当前位置: 仪器信息网 > 行业主题 > >

粒度吸附

仪器信息网粒度吸附专题为您整合粒度吸附相关的最新文章,在粒度吸附专题,您不仅可以免费浏览粒度吸附的资讯, 同时您还可以浏览粒度吸附的相关资料、解决方案,参与社区粒度吸附话题讨论。

粒度吸附相关的资讯

  • 粒度仪、吸附仪“双打”生风 麦奇克拜尔亮相IPB2018
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 在2018年2018年10月17日-10月19日,第十六届中国国际粉体加工/散料输送展览会(IPB2018)上,麦奇克拜尔携两款重量级产品亮相,一款是比表面和孔隙分析仪BELSORP-max II(下简称max II),另外一款是激光粒度粒形分析仪Sync(下简称Sync)。展会上,麦奇克拜尔的中国代理商,大昌华嘉销售经理严秀英接受了仪器信息网的采访。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/574b39fc-032b-4a6b-a9bb-9aa4b81ffeaf.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 麦奇克销售经理严秀英 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/053c7e83-d13f-4d7e-b034-3166adef0b99.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 激光粒度粒形分析仪Sync /strong /p p style=" text-align: justify text-indent: 2em " Sync是2018年3月21日刚刚才中国隆重首发的新产品,自上市以来销售成绩可圈可点,在2018上半年,仅环境监测总站一家单位就采购了6台sync仪器。该仪器采用动态光散射技术原理,测量范围可达0.01-4000um,量程广阔,准确性为0.6%,重现性为0.5%,同时支持干法分散和湿法分散,几项重要指标都性能良好。 /p p style=" text-align: justify text-indent: 2em " 严秀英告诉笔者,Sync最大的亮点就是可在同一仪器,同一样品,一次进样,同一样品池,一次测量,同时得到粒径粒形结果。而其粒形检测技术结合了挪威AnaTec公司的研发成果和丰富经验。“AnaTec从1985年就开始研发出第一台动态图像分析仪,拥有30余年的经验。2013年,该公司被麦奇克收购,老板本身也加盟了麦奇克公司,成为了我们的粒度粒形专家。因此Sync的粒形分析能力值得信赖。”严秀英说。 /p p style=" text-align: justify text-indent: 2em " 另外,Sync另一个突出特点,就是其激光衍射法测量和动态图像法检测是在仪器中智能化自动切换,同步轮流进行的,因此既有激光衍射法的测试数据又有动态图像法的测试数据,并且检测速度很快,该仪器在进样后,只需要10-30秒的测量时间,就可以同时得到粒度、粒度分布和各项粒形结果分析。该仪器在高校科研院所、3D打印、电池、化妆品、油墨、制药、环境等行业有着广泛的应用。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/d9f49f8c-7790-4860-b752-9fb368143614.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 0em " strong BELSORP-max II比表面和孔隙分析仪 /strong /p p style=" text-align: justify text-indent: 2em " 另一款亮相IPB的仪器是max II。“我们的max II是吸附仪中的战斗机,很受市场的欢迎。”严秀英自信地说,该仪器比表面积测量范围为0.0005m2/g-无上限,孔径分析范围为0.35nm-500nm。绝大部分有机溶剂的蒸汽吸附和水蒸气吸附可升级到高压吸附系统,最高压力1MPa。相比于前代产品max,max II新增了一个分析站,可支持4站分析,并配有0.1torr的传感器,测试速度也提高了约1/3。另外,max II还采用了内部独有的保温技术。 /p p style=" text-align: justify text-indent: 2em " 据严秀英介绍,max II相比与市面上的其他仪器,主要有以下几方面的优势,一个是仪器采用静态容量法蒸汽吸附原理,这是麦奇克拜尔吸附仪最大的特色,max II可以做有机蒸汽吸附、水蒸气吸附、甲苯吸附等等,能够满足个性化科研工作的需要;其二具有出色的内部温控系统,控温最高可达80摄氏度左右。除此之外,可以与核磁共振、质谱、XRD等多种仪器联用,满足一条龙式科研表征的要求。最后,该仪器还采用气动阀进行密封,密封性优良,保证了测量下限的准确性。 /p p style=" text-align: justify text-indent: 2em " 正因为具有这样的特点,max II的用户群体主要集中在高校/科研院所,在MOF、催化剂、石化系统等方面都有广泛应用,在已购用户名单中清,也不乏清华大学、南京大学、中山大学,南京工业大学、苏州大学等重磅客户。 /p p style=" text-align: justify text-indent: 2em " 麦奇克针对粒度仪和吸附仪,布置了10多人的售后服务团队,在北京、上海、广州、成都、西安等地都设有售后中心,在北京和上海还设立了为用户提供免费支持的应用技术支持中心。“这几天在IPB展会上,已经有很多用户主动提出来想用我们的仪器进行试样检测,进一步交流对接,我们有信心在粒度仪和比表面领域获取更大的市场份额。”严秀英说。 /p
  • 颗粒表征技术-气体吸附法技术研讨会正式拉开帷幕
    比表面和孔隙度是确定材料质量和性质的两个重要参数,作为世界上第一家将自动表面分析仪、压汞仪投放市场的公司,美国麦克仪器一直致力于为颗粒表征行业提供更高效、更准确的气体吸附分析仪。如何用气体吸附法获得需求的实验结果?从实验报告你能得到什么?如何确定分析条件?2012年3月13日,麦克默瑞提克(上海)仪器有限公司&ldquo 颗粒表征技术-气体吸附法&rdquo 技术研讨会将为您解答。 麦克默瑞提克(上海)仪器有限公司应用部经理钟华博士将为你解读气体吸附技术的最新研究成果,和您交流比表面分析技术的宝贵经验,更有最新推出交互式分析软件MicroActive和大家分享。欢迎各位莅临指导。 日期:3月13日 时间:下午2:00 重点讲解:ASAP 2020 地点:中山大学材料科学研究所会议室(广州市新港西路135号材料科学研究所会议室) 厂家简介: 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。自1962年成立以来,美国麦克仪器公司因其在比表面积与孔隙度分析、压汞分析技术、沉降式粒度表征、各种密度测试,化学吸附分析与微型催化反应研究众多领域技术研究的前沿性及创新性,始终保持着细微颗粒分析仪器领域的世界领先地位。
  • 许人良:气体吸附测量孔径分布中的密度函数理论
    在气体吸附实验中,一定重量的粉体材料在样品管中通过真空或惰性气体净化加热和脱气以去除吸附的外来分子后,在超低温下被抽至真空,然后引入设定剂量的吸附气体,达到平衡后测量系统中的压力,然后根据气体方程计算出所吸附的量。这个加气过程反复进行直至达到实验所预定最高压力,每一个压力以及单位样品重量所吸附的气体量为一数据点,最后以相对压力(试验压力P与饱和蒸汽压Po之比)对吸附量作图得到吸附等温线。然后从到达最高压力后抽出一定量的气体,达到平衡后测量压力,直到一定的真空度,以同样方法做图,得到脱附等温线。实验的相对压力范围P/Po可从10-8或更高的真空度至1,根据吸附分子的面积σ,使用不同的吸附模型,例如Langmuir或BET公式,即可算出材料的比表面积。然而,从气体吸附得出材料的孔径分布就不那么简单了。当代颗粒表征技术可分为群体法与非群体法。在非群体法中,与某个物理特性有关的测量信号来自于与此物理特性有关的单个“个体”。例如用库尔特计数仪测量颗粒体积时,信号来自于通过小孔的单一颗粒;用显微镜测量膜上的孔径时,测量的数据来自于视场中众多的单个孔。由于这些物理特性源自于单个个体,最后的统计数据具有最高的分辨率,从测量信号(数据)得出物理特性值的过程不存在模型拟合;知道校正常数后,一般有一一对应关系。而在群体法中,测量信号往往来自于众多源。例如用激光粒度法测量颗粒粒度,某一角度测到的散射光来自于光束中所有颗粒在该角度的散射;用气体吸附法表征粉体表面与孔径时,所测到的吸附等温线与样品中所有颗粒的各类孔有关。群体法由此一般需要通过设立模型来得到所测的物理特性值及其分布。群体法表征技术得到的结果除了与数据的质量(所含噪声、精确度等)外,还与模型的正确性、与实际样品的吻合性以及从此模型得到结果的过程有关。几十年前,当计算能力很弱时,或采用某一已知的双参数分布函数(往往其中一个参数与分布的平均值有关,另一个参数与分布的宽度有关),或通过理论分析,建立一个多参数方程,然后调整参数拟合实验数据来得到结果(粒径分布或孔径分布),而不管(或无法验证)此分布是否符合实际。在粒度测量中,常用的有对数正态分布函数、Rosin-Rammler-Sperling-Bennet(RRSB)分布函数、Schulz-Zimm(SZ)分布函数等;在孔径分布中,常用的有Barrett-Joyner-Halenda(BJH)方法,Dubinin-Radushkevich(DR)方法、Dubinin-Astakhov(DA)方法、Horwath-Kawazoe(HK)方法等。随着计算能力的提高,函数拟合过程在群体法粒径测量中已基本被淘汰,而是被基于某一模型的矩阵反演所代替。在激光粒度法中,这个进步能实现的主要原因是球体模型(一百多年前就提出的Mie光散射理论或更为简单的,应用于大颗粒的Fraunhofer圆盘衍射理论)相当成熟,也能代表很多实际样品,除了长宽比很大的非球状颗粒以外。在孔径分析中,尽管函数拟合还是很多商用气体吸附仪器采用的分析方法,但矩阵反演法随着计算机能力的提高,以及基于密度函数理论(DFT)的孔径模型的不断建立与反演过程的不断完善而越来越普及,结果也越来越多地被使用者所接受。在孔径测量方面的DFT一般理论源自于1985年一篇有关刚性球与壁作用的论文[ⅰ]。基于气体吸附数据使用DFT求解孔径分布的实际应用开始于1989年的一篇论文[ⅱ],此论文摘要声称:“开发了一种新的分析方法,用于通过氮吸附测量测定多孔碳的孔径分布。该方法基于氮在多孔碳中吸附的分子模型,首次允许使用单一分析方法在微孔和介孔尺寸范围内确定孔径的分布。除碳外,该方法也适用于二氧化硅和氧化铝等一系列吸附剂。” 该方法从吸附质与气体的物理作用力出发,根据线性Fredholm第一类积分方程从实验等温线数据直接进行矩阵反演的方法算出孔径分布。所建立的密度函数理论针对狭窄孔中的流体结构,以流体-流体之间和流体-固体之间相互作用的分子间势能为基础,对特定孔径与形态的空隙计算气态或液态流体密度在一定压力下作为离孔壁距离的函数,对不同孔径的孔进行类似计算,得出一系列特定压力特定孔径下单位孔容的吸附量。基于这个模型,可以计算某个孔径分布在不同压力下的理论吸附等温线,然后通过矩阵反演过程,以非负最小二乘法拟合实际测量得到的等温线,从而计算出孔径分布的离散数据点。上述文章所用的模型是较简单的均匀、定域的、两端开口的无限长狭缝。自此,随着计算机能力的不断提高,30多年来这些模型的不断复杂化使得模型与实际孔的状况更加接近:从定域到非定域,从一维到二维,从均匀孔壁到非均匀孔壁;孔的形状从狭缝、有限圆盘、圆柱状、窗状,到两种形状共存;从较窄的孔径范围到涵盖微孔与介孔范围,从通孔到盲孔;吸附气体从氮气、氩气、氢气、氧气、二氧化碳,到其他气体;吸附壁从炭黑、纳米碳管、分子筛,到二氧化硅及其他材料[ⅲ];总的模型种类已达四、五十种。矩阵反演的算法也越来越多、越来越完善,同时采用了很多在光散射实验数据矩阵反演中应用的技巧,如正则化、平滑位移等。当前,于谷歌学者搜索“DFT adsorption”,论文数量则高达56万篇,其中包含各类专著与综述文章 [ⅳ] 。相信随着计算技术的不断发展与计算速度的不断提高,DFT在处理气体吸附数据中的应用一定会如光散射实验数据处理一样取代函数拟合法,成为计算粉体材料孔径分布的标准方法。而商用仪器的先进性,也必然会从传统的硬件指标如真空度、测量站、测量时间与参数,过渡到重点衡量经过其他方法核实验证的DFT模型的种类以及矩阵反演算法的稳定性与正确性。参考文献【i】Tarazona, P., Free-energy Density Functional for Hard Spheres, Phys Rev A, 1985, 31, 2672 –2679.【ⅱ】Seaton, N.A., Walton, J.P.R.B., Quirke, N., A New Analysis Method for the Determination of the Pore Size Distribution of Porous Carbons from Nitrogen Adsorption Measurements, Carbon, 1989, 27(6), 853-861.【iii】Jagiello, J., Kenvin, J., NLDFT adsorption models for zeolite porosity analysis with particular focus on ultra-microporous zeolites using O2 and H2, J Colloid Interf Sci, 2022, 625, 178-186.【iv】 Shi, K., Santiso, E.E., Gubbins, K.E., Current Advances in Characterization of Nano-porous Materials: Pore Size Distribution and Surface Area, In Porous Materials: Theory and Its Application for Environmental Remediation, Eds. Moreno-Piraján, J.C., Giraldo-Gutierrez, L., Gómez-Granados, F., Springer International Publishing, 2021, pp 315– 340.作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及近期由化学工业出版社出版的《颗粒表征的光学技术及其应用》。扫码购买《颗粒表征的光学技术及其应用》
  • 竞争性吸附仪SAA8100荣获2019年度科学仪器新品奖
    近期,仪器信息网举办的2020(第十四届)中国科学仪器发展年会(ACCSI2020)落幕,现场颁发2019科学仪器“优秀新品奖”。麦克仪器公司推出的竞争性吸附仪SAA8100凭借独特的创新技术,在众多厂商仪器的激烈竞争中脱颖而出,荣获2019年度科学仪器优秀新品奖。 科学仪器“优秀新品奖” 竞争性吸附仪SAA8100 SAA-8100竞争性吸附仪其创新独有的特色及应用优势,使其成为市面众多竞争性吸附仪中的一枝独秀。SAA8100广泛应用于气体分离,储存和纯化,突破曲线分析到二氧化碳捕获,吸附选择,储能,材料研究等领域,通过质量平衡提供高精度、可靠的、选择性气体/蒸汽混合物吸附数据,成为评估下一代吸附剂性能的高效工具。 关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。
  • 粒度分析仪 | 电池行业小助手
