当前位置: 仪器信息网 > 行业主题 > >

离子碎裂

仪器信息网离子碎裂专题为您整合离子碎裂相关的最新文章,在离子碎裂专题,您不仅可以免费浏览离子碎裂的资讯, 同时您还可以浏览离子碎裂的相关资料、解决方案,参与社区离子碎裂话题讨论。

离子碎裂相关的资讯

  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • Nat Genetics | 染色体碎裂驱动癌基因扩增
    2019年,BioArt曾解读Nature Reviews Cancer上的一篇观点文章(这篇观点文章是3月发表),讲述了染色体外DNA的(Extrachromosomal DNA,ecDNA)过去和未来(详见BioArt报道:特别推荐丨环状DNA的过去和未来),详细介绍了癌基因在ecDNA上扩增的重新发现的过程,强调ecDNA在肿瘤发病机制和加速癌症进化中的重要性。然而ecDNA的结构如何呢?同年11月21日,美国加州大学圣迭戈分校的Paul Mischel教授团队(注:Mischel正是Nature Reviews Cancer的通讯作者之一另外在2017年,Mischel团队曾发表一篇Nature文章揭示了染色体外癌基因扩增与肿瘤的关系)发表了Nature文章对ecDNA进行了详细解析,利用各种技术手段证明了ecDNA的存在形式是—环状,即ecDNA变成了eccDNA(详见BioArt报道:Nature亮点 | 吴思涵等首次解析肿瘤染色体外DNA的环状结构与功能)。功能上,eccDNA在癌症中扮演了重要的角色,尤其是原癌基因(详见BioArt报道:Nat Genet 丨ecDNA:在癌症基因组图谱上画出浓墨重彩的一笔);来源上,eccDNA不仅来自于染色体,甚至可以整回到染色体中(详见BioArt报道:再一篇!Nat Genetics报道染色体外环状DNA新功能:驱动神经母细胞瘤基因组重排),那么,还有一个问题,eccDNA是否有序列或位置特异性,表观遗传学领域大佬哈佛医学院张毅教授于今年10月20日在Nature上给出了否定的回答,并提到eccDNA可能是基因组DNA随机断裂产生片段的环化产物(详见BioArt报道:专家点评Nature | 突破!张毅团队揭秘染色体之外环状DNA的前世今生)。再回到癌症,基因扩增对于癌症的发展“功不可没”,其扩增可以分为染色体外扩增(如双微体,double minutes,DM)和染色体内扩增(如均匀染色区,homogeneously staining regions,HSR)。除了DM和HSR,还有一种是巨型标记染色体(giant marker chromosomes)或者新染色体(neochromosomes)。这些概念也说明了癌症基因扩增中演化的复杂性。尽管扩增演化中的部分形式的机制已经相对比较明确了,比如串联重复等,但大部分还是不甚清楚。2021年11月15日,德国科隆大学儿童医院Matthias Fischer在Nature Genetics上发表了文章Chromothripsis followed by circular recombination drives oncogene amplification in human cancer,利用小儿神经母细胞瘤的全基因组测序发现一种新型扩增,并命名为“地震扩增”(seismic amplification,注:这一术语原本属于地质学或者地震相关学科),这一扩增的特点为多重重排和不连续的拷贝数,并且在38种不同类型肿瘤的发生率为9.9%(在38种不同类型肿瘤共计2756例病人中,出现例数为274,占9.9%)。机制上,地震扩增起始于染色体碎裂,产生染色体外环状DNA,之后是环状重组,由此导致原癌基因拷贝数增加、表达升高,从而促进癌症的发生。首先,研究人员检测了79例神经母细胞瘤样本的全基因组数据,对其基因扩增进行了详细分析,并将经历过14次及以上内部重排的扩增子定义为“地震扩增”。根据这一定义,神经母细胞瘤中228个扩增子中有20个属于“地震扩增”,并且影响了79例样本中的19例。其热点区域主要有两个,2p24(内部有MYCN)和12q13/12q15(内部有CDK4和MDM2)。除了神经母细胞瘤,研究人员进一步分析了TCGA上37种不同类型癌症的2677个肿瘤样本,对其“地震扩增”进行了描述。由于染色体碎裂可产生大规模的基因重组,研究人员比对了染色体碎裂和“地震扩增”的区域,发现77.6%的地震扩增子与染色体碎裂区域至少部分重合,其中34.9%是完全重合。同时研究人员排除了断裂—愈合—染色体桥循环(breakage-fusion-bridge cycles)是地震扩增起始事件的可能性。之后,研究人员对重排和扩增事件进行了分析,描述了“地震扩增”的过程模型:1)一个或多个染色体区域发生染色体碎裂;2)将随机片段整合为环状DNA;3)发生环状重组事件(这些环状重组事件与肿瘤细胞高频突变有关);4)扩增区域或保留在双微体中、或以均匀染色区形式整合进染色体中、或形成新染色体。重要的是,“地震扩增”在肿瘤细胞中是稳定的,而非变化的。总之,该研究定义了一种复杂的基因扩增形式——“地震突变”,并描述了其扩增过程,为理解癌症基因组演化包括染色体外环状DNA提供了新的解读。原文链接:https://doi.org/10.1038/s41588-021-00951-7
  • 袁谷教授:ESI-MS方法鉴别环肽非对映异构体、碎裂机理及DNA识别的研究
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   北京大学化学学院的袁谷教授以手性物质为研究对象,创新地选用质谱作为分析手段进行研究。 北京大学化学学院的袁谷教授 其主要做了以下几个方面工作:ESI质谱法鉴别环肽非对映异构体、环肽质谱碎裂机理研究、环肽识别乙肝病毒发卡型DNA研究、环肽识别HIV-1双链DNA研究。课题组利用ESI-MS测定了8个4对环肽非对映异构体特征离子的相对强度,成功区别了8个异构体,同时用MS鉴别了非对映异构体混合物并确定了相对含量,建立了鉴别环肽非对映异构体混合物的标准曲线和计算方法。   研究发现:MS/MS是鉴别异构体的有用方法 环肽分子对DNA具有识别功能 质谱是分析分子间相互作用力的好方法。
  • 用ETD线性离子阱质谱成功鉴定蛋白和翻译后修饰
    在翻译后修饰和/或极碱肽的序列分析方面,电子转移裂解( ETD )线性离子阱质谱是很有优势的工具。传统的诱导活化裂解(CAD)常用来鉴定蛋白,并试图确定和找到他们修饰的位点,但这种技术有其本身固有的缺点,下面将详细叙述。与线性离子阱的结合使用的ETD是蛋白质组学研究的一个可靠的技术,可以很容易鉴定用CAD不能鉴定的多肽。ETD 是一个相对较新的肽/蛋白质碎裂的技术,能够大大推进质谱鉴定蛋白质这个领域的进步。 翻译后修饰 翻译后修饰(PTM)是翻译后的蛋白质进行的一种化学修饰,是蛋白质生物合成的后续步骤之一。蛋白的分析及其翻译后修饰的分析对于研究许多疾病是非常重要的,如癌症、糖尿病、心血管疾病和神经退行性疾病---阿尔茨海默病。这是因为在蛋白质的合成的过程中以及合成之后,可能发生各种蛋白修饰。对于正常细胞的功能,这些修饰是必须的,但调节这些修饰的变化可能会导致疾病的发生,如阿尔茨海默病,癌症和勃起功能障碍。蛋白质修饰可提高/降低蛋白质的活性,可以与其他蛋白质发生相互作用和将某一蛋白质定位到细胞的特定地方。 翻译后修饰,如磷酸化,乙酰化和甲基化被用作化学开关,激活/灭活组蛋白基因转录调控, DNA复制和DNA损伤修复。组蛋白是染色质的主要蛋白,DNA盘绕时,它们起到线轴的作用,而且在基因调控中发挥重要作用。因此,鉴定这种翻译后修饰是必需的,因为它在生物系统中对于某些蛋白的功能和作用至关重要。 用CAD鉴定蛋白 质谱在确定蛋白及其翻译后修饰上发挥了不可或缺的作用。CAD是一种常见的分析鉴定蛋白质的技术。一般用胰蛋白酶将蛋白质消化成较小的多肽,然后用反相色谱将其分离,并直接注入电喷雾质谱仪检测,通过串联质谱( MS / MS法)获得序列信息。通过电喷雾电离这些多肽形成几种带电状态的肽离子,而较低带电状态的最适合CAD分析。低能量的CAD串联质谱一直是最常用的分析方法,通过裂解肽离子进行后续的序列分析。 翻译后修饰分析,如磷酸化,磺酸化和糖基化很难用CAD进行分析,因为这些修饰通常是不稳定且容易丢失肽骨架的碎裂信息,从而导致很少或几乎不能得到肽序列和磷酸化位点。利用常规的CAD质谱对于含多个碱性残基多肽测序也是极为困难。 根据不同的蛋白质序列,有时胰蛋白酶会产生过小或过大的肽段。在这种情况下,缺乏可信的序列分析手段。因此CAD对短的,低带电的多肽是最有效的。对于鉴定蛋白和了解蛋白的生物学功能,这是一种广泛使用的方法,然而,限制了研究者分析了所有的肽段,这也阻止多个翻译后修饰位点的检测和了解这些蛋白的生物学功能。 先进的碎裂方式:ETD ETD是基于离子/离子气相化学一种碎裂多肽的新方法。ETD通过从阴离子自由基到质子肽转移电子的化学能量将肽碎裂,这引起多肽骨干的分裂。 ETD产生的骨干肽序列和肽侧链的信息往往与CAD互补。 ETD已成功应用与线性离子阱以及其前身三维离子阱。虽然ETD在三维阱的执行价格具有竞争力且和CAD自身相比提供了独特好处 ,这样的组合并没有提供蛋白质组学分析所需的技术能力。非线性离子阱的ETD,它一直未能很好控制裂解过程,而且由于三维阱离子存储能力的有限不能处理大量的多肽。基于此,研究人员已经提出ETD功能应用于线性离子阱(Thermo Scientific LTQ XL mass spectrometer质谱仪) 。 相对于传统的CAD技术, ETD提供了更稳定的方法来定性PTMs,鉴定大型多肽或甚至整个蛋白质。 ETD能够将普通翻译后修饰的多肽,或者多个碱性残基的多肽甚至整个蛋白质生成离子。 ETD也可以轻易碎裂含有二硫键的的多肽。 ETD是为更复杂的FT-ICR仪器开发相似的裂解技术。使用电子转移试剂,而不是影响肽碎裂的自由电子使ETD在广泛使用的射频四极离子阱中得到应用。射频离子阱质谱仪具有低成本,低维护费用以及更易接受优点,相对于CAD碎裂方法,ETD碎裂技术能够产生更多的产物离子,利于肽段的解读。 ETD的线性离子阱提供了强有力的工具鉴定蛋白及其翻译后修饰 。LTQ XL线性离子阱质谱仪比其他任何离子阱提供更多的结构信息,ETD能够得到常规方法无法得到的序列信息。相比非线性离子阱,ETD的线性离子阱的显著特征在于离子和离子发生反应。虽然ETD功能是完全自动的且通常无需用户干预,但是当需要对离子数进行累积的时候,用户可通过软件完全控制线性离子阱的离子。线性离子阱质谱仪有能力处理大量的样品,并分析低浓度的大分子和小分子。与非线性离子阱的相比,该过程更为复杂和费时 应用实例 在最近的应用中,极碱的多肽和大量重要的翻译后修饰已经用含CAD和ETD线性离子阱质谱分析了。通常CAD碎裂方式产生的普通只显示有限的肽碎裂信息。然而,用ETD碎裂这些多肽的时候, 肽骨架碎裂信息能完全或几乎完全产生,因此得到更广泛的多肽序列的信息。 ETD的灵敏度和稳定性对于蛋白质组学分析是必不可少的。 ETD提供了高度可靠的解决方案,此方案具有用户友好性,几乎不需要日常维护,并提供高度准确的数据,而且ETD的数据分析有相应的软件支持,非常方便简单。 结论: 在蛋白质组学研究领域,ETD的应用对于研究疾病的机理,如癌症,药物开发研究以及细胞功能和信号转导有重大意义,ETD将扩大目前的分析,包括更多的碱性、非胰酶切肽段和蛋白质。它们能确定各种翻译后修饰以及鉴定新的蛋白亚型。 配备ETD的线性离子阱质谱可应用于蛋白质组学各个领域内。ETD的线性离子阱将继续推动蛋白质组学的发展,而且已被证明是替代CAD一种有效技术,而且ETD同样可以应用于非线性离子阱进行肽序列分析。在不久的将来,配备ETD的线性离子阱预计将成为碎裂技术的一种新选择。 参考文献 Leann M. Mikesh et al, The utility of ETD mass spectrometry in proteomic analysis, Biochemica et Biophysica Acta (2006), doi:10.1016/j.bbapap.2006.10.003 关于 Thermo Fisher Scientific (赛默飞世尔科技,原热电公司) Thermo Fisher Scientific纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于ThermoScientific和FisherScientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。ThermoScientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。FisherScientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,
  • 广西大学预算809万元购买1台离子源-高分辨质谱分子成像仪
