于2011年结束本阶段的工作,然后进入长达一年休整期,对各项设备进行重大升级。如果新计划获得通过并实施,LHC的持续运行时间就将超过3年。据英国《自然》杂志网站 12月10日报道,目前围绕延期计划的一系列准备工作正处于最后的完善阶段,欧核中心管理委员会很可能于明年1月表决同意。  科学家们认为,LHC找到希格斯玻色子指日可待,这一重大发现可能“就在拐角处”。负责加速器维修和升级改造工作的史蒂夫·迈尔斯说:“就此停止将是一件令人惋惜的事。”  探寻希格斯玻色子之旅前景乐观  LHC的重要任务之一就是寻找希格斯玻色子。科学家们长期以来有个疑问,为什么有些粒子如质子比较重,而另一些粒子如光子比较轻?上世纪60年代英国物理学家彼得·希格斯大胆预测,存在一个希格斯场和希格斯玻色子。这种从理论上假定的希格斯玻色子是物质的质量之源,是电子和夸克等形成质量的基础。该机制被看作是粒子物理“标准模型”的必要延伸。  起初有人怀疑,就目前的运行能量而言,LHC是否能找到希格斯玻色子。自从2008年发生氦泄漏重大事故后,经过维修再次开机的LHC一直按照其设计能量的一半在工作。欧核中心工作人员原计划从2012年开始让LHC停止运行15个月,其间采集数据,以便让对撞机提升至最高能量状态(14万亿电子伏特)满负荷运转。  但现在,越来越多的科学家达成共识认为,即使不升级,LHC也已经在标准希格斯粒子可能存在的大部分范围内布下了罗网。欧核中心主管研究和计算的塞尔吉奥·贝托鲁奇表示,大多数物理学家的理想猜测是,希格斯粒子的质量介于114吉电子伏特到 600吉电子伏特之间(1吉电子伏特=10亿电子伏特)。质量将决定希格斯粒子如何衰减,也决定了它能否被轻而易举地探测到。  贝托鲁奇说,质量较重的希格斯粒子或许更容易被发现。这是因为较重的希格斯粒子很可能会衰变成两种稀有的重粒子,即所谓的W玻色子和Z玻色子。而在LHC碰撞实验所产生的粒子中,W玻色子对或Z玻色子对相较于其他粒子来说更加“鹤立鸡群”,容易辨别。如果希格斯粒子质量较轻的话,其留下的“签名”就会融入到背景中,使探测难度增大,而物理学家也需要将好几个月的碰撞数据集中到一起并从中过滤出有用信息。  尽管面临挑战,但贝托鲁奇对于LHC的监控面已经能够覆盖希格斯粒子出没之处的大部分区域表示“非常乐观”。2008年事故之后,这台机器的表现格外出色,他认为,对撞机具备在2011年至2012年运转期内提交大批所需数据的能力。此外,他说,LHC管理方认为,他们能够将粒子对撞能量从目前的7万亿电子伏特提升至8万亿电子伏特。

