当前位置: 仪器信息网 > 行业主题 > >

蓝菲光学

仪器信息网蓝菲光学专题为您整合蓝菲光学相关的最新文章,在蓝菲光学专题,您不仅可以免费浏览蓝菲光学的资讯, 同时您还可以浏览蓝菲光学的相关资料、解决方案,参与社区蓝菲光学话题讨论。

蓝菲光学相关的论坛

  • 【讨论】你知道吗,分光还可以这么玩!

    【讨论】你知道吗,分光还可以这么玩!

    看了仪器信息网的一则新闻,不禁感叹,原来,分光还可以这么玩!你知道吗?你身边有人这么用过吗?这下,你不会小瞧紫外,甚至是小瞧可见分光光度计了吧?欢迎讨论。http://ng1.17img.cn/bbsfiles/images/2011/03/201103081826_281526_1645275_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/03/201103081827_281528_1645275_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/03/201103081826_281527_1645275_3.jpg蓝菲光学将向深圳朗恒交付手电筒光谱测量系统  国际知名的手电筒生产厂商深圳朗恒电子有限公司 (Fenix) 于近期购买了一套英国豪迈集团 (HALMA) 子公司 -- 美国蓝菲光学 (Labsphere) 的 FS2-2060 手电筒光谱测量系统。  蓝菲光学 (Labsphere) 的光测量专家参与了最新国际手电筒测量标准 ANSI/NEMA FL1-2009的制定。因此,蓝菲光学 (Labsphere) 开发出来的 FS2-2060拥有非常完善的设计,完全符合这个最新标准。该标准规定了方向性照明灯具如手提式/便携式手电筒、聚光灯和头灯的基本的特性,是手电筒测量要求的最新的书面标准。  蓝菲光学 (Labsphere) FS2 光谱通量测量系统使得在条件、运行时间和光输出测量的测试指导下,对分光辐射、光度和色度特性的精确描述更加容易。此系统对于评价 LED 灯,卤素灯、氙灯和氪气灯光源效率提供了全面解决方案。而且,蓝菲光学 (Labsphere) 配合该系统使用的 FFS 系列前向通量标准灯可以追溯美国 NIST(美国科技局)数据,客户也可以很方便的进行现场校准。  朗恒电子 (Fenix) 的技术副总裁岑亮先生表示,“蓝菲光学 FS2-2060解决了长期困扰我们的几大测量难题,将使得我们的测量数据更加稳定可靠。另外,将来我们的产品测试报告可以很容易地通过国外商家的认可,便于我们进一步扩展国际市场,同时在国内市场取得权威地位,提升企业品牌价值。”

  • 【重磅新闻推出】豪迈集团收购光测量制造商Sphere Optics

    [size=2][b][color=#ff483f][size=3]收购在今年的分析仪器行业来说也是一个热门话题了,从【欧盟有条件批准安捷伦科技收购瓦里安之后,我还是否选择瓦里安的仪器呢?】到【Merck要收购Millipore,是不是要跟ThermoFisher掐起来?】再到现在的【豪迈集团收购光测量制造商Sphere Optics】,短短的半年时间,几家大公司都有了大动作,是强强联手?还是独门垄断?[/size][/color][/b] 英国豪迈集团 (Halma) 收购美国 Sphere Optics 公司——收购的公司将与豪迈集团子公司蓝菲光学 (Labsphere) 合并。上海2010年3月30日电 /美通社亚洲/ -- 英国豪迈集团 (Halma) 总部设在英国,是一家业内领先的安全、健康和传感技术公司。日前,豪迈将美国用户定制光测量技术制造商 Sphere Optics 收归旗下。Sphere Optics 将加入豪迈集团光电业务部,并与光测量行业领先者蓝菲光学 (Labsphere) 合并。[/size]  设在美国新罕布什尔州的 Sphere Optics 专为光测量应用生产和提供精密产品。该公司生产的标准和客户定制辐射测量及光度计量产品可以满足太空、汽车、电子成像、激光二极管、发光二极管、照明、医学成像和光学等行业的特定需求。  蓝菲光学 也设在新罕布什尔州,光测试、测量及光学涂层业务遍及全球。公司产品包括发光二极管、激光器及传统光源光测量系统 成像设备校准用的均匀光源 光谱学附属设备 高漫反射材料及背光显示屏覆层、计算机X线成像以及系统校准。  蓝菲光学 (Labsphere) 总裁 Kevin Chittim 评论认为:“蓝菲光学 (Labsphere) 和 Sphere Optics 这两家行业领先者联合,将会为我们的客户带来高品质的创新产品,世界一流的技术专家和最佳的客户服务。”[url]http://www.instrument.com.cn/news/20100331/040691.shtml[/url]