    8月24日,广西大学公开招标购买1台离子源-高分辨质谱分子成像仪,预算809万元。  项目编号:GXZC2021-G1-003071-KLZB  项目名称:专用仪器设备采购  预算总金额(元):8090000  采购需求:  标项名称:广西大学激光离子源-高分辨质谱分子成像  数量:1  预算金额(元):8090000  简要规格描述或项目基本概况介绍、用途:技术参数  1、离子源  ★1.1 具有ESI和MALDI双离子源  1.2 ESI和MALDI离子源可通过软件全自动切换  ★1.3双激光器,主激光频率:10,000Hz 后电离激光1,000Hz  1.4 MALDI离子源:样品盘采用工业标准的微滴定盘设计,可点384个样品,最多能够放1536个样品  1.5 ESI离子源:离子漏斗传输技术,柔和的离子聚焦和高效离子传输,且不受质量大小的影响  1.6 ESI和MALDI离子源可通过软件全自动切换,时间不超过1分钟  1.7 具备捕获离子淌度谱功能,产生高分辨率离子淌度数据  1.8 具有平行累加连续碎裂功能,几乎达到100%工作周期  1.9 进样口喷针部分电压为零  1.10 玻璃毛细管,起到将大气压与真空系统隔离和产生电压差的目的  2、飞行管  2.1 同轴、快速高灵敏度的检测器系统,飞行中重聚焦离子光学系统,提供高灵敏度  2.2正负离子切换  ★2.3飞行管配有水冷恒温温控装置和智能化温度补偿装置,在MS和MS/MS模式下质量准确度具有长时间的超稳定性。  2.4 采用ADC模拟数字化转换器,确保得到准确的真实同位素分布  2.5 CID离子碎裂功能  2.6四极杆质量过滤器,质量范围20-3000m/z  3、技术指标  ★3.1 具备离子淌度功能,离子淌度分辨率≥150,可计算CCS值  3.2 分辨率:高达 50 Hz 采集速度下不损失分辨率,TOF分辨率≥60,000  3.3 准确度:内标校准:平均误差 ≤ 0.8 ppm 外标校准:平均误差 ≤ 2 ppm  ★3.4 采样频率:  QTOF和TIMS模式:MS和MS/MS均为 50 Hz  PASEF模式:MS/MS 100 Hz  3.5 质量范围:20-20,000 m/z,可由软件自动设定  3.6 灵敏度:1pg/uL利血平,信噪比100: 1  3.7 具备基质成像分析的样品制备、信号采集和数据分析处理功能。  3.8 具备常规和纳升流速的ESI离子源。  3.9 在断电的情况下维持仪器持续运行1小时以上。  设备清单:见招标文件  最高限价(如有):8090000  合同履约期限:自签订合同之日起120历日内整体完成供货安装调试  本标项(否)接受联合体投标  开标时间:2021年09月15日 09:00G1-003071招标公告附件.docx
  • 赛默飞世尔发布离子阱和轨道阱质谱仪
    赛默飞世尔科技发布新一代离子阱和轨道阱质谱仪   法兰克福 (5月11日, 2009) – 服务科学、世界领先的赛默飞世尔科技有限公司,今天在ACHEMA 2009发布了两套新型质谱仪系统:Thermo Scientific LTQ Velos 和 LTQ Orbitrap Velos 系统。   • LTQ Velos™ 采用最新双压阱设计和大气压离子源(API), 是目前世界上最快速、最灵敏的离子阱质谱仪。独特的双压阱技术采用两个独立的加压区域,使得离子处理和检测相互独立。此项设计允许分析中使用最优压力, 减少扫描时间的同时提高分辨率。   • LTQ Orbitrap Velos™ 将业界领先的 Orbitrap™ 质量分析仪, 新高能碰撞解离池,和双压阱技术完美结合,确保提供超高分辨率和精确质谱数据。   LTQ Velos质谱仪是超高速液相色谱的理想搭档,使研究人员在更短的时间内确认更多的化合物。Thermo Scientific LTQ Velos 和LTQ Orbitrap Velos将于五月11到15日在德国法兰克福2009 ACHEMA的6.1号大厅 B1-C11展台展出。   “最新双压阱和S-Lens大气压离子源界面的结合提高了灵敏度、优化了离子传递、能够更有效的捕获和裂分离子。” 赛默飞世尔科技质谱仪副总裁Iain Mylchreest 如是说。 “这些主要的改进使得我们的离子阱和轨道阱质谱仪在任何复杂分析物的分析方面都是世界上最快最灵敏的。”   LTQ Velos – 离子阱技术的根本创新   LTQ Velos卓越的数据质量和灵敏度使它成为复杂分析物分析,如生物样品中低丰度蛋白质的确认和小分子代谢物结构鉴定的理想之选。   在蛋白组学应用方面,速度和灵敏度方面的提升为复杂多肽混合物的分析提供更大的覆盖范围,并提高了小量样本中蛋白质鉴定的可信度。LTQ Velos的多级碎裂技术提供更为可信的序列分析和翻译后修饰(PTM)鉴定。更高速的扫描速率能将循环时间减少50%之多,并将鉴定的蛋白和肽段数量翻倍。   在代谢组学应用方面,双压阱技术提高了离子碎裂效率,从而提供更快、更可信的结构鉴定。提高的速度和灵敏度与多级质谱能力充分结合,最大限度地提高通量的同时保持了鉴定和定量多个共洗脱化合物所需的卓越的数据质量。   LTQ Velos可以升级为LTQ Orbitrap Velos,使实验室得以扩大其最初的投资,在保持灵敏度和分析速度的同时获得准确的质量和超高的分辨率的能力。   LTQ Orbitrap Velos – 基于Orbitrap技术   LTQ Orbitrap Velos是轨道阱质量分析仪的质量准确性和超高分辨率与LTQ Velos改善的灵敏度和分析速度的完美结合。 LTQ Orbitrap Velos   LTQ Orbitrap Velos的高质量精确度通过降低假阳性结果从而为复杂样品中的蛋白质鉴定增加了速度和可信度。其超高分辨率能够提供完整蛋白质的分子量测定和等质量物种的深入分析,从而提供确定性的分析结果。对蛋白质组学研究人员来说,这些功能增加了序列覆盖范围和可信度,从而识别更多的蛋白质。   LTQ Orbitrap Velos新的HCD碰撞池更加高效,提高了同位素标记肽段的定量分析功能,诸如需要应用串联质谱标记(TMT)的分析。电子转移解离 (ETD)为高度敏感的翻译后修饰(PTM)分析和从头测序生成互补性信息。   LTQ Orbitrap Velos为代谢组学的研究人员提供高分辨的精确质量数据,确保结构鉴定更可信。   有了这些新功能,Thermo Scientific LTQ Orbitrap技术成为最可信的蛋白和代谢物鉴定、定性和定量的理想平台。   欲了解更多有关新的Thermo科技的LTQ Velos产品,请在ACHEMA 2009期间访问位于6.1大厅B1 - C11的Thermo Scientific展位。欲了解更多有关Thermo Scientific质谱仪的信息,请致电:800-810-5118,400-650-5118,电子邮件sales.china@thermofisher.com或访问www.thermo.com / velos   Thermo Scientific是赛默飞世尔科技公司的首要品牌。   欲取得所有ACHEMA 2009新产品的新闻稿完整清单,请访问在线媒体室www.thermofsher.com/achema09 。   关于赛默飞世尔科技(Thermo Fisher Scientific)   赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到105亿美元,拥有员工34,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请登陆:www.thermofisher.com(英文),www.thermo.com.cn (中文)。
  • 蛋白质组学研究新成果|解锁紫外光解离(UVPD)质谱产生的内部碎片
    大家好,本周为大家分享一篇2024年发表在Analytical Chemistry上的文章,Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry1。该文章的通讯作者是来自北京蛋白质组学研究中心的常乘研究员以及中国科学院大连化学物理研究所的王方军教授。  在过去的十年里,UVPD (193nm)因其出色的碎裂效率而备受关注。它能够产生a/x, b/y, c/z等多种类型离子,并能够对小于30 kDa的蛋白质提供近乎完整的序列裂解。它是完整蛋白表征的有利工具,能够提供序列、PTM、次级结构等丰富信息。常规的UVPD分析主要依赖于识别N-端或C-端碎片(a/x, b/y, c/z),尽管已经满足大部分的小分子蛋白质(  图2. Panda-UV工作流程  通过在三种模型蛋白质上进行全面基准测试,展示了Panda-UV强大性能(图3)。内部片段的加入使得识别的片段数量提高了26%,并将平均蛋白质序列覆盖率提高到了93%,解锁了模型蛋白质中最大蛋白碳酸酐酶II的隐藏区域。此外,平均65%的内部片段可以在多次重复实验中被识别,展示了Panda-UV识别片段的高置信度。与现有的内部片段匹配软件ClipsMS进行对比,Panda-UV通过对代码框架的优化,搜索模型蛋白的一个质谱数据不超过9分钟,比ClipsMS快50倍。最后,在分析单克隆抗体时,Panda-UV将识别的片段数量翻倍,mAb亚基的序列覆盖率可以提高到86%,并且CDR几乎完全测序,显著提高了mAb的识别准确性(图4)。  图3. A) B)Panda-UV与C) D)Clips MS解析CA、Mb、Ub三种蛋白的UVPD数据对比  图4. Panda-UV在mAb UVPD数据分析中的应用  总的来说,Panda-UV赋予研究人员解锁UVPD数据中内部片段的能力。尽管Panda-UV是专门为UVPD设计开发的,但是用一般解离方法(例如:HCD、ETD)得到的质谱图也是兼容的。Panda-UV揭露了完整蛋白质表征的隐藏深度,为蛋白质组学top-down深度分析提供了帮助。  撰稿:刘蕊洁编辑:李惠琳文章引用:Panda-UV Unlocks Deeper Protein Characterizationwith Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry  参考文献  1. Zhu Y, Liu Z, Liu J, et al. Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry. Anal Chem. 2024 96(21): 8474-8483.
  • 赛默飞世尔科技新一代离子阱和轨道阱质谱仪
    美国佛罗里达奥兰多(2010年3月1日)—全球科学服务领域的领导者赛默飞世尔科技今天宣布,LTQ Velos和LTQ Orbitrap Velos质谱仪将于2010年匹兹堡展览会首次亮相。LTQ Velos™ 具有全新的双压离子阱和先进的离子透镜,是世界上最快速和最灵敏的离子阱质谱仪。LTQ Orbitrap Velos™ 结合了业界领先的Orbitrap™ 质量分析器、全新的高能碰撞解离(HCD)池和双压离子阱技术,可提供具有极高分辨率和精确度的质谱数据。于2010年2月28日至3月5日在奥兰多举行的匹兹堡展会期间,赛默飞世尔科技将在2757号展位展示LTQ Velos和LTQ Orbitrap Velos质谱仪。   LTQ Velos:彻底革新的离子阱技术   在蛋白质组学应用中,分析速度和灵敏度的提高可以增加复杂肽混合物分析的覆盖率,从而提高低浓度样品鉴定的可靠性。LTQ Velos所具有的多种碎裂模式使得序列测定和翻译后修饰(PTM)鉴定更加可靠。更快的扫描速度减少了50%的循环时间,使所鉴定蛋白质和肽的数量增加一倍。   在代谢应用中,双压离子阱技术提高了碎裂效率,从而能更快、更准确地完成结构鉴定。更快的速度、更高的灵敏度与多级质谱分析能力相结合,最大化分析通量并保持高水平的数据质量,这是鉴定和定量复杂的共洗脱化合物所必需的。   LTQ Velos可升级为LTQ Orbitrap Velos,因此实验室可以扩展最初的投资,在不牺牲分析速度和灵敏度的情况下,升级为具有更精确质量数和超高分辨率的系统。   LTQ Velos离子阱液相色谱/质谱(LC/MS)系统被《仪器市场展望》评选为2009美国质谱年会的“明星产品”。   LTQ Orbitrap Velos:秉承强大的Orbitrap技术   LTQ Orbitrap Velos将具有高质量精确度和超高分辨率的Orbitrap质量分析器与具有更高灵敏度和更短循环时间的LTQ Velos相结合,提供了高性能的组合质谱。   LTQ Orbitrap Velos具有高质量精确度,提高了复杂样品中蛋白质鉴定的速度和可靠性,最大程度地降低了假阳性率。超高分辨率使得完整蛋白质的分子量测定和同分子量物质的深入分析成为可能,并获得可靠分析结果。这些性能确保研究者能以更高的序列覆盖率、更为可靠地鉴定更多蛋白质。   LTQ Orbitrap Velos的全新高能碰撞(HCD)池效率更高,有利于同质量标记肽的定量分析,包括那些需要串联质量标签(TMT)的应用。电子转移解离(ETD)可为高度灵敏的翻译后修饰和从头测序分析提供补充信息。   在代谢应用中,LTQ Orbitrap Velos为研究者提供了高分辨率和高精确度的质谱数据,使结构鉴定更加可靠。   由于具有以上特点,Thermo Scientific LTQ Orbitrap技术成为最全面的结构鉴定质谱仪,也是蛋白质和代谢物的鉴定、表征和定量最可靠的选择。   这两款LTQ Velos质谱仪的分析速度使其非常适合与超高效液相色谱系统(U-HPLC)联合使用,研究者能在更短时间内鉴定更多化合物。   若需关于Thermo Scientific LTQ Velos和LTQ Orbitrap Velos的详细资料,请访问2010年匹兹堡展会赛默飞世尔科技2757号展位。也可以访问www.thermo.com/ms,致电(800) 532-4752,或发邮件至analyze@thermofisher.com。   若需要了解赛默飞世尔科技与2010年匹兹堡展会有关的新闻和产品图片,请访问在线网络媒体室www.thermofisher.com/pittcon10.   关于赛默飞世尔科技(Thermo Fisher Scientific)   赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到105亿美元,拥有员工35,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请登陆:www.thermofisher.com(英文),www.thermo.com.cn(中文)。
  • 计量院成功搭建3套离子反应质谱仪器整机
