当前位置: 仪器信息网 > 行业主题 > >

颗粒表征

仪器信息网颗粒表征专题为您整合颗粒表征相关的最新文章,在颗粒表征专题,您不仅可以免费浏览颗粒表征的资讯, 同时您还可以浏览颗粒表征的相关资料、解决方案,参与社区颗粒表征话题讨论。

颗粒表征相关的论坛

  • 单晶颗粒如何表征

    小弟目前在做粉末冶金材料,从制粉到最终烧结成型全过程都要自己完成。我制粉的方式是将铸态合金锭(铸态下晶粒尺寸基本均在200μm以上)通过机(手)械(工)研磨的方式成粉,再筛分为不同的粒度范围(在50-200μm之间)。我现在想知道,我制备的粉末是否为单晶颗粒,或者说当粉末粒度小于某一尺寸范围后,即可说明它们基本为单晶颗粒。之前类似的文献中尚无对粉末是否为单晶颗粒进行讨论,不知道应该用哪种测试手段进行分析表征,烦请各位大神不吝赐教!

  • 纳米颗粒追踪表征的工作原理

    [b]纳米颗粒追踪表征的工作原理:分析原理:[/b]纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。

  • 【转帖】颗粒表征确保碾压工艺的稳定性

    在碾压过程中,颗粒分布是影响下游工艺性能和最终片剂产品质量的最为关键的参数之一。在碾压过程中使用颗粒表征,可将工艺控制参数与产品质量直接关联在一起。 使用 FBRM 颗粒表征优化碾压工艺在碾压过程中,颗粒分布是影响下游工艺性能和产品质量的最为关键的参数之一。颗粒分布会影响下列操作单元: (图) 利用碾压工艺获得稳定的后处理压片,从而保证溶出度均一和含量均匀。一个成功的工艺能生产出粒度、密度和孔隙度控制均匀的颗粒。但是,在制粒放大生产过程中由于原材料的变化或工艺的动态变化将导致不均匀性。与 Patheon 的合作证明了 FBRM® 在线具有了解设计空间和优化一系列碾压运行单元的能力,同时具有不同的垂直/水平进料速度、碾压力和粉碎速度。确定颗粒分布特征可使用户能够直接将工艺控制参数与产品质量关联在一起。通过设计稳定可靠的工艺,即能实现从干法制粒到压片一系列稳定的工艺处理。实验设计进行了 19 批次的实验设计以了解工艺参数对下游产品质量的影响。使用 FBRM® 技术来测量和控制颗粒粒数和粒度变化。将 FBRM® 探头在线3插入 Comil 下游收集漏斗,当粉末流过探针尖端时,由于压缩颗粒系统中的内嵌4 或在线5测量,可获得具有代表性的测量结果,样品量的增加会提高细小颗粒高灵敏度。在此情况下更需要使用在线测量方法6。在下游取 10 克粉末样品,并分散于 100 克矿物油中。由于浓缩了取样量,测量具有代表性。中位数(第 50 个百分位)统计中的样品重复率小于 1%。 结果碾压和粉碎后,预混分布比分布具有更少的粗颗粒(图 1)。试验 10、12、13 和 19 具有最高数量的细颗粒、高孔隙度和密度。它们也具有 4000 磅/英寸的碾压力和 1000 rpm 的粉碎速度。细粉总数是下游流动特性和可能的溶出度不均一的早期指征。试验 6 和 11 具有最高数量的粗颗粒、低孔隙度和密度。它们亦具有 8000 磅/英寸的碾压力和 2000 rpm 的粉碎速度。 统计结果对上游碾压力和粉碎速度参数的压缩孔隙度和变化而言,颗粒分布平均值、每秒钟的细颗粒 (0-50μm) 计数和粗颗粒 (200-2000μm) 数量是高灵敏度的早期指征。平均粒度和每秒钟计数的细颗粒、粗颗粒数量亦是下游流程和溶解度或崩解时限的早期指征。通常,碾压力显著影响到粉碎密度、孔隙度挤压和粉碎挤压粒径。 平均值与孔隙度相关性的关系通过实时测量颗粒粒径,可以将碾压工艺条件控制在特定的平均粒径的目标上。由于平均粒径与颗粒孔隙度相关,实时控制就能确保均匀性。 结论碾压是一种复杂工艺,存在粉碎和聚集相互竞争的机制。采用 FBRM®,可以量化关键工艺参数的影响变化并将此与粉碎参数关联在一起。通过确定这些影响,可使用工具 (FBRM®) 来减少放大时间,充分减少扰动以及可能出现的问题。在该研究中,高碾压力和粉碎速度能获得低孔隙率、低密度的粗颗粒,而低碾压力和粉碎速度导致出现高孔隙率、高密度和高数量的细颗粒。在线颗粒表征亦用于确定过筛问题、硬件故障,从而降低制造成本。 参考文献1. Sheffield Products2. Peter Greven3. Arp, Z. et al.AAPS, Atlanta, GA, 10 November 20084. Wiesweg, S. et al.Tablet Tech Seminar, Brussels; Belgium; 25 October 20075. Hu, X. et al.International Journal of Pharmaceutics 347 (2008) 54–616. Michaels J. N. et al.Powder Technology Volume 189, Issue 2, 31 January 2009, 295-303 鸣谢Arasu Kondappan(Patheon)对碾压粉碎物物理特性的检测。Diane Lillibridge(Patheon)提供统计设计方面的指导并执行统计分析。Russ Neldham(梅特勒-托利多)进行 FBRM® 测量。