    电池材料粒径及其分布影响锂离子的扩散具有单分散粒径分布的颗粒因较高的比表面积而与电解质溶液产生较多的相互作用,从而决定了在短时间内的高能释放。大颗粒和小颗粒混合产生较高的堆积密度,从而允许生产较大的电极,有助于提高存储能力电导率和离子导电性差是锂氧化物阴极的主要缺点,炭黑和石墨等碳基产品有助于提高电导率,且涉及锂离子电池的电化学氧化还原过程。碳基产品通过填充活性材料颗粒之间的自由空间,从而提高电极导电性。作为添加剂的碳应与阴极材料形成均匀的混合物,以获得稳定的电极浆料,并形成均匀涂层。通过测量不同类型颗粒材料间的zeta电位选择静电相互作用最大的组合,最好粒子具有相反的表面电荷。湿法/干法—2合1设计40nm-0.25mmPSA激光粒度仪小巧,随时可以测量!• 干/湿法复合测试仪器 • 固态激光 坚固,耐用!• 光学部件固定在仪器金属基座上 • 无需频繁地重复校正 • 耐振动纳米粒度及Zeta电位分析仪0.3nm-10 µmLitesizer模式方法优势粒径及其分布动态光散射(DLS)3个测试角度Zeta 电位电泳光散射(ELS)信号处理专利 cmPALS 特有的Omega样品池分子量静态光散射(SLS)量程可至20 MDa透过率透光法用于连续监测测量过程中颗粒的沉降和聚集折光率焦点散射强度DLS 及 ELS中的关键参数 市场上仅有的配备该功能的仪器(专利)电动固体表面分析仪Surpass 32 分钟内即可测得结果 自动pH扫描和检测等电点的信息研究表面化学 记录液-固表面吸附动力学以研究表面相互作用 不同样品池用于不用形态的材料燃料电池的催化剂和膜图中是发生在阴极的反应:催化剂促进离子(H+)、电子和氧气(氧化剂)的反应,形成水或可能的其他产物的过程燃料电池应用相当广泛,具有工作温度低和启动时间短的优势。传导膜通常由碳载体、铂粒子、离子导电膜和粘合剂组成。碳载体作为电导体(允许电子通过),而铂粒子作为催化反应位点,离子膜为质子传导提供了途径。测试材料与方法铂碳(Pt/C)催化剂的颗粒大小影响催化剂与离子膜之间的相互作用、催化剂层的厚度、离子分布、氧的扩散,从而也影响最终电池的性能。zeta电位是影响粒子团聚行为的一个参数,通过zeta电位可以了解胶体分散体的稳定性。结果与讨论粒径——炭黑与铂炭催化剂图1. 炭黑和Pt/C催化剂的水动力直径(HDD)随pH的变化图1 显示了两种不同分散剂中碳和Pt/C催化剂流体力学平均直径(HDD)随pH的变化。在0.01 mol/L KCl和pH 1μm)。Pt/C催化剂的团聚体尺寸在pH 3-7 (HDD≅ 0.3 μm)范围内保持不变,与水中碳的团聚体尺寸相当。图2. DLS法测定pH为3.5时炭黑和Pt/C催化剂样品的粒径分布Pt/C催化剂的粒径分布较窄,且两种分散剂内的粒径均较小,碳的粒径和多分散度指数(PDI)均显著增加。在Pt/C催化剂中,Pt涂层可降低或抑制pH依赖性碳团的形成。图3. 使用激光衍射法对炭黑和铂炭催化剂颗粒进行测量从体积分布来看,无催化剂炭黑的平均直径明显更高,形成更大的团块。由跨度值表示的粒径分布宽度在两个样品之间是可比较的。铂颗粒增加了碳载体的表面积,提高了反应速率,有利于催化活性。Zeta电位——炭黑与铂炭催化剂图4. 炭黑和Pt/C催化剂zeta电位随pH的变化样品的zeta电位的绝对值随pH的降低而减小,pH低于4时加速减小。尤其是对于炭黑,zeta电位的绝对值小表明颗粒间的排斥力较小,颗粒开始凝聚。虽然两个样本的zeta电位都有下降的趋势,Pt / C催化剂更负 (- 40 mV),与炭黑相比表明更高的稳定性和形成更小的团聚体的概率。图5. 参考膜和不同碳含量的涂层膜表面zeta电位随pH的变化Zeta电位——离子膜图5. 参考膜和不同碳含量的涂层膜表面zeta电位随pH的变化图5显示了zeta电位随超过3的pH值的变化关系。IEP从参考膜的pH值1.5转移到较高的pH值3.5-4。zeta电位的变化表明涂层发生了变化。此外,两种覆膜的IEP表现出轻微的差异。对于含碳量较低的膜(灰色),IEP发生在稍低的pH值(3.5)。在该区域,通过查看pH值低于4的Litesizer 500数据,Pt/C催化剂的团聚体尺寸较小(HDD≅0.3 μm)。这表明,在该酸性区域进行涂层,最终涂层具有较好的均匀性。涂层的均匀性影响催化剂层的功能。图6.pH=4时,参考膜和不同碳含量的涂层膜zeta电位随时间的变化在第二次测量中,通过zeta电位随时间变化的测试,考察了pH为4时催化剂涂层在水中的稳定性。被涂膜的zeta电位向更小的负值偏移,证实了发生了涂层。在20分钟的平衡时间后,膜达到一个平台,这表明涂层的稳定性随着时间的推移。总结燃料电池中质子交换膜的效率与催化剂的粒径和稳定性密切相关。通过不同的pH值下对颗粒进行粒径及zeta电位研究可以找到合适的pH值,保证之后涂覆工艺的效果。通过Litesizer以及PSA的配合,充分了解了该催化剂中颗粒粒径的分布,并研究了小颗粒团聚之后的大小。通过Surpass 3测得的IEP位移和表面zeta电位值不仅提供了涂层的信息,而且还显示了碳含量对涂层的影响。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 麦克讲堂—手把手教你进行吸附热分析(20200616)
    如何获取材料的吸附热数据呢?分析吸附热数据时有哪些关键点呢?本次讲堂将手把手教你搞定吸附热数据。查看“手把手教你进行吸附热分析”视频请登录优酷视频搜索用户“micromeritics”或访问:https://v.youku.com/v_show/id_XNDcwNzUzMTQwOA==.html?spm=a2hzp.8244740.0.0关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。
  • 如何使金属合金的晶粒度分析符合您的需求(下)
    使用半自动和自动分析来确定平均晶粒度 半自动或自动分析(软件)可用于评估合金的平均粒度,方法见于标准ASTM E1382 - 97(2015)[6]中。平均晶粒度和晶粒度分布可通过上述的截距法或平面测量法来评估。结果的精度和准确性取决于合金样品的质量、样品制备方法、成像系统和图像分析软件。图12为利用平面测量法进行评估的示例。 图12:直方图(左)显示了钢合金的晶粒度数的分布情况。直方图的数据是通过自动图像分析获得的。分析后,钢合金图像中的部分晶粒根据直方图中的G值区间范围进行了颜色编码(右)。 晶粒度的准确性: 自动、半自动或手动分析 一般来说,相比半自动分析或对比目镜标线覆盖图或挂图,自动分析获得的结果更准确、精确、迅速。同样,半自动分析也比用目镜标线覆盖图的人工分析更加准确、迅速。搭载LAS X晶粒专家软件的徕卡显微镜可执行自动分析,该软件能够利用平面测量法和截距法进行评估。LAS X标线软件通过叠加显示器上显示的数字标线,可进行半自动化分析。图13对比了这些方法的准确程度。 图13:自动(LAS X晶粒专家)、半自动(LAS X标线)和手动(目镜标线或挂图比较)分析方法测量合金晶粒度时的准确性和精确度对比图。 双相晶粒度的表征部分合金在经过热机械加工后会表现出双相晶粒度。合金中的双相晶粒度包括系统性的晶粒度变化、项链和带状结构,以及在有临界应变的区域的发芽性晶粒生长。为了更好地了解合金的机械性能,表征双相晶粒度非常重要。标准ISO 14250:2000和ASTM E1181 - 02(2015)规定了确定合金中是否存在双相晶粒的准则[7,8]。其中还阐明了如何将双相晶粒度划分为2个不同等级中的1个,以及这些等级中的具体类型。图14显示了一个具有双相晶粒度的钢合金示例。 图14:通过双相晶粒度分析得到的直方图(左)显示了钢合金的晶粒度数的双峰分布情况。平均G值约为7和9。钢合金的图像(中)。图像中的部分晶粒根据直方图的G值区间范围进行了颜色编码(右)。 确定最大的晶粒度: ALA(As-Large-As)晶粒度分析 合金中过大的晶粒与有关裂纹起始和扩展,以及材料疲劳的异常行为相关。因此,合金表征使用了ALA晶粒度。标准ASTM E930 - 99(2015)规定了用于确定ALA晶粒度的方法[9],即测量合金中尺寸过大的晶粒,其尺寸明显均匀分布。请参考图15和表3,了解ALA分析的示例。 图15:钢合金的图像(左),晶粒按尺寸用颜色编码。直方图(右)显示了从ALA晶粒度分析中获得的钢材的晶粒度数分布情况。请注意,与小颗粒(G7)相比,大颗粒(G 表3:使用ALA分析对钢材进行的晶粒度测量数据。 晶粒度分析的困难案例 在合金晶粒度分析过程中,可能会出现下列困难: 样品制备出现伪影; 晶粒边界显示不清楚; 样品过度蚀刻; 微观结构复杂; 孪晶 为确保LAS X晶粒专家能得出准确的结果,选择优质的合金样品和样品制备方法非常重要[6]。如果样品制备不能提供良好的结果,或者微观结构偏离正常预期,则用户可以应用LAS X标线解决方案,对平均晶粒度进行估计,精度为±0.5G。 实用解决方案: 徕卡显微镜与LAS X晶粒专家软件 检测晶界的算法 在LAS X晶粒专家软件中,共有5种不同的算法可用于检测晶界: 1 单相; 2 双相; 3 双重晶粒度; 4 暗场; 5 偏振光。 用户选择与他们的实际合金样品最相似的处理后的图像(见图16)。 图16:与LAS X晶粒专家一起使用的参考图像,帮助用户选择最合适的算法(1-5)来检测晶界。 详细的晶粒度分析 LAS X晶粒专家软件能够用G(晶粒度数)来表示平均晶粒度,并计算出: 晶粒度数分布、标准偏差和其他统计值; 平均晶粒面积; 置信水平(P值); 结果的相对准确性。 请参考表4和图17,了解利用LAS X晶粒专家软件进行分析的示例。 表4:利用LAS X晶粒专家软件分析钢材晶粒度的数据。 图17:直方图显示了钢合金的晶粒度数分布情况。数据来自于LAS X晶粒专家软件的分析结果。平均晶粒数 = 10.76,标准偏差(σ)= 1.63,平均晶粒面积 = 134.55μm2,平均晶粒直径 = 11.23μm。 总结 本报告介绍了晶粒度分析对汽车和运输行业中使用的合金的重要性,并讨论了使用自动化、数字显微镜的方法进行分析的解决方案,这些方案实用,可得出精确的结果。 徕卡显微镜通过搭载LAS X晶粒专家软件,可为获得晶粒度结果和评估数据提供准确、可靠和高效的方法。它还支持一键批量处理和生成报告,操作非常简单。请参阅图18,了解徕卡显微系统的LAS X晶粒专家软件的各项优势。 图18:利用LAS X晶粒专家软件进行晶粒度分析的优势概述。 解决方案▶▶▶ 点击链接:下载关于 LAS-X 相关资料 Further Reading:(上下滑动查看更多) 1.M. Cavallini, V. Di Cocco, F. Iacoviello, Materiali Metallici, Terza Edizione, ISBN 978-88-909748-0-9, Luglio 2014. 2.Dionis Diez, Metallography – an Introduction: How to Reveal Microstructural Features of Metals and Alloys, Science Lab, Leica Microsystems. 3.Ursula Christian, Norbert Jost, Metallography with Color and Contrast: The Possibilities of Microstructural Contrasting, Science Lab, Leica Microsystems. 4.ASTM E112 – 13: Standard Test Methods for Determining Average, Grain Size, ASTM International. 5.ISO 643:2012: Steels -- Micrographic determination of the apparent grain size, International Organization for Standardization. 6.ASTM E1382-97(2015): Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis, ASTM International. 7.ISO 14250:2000: Steel -- Metallographic characterization of duplex grain size and distributions, International Organization for Standardization. 8.ASTM E1181-02(2015): Standard Test Methods for Characterizing Duplex Grain Sizes, ASTM International. 9.ASTM E930 - 99(2015): Standard Test Methods for Estimating the Largest Grain Observed in a Metallographic Section (ALA Grain Size), ASTM International. 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 儒亚科技(北京)有限公司 中标西南石油大学磁悬浮天平高压等温吸附仪
    儒亚科技(北京)有限公司中标西南石油大学磁悬浮天平高压等温吸附仪 2020年9月14日,中机国际招标有限公司受西南石油大学委托,拟对西南石油大学2020年石工院双一流学科第二批设备采购项目进行国内公开招标,并邀请符合本次招标要求的投标人参加投标。儒亚科技(北京)有限公司在全面研究了“西南石油大学2020年石工院双一流学科第二批设备采购项目”招标文件后,决定参加中机国际招标有限公司组织的项目投标工作。经过竞标,我司以雄厚的技术实力在2020年11月3日赢得这次政府采购合同。中标主要信息如下:一、招标编号:510201202074502 二、采购项目名称:西南石油大学2020年石工院双一流学科第二批设备采购项目三、中标金额:397.2万 本次中标产品是基于Rubolab的新一代磁悬浮天平的重量法高压等温吸附仪,能够完成高达700大气压下的煤岩和页岩的高压等温吸附曲线的测试,并且可以完成多组分的竞争吸附测试,广泛服务于煤层气、页岩气、致密砂岩气等非常规油气的储量评估和开发利用。 儒亚科技(北京)有限公司提供完整系列的吸附产品解决方案,产品涵盖磁悬浮天平重量法高压气体和蒸汽吸附分析仪、磁悬浮天平高压热重分析仪、全自动多样品PCT储氢分析仪、全自动多样品高压气体和蒸汽吸附仪、变压吸附分析仪、竞争吸附分析仪、动态物理吸附和穿透曲线分析仪、高压化学吸附分析仪、红外法快速吸附能力评价分析仪、液体挥发速率分析仪、固体和液体饱和蒸汽压分析仪、激光粒度粒形分析仪、CPS高精度纳米粒度分析仪等优秀的产品。 更多产品信息,请参考: https://www.instrument.com.cn/netshow/SH100498/C319082.htm
  • 大昌华嘉“吸附仪在新材料上的应用”全国巡讲
    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。   在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。   日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。     会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。   物理吸附同步连接XRD、GC、磁悬浮天平   化学吸附仪链接质谱、红外、低温脉冲和TPR   高压吸附仪在储氢材料的应用
  • 美国康塔仪器公司粒度粒形分析仪培训讲座在中石化催化剂长岭分公司成功举行
    颗粒大小及其形貌是描述颗粒性质的两个主要参数,因此粒度和粒形是材料物性表征的重要组成部分。用于表征粒径及其分布的粒度仪正面临着新的发展机遇,因为仅能提供单一参数的激光粒度分析仪已经无法满足日新月异的工业科技对同样粒度的颗粒进行属性区分要求! 北京时间2014年3月6日,美国康塔仪器公司中国区杨正红总经理一行来到有着2500多年悠久历史的文化名城——岳阳,访问在国内外久负盛名的中国石化股份有限公司催化剂长岭分公司。 会议由中石化催化剂分公司科技发展部负责人主持,中国石化催化剂分公司下属各单位相关工作人员参加了会议。作为颗粒表征技术的专家,杨正红经理对粒度分析技术的历史发展脉络进行了梳理,对粒度和粒形报告进行了深入解读,对美国康塔仪器公司旗下图像粒度粒形领军企业欧奇奥(OCCHIO)品牌做了全面的介绍,提出了颗粒形貌分析技术发展趋势,并对催化剂等各种材料做出了全面的解决方案。 Occhio F 200S系列图像粒度分析仪( 湿法循环型 ) 采用同等仪器中最高水平的 1000 万像素的照相机, 拍摄分散在液体中的粉粒体的高分辨率照片,可拍摄到最小粒径为 200 nm 的颗粒, 从而得到粒度分布和粒形分布图,并能对颗粒进行计数 。 由于景深较深,在全摄影领域利用光学系统控制,粒子成像鲜明,可测量通常的光学方式粒度分布仪器测不到的粒子形状,对异物进行有效分析。利用独 自开发的颗粒形状和形态分析软件,可进行微观的颗粒形态分析,从而对粉粒体样品的特性进行评价。将粒子的各种形貌数值化后,可进行相互比较,除了一般的粒形参数表征外(如最大内径、最大长度、凹凸度、延伸度、圆形度等),欧奇奥还有独自开发的卫星化指数(Satelity)、赘生物指数(Outgrowth)和钝度(Bluntness) 等微观粒形参数表征。FC200S 高分辨粒度粒形分析仪 实验报告举例:四个催化剂样品粒形参数比较图,纵坐标从上而下依次为:实积度,钝度,赘生物指数,圆形度,圆度 长岭分公司作为OCCHIO图像粒度分析仪在湖南地区首位用户,美国康塔仪器公司技术支持经理王战于分析测试中心进行了OCCHIO FC200S+高分辨图像粒度粒形分析仪的安装培训,演示以及现场样品测试。与会代表饶有兴趣地亲自体验了图像粒度分析这项先进的粒度粒形表征技术,并针对现场的样品测试与王战工程师进行了深度的探讨,以实现最准确,最高效,最完美的图像粒度分析方法,并指导工艺过程。他们深切地体会到,欧奇奥(Occhio)图像分析法是颗粒分析领域革命性的进步。随着光学、信息科学技术的飞速发展,将直观的显微观察方法与统计学相结合的最新图像法粒度粒形表征不仅能够得到个别颗粒的直观信息,还能够得到大量样本的粒径、粒形的统计信息,从而帮助使用者全方位地表征样品 。长岭分公司也是美国康塔仪器公司物理吸附忠实用户,从1998年的AUTOSORB 6B系列到后来的NOVA系列以及QUARDSORB系列,这些分析仪器已经在长岭分公司相继服役15年以上,担当着最重要的质检控制职能。杨正红经理次日还回访了各个分析实验室,与多位仪器操作人员进行了一对一的交流,现场解决了用户提出的各项技术疑问,让这一批物理吸附分析仪器发挥更出色的工作效率。 当天晚上,美国康塔仪器公司一行人员与长岭分公司工作人员欢聚一堂,把酒言欢。化验车间彭志华主任,刘海南和蒋邦开副主任相继举杯,美国康塔仪器公司武汉办负责人张梦杰先生代表公司发言:我们美国康塔仪器公司于2013年3月份于武汉成立了代表处,这标志着我们扎根于华中地区的决心,我们会一如既往做好售后服务工作,并积极举办各项技术交流专场会议,让我们再一次举杯,共谱“湘鄂情”!