    近日,国家重大科学仪器设备开发专项《精确操控离子反应质谱科学装置的研制及应用研究》项目中期检查会议在中国计量科学研究院(以下简称&ldquo 中国计量院&rdquo )召开。科技部条财司副司长吴学梯、国家质检总局科技司处长姚泽华、中国计量院副院长宋淑英等相关领导及项目技术专家组成员参加了会议。   中国计量院作为该项目的牵头单位,将以生物、新材料和先进能源技术等重点领域所急需突破的关键技术&mdash &mdash 精确操控质谱分析技术为核心,应用创新技术和方法,分别针对蛋白精确分析、磷酸化和离子反应C-C活化等前沿技术,分子反应动力学基础问题,以及多物理场模拟与试验验证等质谱技术创新方面研制出3套质谱科学装置。此外,中国计量院与北京理工大学、清华大学、北京蛋白质组研究中心、中科院大连化学物理研究所和北京生命科学研究所合作,分别开展离子束反应与控制、蛋白磷酸化筛选与鉴定、碰撞反应飞行时间离子谱、蛋白分析中的ETD反应及离子碎裂新方法和高纯有机试剂痕量杂质分析等5方面的应用研究。   据了解,该项目自2011年10月开始实施,将于2016年10月结束。目前,项目组已成功开发出ESI离子源、串联离子阱、仪器控制软件等关键部件,搭建了3套离子反应质谱仪器整机并开展了4方面的应用研究,成功完成了项目中期目标。专家组建议通过项目的实施,进一步加强仪器开发与应用研究紧密结合,在项目研发的仪器上做出更具创新性的研究成果,并重视仪器整机工业设计,为仪器产业化打下坚实基础。
  • 980万!生态环境部南京环境科学研究所三重四级杆线性离子阱串联质谱仪等采购项目
    项目编号:2240SUMEC/ZWGG2145项目名称:生态环境部南京环境科学研究所同位素实验室建设及生态环境分析测试中心能力建设(第二期)仪器设备购置项目(2)预算金额:980.0000000 万元(人民币)采购需求:序号货物名称数量单位是否接受进口产品投标(是/否)★合同履行期限预算(万元人民币)1三重四级杆线性离子阱串联质谱仪1套是合同签订后3 个月内310.002高分辨液相色谱串联四级杆飞行时间质谱1套280.003多重碎裂高分辨质谱联用仪(核心产品)1套390.00超过对应的预算金额作无效投标处理。 合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 布鲁克推出新一代amaZon speed离子阱质谱仪
    布鲁克公司在HUPO和JAIMA会议上推出新一代amaZon speedTM离子阱质谱仪 全新的amaZon speed系列显著提高了离子阱性能、分析能力以及对蛋白质组学和小分子分析的整体性能。 商业资讯于2011年9月6日报道:在瑞士日内瓦的第十届HUPO全球年会(http://www.hupo2011.com),以及在日本东京的JAIMA会议上(http://www.jaimasis.jp),布鲁克公司推出了最新的高性能amaZon speed和amaZon speed ETD离子阱质谱仪(ITMS),以满足蛋白组学、研究和应用领域日益增长的需求。在原有基础上再次的显著提高成就了amaZon新一代系列产品无与伦比的离子阱性能。 amaZon speed不仅仅是世界上速度最快的离子阱,更是具备最高质量精度和分辨率的离子阱。amaZon speed所有的扫描模式均提供了显著提高的分辨率:扫描速度最快的XtremeScan (52,000 u/sec)模式,对于双电荷离子提供优于0.5u的高质量分辨率;最大分辨模式(5,200 u/sec)能将质量分辨率控制在远低于0.1u的水平,可以在全扫描方式(质荷比高达3000)下分辨8价离子。amaZon speed在硬件和软件上的另一重要改进使得MS/MS周期达到8Hz。 无论采用自下而上(Bottom-up)还是自上而下(Top-down)的方法,amaZon speed离子质谱仪的杰出性能都为蛋白质组学研究人员配备了无可超越的分析能力。再加上SMARTTM模式的母离子隔离和碎裂,amaZon speed LC/MS/MS 可以通过常规单针进样分析,从1μg E. Coli细胞裂解液中确信鉴定约1300个蛋白。只有最近才推出的那些更加昂贵的大型质谱仪才能进行类似操作。蛋白质组学研究需要相当宽的动态范围,amaZon speed可以实现这一性能。对标准蛋白质混合物的检测结果显示,amaZon speed可以覆盖高达5个数量级的浓度范围。 对于自上而下的应用和翻译后修饰(PTM)分析,amaZon speed ETD延续了布鲁克在ETD/PTR技术方面的领先地位,继续提供最灵敏,强大而可靠的设备。结合布鲁克有创新专利的GlycoQuestTM多聚糖搜索引擎,amazon speed能够轻松实现自动检索多糖结构,从而为蛋白质组学研究中最苛求的学科提供了最理想的仪器。 性能的提升使得amaZon speed同样能够为各类小分子研究工作提供更高质量的数据。灵敏快速的 LC-MS/MS方法能在5分钟内定量分析医疗用药。新型软件可以实现自动的碎片离子指认,用于多级质谱得到的代谢物鉴定和结构分析。amaZon speed 是一个特别耐用的系统,非常适合多用户环境,由布鲁克公司独特的Compass OpenAccess软件支持,提供基于网络的客户服务端的多种自动化解决方案,包括质量控制(QC)、重组蛋白的分子量核查和自动库检索等。直观的图形界面(GUI)流程,结合灵活高通量的特点,使得amaZon speed非常适合于工业、临床、合成和教学实验室的日常应用。 “amaZon speed代表了新一代离子阱质谱仪,是速度和性能方面有完美的结合”,布鲁克离子阱质谱仪产品经理Markus Meyer博士如是说,“基于我们专业的离子阱技术,我们为科研和分析领域带来了经久耐用、物美价廉的全新仪器,旨在应对日益扩大和深入的分子检测挑战。”
  • Angew成果|离子淌度调制提升空间脂质组分析的结构解析能力
    离子淌度调制提升空间脂质组分析的结构解析能力空间脂质组分析可揭示脂质在生物组织或器官中的含量及空间分布,是基础生物学和疾病研究的重要技术。空间脂质组分析的底层技术一般为质谱成像,其具有免标记、高空间分辨率和高灵敏度等优势,可同时表征大量脂质分子在生物组织中的空间分布。然而,脂质和代谢物的质谱成像主要依赖于质量测定,对分子结构的表征能力不足,常由于脂质和代谢物异构体的存在而导致分析偏差乃至错误。在质谱成像过程中,单个像素点的样品量和分析时间极为有限,对逐个离子串联分析会导致分析时间长和灵敏度降低等问题,因此如何在质谱成像的同时实现分子的结构解析一直是分析科学的挑战。此外,在成像过程中丰度、离子化效率各异的待分析离子同时进入质谱,存在显著离子抑制等问题,给中低丰度离子的检测和结构鉴定造成困难。近日,清华大学精密仪器系的欧阳证、马潇潇教授团队开发了一种多目标脂质结构质谱成像技术,通过离子淌度技术对待分析离子的快速时空聚焦和分离,在不增加质谱成像时间的情况下,显著提升了空间脂质组分析的结构解析能力。该技术采用数据非依赖采集方法,利用离子淌度分离对单像素点的母离子强度进行“调制”,将淌度分离后的母离子不经质量隔离而完全碎裂 (Mobility modulated sequential dissociation, MMSD)。根据母离子及相应子离子组成随淌度时间不断变化的特点,发展了智能谱图解卷积算法,实现40多种脂质的结构解析和20种脂质在组织上的空间可视化,包括磷脂酰胆碱、磷脂酰乙醇胺等。具备结构解析功能的质谱成像可实现传统空间脂质组分析难以实现的脂质异构体结构鉴定和空间可视化。在鼠脑组织中,该技术揭示了多种脂质异构体的差异性乃至互补性空间分布,如 PE O-18:2_20:4、PE O-16:0_22:6 和 PE 16:1_22:4、PE 16:0_22:5等。在对人肝癌的组织切片分析中,该方法揭示了磷脂酰乙醇胺 PE 36:2的一组异构体(PE 18:1_18:1、PE 18:0_18:2)在癌组织和癌旁组织中的特异性分布,并且PE 18:1_18:1集中分布于癌组织,可用于精准划分肿瘤组织边界,表明该技术可在更深层结构维度上揭示脂质癌症生物标志物。这项工作所提出的多目标脂质结构解析及空间成像方法,从原理上同样适用于多肽、代谢物等生物分子的空间可视化及结构解析。结构解析赋能的脂质质谱成像,是空间脂质组学技术发展的题中之义,也是精准脂质组分析和功能脂质组研究必不可少的技术基础。该技术的提出,为空间结构脂质组分析提出了一种解决方案,也有望促进质谱成像实现从质量测定到结构鉴定的研究范式转换。 论文作者:论文第一作者是清华大学博士研究生钱耀,通讯作者是清华大学精密仪器系欧阳证、马潇潇教授。清华大学郭翔宇博士和清华大学长庚医院王韫芳研究员对技术建立和生物医学应用做出了重要贡献。清华大学精仪系、清华大学精密测试技术与仪器国家重点实验室为第一作者单位。本项目得到国家自然科学基金委重点、面上项目及重点研发计划(前沿生物技术)青年科学家项目(2022YFC3401900)资助。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202312275
  • 精确操控离子反应质谱科学装置研发启动
    国家重大科学仪器设备开发专项 “精确操控离子反应质谱科学装置的研制及应用研究”启动   由国家质检总局组织实施的国家重大科学仪器设备开发专项——“精确操控离子反应质谱科学装置的研制及应用研究”的启动会,在项目牵头单位中国计量科学研究院召开。会议由国家质检总局科技司主持,科技部科研条件与财务司吴学梯副司长,国家质检总局科技司侯玲林副司长,国家自然科学基金委分析化学学科项目主任庄乾坤教授,中国分析测试学会张渝英秘书长,中国计量科学研究院副院长段宇宁、宋淑英等项目承担单位的领导,以及中科院大连化学物理研究所张玉奎院士、杨学明院士等相关专家出席。    会议宣布成立项目监理组、项目总体组、技术专家委员会、用户委员会和项目管理办公室。科技部条财司吴学梯副司长作了重要讲话。他指出,科学仪器设备是光学、机械、电子、计算机、物理、化学、生物等学科领域各种高新技术的集成和结晶,在涉及重大科技前沿、国防等敏感领域的研究中,研发若干具有国际领先水平的重大科学仪器设备,将有效支撑我国开展世界一流科学研究、带动我国高新技术产业的发展。他强调,科学仪器设备的自主研发水平往往成为衡量一个国家创新能力的重要标志之一。“十二五”期间,我国把引领和支撑科技发展的科学仪器设备自主创新摆在优先发展位置,这对于增强我国科技实力、引领国民经济又好又快发展具有非常深远的意义。   科技部条财司吴学梯副司长作重要讲话   项目负责人方向研究员汇报了项目整体情况,各任务负责人汇报了任务实施方案。与会专家认真听取、各抒己见,充分表达了对项目的支持,并提出了具体的要求和建议,希望项目组不仅要克服技术难题,也要努力将各任务之间的组织协调工作做好,以确保项目的顺利实施。项目总体组组长、中国计量科学研究院段宇宁副院长表示,中国计量院将全力以赴支持项目的实施。   该项目自2011年10月开始实施,将于2016年10月结束。任务承担单位包括:中国计量科学研究院、北京理工大学、清华大学、北京蛋白质组研究中心、中国科学院大连化学物理研究所、北京生命科学研究院。   该项目着重针对生物、材料和先进能源技术等重要领域的蛋白精确分析等前沿技术、分子反应动力学等基础问题,通过研发新技术、新方法,实现离子精确操控及质谱分析,为上述领域的研发提供高性能、高效率、具有创新操作模式的强大工具。   本项目将研制3套以精确操控离子反应系统为核心的科研装置,包括:离子反应超高分辨质谱装置、碰撞反应飞行时间离子谱装置和离子反应理论研究与实验装置。并在此新装置上分别开展离子束反应与控制、蛋白磷酸化筛选与鉴定、碰撞反应飞行时间离子谱、蛋白分析中的ETD反应及离子碎裂新方法、高纯有机试剂中痕量杂质精确分析等应用研究。   据项目负责人方向研究员介绍,通过该项目的实施,在仪器研制方面,将掌握精确离子操控核心技术和一系列关键技术,形成一整套具有自主知识产权的机械、电子、光学、软件等关键部件和高性能的整机 在应用研究方面,有望突破生物、材料和先进能源技术等重点领域尚未解决的难题,建立我国尖端科学实验装置研发基地,形成高端科学装备研制技术团队和前沿技术科学家紧密合作的研发联盟,为我国高端质谱仪器创新发展进一步奠定重要基础。   国家重大科学仪器设备专项项目是为了贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,由财政部、科技部共同设立的旨在支持重大科学仪器设备开发,以提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设而设立的专项支持资金。今年为首批资助,采取限项推荐方式。今年全国53个项目获得资助,中国计量科学研究院“宽量限超高精密电流测量仪”和“精确操控离子反应质谱科学装置的研制及应用研究”2个项目获得资助。
  • OPTON的微观世界|第15期 氩离子抛光制样经验分享
    概 述欧波同材料分析研究中心分析测试业务于年初正式上线,受到业内广泛关注。近期中心收到很多客户的咨询,询问一些特殊样品的制样方法或解决方案。我们根据客户咨询和反馈,整理了相关的案例分享给大家,希望能给大家点思路。一、微纳米颗粒 (针对200μm以下样品) 应用范围:微纳米材料内部结构分析例 如:锂电池阳极材料、微纳米颗粒颗粒类的样品多数利用扫描电镜检测形貌、粒度统计、能谱并做一些长度测量,但是一旦涉及内部结构观察普通制样方式很难达到要求。制样方式缺点研钵研磨/刀片压碎只能看到断面的情况,而且成功率不高,电镜观察需要费时寻找镶嵌包埋需要机械抛光,容易脱落;耗时;需考虑镶嵌料对样品影响举例来讲,图1是客户要求观察颗粒表面和断面形貌,研钵研磨后,结果并不理想,视野内可见大量碎裂颗粒,且断面情况各异更无法进行测量等工作。图 1图2是用Gatan Ilion II设备抛光后结果,可见视野内颗粒全部切开,截面平整,易于观察测量;图3为局部放大,颗粒内部结构一览无余。图 2图 3二、多层复合材料/镀层/高分子薄膜应用范围:分层材料、薄膜或其他柔性材料例 如:锂电池隔膜、镀层等多层复合材料其实在我们生活中应用极为广泛,比如各种触摸屏。这类材料主要看截面分层情况,但是由于其柔性大,普通方式比如剪切、液氮脆断等都会导致分层扭曲、断面不齐整等问题,影响后续用电镜进行分层测量。举个例子-样品为电池极板(图4、图5):图4是剪刀剪切后的电镜结果,可以看到由于剪切力的影响,层次不够分明,无法进行精确测量,无法提供有效的信息。图 4图5为Gatan Ilion II抛光后结果,层次清晰,可进行精确测量。图 5三、电子元器件图 7红框1局部放大,可见有10层结构