  • 综述:细胞外泌体颗粒表征测量技术新进展

    何为细胞外泌体?  外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。  然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,作者总结了外泌体的纯化方法(离心法、过滤离心法、密度梯度离心法、免疫磁珠法以及色谱法),比较了现存各种外泌体测量技术(电子显微镜、动态光散射技术及纳米微粒追踪分析术)在外泌体尺寸和表征研究中的应用。原文点击——综述:细胞外泌体颗粒表征测量技术新进展

  • 微米级颗粒表面有分子级的碳层,如何表征?

    根据原理分析,我在微米级的铁粉表面包覆有分子级厚度的碳层,资料介绍用TEM无法表征,而是用EELS测量的。请问这个东西的原理怎么说?除了这个,其他什么方法可以表征?谢谢!请问北京哪里可以做这样的表征?

  • 关于微孔的表征?

    请问:小于50微米的颗粒的孔隙率用什么仪器表征啊,还有就是油漆(清漆)膜表面的微孔用什么仪器表征啊,具体方法是什么啊,谢谢!!!!!!!!

  • 【资料】马尔文颗粒表征仪器的原理资料

    大家第一次接触颗粒度仪器的话,一方面是接触仪器的操作,另一方面,我觉得可以先从原理着手,这样可以方便的了解仪器,这里提供一下马尔文仪器的原理培训资料。包括MS2000的原理以及Nano Series的原理(Zeta,Size)

  • 铁磁性微粒表面超超薄碳层的表征

    根据原理分析,我在微米级的铁磁性粉体表面包覆有分子级厚度的碳层,资料介绍用TEM无法表征,而是用EELS测量碳层存在的。但碍于国内都不愿意做磁性材料的HRTEM,我想这样进行:超薄切片,用盐酸去掉铁磁性颗粒,然后做HRTEM-EELS,以求证明超超薄碳层的存在。这样可以吗?其他还有什么方法可以证明碳层存在?请TEM高手指导。谢谢!忘记说了,这碳层是苯环热裂解碳

  • 药用粉体的表征方法

    [font=微软雅黑][font=微软雅黑]粉体流动性表征的是粉体在某些特定条件下的流动能力,药用粉体的流动性表征方法主要有[/font]3种:[/font][font=微软雅黑]1[/font][font=微软雅黑]基于测量颗粒质量流量的方法,包括霍尔流量计测量、低速转鼓中的颗粒物质的坍塌规模或质量流率测量等;[/font][font=微软雅黑]2[/font][font=微软雅黑][font=微软雅黑]基于测量颗粒摩擦的方法,包括静力学休止角、剪切流变力学、压缩度测量等[/font] [/font][font=微软雅黑] [/font][font=微软雅黑]3[/font][font=微软雅黑][font=微软雅黑]基于颗粒形状的分形维数法等[/font] [font=微软雅黑]。[/font][/font]