  • 桌面加速器不是梦

    2012年11月07日 来源: 中国科技网 作者: 毛黎 今日视点 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121106/021352217578281_change_chd2b25_b.jpg 激光等离子加速器(LAPs)因其加速空腔的长度可用厘米而不是公里(千米)来计量而被称为“桌面加速器”。近年来,由于技术的迅速发展,科学家有望开发出新型实用的激光等离子加速器。与当今传统的加速器相比,激光等离子加速器不仅造价十分低廉,而且对土地和环境的影响要小得多。 “体形”差异甚大 激光等离子加速器的研究已有多年,并取得了可喜的进展。2004年,美国能源部劳伦斯伯克利国家实验室激光和光学加速器系统综合研究项目的科学家,首次向人们展示了具有窄发散能量的激光等离子加速器电子束;2006年,他们首次将电子能量提高到10亿电子伏特。 常规的带电粒子(如电子)加速器有多段真空金属腔连接而成,外加给空腔的振荡电磁场让带电粒子被束缚在空腔内逐级加速,导致带电粒子被加速的主要因素是磁场加速梯度,它用每米多少伏特来表示。通常,输出的带电粒子能量越高,加速器的长度就会越长,因而加速器的长度可达数公里。 激光等离子加速器则不同。激光和光学加速器系统综合研究项目的科学家研发的能够产生10亿电子伏特电子束的激光等离子加速器能够放在手掌上,其长度只有3.3厘米。当强激光器将脉冲聚焦到加速器内的自由电子和正离子时,其辐射压导致电子和离子分离,产生出高强度的加速梯度。部分电子尾随在激光脉冲后面,有些几乎在同时达到了近光速的速度。在短距离内,激光等离子加速器能够维持每米数千亿伏特的加速梯度,常规加速器无法与此相比。 特性测量困难 然而,激光等离子加速器独特的电子加速方法和产生飞秒量级的电子脉冲给测量技术带来了难题,人们一时无法测量激光等离子加速器产生的高能电子束的质量。 现在,测量难题正在被逐步解开,这归功于劳伦斯伯克利国家实验室加速器和聚变研究分部科学家维姆·李曼斯领导的研究团队。李曼斯是激光和光学加速器系统综合研究项目的负责人,他所带领的研究团队拥有理论学家、计算机模拟专家和优秀的实验人员,他们不断改进激光等离子加速器的性能。在研究队伍中,不少学生为研究作出了重要的贡献,并获得了博士学位。例如,法国某综合工科院校的研究生吉拉姆·普拉图,他曾在项目中研究与激光等离子加速器产生的X射线相关的辐射,并将其作为自己博士论文的一部分,目前他在加州大学做博士后研究。 发射度很关键 激光等离子加速器产生的短电子束需要新的测量技术来了解其特性,而最具挑战的性能参数为发射度(emittance)。与普拉图共同在激光和光学加速器系统综合研究项目工作的研究人员卡梅隆·格德斯说,发射度是指电子束聚焦的好坏,小发射度意味着电子的速度方向不是随机四散而去,它们几乎沿着磁力线方向运动。 实验初期,发射度并不是研究所关心的重心。李曼斯表示,开始时,由于要获得与电子束相关的X射线脉冲波的图像,研究小组同德国重离子研究中心建立了合作。该中心的科学家带着高级商业相机来到劳伦斯伯克利实验室,帮助研究人员获得了所需的图像。他们为自己所看到的结果所鼓舞,因而希望了解利用这些图像还能做哪些工作。 实验室工程分部研究人员马尔科·巴塔格利亚随即提供了更先进的相机,它采用坚固和灵敏的劳伦斯伯克利实验室的电荷耦合器件,获得了更佳的图像。李曼斯认为,他们虽不是激光等离子加速器X射线成像的第一人,但是由于新相机成像质量的缘故,他们首次有能力仔细了解激光等离子加速器产生的X射线的光谱。 格德斯解释说,电子束的发射度能够通过光束大小和发散角来测量。传统方法是将丝线扫描仪正对着加速器产生的电子束测量发射度。不过,该方法能破坏低发射度的电子束。此外,在激光等离子加速器中,强激光能够毁坏测量设备。 X射线给答案 研究小组为解决电子束发射度测量的难题,采取了用磁场对激光等离子加速器的电子束进行偏转的方法来测量电子束的能量,同时利用加速器产生的X射线的信息来推算电子束的发射度。为此,他们借助了X射线摄谱仪。 格德斯表示,在等离子中,激光尾场对电子束进行加速。借助X射线成像,他们寻找到在等离子内测量电子束质量的方法。X射线是电子感应加速辐射的结果,产生电子感应加速辐射的原因为电子束内尾随激光脉冲的加速“气泡”。当电子束聚集在“气泡”内时,它们前后摇摆,这种电子感应加速振荡发射出了向前的X射线,其特征是密集、明亮同时超短。 激光束、电子束和X射线均沿相同的方向前行。为无干扰测量X射线,研究人员首先让电子束发生偏转,然而采用箔镜让激光发生反射,而只让X射线脉冲通过箔镜进入能够测量每个X射线辐射量子和计算出其能量的电荷耦合器相机中。虽然相机离加速器5米的距离,但是其捕捉到的密集的电子感应加速辐射脉冲的频谱含带有用来测量电子束半径所必需的信息。 格德斯说,通过将测量到的X射线频谱与理论推测的进行比较,他们确定实验中的电子束半径为0.1微米,此结果比过去任何实验所获得的都要小,同时也帮助他们估算出了电子束横截面的发射度,其为每千分之一弧度0.1厘米。 格德斯补充说,激光等离子加速器电子束的横向发射度可与先进的自由电子激光器和伽马射线源常规加速器的相媲美。他们完成的多次模拟显示,发射度取决于电子束缚在波动中的特殊途径,这为今后进一步降低发射度奠定了基础。 科学家认为,未来的激光电离子加速器既能作为基础物理研究用的紧凑式高能对撞机,又能作为小型光源。它们能够用于探测从人工光合作用到“绿色分析”的化学反应;了解显微镜无法观察的对认识生命和健康十分重要的独特生物结构;分析包括低温超导、拓扑绝缘体、自旋电子元件和石墨纳米结构在内的有望给电子产业带来革命性变化的新材料。毫无疑问,激光等离子加速器所产生的光谱范围从微波到伽马射线的高密度光束,能够为科学发展开拓新的领域。(记者 毛黎) 《科技日报》(2012-11-07 二版)