  • 离子阱还是四极杆?便携质谱究竟如何选
    十年一届的“全国生态环境监测专业技术人员大比武”正在如火如荼的进行,其现场操作部分中,各家的便携式气相色谱-质谱联用仪各显神通,帮助环境监测者检测空气中的挥发性有机物。目前市场中的便携式气质联用仪五花八门,原理也不尽相同。本文将对质谱进行简单介绍,并对不同家便携式气质联用仪在原理、和使用上的区别简要分析。 一、质谱的简介与分类质谱,是根据质量的差异对物质进行分析的设备。其具体的分析过程包括1分子的离子化、2离子质量分析、3离子检测三个过程。据此,质谱的分类也就可以根据不同的“离子化的方法”和“离子质量分析方式”两种思路来分类。 目前市售的便携气质均采用相同的离子化方式。按照质量分析器的不同可以分为以下两大类:四极杆质谱、离子阱质谱,如图1。对于不同种类的质谱,我们一般通过对比1质量范围、2检出限、3分辨率、4扫描速度、5最大工作真空度五个维度[1]对其进行评价。 图1 市场中主流便携式气相色谱-质谱联用仪 二、不同类型质谱的原理 不论是四极杆质谱,还是离子阱质谱,其分析原理是相似的,其差别在于具体的分离过程。在离子化的过程中,待测的物质被一定能量的电子束撞击,解离成离子,并碎裂成一系列能反映其物质性质信息的碎片离子。接下来,这些碎片离子被离子阱或四极杆分离并检测,按照质荷比m/z的大小绘制成一张可以体现物质定性信息的质谱图,如图2。图2 有机氯农药DDT的质谱图 四极杆分析不同离子的过程类似于原始的筛选稻谷的过程,如图3。不符合条件的稻谷(如空壳稻谷)会在筛选的过程中被风吹走,所以不会落入最终收集优质稻谷的篮子里。同理,在四极杆质谱仪中,离子化后的离子沿图3中z轴通过四极杆,在离子的飞行过程中,我们通过射频电压RF和直流电压DC产生的四极电场对离子进行操控,使得只有符合一定质荷比条件(如m/z=a)的离子才能到达四极杆另一端的检测器,给出在该质荷比下离子的数量的检测结果。此时如果我们按一定规则持续改变该筛选离子的条件,使得符合其他的质荷比(如m/z=b、m/z = c… … )的离子可以通过,那么我们就就可以根据每一个质荷比离子数量的多少,绘制出该待测物质的特征质谱图。 图3 四极杆的结构和其分离的过程 离子阱质谱分离的过程类似于喝鸡尾酒的过程,如图4。喝鸡尾酒时,如果我们正常的将鸡尾酒从酒杯中倒出,则不同颜色的酒会依次的流出。与此类似,在离子阱质谱的分析过程中,先操控离子阱的电极电压,将离子储存在离子阱中心的区域中,之后改变该四极场,使离子按照一定的顺序依次从离子阱中弹出。弹出的离子依次到达检测器后被检测器记录,根据不同时刻不同离子弹出数量的多少,我们也就可以绘制一张代表物质定性信息的质谱图。 图4 离子阱的结构和分离过程 以上两种不同的原理,使得两种质谱各自有其各自的特点和适用的领域,如表1。虽然以上的方式筛选离子制作质谱图的原理不同,但是同种物在这两种质谱中离子化后所产生的碎片是相同的,故其质谱图也是相似的。在得到质谱图后,电脑会自动将得到的质谱图与电脑中存储的标准质谱图谱库进行比对,给出物质的定性信息。以上两种质谱均配备了NIST库(美国国家标准与技术研究院National Institute of Standards and Technology) 、NIOSH库(美国国家职业安全卫生研究所National Institute for Occupational Safety and Health)并配备AMDIS解卷积软件(Automated Mass Spectral Deconvolution and Identification System),均可以可靠的给出物质鉴定的结果。表1 台式四极杆质谱与台式离子阱质谱各自的优势 三、两种质谱小型化后的区别 使用不同的技术路线,两种质谱在使用过程中的多个方面有所不同。 除了上文提到过的5个质谱核心参数的差异之外(见表2),不同的便携式质谱在使用过程中还有一些其他的区别。表2 两种便携式质谱仪在核心参数上的对比 两种质谱对真空的不同需求,会带来使用成本的差异。不同类型的质谱有其不同的适宜工作的真空度,使得使用成本上有近百倍的区别。一般而言,四极杆质谱一般需要10^(-6)的高真空,若真空度没有达到该值,会使得设备无法做到单位质量分辨。而离子阱质谱仅需要10^(-3)的真空[2],在该条件下其分辨率就可以超过单位质量分辨的需求。由于对真空度需求存在巨大的差异,不同质谱采用了不同的真空泵系统。目前四极杆质谱采用非蒸发吸气剂泵(NEG)和小型溅射离子泵,分别对设备内的活性气体、和非活性气体进行吸附。由于吸附存在饱和,故吸附泵寿命远低于机械泵:NEG泵仅有150小时的使用寿命,到达150小时使用时间后需更换,更换成本接近10万元。与此同时,目前市售的离子阱质谱一般采用涡轮分子泵、隔膜泵的组合。得益于技术的进步,以上两种真空泵不但使用寿命是NEG泵的100倍以上,也不会因现场的震动、跌落而损坏。如果将更换真空泵的成本均摊至每次检测中,便携四极杆质谱的样品检测成本,仅在更换新泵方面就需要200元/每个样品。 离子阱强大的定性能力,在现场分析中仍待进一步挖掘。由于离子阱质谱具备储存离子的能力,故其可以将目标离子存储,碰撞,并再次检测,这就使得了单一的离子阱具有等同于三重四级杆的定性能力。由于目前还没有便携式的三重四级杆气质联用仪,故离子阱在定性方面的优势可谓是一枝独秀。如果能将离子阱质谱的这一优势充分利用,可以帮助应急监测工作者在现场处理更为复杂、棘手的检测难题。 台式四极杆较宽的动态范围,在便携四极杆质谱上并未实现。对便携式气质联用仪而言,线性范围的大小主要依赖于检测方法的多样性。受制于色谱柱容量、真空泵抽速等多个条件制约,目前便携式四极杆质谱、以及离子阱质谱的检测的线性范围都在三个数量级左右,故谁的进样方式更丰富,谁就能能将检测浓度范围进一步扩大。得益于丰富的进样方式(直接进样/定量环进样、吸附-热脱附进样),Mars-400系列的便携式气质联用仪可以在不更换仪器组件的情况下于0.1-1000mL的数量级范围内调整进样量,使得仪器动态范围达到7个数量级。想要达到类似的动态范围,四极杆质谱需手动更换吸附管或定量环。综合使用不同的进样方式后,两种便携式质谱在动态范围上并没有显著差异。图5 Mars-400 Plus线性范围可达7个数量级 参考文献[1] Fitzgerald, Robert L., et al. "Comparison of an ion-trap and a quadrupole mass spectrometer using diazepam as a model compound." Journal of analytical toxicology 21.6 (1997): 445-450.[2] Encyclopedia of Spectroscopy and Spectrometry (Third Edition)
  • N端封闭蛋白序列分析进行时——台式MALDI-8020
    胰蛋白酶消化,质谱法轻松鉴定蛋白质,已经是非常成熟的工作流程。即使是刚接触MS的使用者也可以很快掌握。在质谱法鉴定蛋白的工作流程中,蛋白质鉴定是通过使用搜索引擎,例如 Mascot或Matrix Science进行简单的数据库搜索来实现的。然而,对于数据库中未列出的蛋白质鉴定需求,或需要进行蛋白质末端序列分析的这两种情况,通常采用更昂贵的高端仪器和更复杂的工作流程,需要熟练的操作员。此外,蛋白质测序仪也通常用作蛋白质末端序列分析的方法,但遇到 N 端封闭的蛋白质,去封闭是必要的。作为样品序列分析前的预处理,预处理效果取决于蛋白质类型,可能效果不佳,对操作人员有一定要求,需要一定程度的技能和经验,这些可能会限制其使用。 近年来,利用MALDI-TOF离子源(ISD:In-Source Decay)中发生的蛋白质碎裂离子,可以分析N末端被封闭或未在数据库中登记的蛋白质序列MS图谱。此外,ISD理论上不受每个样品质量的限制,因此无需胰蛋白酶消化即可直接对高质量蛋白质进行测序。结合电泳胶提取蛋白和岛津台式机MALDI-8020,通过N端封闭蛋白的分子量测定和序列分析的例子,让我们来了解下大蛋白分子直接测序技术MALDI-ISD。 将模型样品N 端被乙酰化的牛碳酸酐酶 (Sigma-Aldrich)溶解在缓冲溶液中进行电泳, 95 °C 下加热 5 分钟,然后在聚丙烯酰胺凝胶(ATTO 12.5 %,预制 e-PAGEL)上进行电泳。所得聚丙烯酰胺凝胶用考马斯亮蓝染色以检测蛋白质斑点。使用含有表面活性剂的提取缓冲溶液,我们从凝胶分离的碳酸酐酶的条带中提取蛋白质。使用氯仿/甲醇在提取缓冲溶液中沉淀蛋白质以去除表面活性剂和盐,并使用 MALDI-TOF 质谱仪进行测量。芥子酸用作 MALDI 基质用于蛋白质分子量测量,1,5-二氨基萘 (DAN) 用于 ISD 的序列分析。 图1、碳酸酐酶电泳图图2、从凝胶中提取的碳酸酐酶MS图(基质芥子酸) 接下来,从25 pmol凝胶蛋白条带中提取碳酸酐酶,与基质DAN混合,MALDI-8020线性模式进一步分析。结果如图3所示,主要检测到c离子(从蛋白质N段产生的片段)质量一致的峰。通过使用免费软件Mass++ TM和蛋白质氨基酸序列比对工具Basic Local Alignment Search Tool (BLAST),我们对从检测到的峰中获得的氨基酸序列进行了同源性搜索。 图3、MALDI-ISD鉴定结果 鉴定结果显示匹配结果最高的是碳酸酐酶。通过检测到的c离子片段质量和数据库中已有的碳酸酐酶氨基酸序列,我们可以推断出N段序列是SHHWGYGKH...,并且是N-乙酰化的。 MALDI-8020线性模式MALDI-ISD技术,无需复杂的工作流程,无需胰蛋白酶消化即可直接对高质量蛋白质(如本文所述m/z 29030示例)进行N端测序。 该方法在岛津应用专家与美国佛罗里达州立大学、日本爱媛大学高级研究支持中心生物医学分析部、利物浦大学生化与系统生物学系等共同发表的一篇文献中也有应用到。PEPPI-MS基于聚丙烯酰胺凝胶的预分馏,实现质谱法鉴定完整蛋白或蛋白复合物。凝胶分离回收14种人血清蛋白,提取后,用MALDI-8020的MALDI-ISD产生的产物离子鉴定人血清白蛋白N端氨基酸序列。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(参考文献:岛津应用新闻 No.B83J. Proteome Res. 2020, 19, 3779−3791
  • 德国开发出检测玻璃幕墙裂纹的传感器
    据德国弗劳恩霍夫研究所网站报道,该所科学家研发的一个特殊传感器系统可以检测到玻璃幕墙上微小的裂纹,并对即将发生的玻璃破碎的危险发出警告。相关技术将在5月18日至20日举行的纽伦堡国际传感器、测试测量技术展上进行展示。   玻璃幕墙体现了现代建筑学与美学结构设计的最佳结合。不过,玻璃幕墙上的玻璃破碎坠落危及行人的情况也时有发生,而迄今为止,相关安全检查一般仅依靠敲打玻璃的声音来判断。这样的检测只能确认已经形成整条裂痕的玻璃,而不能警告即将发生的危险。   现在,位于维尔茨堡的德国弗劳恩霍夫硅酸盐研究所(ISC)与行业合作伙伴共同开发了一个传感器,它可识别5毫米长的微裂纹,并在玻璃实际破裂之前就及时发出维修提示。负责该研究的伯恩哈德布伦纳博士介绍说,他们在一块玻璃上按照一米的间距安装多个压电传感器执行器模块(piezoelektrische Sensor-Aktor-Module),一个传感器执行器模块产生超声波,其他传感器接收这种注册过的超声波。如果超声波信号保持不变,说明玻璃是完好的 如果信号发生变化,就表明玻璃产生了裂痕。通常,这些裂纹从玻璃的边缘产生,最初是不可见。随着时间的推移,例如在环境温度变化的影响下,它才会逐渐扩大。   该传感器通过电缆连接到建筑物的控制系统,所有传入的数据都会被自动分析,当玻璃出现微小裂缝时就会触发警报。研究者还成功将传感器安装到层压玻璃面板间。由于这些传感器在层压玻璃的生产过程中就已经被整合到两块玻璃板之间,因此,它们能在玻璃安装前就检测到玻璃在运输过程中出现的缺陷。   这一新的安全系统不仅可以提前预测玻璃碎裂,还能提供舒适的功能:该传感器执行器模块同温度和光传感器相连,可以根据光照情况选择开关百叶窗,从而控制室内环境。
  • 布鲁克傅立叶变换-离子回旋共振质谱仪在大连化物所验收通过