  • 2024武汉光博会5月16-18日将在中国光谷举办

    [size=18px]光电子信息产业是应用广泛的战略高技术产业,也是我国有条件率先实现突破的高技术产业。作为新质生产力的重要抓手,光电子信息产业正在成为新兴领域标志性产业,推动多个行业创新能力大提升和产业大发展。近年来,随着智能手机、安防、车载、照相投影、智能家居、航空航天等领域的飞速发展,光电子行业市场需求逐年扩大,积极向万亿级产业集群迈进。巨大的发展前景和机遇背后,由全球范围内无数企业的共同汇聚而成,聚力推进光电领域向前发展进步。[/size][size=18px][color=#ff0000]2024年5月16-18日,第二十届“中国光谷”国际光电子博览会暨论坛(简称:武汉光博会)将在中国光谷科技会展中心举办。[/color][/size][size=18px]作为光电领域的盛大集会,300+全球光电子产业链企业将集体亮相本届光博会,更有20+国内外院士、上百位行业专家和企业领袖、超200位青年科学家和产业界代表齐聚一堂,4大主题展区,20+场多元化学术/产业论坛,多场采购对接、技术分享、培训进阶等创新活动,将打造一场覆盖全产业链的交流盛会和合作平台。[/size][size=18px]本届展会自展位预定开放以来,获得了国内众多头部企业的广泛关注和深度参与。截至目前,签约参展的头部企业数量占总展商数量的1/4,如华工科技(000988)、锐科激光(300747)、中国信科、长飞、太辰光(300570)通信、大恒科技(600288)、蓝菲光学、奥谱天成、耐德佳、光迅科技(002281)、戴斯光电、杏林睿光、上海瀚宇等。他们中或是上市企业,或是国家单项冠军,亦或是专精特新“小巨人”......[/size][size=18px]这些实力雄厚的头部企业将携带自家最新科技与创新产品亮相,展示他们在行业中的独特魅力和竞争力。下面,我们来盘点下本届光博会上,哪些国内头部企业即将登场。[/size][size=18px]  华工科技产业股份有限公司[/size][size=18px]  武汉锐科光纤激光技术股份有限公司[/size][size=18px]  中国信息通信科技集团有限公司[/size][size=18px]  长飞光纤光缆股份有限公司[/size][size=18px]  武汉普赛斯电子技术有限公司[/size][size=18px]  武汉光迅科技股份有限公司[/size][size=18px]  武汉长盈通光电股份有限公司[/size][size=18px]  武汉楚星光纤应用技术有限公司[/size][size=18px]  武汉精测电子集团股份有限公司[/size][size=18px]  湖北久之洋红外系统股份有限公司[/size][size=18px]  武汉华日精密激光股份有限公司[/size][size=18px]  武汉锐晶激光芯片技术有限公司[/size][size=18px]  武汉安扬激光技术股份有限公司[/size][size=18px]  武汉睿芯特种光纤有限责任公司[/size][size=18px]  武汉永力睿源科技有限公司[/size][size=18px]  武汉红星杨科技有限公司[/size][size=18px]  武汉华风电子工程有限公司[/size][size=18px]  武汉优光科技有限责任公司[/size][size=18px]  德瑞光学科技有限公司[/size][size=18px]  武汉市艾玻睿光电科技有限公司[/size][size=18px]  湖北长江电气有限公司[/size][size=18px]  度亘激光技术(苏州)有限公司[/size][size=18px]  南京迪威普光电技术股份有限公司[/size][size=18px]  南通瑞森光学股份有限公司[/size][size=18px]  上海贝岭股份有限公司[/size][size=18px]  上海瀚宇光纤通信技术有限公司[/size][size=18px]  蔚海光学仪器(上海)有限公司[/size][size=18px]  上海蓝菲光学仪器有限公司[/size][size=18px]  上海频准激光科技有限公司[/size][size=18px]  巨哥电子科技有限公司[/size][size=18px]  华为技术有限公司[/size][size=18px]  深圳太辰光通信股份有限公司[/size][size=18px]  深圳市宏钢机械设备有限公司[/size][size=18px]  深圳市麓邦技术有限公司[/size][size=18px]  固高伺创驱动技术(深圳)有限公司[/size][size=18px]  东莞鼎企智能自动化科技有限公司[/size][size=18px]  广州金升阳科技有限公司[/size][size=18px]  广州芯德通信科技股份有限公司[/size][size=18px]  广州奥鑫通讯设备有限公司[/size][size=18px]  东莞市索必克精密仪器有限公司[/size][size=18px]  维峰电子(广东)股份有限公司[/size][size=18px]  北京杏林睿光科技有限公司[/size][size=18px]  大恒新纪元科技股份有限公司[/size][size=18px]  北京耐德佳显示技术有限公司[/size][size=18px]  长春新产业光电有限公司[/size][size=18px]  长春博信光电子有限公司[/size][size=18px]  哈尔滨芯明天科技有限公司[/size][size=18px]  福建海创光电技术股份有限公司[/size][size=18px]  [/size][url=https://www.instrument.com.cn/netshow/SH103925/][size=18px][color=#000000]奥谱天成(厦门)光电有限公司[/color][/size][/url][size=18px]  福州威泰思光电科技有限公司[/size][size=18px]  福州恒光光电有限公司[/size][size=18px]  福建戴斯光电科技有限公司[/size][size=18px]  山东华光光电有限公司[/size][size=18px]  日照旭日电子有限公司[/size][size=18px]  安徽泽攸科技有限公司[/size][size=18px]  河北圣昊光电科技有限公司[/size][size=18px]  郑州新威光电科技有限公司[/size][size=18px]  湖南中南鸿思自动化科技有限公司[/size][来源:飞象网][align=right][/align]

  • 【资料】菲涅耳公式与薄膜光学

    菲涅耳公式与薄膜光学[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=63167]菲涅耳公式与薄膜光学[/url]

  • 美国海洋光学面向全国启动“蓝海”经销商招募计划

    因业务高速发展需要,美国海洋光学面向全国启动“蓝海”经销商招募计划。作为微型光纤光谱仪的发明者,我们将提供具有强大市场竞争力的产品,面向环保、生物、制药、分析、照明等等终端市场。海洋光学的专业团队将为合作伙伴提供技术、商务、市场、售后等全程专业服务。如果您的公司具有高校分析仪器分销渠道,或者有光谱仪相关销售、工业集成经验,或者您在环保、生物、制药、分析、照明等应用领域具有客户资源,欢迎您和海洋光学联系,携手大展宏图,共享“蓝海”盛宴。总部位于美国“阳光之州”佛罗里达的海洋光学( www.OceanOpticsChina.cn )是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、照明及显示等领域应用广泛。为了更好地服务于亚洲客户的需求,海洋光学在2006年8月在中国上海成立了海洋光学亚洲分部。

  • 海洋光学再次亮相中国国际科学仪器及实验室装备展览会(CISILE)

    2012年5月15日-17日,海洋光学(Ocean Optics)再次亮相在北京市中国国际博览中心举办的第十届中国国际科学仪器及实验室装备展览会(CISILE)。作为我国规模最大、产品覆盖面最广、专业水平最高的科学仪器展,吸引了来自全球共计约500家厂商参加。 本次展会上,海洋光学带来了2012年全新推出的多款创新光纤光谱仪,包括史上最小、最低价的光纤光谱仪—STS,荧光激发及检测系统--Firefly,近红外至 1150nm 波段性价比之王-- Maya2000Pro VIS/NIR,科研级光谱仪-- QE65Pro,计量级太阳光谱及太阳能模拟器测量系统—RaySphere,全息凹面光栅光谱仪—Torus和创新拉曼光谱仪系统。 海洋光学(Ocean Optics)作为微型光纤光谱设备的发明者,全球领先的光传感解决方案提供商,一直致力于提供、测量和研究光与物质相互作用的先进技术。自1992年以来,在全球范围内共售出了近20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。

  • 赛默飞icp7200光学温度错误

    赛默飞icp7200光学温度错误请问怎么解决[img=,690,1493]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301558352891_578_3866330_3.png[/img]

  • 海洋光学(Ocean Optics)即将亮相光电博览会

    2012年9月6日至9日,为期四天的第十四届中国国际光电博览会(CIOE)将在深圳会展中心隆重召开。全球领先的微型光纤光谱仪的领导者海洋光学(Ocean Optics)将再度亮相此次盛会。在光纤光谱仪领域,海洋光学通过持续的创新,引领技术突破和进步,保持着领先优势。

  • 加工积分球 厂家

    我们单位想给仪器配积分球,除了蓝菲能加工积分球外,还有哪些知名的厂家可以加工积分球?