  • 【分享】大型强子对撞机将长期运行 有望发现上帝粒子

    北京时间2月4日消息,据国外媒体报道,欧洲核子研究中心(CERN)发言人詹姆斯吉利斯2月3日表示,在最新一轮实验中,大型强子对撞机(LHC)项目科学家可能会揭开物质质量之源的谜团。大型强子对撞机此次将不间断运行近两年时间,直至2011年底。 大型强子对撞机是世界上最大、最昂贵的科学设施,将于本月晚些时候再度启动。吉利斯在接受媒体采访时表示,科学家或能在这次实验期间揭开希格斯玻色子的庐山真面目。希格斯玻色子的特性难以捉摸,被称为“上帝粒子”,科学家认为它是物质的质量之源。苏格兰物理学家彼得希格斯在30年前曾表示,希格斯玻色子或许能解释物质如何聚在一起,创造宇宙及宇宙万物。 吉利斯在谈到希格斯玻色子时说:“只要它确实存在,我们发现它的几率将相当大。”据吉利斯介绍,大型强子对撞机这次将运行18至24个月,在此期间它将给科学家带来丰富的信息和数据。大型强子对撞机是一座位于瑞士与法国边界、日内瓦近郊的粒子加速器与对撞机,作为国际高能物理学研究之用,由欧洲核子研究中心负责管理。 即便大型强子对撞机不能揭开希格斯玻色子神秘面纱,这并不意味着它不存在。经过第一次的长期运行和历时一年的停工准备,大型强子对撞机可能会再次在最高能级启动。吉利斯说:“要想捕获希格斯玻色子,这或许是我们所需要的能量强度。”大型强子对撞机于2008年9月首次启动,但在长达27公里的地下环形隧道发生爆炸后被迫关闭。 这台对撞机旨在推动以相反方向高能运转的粒子撞击。数十亿次撞击将产生大量数据,以供欧洲核子研究中心和全球各地一万名科学家研究和分析,每一次撞击都会产生类似于137亿年前宇宙大爆炸发生瞬间的状态,有助人类进一步探索宇宙起源之谜。宇宙大爆炸喷射的物质最终形成了恒星、行星和地球生命,但希格斯理论认为,只有在希格斯玻色子这样的粒子将物质聚集在一起,赋予其质量,上述一幕才有可能发生。 大型强子对撞机2009年底大约运行了两个月,令粒子束在地下隧道撞击产生了2.36万亿电子伏特(TeV)的能量,这也是质子流对撞能级的最高纪录。上周,在法国小城夏蒙尼召开的会议上,欧洲核子研究中心的物理学家、工程师和项目经理决定长期运行大型强子对撞机,冬天也不关停。 吉利斯表示,如果一切按计划顺利进行,对撞产生的能量最终将达到7万亿电子伏特。到明年年底,大型强子对撞机将再次关闭12个月之久,以便工程师可以对环形隧道进行维护,安装大量新设备,为接下来的新一轮对撞实验做准备。下一轮对撞实验可能在2013年开始,目标是产生14万亿电子伏特的能量。作者:孝文 来源:新浪科技 发布时间:2010-2-4 10:43:44