  • 华嘉公司“吸附仪在新材料上的应用”研讨会将在全国巡回展开
    华嘉(香港)有限公司具有200年历史的瑞士国际贸易公司,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在国内的总代理,负责其所有产品、技术的推广销售和服务。 为进一步在国内推广吸附技术的应用,华嘉特邀请BEL公司资深专家参加3月22日在广州以及3月24日在厦门举办的&ldquo 吸附仪在新材料上的应用&rdquo 研讨会,并在会上介绍最新应用技术。吸附测包括物理吸附仪(低压常压、高压)和化学吸附仪,蒸汽吸附仪等,是研究固体材料表面性能的重要检测仪器。具体会议日程安排将在近期公布,欢迎您届时光临! 日本BEL公司:专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。第一双站微孔吸附仪在2006年就面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 同期华嘉公司将介绍以下产品: 美国Microtrac公司:世界最著名的激光应用技术研究和制造厂商,近半个世纪以来,一直领先着激光粒度分析的前沿技术,为众多行业指定的质量检测和控制分析仪器。 德国Kruss公司:1796年成立,是研究表面和界面技术的开创者,表面张力仪的发明者,现拥有15种不同类型的产品线,在全球占有率60%以上,是当之无愧的第一品牌。 回执表 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 感兴趣的产品: BEL 系列吸附仪 Microtrac 激光粒度仪 Kruss 接触角测量及表面张力仪 研究领域: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜小姐 电话:4008210778 电子邮箱:helen.jiang@dksh.com
  • 孰优孰劣?纳米粉体粒度检测方法大PK
    p style=" text-indent: 2em " 编者按:纳米粉体堪称纳米科学技术的奠基石,是介于原子、分子等微观物质与宏观物体之间的一种固体颗粒,又称超微粒子。作为一种亚稳态中间物质,纳米粉体的粒度指标对其性能影响巨大,表面效应、小尺寸效应、量子效应、宏观量子隧道效应等无不受粒度的影响。从粒度划分的角度,纳米粉体一般在1-100nm之间。测量其粒径的方法也多种多样,透射电镜观察法、X射线衍射法、BET比表面测试法,动态光散射法等都很是常见。那么哪种方法才是测量纳米粉体粒度的最优选择呢?国家特种矿物材料材料工工程技术研究中心的秦海青老师等专家对此进行了探讨。 /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 在观测纳米粉体粒度的几种方法中,透射电镜透射电镜观察法的缺点主要是由于观察用的粉末极少 ,使得测量结果缺乏统计性,不能全面的表征样品的粒度及分布;而沉降法由于目前技术上的原因而无法准确测量到纳米尺度。因此这里仅通过纳米硅粉的粒度表征,对X射线衍射法、BET比表面测试法,动态光散射法三种方法进行探讨。 /p p style=" text-indent: 2em " 动态光散射法是一种激光粒度仪法,是利用光子相关谱法以及PCS的基本原理,由激光器发出的激光经透镜聚焦后照射到颗粒样品上,在某一固定的散射角下,颗粒的散射光经透镜聚焦后进入光探测器(一般用光电倍增管)。光探测器输出的光子信号经放大和甄别后成为等幅的串行脉冲,再经随后的数字相关器做相关运算,求出光强的自相关函数。根据自相关函数中所包含的颗粒粒度信息,微机即可算出粒度分布。用这种方法测得的粒度值比较接近实际值。 /p p style=" text-indent: 2em " BET法是通过测定单位质量粉体的表面积并根据相应公式计算出纳米粉体颗粒的平均粒径,用这种方法测量的粒度值与激光粒度仪法所测得的粒度相比略小,这是由于BET法是根据吸附的气体量来表征比表面积的,测量结果与颗粒的的表面状态有关,颗粒的表面缺陷越多吸附的气体越多,从而测量值要小于实际值,由于纳米颗粒表面都不太完整,所以测量值都偏小一些。 /p p style=" text-indent: 2em " X射线衍射法测量纳米硅粉颗粒尺寸主要是根据谢乐公式。用 X 射线衍射法测量的晶粒尺寸得到的结果是粉体样品中颗粒尺寸最小且不可分的粒子,其平均尺寸的大小即为晶粒度 (以化学键结合的最小粒子),当颗粒为单晶时,测量结果就是颗粒粒度,当颗粒为多晶时,测量结果是组成颗粒的单个晶粒的平均粒度,此时,测量值小于实际值。 /p p style=" text-indent: 2em " 综上所述,BET法与X射线衍射法测试的粒径比激光粒度仪法测试的粒径要偏小。不过每种测试方法都有优缺点,针对不同类型的纳米粉体的种类,要选择与之适合的测试方法,使测试结果更加接近粉体的实际粒度值。 /p
  • 康塔仪器发布首台吸附穿透曲线分析仪
    2015年9月,全球粉体及多孔材料分析检测仪器领导者,美国康塔仪器正式发布dynaSorb BT系列吸附穿透曲线分析仪。这款开创性的仪器,凭借其独特的安全性设计,可以便捷地研究任意复杂的吸附过程。在宽泛的温度和压力范围内,可以调节气体流速并很好地定义气体组分。这样,就可以调查或研究在真实工艺条件下的吸附剂技术状况。dynaSorb BT系列吸附穿透曲线分析仪可广泛应用于: 穿透曲线的测定对吸附剂的动力学性能研究共吸附和位移现象的调查选择性吸附测定技术分离工艺的合理比例缩小动态吸附和解吸实验单一和多组分吸附数据的测定沿吸附床层的温度分布曲线调查 完整地理解发生在固定床反应器的复杂过程是获得最佳分离性能的关键,穿透曲线的预测是固定床吸附过程设计与操作的基础。 dynaSorb BT系列动态吸附穿透分析仪具备强实的吸附器设计,防护门,工作区照明和结构清晰的PC控制界面,确保安全和方便的仪器操作。吸附器压力是永久性测量的,即使仪器关机,压力也会显示在仪器的前面板上。当加热包温度超过用户设定值时,信号灯将亮起。在所有dynaSorb BT仪器上,检测可燃气体的安全保护传感器是标准配置。在气体泄漏的情况下,仪器会跳回到空闲状态,并自动关闭。 除卓越的安全设计外,dynaSorb BT系列还具备诸多无与伦比的优点:穿透(突破)曲线测定, 单和多组分吸附数据测定顺序吸附与解吸实验的自动化流程, 逆向气流能力自动吸附器压力调控可高达10bar, 沿吸附器轴向监测压降自动内置气体混合,可配置最多4个高精度质量流量控制器入口和出口气体组分测量, 入口气体温度监测吸附床内的热谱测定(用四个温度传感器)沿吸附器轴向监测压降 美国康塔仪器美国康塔仪器(Quantachrome Instruments)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及最佳的性能价格比。康塔公司不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、真密度、堆密度、开/闭孔率、粒度粒形、Zeta电位、孔隙率、压汞仪、大孔分析 、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以 满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问 题的根源 通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。 康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。 康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 中国科学技术大学理化科学实验中心热分析与吸附组在用设备简介
    p    strong 本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。 /strong /p p   目前热分析与吸附组在用的分析仪器主要包括热分析仪、吸附仪和粒度粒形分析仪,这些仪器与常规的结构和成分分析仪器不同,主要侧重于材料的性质表征。热分析仪是在程序控温和一定气氛下测量材料的物理性质(主要包括质量、热量、尺寸、电学性质、光学性质、磁学性质等)随温度或时间连续变化关系的一大类仪器,而吸附仪则通过测量材料在不同条件下(主要指压力、浓度、温度、时间等)对于某种或某几种气体的吸附能力来获得材料的结构、性质等方面的信息的一类仪器,主要分为物理吸附仪和化学吸附仪两大类,粒度粒形分析系统可以得到材料的粒径分布、粒形和Zeta电位等信息。和以下将分类进行介绍。 br/ /p p style=" text-align: center "    strong I热分析仪 /strong /p p    a href=" https://www.instrument.com.cn/zc/62.html" target=" _self" strong 1.热重仪 /strong /a /p p   热重仪(Thermogravimeter),是一种利用热重法检测物质温度-质量变化关系的仪器。按其结构形式可以分为下皿式(即吊篮式)、上皿式和水平式三大类。目前的商品化仪器中,上皿式和水平式结构的热重仪通常与差热分析和差示扫描量热技术联用,通常称为同步热分析仪(SimultaneousThermal Analyzer)。下皿式结构的仪器通常为单一的热重仪。在用的热重仪主要有日本岛津公司TGA-50H热重仪(图1)、美国TA公司Q5000IRTGA热重仪(图2)、美国TA公司DiscoveryTGA热重仪(图3)和德国Netzsch公司TGA209F1四台仪器。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7cc54975-2e83-4193-afbe-9362093fddab.jpg" title=" 图1 Shimadzu TGA-50H热重仪.png" alt=" 图1 Shimadzu TGA-50H热重仪.png" / /p p style=" text-align: center " 图1 Shimadzu TGA-50H热重仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/60fcd219-634a-4501-b236-0c8383beb3f5.jpg" title=" 图2 TA Q5000IR TGA热重仪.png" alt=" 图2 TA Q5000IR TGA热重仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图2 TA Q5000IR TGA热重仪   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3cc6fee1-5c9e-42d8-b072-1cf2aa19198b.jpg" title=" 图3 TA Discovery TGA热重仪.png" alt=" 图3 TA Discovery TGA热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" 图3 TA Discovery TGA热重仪 /a    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/62aaf285-e5ee-4ded-9d8f-68c63487286c.jpg" title=" 图4 德国Netzsch公司TGA209F1热重仪.png" alt=" 图4 德国Netzsch公司TGA209F1热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" 图4 德国Netzsch公司TGA209F1热重仪 /a /p p   其中,TGA-50H热重仪购于1993年,经过多次的加热炉、热电偶、吊篮以及软件的升级改造,这台仪器至今各项指标都可以满足检测要求。目前该仪器主要用于完成一些特殊条件下(主要指耗时特别长、水蒸气、还原气氛等可能会对仪器带来潜在损害的实验)的热重实验。美国TA公司的Q5000IRTGA和DiscoveryTGA可以实现温度调制(MTTGA)和速率超解析(HRTGA)实验。德国Netzsch公司TGA209F1带有200位自动进样器,可以实现真空条件下的TG实验。Q5000IR TGA和DiscoveryTGA主要用于常规测试,这两台仪器均带有25位自动进样器,可以高效率地完成各种常规测试需求。另外,由于其红外加热的优势,可以实现快速的升降温和准确的等温,可以用来研究高加热速率和等温下的热解行为。 /p p    a href=" https://www.instrument.com.cn/zc/469.html" target=" _self" strong 2.同步热分析仪 /strong /a /p p   同步热分析仪是在程序控温和一定气氛下,对一个试样同时采用两种或多种热分析技术,是一种常见的热分析技术。通常特指热重-差热分析仪或热重-差示扫描量热仪。在用的热重仪主要有日本岛津公司DTG-60H热重-差热分析仪(图5)、美国TA公司SDTQ600热重-差热分析仪(图6)、美国PE公司STA-6000同步热分析仪(图7)、美国PE公司STA-8000同步热分析仪(图8)和德国耐驰公司STA449F3同步热分析仪(图9)。这五台仪器中除STA-8000最高温度为1000℃外,其余四台仪器的最高温度均为1500℃。其中,STA-6000和STA449F3带有自动进样器,可以高效率地完成各种常规测试需求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9bf825ec-6e41-4322-a420-e5f38d3601ee.jpg" title=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图5 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/2892e4a4-5470-4edf-a2fe-9dd437fd5c40.jpg" title=" 图6 TA SDT Q600热重-差热分析仪.png" alt=" 图6 TA SDT Q600热重-差热分析仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图6 TA SDT Q600热重-差热分析仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/97dabaf9-0bbb-4f90-afb6-2f726f88a4c9.jpg" title=" 图7 PerkinElmer STA-6000同步热分析仪.png" alt=" 图7 PerkinElmer STA-6000同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" 图7 PerkinElmer STA-6000同步热分析仪 /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f7d5b2c6-6263-4064-a733-1ef18dbaa4d3.jpg" title=" 图8 PerkinElmer STA-8000同步热分析仪.png" alt=" 图8 PerkinElmer STA-8000同步热分析仪.png" / /p p style=" text-align: center " 图8 PerkinElmer STA-8000同步热分析仪 br/ /p p    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9831667e-4650-43cb-97bf-36dc8d2341dd.jpg" title=" 图9 Netzsch STA 449F3同步热分析仪.png" alt=" 图9 Netzsch STA 449F3同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" 图9 Netzsch STA 449F3同步热分析仪 /a /p p    a href=" https://www.instrument.com.cn/zc/68.html" target=" _self" strong 3.热重/红外光谱/(气相色谱/质谱联用)联用仪 /strong /a /p p   在用的两台热重/红外光谱/(气相色谱/质谱联用)联用仪(图10)分别购于2012年(热重部分为Pyris1TGA、红外光谱部分为Frontier红外光谱仪、GC为Clarus680、MS为ClarusSQ 8T)和2018年(热重部分为TGA8000、红外光谱部分为Frontier红外光谱仪、GC为Clarus690、MS为ClarusSQ 8T),主要用来研究材料随着温度的变化材料由于分解等引起的质量减少产生的气体的种类和含量的信息,是一种常用的联用技术。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/66e27249-e41c-489f-aff5-843ec2e531a7.jpg" title=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" alt=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" style=" max-width: 100% max-height: 100% " / br/ /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" 图10 PerkinElmer TL-9000热重/红外光谱/(气相色谱/质谱联用)联用仪 /a /p p   该仪器可以实现热重/红外光谱联用、热重/红外光谱/质谱联用、热重/红外光谱/(气相色谱/质谱联用)联用等实验,是研究材料的热解机理的一种很强大的分析手段。另外,这两套联用系统分别配置了捕集阱顶空(型号为TurboMatrix40 Trap)和热脱附(型号为TurboMatrix300)附件,通过切换,可以实现室温~300℃下的逸出气体的组成分析。 /p p    a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" strong 4.差示扫描量热仪 /strong /a /p p   差示扫描量热仪(differential scanning calorimeter,简称DSC仪)是在程序控温和一定气氛下,测量输给试样和参比物的热流速率或加热功率(差)与温度或时间关系的仪器。DSC仪通过测量试样端和参比端的热流速率或加热功率(差)随温度或时间的变化过程来获取试样在一定程序控制温度下的热效应信息。与DTA仪相比,DSC仪具有较高的灵敏度和精确度。常用的DSC仪主要有热流式和功率补偿式两种类型。在用的差示扫描量热仪主要有日本岛津公司DSC-60差示扫描量热仪(图11)、美国TA公司Q2000差示扫描量热仪(图12)、美国PE公司DSC8500差示扫描量热仪(图13)、美国TA公司MC-DSC多池差示扫描量热仪(图14)和德国耐驰公司DSC204F1差示扫描量热仪(图15)。其中DSC-60、Q2000、DSC204F1和MC-DSC属于热流型DSC仪,DSC8500属于功率补偿型DSC仪。除MC-DSC外,仪器的工作温度范围为-180℃-725℃(DSC8500的最高温度为750℃)。Q2000带有紫外光源,可以用来研究光照条件下的热效应的变化。Q2000和DSC8500还可以分别实现MTDSC和DynamicDSC的功能。另外,Q2000和DSC8500带有自动进样器,可以高效率地完成各种常规测试需求。与常规DSC不同,MC-DSC可以用来测量大尺寸样品(通常可以用来测试的样品的体积在1mL以上)的热效应,该仪器可以同时测量三个样品。但工作温度范围比较有限,在-40-150℃范围内。该仪器还可以用来测量高压、混合等条件下的热效应变化。