  • 【原创】LCA CHINA2015 第二届广州国际光学镜头、摄像模组及声学器件展览会

    LCA CHINA2015 第二届广州国际光学镜头、摄像模组及声学器件展览会成像·声学·迈向智能产业浪潮之巅展览时间:2015年9月22-24日 展览地点:广州南丰国际会展中心(琶洲) 组织单位:上海富亚展览有限公司、广州正亚展览有限公司特别支持:台湾光电科技工业协进会、台湾光学工业同业公会合作媒体:我爱研发网、慧眼网、中通手机网、中国镜头配件网、摄像头联盟、OFweek光学网、摄像头论坛、中国光电网、光学联盟网、声学网等官方网站:www.lcachina.com【亚洲光学镜头、摄像模组与声学器件行业第一展】 “第二届广州国际光学镜头、摄像模组及声学器件展览会”简称LCA CHINA (原LENS CHINA),是业界亚洲第一展,继上海首届成功举办之后的第二届巡展活动。大会以广东省产业集群为基础,以强大的中国市场需求为依托,为中国乃至亚太地区打造光学镜头、摄像模组与声学器件产业的技术、资讯、市场及服务的年度最大行业盛会。 随着全球智能手机、平板电脑等为代表的智能终端产品的爆发式增长,也带动光学镜头、摄像模组与声学器件等产业链零组件的高歌猛进。光学镜头、摄像模组与声学器件更作为未来发展趋势的新型人机交互(体感与语音)关键技术部件,已经广泛应用于智能手机、平板电脑、数码相机、智能电视、智能穿戴、投影、汽车、安防监控、智能家居和3D技术等智能终端产品。 LCA CHINA将汇集来自业界的领先企业,全面展示出光学镜头、摄像模组及声学器件产品与相关制造加工技术,为业界搭建一个中国乃至亚洲在设计开发、贸易合作、产品采购和技术交流等最大商贸信息交流平台! 承前启后,LCA CHINA 2015 诚邀新老朋友共谱新华章【行业盛会,共襄盛举】上届展会曾于2014年11月5-7日在上海世贸商城展览馆成功举办,展览面积达5,000平方米,吸引了来自中国(含台湾、香港)、日本、韩国 、美国、德国、新加坡、芬兰、荷兰等十几个国家近100家行业相关制造商参加,参观观众达5152人次。展览会的成功举办,在为业界搭建最佳对接的商贸交流平台的同时,对提高我国摄像模组与声学器件行业的整体制造技术水平,特别对内建式光学镜头、摄像模组、声学器件的市场应用与技术发展起到积极有力的推动作用!【展览范围】⊙ 光学镜头、镜头组件、镜头材料及镜头制造设备与检测仪器;⊙ 摄像模组、摄像模组组件、摄像模组材料及摄像模组制造设备与检测仪器;⊙ 声学器件、声学器件组件、声学器件材料及声学器件制造设备与检测仪器;⊙ 化学品及相关设计;【展位费用】T区(国际展区): USD 2800/9平方米展位/展期   光地(36平方米起租):国际展区 USD 280/平方米/展期A区(国内企业): RMB 9800/9平方米展位/展期   光地(36平方米起租):国内企业 RMB 1000/平方米/展期欲了解更多资讯或预定展位,请洽:上海富亚展览有限公司【LCA CHINA 组织机构】地址:上海市曹安路1855号10楼1017室 电话:021-33518238联系电话:15001823441联系人:秦程E-mail:lcaqin@126.com

  • 防止光学仪器生雾的办法3采用非硫化硅橡胶密封腻子

    防止光学仪器生雾的办法3采用非硫化硅橡胶密封腻子:光学仪器密封性好,对于防霉防雾都有重要作用;非硫化硅橡胶密封腻,是一种非硫化醚硅橡胶,加入填充剂、着色剂、结构控制剂所组成其密封腻高、低温性能显著优于原来的密封蜡,其他指标均不低于密封蜡。

  • 海洋光学将在今年举办的BCEIA上推出全新产品

    美国海洋光学(Ocean Optics)将参加10月23日至26日在北京展览馆举行的第十五届北京分析测试学术报告会暨展览会(简称BCEIA),并推出全新近红外系列及拉曼系列产品。海洋光学的展位为2号馆2137-2138。届时,观众将能看到在中国市场首次亮相的海洋光学全新近红外系列产品AccuNIR2100、AccuNIR2200及AccuNIR3100。这一系列均采用近红外技术,能够快速、在线、准确的进行果品、油品的无损检测。其中,2100与2200分别作为台式与便携式的果品近红外分析仪,可以轻松实现果品的采摘分选、品质评价、质量控制、病害检测、储藏管理和选育。而3100近红外燃油品质分析仪则可以帮助炼油厂、油品研究实验室进行生产过程质量控制、产品质量管理、特种染料检测和实验室研究。海洋光学同时推出的拉曼系列产品采用高通量虚拟狭缝的专利技术(HTVS)的Apex高分辨率与高灵敏度的兼顾,解决了传统光谱仪高分辨率与高灵敏度不能兼顾的历史难题。尤其值得一提的是手持式拉曼设备IDRaman,尽管体型小巧轻便,却功能强大;能快速准确地进行现场检测。BCEIA创办于1985年,每两年举办一次,已成为在中国举办的该领域规模最大和最有影响力的国际性学术和展览会。英国豪迈旗下的Alicat(艾里卡特)、Biochem Fluidics(百柯流体)、 Fiberguide (飞博盖德)、 PermaPure(博纯)及保定兰格也将参加本次展会。

  • 马航你这是肿么了?胆儿也太肥了!

    马航你这是肿么了?胆儿也太肥了!