  • 纳米表征技术的新突破

    纳米表征技术的新突破 在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?北京科技大学方克明教授经过20多年的研究,探索出了一种新的方法———  “纳米”这个名词越来越引起人们的兴趣。大家知道“纳米”是一个非常微小的长度单位。具体地说,一纳米约一根头发粗细的万分之一。纳米技术应用到传统产品中,会极大地改善产品的性能。例如,碳纳米管是由一层或若干层碳原子卷曲而成的管状“纤维”,直径只有几到几十纳米。比重只有钢的六分之一,而强度却是钢的100倍。如果把碳纳米管制成绳索,是从月球上挂到地球表面而惟一不被自身重量所拉断的绳索。  在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?据了解,目前我国用来检测纳米的纳米表征技术正日趋成熟并取得了新的突破。  记者日前在采访中了解到,北京科技大学冶金学院博士生导师方克明教授经过20多年的研究,在纳米表征技术方面取得了新的突破,探索出了用透射电镜或高分辨电镜对纳米材料进行表征的新方法。该技术采用金属包埋法可以从纳米材料中切取纳米尺度的薄膜,然后用透射电镜或高分辨电镜研究纳米材料的微观形貌和微观结构。该技术的成功为我国纳米技术的发展提供了一种重要的检测手段,它荣获第十二届全国发明展览会金牌奖并取得了国家专利,目前在国内外处于该领域的领先水平。  纳米材料包括纳米颗粒及其以纳米颗粒为基础的材料;纳米纤维及其含有纳米纤维的材料;纳米界面及其含有纳米界面的材料。纳米材料的性能与其微观结构有着重要的关系。因此研究纳米材料微观结构的表征对认识纳米材料的特性,推动纳米材料的应用有着重要的意义。  透射电镜是研究材料的重要仪器之一,在纳米技术的基础研究及开发应用中也不例外。但是用透射电镜研究材料微观结构时,试样必须是透射电镜电子束可以穿透的纳米厚度的薄膜。单体的纳米颗粒或纳米纤维一般是透射电镜电子束可以直接穿透的。研究者通常把试样直接放在微栅上进行透射电镜观察。但是由于纳米颗粒或纳米纤维容易团聚,因此,用这种方法常常得不到理想的结果,有些研究内容也难以实施。比如∶纳米颗粒的表面改性的研究,纳米纤维的横切面研究都比较困难,研究界面问题则有更大的难度。因此,纳米材料的透射电镜研究,其样品制备问题是一个值得探讨的重要课题。对此,方克明教授进行了研究,探索了一种比较适用的制样方法。该方法可以从纳米颗粒或微米颗粒中直接切取可以进行透射电镜研究的薄膜,对进行纳米纤维横切面观察或纳米界面观察的制样也有很高的效率。  这一技术的特点是从纳米或微米尺度的试样中直接切取可供透射电镜或高分辨电镜研究的薄膜。试样可以为简单颗粒或表面改性后的包覆颗粒,对于纤维状试样,既可以切取横切面薄膜也可以切取纵切面薄膜。对含有界面的试样或纳米多层膜,该技术可以制备研究界面结构的透射电镜试样。技术的另一重要特点是不损伤试样的原始组织。制膜过程中不使用高温,不接触酸碱,必要时也可以不接触水或水溶液。  目前上述技术已应用于多项课题研究,如:沸石颗粒中半导体纳米团簇组装过程的研究;纳米碳纤维微观结构的高分辨电镜研究;纳米颗粒微观结构与尺寸的表征;多层膜层间结构的透射电镜研究;粉体颗粒表面改性的研究;电容钽粉颗粒渗氧层及介质膜的研究;铸铁中各种石墨微观结构的研究等。  该技术在全国已经获得了广泛应用,为北大、清华、中科院等上百个新材料科研课题组和企业提供了技术支持。为我国高新材料的深入研究提供了一种重要方法,引起了国内外的关注。  纳米表征技术是高新材料基础理论研究与实际应用交叉融合的技术。对我国高新材料产业的发展有着重要的推动作用。我们希望这项新技术能得到有关部门的关注并在全国更广泛地推广应用,以加速我国高新材料研究的进程,为我国高新技术产业的发展作出更大的贡献

  • 微球表面PEG的红外表征

    我用TEOS水解做硅纳米颗粒,同时加了PEG4000做表面活性剂,分离纯化之后做红外表征的时候没有看到PEG的特征峰,例如2940cm-1附近的CH2的伸缩峰。我用没有加PEG的硅颗粒比较,发现没有什么不同 (附图)http://ng1.17img.cn/bbsfiles/images/2012/08/201208021906_381325_2300477_3.gif有没有人知道是怎么回事啊?