    p span style=" FONT-FAMILY: times new roman"   10月26日上午,中科院大连化物所平台举行“傅立叶变换-离子回旋共振质谱仪”验收会,专家组成员由中国科学院上海有机化学研究所郭寅龙,我所许国旺、张青、吴仁安、李杲、孔宏伟担任,管理及支撑部门、能源研究技术平台相关人员及用户代表参加了验收会。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img style=" WIDTH: 600px HEIGHT: 368px" title=" 20151028103925_6563.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/insimg/d428820d-1e77-4777-aec9-b6b192cdadc3.jpg" width=" 600" height=" 368" / /span /p p span style=" FONT-FAMILY: times new roman"   & nbsp 验收会由许国旺主持,科技处张俊介绍了仪器验收的注意事项及要求等,专家组听取了布鲁克公司工程师周克瑜关于仪器参数测试和仪器负责人胡春秀关于仪器初步应用方面的工作汇报,审阅了验收材料并现场考察了仪器,一致同意该仪器通过验收。 /span p span style=" FONT-FAMILY: times new roman"   该仪器主要技术指标为: 磁场强度 15T 质量分辨率 160万 质量测量精度0.1-0.6 ppm 常规质荷比扫描范围 150-3000,可用于推测分子的元素组成、分子式及二级碎裂分析等 可用于包括有机合成产物、环境样品、中药、催化反应监控与产物分析及其他复杂体系中的小分子及多肽分析。 /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman" 以上来源:中科院大连化物所 /span /p p strong span style=" FONT-FAMILY: times new roman" 编者按: /span /strong /p p   目前高分辨质谱仪如Q-Tof、Orbitrap等的应用范围来越多,也得到了小分子分析用户的青睐。布鲁克是全球傅立叶变换-离子回旋共振质谱仪(FTMS)的唯一生产商。 /p p   在BCEIA期间,布鲁克· 道尔顿亚太区高级副总裁Rohan Thakur来到中国并参加了展会。在提到本次布鲁克FTMS通过大连化物所验收时,Rohan 表示:“FTMS具有它无可取代的功能和应用,如高端蛋白质组学研究、代谢组学、组织分子成像、复杂环境样品分析、石油化工、地质等。对分辨率要求高、专业性强的应用可能更需要FTMS。国内外有很多高端研究实验室需要FTMS来完成更加深入和专业的小分子鉴定。” /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman" 编辑:郭浩楠 /span /p p & nbsp /p p & nbsp /p p & nbsp /p p & nbsp /p p /p /p
  • 李惠琳团队成果:非变性自上而下质谱用于蛋白及其复合物结构表征
    大家好,本周为大家分享一篇李惠琳课题组最近发表在Mass Spectrometry Reviews上的综述,Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes1。结构生物学的快速发展极大地促进了蛋白结构表征工具的开发。其中,基于质谱的分析方法凭借其快速、灵敏、高通量的优势从中脱颖而出。相比于原子水平的高分辨结构表征工具如X-射线晶体学、核磁共振(NMR)、冷冻电镜(Cryo-EM)等,基于质谱的分析方法能够有效地补充蛋白动力学结构变化的信息,并且不受蛋白纯度、分子量大小的限制。而相较于低分辨的蛋白表征工具如圆二色光谱、动态光散射等,基于质谱的分析方法能够提供更高的肽段或残基水平分辨率,获取额外的序列、翻译后修饰(post‐translational modifications, PTMs)、局部空间结构等信息。常见的结构质谱包括:氢氘交换质谱(hydrogen‐deuterium exchange MS, HDX-MS)、交联质谱(cross‐linking MS, CX-MS)、表面标记质谱(covalent labeling MS, CL-MS)等。已有相当多的文献对这些方法进行了详细的介绍2,3,在此不再赘述。而此篇综述将重点介绍非变性至上而下质谱(native top‐down MS, nTDMS)在蛋白及其复合物结构表征中的应用。在过去的十年,非变性质谱(native MS, nMS)特别是nTDMS发展迅速。nMS作为一个桥梁将蛋白质组学与结构生物学相连,其保留非共价相互作用的特性使其广泛用于蛋白复合物四级结构表征,如推断亚基组成、化学计量比、亚基排布等。然而,对于一些深层次的结构信息,如氨基酸序列、PTMs、配体结合位点、亚基结合界面等,仅靠单一的nMS是无法获取的。与之对应的,变性条件下的自上而下质谱(TDMS)能够在完整蛋白水平下直接获得序列以及PTMs信息,虽然有助于PTM的准确定位以及蛋白、蛋白异质体(Proteoform)的鉴别,但却丢失了涉及非共价相互作用的高级结构信息。受限于质谱仪器的发展,在早期,nMS与TDMS通常在两个独立的实验中进行,随着质量分析器以及多种活化/碎裂方式的开发,nMS与TDMS的能够有效的结合,充分发挥各自的优势,在实现多层次结构信息获取的同时,也在不断挑战更加复杂的生物体系,如核糖体、膜蛋白、内源蛋白混合物等。实验设计nTDMS已成为表征蛋白质和复合物的初级到高级结构的重要工具。随着蛋白质样品的大小和复杂性的增加,用于nTDMS的仪器不仅需要符合某些特定标准,还需要不断提高其性能以满足这些增加的需求。nTDMS分析中几个关键的步骤包括:样品前处理、ESI离子化、二级碎裂、质量检测以及数据处理。样品前处理为了维持蛋白的自然状态,通常需要在生理环境中进行nMS分析。然而,缓冲液中的非挥发性盐会产生大量盐簇并与蛋白离子形成非特异性加合物,从而抑制离子信号、降低检测的准确度和灵敏度。因此,样品前处理过程中最重要的环节就是除盐。然而适当的离子强度有助于维持蛋白的三维结构,所以通常的步骤是对蛋白进行缓冲液置换,将蛋白置换至醋酸铵或碳酸氢铵等挥发性盐溶液中。目前已开发了多种在线或离线的除盐方法,详细内容的可在综述原文中查看,此处不再赘述。除了使用非挥发性缓冲盐,减小ESI喷针孔径大小也可以提高系统耐盐能力。碎裂/活化方式二级碎裂方式是实现nMS到nTDMS的关键。常见的活化方式按照原理可分为三类:基于碰撞(CID, SID)、基于电子(ECD, ETD, EID等)以及基于光子(UVPD, IRMPD)的活化/碎裂方式。值得注意的是,CID与IRMPD都属于慢加热的活化方式,能量累积的非常慢,以至于在发生碎裂之前已经进行了能量重排,一些较弱的或者不稳定的键会优先发生断裂,最终导致非共价相互作用在活化的过程中被破坏。而SID、ExD与UVPD则属于快加热的活化方式,碎裂发生在能量重排之前,非共价相互作用得以在这一过程保留下来,碎片化程度受到非共价相互作用的限制,因此可被用于表征蛋白的空间结构。此外,将多种活化方式的结合或与离子淌度技术串联也是获取多层次结构信息的关键。质量检测与变性条件下的质谱分析相比,蛋白复合物在天然环境下通过电喷雾电离产生的电荷数相对较少,因此需要具有较大m/z 范围的质量分析仪(高达m/z = 20,000 Da甚至更高)。最初,nMS分析高度依赖基于飞行时间(time of fight, TOF)质量分析器,因为TOF具有理论上无限的m/z范围。近年来,高分辨质量分析器如轨道阱(Orbitrap)和傅里叶变换离子回旋共振(FTICR)为生物大分子的nTDMS分析带来了新的活力。在综述中,我们简要介绍了每种质量分析器的最新进展,并重点强调了FTICR和Orbitrap在nTDMS分析中的发展和应用。数据处理除了基本的硬件设施,配套的数据处理软件也十分重要。nTDMS数据处理流程通常包括以下4个步骤:同位素峰选取、去卷积、数据库搜索、验证和可视化。正文中,我们对每个步骤进行了简要描述,并重点介绍用于数据库搜索和异质体鉴别的软件。多层次结构信息的获取得益于多种活化/碎裂方式的开发,nTDMS分析可同时获得多层次的结构信息(图1)。主要有以下两种策略:第一种策略,完整蛋白复物(MS1)首先被CID或SID碎裂至亚基(MS2),亚基可进一步碎裂肽段(MS3),在MS1及MS2中可获蛋白复合物结合计量比、拓扑结构、蛋白异质性等信息,在MS3阶段则可获取蛋白序列、PTMs定位以及异质性来源等信息。第二种策略则是完整蛋白复合物(MS1)直接被UVPD或ExD碎裂成肽段(MS2),受益于UVPD以及ExD独特的碎裂方式,发生碎裂的区域主要位于蛋白复合物的表面可及区,而未发生碎裂的区域可能位于蛋白复合物的核心区域或参与亚基相互作用界面。不同的碎裂情况反映不同的空间结构,带有配体的肽段碎片可以用于配体结合位点的定位。综述中,我们详细阐述了如何利用nTDMS获得蛋白复合物的多层次结构信息以及如何将碎片信息与结构信息相关联。图1. nTDMS可提供的多维度结构信息复杂生物体系中的应用蛋白质的空间结构决定了其生物功能,而蛋白质-蛋白质/配体相互作用是大多数生物进程的基础。通过突变、翻译后修饰、或者与金属、小分子配体、蛋白质、DNA、RNA等分子发生共价或非共价的相互作用,蛋白质功能在活细胞中不断受到调节。随着MS仪器、方法的不断开发和数据处理软件的逐渐成熟,nTDMS已被广泛应用于各种生物系统,从小蛋白质、蛋白质-配体复合物到大分子组装体,如膜蛋白、蛋白酶体、核糖体、病毒衣壳,甚至是内源性蛋白混合物。它们中的许多都是极具挑战性的体系,即便是采用NMR、X-射线晶体学或Cryo-EM等生物物理方法分析也是非常困难的。因此,来自nTDMS的见解对于理解这些蛋白质和复合物至关重要。在这里,我们总结nTDMS在所有生物体系中的应用实例,旨在全面了解nTDMS在解决生物学问题方面的潜力。小蛋白的结构表征和区分最初,nTDMS主要用于50 kDa以下单体蛋白的结构表征,大部分的研究都是围绕蛋白质气相结构与溶液相结构对比展开的。根据nTDMS的碎裂情况,推断蛋白的气相空间结构,并与NRM获得的溶液结构进行对比。此外,如果在二级碎裂前增加离子预活化有助于蛋白分子的展开,以便研究蛋白气相展开路径以及获取蛋白质内部空间结构信息。得益于碎片离子对蛋白空间结构的高度敏感性,nTDMS还被用于区分不同蛋白亚型、蛋白突变体的结构差异。蛋白-小分子配体相互作用随后,nTDMS应用到了蛋白-配体复合物中,不同的配体类型适合不同的活化/碎裂方式,除了金属离子、RNA/DNA等以静电作用为主的蛋白配体能够在CID活化时存活,大部分复合物的碎裂都需要选择ECD或UVPD等方式。nTDMS可用于蛋白-配体结合计量比、亲和力、结合位点、作用机制、结构动力学/变构效应的研究。它是一种强大的结构表征工具,其在抑制剂筛选、酶催化监控、RNA-蛋白质互作机制的应用实例在正文中已有详细的介绍。蛋白-蛋白相互作用随着仪器设备的快速发展,nTDMS已应用到更大的体系如蛋白-蛋白复合物,通过组合不同的活化/碎片化技术,在一次实验中可以获得多层次的结构信息。nTDMS可以帮助区分不同的蛋白异质体,并在完整复合物、亚基、肽段三个水平上确定异质性的来源。蛋白的异质性与其生物学功能密切相关,通过调整蛋白的异质性可以实现蛋白功能的转变,具体的应用案例已在正文详细介绍。除此之外,nTDMS还可以用作蛋白-蛋白复合物结合界面、气相展开以及深层次结构探索。治疗性抗体和抗原-抗体复合物在过去的几十年中,治疗性抗体已成为最受欢迎的候选药物之一,它们的高特异性和低副作用促进了治疗性抗体的快速增长。在综述中,我们还详细地介绍了nTDMS在治疗性抗体和抗原-抗体复合物体系中的应用。nTDMS可用于抗体可变区的测序、具有不同药物计量比(DARs)的抗体耦联药物的结构表征、以及抗体-抗原复合物中互补决定区及抗原表位区的鉴别。膜蛋白无论是对于传统的结构表征工具如:X-射线晶体学、NMR还是nTDMS,膜蛋白的结构表征一直以来面临着诸多困难。膜蛋白具有低丰度以及低溶解性等特点,最常见的方法是利用与nMS兼容的膜模拟物如:去污剂胶束、纳米微盘等去溶解膜蛋白,在nTDMS分析时再将膜蛋白从胶束中释放出来,释放出的蛋白可在nTDMS中进一步碎裂获取结构信息。具体的实验流程和应用实例可在综述正文中查看。大分子组装体正文中,还介绍nTDMS在极具挑战性的大分子组装体如:核糖体、蛋白酶体、病毒衣壳中的应用实例,这些生物体系普遍存在的问题是分子量非常大(接近MDa),且具有较高的异质性。对这些大分子机器进行nTDMS分析要求仪器具有较高的质量范围以及分辨率。大分子机器的结构表征充分说明nTDMS方法无论在深度还是广度上都有极大的提升。Native top-down MS蛋白质组学值得注意的是,当质谱前端结合非变性分离技术,如native GELFrEE,尺寸排阻色谱,毛细管区带电泳,离子交换色谱等,nTDMS还可以在靶向模式或发现模式下用于复杂蛋白质组的高通量分析,如内源性蛋白混合物。nTDMS分析最大的优势在于它能区分不同的蛋白异质体,并对每种蛋白异质体进行结构表征,这是其他在肽段水平进行分析的结构质谱法如:HDX-MS, CL-MS所无法实现的。总结与展望总之,在这篇综述中我们重点介绍了nTDMS的最新进展和在不同生物体系中的应用,强调通过nMS与TDMS结合可以获得额外的多层次结构信息。新技术的出现以及仪器的进步使nTDMS能够应用于结构生物学中日益复杂的生物样本体系,包括蛋白质配体、多聚蛋白复合物、大分子组装体和内源性复合物。尽管这样,nTDMS分析仍面临着的挑战,包括但不限于前端的样品分离、离子化、去溶剂化、高质荷比分子传输、异质性样本的分析以及软件的开发。未来nTDMS将与其他的一些结构表征方法相结合以获取更加全面的结构信息。正文中对未来发展趋势进行了讨论并提到了其他一些令人兴奋的创新技术如:基于MALDI离子源的质谱成像技术用于蛋白原位分析、电荷检测质谱(CDMS)用于异质性样本分析,多重技术的结合将为蛋白质复合物的nTDMS研究开辟新的道路。我们希望这篇综述能让读者更好地理解nTDMS提供的独特结构信息,并推动该方法的广泛应用。撰稿:刘蕊洁编辑:李惠琳原文:Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. 参考文献1.Liu RJ, Xia SJ, Li HL. Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. Mass Spec Rev. 2022 e21793. https://doi.org/10.1002/mas.217932.Britt HM, Cragnolini T, Thalassinos K. Integration of mass spectrometry data for structural biology. Chem Rev. 2022 122(8):7952-7986. 3.Liu XR, Zhang MM, Gross ML. Mass spectrometry-based protein footprinting for higher-order structure analysis: fundamentals and applications. Chem Rev. 2020 120(10):4355-4454.