  • 欧洲核子研究组织7月宣布是否发现上帝粒子

    2012年06月25日 15:07 新浪科技微博 http://i0.sinaimg.cn/IT/2012/0625/U2727P2DT20120625150658.jpg  欧洲核子研究组织(CERN)提供的一幅照片,展示了2009年科学家在日内瓦的CERN任务控制中心庆祝重启大型强子对撞机的情形。CERN宣布将于7月宣布大型强子对撞机是否发现神秘莫测的上帝粒子  新浪科技讯 北京时间6月25日消息,据美国物理学家组织网报道,欧洲核子研究组织(以下简称CERN)22日表示,将于7月宣布大型强子对撞机是否发现神秘莫测的“上帝粒子”。所谓的上帝粒子就是指希格斯玻色子,是理论上物理学标准模型缺失的一环。据信,上帝粒子赋予物体质量。不过,科学家一直未能发现这种粒子。  CERN表示,在7月4日于日内瓦举行的一场会议上,他们将公布利用大型强子对撞机寻找上帝粒子的最新进展。根据与上帝粒子有关的理论,质量并不来自于物体本身,而是来自于玻色子。这种粒子能够与其他一些粒子发生强烈的相互作用。  CERN发言人詹姆斯-吉勒斯在接受法国媒体的电话采访时表示:“我们曾在2011年12月宣布,在大型强子对撞机所产生数据中发现的线索不足以证明是否存在上帝粒子。在7月4日举行的会议上,我们将宣布这一年获取的数据存在的3种可能性,即一无是处;仍存在一些线索但又不足以证明上帝粒子是否存在以及可能发现这种粒子。这3种可能性都是存在的。”在日内瓦会议之后,澳大利亚墨尔本将举行一场大型物理学会议,公布寻找上帝粒子的最新进展情况。  大型强子对撞机是世界上最大的对撞机,位于日内瓦的一条27公里的环形隧道内。这条隧道位于地下175米,横跨法国-瑞士边境。两组方向相反的平行质子在隧道内以接近光速的速度移动并发生猛烈相撞,对撞机的一系列探测器负责记录撞击产生的亚原子碎片。  CERN负责加速器的主管史蒂夫-迈耶斯在一份声明中表示,墨尔本会议将公布对撞实验产生的数据。他说:“能够发现怎样的数据,我的内心充满期待。”CERN负责研究和数据处理的主管塞尔吉奥-贝尔托卢奇指出,2012年获取的数据是2011年的两倍。他说:“这些数据足以让我们确定在2011年数据中发现的趋势是否仍旧存在。这是一个令人兴奋的时刻。”如果发现新粒子,科学家需要时间进行研究以确定它到底是上帝粒子,还是其他未知粒子。(孝文)