    全欧洲的民航飞机都绕着乌克兰飞,就你不信邪!!!http://ng1.17img.cn/bbsfiles/images/2014/07/201407180922_507134_2646159_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407180922_507135_2646159_3.jpg

  • 积分球的使用周期

    积分球若使用硫酸钡作为涂层材料,它的使用周期是几年?蓝菲使用Spectralon块体雕刻成的积分球的使用周期是几年?使用聚四氟乙烯涂层材料的积分球的使用周期是几年?哪位大神知道?

  • 汽车工程领域非接触三维光学测量系统技术

    汽车工程领域非接触三维光学测量系统技术

    1-1 系统介绍三维光学非接触式应变位移振动综合测量系统分为三维光学应变测量系统和三维动态变形测量系统两个部分。 http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599282_3024107_3.png http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599283_3024107_3.png 图1 三维应变测量头 图2 动态变形测量头三维光学应变测量系统主要通过数字散斑相关法和双目立体视觉技术结合,追踪物体表面散斑点,实时测量各个变形阶段的散斑图像,通过算法重建三维坐标,最终实现快速、高精度、实时、非接触的三维应变测量。(全场或局部应变)动态变形测量系统基于双目立体视觉技术,采用两个高速摄像机实时采集被测物体变形图像,利用准确识别的标志点(包括编码标志点和非编码标志点)实现立体匹配,重建出物体表面点三维空间坐标,并计算得到物体变形量、三维轨迹姿态等数据。(关键点振动位移)三维光学应变测量系统和动态变形测量系统可以根据实验情况单独使用,也可以合并成综合测量系统使用。1-2与传统方法对比 三维光学测量方法传统测量方法(如位移计、应变片、引伸计等)测量方式非接触式测量,不对被测物体造成干扰与影响。接触式测量,易打滑,不容易固定,试件断裂容易破坏引伸计。测量对象适用于任何材质的对象。测量尺寸范围广,从几毫米到几米。适用于常规尺寸对象测量,特殊材料无法测量,小试样无法测量,大试样需要多贴应变片。测量范围应变测量范围:0.01%~1000%。应变测量范围:应变片通常小于5%,引伸计小于50%。环境要求环境要求低,可在高温、高速、辐射条件下测量。一般适用常规条件测量。测量结果全场多点、多方向测量,同时获得三维坐标、三维位移及应变。单点、单方向测量。三维测量需要多个应变片,效率低。1-3 系统技术参数 指标名称技术指标1. 核心技术工业近景摄影测量、数字图像相关法2. 测量结果三维坐标、全场位移及应变3. 测量幅面支持4mm-4m范围的测量幅面,更多测量幅面可定制4. 测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口5. 相机标定支持任意数目相机的同时标定,支持外部图像标定6. 位移测量精度0.01pixel7. 应变测量范围0.01%-1000%8. 应变测量精度0.005%9. 测量模式兼容二维及三维变形测量10. 实时测量采集图像的同时,实时进行全场应变计算11. 多测头同步测量支持多相机组同步测量,相机数目任意扩展,可同步测量多个区域的变形应变12. 动态变形模块具备圆形标志点动态变形测量功能13. 轨迹姿态测量模块具备刚体物体运动轨迹姿态测量功能14. 试验机接口接通后实时同步采集试验机的力、位移等信号15. FLC接口配合杯突试验机进行Nakazima试验,可以测得材料的FLC成形极限曲线16. 显微应变测量配合双目体式显微镜,可实现微小型物体的三维全场变形应变检测17. 64位软件软件采用64位计算,速度更快18. 系统兼容性支持32位和64位Windows操作系统2 系统应用于汽车振动强度实验室2-1 振动强度实验室介绍振动强度试验室,主要开展对汽车整车,总成,零部件,或者材料的强度,耐久性,疲劳特性,以及可靠性等问题的研究,试验,考核,或者评估。三维应变位移振动综合测量系统在振动强度试验室里具备以下的功能:(1)采集相关的振动、位移和变形数据;(2)作为前期信号分析的软件和硬件;(3)进行必要的试验控制和试验后期数据分析系统。2-2 汽车振动测量常规配合使用设备振动模拟实验系统:电动式振动试验台,机械式试验台,电液伺服试验机系统,道路模拟试验台,吊车(一般5~10吨、小型3吨以下、大型10吨以上)等。振动数据采集传统产品:传感器、应变片、放大器等。2-3系统在汽车振动实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:振动模拟实验系统。实现功能1—耐振性能试验。测试车辆或者零部件系统的减振,耐振性能。模拟振动环境,通过非接触的光学方法,测量振动和位移,从而对车辆的振动性能进行分析。应用包括:发动机振动模态分析,车门振动实验,座椅振动测量分析等。实现功能2—耐久可靠试验。考核车辆和零部件的强度、抗疲劳特性和可靠性指标。应用包括:车身结构强度实验(测量区域振动或者关键点变形),汽车座椅分级加载实验,汽车轮胎受力变形实验等。3 系统应用于汽车材料实验室3-1 汽车材料实验室介绍汽车材料试验室,主要开展对汽车新型材料及相关基础性工作的研究和探索。三维应变位移振动综合测量系统在材料试验室里一般有以下的基本功能:(1)汽车材料常规力学性能方面的测试,得到各种工况下的应变变形;(2)汽车材料焊接的应变变化情况测量;(3)板料成形应变及板料成形极限曲线测量。3-2 汽车材料试验常规配合使用设备力学实验系统:高温蠕变试验机、扭转试验机、疲劳试验机、杯突试验机等。焊接相关设备:焊枪、焊机等。3-3 系统在汽车材料实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:力学实验系统、焊接相关设备。实现功能1—材料应变变形测量实验。通过对材料进行常规的拉压弯等实验,进行相关材料的力学性能测定。应用包括:金属材料拉伸实验,复合材料大变形测量,碳纤维材料实验等。实现功能2—汽车焊接相关试验。考核汽车相关焊接实验的应变和变形。应用包括:焊接全场应变测量,高温焊接变形测量等。实现功能3—板料成形相关实验。板料成形过程中的全场应变变形测量和板料成形极限曲线(配合杯突试验机)。应用包括:板料成形应变实验、板料成形极限曲线测定实验。4 系统在汽车工程研究方面典型实验案例展示4-