  • ADC药物的深度表征
    抗体偶联药物(antibody-drug conjugate,ADC)是一类通过特定的连接子将靶向单克隆抗体与高杀伤性的细胞毒性小分子药物偶联起来的生物药,以单克隆抗体为载体将小分子细胞毒性药物高效地运输至目标肿瘤细胞中,起到治疗的目的。与传统抗体药相比,ADC药物的结构复杂度和异质性更高,因为添加了多变的有效载荷和连接子1。为确保药物安全性和有效性,ADC的深度表征在其开发过程中至关重要。这不仅包括对mAb的翻译后修饰(PTM)的鉴定和定位,还包括药物偶联的鉴定。由于质谱技术的飞速发展,质谱已经成为ADC药物表征中最广泛使用的方法。完整质量分析是用于确定小分子药物与抗体比率(DAR)的常规方法,而对结合位点的深入表征,通常依赖于bottom-up的方法。现在最广泛采用的碰撞诱导解离(CID)技术能够提供氨基酸序列确认,但是这种能量比较大的碎裂技术也将有效载荷碎裂为更小的片段,从这种方法获得的高度复杂的谱图可能很难解析。而能量更柔和的碎裂方法可以促进此类复杂样品的解析,一种基于电子活化裂解(EAD)2,3的创新、高度可重复的碎裂方法用于分析来自商业化ADC药物的偶联肽。使用10 Hz快速非靶向的数据依赖采集(DDA)方法采集数据,通过此工作流程,一次进样就可以应用基于EAD的碎片进行常规和高级表征。曲妥珠单抗美坦新偶联物(T-DM1)是最早的ADC治疗药物之一,于2013年获得FDA批准用于治疗人表皮生长因子受体2(HER2)阳性转移性乳腺癌。T-DM1是由单克隆抗体曲妥珠单抗和细胞毒素美坦新(DM1)通过不可裂解连接子共价偶联而成(图1)。将单克隆抗体(mAb)的靶标特异性与细胞毒性药物的高效率相结合,可充分利用两个方面的优势,最大限度地减少副作用3。T-DM1是与氨基连接,如连接在曲妥珠单抗的赖氨酸残基的侧链中。先前的完整质量研究表明,T-DM1的平均DAR约为3.5.1,4。但是曲妥珠单抗中有88个赖氨酸残基和4个N端基团,可能会出现450万个以上的不同分子形式1。有效载荷的位点和结构将直接影响药物的功效和安全性,因此将其归类为关键质量属性(CQA),并且需要在开发过程中进行全面表征和严格监控。图1. 细胞毒药物有效载荷和连接子与mAb偶联的示意图。T-DM1由DM1(黑色),靶向连接氨基残基的MCC连接子(linker,蓝色)和单克隆抗体组成。本研究选择了与Zeno&trade EAD相结合的DDA方法。采用这种方法,不仅可以执行常规的肽图分析,而且EAD可以在同一针分析中进行高级表征。此外,Zeno EAD增强了碎片离子的检测能力,从而正确鉴定了低丰度物质。图2展示了在偶联肽SCDK [DM1]THTCPPCPAPELLGGPSVFLFPPKPK上观察到的碎裂模式的例子。在分析中未观察到没有连接子和药物或其部分的肽,表明其完全偶联。获得了此肽段高质量的MS / MS谱图,从而使该特定肽段的MS / MS序列覆盖率达到96.6%。一个更占优势的碎片从 m/z大于500的有效载荷产生(请见图2中的标记)。观察到的有效载荷结构的主要裂解位点是DM1的COO-C键,这种碎裂模式与先前利用CID技术产生的一系列小碎片的数据不同1。较大分子量的药物碎片可以用作特征碎片,以更具体地确认有效载荷的存在,并可以用来确认有效载荷的结构。图2. 应用Zeno EAD得到的偶联肽SCDK [DM1] THTCPPCPAPELLGGPSVFLFPPKPK(z =+4)的碎片数据。来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。此外,通过将Zeno EAD技术用于增强的碎片离子检测,还可以很好地检测到来自肽段主链的片段信息,从而提供有关肽段的分子完整性的信息。由于酶的空间位阻,抗体上偶联药物的存在会导致样品制备酶解过程中的更多漏切位点。另外,赖氨酸残基和有效载荷之间的结合过程是随机反应,偶联的比率并不总是100%,这导致了多样性和低丰度物质存在。当一个肽段中存在多个潜在连接形式时,鉴定正确的连接位点可能是一个挑战。肽段ASQDVNTAVAWYQQKPGKAPK是这种具有挑战性的另一个例子(图3)。它包含一个漏切位点和一个脯氨酸相邻的N端赖氨酸,导致偶联位点的多种选择。但是,有了从EAD技术碎裂得到丰富、高质量的MS / MS质谱图,就可以实现药物定位的自动匹配(图3A)。由于有效载荷靠近肽的C端,因此检测到的C离子比Z离子丰富(图3A),而未结合的肽显示出来自C端和N端的丰富片段(图3B)。众所周知因为电子活化解离技术不会解离脯氨酸的N端,我们还检测到了除了C15以外的从C3到C17的全系列C片段7。这提供了确凿的证据表明K15未与细胞毒药物偶联。此外,z4,z5和z7表明K18(而非K21)是药物偶联的正确位点。图3. 应用Zeno EAD得到的来自偶联/非偶联肽ASQDVNTAVAWYQQKPGK [DM1] APK(z =+3)的碎片的数据。A:来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。B:来自肽段主链指定非偶联肽的全扫描MS / MS数据。 连接子显示为蓝色,DM1药物显示为黑色。结论:通过EAD的新型碎裂模式,实现了具有多个潜在位点的多肽中药物偶联的准确定位与传统的MS / MS分析相比,EAD技术获得更丰富的MS/MS碎片信息。应用Zeno EAD技术,即使对于中等强度或极低强度的母离子(例如低丰度的偶联肽),也能获得令人信服的二级碎片和出色的数据质量SCIEX ZenoTOF&trade 7600系统强大、高重现性且易于使用的多重碎裂技术,使用户能够以简单的方式解决具有挑战性的分析问题(CN)Characterization of an antibody-drug-conjugate (ADC) using electron activated dissociation (EAD).PDF点击下载声明:版权为 SCIEX 所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有内容须获得授权, 转载时须注明「来源:SCIEX」。申请授权转载请在该文章下“写留言”。
  • 让您的科学亮点更加闪耀 “花式”解读有机化合物(下篇)
    话接上回,小编给大家介绍了面对复杂样品,如何用液相色谱的黑科技做“花式”分离。有了前端的“花式”分离,更要有“花式”检测,话说什么变形金刚呀,什么恐龙战队呀,都是花式+组合以后变得更强。所以这期呢,小编跟大家谈谈“花式”分离的组合“花式检测”——多重质谱技术如何对化合物进行“花式”剖析。作为有着50年质谱技术的积淀,赛默飞的质谱从有机质谱到无机质谱,从液质到气质,从单四极杆到串联四极杆,从离子阱、高分辨磁质谱再到高分辨Orbitrap;从单四极杆ICP-MS到串联四极杆ICP-MS,从高分辨ICP-MS再到特色的无机同位素系列质谱。众多的质谱技术以及获得的专利满满的挂了好几面墙,若是一一道来,怕是小编几天几夜也合不了眼了。在这里,针对“花式”解读有机化合物,小编先给大家介绍一下有机质谱中“航母”级别的神器——Orbitrap Fusion。Orbitrap Fusion™ Lumos™ Tribrid™ 三合一质谱仪作为神器,Orbitrap Fusion系列质谱搭载了满满的黑科技,仅质量分析器就搭载了3种:Orbitrap静电场轨道阱、双压线性离子阱和双曲面四极杆。Orbitrap静电场轨道阱高分辨质谱技术兼具超高分辨率、高质量精度、高灵敏度等优点,目前已经可以达到1百万的超高分辨率。这么高的分辨率有什么用呢?小编举个例子,用一般分辨率的质谱和超高分辨率质谱做实验,就好像在污染严重的雾霾天里和阳光普照空气清洁的环境里走路一样(如果你生活在空气良好的地区,请想象眼镜充满雾气和镜片干净时看东西的区别,如果你也不近视,小编只能请你自行发挥一下想象力?)。↑一般分辨率的质谱↑超高分辨率的质谱超高分辨率可以帮助我们更清晰的看到复杂样品里面的信息,即使色谱水平上没有分离的成分也能让他们“无所遁形”。再举个例子(如下图),在复杂基质中,12万的分辨率,我们发现了噻吗洛尔的信息,但是当分辨率升高到50万以上时,我们发现原本认为的一个成分中,还包含了另一个成分乙基苯酰芽子碱。所以高分辨率能帮助我们更真实地发现更多的科学。再来说说双压线性离子阱。离子阱的优势在于可以做多级质谱,得到更精细的化合物结构信息,所以当我们遇到复杂结构的成分时,就可以用离子阱技术对化合物结构进行全面剖析。赛默飞在离子阱技术上也是real“资深”。双压线性离子阱由高压阱和低压阱组成,高压阱中的高氦气压力能更好的进行离子的捕获、冷却和碎裂,低压阱中的低氦气压力对质量扫描有更好的分辨率或更快速度,双离子阱每个阱可设置最佳的氦气压力得到最优的捕获、隔离、碎裂和扫描效果。为了得到更多的化合物结构信息,Orbitrap Fusion上不仅有双压线性离子阱这种“高x格”的离子阱技术,也具有多种碎裂方式,如CID、HCD、ETD、UVPD等等。不同的碎裂方式可以提供化合物不同的结构碎片信息,这些碎裂方式还可以在做多级质谱时灵活组合,对化合物“花式”锻打,不愁化合物不显露“真相”。最后我们说说双曲面四极杆。双曲面四极杆比圆柱形四极杆加工难度要大,可以做到更高的分辨率,对离子的选择能力会更好,尤其在做复杂样品分析时会有更明显的优势。这项技术同样也被用于赛默飞的三重四极杆质谱中,使得三重四极杆质谱也可以实现高分辨的SRM(H-SRM)模式,对复杂基质样品中目标化合物的定量具有更好的灵敏度。 在Orbitrap Fusion上,不同的质量分析器、不同的碎裂方式可以灵活“花式”组合,协同运作,实现突破想象力的更多工作方式,为科研用户前沿研究实现更多可能性。下面就以其中的一种简单的工作模式为例,来感受一下离子在Orbitrap Fusion的“花式”运动吧。“黑科技”实在太多,小编今天暂时先说到这里了。想要了解更多神秘技术,还请关注“赛默飞色谱与质谱中国”微信公众号,移步到我们的高校科研全国巡演的现场聆听和感受。小编在这里再爆个料,我们每场高校科研巡演都会邀请知名学者大咖前来助阵,想要赢得与学界大咖近距离接触的机会,还请关注我们的微信。到底是哪位大咖呢?小编一期一期给你们爆料! 点击查看往期秘籍让您的科学亮点更加闪耀 教你如何“佛系”小白飞升“魔系”战神让您的科学亮点更闪耀 “花式”解读有机化合物(上篇)
  • 让您的科学亮点更加闪耀 “花式”解读有机化合物(下篇)
    话接上回,小编给大家介绍了面对复杂样品,如何用液相色谱的黑科技做“花式”分离。有了前端的“花式”分离,更要有“花式”检测,话说什么变形金刚呀,什么恐龙战队呀,都是花式+组合以后变得更强大̷ 所以这期呢,小编跟大家谈谈“花式”分离的组合“花式检测”——多重质谱技术如何对化合物进行“花式”剖析。 作为有着50年质谱技术的积淀,赛默飞的质谱从有机质谱到无机质谱,从液质到气质,从单四极杆到串联四极杆,从离子阱、高分辨磁质谱再到高分辨Orbitrap;从单四极杆ICP-MS到串联四极杆ICP-MS,从高分辨ICP-MS再到特色的无机同位素系列质谱。众多的质谱技术以及获得的专利满满的挂了好几面墙,若是一一道来,怕是小编几天几夜也合不了眼了。在这里,针对“花式”解读有机化合物,小编先给大家介绍一下有机质谱中“航母”级别的神器——Orbitrap Fusion。Orbitrap Fusion™ Lumos™ Tribrid™ 三合一质谱仪 作为神器,Orbitrap Fusion系列质谱搭载了满满的黑科技,仅质量分析器就搭载了3种:Orbitrap静电场轨道阱、双压线性离子阱和双曲面四极杆。Orbitrap静电场轨道阱高分辨质谱技术兼具超高分辨率、高质量精度、高灵敏度等优点,目前已经可以达到1百万的超高分辨率。这么高的分辨率有什么用呢?小编举个例子,用一般分辨率的质谱和超高分辨率质谱做实验,就好像在污染严重的雾霾天里和阳光普照空气清洁的环境里走路一样(如果你生活在空气良好的地区,请想象眼镜充满雾气和镜片干净时看东西的区别,如果你也不近视,小编只能请你自行发挥一下想象力̷)。↑一般分辨率的质谱↑超高分辨率的质谱 超高分辨率可以帮助我们更清晰的看到复杂样品里面的信息,即使色谱水平上没有分离的成分也能让他们“无所遁形”。再举个例子(如下图),在复杂基质中,12万的分辨率,我们发现了噻吗洛尔的信息,但是当分辨率升高到50万以上时,我们发现原本认为的一个成分中,还包含了另一个成分乙基苯酰芽子碱。所以高分辨率能帮助我们更真实地发现更多的科学。再来说说双压线性离子阱。离子阱的优势在于可以做多级质谱,得到更精细的化合物结构信息,所以当我们遇到复杂结构的成分时,就可以用离子阱技术对化合物结构进行全面剖析。赛默飞在离子阱技术上也是real“资深”。双压线性离子阱由高压阱和低压阱组成,高压阱中的高氦气压力能更好的进行离子的捕获、冷却和碎裂,低压阱中的低氦气压力对质量扫描有更好的分辨率或更快速度,双离子阱每个阱可设置最佳的氦气压力得到最优的捕获、隔离、碎裂和扫描效果。为了得到更多的化合物结构信息,Orbitrap Fusion上不仅有双压线性离子阱这种“高x格”的离子阱技术,也具有多种碎裂方式,如CID、HCD、ETD、UVPD等等。不同的碎裂方式可以提供化合物不同的结构碎片信息,这些碎裂方式还可以在做多级质谱时灵活组合,对化合物“花式”锻打,不愁化合物不显露“真相”。 最后我们说说双曲面四极杆。双曲面四极杆比圆柱形四极杆加工难度要大,可以做到更高的分辨率,对离子的选择能力会更好,尤其在做复杂样品分析时会有更明显的优势。这项技术同样也被用于赛默飞的三重四极杆质谱中,使得三重四极杆质谱也可以实现高分辨的SRM(H-SRM)模式,对复杂基质样品中目标化合物的定量具有更好的灵敏度。 在Orbitrap Fusion上,不同的质量分析器、不同的碎裂方式可以灵活“花式”组合,协同运作,实现突破想象力的更多工作方式,为科研用户前沿研究实现更多可能性。下面就以其中的一种简单的工作模式为例,来感受一下离子在Orbitrap Fusion的“花式”运动吧。“黑科技”实在太多,小编今天暂时先说到这里了。想要了解更多神秘技术,还请关注“赛默飞色谱与质谱中国”微信公众号,移步到我们的高校科研全国巡演的现场聆听和感受。 小编在这里再爆个料,我们每场高校科研巡演都会邀请知名学者大咖前来助阵,想要赢得与学界大咖近距离接触的机会,还请关注我们的微信。到底是哪位大咖呢?小编一期一期给你们爆料! 点击查看往期秘籍让您的科学亮点更加闪耀 教你如何“佛系”小白飞升“魔系”战神让您的科学亮点更闪耀 “花式”解读有机化合物(上篇)