  • 科学家提出未来20年粒子物理学研究框架

    追寻隐藏在物质、能量、空间与时间背后的秘密2013年08月10日 来源: 科技日报 作者: 常丽君 科技日报讯 据物理学家组织网8月8日报道,由美国物理协会组织的斯诺马斯夏季研究会于7月28日到8月6日召开,会上来自100所大学和实验室的近700位粒子物理学家经过9天的密集讨论,最后以一个统一的框架来总结。这一框架规划了物理学家如何在未来20年里揭示隐藏在物质、能量、空间与时间背后的秘密。 在过去两年中,物理学家在理解宇宙基本法则方面取得了非凡进步,但在有关宇宙性质的很多方面依然觉得困惑。比如中微子的基本属性、暗物质和暗能量的所有性质等等问题至今仍保持神秘。而在去年7月发现与希格斯玻色子高度近似的新粒子并不断加深确认后,物理学家们提出了一个粒子物理学未来研究工作的20年展望,包括了今后要研究的宇宙问题框架。 以下是问题简述: (1)希格斯粒子与人们迄今为止所遇到的任何其他粒子都不同,它为何会不同?还有更多的不同之处吗? (2)中微子非常轻、难以捉摸而且会在飞行中改变身份。怎样使这些特性符合我们对自然性质的理解? (3)已知粒子占了宇宙中所有物质的1/6,剩下来的是暗物质。但它究竟是什么?我们能在实验室里探测到这些粒子吗?自然界还有其他未发现的粒子吗? (4)自然界已知有四种力,它们能否统一成一种力的形式?还有其他科学家未曾预料的新力吗? (5)时空中是否存在隐藏的新维度? (6)大爆炸产生了物质和反物质,但我们今天的世界只由物质组成,为什么? (7)宇宙的膨胀为何会加速? “在粒子物理学领域有许多能量,也有大量的观点,”美国物理协会粒子与场分部主席乔纳森·罗斯纳说,“在过去的一年来,我们发现了希格斯玻色子,并在研究中微子行为上取得了重要成果。但还有更多秘密等着发现。我们对宇宙物质和能量掌握的还不到5%,而在未来20年里,将有什么实验来帮助我们拓展这些知识呢?” 此外,会议报告也反映了科学家们的下一代观念,包括了对研究生、博士生和该领域年轻科研成员的调查结果,而他们将成为粒子物理学界的中流砥柱。“我们对近1000名年轻科学家进行了调查。” 美国锡拉丘兹大学研究人员乔纳森·阿萨迪说,“斯诺马斯进程还在计划下一代实验,其中许多长达10年之久。今天的决定将造就未来年轻科学家的职业,从现在开始他们将执行这些实验。” 最终报告将于今年秋季公布,将详细解释每个问题的科学重要性,以及探索这些问题所需的科学仪器。会议报告将为粒子物理学项目优选小组(P5)提供决策参考,开发战略性计划并为美国能源部和国家科学基金会提供建议。(常丽君) 《科技日报》(2013-08-10 二版)

  • 【转帖】宇宙飞弹:天体物理学中的高能粒子

    序   1992年,有一个人类知道的飞行最快的物体打到犹他州上空25千米的地球大气层上。它击中地球大气层时的运动速度是光速的百分之99.999,999,999,999,999,999,999,对于平常物体而言,这是有可能达到的最快速度。这个所谈到的物体就是宇宙射线,更准确地说是一颗宇宙粒子。它的本性和起源仍是个谜,但它却是从宇宙空间连绵不断降落到地球上的无数粒子之一。   20世纪的物理学建立在两个深奥而强大的理论基础之上:相对论和量子力学。前者是关于空间和时间的理论,当物体速度接近光速时,各种奇异的效应就完全显示出来。后者是关于物质的理论,所显示的效应甚至比相对论更古怪,不过主要表现在原子和亚原子的尺度上。由于宇宙射线是以非常接近光速运动的亚原子粒子,所以它把现代物理学的这两个基本理论的全部特色结合进一个单一实体。因此,在这人类认识到的物理实在的两个最基本方面的交叉点上,我们期待着能看到全新的甚或完全不同寻常的各种现象的活动。   天文学也许是最大众化的科学。如今,大家常常听到谈论黑洞、类星体和脉冲星。人们都听到过宇宙起始于一次大爆炸,而且报纸上定期展示给我们从哈勃空间望远镜发回的图片。可是,科学界以外的公众对宇宙射线却几乎什么也不知道,尽管实际上宇宙射线的产物每时每刻都在穿过我们的身体,对宇航员和甚至空中航线上的旅客可能是一种严重的致癌危险。   基本粒子物理学成为另一个颇具魅力的科学分支有其自身的合理性。例如Lep(设置在日内瓦附近的CERN实验室)的巨型加速器使亚原子碎片在周长许多千米的环形管道中运转。这些技术上的巨人创造着宇宙大爆炸刚发生后通常会有的物理条件。它们的建造和运行须耗费数十亿美元,对它们进行操作需要科学家和工程师们组成的真正意义上的大军。