  • 一种光学非接触式的变形、位移量的测量分析系统

    http://ng1.17img.cn/bbsfiles/images/2017/04/201704240930_01_2325_3.pngDIC 一种光学非接触式的变形、位移量的测量分析系统一种光学非接触式的变形、位移量的测量分析系统采用数字图像相关方法DIC(Digital Image Correlation),根据物体表面随机分布的散斑场在变形前后的统计相关性来确定物体的变形参考子区与目标子区的位置差包含位移分量,形状差别包含应变分量采用高速相机,实时采集物体各个变形阶段的散斑图像对位移场数据进行平滑处理和变形信息的可视化分析计算出全场变形和位移量,用于分析、计算、记录变形数据结合双目立体视觉技术可构建三维变形、位移量采集系统根据相机的输入,可在软件中设置成多组虚拟引伸计模块化设计,涵盖从简单的单相机系统到带振动台的三维全场系统可广泛地使用于材料测试、有限元验证、部件测试、振动等工程应用中多线程并行计算,使测量速度最优化增强的图形用户界面,带有直观的控件。OPENGL加速技术使视频显示更高效系统标定简单,坐标系可任意移动可直接使用自然、未处理的表面(如木材、织物、材料结构及不平整表面…)可定制化输出格式兼容众多的测试台架,如利用Doli控制器的设备同步数据记录与计算视频频闪功能(与周期性情况同步)RT——在线记录和图像数据采集ENTER——数据处理功能PLUS——具有更多功能的附加模块TEST RIG——用于试验机控制的模块FULLFIELD(DIC)——全场变形分析的附加模块VIBROGRAPHY(FFT)——带振动分析功能的附加模块RT模块记录不同相机的数据,支持 AVT / Prosilica / Teledyne / Videology / Webcam / Cameralink / Basler / PoinGray / Matrix Vision查看记录的数据(并行查看不同的相机)外部同步及捕捉模式支持DSLR相机(PTP协议)ROI/AOI(高速低分辨率)聚焦和瞄准工具通过模拟量、RS232和TCP/IP输出通过RS232和TCP/IP,利用应用编程接口(API)实现远程控制2组点探测器在线计算1组延伸线在线计算标识点探测宽度检测和测量基于网格的自动坐标系定义冻结延伸线端点功能图像观察功能(反转、缩放、过/欠曝光指示、快速浏览、旋转)工程应力-工程应变评估真实应力-真实应变评估引伸计标定操作员使用的简洁版用户界面ENTER模块离线计算支持多相机(RT+ENTER)输入图像和相机数据交互式数据浏览数据分类和求均值功能(批处理测),测量管理(预设置/书签)无限制的虚拟测量工具——延伸线、点探测、应变片基于参考长度的坐标系定义自定义符号编辑器基于已记录网格的自动坐标系定义标识点探测宽度检测和测量冻结延伸线端点功能图像观察功能(反转、缩放、过/欠曝光指示、快速浏览、旋转)实时数据过滤PLUS模块(需ENTER或RT模块)支持多相机(RT+ENTER)支持高速相机(RT+ENTER)缝合模式(为获得视场外图像而使用多相机时)无限制的虚拟测量工具——延伸线、点探测、应变片颈缩测量力测量探针链粒子图像速度场(PIV——particle image velocity)基于参考长度的坐标系定义自定义符号编辑器基于CAD的高级坐标系定义存储为CSV格式,自由编辑相机镜头失真修正试样的二维码标识坐标系偏移刚性运动功能TEST RIG模块(需ENTER模块)完全支持Doli/或其他控制器的通信协议测量模式的预设置(单轴、弯曲、自定义…)试验机控制面板测试台架的模拟/数字输入杨氏模量、泊松比极限抗拉强度、屈服强度基于测量数据,可计算其他材料特性VIBROGRAPHY(FFT)模块(2D需要ENTER及FULLFIELD模块,3D需要ENTER、3D视频模块及FULLFIELD模块)谱和倍频分析视频立体视觉功能(带同步盒)数据信号处理——加窗2D/3D工作变形分析(ODS)信号特征(功率谱密度计算…)子集扫频分析零相位点选择幅值和相位图

  • 海洋光学即将亮相第十六届中国国际激光、光电子及光电显示产品展览会(ILOPE)

    美国海洋光学将于2011年10月26日至28日亮相第十六届中国国际激光、光电子及光电显示产品展览会,展示其运用最前沿的光谱技术在光电领域的领先优势。欢迎新老客户、各位观众莅临参观。届时还有4G精美U盘和精美纪念品在观众互动环节发放,敬请关注。展会时间:2011年10月26日—28日展会地址:中国国际展览中心(三元桥)展位号: 1号馆A厅1A-8 展示方案:激光和近红外测量方案;反射测量方案;紫外可见反射、透射测量方案;等离子体解决方案、太阳能模拟器检测方案、LED检测方案等。更多详情,请登录www.oceanopticschina.cnILOPE作为中国最具权威的顶级光电产品综合大展之一,旨在展示先进光电技术产品,推动中国光电产业的发展,增进中国光电企业与世界企业经济贸易交往,为海外公司了解及进入中国光电市场提供一个平台,促进中国光电产、学、研一体化的发展。 关于海洋光学(Ocean Optics):总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛。

  • 【资料】光学名词祥解大全!