  • 动态颗粒图像分析仪的研制

    动态颗粒图像分析仪的研制摘要:本文论证了研制动态颗粒图像分析仪的必要性与背景, 介绍了winner100实现动态颗粒测试的方法以及技术特征。评价了动态颗粒图像分析仪的实用价值与科学意义。关键词.. 动态颗粒, 图像分析, 粒度与形状,3 维一、问题的提出颗粒是组成材料的基本单元, 影响材料的性能的不仅是颗粒的化学组成, 颗粒的大小与颗粒的形态对材料的性能影响巨大, 因此颗粒粒度与形态的检测越来越受到各行业的重视。目前检测颗粒大小和颗粒形态的方法有多种,激光粒度分析仪、沉降粒度仪、电阻法粒度亦、颗粒图像分析技术是最常用的技术。激光粒度分析仪、沉降粒度仪、电阻法粒度仪, 只能检测颗粒大小, 不能检测颗粒形状;颗粒图像分析技术是一种不仅可以检测颗粒大小也可以检测颗粒形状对唯一方法, 但是由于此种技术有几个致命的缺点限制了它的进一步发展:1.样品制备困难。颗粒在载玻片上很难得到充分的分散, 由于颗粒粘连使得颗粒分析的准确性大受影响; 2.颗粒处于静态, 非球形颗粒的取向会对测试结果造成偏离;3.由于显微镜的视场有限, 被测得颗粒数目受到很大限制, 因此取样的代表性差, 重复性不好。由于以上问题, 颗粒测试中急需一种性能更加优越的测试装置, 能够获得颗粒的准确图像, 操作简便, 满足颗粒形状和颗粒粒度分析的更高要求。国际上荷兰安米德公司、德国新帕泰克公司、德国莱驰公司均推出了同时测定颗粒粒与形状的图像分析仪。国内尚无此种产品, 济南微纳公司通过3年的攻关研制的winner100 颗粒图像分析仪填补了此项空白。二、动态颗粒测试的方法与技术特征Winner100突破了传统的颗粒图像仪的工作模式, 采用超声样品分散系统分散颗粒, 高速摄像头对动态颗粒图像进行采集, 1微秒可以采集一幅颗粒图像, 用计算机对图像进行分析处理, 达到对颗粒粒度与形态进行三维同时测试的目的。其主要技术特征有:1.彻底改变了手工制样操作繁琐的局面, 样品制备操作非常简单, 分散效果好; 2.采用功能强大的动态颗粒图像分析软件, 具有高速采样、自动颗粒图像处理, 实时显示当前图像、实时分析粒度分布、连续统计分析结果, 处理策略自行编程, 多种粒径定义选择, 粒度统计、形状分析等多种功能。打印报告允许自行编辑。3.动态测试使颗粒采样数量无限增加, 统计结果真实可靠, 代表性好、重复性高;4.动态测试使颗粒不同侧面得到采样, 实现了三维测试, 彻底消除了二维测试的颗粒取向误差;粒度测试结果可以与激光粒度分析仪比美。5.winner100动态图像分析专用软件具有强大的图像处理功能;6.支持多种粒径选择和多种粒度分布, 具有多种图像处理功能及其集成处理, 支持图像采集间隔设定与实时显示颗粒形貌与当时粒度分布和累计粒度分布, 记录并显示粒度波动图, 可以输出多种分析图表, 高性能的软件使使用者的颗粒分析工作变得十分轻松方便。7.本成果不仅可用于实验室颗粒分析, 也适用于颗粒在线粒度与粒形监测。对杜会经济发展和科学进步的意义本项目突破了显微静态图像分析的局限, 在国内率先提出动态颗粒图像分析的概念;由于颗粒运动中测试, 克服了二维颗粒图像分析的弊病, 大大提高了采样代表性, 消除了颗粒取向误差, 使颗粒粘连问题彻底解决。本项成果克服了静态颗粒图像仪的缺陷, 提供了一种对运动颗粒同时进行粒度与形状分析的先进手段, 具有操作简单, 测试范围广, 代表性好, 准确可靠, 直观可视, 适用于1-6000微米的各种固体颗粒。可以广泛应用于建材、化工、石油、金属与非金属、环保、轻工、国防等众多领域的实验室和在线颗粒粒度与形状分析。无疑, 对于提高我国各行业颗粒测试水平和经济发展具有重要的实用价值。颗粒测试的基础是颗粒的表征, 本项成果提供了一种颗粒动态测试的实用手段, 因此颗粒的三维表征问题就提到了议事日程上来, 颗粒的三维表征对颗粒学的进步与发展具有重要的意义。[color=blac

  • 单颗粒ICP-MS技术

    电子显微镜是传统研究纳米材料尺寸、形貌、表面结构和微区化学成分最常用的方法。近几年,单颗粒ICP-MS作为一种能同时测量和表征纳米粒子的方法越来越受到重视,被公认为定性和定量测定含有特定元素的低浓度的单颗粒

  • 核壳纳米粒子 HR-TEM表征

    请教大家:文献中很多关于核壳粒子的HR-TEM表征:核和壳的明显的单独的晶格条纹。弱弱的问:假设球形核壳纳米粒子(有一层均匀的壳在核表面)---在透射图像中, 其实看到的核并不是单独的核的投影 (外壳是壳的单独投影,这个没有问题)---所以,为何文献中核能清晰的看到单独核的晶格条纹呢?我武断的猜测: 应该壳的晶格条纹对应壳的---核的晶格条纹应该是核和壳共存的晶格条纹。但的确文献看到的就只有核的,不明白谢谢