  • 加速器质谱仪

    由科技部、中科院、教育部联合共建的西安加速器质谱中心8月3日在西安宣布正式命名。科技部、教育部等部门的领导,西安交通大学副校长卢天健,中科院院士、西安分院院长安芷生为该中心揭牌。 加速器质谱仪(AMS)就是把加速器技术(一种把带电粒子加速到高能量的装置)结合质谱仪技术(一种分析和测量不同质量的原子或分子的仪器)而构成的一种超高灵敏度质谱分析设备。它分析的灵敏度可达10-12~10-16,也就是可以从千万亿个被测量的原子中把一个所要探测的原子分辨出来。因而,AMS也是精确探测微量的长寿命放射性同位素的最前沿的大型仪器设备。目前,由中科院地球环境所与西安交通大学组成的筹建组,已按原定目标完成了AMS基建工程建设、3MVAMS设备选型与引进、配套设施建设、主体设备的安装调试等工作。

  • 【求助】定性粒子与定量粒子的选择原则是什么?

    实验室的gc-ms终于调试好了,想先用一段时间再去参加厂商培训,开始在摸索中使用它做筛查。今天遇到一个问题,就是定性粒子与定量粒子的选择问题。关于定性粒子,是选择丰度最高的几个碎片粒子呢还是选择质量数相对较大的碎片粒子?关于定量粒子,是不是选择丰度最大的粒子峰就行了?请各位老师指教。先谢过大家了。[em0808]

  • 能量基本粒子(光粒子)就是构成万物(宇宙)的基本粒子

    连基本粒子都是永动的了,宇宙还不会永动吗?宇宙不仅永动,而且永变永存。只要物质是运动的就可以说明组成物质的基本粒子也是运动的,同理,只要能量是运动的,就可以说明组成能量的基本粒子(基本能量)也是运动的,能量与物质只有现象的区别,没有本质的区别,它们之间最终还是可以相互转变的。能量基本粒子(光粒子)就是构成万物(宇宙)的基本粒子。