    光学系统的名词解释,希望对各位有用! aperture stop( 孔径阑) - 限制进入光学系统之光束大小所使用的光阑。 astigmatism( 像散) - 一个离轴点光源所发出之光线过透镜系统后, 子午焦点与弧矢焦点不在同一个位置上。 marginal ray( 边缘光束) - 由轴上物点发出且通过入射瞳孔边缘的光线。 chief ray( 主光束) - 由离轴物点斜向入射至系统且通过孔径阑中心的光线。 chromatic aberration( 色像差)- 不同波长的光在相同介质中有不的折射率, 所以轴上焦点位置不同, 因而造成色像差。 coma( 慧差) - 当一离轴光束斜向入射至透镜系统,经过孔径边缘所成之像高与经过孔径中心所成之像高不同而形成的像差。 distortion( 畸变)- 像在离轴及轴上的放大率不同而造成, 分为筒状畸变及枕状畸变两种形式。 entrance pupil( 入射瞳孔) - 由轴上物点发出的光线。经过孔径阑前的组件而形成的孔径阑之像, 亦即由轴上物点的位置去看孔径阑所成的像。 exit pupil( 出射瞳孔)- 由轴上像点发出的光线, 经过孔径阑后面的组件而形成的孔径阑之像, 亦即由像平面轴上的位置看孔径阑所成的的像。 field curvature( 场曲) - 所有在物平面上的点经过光学系统后会在像空间形成像点, 这些像点所形成的像面若为曲面, 则此系统有场曲。 field of view( 视场、视角)- 物空间中, 在某一距离光学系统所能接受的最大物体尺寸, 此量值以角度为单位。 f-number( 焦数) - 有效焦距除以入射瞳孔直径的比值, 其定义式如下: 有时候f-number也称为透镜的速度, 4 f 的速度是2 f 速度的两倍。 meridional plane( 子午平面) - 在一个轴对称系统中,包含主光线与光轴的平面。 numerical aperture( 数值孔径) - 折射率乘以孔径边缘至物面( 像面) 中心的半夹角之正弦值,其值为两倍的焦数之倒数。数ˋ 值孔径有物面数值孔径与像面数值孔径两种。 sagittal plan( 弧矢平面、纬平面) - 包含主光线, 且与子午平面正交的平面。 sagittal ray( 弧矢光束、纬光束) - 所有由物点出发而且在弧矢平面上的斜光线。 ray-intercept curve( 光线交切曲线) - 子午光线截在像平面上的高度相对于经过透镜系统后发出之光线的斜率之关系图 或是定义为经过透镜系统后的光线位移相对于孔径坐标的图。此两种定义法可依使用者需要选择,在OSLO 中采用后者。 spherical aberration( 球面像差)- 近轴光束与离轴光束在轴上的焦点位置不同而产生。 vignetting( 渐晕、光晕)-离轴越远( 越接近最大视场) 的光线经过光学系统的有效孔径阑越小,所以越离轴的光线在离轴的像面上的光强度就越弱,而形成影像由中心轴向离轴晕开。 孔径光阑: 限制进入光学系统的光束大小所使用的光阑。 ※球差:近轴光束与离轴光束在轴上的焦点位置不同而产生的像差。 ※像散:一个离轴点光源所发出光线经过系统后,子午焦点与弧矢焦点不在同一位置上。 ※边缘光束:由轴上物点发出且通过入瞳边缘的光线。

  • 海洋光学 出席第23届中国国际测量控制与仪器仪表展览会

    海洋光学 出席第23届中国国际测量控制与仪器仪表展览会

    海洋光学 出席第23届中国国际测量控制与仪器仪表展览会,展位号C150,欢迎莅临。主题:在线物质成分分析传感器。展品内容有:在线原位反射膜厚测量系统,拉曼在线分析系统,玻璃透射率颜色测量系统,便携式拉曼光谱仪等。http://ng1.17img.cn/bbsfiles/images/2012/08/201208211343_384988_2541972_3.jpg

  • 热烈祝贺海洋光学成功竞拍仪器信息网首页广告位

    11月3日上午10点,海洋光学参加了“仪器信息网首页2012年度黄金广告位在线拍卖会”,并成功拍下首页右侧的专栏广告位,与PE、安捷伦、赛默飞、岛津并列成为五家专栏厂商。感谢大家的支持!作为微型光纤光谱仪的发明者,海洋光学将一如既往地为大家带来更多更新更前沿的光谱应用方案。热切期待明年1月1日在仪器信息网首页与大家的见面。关于海洋光学:总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。http://d1.ofweek.com/www/delivery/ai.php?filename=ofweek-728-90.jpg&contenttype=jpeg

  • 光学名词中英文对照

    光圈(Iris):位于摄像机镜头内部的、可以调节的光学机械性阑孔,可用来控制通过镜头的光线的多少。   可变光圈(Iris diaphragm):镜头内部用来控制阑孔大小的机械装置。或指用来打开或关闭镜头阑孔,从而调节镜头的f-stop的装置。  隔离放大器(Isolation amplifier):输入和输出电路经过特殊设计,可以避免两者互相影响的放大器。  抖动(现象)(Jitter):由于机械干扰或电源电压、元器件特性等的变化所引起的信号不稳定,信号的不稳定可能是振幅上的或是相位上的,也可能两者兼有。  滞后(Lag):电视拾像管中,去除励磁后,两帧或多帧图像的电荷映像的短暂停留。  激光(Laser):Light amplification by stimulated emission of radiation 的缩写。激光器是一个光学谐振腔,两端装有平面镜或球面镜,中间装有光放大材料。它使用光学或电学的方法激发其中的材料,使材料的原子受激发产生一束亮光,亮光透过其一端的镜面发射出来。输出的光束是高度单色(纯色)和非扩散性的。  前缘(Leading edge):脉冲升高部分的主部,其位置一般位于总振幅的10-90%处。  镜头(Lens):由一片或多片弧面(通常为球面)光学玻璃组成的透明光学部件。它可以用来聚集或分散被摄物发出的光,从而生成被摄物的实像或虚像。  菲涅耳透镜(fresnel Lens):被切割成窄环状再打平的镜头。镜头上有一圈圈的窄同心圆或梯级,它们可以将(各个方向射来的)光线汇聚成图像。  镜头速度(Lens speed / f-number):镜头的透光能力。F值是焦距(FL)与镜头直径的比值。比较快的镜头的值可能是f / 1.4,而f / 8的镜头其速度就相当低了。f值越大,镜头的速度越慢。  透镜系统(Lens system):指两个或多个透镜的有机组合。光(Light):眼睛可以看到的电磁射线,波长在400nm(蓝色)到750 nm(红色)的范围内。  有限分辨率(Limiting resolution):分辨率的度量方法,通常用每幅电视图像中测试图样上可分辨的电视线的条数来表示。  线路放大器(Line amplifier):用于驱动传输线的音频或视频信号放大器。安装在主电缆的中间位置,用于减少损耗的放大器(通常为宽带型的)。  线性(Linearity):输出信号随输入信号的变化而直接或按比例变化的现象。  线对(Line pairs):定义电视清晰度所用的术语。一个电视线对一条黑线和一条白线组成。525线NTSC制的画面中共有485个线对。  负载(load):承受设备所输出的能量的部件。  损耗(loss):信号电平或强度的减少,通常用分贝表示。也指没有实际用途的功率耗散。 低频失真(Low-frequency disortion):低频率下发生的失真现象。电视系统中一般指15.75kHz以下的频率。  低照度摄像机,低照度电视(Low light level/LLL camera and television):可以在极其微弱的光照下工作的闭路电视摄像机。可以在低于正常视觉响应的光照情况下工作的闭路电视系统。  流明(Lumen / Im):光通量的单位。相当于一烛光的均匀点辐射源穿过一个立体角(球面)的通量,也相当于一烛光的均匀点辐射源等距的所有点所在的表面上的光通量。  照度(Luminance):从同一方向看,在给定方向上的任何表面的每单位投影面积上的光照强度(光度)。单位为英尺朗伯。 亮度信号(Luminance signal):NTSC彩色电视信号中涉及场景照度或亮度的那部分信号。  光通量(Luminous flux): 光通过的时率。  勒克斯(Lux):国际单位制中的照明单位,其中涉及到的长度单位为米。1勒克斯等于每平方米1流明。  磁聚焦(Magnetic focusing):利用磁场作用来使电子束会聚的方法。  放大倍数(Magnification):表示被摄物与图像之间的尺寸差异的数字。通常以焦距为1英寸镜头和靶面尺寸为1英寸的传感器为基准(放大倍数=M=1)。焦距为2英寸的镜头的放大倍数为M=2。  微分增益(Differential gain):当载有 3.58 -Mhz 彩色次载波的图像信号从消隐电平变成白色电平时,整个电路中彩色次载波振幅的变化。微分增益通常用dB或百分比来计量。  微分相位(Differential phase):当载有3.58-Mhz 彩色次载波的图像信号从消隐电平变成白色电平时,整个电路中彩色次载波相位的变化。微分相位通常以度为单位来计量。  屈光度(Diopter):描述镜头光学功率的术语。它的值是以米为单位的焦距值的倒数。例如,焦距为25cm(0.25cm)的透镜的光学功率为 4个屈光度。  电气失真(Distortion electrical):某信号与原信号相比时,出现的不希望发生的波形变化。 光学失真(Distortion,optical):用来描述图像不是物体的准确复制的一般术语。失真有多种不同的类型。  点条状信号发生器( Dot bar generator):产生特殊的点条信号的设备。一般用来测量电视摄像机和视频监视器的扫描线性和几何失真。   驱动脉冲( Drive pulses ):指同步脉冲和消隐脉冲。  动态范围( Dynamic range ):在电视系统中,指摄像机的实用照度范围。在这种情况下,被摄视场中同时存在强光区和阴影区,而所有细节均可看清。数量上一般以允许的最大照度水平与最小照度水平的电压差或功率差来衡量。  回波(Echo): 信号传输过程中从一个或多个点反射回来的信号。与原信号相比,具有明显的幅度和时间上的差异。回波可以比原信号超前或拖后,造成反射波或"重影"现象。  EIA接口标准(EIA interface):由电子工业协会的(EIA)规定的一系列标准信号特性,包括持续时间、波形、电压和电流等。  EIA同步信号(EIA sync signal):在电子工业协会的RS-170(单色图像)标准,RS-170A(彩色图像)标准、RS-312、RS330、RS-420及续后文件中规定的,用于使扫描同步的信号。  电磁聚集(Electromagnetic focusing):使用电子透镜系统中的一个或多少偏转线圈,通过电磁场的作用,将阴极射线束会聚成一点的过程。