  • 【号外】该培训课程量大物美不忽悠,两位专家共同为你解读 《纳米颗粒分离纯化与特征鉴定的贝克曼解决方案》

    2017/11/30 10:00《纳米颗粒分离纯化与特征鉴定的贝克曼解决方案》 还不占座,可亏大喽萌萌哒免费报名链接:[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710076248_8395_2507958_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710076248_8395_2507958_3.png[/img][url]http://www.instrument.com.cn/webinar/meeting_3090.html[/url]讲师一 霍德华(洋气不[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710076248_8395_2507958_3.png[/img])贝克曼库尔特生命科学部离心机产品经理 从事细胞与分子生物学实验室科研及相关产品的应用支持和市场推广工作近15年,对各种细胞、核酸、蛋白和纳米材料的常用和前沿技术及仪器具有广泛而深入的了解,曾参与了多个实验室多种技术平台的构建与优化。积累了丰富的复杂样品纯化和分析经验,为各地贝克曼库尔特离心机的新老用户提供了多场专题培训及疑难解答。讲师二 李雪冰(仙气不[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710076248_8395_2507958_3.png[/img])贝克曼库尔特生命科学部颗粒特性产品主管 毕业于中国科学技术大学化学与材料学院 主要从事材料的合成和表征,具有超过10年的仪器表征经验,对各种颗粒表征技术和仪器具有广泛而深入的了解,熟悉相关的药典及法律法规。目前在贝克曼公司负责颗粒特性产品线,为客户提供颗粒表征相关的完整解决方案。讲座内容[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710076248_8395_2507958_3.png[/img]:纳米技术作为一个热点技术已经被应用于各个领域,不论是无机的量子点纳米金、碳纳米管、石墨烯,还是高分子中的纳米聚合微球、胶束,或是生物制药领域的纳米制剂以及外泌体囊泡等,都与纳米颗粒息息相关,其中纳米颗粒的分离纯化和表征无疑是最重要的两个步骤,然而由于纳米颗粒本身的尺寸效应和表面作用,使得纳米颗粒的分离纯化以及表征面临的巨大挑战。如何能够有效地将这些纳米颗粒高效的分离和纯化?你可曾想过,超速离心除了可以用于分离纯化,还能用于检测分析纳米颗粒的各种物理属性?面对电镜、光散射、光阻法等五花八门的颗粒表征技术,我们又该如何选择合适方法去表征?本次会议来自贝克曼库尔特生命科学的技术专家们将和您分享离心技术和颗粒表征技术在纳米颗粒领域的应用,这些答案将一一揭晓。

  • 【讨论】水中颗粒悬浮物的分布测定

    想分析地表水、地下水、净水厂各工艺处理水中颗粒悬浮物的粒径和分布情况。请大家推荐可用的仪器,咨询了好几个厂商了,仍没有满意的结果!感觉这个MS_2000分析表征的方式比较切合,但是咨询厂家说测定比较清洁的水困难。希望最终用户给点建议,非常感谢!

  • 【求助】请问zeta电位的测定原理和其表征的意义?

    我们使用了ZETA-SIZER NANO-Z (Malvern Instrument Ltd., British)对石英砂的微小颗粒(5-10mm)进行zeta电位测定。以前看到的文献中都说要测定电泳移动性(EM)然后通过某某人的计算列表(1972年)来计算zeta电位。为什么这种仪器可以直接测出zeta电位呢?原理是什么呢?和通过计算得出的zeta电位在原理上一样么?可以近似表征固体在液体中的表面电位么?

  • 求助,零价纳米铁颗粒的XRD图谱分析请教!谢谢各位!

    偶正在合成零价纳米铁颗粒,需要进行XRD表征,得到是intensity和2 theada的图(也就是二维图表数据)。我就是想确定这种物质是否是单质铁,以前没有做过类似的分析,确切的说不知道从哪里入手!请各位指导一下!不胜感激!

  • 关于颗粒的数据解读请教各位老师。

    D10=3.2μmD50=5.16μmD90=10.1μmD99=22.27μmDav=6.15μmD=6.15umS/V=12106.21 cm2/cm3d=4.96这是激光粒度仪测得的结果。中间的S/V应该是总表面积和总体积的比吧?那么Dav,d,d具体是对颗粒的哪些方面 表达的描述。还有下面是显微镜下的Aspect ratio L=1.011,说明上说是长宽比=长除以宽,网上也有说是长径比=长度除以截面直径。这个数据应该是大于等于1的,前天弄出个数据 Aspect ratio L=0.978【40倍镜下】这个怎么理解呢?原来没接触过这方面的东西,只能 现学。。。一并请教下一些数据解读的理解:3、平均粒径d=d可以在软件中选择不同等效直径。中间变量:d1=∑dd2=∑d2d3=∑d3d4=∑d4个数长度平均径 XNL 个数面积平均径 XNS个数体积平均径XNV 长度面积平均径 XLS长度体积平均径XLV 面积体积平均径XSV 体积矩平均径XPV这么多表达都是用来表征颗粒的那些特征的,上面的d=4.96就是d3/d2数据吗?谢谢。

  • 听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“纳米材料的形貌及粒度表征”,网络讲座不容错过!