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/85f4eb27-c25a-4c14-9101-0d2911440760.jpg" title=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图11 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/066e1243-684f-422e-b8fb-9ee60db94cfd.jpg" title=" 图12 TA Q2000 DSC 差示扫描量热仪.png" alt=" 图12 TA Q2000 DSC 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图12 TA Q2000 DSC 差示扫描量热仪  a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/2b5272a7-b5f4-448f-b74e-9cd33c5f9447.jpg" title=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" alt=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" 图13 Perkin Elmer DSC 8500 差示扫描量热仪 /a br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/63c667fb-8897-4c0f-b75f-4b728311c955.jpg" title=" 图14 TA MC-DSC 差示扫描量热仪.png" alt=" 图14 TA MC-DSC 差示扫描量热仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图14 TA MC-DSC 差示扫描量热仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/30fa6369-9982-48be-bdb6-bf29b1f1f914.jpg" title=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" alt=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" 图15 Netzsch DSC 204F1差示扫描量热仪 /a br/ /p p    strong 5.微量差示扫描量热仪 /strong /p p   与常规的DSC仪相比,微量差示扫描量热仪(microDSC)具有更高的灵敏度。其工作原理属于功率补偿型。我组在用的microDSC主要有美国Microcal公司(现已并入美国马尔文公司)的VP-DSC微量差示扫描量热仪(图16)和美国TA公司的NanoDSC微量差示扫描量热仪(图17)。由于该仪器的研究对象主要为大分子溶液体系,其工作温度范围为-5℃-130℃。与常规DSC实验中样品加入可移动的坩埚中不同,microDSC的样品池为固定池。实验时溶液通过进样器加入具有一定体积的固定池中,实验结束后再将待测溶液移除,然后清洗样品池。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d2ed8ad-c2d8-470e-9794-3029a265cd3f.jpg" title=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" alt=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" 图16 Microcal VP-DSC微量差示扫描量热仪  /a   /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5d86b323-37aa-4a09-903b-0e4c5912c60f.jpg" title=" 图17 TA Nano DSC微量差示扫描量热仪.png" alt=" 图17 TA Nano DSC微量差示扫描量热仪.png" / /p p style=" text-align: center " 图17 TA Nano DSC微量差示扫描量热仪 /p p    strong 6.闪速差示扫描量热仪 /strong /p p   闪速差示扫描量热仪(FlashDSC 2+)(图18)可以用来研究许多亚稳态材料如半结晶聚合物、多晶型材料、复合材料以及合金等的结构变化过程,可以实现常规的DSC无法实现的超高加热/降温速率下的实验。借助其UFS1传感器可以实现最高加热速率为3000000K/min(300万度每分钟)和最快加热速率为2400000K/min(即240万度每分钟)的超高温度扫描速率下的实验,实验温度范围为-100-1000℃。仪器采用嵌于陶瓷基体之上的微型芯片式传感器。该传感器基于MEMS 技术并且像常规DSC 一样拥有两个独立的量热组件(样品池及参比池)。两个量热组件所在的传感器主体由两个相同的正方形氮化硅薄膜构成。薄膜边长为1.6mm、厚度为2μm,嵌于300μm厚的硅框架内。用于闪速DSC 的典型样品为薄膜、块状材料或者粉末。块状材料在制样时首先从基体材料上切下一些小圆片。然后在显微镜下用刀片在传感器的附件将小圆片切成更小的小片。利用尖端带有一根细毛的专用毛笔将制备成的样品直接放置于传感器上。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/79f58b82-4ab2-44d7-9216-fb9b56bdde39.jpg" title=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" alt=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" 图18 闪速差示扫描量热仪(FlashDSC 2+) /a br/ /p p    strong 7.等温微量量热仪 /strong /p p   在用的美国TA公司的TAMIV等温微量热仪(图19)是一种非常灵敏、稳定和灵活的微量热系统,能够直接测量所有的热信号、从而定量得到一个过程热力学和动力学信息。四个独立的量热通道可以在相同的实验条件下同时进行不同样品的实验,目前该仪器配置了等温滴定量热计、溶解热量热计、气体灌注量热计和六通道微瓦级量热计和纳瓦级量热计。可用于反应过程中向系统内添加反应试剂或是精确控制添加试剂的时间及用量。该系统可用来测量反应热,材料稳定性,材料寿命预测,工艺安全性评价,配方筛选等。通过等温滴定量热检测,可以对含有不同基团分子的两者液体材料在相互滴加时,根据产生测量产热情况,计算两种基团的结合情况,从而评估两者物质的相容情况 通过气体灌注/吸附热量检测,可以在一定温度下,得到材料对气体吸附过程的吸/放热测量 可以实现材料体与不同气氛(或湿度)作用下的吸/放热测量 通过溶解量热检测,可以在实际应用中,需要检测固体材料溶解到液体或者两者液体混合时所产生的溶解热。如含能材料溶解于水时的热量检测。通过纳瓦级量热计可以很容易实现此应用 通过多通道量热检测,可以在实际应用中用于同种样品材料的目标性筛选,极大地提高工作效率。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4f50435-e361-4d77-8f17-b10c95be8972.jpg" title=" 图19 美国TA公司TAMIV等温微量热仪.png" alt=" 图19 美国TA公司TAMIV等温微量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" 图19 美国TA公司TAMIV等温微量热仪 /a br/ /p p    strong 8.等温滴定量热仪 /strong /p p   等温滴定量热仪为生物分子结合的研究提供了最高的灵敏度和灵活性。仪器采用固态热电偶加热和冷却系统,实现了精确的温度控制,同时具有同样灵活性的注射器附件可确保准确有效地输送滴定剂。在用的美国TA公司的NanoITC等温滴定量热仪(图20)的工作温度范围为2℃~80℃,注射针筒体积为50µ L 和250µ L,检测热量范围是0.1µ J~5000µ J。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/f44de75d-a260-4a1c-b0c1-3aff5dcf91a5.jpg" title=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" alt=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" 图20 美国TA公司的NanoITC等温滴定量热仪 /a /p p    a href=" https://www.instrument.com.cn/zc/66.html" target=" _self" strong 9.热膨胀仪 /strong /a /p p   热膨胀仪是在程序控温和一定气氛下,负载力接近于零的条件下测量材料的尺寸(通常为长度)随温度和时间变化关系的一类技术。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。通过材料的尺寸变化可以测量与研究材料的线膨胀与收缩、玻璃化温度、致密化和烧结过程、热处理工艺优化、软化点检测、相转变过程、添加剂和原材料影响、反应动力学研究等方面的信息。在用的热膨胀仪为德国耐驰公司的DIL-402C热膨胀仪(图21),该仪器可以用来测量材料在室温-1600℃范围内的尺寸变化信息。  /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/35f4cc01-6a98-4340-a275-1bf96127b13b.jpg" title=" 图21 Netzsch DIL-402C热膨胀仪.png" alt=" 图21 Netzsch DIL-402C热膨胀仪.png" / /p p style=" text-align: center " 图21 Netzsch DIL-402C热膨胀仪 /p p   strong   a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" 10.静态热机械分析仪 /a /strong /p p   静态热机械分析仪(ThermalMechanical Analyzer,简称TMA仪)是在程序温度控制下(等速升温、降温、恒温或循环温度),测量物质在受非振荡性的负荷(如恒定负荷)时所产生的形变随温度变化的一种技术。热机械分析虽然涉及的材料对象非常广泛,包括金属、陶瓷、无机、有机等材料,但用它来研究高分子材料的玻璃化温度Tg、流动温度Tf、相转变点、杨氏模量、应力松弛等更具有特殊的意义。在用的热机械分析仪为美国TA公司的Q400TMA 热机械分析仪(图22),该仪器可以用来测量材料在-150-1000℃范围内的尺寸变化信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/d5b4ef1a-0f74-4262-909d-c4255d0aa8e7.jpg" title=" 图22 TA Q400 TMA热机械分析仪.png" alt=" 图22 TA Q400 TMA热机械分析仪.png" / /p p style=" text-align: center " 图22 TA Q400 TMA热机械分析仪 br/ /p p    a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" strong 11. 动态热机械分析仪 /strong /a /p p   与TMA相比,动态热机械分析仪(DynamicMechanical Analyzer,简称DMA仪)是在程序温度控制下测量物质在承受振荡件负荷(如正弦负荷)时模量和力学阻尼随温度变化的一类仪器。它在测量分子结构单元的运动,特别在低温时比其他分析方法更为灵敏、更为有用。在用的DMA仪为美国TA公司DMAQ800动态热机械分析仪(图23)和DiscoveryDMA Q850动态热机械分析仪(图24)。该仪器可以用来研究材料在拉伸、压缩、单/双悬、三点弯曲、剪切条件下的动态受力下的形变,工作温度范围为-160~600℃。最大力为18N,频率范围0.001~200Hz。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9d52c1f2-8b54-4933-bf5f-3a948bfe6abc.jpg" title=" 图23TA Q800 DMA热机械分析仪.png" alt=" 图23TA Q800 DMA热机械分析仪.png" / /p p style=" text-align: center " 图23TA Q800 DMA热机械分析仪 br/ /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ca2ea5ba-9a29-4ff3-8766-fd29bb8c78d1.jpg" title=" 图24TA Discovery DMA 850热机械分析仪.png" alt=" 图24TA Discovery DMA 850热机械分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" 图24 TA Discovery DMA 850热机械分析仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/84.html" target=" _self" strong 12.流变仪 /strong /a /p p   流变仪(rheometer),即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。分为旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。在用美国TA公司的DiscoveryDHR-2 流变仪(图25)属于旋转流变仪。通过改变不同的外界调节(如温度,压力,频率,应变,时间等)作用于材料,得到材料的回馈信号分析出其工艺过程和结构特性,研究材料或样品的性能(如零剪切粘度,凝胶点,固化点等等),计算材料的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪测量时将样品置于特定的上下测量夹具之间,夹具的一端对样品施加一个力或变形,相应的传感器测量样品回馈对所施加的力或变形的响应,通过对该响应分析就得到样品粘弹性的总和特性曲线(如零剪切黏度,凝胶点,固化点等),计算样品的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪的测试模式包括:流动(稳态测量)、振荡(动态测试)、蠕变和应力松弛(瞬态测量)等模式。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d195ae8-9c9a-4152-af09-be48efbe3c42.jpg" title=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" alt=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" 图25 美国TA公司DiscoveryDHR-2 流变仪 /a br/ /p p   strong   a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" 13.热流法导热仪 /a /strong /p p   导热仪广泛应用于包括石墨、金属、陶瓷、聚合物、复合材料等领域,具有样品制备简易,测量速度快,测量精度高等众多优点。在用的热流法导热仪为德国耐驰公司的HFM446热流法导热仪(图26),平板温度范围:-20~90℃,可用于直接测量低导热与绝热材料的导热系数,如膨胀聚苯乙烯(EPS)、挤出聚苯乙烯(XPS)、PU坚硬泡沫、矿物棉、膨胀珍珠岩、泡沫玻璃、软木塞、羊毛、天然纤维材料,包含相变材料、气凝胶、混凝土、石膏或聚合物的建筑材料等。测试时将待测材料置于两块平板之间,平板间维持一定的温度梯度。通过平板上两个高精度的热流传感器,测量进入与穿出材料的热流。在系统达到平衡状态的情况下,热流功率为常数,在样品的测量面积与厚度已知的情况下,使用傅立叶传热方程可以计算导热系数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bb1690a8-cac7-4943-b3b8-a2c41658a514.jpg" title=" 图26 德国耐驰公司HFM446热流法导热仪.png" alt=" 图26 德国耐驰公司HFM446热流法导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" 图26 德国耐驰公司HFM446热流法导热仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" strong 14.激光导热仪 /strong /a /p p   激光热导法直接测量的是材料的热扩散系数,其基本原理为:在炉体控制的一定温度下,由激光源发射光脉冲均匀照射在样品下表面,使试样均匀加热,通过红外检测器连续测量样品上表面相应温升过程,得到温度(检测器信号)升高和时间的关系曲线。应用计算机软件的数学模型对理论曲线和试验温度上升曲线进行计算修正,从而测出样品的热扩散系数,再测出比热已知的标样的热扩散系数,利用数学模型计算出样品的比热,系统根据计算公式自动计算出样品的导热系数。在用的德国耐驰公司的LFA467 HyperFlash 闪射法激光导热仪(图27),工作温度范围:-100~500℃,可在整个温度范围内连续测量16 个样品 德国耐驰公司的LFA467 HT HyperFlash 闪射法激光导热仪(图28),工作温度范围:室温~1250℃,这两款仪器都拥有极高的采样频率2MHz,特别适合于薄膜样品和高导热材料。  /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5ef34d77-68dd-4c81-8f7f-00ebd4b8e95a.jpg" title=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" alt=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪  /a   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e96ba5b-542f-4218-b48a-3e3625c3ed0f.jpg" title=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" alt=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪 /a /p p br/ /p p style=" text-align: center "    strong II 吸附仪 /strong /p p   在用的吸附仪主要有以下几种: /p p    strong 15.物理吸附仪(比表面积介孔分析仪) /strong /p p   在用的比表面积和介孔分析仪为美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪(图29)。该仪器可同时实现三个样品的测试,得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(BJH、DFT等模型)、孔容积等信息。