  • 光学显微镜简史

    早在公元前一世纪,大家就已发现颠末球形通明物体去调查细小物体时,可以使其扩大成像。后来逐步对球形玻璃外表能使物体扩大成像的规则有了知道。 1590年,荷兰和意大利的眼镜制作者现已造出相似显微镜的扩大仪器。1610年前后,意大利的伽利略和德国的开普勒在研讨望远镜的一起,改动物镜和目镜之间的间隔,得出合理的显微镜光路布局,其时的光学工匠遂纷繁从事显微镜的制作、推行和改善。   17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的开展作出了杰出的奉献。1665年前后,胡克在显微镜中参加粗动和微动调焦组织、照明体系和承载标本片的工作台。这些部件颠末不断改善,成为现代显微镜的根本组成部分。 1673~1677年时间,列文胡抑制成单组元扩大镜式的高倍显微镜,其间九台保管至今。胡克和列文胡克使用便宜的显微镜,在动、植物机体微观布局的研讨方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的呈现,使显微镜调查微细布局的才能大为进步。1827年阿米奇第一个选用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制作和显微调查技能的迅速开展,并为19世纪后半叶包罗科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物供给了有力的东西。 在显微镜自身布局开展的一起,显微调查技能也在不断创新:1850年呈现了偏光显微术;1893年呈现了干与显微术;1935年荷兰物理学家泽尔尼克发明了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜仅仅光学元件和精密机械元件的组合,它以人眼作为接收器来调查扩大的像。后来在显微镜中参加了拍摄设备,以感光胶片作为可以记载和存储的接收器。现代又遍及选用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完好的图画信息收集和处理体系。

  • 【我们不一YOUNG】还原糖的测定--蓝—爱农(Lane—Eynon)法(菲林法)