  • 【原创】回旋加速器的组成

    【原创】回旋加速器的组成

    [center]一、磁场系统[/center] 磁场系统提供被加速的带电粒子在所控制的轨道中做圆周运动所需要的磁场强度,由磁铁、线圈、磁场电源配给系统(Magnet Power Supply PSMC)等组成。 现代医用回旋加速器的磁场结构设计根据粒子动力学和LH Thomas的轴向聚焦理论采用与传统回旋加速器的平面磁极不同的扇形磁极,其形成的深谷磁场代替了传统的匀强磁场。常用的扇形磁极有直边扇形磁极、螺旋扇形磁极和分离扇形磁极等。回旋加速器的磁体常见的有方形和C形两种结构,前者由两个横梁和两个立柱组成的磁轭加上两个磁极构成,是普通回旋加速器普遍采用的结构。而分离扇形的等时性回旋加速器则常采用后者,它可提供较多的空间来安放束流的其它设备。回旋加速器的磁铁通常由含碳量极低的工业纯铁或低碳钢制成。(一) 磁感应强度的选择[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021206_179795_1623423_3.jpg[/img][/center] 回旋加速器的工作磁场B愈高,其基本造价就愈低。从经济的观点看,B愈高愈好。然而,磁场过高时,磁体钢材的导磁率将迅速下降,发生“磁饱和”现象,此时不仅磁体激磁的效率大大下降,从而可使造价和运行费用反而升高,更重要的是磁场的分布将随激励水平的高低而发生显著变化,这将会给加速离子能量和品种的调节造成巨大的困难。因此,通常将B选择在1.2~2.0T之间。离子种类和能量固定的加速器的磁感应强度往往选在2.0T附近,离子和能量可变的加速器则选择在低限附近。 回旋加速器的磁铁通常用磁钢的锻件制成,也可用若干厚钢板迭焊后再进行加工而制成。为了达到高的磁感应强度B,所用的材料必须是饱和磁感应强度高的磁钢。钢材中的杂质(主要为碳)可造成饱和磁感应强度下降,因此通常采用含碳量极低的工业纯铁(“阿姆科”软铁)或低碳钢作为回旋加速器主磁铁铁芯的材料。 近年来,由于超导磁体技术的进展,已成功地将该技术应用于回旋加速器,建成了超导回旋加速器,这类加速器的磁体主线圈是用铌钛和铜的合金材料制成。当液氮将线圈冷却到4.2K时,通过的电流高达34000A,可产生约5.0T的强磁场。在这样的条件下,回旋加速器的尺寸只是常规型的1/3~1/2左右,而磁体的运行费用仅为常规的1/10。(二) 磁体设计与激励效率由Maxwell定律可以证明,磁通量与激磁绕组的安匝数之间存在着一种类似于欧姆定律的关系式,即[center][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021213_179805_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021213_179806_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021213_179807_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021214_179808_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021214_179810_1623423_3.jpg[/img][/center]

  • 离子“跑车”可迅速加速和突然刹车 可作为量子计算机中的量子位来传递信息

    中国科技网讯 据物理学家组织网8月9日报道,美国国家标准与技术研究院(NIST)的物理学家开发出了“另类跑车”——速度可以从零迅速提升到每小时161公里,然后在短短几微秒时间内“刹车”的铍离子。这些离子在骤然停顿时可以保持完全静止,“高速行驶”对它们几乎没有影响。科学家认为,这一点对于研制未来的量子计算机将大有帮助。 这些离子在一个离子阱中的行驶速度比以前所能达到的速度加快了100倍,确切来说,单个离子仅用8秒时间就前进了370微米。这项新实验还证明,研究人员可以对离子阱中离子的快速加速和突然停止进行精确控制,并且不会影响到离子的电子能级,这对于研发量子计算机而言非常重要,因为存储在这些能级中的信息需要被传递出去,而信息内容不能遭到破坏。 量子计算机可以解决很多目前相当棘手的重要问题。携带信息的量子位(或量子比特)需要在处理器中四处移动。用离子充当量子位,信息传递可以通过移动离子来实现。在过去,移动离子所用的时间比通过离子进行逻辑运算的时间要长,而新研究让这一难题迎刃而解。 研究人员在《物理评论快报》上描述了实验过程。他们将被囚禁的离子冷却至最低的量子运动能态,然后分别用一个和两个离子进行实验,让它们在一个多区离子阱中移动几百微米的距离。快速加速激发了离子的振荡运动,这是研究人员不希望的,但他们很好地控制了减速,使离子在停下来时恢复到了它们最初的量子态。 快速现场可编程门阵列(FPGA)技术是成功控制离子加速和刹车的法宝。研究人员对施加到离子阱中各种电极上的电压电平和持续时间进行编程,平稳的电源电压可以让离子快速移动,同时也能防止它们出现振荡。 研究人员认为,随着控制精度的提升,离子的运动速度还可以更快,并且在停止后仍然能够回到最初的量子态。但他们还必须努力应对许多实际的挑战,比如抑制环境中的嘈杂电场给离子运动带来的不必要的热量。(陈丹) 《科技日报》(2012-8-11 二版)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制