采用脱气站与分析站分离的工作模式。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/614b0dc7-11e4-4252-9812-9630ab61d87b.jpg" title=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" alt=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" / /p p br/ /p p style=" text-align: center " 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪 /p p    strong 16. 物理吸附仪(比表面积和微孔、介孔分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国QuantachromeAutisorb iQ3M全自动气体吸附仪(图30)和美国Micromeritics2460全自动物理吸附仪(图31)。 /p p   该仪器可同时实现三个样品的测试(可以同时进行两个微孔或三个介孔的分析),得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(HK、BJH、DFT等模型)、孔容积等信息。仪器同时带有4个脱气站和3个分析站。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/fc642a87-dad4-4e50-9127-7f5177ae6865.jpg" title=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" alt=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" / /p p style=" text-align: center " 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/50880f2e-b073-4094-8018-74727f86a979.jpg" title=" 图31 美国Micromeritics2460全自动物理吸附仪.png" alt=" 图31 美国Micromeritics2460全自动物理吸附仪.png" style=" max-width: 100% max-height: 100% " / br/ /p p style=" text-align: center " 图31 美国Micromeritics2460全自动物理吸附仪 /p p    strong 17.物理化学吸附仪(比表面积、微孔、介孔和静态化学吸附分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪(图32)。该仪器可以实现对材料的物理吸附(得到比表面积、孔径分布、孔容积等信息)和静态化学吸附实验。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/07938ed4-1570-479c-ad92-01e2921cd925.jpg" title=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" alt=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" / /p p style=" text-align: center " 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪 br/ /p p    strong 18.化学吸附仪(静态和动态化学吸附分析仪) /strong /p p   在用的美国QuantachromeAutosorb iQ3MVC全自动气体吸附仪(图33)除了可测比表面积、介孔、微孔等,还可以测量蒸汽吸附、静/动态化学吸附,全方位表征样品的催化特性。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4367c8af-bc74-4539-b2a7-1f2200dabd17.jpg" title=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" alt=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" / /p p style=" text-align: center " 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪 /p p    strong 19.压汞仪 /strong /p p   在用的压汞仪为美国康塔公司的PoreMaster60GT全自动压汞仪(图34),可同时分析2个高压样品。可用于介孔和大孔的总孔体积、孔体积分布、孔表面积及其分布测定,也可用于测定空心玻璃微珠的压碎强度和防水材料的水侵入研究。该仪器利用汞对材料不浸润的特性,采用人工加压的方式使汞进入材料内部孔隙,通过高精度压力传感器和标准体积膨胀计测量样品的注汞和退汞曲线,结合相关模型计算样品的孔径结构、孔隙度及真密度等参数。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4e82d57e-86b9-49c2-a473-686d65fa88f7.jpg" title=" 图34 PoreMaster 60GT全自动压汞仪.png" alt=" 图34 PoreMaster 60GT全自动压汞仪.png" / /p p style=" text-align: center " 图34 PoreMaster 60GT全自动压汞仪 br/ /p p br/ /p p style=" text-align: center " strong III 粒度粒形分析仪 /strong /p p   目前,常用的颗粒粒度表征方法主要有筛分法、沉降法、电阻法、颗粒跟踪法、激光衍射法、动态光散射法、静态图像法、动态图像法等。其中,激光衍射法因为准确性高、重复性好、测试速度快、自动化程度高、大量成熟的测试方法标准,成为微米级颗粒粒度的主流方法。动态光散射法对于纳米级颗粒具有准确、快速、可重复性好等优点,还具有测量Zeta电位等能力,已经为纳米材料中非常常规的一种表征方法。动态图像法采样数据多、无取向误差、颗粒分散度高、无粘连重叠现象,在粒形分析方面得到了广泛应用,除了给出30多种颗粒的粒形参数,还能对测试颗粒的分散情况进行分析。在用的Microtrac粒度粒形测量系统可以实现颗粒以上的表征,该测量系统在催化剂、能源、环境、化工、金属粉体、工业矿物、陶瓷、玻璃珠、油气、涂料/颜料、制药、涂层、水泥、3D打印等领域中有着广泛的应用。颗粒的粒度和粒形与材料的性能密切相关,例如药品颗粒的粒度决定着人体的吸收程度,水泥颗粒的粒度决定了水泥的凝结时间,调色剂颗粒的球形度决定了其在打印材料上的粘附力等等。通过测量这些颗粒的粒度粒形参数(如粒径、球形度、长宽比、周长、面积等),可以优化材料的相关特性。该测量系统主要包括测量范围为0.01-4000µ m的Sync测量单元(图35)和测量范围为0.8nm-6.5µ m的NanoTrac测量单元(图36)。其中,Sync测量单元除可以实现粒度分布测量功能外,还可以得到粒形信息 NanoTrac测量单元除可以实现粒度分布测量功能外,还可以得到Zeta电位信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b4fe743a-36c8-4df3-9ef2-dea228d3cac9.jpg" title=" 图35 Sync测量单元.png" alt=" 图35 Sync测量单元.png" / /p p style=" text-align: center " 图35 Sync测量单元 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7b0f6ad0-04c2-428a-bba6-87bb587dd984.jpg" title=" 图36 NanoTrac测量单元.png" alt=" 图36 NanoTrac测量单元.png" / /p p style=" text-align: center " 图36 NanoTrac测量单元 /p p   Sync测量单元由2个镜头、2块检测系统(共151个检测单元)和三个激光系统组成,可以实现高效、准确的颗粒度表征。其采用静态激光衍射技术测量微米级粒度,采用动态图像分析技术测量粒形数据,可以使用多于30种大小和形态的参数。仪器可以实现湿法和干法测量模式,满足多种样品的各种测量要求。由Sync的动态图像分析功能可以得到的散点图,由此可以得到不同尺寸范围的不同形状的颗粒的分布信息。NanoTrac测量系统采用采用先进的动态光背散射技术,180° 检测异相多普勒频率的变化,稳定性好、重现性高。采用电泳法技术测量Zeta电位数据。通过温控装置可以实现0-80℃范围内的粒度和Zeta电位测量。 br/ /p p br/ /p
  • 激光粒度分析技术在药物制剂研究、产业化中的应用
    激光粒度分析技术在药物制剂研究、产业化中的应用 源自:中国粒度仪网         日期:2012-8-14         浏览量:7 这项技术的研究和应用在医疗卫生实践和工业实践中占据着极其重要的地位,起着推动医、药科学向前发展的作用。近年来,由于药物新制剂已经成为了医药产业的增长点,全世界新释药系统销售额稳步增长,约占整个医药市场的10%以上。治疗新观念促进了新释药系统的开发,新技术推动了新制剂产品上市。激光粒度分析仪在药物制剂研究和生产中所发挥的作用越来越大,受到药物制剂研究和生产工艺中质量鉴控的工程技术人员、药品检验人员的重视。以下是微粒激光检测技术在新制剂科研和生产上应用的讨论。      一、微囊方面:      微型包囊技术是当今世界发展迅速、用途广泛而又比较成熟的一种技术。制备微胶囊的过程称为微胶囊化(microencapsulation),它是将固体、液体或气体包裹在一个微小的胶囊中。微囊的粒子大小,因制备工艺及用途不同而不同,理论上可以制成0.1~1000nm的微囊,从而有微米微囊和纳米级纳米囊之分。微囊的制备有物理化学法、物理机械法和化学法三类。其中物理化学法中相分离工艺现已成为药物微囊化的主要工艺之一,该工艺仍涉及一些质量问题未能作定量的研究并难于准确评价,如普遍存在的微囊粘连、聚集问题。相似的工艺得到的产品在粒径范围及释放数据方面有着很大的差异。用LS激光微粒测定方法,可以比较直观地观察到样品的微粒大小及其分布,分布得越集中,表示越均匀(图)。通过这一检测可发现工艺过程是否合理,并且控制得是否严谨。微囊化反应敏感程度是否合适,条件的微小变化会引起明显效果差异的情况下达到可控。例如,以明胶为囊材的工艺流程。      囊心物囊材      \/      &darr      混悬液(或乳状液)      &darr      凝聚囊      激光微粒检测点&rarr &darr 稀释液      &darr 沉降囊      └--&rarr &darr      固化囊      &darr      微囊&rarr 制剂      所用稀释液浓度过高或过低,可使凝聚囊粘连成团或溶解。      二、微球      微球(microspheres)是指药物分散或被吸附在高分子聚合物基质中而形成的微粒分散体系。药物可溶解或分散在高分子材料基层中,形成基层型微小球状实体的固体骨架物。其微粒大小一般在1~300&mu m,甚至更大。另外,将固体药物或液体药物作囊心物包裹而成药库型微小胶囊,称微囊。两者没有严格区分。微球粒径大小不一(0.01~700&mu m),检测方法除显微镜法、电子显微镜法之外,就是激光粒度测定法和库尔特计数仪法。激光粒度分析是比前两种方法所反映的面更广泛。显微镜局限于视野之内,电镜所观察到的范围更小,只能较为精细地观察到粒子的形态。从制剂研究和生产的角度出发,激光粒度分析和库尔特计算法更能指导工艺,反映质量。      三、粉雾剂(powderinhalation)      粉雾剂是一种或一种以上的药物,经特殊的给药装置给药后以干粉形式进入呼吸道,发挥全身或局部作用的一种给药系统,具有靶向、高效、速效、毒副作用小等特点。根据给用药部位的不同,可分为经鼻用粉雾剂和经口腔用(肺吸入)粉雾剂。粉雾剂的特点有:①无胃肠道降解作用;②无肝脏首过效应;③药物吸收迅速,给药后起效快;④大分子药物的生物利用度可以通过吸收促进剂或其他方法的应用来提高;⑤小分子药物尤其适用于呼吸道直接吸入或喷入给药;⑥药物吸收后直接进入循环,达到全身治疗的目的;⑦可用于胃肠道难以吸收的水溶性大的药物;⑧患者顺应性好,特别适用于原需进行长期注射治疗的病人;⑨起局部作用的药物,给药剂量明显降低,毒副作用少。不同的给药部位对微粒大小的要求不同,如肺吸入粉雾剂要求主药粒径应小于5&mu m,而鼻用粉雾剂粒径则应为30~150&mu m。粉雾剂的质量研究是粒子质量检查。主要检查粒径分布,粒子的形态,测定这些项目,用LS激光粒度分析仪是比较适合。      四、脂质体的粒径和分布      脂质体粒径大小和分布均匀程度与其包封率和稳定性有关,直接影响脂质体在机体组织的行为和处置。脂质体的粒径小于100nm,在血循环的时间较长,若脂质体的粒径大于200nm,则脂质体很容易被巨嗜细胞作为外来异物而吞噬,脂质体在体内的循环时间很短。影响脂质体粒径和分布的因素很多,可以这样认为,凡影响脂质体聚结稳定的因素,都关系到脂质体的粒径和分布。脂质体的检验,用激光粒度分析法能快速简单地显示出脂质体的粒径,可测出平均粒径、中位粒径,分布图可以判断出粒子是否均匀和稳定。      五、脂质体眼科用药系统      脂质体作为眼部给药系统,其组成材料为磷脂双分子层膜,类似于生物膜,易与生物融合,促进药物对生物膜的穿透性,故药物外用滴眼的跨角膜转运效率较高;通过选择不同的制备方法,制成脂质体粒径为0.02~5&mu m之间,滴入眼部无异物感,不影响眼睛的正常生理功能。      脂质体眼科用给药系统的制备与一般的脂质体相似。质量控制&mdash 运用激光粒度分析仪应在均质之后取样分析。      六、新型乳剂稳定性      乳剂是两种互不相混溶的液体借助表面活性剂的乳化作用,使一种液体分散在另一种液体中形成不均匀的微米或纳米分散系统。在这一范围内对乳剂作微观检查,应用激光粒度分析仪是可以测定乳剂微粒子的大小及其分布。可以通过116个分析通道分析出每一个粒子直径区间中粒子的大小及个数;可以通过粒子分布图观察粒子总体分布和均匀度;也可以通过对分布图统计表收集常用的技术参数。      七、纳米粒      一般认为纳米粒的粒径大小界定在1~1000nm范围内。已研究的纳米粒包括聚合物纳米与纳米球、药质体、脂质纳米粒、纳米乳和聚合物胶囊。      例如:油相用液状石蜡可制得纳米球平均粒径820nm      棉子油制得纳米球平均粒径560nm.等。      小结:随着药物制剂技术的迅速发展,新制剂逐步从实验室向医药生产企业进行产业化转移。激光粒度分析在工艺控制和药品质量控制中的应用也显得越来越重要。了解和掌握激光粒度分析方法迎接医药制剂新时代,将会使我们从中受益。
  • 美国麦克公司推出新型扩展压力吸附仪
    能源的需求导致矿物燃料的消耗大大增加了大气中的温室气体浓度。排放气体的主要成分是二氧化碳。二氧化碳收集不仅仅对大气中存在二氧化碳的采集和安全存储,也包括排放的二氧化碳。自从京都议定书签署以来,对燃烧气体排放问题已经得到了极大关注。 许多与能源相关的二氧化碳管理办法,包括低碳能源(例如核能,太阳能,风能,地热能,和生物质能)。科学家们也开始寻求提高能源转换效率的方法,这样使用较少的矿物燃料就可满足相同能量输出需要。然而,尽管有希望,目前这些选择对矿物燃料的需求和使用影响相对较小。矿物燃料继续提供世界大部分能源消耗。日益增长的能源需求,选择替代能源的落后,全球经济仍然依赖矿物 燃料且其相对较低的成本和高获得性,意味着矿物燃料的使用将可能持续数十年。因此,目前有很多科研力量致力于寻找有效的方法,降低大气中和工业排放的二氧化碳量。 一些研究人员认为,将二氧化碳收集在地表深处,可成为安全存储二氧化碳的长期解决方案。该方法基本思路为将捕获的二氧化碳压缩成液态灌注到多孔的深地质层,将二氧化碳液体密封在非渗透性的封盖层下。美国天然气多年存储经验,通过灌注二氧化碳,原油采收率的提高 (EOR),煤层气回收率的提高(ECBM),和向盐水地质构造层注入酸性气体为支持了这种想法。 尽管在理论上这些地层在存储人类产生的二氧化碳有潜应用,但据估计,若要有显著减少,每年必须收集超过1 亿公吨二氧化碳。很多影响因素,在决定和全面实施合适存储位置之前,必须仔细研究。例如适当的工程设计和监测,地质力学过程需要仔细考虑。科学家们需要合适的研究表征方法,以帮助确定作为贮存地点的地质资料 自从1962 年以来,美国麦克仪器公司的表面积和孔隙度分析仪,成为潜在的二氧化碳封存地点研究所需要的关键测量分析工具。表面积分析仪和压汞仪被用来作为必要的工具,来表征地质二氧化碳的压力和温度条件下的细粒度沉积岩的密封和流体传输性质空体积测量有助于预测地层的容量。美国麦克仪器公司的AutoPore 压汞仪可用来测量储层岩内部样品的密封能力和孔吼比。 美国麦克仪器公司的ASAP2020 比表面和孔隙度分析仪以及压汞仪的数据结合,可以完善流体传输实验。这些实验有助于揭示样品传输性质和密封效率中的显著变化同样也是测量煤的微孔和介孔分布的理想工具,因此也为ECBM 研究的提供有效信息。 美国麦克仪器公司的ASAP 2050 扩展压力吸附仪 和Particulate Systems 旗下HPVA 高压容量法物理吸附仪是研究高压下二氧化碳存储能力的理想工具。 ASAP 2050 可测量从真空至10 bar 的吸附量。 HPVA 可达到100 or 200bar。ASAP 2050 和 HPVA 可在真实条件下评价材料。 国际政府在科学界的帮助下,必须找到一个方法来消除大气层中由于矿物燃料炭烧产生的过多的二氧化碳。初步数据表明,在地质结构封存二氧化碳是一种有前途的解决办法。存储大量的二氧化碳目标部分依赖于每个地层的物理特性的研究数据。美国麦克仪器公司的创新的技术和材料的表征仪器已经成为二氧化碳存储研究重要测量工具。
  • 欧奇奥(Occhio)粒度和形貌表征技术培训研讨会即将举行
    尊敬的客户,您好! 非常荣幸能够邀请您参加北京市理化分析测试中心与美国康塔仪器公司共同承办的“多孔材料的粒度和形貌表征技术进展研讨会”。北京市理化分析测试中心成立于1979年,隶属于北京市科学技术研究院,主要开展食品、环境、材料、生物医药等方面的公益服务和研究工作,是北京地区具有综合理化分析方法研究与检测实力的公益型科研机构。美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在五十年来的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪;至2005年,研制出最新一代、也是目前唯一一台可以进行静态动态化学吸附和物理吸附、具有双站微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb系列。美国康塔不仅专注于多孔材料表征仪器的研发和制造,同时注重与相关领域合作。2012年,美国康塔仪器公司正式介绍欧奇奥(Occhio)系列粒度粒形分析仪进入中国,为广大客户提供材料颗粒特性表征最现代化全方位解决之道。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术和研究成果,帮助大家正确进行参数设置和结果分析,北京市理化分析测试中心与美国康塔仪器公司将于2014年5月14日至15日共同举办“欧奇奥(Occhio)粒度和形貌表征技术培训研讨会”,力争每个用户都能熟练掌握粒度形貌分析的最前沿技术。 日 期:2014 年5 月14日~15日时 间:9:00 ~ 16:00地 点:北京市理化分析测试中心(北京市西三环北路27号,中国青年政治学院右侧)主讲人:美国康塔仪器公司首席代表杨正红先生 (理论部分) 美国康塔仪器公司技术支持经理王战先生(实验部分)粒度粒形培训目录:l 粒度测量技术发展的历史脉络l ? 粒度测量知识基础l ? 不同粒度测量方法的特点和局限l ? 你所测量的粒度准确吗?l ? 粒径和粒形参数及其在催化剂中的应用l ? 如何看懂粒度分析报告?l ? 影响图像法粒度粒形分析仪准确测量的因素l ? 如何选择图像法粒度粒形分析仪——动态和静态图像粒度分析仪用于成型催化剂l ? FC200粒度粒形分析仪的操作,参数设置和数据采集l “骄子”颗粒图像分析软件的应用,及样品分析实例会务联系人:l 美国康塔仪器公司北京代表处联系人:范丽伟联系方式:010-64401522 13810060894 fanliwei@quantachrome-china.coml 北京理化分析测试中心 联系人:高原 联系方式:010-88417670 robin_gy@126.com 备注:乘车路线:300内、300外、323,323快、362、374、408、425、704、730内、730外、811、817、817支、830外、831、836、849、特5、特8外、特8内、944、944支、967、968、运通103、运通108、运通201到万寿寺站下车即到。