    听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“纳米材料的形貌及粒度表征”,网络讲座不容错过!

    ”纳米材料的形貌及粒度表征“网络主题研讨会会议时间:2015年12月9日 14:00-17:00报告日程:报告一:纳米材料的形貌和粒度分析方法及应用报告人:朱永法清华大学化学系教授、博导,分析化学研究所副所长,国家电子能谱中心副主任。从事半导体薄膜材料的表面物理化学、纳米材料的合成与性能、环境催化以及光催化的研究工作。报告概要:主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。报告二:基于PeakForce Tapping模式的纳米材料表征报告人: 孙昊布鲁克中国北方区客户服务主管报告提纲:PeakForce Tapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForce Tapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。基于PeakForce Tapping模式,Bruker公司发展了一系列扩展成像技术,如智能成像(ScanAsyst),它可以轻易实现绝大部分常见样品的扫描参数自动优化,使刚入门的客户也能非常容易地得到专家级的图像;定量纳米力学成像(PeakForce QNM)可以在扫描形貌的同时实时定量地分析出样品的模量与粘滞力,为纳米力学测量带来了革新;峰值力表面电势测量(PFKPFM)与峰值力导电性测量(PFTUNA)使得在软样品表面同时的电学和力学测量成为可能。在这个Webinar中,我们将介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。报告三:纳米材料的粒度表征报告人:方瑛HORIBA 应用工程师报告概要: 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。报告四:尺度表征用纳米标准样品报告人:刘忍肖博士,高级工程师,国家纳米科学中心/中科院纳米标准与检测重点实验室,主要工作领域为纳米技术标准化,承担了十余项纳米技术标准制修订、纳米标准物质/标准样品的研制工作;从事与纳米技术相关的标准化科研工作,参与两项国家重大科学研究计划项目和一项质检公益性行业科研专项,承担国家自然科学基金和北京市自然科学基金项目。报告提纲:纳米标准样品概况;尺度表征用纳米标准样品;示例:粒度、台阶高度纳米标准样品。报名条件:仪器信息网个人用户,自助报名当天参会。报名方式:扫描下方二维码或点击链接。http://ng1.17img.cn/bbsfiles/images/2015/11/201511231436_574762_2507958_3.png仪器信息网“纳米材料的形貌及粒度表征”网络主题研讨会http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749