  • 蛋白质测序技术发展漫谈(下)
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇)前面讨论了基于质谱的蛋白质测序技术的一般流程及基于质谱的肽段序列测定方法。在组成蛋白质的20种氨基酸中,亮氨酸和异亮氨酸互为同分异构体,具有相同的分子质量,无法通过二级质谱产生的同系列离子的质量差异被区分。然而亮氨酸/异亮氨酸对单克隆抗体药物的功能影响巨大,典型的单克隆抗体在互补决定区(CDR)中含有至少3个亮氨酸/异亮氨酸,在复杂的样品中可以存在多达9个。单克隆抗体中CDR的错误识别,会导致抗原结合亲和力与抗体的特异性大量丧失。因此,对单克隆抗体中的全部亮氨酸或异亮氨酸进行准确测定意义重大[1-2]。亮氨酸和异亮氨酸的侧链分别是异丁基和仲丁基,通过质谱的多级碎裂产生的特征离子可以对亮氨酸和异亮氨酸进行区分。一种方法是通过不同系列的碎片离子质量差来区分,其原理是肽段在ETD-HCD或EThcD碎裂模式下可产生z离子,含有异亮氨酸和亮氨酸肽段分别失去一个乙基自由基(C2H5)和一个丙基自由基(C3H7),产生质量分别减少29 Da和43 Da的w离子,因此通过质谱产生的z/w离子质量差,可区分肽段中的亮氨酸和异亮氨酸[2-5]。Zhokhov[3]对人血清白蛋白(HSA)、gp188蛋白两种蛋白质的43条胰蛋白酶酶解肽段中的93个亮氨酸和异亮氨酸进行鉴定,准确区分了其中的83个,但由于z/w离子分别产生在ETD和HCD谱图中,在鉴定过程中需要人工筛选含有z/w离子的谱图。Tatiana[4]等通过EThcD的碎裂模式对蛙皮肤分泌的14条肽段进行鉴定,使肽段的z/w离子出现在同一张谱图中,区分鉴定了这些肽段中的61/75个亮氨酸和异亮氨酸。由于不能保证每个含有亮氨酸或异亮氨酸的肽段在质谱中碎裂一定会产生相应的z/w离子,因此通过z/w离子质量差的方法无法对蛋白序列中全部的亮氨酸和异亮氨酸准确测定。另一种方法是通过亮氨酸和异亮氨酸的亚胺离子的三级碎片离子区分,其原理是亮氨酸或异亮氨酸质子化的离子(132 Da)容易损失甲酸而形成相应的亚胺离子(86 Da),它们的亚胺离子在三级碎裂中分别会产生m/z 69和m/z 43的特征离子。Nakamura[6]使用嗜热菌蛋白酶对人钙降素进行酶解,得到以亮氨酸或异亮氨酸为N端的肽段,通过该方法确定钙降素的第4和9个氨基酸为亮氨酸,第27个氨基酸为异亮氨酸,但此方法的缺点是当一条肽段中含有不止一个亮氨酸或异亮氨酸时,特征离子峰相会互干扰,无法对其判断。Bagal[5]将亚胺离子的三级碎片离子的方法和z/w离子质量差的方法结合,并将该策略用于两个单克隆抗体CDR中的亮氨酸和异亮氨酸的鉴定,由于使用胰蛋白酶酶解产生的肽段长度过长,对鉴定造成影响,仅对6条肽段中的亮氨酸和异亮氨酸的准确鉴定,无法区分CRD区全部亮氨酸和异亮氨酸。Sheila[7]使用4种蛋白酶对单克隆抗体进行酶解,对二级质谱产生的a1离子进行三级碎裂,排除了肽段内部亮氨酸或异亮氨酸的干扰,根据每个三级谱图中特征峰强度的比值对亮氨酸和异亮氨酸区分,由于谱图中噪音干扰以及肽段的共碎裂,会使一些含有特征离子的谱图不能用于准确区分亮氨酸和异亮氨酸,最终对单克隆抗体中的71.1%-94.1%亮氨酸和异亮氨酸进行区分。我们借鉴该方法,结合非特异酶连续酶解技术,以及基于碎片离子质量校正和多谱图共同打分策略,实现了对单克隆抗体药物赫赛汀轻链中7个异亮氨酸和18个亮氨酸,重链中9个异亮氨酸和33个亮氨酸的鉴定,准确度100%,轻链鉴定的覆盖度为100%,重链鉴定的覆盖度为97.67%。鉴定蛋白质中亮氨酸和异亮氨酸的流程图[1] Hurtado P P, O' Connor P B. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry [J]. Mass Spectrom Rev, 2012, 31(6): 609-25.[2] Xiao Y, Vecchi M M, Wen D. Distinguishing between Leucine and Isoleucine by Integrated LC-MS Analysis Using an Orbitrap Fusion Mass Spectrometer [J]. Anal Chem, 2016, 88(21): 10757-66.[3] Zhokhov S S, Kovalyov S V, Samgina T Y, et al. An EThcD-Based Method for Discrimination of Leucine and IsoleucineResidues in Tryptic Peptides [J]. J Am Soc Mass Spectrom, 2017, 28(8): 1600-11.[4] Samgina T Y, Kovalev S V, Tolpina M D, et al. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond [J]. J Am Soc Mass Spectrom, 2018, 29(5): 842-52.[5] Bagal D, Kast E, Cao P. Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow LCMS(n) [J]. Anal Chem, 2017, 89(1): 720-7.[6] Nakamura T, Nagaki H, Ohki Y, et al. Differentiation of leucine and isoleucine residues in peptides by consecutive reaction mass spectrometry [J]. 1990, 62(3): 311-3.[7] Maibom-Thomsen S, Heissel S, Mortz E, et al. Discrimination of Isoleucine and Leucine by Dimethylation-Assisted MS3 [J]. Anal Chem, 2018, 90(15): 9055-9.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 沃特世发布SYNAPT XS高分辨率质谱仪新品
    SYNAPT XS高分辨率质谱仪没有研究,就制定的决策,容易是盲目的在科研领域,研究进展缓慢和成本不断上升俨然已成为一项挑战。SYNAPT XS质谱仪具有极致灵活性,可提供更大的选择自由度,能够打破这些壁垒,支持任何应用的科学创新和技术成功。 • 创新技术作为基石,提供最优异的分析性能• SONAR和HDMSE提供一套独特的工具包,用于解析复杂混合物• 离子淌度功能大大增加了峰容量和分析选择性• CCS测量可提高化合物鉴定的准确性创新技术提供最优异的分析性能凭借沃特世高级质谱“SELECT SERIES”传承下来的技术基石,内置先进的创新技术,确保使用该平台的科学家处于质谱分析的最前沿,同时维持SYNAPT的易用性和成熟的客户端工作流程。StepWave XS重新设计的分段四极杆传输光学元件,提升棘手化合物的分析灵敏度,同时进一步提高分析稳定性。Extended ToF 针对最复杂的样品,提供兼容UPLC的质量分辨率、耐受各种基质的动态范围和定量分析结果,同时提供卓越的性能指标。更大的分析选择自由度为有效解决固有难题,分析人员对各种分析策略的需求不断增加,因此,SYNAPT XS将高性能与极致灵活性相结合。竞争对手的系统大多存在入口选项有限、扫描功能局限性或需要多个平台等问题。与之相比,只有沃特世能够提供全方位的高性能LC-MS解决方案,该方案经过专门设计,能够提供更大的分析选择自由度以支持科学研究。SONAR和HDMSE提供了一套独特的工具包,用于解析复杂混合物完整的分析策略需要结合适当的互补技术才能得到更全面的数据信息。借助SYNAPT XS上基于SONAR和IMS的非数据依赖型采集(DIA)操作模式,分析人员能够利用互补机制,以独一无二的方式解析复杂混合物。两种类型的采集均提高了分析峰容量,提供“清晰明了”的碎片数据,但它们基于不同的分子特性。这提供了一种真正独有的研究工具包,适用于深入解析复杂混合物。离子淌度和CCS测量传统质谱仪基于m/z分离组分。SYNAPT XS还支持在离子淌度实验中,使用分子大小、形状和电荷作为其碰撞截面(CCS)的函数,对分子进行分离。 除离子淌度能提供额外的分离维度、增加峰容量和分析选择性以外,CCS测量还可提供额外的分子标识。离子CCS的测量结果有助于确定离子名称或研究其结构。运用离子淌度技术,显著提高了科学家分析复杂混合物和复杂分子的范围和可信度。CID与ETD碎裂功能TriWave的双碰撞室结构可进行碰撞诱导解离(CID)和/或电子转移解离(ETD)碎裂,且分辨率高、质量测定准确,能够拓展MS/MS检测能力。 高解析度四极杆包括4 KDa、8 KDa或32 KDa质量数范围,适用于从小分子到大分子的MS/MS分析TAP碎裂时间校准平行(TAP)碎裂是T-Wave IMS设计所独有的采集模式。它使用户能够利用TriWave配置,允许将IMS前T-Wave和IMS后T-Wave作为两个单独的碰撞室运行。得到的CID-IMS-CID仪器操作有助于对组分进行超高可信度的结构表征。TAP碎裂与传统MSn或MS/MS技术相比,具备卓越的碎片离子覆盖率、灵敏度和准确性,在构建完整结构方面有着不容置疑的优势。创新点:SYNAPT XS质谱仪具有极致灵活性,可提供更大的选择自由度,能够打破这些壁垒,支持任何应用的科学创新和技术成功。 • 创新技术作为基石,提供最优异的分析性能 • SONAR和HDMSE提供一套独特的工具包,用于解析复杂混合物 • 离子淌度功能大大增加了峰容量和分析选择性 • CCS测量可提高化合物鉴定的准确性 SYNAPT XS高分辨率质谱仪
  • 沃特世高分辨质谱产品功能扩展,仪器性能更进一竿
    Waters Xevo G2-XS QTof、SYNAPT XS和SELECT SERIES Cyclic IMS仪器功能增强,有力推动生物医学和制药研究加速发展沃特世公司(纽约证券交易所代码:WAT)近日公布了用于高分辨质谱产品的全新碎裂选件和成像选件,能够为生物医学、生物制药和食品研究等诸多领域的科学家提供更大的研究自由度,助力其探索肽、蛋白质及蛋白质复合物等复杂物质。沃特世公司先进质谱技术高级总监James Langridge博士表示:“在当前这个特殊时期,科学需挺身而出,证明自身为人类分忧的能力。为了发掘与疾病相关的生物学信息并开发全新疗法,我们通过不断创新,为质谱技术增添了强大功能,助力科学家们在攻克科学难关时有十足的把握获得准确答案。”Waters Cyclic IMS系统新增碎裂选件沃特世的高性能SELECT SERIES Cyclic IMS系统将新增碎裂选件来协助科学家们进行蛋白质、肽、游离寡糖和其他生物分子的结构研究,这一全新的电子捕获解离(ECD)碎裂选件由沃特世与e-MSion, Inc.公司合作开发。ECD是基于电子的碎裂技术,结合Cyclic IMS系统的离子淌度质谱和碰撞诱导解离(CID)功能,可以提高天然蛋白质和特征性肽段的序列覆盖率,在用于大分子蛋白分析时还能发掘出更多的结构信息,这是之前的技术无法实现的。Waters SELECT SERIES Cyclic IMS环形离子淌度质谱多功能的WatersCyclic IMS系统可以扩展离子淌度分离,还能执行IMSn实验(例如,由IMS筛选离子,之后将其碎裂,再通过IMS筛选出特定的碎片离子,然后重复这一过程),获得有关单个分析物的详细结构信息。南丹麦大学生物化学与分子生物学专业VILLUM生物分析科学中心主任Ole N?rregaard Jensen教授表示:“在分离翻译后修饰的肽异构体,以及这之后的ECD MS/MS结构分析中,Waters Cyclic IMS系统表现出众,让我印象深刻。cIMS与ECD MS/MS的结合为生物学、生物医学和药理学领域中修饰肽和大分子蛋白质结构域的详尽结构表征提供了新的选择。”Waters SELECT SERIES Cyclic IMS、SYNAPT XS和Xevo G2-XS飞行时间质谱仪新增DESI XS成像功能这是沃特世首次将新型解吸电喷雾电离DESI XS离子源应用到Waters SELECT SERIES Cyclic IMS、SYNAPT XS和Xevo G2-XS QTof质谱仪上。沃特世公司于2018年从Prosolia, Inc.和普渡研究基金会成功收购了DESI的知识产权,成为了这项技术的供应商。全新Waters DESI XS离子源不仅保留了原DESI离子源的各项性能,而且拥有更高的可靠性和更佳的用户体验,让高品质MS成像技术能够为更多科学家所用。解吸电喷雾电离DESI XSDESI XS与质谱仪相结合,可用于分析多种样品及表面,直观地将小分子药物、代谢物和脂类物质的空间分布可视化。借助DESI XS,科学家们可以进行组织样品成像、筛查细菌菌落中的代谢物、直接从各种表面上获取指纹图谱用于身份鉴定,还可以研究天然产物(如植物的根和块茎)的横截面。作为一款直接电离离子源,DESI XS省去了样品引入质谱仪之前的样品制备和色谱分离步骤,能够为科学家们节省时间、实验室空间和成本。MassLynx质谱软件新增软件接口,连接Skyline软件更便捷沃特世现面向使用MassLynx软件4.2版控制Waters Xevo TQ-S micro和Xevo TQ-XS质谱仪的客户推出全新Skyline软件接口。Skyline是一款免费的开源软件,适用于靶向蛋白组学分析。借助这个接口,科学家可以开发和优化LC-MS/MS多反应监测(MRM)方法,通过特征性肽段方法定量肽或蛋白质酶解物。MassLynx/Skyline接口是一款简便易用的工具,在药物发现研究涉及的生物分析或靶向蛋白质组学实验中,可用于自动优化和微调串联四极杆质谱仪上的高灵敏度MRM分析方法。产品供应配备ECD和DESI XS选件的SELECT SERIES Cyclic IMS系统将于今年第四季度开始发货,已经在使用Cyclic IMS的客户届时也可以在现有仪器上加装新的选件。DESI XS现在可随新款Xevo G2-XS QTof和SYNAPT XS系统提供,还可作为升级选件加装到已经安装的Xevo G2-XS QTof和SYNAPT XS系统中。Waters MassLynx/Skyline接口现已推出,访问Waters Marketplace即可免费下载。关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设15个生产基地,拥有约7,200名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • 药典蛋白质组学分析标准二次公示!增加QC评价标准