  • 关于物理吸附行业“吸附速度”与“吸附速率”的区别
    在物理吸附行业,经常有不少学生、老师甚至业内的专家,不确定自己要测试的物理量该叫“吸附速度、脱附速度、解吸速度”还是“吸附速率、脱附速率、解吸速率”;不少硕士、博士论文中,甚至较专业的一些技术文章,也经常出现不统一的叫法。由于“速度”相对“速率”偏口语化,”速率“比”速度“更显“学术”,因此经常发现不少专业的人,把本该叫“吸附速度、脱附速度、解吸速度”等的参数,叫成了“吸附速率、脱附速率、解吸速率”。要搞清楚到底该叫“吸附速度”还是“吸附速率”,首先要搞清楚“速度”和“速率”的区别。速度为矢量,有方向和大小;速率为标量,只有大小,没有方向。举例说明:对于位于边长为100m的等边三角形3个角的A、B、C 3点,某物体以匀速10m/秒的速度大小从A经C到达B点,耗时20秒;对于这个情况,该物体从A到B的速度为5m/秒,整个过程其移动速率为10m/秒。再例如,对于悬浮于气体中一个做布朗运动的气体分子或灰尘,其不规则运动的即时速度大小或速率是很大的,但是,在我们我们讨论其从A点运动到B点的速度时,我们是用AB的直线距离除以时间来表示,而速率就不需要考虑其方向性,“只看大小”。在我们讨论吸附质在吸附剂表面的物理吸附现象中,由于吸附和脱附时同时并存发生的两种现象。大家都知道,当处于吸附平衡状态,吸附速率和脱附速率都不是零,只是相等,但吸附速度和脱附速度是零。再比如,对于其它所有条件都相同只是温度不同的两个吸附平衡状态下,温度高的状态的吸附速率或脱附速率有可能相对温度低的都大,但是吸附速度或脱附速度都是零。“吸附速率”或“脱附速率”,更多的偏向于表征吸附质分子单纯聚集于吸附剂表面或单纯离开固体表面的速度大小;而“吸附速度”或“脱附速度”,则更多的偏向于表征在一定时间内由于吸附速率和脱附速率差造成的“净聚集”或“净离开”吸附剂表面的吸附质的量,由于有“方向性”,偏向于表征“效果”。在目前市面的大多数涉及“吸附速度、解吸速度”测试的仪器,测试的其实是一段时间内吸附剂表面吸附质的增加量或减少量,那么,此类仪器就应该叫做吸附速度测试仪或解吸速度测试仪是更恰当的,而不应该叫做吸附速率测试仪或解吸速率测试仪、分析仪等,因为其分析的不是“速率大小”。其实,关于类似这些“专有”名词或概念的普及,主要一方面来自课本,也有不小一部分来自于相关商家或研究单位。假若理解不对的人过多,且一时没有权威单位给予纠正和说明时,商家就有可能从商业利益出发,跟随“潮流”而“被迫”舍弃“严谨”;像“吸附速度”这个词,可能不少国内外商家其实是明白应该怎么个叫法,但是从商业角度考虑,为了更好的可接受性和被认识被发现,而跟随大众。尤其在网络搜索占主要推广方式的当下,这种情况更明显。不少通俗易懂但又不严谨的词语,就是这么产生的。贝士德仪器作为从事气体吸附、蒸汽吸附类分析仪器的制造商和研究单位,有责任给出科学的说明,并倡导正确使用“吸附速度”和“吸附速率”等此类名词。
  • 弗尔德莱驰粒度及粒形分析仪北京演示日活动
    成立于1915年的德国RETSCH(莱驰)公司是Scientific Division(科学仪器事业部门)的核心品牌之一,是全球最大的实验室固体样品前处理暨研磨粉碎筛分设备的生产厂家。中国分公司总部设在上海,在北京、广州等地设有办事处或技术中心。RETSCH TECHNOLOGY(莱驰科技)做为RETSCH的姊妹公司,专业致力于粒度及粒形分析仪器的研发和生产,1999年,德国莱驰科技研发出全世界第一台利用动态数字成像技术原理的粒度及粒形分析仪,十多年来,已经有超过600个客户在使用。基于ISO13322-2标准设计,Camsizer/Camsizer XT可以一次进样,测量粒度大小、粒度分布、球形度、纵横比、对称性、凹凸度,并可进行颗粒计数或密度及比表面积测量,已经逐渐成为催化剂、玻璃珠、金属粉末等行业粒度分析的新宠。 干湿两用多功能粒径及粒形分析仪 Camsizer XT 莱驰不仅是样品粉碎研磨筛分的专家,在颗粒粒度及粒径分析也是独树一帜。特有的干湿两用多功能粒径及粒形分析仪Camsizer XT,专利的测量系统是基于动态数字成像原理,实时显示和精确分析颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。多种进样模块可让客户根据不同的应用和要求进行分析:X-JET压缩空气分散进样;X-FALL自动振动分散进样;X-FLOW湿法超声分散进样模块,其技术为全球领先。 为了让更多的客户了解动态数字成像技术,我们曾多次在上海、北京和广州举办客户演示日,在演示日期间,我们除了对仪器的性能特点做详细介绍外,最主要是结合客户样品进行上机演示实验,务求让到场的客户能够直观的了解到仪器的功能和优点。3月18-19日,我们2014年首场客户演示日在弗尔德莱驰北京办事处举办。来自北京高校及科研院所的相关专家及老师,还有外地的客户远道而来参加了此次演示日活动,现场气氛热闹非凡。 亚太区粒度仪产品销售经理Joerg Westman先生详细为到场来宾演示了干湿两用多功能粒度及粒形分析仪Camsizer XT的操作和应用,使用X-jet模块演示煤粉、钼粉、高分子材料、原料药等粒径粒度测量,其快速清晰的显示和分析过程让来宾叹为观止。 除了粒度分析的仪器,弗尔德莱驰北京办事处区域经理叶上游先生简单介绍了2013年10月弗尔德集团收购德国著名的真空和可控气氛高温炉制造商GERO(盖罗),2014年1月将GERO(盖罗)并入同属弗尔德集团科学仪器事业部的CARBOLITE(卡博莱特)品牌下。两大品牌强强联手,产品范围包括烘箱、箱式炉、管式炉、工业炉,温度从20°C至3000°C。除此之外,还能提供工业定制炉解决方案,包括真空应用、可控气氛的应用如惰性气体或化学活性气体环境下的热处理和先进材料制备。丰富的产品种类和可靠的德国品质,远销全球80多个国家,弗尔德科学仪器事业部逐渐成为高温热处理领域的佼佼者! 关于GERO(盖罗)德国真空和可控气氛高温炉制造商GERO(盖罗)拥有超过30年的专业热处理经验。从标准产品到客户定制的系统解决方案。GERO(盖罗)基于广泛的标准工业炉,对复杂的热处理工艺提供完全定制解决方案,研发制造高达3000°C的高温炉,是真空、惰性气体或反应性气氛(如氢)的高温应用领域的专用炉领头羊,应用主要领域是高校和工业研究,以及产品的中小型生产。 关于CARBOLITE(卡博莱特)英国CARBOLITE(卡博莱特)公司创建于1938年,几十年来,一直致力于实验室箱式马弗炉、管式炉、灰分炉、工业定制马弗炉及其他箱体设备(高温烘箱、培养箱)的制造和研发,在全球享有很高的知名度,已经成为高温热处理设备领域中的佼佼者。广泛应用在航空航天,陶瓷,金属加工,矿山,医药,电子和材料研究等领域。除了标准产品,CARBOLITE(卡博莱特)还生产一系列特殊应用的马弗炉,例如无尘室的烘箱,旋转管式炉;煤炭和焦炭标准分析测试炉、铁矿石(球团矿)还原性测试炉、贵金属灰吹炉、沥青粘结剂分析用炉、有机氚碳氧化炉等。 敬请期待接下来在上海举办的粒度仪演示日,更多精彩活动,尽在弗尔德莱驰! 弗尔德莱驰(上海)贸易有限公司上海张江高科技园区毕升路299弄富海商务苑(一期)8栋邮编:201204电话:+86 21 33932950传真:+86 21 33932955邮箱:info@verder-group.cn 弗尔德莱驰北京办事处北京海淀区苏州街29号院18号楼维亚大厦608室邮编:100080电话:+86 10 82608745传真:+86 10 82608766 弗尔德莱驰广州办事处广州市天河区华庭路4号富力天河商务大厦905室邮编:510610电话:+86 20 85507317传真:+86 20 85507503
  • 弗尔德莱驰粒度及粒形分析仪客户演示日邀请函
    尊敬的老师:您好, 弗尔德科学仪器事业部(Verder Scientific Division)旗下包含了多个知名品牌,如德国RETSCH(莱驰)粉碎研磨筛分设备、Carbolite/GERO高温马弗炉、德国ELTRA(埃尔特)元素分析仪等,RETSCH TECHNOLOGY(莱驰科技)是其中一家专业从事粒度及粒形分析仪器生产和研发的厂家,基于ISO13322-2动态图像技术开发而成的Camsizer/Camsizer XT系列多功能粒度及粒形分析仪,已经有超过600多个客户在使用。该仪器能够一次进样,得到粉体颗粒的粒度大小、粒度分布、球形度、对称性、凹凸度、密度,甚至于颗粒计数,在石化、催化剂、玻璃珠、金属粉末、医药等行业有不可比拟其他粒度分析技术更好的应用优点。 为了让更多的客户了解动态数字成像技术,我们曾多次在上海、北京。广州等地举办客户演示日活动,在演示日期间,我们除了对仪器的性能特点做详细介绍外,最主要是结合客户样品进行上机演示实验,务求让到场的客户能够直观的了解到仪器的功能和优点。本次演示日,特邀德国专家Joerg Westermann先生莅临上海指导。 日期:2014年7月3日9:30-17:30地点:弗尔德莱驰(上海)贸易有限公司(浦东张江毕升路299弄富海商务苑(一期)8栋)仪器演示:Camsizer 多功能粒度及粒形分析仪 Camsizer XT 干湿两用多功能粒度及粒形分析仪 本次培训免费,请务必携带样品参加,餐饮将由弗尔德莱驰公司提供,外地客户的住宿也将本公司负责。请您提前报名,以便于我们发给您详细的日程安排及交通指南。报名至:蔡斌 b.cai@verder-group.cn 13774358570 传真:021-33932950 参加单位:联系人:手机:邮箱:携带样品名称:客户应用及要求:
  • “小贝开讲”之如何快速实现悬浮液、粉体颗粒粒度分布的准确分析
    时间:2018年12月12日 14:00 - 15:00内容简介:作为应用领域最广的粒度分析设备,激光衍射粒度仪有着其它粒度分析设备没有的更宽的测量范围,更高的重复性,更快的测量速度以及更简便的操作。但我们所测样品种类繁多,粒度分布极广,所以如何确保仪器上下限粒度的极限测量?如何确保快速准确区分单峰、多峰样品?如何简化并规范操作流程?这些都是我们关注的焦点。 本讲座将通过对样品的前处理探讨,以及测试过程中对激光粒度仪LS 13 320 XR软硬件设计的详细剖析,为您快速获知任何所测样品的准确粒度分布提供有力保障。主讲人简介:史艳轻产品应用技术专家 贝克曼库尔特生命科学市场部 在粉体制备、颗粒表征以及颗粒特性产品应用领域工作多年,有着丰富的样品颗粒分析和检测经验,现为贝克曼库尔特公司颗粒特性和计数产品专员,负责颗粒产品的技术和应用开发等相关工作。美国贝克曼库尔特公司于1997年由贝克曼公司和库尔特公司合并成立,现已成为世界著名的颗粒分析仪器公司。作为颗粒特性分析领域的先驱和领导者,贝克曼库尔特专注于为全球用户创造卓越的价值。众多应用领域如食品、制药、化工等和国际组织如美国ASTM,国家航空航天局 (NASA)等均将贝克曼库尔特的技术和产品定为标准方法或质量控制的专用仪器。秉承“为全球客户提供富于创新和值得信赖的科学解决方案”的使命,贝克曼库尔特不忘初心,不断创新,致力于为客户提供完整领先的颗粒表征及粒度分析解决方案。
  • DT推出新型DT-1210超声粒度和zeta电位分析仪
    生物医药行业是公认的朝阳行业,对医药开发的技术有着旺盛的需求。为了满足生物医药及其相关行业的研究需要,2017年初,美国分散技术公司即正式推出能够满足该行业少量样品研究的新型dt -1210超声粒度及zeta电位分析仪,和仅用于粒度研究的dt-110超声粒度分析仪。 dt-1210与dt-1202具有相同的性能指标,但其声学传感器的组合可以建立在最小样品体积3毫升的基础上,测量粒度和zeta电位。dt-1202甚至可以连接微型泵,通过声学传感器泵送样品。在这种情况下,样品体积为7ml。软件与dt-1202相同。美国分散科技公司(dti)专注于非均相体系表征的科学仪器业务。 dti开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、电导率、表面电荷、流变学性质、固体含量、孔隙率,包括cmp浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,乳液和微乳液、药物乳剂等,并可应用于多孔固体。 在生物与制药领域的应用包括:色谱用树脂与蛋白质相互作用及其电性能表征颗粒大小和胶束的演变细胞粒径测定蛋白质的电荷(价态)测定蛋白质吸附,蛋白质和血细胞的超声波特性没有稀释的药物乳液和微乳液表征溶解和结晶速度的动力学监测产品特性: 能分析多种分散物的混合体 可精确地判定等电点 可适用于高导电(highly conducting)体系 可排除杂质及对样品污染的干扰 可精确测量无水体系 样品的最高浓度可达50%(体积比),被测样品无 需稀释,对浓缩胶体和乳胶可进行直接测量 具有自动电位滴定功能 产品规格:1. 粒径范围:从5nm至 1000um 2. 可测量zeta电位、超声波频率、电导率、ph、温度、声衰减、声速、电声信号,动态迁移率、等电点(iep)、及弹性流变性质3. zeta电位测量范围:无限制, 低表面电荷可低至0.1mv, 高精度(±0.1mv)4. 在零表面电荷的条件下也可测量粒径5. 允许样品浓度:0.1~50%(体积百分数)6. ph 范围:0.5~13.5 7. 电导率范围:0.0001~10 s/m8. 温度范围: 50℃9. 最大粘度:20,000厘泊10. 电位滴定和体积滴定,滴定分辨率0.1μl 目前,流行的粒度测定方法是激光粒度法(小角激光散射法),但是,这种方法致命的缺点就是必须对样品进行稀释,并且样品最好不带颜色,对光的吸收不能太强。同样,测量zeta电位的动态光散射技术也要求在极稀的分散体系中进行,并且样品粒径不能大于几个微米(一旦颗粒产生定向运动——沉淀,就偏离了该方法的测量原理)。其实,基于同样的瑞利散射原理,如果用声波代替光波,就能够成功地克服上述缺陷。19世纪七八十年代,亨利、廷德尔和雷诺首次研究了与胶体相关的声学现象--声音在雾中的传播。散射理论的创始人洛德瑞利也将他的散射理论中的书命名为“声音理论”。 他把计算方式主要运用到了声音,而不是用在由光学的研究中。由于理论计算的复杂性, 声学更多的依赖于数学计算而不是其他传统的仪器分析技术。随着计算机快速时代的到来和新理论研究方法的发展,今天很多问题已经在美国dti公司有了清晰的答案。 享誉世界的dt-1200系列粒度和zeta电位分析仪, 利用超声波在含有颗粒的连续相中传播时,声与颗粒的相互作用产生的声吸收、耗散和散射所引起的损失效应来测量颗粒粒度及浓度,采用专利电声学测量技术测量胶体体系的zeta电位。对于高达50%(体积)浓度的样品,无需进行样品稀释或前处理即可直接测量。甚至对于浆糊、凝胶、水泥及用其它仪器很难测量的材料都可用dt-1200系列的zeta探头直接进行测量,粒度适用范围从5nm到1mm。 zeta电位电声探头(zeta probe)能直接在样品的原始条件下测量zeta电位,允许样品浓度高达50%(体积)。可配置zeta电位自动滴定装置,自动、快速地判断等电点,快速得到最佳分散剂和絮凝剂,对粒度和双电层因素导致的失真进行自动校正。该仪器的软件易于使用,通用性强,非常适用于科研及工厂的优化控制。 美国分散科技公司(dti)成立于1996年,专注于非均相体系表征的科学仪器业务。 dti开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、流变学、固体含量、孔隙率,包括cmp浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体。dti享有7项美国专利,在iso参与领导组织超声法粒度分布国际标准和电声法测量zeta电位国际标准的制定,并获得2013年科学仪器行业最受关注国外仪器奖。 1999年,现任仪思奇科技总经理的颗粒和多孔材料表征专家杨正红先生即访问了dti美国总部,并建立了联系,之后双方进行了广泛的合作。自2016年8月仪思奇(北京)科技发展有限公司成立,即开始负责dti在中国大陆的全部业务。 利用dt系列仪器,我们能够分析: 浓浆中粒度分布 浓浆zeta电位 膜和多孔材料的表面zeta电位 等电点 孔隙率 体积流变学 表面活性剂优化 表面活性剂配伍优化 非水相和水相电导率 微流变 表面电荷和表面电导率 德拜长度 固体含量dt系列仪器和规格指标操作过程可选附件操作者将0.1 - 150 ml样品倒入样品池,然后在简单对话框中定义样品,选择所需的实验方案(协议),启动"run" 对于zeta电位测定,样品量可少至0.1 ml.当测量完成,用户需要将样品倒出,并用水或相应清洁溶液清洗探头。对于粒度测量,用dt-110或dt-1210,样品量可少至3ml。 ? 配有1个或2个注射泵的自动滴定系统? ph / 温度测量探头? 电导率测量探头,可选水相和/或非水相? 用于非常粘稠样品的蠕动循环泵? 用于远程“在线”测量的端口? 弹性流变性能测定? 温度加热控制 ? 样品量1202/10型测定粒度 & zeta 电位dt-100/110型dt-500型仅测粒度dt-600型超声法弹性流变分析仪dt-300系列(300/310/330)zeta 电位探头dt-400型自动滴定系统样品体积范围0.1 -150 ml3 -70 ml3 -100 ml0.1-100 ml100 ml体积浓度范围 % (1)0.1-500.1-50无限制0.1-50必须能搅拌电导率 (2)无限制无限制无限制无限制无限制ph0.5-13.50.5-13.50.5-13.50.5-13.50.5-13.5温度 [℃]低于 50低于50低于50低于50低于100介质粘度[cp]可至 20,000可至20,000可至20,000可至20,000可至20,000介质微粘度 [cp] (3)可至100可至100无限制可至100可至100胶体粘度 (4)可至 20,000可至20,000可至20,000可至20,000可至20,000粒径范围 [微米] (5)0.005 to 10000.005 to 1000无限制 测量参数温度[℃]0 to 100, ±0.10 to 100, ±0.10 to 100, ±0.10 to 100, ±0.10 to 100, ±0.1ph0.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.1频率范围 [mhz]1- 1001- 1001- 1001- 10n/a超声衰减 [db/cm mhz]0 to 20, ±0.010 to 20, ±0.010 to 20, ±0.01n/an/a声速 [m/sec]500 to 3000,± 0.1500 to 3000, ±0.1500 to 3000, ±0.1n/an/a电声信号重现性±1%n/an/a±1%n/a电导率(s/m)0.0001-10, ±1% 0.0001-10, ±1%n/a0.0001-10, ±1% 0.0001-10, ±1%所计算参数平均粒径 [微米]0.005 to 10000.005 to 1000n/an/an/a单峰模型参数yesyesn/an/an/a双峰模型参数yesyesn/an/an/azeta 电位±(0.5% +0.1)n/an/a±(0.5% +0.1)n/a弹性粘度 [cp]可选n/a0.5-20000, ±3%n/an/a牛顿液体的体积粘度 [cp]可选n/a0.5-100, ±3%n/an/a液体压缩率 [104/mpa-1]可选n/a1-30, ±3%n/an/a牛顿液体试验范围 (mhz)可选n/a任何频率n/an/a测量时间 [分,min]粒度分布1- 101- 10n/an/an/a水相zeta 电位0.5n/a0.50.5n/a非水相zeta 电位0.5-5n/a0.5-50.5-5n/a流变性能n/an/a1-10n/an/a物理指标重量[kg]电控箱 20池体及探头: 30电控箱 20池体及探头: 30电控箱 20池体及探头: 30电控箱 20池体及探头: 7电控箱 20池体及探头: 5功率300 w300 w300 w300 w300 wdt系列仪器选件的适用性型号ph/温度探头电导率泵滴定升级到 dt- 1202dt- 100yesyesyesyesyesdt- 600yesyesyesyesyesdt- 300yesyesyesyesnodt- 400yesnoyesnonodt- 1202yesyesyesyesn/a(1)仪器可以测量的超声衰减谱远远超过50%(体积),但是从该数据计算psd和ζ电位的理论被限制为50%(体积)。在胶体样品密度与介质密度的对比比较接近的一些体系中,最小体积分数为1%。(2)ζ电位的概念在非常高和非常低的电导率的极端情况下变得不确定。(3)在计算粒径和ζ电位时,重要的粘度值是当粒子响应于声波而移动时粒子所经历的粘度。 在诸如凝胶或其它结构化体系的情况下,这种“微粘度”可以显著小于用常规的流变仪测量出的介质粘度,这种介质粘度比其颗粒的微粘度要大于一个数量级。(4)对于自动滴定实验,可能有必要使用外部循环泵,以使(酸/碱)试剂与相当粘稠的样品之间充分混合。 (5) 对于zeta电位测量的粒度范围,可能取决于颗粒密度与介质密度的对比度。