    [align=center][font=DengXian]还原糖的测定[/font]--[font=DengXian]蓝—爱农([/font]Lane[font=DengXian]—[/font]Eynon)[font=DengXian]法(菲林法)[/font][/align][font=DengXian]糖分的还原性的测定方法叫还原糖法。[/font][font=DengXian]蓝—爱农([/font]Lane[font=DengXian]—[/font]Eynon)[font=DengXian]法(菲林法)[/font][font=DengXian]比直接法的试剂中少亚铁氰化钾,终点为红色。[/font] [font=DengXian]适于[/font]0.2%[font=DengXian]的还原糖含量。[/font][font=DengXian]斐林试剂甲液([/font]CuSO4[font=DengXian][/font]5H2O[font=DengXian])[/font][font=DengXian]斐林试剂乙液(酒石酸钾钠[/font]+NaOH[font=DengXian])[/font][font=DengXian]甲、乙混合→酒石酸钾钠合铜[/font] [font=DengXian]酒石酸钾钠合铜[/font]+[font=DengXian]葡萄糖[/font] [font=DengXian]→葡萄糖酸[/font] +Cu2O[font=DengXian]↓(红棕)[/font][font=DengXian]终点的确定:[/font] [font=DengXian]葡萄糖[/font]+[font=DengXian]亚甲基蓝(氧化态)→亚甲基蓝(还原态)[/font] [font=DengXian]过量[/font] [font=DengXian]兰色[/font] [font=DengXian]无色[/font] [font=DengXian](兰色消失)[/font] [font=DengXian]终点时的颜色为:兰色消失了的红棕色[/font]2[font=DengXian]、测定[/font][font=DengXian]①预测[/font] [font=DengXian]准确吸取斐林试剂甲液[/font]5.00mL[font=DengXian]、乙液[/font]5.00mL[font=DengXian]→锥形瓶中,△至沸腾,再加入亚甲基蓝指示剂,在加热的条件下,用样液滴至蓝色褪尽。(先快后慢,要求很快达到终点,因为亚甲基蓝易被空气氧化为蓝色,且要求在加热的情况下以除去空气)[/font][font=DengXian]②测定[/font] [font=DengXian]甲液[/font]5mL[font=DengXian]、乙液[/font]5mL[font=DengXian]→锥形瓶中,加入比上述预测量少[/font]0.5[font=DengXian]~[/font]1ml[font=DengXian]样液在[/font]2min[font=DengXian]内沸腾,维持沸腾[/font]2min[font=DengXian],加入[/font]3[font=DengXian]滴亚甲基蓝指示剂,再在[/font]3min[font=DengXian]内滴定至蓝色褪尽。[/font]3[font=DengXian]、计算[/font] F[font=DengXian]还原糖[/font] % = --------------------- [font=DengXian]×[/font]100 ( V1/V )× mm--[font=DengXian]样品质量,[/font]mg[font=DengXian];[/font]V1--[font=DengXian]滴定量[/font]mL[font=DengXian];[/font]V--[font=DengXian]样液总[/font]mL[font=DengXian];[/font]F--[font=DengXian]还原糖因素,[/font]10mL[font=DengXian]费林试剂,相当的还原糖量[/font]mgF[font=DengXian]的求得有两种方法:[/font]A[font=DengXian]、用标准还原糖液用上面同样方法标定[/font]10ml[font=DengXian]费林试剂求得。[/font]B[font=DengXian]、查蓝—爱农法专用“还原糖因数表”附表[/font][font=DengXian]例[/font] [font=DengXian]若[/font]V1=26 [font=DengXian]则[/font]F=49.9

  • 光学仪器起雾的危害

    不管何种原因形成的雾,由于雾滴以曲率半径极小的球形分布于光学零件表面上、使入射光线产生散射现象;除了降低仪器的有效透光率外,并使成象质量差影响观测。有的光学零件因长期起雾,被腐蚀的玻璃表面形成很多微孔,严重的会使玻璃零件报废。光学仪器起雾不仅在我国东南地区严重存在,就是较干燥的地区,由于温差变化,也会起雾,它比光学仪器生霉的影响范围更大,而且更难防止。

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 光学滤光片质量好坏直接影响仪器的灵敏度高低

    光学滤光片的质量是好是坏,会直接去影响仪器的灵敏度高低,而滤光片的质量又是以其波长精度及其峰值指标来衡量的,因此滤光片波长精度及峰值是衡量光学仪器的重要参数之一。这在厂家的仪器说明书中虽未曾提及,但在仪器的实际使用过程中,我们发现对滤光片波长精度和峰值进行检查是重要的也是必要的,通过检查可以发现滤光片的波长标定值与实测值的符合程度,可以发现滤光片的质量是否符合要求。平常生活中我们会看到各种各样颜色的物体,滤光片的颜色也有红、橙、黄、绿、蓝、紫等多种颜色。那么光学滤光片的颜色是由什么来决定的呢?我们需要先了解一下光的原理。光在透明和不透明的物体上的照射原理是不同的。1.不透明物体的颜色是由它反射的色光决定的桌子、墙壁等不透明物体的颜色是由它反射的色光决定的,而不透明物体主要是反射与它本身相同颜色的色光。比如让白光照射到蓝色的物体上,白光中的红、橙、黄、绿、蓝、靛、紫7种色光都会被蓝色物体吸收掉,只有蓝光不能被吸收而被反射回来,这样我们就看到该物体是蓝色的。但若用红光照射到蓝色物体上,由于红光全部被蓝色物体吸收,我们看不到反射回来的光,所以该蓝色物体呈黑色。其他不透明物体的颜色也是如此。另外,白色不透明物体能反射所有色光,因而不管什么颜色的光射到白色不透明物体上,我们就看到它呈什么颜色。而黑色不透明物体几乎不反射任何色光,因而任何色光射到它表面上,我们都会因为看不到反射色光而呈黑色。2.透明物体的颜色是由它透过的色光决定的玻璃等透明物体的颜色是由它本身透过的色光决定的,而透明物体能透过与它自身相同的色光。比如让白光通过蓝色玻璃,除蓝光外其他色光均不能顺利地通过玻璃,所以我们见到的玻璃就会呈现出蓝色。若透明物体能让所有的色光通过,那么该透明物体看起来就会是无色的。

  • 国仪量子(合肥)技术有限公司今日正在招聘,光学工程师,坐标,高薪寻找不一样的你!

    [b]职位名称:[/b]光学工程师[b]职位描述/要求:[/b]岗位职责:1、负责高端科学仪器中光路系统的设计和搭建;2、负责光学系统的原理验证和集成化设计、安装、调试;3、负责光学元件的选型、技术评估及测试;4、参与光学相关的机械结构设计;5、负责整理相关技术文档。任职要求:1、有搭建精密光机系统经验,熟悉常用的光学检测设备(ZYGO,分光光度计,自准直仪,焦距仪,光谱仪,光束质量分析仪,功率计等);2、熟练使用Zemax等光学仿真,会使用Solidworks软件或其它三维制图软件完成元件和系统3D模型,并能出具加工图纸;3、具有扎实的物理光学和几何光学知识,能独立完成光学系统方案设计;4、具有光路集成化开发经验,有MEMS工艺经验者优先;5、有量子光学、量子信息、原子物理背景者优先;6、有显微镜方面的设计、调试经验者优先。[b]公司介绍:[/b] 国仪量子(合肥)技术有限公司是一家以量子精密测量为核心技术的高新技术企业,致力于为全球范围内高校、科研院所和企事业等单位提供核心关键器件、高端仪器装备、核心技术解决方案等产品和服务。公司源于中国科学技术大学中科院微观磁共振重点实验室,实验室在大型科学仪器、关键核心器件的研制领域深耕十余年,多项技术、产品突破国际封锁和禁运,并获得“中国科学十大进展”、“国家自然科学二等奖”、“中国分析测试协...[url=https://www.instrument.com.cn/job/user/job/position/73030]查看全部[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制