  • 【原创大赛】透射电镜应用心得——分享下自己利用TEM表征的经验和心得

    导读:今天与大家分享下自己博士阶段运用透射电镜分析时的收获和心得,目的在于让新人在未来科研生涯中能够最大程度地攫取透射分析的结果,多发paper。本人水平有限,期望各位专家老师多多指正。进入博士阶段后,因为自己从事的是金属材料的制备和强化,因此在直接接触透射电镜之前,我的头一个博士学年主要是材料的制备和力学性能表征,但在此期间,我阅读了大量的文献,而这些文献大多涉及了对合金的透射表征,因为材料制备、组织结构和力学性能本身就是一脉相承的。大量透射表征方面的文献积累为我后期将透射技术应用在所研究的合金体系奠定了很好的基础,我将其归纳为以下几个方面:1)依据前人的表征结果建立自己的表征体系;2)根据前人的分析结果来尝试解释自己的组织结构形成机制;3)突破前人的研究成果,在自己的组织结构中发现新的创新点,因为不了解旧的,你无从得知你的是否是新的;4)阅读文献过程中,作为新手难免会遇到透射表征方面不能理解的知识,比如什么是明、暗场像,什么是晶带轴取向,什么是莫尔条纹等等。在发现这些问题后,你可以实时补充透射电镜表征的基础知识,避免很多新人在接触透射电镜后常犯的错误,就是啥也不懂的上手,最后浪费时间、金钱。在接触透射电镜后,前期的文献功底起到了很好的作用,当我试图利用透射电镜表征我的合金体系时我清楚的知道自己想要什么,也明白如何来实现。此处,我提一个小小的建议,就是透射实验前列出一张计划表,罗列自己需要实现的实验目标和准备采用的实验手法,下表是我某次实验前所做的表格,仅供参考。 [table=642][tr][td=2,1] [align=center]离心制备[/align] [/td][td=4,1] [align=center]A3圆片3# 离心ZCuFe1.5Co0.5 [/align] [align=center]A5圆片7# 离心ZCuFe2.0[/align] [/td][td] [align=center]备注[/align] [/td][/tr][tr][td=2,1] [align=center]需要观察的晶带轴[/align] [/td][td] [align=center]001[/align] [/td][td] [align=center]011[/align] [/td][td] [align=center]-111[/align] [/td][td] [align=center]-112[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center](1)纳米颗粒形貌图[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td]每个带轴下典型的颗粒分布图,并留下SADP照片,研究有序相,套取多余的衍射斑点找到对应的相做能谱。[b]双束条件下明场像[/b][/td][/tr][tr][td=1,3] [align=center](2)不同尺度的纳米颗粒的高分辨[/align] [/td][td] [align=center]20nm[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center](3)花瓣状颗粒[/align] [/td][td]最好在铁的正带轴下观察,上次通过HAADF在[sub]Cu[/sub]下看到[/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td]A、留下拍摄条件下对应的SADP照片;B、留下花瓣状颗粒分布在基体中的图片;C、选择某一花瓣颗粒,转动轴确定不同取向下颗粒形态,如附图;D、找到更小尺寸的花瓣状,小于20nm,采用高分辨模式来找小花瓣;E、花瓣颗粒的高分辨照片,与基体界面高分辨;[/td][/tr][tr][td=1,3] [align=center](4)EDS检测颗粒成分[/align] [/td][td] [align=center]30 nm[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center](5)内部有孪晶的纳米颗粒照片[/align] [/td][td] [align=center]20nm[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td]A颗粒的电子衍射;B留下孪晶纳米颗粒形貌像,照片越多越好;C留下孪晶纳米颗粒高分辨像[b]烦请注意:前期在[sub]Cu[/sub];[sub] Cu[/sub];[sub]Cu[/sub]带轴下观察到这样的形貌[/b][/td][/tr][tr][td] [align=center](6)内部无孪晶的纳米颗粒照片[/align] [/td][td] [align=center]20nm[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td]A颗粒的电子衍射;B留下孪晶纳米颗粒形貌像,照片越多越好;C留下孪晶纳米颗粒高分辨像[/td][/tr][tr][td] [align=center](7)存在多个莫尔条纹的纳米颗粒[/align] [/td][td] [align=center]以110、112带轴为主[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td]A、留下拍摄条件下对应的SADP照片;B、留下纳米颗粒的形貌像;C、留下纳米颗粒的高分辨;[/td][/tr][tr][td] [align=center](8)不存在莫尔条纹的纳米颗粒[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td]D、留下拍摄条件下对应的SADP照片;E、留下纳米颗粒的形貌像;F、留下纳米颗粒的高分辨;[/td][/tr][/table]实验过程中,由于制样和观察区域的不确定性,很难获得你所有想要的结果,所以很多情况下需要多次实验才能有一套完整的结果,So,做好多次实验的心理准备吧。对于实验进行时,我有以下几点小建议:1)按照计划表,有章法的表征试样,获得既定的实验信息;2)不要轻易放弃奇怪的、不符合你脑海中的逻辑的实验信息,因为这些信息可能成为你一篇文章的创新点;3)学会丰富自己的实验结果,凡是花时间做出的结果一定把它们留存下来,说不定后面会用到。比如我在一次投稿过程中,审稿人要求我补充一组照片,恰巧这组照片我在当时实验过程中有留存,其实实验过程中我觉得这组照片没有太大意义,没想到它们却给我节省了补充实验所需要花费的时间和经费;4)实验过程中做好记录,包括实验操作员的讲解、你自己当时的灵感想法等等。最后,完成实验后,一定要在当天或者结束后两天内把实验结果做一个系统的总结,包括实验结果的分析和整理、文献查阅和对实验结果的解释、创新点的挖掘等等,此处我无法一一细化,相信大家在总结过程中会有自己的想法和思路。最后祝大家尽快完成自己的科研实验,多发文章,早日毕业,希望与大家多多交流,共同进步。