  • 德国新帕泰克:干法粒度分析-水泥磁性材料粒度分析的最佳选择
    德国新帕泰克/北京粉体协会技术交流暨培训会议顺利举行   仪器信息网讯 为了感谢用户长期以来对德国新帕泰克公司的关心和支持,使用户能够更好的使用新帕泰克的仪器,2011年4月18日,德国新帕泰克/北京粉体协会技术交流暨培训会议在北科大厦隆重召开,会议同期举行了德国新帕泰克北京理化中心联合应用实验室揭幕仪式。60余名来自高校、科研院所及企业的专家学者、技术人员、仪器操作人员亲临会议现场共同分享和交流粒度分析技术、应用以及发展前景。 北京粉体技术协会理事长胡荣泽教授   北京市理化分析测试中心副主任张经华博士、北京市理化分析测试中心主任刘清珺博士   本次技术交流会由北京市理化分析测试中心副主任张经华博士主持,德国新帕泰克有限公司全球销售经理潘克维先生、德国新帕泰克首席代表耿建芳博士、北京市理化分析测试中心主任刘清珺博士、北京粉体技术协会理事长胡荣泽教授分别致词,并对德国新帕泰克公司与北京理化分析测试中心成立联合应用实验室,开始实质性的合作交流表示祝贺。   德国新帕泰克北京理化中心联合应用实验室揭幕仪式   (刘清珺博士和潘克维先生为落户联合应用实验室的第一台新帕泰克仪器——HELOS/RODOS干法激光粒度仪揭幕)  北京市理化分析测试中心物理部 周素红主任   周素红主任做了《粒度分析方法标准现状及最新进展》的报告。首先,对于粒度测量方法的比较、纳米材料测量方法、不同粒度分析技术周素红主任做了简要介绍。随后,周主任主要对于动态光散射国际标准,图像法、声学法表征颗粒的国际标准,以及目前国内和国际上粒度表征的通用标准主要归口做了介绍。   德国新帕泰克首席代表 耿建芳博士   德国新帕泰克有限公司(SYMPATEC GmbH)创建于1984年,是从以粉体研究而闻名世界的大学Technical University of Clausthal(克劳斯塔尔工业大学)中分支出来的。公司总部设在德国,在美国、瑞士、瑞典、法国、英国、比利时、伊朗、韩国设有分公司,在中国设有德国新帕泰克有限公司苏州代表处。耿建芳博士表示新帕泰克是一家专注于技术创新的专业粒度仪制造商,其将近一半的员工具有博士学位,新帕泰克的激光粒度测试仪在业界创造了多项“世界第一”。其推出的“干样干测、湿样湿测”的检测理念很好的满足了不同行业的不同使用要求。   在1nm-20mm的粒度范围内,根据不同的应用需求,新帕泰克有不同的技术解决方案。耿建芳博士介绍说对于0.1-8750μm的粉末或可稀释的乳液、悬浮液,可使用HELOS或MYTOS系列激光粒度仪;对于0.01-3000μm的不可稀释的乳液、悬浮液可使用OPUS或NIBUS系列超声衰减粒度仪;对于1-20,000μm的粉末或可稀释的乳液、悬浮液等,除了粒度大小和分布,如果还要获得颗粒形貌信息可采用QICPIC动态颗粒图像分析仪;对于1-10000nm的粉末或可稀释的乳液、悬浮液则可用NANOPHOX纳米激光粒度仪。   德国新帕泰克有限公司全球销售经理 潘克维先生   德国新帕泰克有限公司全球销售经理潘克维先生向与会人员做了《粒度分布的计算方法及粒度检测结果各个参数的解释》和《干法激光粒度仪在水泥和磁性材料行业的完美解决方案及应用》两个报告。   对于粒度分布的计算方法及粒度检测结果各个参数的解释,潘克维先生介绍说对于3D物体不可能只用一个特殊的数值进行正确的描述。描述粒度大小有Feret径、最小外接矩形径、等效投影面积径等方法;粒度大小分布的描述方式有,累积分布、微分(频度)分布、峰形等;粒度分布特征值常用的表示方法有中位数,X10、X50、X90,峰形,分布的宽度等。潘克维先生在报告中对于各个计算方法的定义及应用都做了详细的介绍。   在《干法激光粒度仪在水泥和磁性材料行业的完美解决方案及应用》的报告中,潘克维先生指出粒度分布是控制水泥和磁性材料质量的重要指标。同时干法分散具有分析时间短、样品量大有代表性、无化学作用、无需液体处理等优点,对于干粉样品分析具有很大的优越性。   潘克维先生介绍了新帕泰克实验室应用的RODOS干粉分散系统的设计原理、测试步骤、性能特点,以及水泥、磁性材料等样品测试实例。RODOS干粉分散系统可分散小至0.1μm的干粉颗粒、样品分析量可从mg至kg;分散力度可调,可实现粉体的完全分散,不会造成颗粒的粉碎及破坏;测试频度高,可实现“瞬时分散、瞬时测量”的测试原则。   此外,潘克维先生还介绍了新帕泰克MYTOS在线干法激光粒度分析和过程控制系统,分别从仪器的结构、过程控制的优越性,以及在德国、南非、荷兰、卢森堡等国家的水泥、磁性材料企业中的在线安装应用实例向与会者做了详细的介绍。据介绍,280台新帕泰克系统成功应用在水泥行业、220台成功应用在金属粉/NdFeB行业。   德国新帕泰克有限公司苏州代表处区域经理 金哲先生   金哲先生做了《关于粒度测试若干问题的澄清》的报告,在报告中金哲先生就粒度测试范围,单光源和多光源、平行光和收敛光、单镜头和多镜头、米氏计算模型和费氏计算模型的特点,粒度检测的准确性做了介绍。   金哲先生指出激光衍射法的粒度测试范围为0.1μm至3mm,对于小于0.1μm的颗粒,应采用基于动态光散射的纳米激光粒度仪。多光源设计可能带来不同光源产生的衍射图形无法分辨、多光源的结果如何拟合、米氏参数如何选择等问题,在ISO13320中,对微米级激光粒度仪的推荐光路为单光源。平行光路设计光路系统精度最高,收敛光路虽然节省成本,但在该光路中大小相同的颗粒因位置不同,在探测器上的衍射图形就不重叠,因而被认为是不同大小的颗粒,测量误差一般大于10%。要获得高的测试精度和最高的测试分辨率就要根据被测物料的实际状态选择最合适的镜头。米氏理论的应用需要对物料的物性参数及颗粒形貌有严格的要求,所以只有在有精确的米氏参数且颗粒为球形、各项同性时,才使用米氏计算模型,一般都使用费氏模型。此外,在大多数情况下,粉体粒度事实上没有“真值”,所以也谈不上测量的“准确性”。 与会人员合影   报告会后,与会人员还就自己关心的问题同新帕泰克的工作人员进行了交流,新帕泰克工作人员对用户的问题进行了详细的解答,并对用户提供的样品进行现场测试。通过此次会议,大家对于新帕泰克粒度测试的基本知识、及新帕泰克公司在粒度测试领域的技术实力有了更深入的了解。
  • 吸附等温线及典型吸附理论浅析
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong 本文对气体吸附研究中最常用到的概念——吸附等温线进行了科普和分类,并对Langmuir吸附等温理论、BET理论给出了自己的分析和见解,深入浅出的专业文章即将到来,以飨读者。 /p p style=" text-align: justify text-indent: 2em " strong 吸附等温线小科普 /strong /p p style=" text-align: justify text-indent: 2em " 对于给定的固体-气体体系,在温度一定时,可以认为吸附作用势一定,这时候,吸附量是压力的函数,这个关系叫做吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体在固体表面的吸附状态多种多样,目前,把等温线分为六类,实际的各种吸附等温线大多是这六类等温线的不同组合。设固体表面与第一层(单分子层)吸附分子的吸附作用能为E1,第n层与第n+1层的作用能为En。 /p p style=" text-align: justify text-indent: 2em " (1)I型等温线 /p p style=" text-align: justify text-indent: 2em " I-A型(E1& gt & gt En) /p p style=" text-align: justify text-indent: 2em " 由于单分子层的吸附作用力很大,表面吸附位的反应活性高,属电子转移型吸附互相作用,这时候的吸附大多数不可逆,我们认为是化学吸附。在金属与氧气、金属与一氧化碳、金属与氢气的表面反应体系中常见,这种等温线是由Langmuir研究,所以也叫做Langmuir型。等温线如下图所示。 span style=" text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/91952d99-a96e-444f-b86b-f98a78a8e437.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " I-B型 /p p style=" text-align: justify text-indent: 2em " 活性炭和沸石常呈现这种类型,这些固体具有微孔,外表面积比孔内表面积小很多。在相对压力较低时,吸附曲线迅速上升,发生微孔内吸附。如上图所示。 /p p style=" text-align: justify text-indent: 2em " (2)II型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线一般为非多孔性固体表面发生多分子层吸附,比如非多孔性金属氧化物粒子吸附氮气或者水蒸气,此外,发生亲液性表面相互作用时也为此类型。在相对压力约为0.3时,第一层吸附大致完成,随着相对压力增大,开始形成第二层,在饱和蒸气压时,吸附层数无限大。Brunauer、Emmet和Teller从理论导出这种等温线,故这种类型的等温线也被称作BET等温线。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/11476386-c8ca-4d9f-a9b2-bd2c87e56d2c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " (3)III型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 在憎液性表面发生多分子层吸附,或者固体和吸附质的吸附相互作用小于吸附质之间的相互作用时呈现这种类型。比如,水蒸气在石墨表面上吸附,或者,水蒸气在进行过憎水处理的非多孔性金属氧化物上的吸附。因此,这种吸附在低压区的吸附量较少,相对压力越大,吸附量越多。如下图。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/931c7ce4-fbdd-4933-bf7a-3a53890d9de5.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " (4)IV型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 氮气、有机蒸汽和水蒸气在硅胶上吸附属于这一类型。在相对压力约为0.4时,吸附质发生毛细凝聚,等温线迅速上升,脱附等温线与吸附等温线不重合,脱附等温线在吸附等温线的上方,产生吸附滞后,形成一个“吸附滞后环”。在相对压力较大时,由于中孔内的吸附已经结束,吸附只在外表面上发生,曲线平坦,在相对压力接近1时,在大孔上吸附,曲线上升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/f555414b-be52-465d-9be6-977a773a7321.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify text-indent: 2em " (5)V型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 发生在多孔固体上,表面相互作用同III型,例如水蒸气在活性炭或憎水化处理过的硅胶上的吸附。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2900e13b-5186-4bfc-90dc-13e79adb4bdd.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: justify text-indent: 2em " (6)VI型等温线 /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线又称为阶梯型等温线。非极性的吸附质在化学性质均匀的非多孔固体上吸附时较为常见。如将炭在2700℃以上进行石墨化处理后,再吸附氮气、氩气、氪气。这种阶梯型等温线是先形成第一层二维有序的分子层后,再吸附第二层,第二层显然受第一层的影响,因此成为阶梯型。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2f1b1b14-d591-4786-98e0-0eef916902cd.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 典型吸附理论浅析 /strong /p p style=" text-align: justify text-indent: 2em " 不同的固体表面与吸附质组合得到各种不同的吸附等温线,这些等温线的形状反映了固体表面结构、孔结构和固体-吸附质的相互作用,通过解析这些等温线就能知道吸附相互作用和表征固体表面。对于常见的等温线,提出许多吸附相互作用的理论。下面仅介绍目前具有代表性的理论。 /p p style=" text-align: justify text-indent: 2em " Langmuir方程是常用的吸附等温线方程之一,是由物理化学家朗格缪尔于1916年根据分子运动理论和一些假定提出的。这个理论认为,在固体表面的分子或原子存在向外的剩余价力,可以吸附分子,吸附位可以均匀的分布在整个表面,但是只是吸附在表面的特定位置,称之为特异吸附。 /p p style=" text-align: justify text-indent: 2em " Langmuir吸附等温方程如下式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/81e08f48-a1ad-4e98-9589-7ca91cac2197.jpg" title=" a.png" alt=" a.png" / /p p style=" text-align: justify text-indent: 2em " 其中,P为氮气压力、V为实际吸附量、Vm为单层饱和吸附量、b为与吸附热相关的常数。在不同的氮气压力P下测出氮气的实际吸附量V,用Langmuir方程作图得到一条直线,该直线的斜率的倒数即为单层吸附量Vm,进而计算出比表面,称为Langmuir比表面,Langmuir比表面对于微孔具有重要的意义。 /p p style=" text-align: justify text-indent: 2em " 布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在Langmuir方程基础上提出的描述多分子层吸附理论,通过对气体吸附过程的热力学与动力学分析,推出氮吸附量随氮气分压而变的BET方程: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/e4e4e5d7-cb69-473d-84f0-ceda0cf74951.jpg" title=" b.png" alt=" b.png" / /p p style=" text-align: justify text-indent: 2em " 分析得出,P/P0在0.05~0.35范围中,BET是一个线性方程,该直线的斜率与截距之和的倒数是单层饱和吸附量,从而算出比表面积。通过BET方程求出比表面积成为目前国际通用的方法,被称为BET比表面。 /p p style=" text-align: justify text-indent: 2em " 根据材料不同,特别是微孔材料,由于在很低的压力下就完成了单层吸附,因此,BET方程的线性范围会向低压方向移动。对于孔径极小的分子筛,线性范围应取0.005~0.01;微孔材料的线性范围应取0.005~0.1;介、微孔复合材料线性范围应取0.01~0.2;介孔、大孔材料的线性范围取0.05~0.35。但是根据实际材料的不同,线性范围的取点应根据实际情况进行调整,使BET直线的线性良好才具有一定的参考价值。对于微孔材料,更接近于单层吸附的特征,Langmuir比表面值应具有更大的参考意义。 /p p style=" text-align: right " strong 作者:精微高博 /strong /p p style=" text-align: justify text-indent: 2em " (本文由精微高博团队供稿,不代表仪器信息网本网观点) /p
  • 揭开神秘的面纱-美国麦克仪器全自动六站化学吸附仪震撼首发
    一直以来,总有客户问我们:现在市面上的化学吸附仪都是单站的,最多也是两站的,什么时候能有多站的提供?能不能有一种方法,既帮我们提高工作效率,又不用太多的人力?最好每个工作站独立运行,想用几个站就几个站。美国麦克仪器公司为满足客户日益增长的客户需求,经过一系列的研究,攻克了化学吸附多站同时进行遇到的技术难题,终于与日前揭开全自动六站化学吸附仪ChemiSorb HTP神秘的面纱,为大家送上一份特别的圣诞大餐。 ChemiSorb HTP全自动六站化学吸附仪技术特点: 分析测试量大,带有六个独立分析站 最多可同时进行六个化学分析 每个分析站带有独立的加热炉,设定范围:10℃到700℃ 石英样品反应器带溢流道设计,可用于各种尺寸的颗粒和粉体 全自动分析 无需人看守即可得到高分辨率吸附等温线 分析站可同时运行,也可独立运行 最多可同时连接多达12种不同的气体 Windows® 操作界面 如有需求,请拨打我们的咨询电话400-630-2202或登录我们的网站:www.micromeritics.com.cn 公司简介: 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。
  • 听大咖讲氮吸附孔径分析 脱附与吸附曲线该选who?