    随着质谱技术以及色谱与质谱联用技术的快速发展,蛋白质组学分析技术在未知蛋白质的鉴定、蛋白质结构的解析、靶向蛋白质定量、以及生物技术药物研发、质量控制和体内药代动力学研究方面应用越来越广泛。药典委拟制定《中国药典》蛋白质组学分析方法及应用指导原则,并于2024年2月20日发布第一版公示稿并征求意见。为确保标准的科学性、合理性和适用性,现将拟增订的蛋白质组学分析方法及应用指导原则(第二次)公示征求社会各界意见(详见附件)。公示期自发布之日起一个月。蛋白质组学分析方法及应用指导原则公示稿(第二次).pdf蛋白质组学分析基本流程主要包括:1. 蛋白样品的提取,变性还原,酶解与多肽分离富集;2. 多肽的分析与鉴定;3. 数据分析。在分离和富集中采用凝胶电泳和色谱技术,分析与鉴定中采用质谱、二维凝胶电泳、X射线分析、核磁共振波谱和透射电子显微镜技术。蛋白质组学分析方法及应用指导原则第二次公示稿修改说明 根据 2024 年 2 月蛋白质组学分析方法及应用指导原则第一次公示稿的反馈 意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基 础上修订了部分内容,主要为:一、适用范围1. 将文中“蛋白”修改为“蛋白质”。二、蛋白质组学的分析策略 1. 将“通过质谱分析技术检测到肽指纹图谱进行多肽的鉴定和定量分析” 修改为“通过质谱分析技术检测肽段一级与二级谱图进行多肽的鉴定和定量分 析”。2. 将文中“图谱”修改为“谱图”。三、蛋白质组学分析方法 1.“2.1 质谱技术”增加其他质谱碎裂技术,修订为:“蛋白质组样品经过提 取、分离富集或者进一步变性还原、酶切、多肽分离富集处理后,选择适宜的分 离系统导入离子源离子化,电离生成带电荷离子,离子通过碰撞诱导解离 (Collision induced dissociation, CID)、高能碰撞诱导解离 High energy collision dissociation, HCD)、电子活化解离(Electron activated dissociation,EAD)或其 它适宜的解离技术进行碎片化,后在加速电场的作用下形成离子束进入质量分析 器,通过质量分析器分离和过滤不同质核比的离子,过滤后的离子最终经检测系 统转换为可测量的信号,从而得到质谱图,以获得蛋白质的相关信息”。 2. 将文中“质核比”修改为“质荷比”。 3. 将“数据库检索对肽段碎裂质谱谱图和数据库中的理论序列谱图进行匹 配,实现肽段鉴定”修改为“质谱数据文件的数据库检索对肽段碎裂质谱谱图和 数据库中的蛋白质计算机模拟消化肽段碎裂模式进行匹配,以进行肽段鉴定”。4. 将“肽谱图匹配(peptide spectrum matching,PSM)”,“肽谱图匹配 (peptide-spectrum matches,PSM)”,统一为“肽段谱图匹配 (peptide-spectrum matches, PSMs)”。 5. 将“统计学分析(如 p 值)”修改为“统计学指标(如 p 值)”。 2024 年 6 月 与第一次公示稿比较,修改处加橙色标记 四、蛋白质组学分析的质量控制 1. 在表 1 中增加样品处理中酶解漏切率、酶解位点特异性等 QC 评价指标 及描述;增加色谱分析中峰宽和半峰宽等 QC 评价指标及描述;增加质谱分析中TIC 图等 QC 指标及描述。2. 调整仪器性能参数的描述顺序。将“建议结合仪器的性能进行设置,例 如可将两个参数均设置为 20ppm,也可以将母离子质量误差设置为 10ppm,子离 子质量误差设置为 0.02Da”修改为“建议结合仪器的性能设置质量误差,如将母 离子质量误差设置为 10 ppm,子离子质量误差设置为 0.02 Da,也可将两个参数 均设置为 20 ppm”。3. 将“鉴定的蛋白质应具有至少 70%的覆盖率,即被鉴定的多肽的氨基酸 序列覆盖蛋白质氨基酸序列的百分比,70%的蛋白覆盖率可提高鉴定结果的可信 度和全面性”修改为“蛋白质覆盖率是指被鉴定的多肽的氨基酸序列覆盖蛋白质 氨基酸序列的百分比,70%及以上的蛋白质覆盖率可提高鉴定结果的可信度和全 面性”。
  • 赛默飞精彩亮相第十届乌普萨拉国际会议
    ---ETD技术发明人做技术报告 2013年2月17日,第十届乌普萨拉电子捕获与电子转移裂解国际会议(UPPCON 2013)在北京友谊宾馆召开,由北京生命科学研究所(NIBS)和中科院计算技术研究所合作承办。UPPCON 2013是一个偏重质谱基础研究的国际会议,围绕离子-离子和离子-电子的气相反应的理论、实验、仪器开发和应用,数位最著名的资深的学者介绍他们最新的研究工作。 会议现场 赛默飞展台 赛默飞展板 赛默飞科技ETD技术发明人 John E.P.Syka博士  赛默飞科技ETD技术发明人John E.P. Saka博士的报告题目是《Instrumental Approaches to Improving ETD Spectral Quality》,介绍了ETD技术的最近进展。ETD是基于离子/离子气相化学一种碎裂多肽的新方法,是鉴定蛋白及其翻译后修饰强有力的工具。ETD通过从阴离子自由基到质子肽转移电子的化学能量将肽碎裂,引发多肽骨干分裂,获得蛋白质翻译后修饰的重要序列信息。 LTQ Orbitrap 系统结构  传统的诱导活化裂解(CAD)常用来鉴定蛋白,并试图确定和找到它们修饰的位点,但CAD技术有其固有的缺点。与线性离子阱的结合使用的ETD,可以很容易鉴定用CAD不能鉴定的多肽。  ETD是由电子捕获解离ECD 发展而来,但ECD 仅能在高端的FT ICR 高分辨质谱上使用,而ETD 的诞生,可以较为经济的在低分辨离子阱质谱上实现同样的功能。报告讨论了在质谱上提高ETD产生离子的数量的方法。分别从两个方面,一是最大化进入ETD的离子数量,一是最大化ETD产生的m/z离子的数量。 赛默飞Demo实验室 张伟博士    赛默飞Demo实验室张伟博士做了题为《Method Development of Typical ETD Experiments for Proteomics Applications》的报告。  张博士认为,ETD的发展非常迅速,能获得更丰富的系列碎片。在蛋白质组学等领域,ETD与CID是很好的互补,30%蛋白质组学的用户都在使用这个技术。   ETD产生离子的反应机理 ETD产生离子的反应机理很简单,当电子轰击氮气的时候,会产生一个热电子,热电子很容易被捕获,肽段发生断裂反应。相对于传统的CAD技术, ETD提供了更稳定的方法来定性PTMs,鉴定大型多肽或甚至整个蛋白质。ETD能够将普通翻译后修饰的多肽,或者多个碱性残基的多肽甚至整个蛋白质生成离子。 ETD也可以轻易碎裂含有二硫键的的多肽。 ETD中电子转移裂解原理   ETD达到最佳状态的途径  ETD实验达到最理想的状态,主要通过四个部分的调节,一是对ETD源的调谐和优化,二是建立合适的Tune文件,三是建立分析方法,最后是数据处理、搜库软件。   ETD应用的例子 CID+ETD、CID-NL-ETD、DDDT的磷酸化蛋白质组的分析。从老鼠睾丸体中取出全蛋白,通过胰蛋白酶分解后,用IMAC富集,然后数据处理就用PD Workflow。通过一系列的数据处理之后就得到所有谱图的鉴定结果。CID+ETD、CID-NL-ETD、DDDT三种策略也是很好的互补。 CID+ETD、CID-NL-ETD、DDDT的互补性
  • 让代谢产物再无“漏网之鱼”
    药物代谢是通过多种药物代谢酶进行生物转化,将药物极性增大通过机体的正常系统再排泄至体外。药物通过代谢器官(主要为肝脏)代谢后,药理活性发生变化可能产生毒副作用,因此药物代谢的研究属于药物的安全性评价的重要一环,并且研究药物在体内的代谢路径,可以为潜在新靶点的发现以及进一步的新药开发提供重要线索。Orbitrap IQ-X专为药物代谢量身定制的数据采集流程和Compound Discoverer软件嵌合的药物代谢高分辨数据处理流程强强联合,让科研小伙伴们从此提高生产力,让代谢产物再无“漏网之鱼”,用最酷的仪器,产生最理想的数据,发最顶jian的paper。诚然,要“一网打尽”药物在机体内转化的代谢产物是很有难度的,首先样品基质很复杂,我们要找的代谢物很可能掩埋在一丛丛响应高大的基质峰里,这个对于仪器的要求核心是超高分辨率,可以将代谢物和基质干扰在分辨率这个维度区分开来,但即便区分开了,我们也希望能高效地采集到所有代谢产物的碎裂谱图;另外基质峰那么多,肉眼怎么可能把数据里的全部代谢产物提出来进一步分析呢?因此对于软件的要求是快速地将代谢产物找到且不漏掉。这两方面的难题分别对应硬件和软件,接下来让我们来瞅瞅高大上的“二强”是如何解决掉这些难题的~Orbitrap IQ-X & Compound DiscovererOrbitrap IQ-X专为药物代谢量身定制的数据采集流程:Orbitrap IQ-X的分辨率高达100万(@200m/z),帮助采集到准确度最da化的质谱图,不仅可以使代谢产物离子和背景干扰离子分离得更开,而且同位素的精细分布信息和二级甚至多级测得的高质量精度的碎片离子质荷比可以给出代谢产物的精zhun元素组成并初步推断代谢产物的碎裂丢失结构单元。比如说对于分子量在500左右的含硫代谢物,分辨率至少设置12万,两个A2同位素峰才能达到分离的效果。另外,实测的12万分辨下的A2同位素的分离图,相比于理论12万分辨率下模拟的同位素分离图来说,由于受到基质的干扰和化合物响应强度不够的影响,A2同位素的分离效果通常要差于理论模拟的同位素分离情况,因此我们在实验中需要对五百左右的含硫代谢物进行准确定性时,需要分辨率设置至少12万,如果分子量超过500,需要的分辨率就更高了。另一个让人难以望其项背的功能是首次推出Real-Time Library Search——实时谱图库搜索的智能MS3触发功能,此功能开发的基础在于代谢产物与母药具有结构相似性,结构相似性体现在质谱谱图上,就是代谢产物和母药的碎裂谱图存在共有碎片;开发的目的在于自动化、高效地获取代谢产物的二级甚至多级信息。实时谱图库搜索的智能MS3触发功能直接嵌合在采集方法模版中,方法设置中一键拖拽即可加载这个采集流程。从示意图中可以看到它是实时地将扫描的二级谱图与母药的标准品谱图库进行相似度匹配,对具有共有碎片的二级谱图中独有的碎片离子触发MS3碎裂谱图的采集,MS3触发可精zhun定位可能的药物代谢物的母离子,简化数据分析的同时,也为代谢产物的结构鉴定提供二级谱图甚至多级谱图信息。(点击查看大图)Compound Discoverer软件嵌合的药物代谢高分辨数据处理流程Compound Discoverer(简称CD)软件在药物代谢产物筛查这块功能非常完善,示意图中分别标注了基于质量亏损过滤(filter by mass defect,MDF)的非目标代谢物的查找模式和目标代谢物查找模式。非目标代谢物查找模式中,基于母药和代谢物结构类似,具有共同特征二级碎片离子的特点,对所有MDF过滤查找出的潜在目标代谢物再进行特征碎片离子搜索,匹配上特征碎片的代谢物就会标记class coverage得分,匹配上的二级碎片越多,该化合物的class coverage分数越高。目标代谢物查找模式是基于给定母药的分子式,根据选择的代谢反应库进行代谢物搜索。CD软件写入了常见的一相和二相代谢反应(见示意图),并支持自定义代谢反应的写入,在目标代谢物查找模式中,可对所有查找到的代谢物以及其二级碎片进行代谢反应解析和结构注释。(点击查看大图)另外CD软件3.2版本(及以上版本)支持中性丢失的搜索,CD软件中引入了常见的特定中性丢失片段,也支持自定义中性单元,可以将丢失特定中性碎片的代谢产物快速搜索出来。(点击查看大图)最常见的代谢物鉴定流程以m/z 482.19391为例,示意图如下,首先进行一级同位素模式匹配(图b),绿色标注的为匹配上的同位素峰;其次与母药二级谱图比对进行碎片离子解析,图c为m/z 482.19391的二级原始谱图与母药二级谱图的镜像对比图,图中质谱峰标注为蓝色对应的碎片离子为母药或其碎片可通过代谢反应产生,标注为绿色对应的二级碎片为与母药相同的碎片离子,标注了颜色的碎片离子均会注释结构和相对应的代谢反应,大大有利于代谢物的结构推测。(点击查看大图)小结Orbitrap IQ-X的高分辨性能、独一无er的采集方式配备CD软件的全面代谢物查找模式中,创新代谢产物采集模式,提高代谢产物查找模式的丰富性,全面覆盖代谢产物查找范围,即便在复杂基质中也能轻松应对未知代谢产物的查找和鉴定。如需合作转载本文,请文末留言。
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA,Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制