    p style=" text-align: justify text-indent: 2em " 让公益传播科学知识,用教育安抚技能焦虑。2018年11月15日,“比表面与孔径分析原理及应用”系列精品在线讲座第四弹成功举办。中国氮吸附仪的开拓者、国务院特殊津贴专家钟家湘教授与广大网友再度相聚仪器信息网。用内容丰富、深入浅出的精彩讲解,在2小时的滴答中,带大家继续畅游于比表面与孔径分析的世界。该系列讲座共分6讲,在此前的三讲中,钟老先后为大家讲解了氮吸附法、连续流动色谱法和静态容量法比表面及孔径分析仪原理及应用。本期的讲座则聚焦于氮吸附法介孔和大孔的测试与分析。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d94345d7-5843-42ff-96d2-b7fe28d449cf.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p /p p style=" text-align: center text-indent: 2em " strong 仪器信息网仪颗通平台直播现场 /strong /p p style=" text-align: justify text-indent: 2em " 在学术界,介孔与大孔的测量范围一般在2nm-500nm之间。钟老先为大家讲解了氮吸附法BJH孔径分析的基本方法。该方法通过控制和调节吸附质的压力,由低向高逐级变化,测量出每个压力下产生的吸附或脱附量,利用压力和孔径之间的定量关系,从而计算得到孔体积随孔径的变化,测试的压力点越多,孔径分布的描述就越精确。在该方法中,等温吸、脱附曲线的测定是孔径分析的唯一实验依据。钟老详细讲解了BJH法测量的介孔体积测量和计算方法,以及孔径分析的各种参数来源。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/f1cabf20-a28f-4d7e-ba1c-f1bbe4099dbe.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p /p p style=" text-align: center text-indent: 0em " strong 钟家湘教授 /strong /p p style=" text-align: justify text-indent: 2em " 而在孔径分布的表征中,除了总表面积(BET)和总孔体积外,积分分布、微分分布和最可几孔径是最重要的参数。其中积分分布反应的是孔增量的累计叠加、微分分布反应的是孔体积随直径变化的变化率,最可几孔径则是微分分布最大值对应的孔径,代表着孔径密度最大的等效孔径值,该数据在多孔材料的制备、检测、及实际应用中具有重要的参考意义。 /p p style=" text-align: justify text-indent: 2em " 另外,钟老还认为,吸附平均孔径缺乏实用的意义和价值,虽然仪器会得出相关数据,但是很少会成为主要分析参数。 /p p style=" text-align: justify text-indent: 2em " 氮吸附法比表面与孔径分析仪的精确测量上限在哪里?钟老表示,虽然仪器上标注的上限在500nm左右,但是高点追求接近于1并无实质意义,在0.99及以下才较为适当,这样相对应的孔径测试上限在200nm是合理的。另外,在前几年相关研究的论文中,研究者常采用等温吸附线中的脱附曲线进行分析,钟老表示,由于“张力强度效应”会导致脱附曲线很容易出现假峰(常出现在0.3-0.4nm左右),因此选取吸附分支可以获得更为真实的孔径分布。 /p p style=" text-align: justify text-indent: 2em " 讲座还对孔径分析设备要求、预处理注意事项、P0确定的经验等内容进行了传授,并分析了影响孔径分析测试精度的因素。钟老的精彩讲解赢得了网友们的满堂彩,在随后的问答环节,网友们积极留言互动,钟老也对大家提出的孔壁吸附层厚度选择、脱附曲线异常变动、BJH方法使用范围等内容进行了耐心地一一解答。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/7a054509-c45b-4ed7-b41e-78e9f84680e0.jpg" title=" 企业微信截图_15422713207930(1).png" alt=" 企业微信截图_15422713207930(1).png" / /p p /p p style=" text-align: center text-indent: 0em " strong 网友感谢弹幕 /strong /p p style=" text-align: justify text-indent: 2em " 虽然年逾80,但是钟老精神矍铄,幽默的谈吐,渊博的学识,以及鞭辟入里的条分缕析无不让听众如沐春风,讲座结束后,留言板上满是对钟老真诚感谢的弹幕。“时间过得太快了,希望下次讲座能够讲更多的东西。”钟老憨厚地笑着说。 /p p style=" text-align: justify text-indent: 2em " 作为仪器信息网仪课通平台打造的精品系列讲座之一,“比表面与孔径分析原理及应用”讲座的下一讲将于12月20日与网友们见面,有兴趣的用户可随时关注仪器信息网了解报名详情。仪课通是仪器信息网旗下的在线教育平台,专注于科学仪器与检测行业用户职场技能的提升。千里仪缘一网迁,平台邀请行业资深专家开讲授课,为行业用户提供丰富、高质量的自我提升内容,在知识互通,交流互助的学习环境下完成专业知识的系统化储备与升级。平台在线讲座包罗万象,涉及色、质、谱,物性检测、食品药品检测、环境检测、仪器开发与设计等诸多领域。讲座的直播采取公益形式,用户可免费报名参加。错过直播的用户也可在仪颗通平台购买讲座课程进行学习。 /p p style=" text-align: justify text-indent: 2em " 仪课通平台网址( a href=" https://www.instrument.com.cn/ykt/" target=" _self" https://www.instrument.com.cn/ykt/ /a )。 /p p style=" text-align: justify text-indent: 2em " 仪课通公众号二维码 /p p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/1072b0b6-b309-4496-b53b-914bde7d2b04.jpg" title=" 仪课通.jpg" alt=" 仪课通.jpg" / /p
  • 美国Microtrac粒度仪亮相中国化学会第30届学术年会
    7月4日,为期4天的中国化学会第30届学术年会在大连理工大学落下帷幕。本届年会以“转型中的中国化学”为主题,包含学术分会及专题论坛等形式,并设立系列科普活动及新技术、新产品与新仪器成果展览,会议共吸引化学同仁1万余人,创历届年会参会人数之最。本次化学年会为各领域的化学工作者搭建了更加精确和深入交流的平台,也为实验室仪器设备展商提供了寻找到合作研究的契机。大昌华嘉作为中国化学会的合作伙伴,携手公司明星产品美国Microtrac激光粒度仪亮相本次会议,应用技术人员与参会者就产品的应用技术及领域相互沟通,增进了解,达到了相互交流技术的目的。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。会议现场回顾大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪/颗粒图像分析仪--美国麦奇克(Microtrac)公司比表面及孔隙度分析仪/化学吸附仪--日本麦奇克拜尔(MicrotracBEL)公司视频光学接触角测量仪、表面/界面张力仪--瑞典百欧林(Biolin)公司堆密度计--英国康普利(Copley)公司密度计/旋光仪/折光仪/糖度仪--美国鲁道夫(Rudolph)公司全自动氨基酸分析仪--英国百康(Biochrom)公司元素分析仪、TOC总有机碳分析仪、快速氮测定仪--德国Elementar公司薄层色谱扫描仪、点样仪--德国Biostep公司水份活度仪--瑞士Novasina公司火焰光度计/氯离子分析仪--英国Sherwood公司X射线荧光光谱仪-荷兰帕纳科(PANalytical)公司凯氏定氮仪--德国贝尔(Behr)公司全自动化学反应器/量热仪--瑞士Systag公司 大昌华嘉商业(中国)有限公司服务电话:4008210778邮箱地址:ins.cn@dksh.com大昌华嘉网站:www.dksh-instrument.cn 扫描关注“大昌华嘉科学仪器部”公众号
  • Markes吸附管的优势
    为什么Markes的热脱附吸附管更好?装填有吸附剂的 3&half " × 1/4" 吸附管是进行热解吸分析的主要样品收集装置。我们发现市场上存在众多吸附管品牌,那么选择哪个品牌的吸附管?基本需要考虑的因素包括产品质量、成本和交货速度等。在本文中,我们将探讨Markes吸附管的优势,并强烈建议您选择Markes的吸附管产品!对分析工作者来说,采样是分析过程中至关重要的一步。即使拥有灵敏的仪器、先进的软件和完善的分析方法,如果样品收集过程未被优化,分析结果的可靠性会受到很大的影响。对我们来说,安全可靠的采样始于产品质量。虽然购买较便宜的吸附管产品看似节省了成本,但如果产品未能达到预期性能,这种节省就没有意义。“产品质量”可能是一个模糊的概念,因此我们将重点讨论吸附管的洁净度。因素1:吸附管的洁净度吸附管若不足够洁净,其背景信号会出现在色谱图中,影响目标化合物的定性和定量分析。随着应用检测限要求的不断降低,吸附管的洁净度在疾病生物标志物的呼吸监测和空气中优先污染物的处理等领域变得格外重要。因此,吸附管产品质量的核心之一就是洁净度。Markes的预老化吸附管在发货前都经过严格的质量检查。以下三张图显示了10根Markes预老化吸附管和其他两个友商的同等数量吸附管,在相同条件下进行两次连续解吸的平均背景差异(友商2没有类似于我们的“空气有毒物专用吸附管”和“通用吸附管”产品,因此未作比较)。结果显示,在每种测试条件下,Markes的吸附管第一次和第二次解吸的背景都显著低于其他友商。事实上,在某些情况下,其他友商的吸附管第二次解吸的结果仅略低于Markes[预老化吸附管第一次解吸的水平,这清楚地证明了吸附管洁净度对结果的重大影响。因素2:吸附管类型的正确选择吸附管产品质量的另一个关键因素是选择适合分析要求的吸附管。通过与客户和合作伙伴的紧密合作,我们不断了解分析热脱附市场的新趋势,并致力于为各种采样挑战寻找合适的吸附剂组合。我们不仅提供多种类型的吸附管,而且设计了一系列符合特定要求和应用的吸附管。凭借近25年的行业经验,我们还能根据需要帮助客户开发定制吸附管。然而,除了吸附管本身,我们更向客户提供与热脱附相关的技术经验和知识。与其他友商不同,我们将吸附管与合适且经过验证的吸附剂以及聚焦冷阱相结合,确保分析作为整体进行。此外,我们庞大的应用案例库能够为多种方法的开发提供有力的支持。因素3:产品一致性最后,同样重要的是产品批次间的一致性。确保您去年购买的吸附管,与今年购买的性能完全相同。因此,Markes的吸附管制造过程在严格的质量控制下进行,每根管的填充重量误差控制在±2.5%以内。发货前,每根管都会经过严格的物理测试,而预老化管在出厂前会进行色谱测试。我们的目标是在每个阶段都为您提供可靠且高品质的产品。
  • “一种用于选择吸附六价铬的吸附剂”获国家发明专利授权
    中国科学院兰州化学物理研究所发明了一种用于选择吸附六价铬的吸附剂,近日获得国家发明专利授权(一种用于选择吸附六价铬的吸附剂,专利号:ZL 201110212531.3,发明人:郑易安 王爱勤)。   铬及其化合物广泛应用于工业生产的各个领域,是冶金工业、金属加工、电镀、制革、油漆、印染、颜料等行业中必不可少的原料。铬在水中的存在形式有两种:铬(VI)和 铬(III)。毒性大的铬(VI) 是重金属中有毒有害污染物的代表,常用的处理方法有沉淀法、氧化还原法、电解法、吸附法、离子交换法等。每种方法各有优劣,其中吸附法因操作简单、见效快、吸附剂可以设计及循环使用等优点在含铬废水处理中得以广泛应用。然而,目前国内常用的吸附法均存在一定缺陷,如材料价格昂贵、再生困难 吸附容量小,容易造成二次污染 选择吸附性有待提高等。   该发明以洋车前子壳粉和苯胺为原料,经过氧化聚合制备了用于选择吸附六价铬的吸附剂。吸附剂可在保持聚苯胺原有吸附性能基础上,进一步降低制备成本,赋予环境友好性,用于工业含铬废水的处理。   与现有技术相比,该发明中吸附剂合成原料廉价易得 吸附剂的制备过程简单,反应条件温和 吸附剂对水中的六价铬具有高的选择吸附性 在不降低聚苯胺原有吸附性能基础上,引入洋车前子壳粉,从理论上讲赋予吸附剂良好的生物可降解性,同时可拓展洋车前子壳粉的应用领域。
  • 一文带你走入物理吸附的天地
    p style=" text-align: justify text-indent: 2em " 在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。 /p p style=" text-align: justify text-indent: 2em " 影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 325px " src=" https://img1.17img.cn/17img/images/201906/uepic/d35f3ecb-de71-46ec-ad8f-94fe24a2882c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 325" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。 /p p style=" text-align: justify text-indent: 2em " 在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。 /p p br/ /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/184f6781-8d9a-4823-94c9-62247baceeb6.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " 根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。 /p p style=" text-align: justify text-indent: 2em " 在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。& nbsp 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。 /p p style=" text-align: justify text-indent: 2em " 多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。 /p p style=" text-align: justify text-indent: 2em " 物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。 /p p style=" text-align: justify text-indent: 2em " 下面是静态体积法的物理吸附仪器示意图:真空泵、一个或多个气源、连接样品管的金属或玻璃歧管、冷却剂杜瓦、样品管、饱和压力测定管、压力测量装置(压力传感器)。其中歧管的体积经过校准,并含有温度传感器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0a23586e-b60b-4eb0-bb98-11447a4bcf39.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " 1 :样品管 & nbsp 2:低温杜瓦 & nbsp 3:真空泵 & nbsp 4:压力传感器 & nbsp 5: 歧管 /p p style=" text-align: center text-indent: 2em " 6: 饱和蒸汽压测定管 & nbsp 7 : 吸附气体 & nbsp 8 :死体积测定气体He /p p style=" text-align: justify text-indent: 2em " 静态体积法测试主要流程(以氮气吸附为例):首先将样品进行脱气净化处理,之后测量死体积(样品池)空间,然后将样品冷却到液氮温度,将氮气注入到已知体积的歧管中,记录压力与温度,之后样品池与歧管之间的阀门打开,氮气扩散到样品池,由于空间体积增大和样品对氮气的吸附作用,压力下降,通过压力的下降来计算气体吸附量。计算过程基于克拉柏龙方程:PV = nRT。其中P是气体的压强,V为气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度; R为理想气体常数。吸附量由下面公式得到: /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/81d0c349-bbb5-414a-ad42-095759c73754.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 如果温度和压力恒定,气体(吸附质)和表面(吸附剂)的作用能是不变的,在一个特定表面的吸附量也是不变的,因此在恒定温度下,可以用平衡压力对单位重量吸附剂的吸附量作图。而这种在恒定温度下,吸附量对压力变化的曲线就是特定气-固界面的吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体是作为吸附探针来分析材料比表面积和孔径分布的,它应该满足几个条件: 1) 气体相对惰性,不与吸附剂发生化学反应; 2) 物理吸附一般是弱的可逆吸附,为了使足够气体吸附到固体表面,测量时固体须冷却到吸附气体的沸点; 3) 符合或满足理想气体方程的使用条件。 /p p style=" text-align: justify text-indent: 2em " N2(77 K)是最常见的吸附气体,可满足常规分析;Ar(87 K)为微孔分析提供更准确的分析结果、更快的分析速度、更高的起始压力;CO2(273 K)对微孔碳材料具备最快的分析速度,分析孔径可低至0.35 nm;Kr (77 K)适用于超低比表面积分析;Kr(87 K)适用于薄膜样品的孔径分析。我们可根据样品特点来选择最合适的吸附气体。 /p p style=" text-align: justify text-indent: 2em " 在进行比表面积分析时,我们经常会用到Langmuir 和BET方程,其中Langmuir 方程是基于单分子层吸附理论,而BET 方程式基于多层分子吸附理论,也是目前最流行的比表面分析方法,适合于大部分样品。 /p p style=" text-align: justify text-indent: 2em " 在进行孔径孔容分析时,可选择的理论模型会更多,不同的理论模型假设条件不同,给出的计算结果也是不同的,所以我们应选择最适合样品性质的理论模型。根据经验,BJH、DH模型适用于介孔材料分析, DA、DR、 HK、SF模型适用于微孔材料分析,NLDFT、QSDFT适用于微孔/介孔材料分析。NLDFT 是非定域密度泛函理论,研究表明,NLDFT 计算出的比表面值最接近真实值,并且该理论适用于微孔和介孔材料。 /p p style=" text-align: right text-indent: 2em " strong 作者:安东帕研发团队 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由安东帕供稿,不代表仪器信息网本网观点) /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制