  • 碳基底上的球缺状金颗粒

    碳基底上的球缺状金颗粒

    金颗粒是怎样固定在碳基底上的呢?没有这方面的资料。是不是有下面的四种可能性,它们在二次电子像中的表现各有什么不同?http://ng1.17img.cn/bbsfiles/images/2014/06/201406292121_503476_1609375_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/06/201406302249_503596_1609375_3.jpg上面图中金颗粒亮度均匀,下面图中小的金颗粒亮度降低(下图来源于驰奔)http://ng1.17img.cn/bbsfiles/images/2014/07/201407021854_504114_1609375_3.jpg上图显示加速电压对金颗粒表征的影响。10kv下金颗粒亮度均匀,30kv下100nm左右的金颗粒背散射电子明显减少或消失,亮度降低。箭头所指处金颗粒脱落。http://ng1.17img.cn/bbsfiles/images/2014/07/201407070819_505651_1609375_3.jpg上图是金刚石,在其周围有阴影。图片来源资料http://ng1.17img.cn/bbsfiles/images/2014/07/201407070822_505652_1609375_3.jpg上图石墨基底上的金颗粒,在其周围有白色亮边。图片来源资料结合以上两张图分析,石墨基底上的金颗粒有两种存在模型如下图。http://ng1.17img.cn/bbsfiles/images/2014/07/201407070827_505653_1609375_3.jpg模型1是正常的存在模型。从上面看下来似乎是球状,实为球缺状。这种金颗粒在扫描图像上不会产生阴影。模式2是非正常的存在模型。在蒸金过程中由于温度波动,在温度偏低,特别是石墨温度偏低时金颗粒会以模型2的状态存在。这种存在模式高压观察时会在扫描图像上形成阴影。这是由于这种金颗粒的周边背散射电子减弱所致。如下图。http://ng1.17img.cn/bbsfiles/images/2014/07/201407070855_505654_1609375_3.jpg上图金颗粒周边的阴影。图片来源驰奔。再增加一种模型就比较完善了,如下。http://ng1.17img.cn/bbsfiles/images/2014/07/201407081831_505896_1609375_3.jpg第三种模型是在蒸金过程中碳背底温度控制比较高,当附着其上的液态金颗粒在缓慢冷却过程中,可结晶成为单晶体,呈现出晶体的多边形特征。如下图。http://ng1.17img.cn/bbsfiles/images/2014/07/201407081840_505904_1609375_3.jpg上图,有多边形金颗粒。

  • 【原创大赛】分散体的稳定性和表征方法

    【原创大赛】分散体的稳定性和表征方法

    [align=center][size=16px]分散体的稳定性和表征方法[/size][/align]1,分散体的概念和分散体的稳定性1,1 分散体把一种或几种物质分散在另一种物质中构成的体系,称为分散体(Dispersion)。其中:被分散的物质称为分散相(Dispersed phase) 分散的介质(Dispersing medium)称为连续相(Continuous phase)。分散相中的颗粒如果是固体颗粒(Solid particle),该分散体则统通常被称为悬浮液(Suspension) 分散相中的颗粒如果是液滴(Droplet),该分散体则统通常被称为乳液或乳浊液(Emulsion)。现实生活中的分散体可能是非常复杂多样的,例如牛奶这种经典的分散体,分散相中的颗粒形态既有蛋白质固体颗粒,又有脂肪液滴,遂也可以称为悬浮乳液(Suspension-emulsion);例如化妆品乳液中又经常可以分类为水包油乳液(O/W),油包水乳液(W/0),水包油包水(W/O/W)双重乳液等等。随着研发技术和工艺的发展,还有越来越多的人开始研究纳米分散体(Nano dispersion),皮克林分散体(Pickering dispersion),液晶乳液(Liquid crystal emulsion)等复杂分散体。1,2 分散体的稳定性分散体的稳定性是指分散体保持其初始状态性质或状态不随时间改变的能力。即在一定时间内,分散体的品质没有发生改变。1,3 分散体失稳的现象1,3,1 沉降(Sedimentation)由于分散相颗粒密度大于连续相密度产生的分散相的向下迁移沉淀(分离)的现象。分散相在容器底部的累积证明沉降发生。1,3,2 上浮(Floatation/Creaming)由于分散相颗粒密度小于连续相密度,分散相颗粒向液态连续相顶部迁移的现象。其中固体颗粒的上浮通常也被成为漂浮(floatation),液滴颗粒的上浮通常也被成为乳状上浮(creaming)。1,3,3 相分离(Phase separation)宏观均匀的分散体如悬浊液、乳液或泡沫分离成两个或多个相的现象。1,3,4 团聚(Agglomeration)分散体中分散相的颗粒(固体颗粒或液滴)聚集成团,形成二维的颗粒簇,称为团聚物,这个过程称为团聚。1,3,5 絮凝(Flocculation)絮凝是团聚的一种形式,分散体里的颗粒由弱物理作用力聚集在一起,一般是由颗粒之间的范德华引力大于双电层斥力引起形成松散的内聚结构。1,3,6 聚并(Coalescence)两个颗粒接触时边界消失(通常是液滴或气泡,不存在于固体颗粒),或者在一个颗粒与较大的颗粒间发生形状改变导致总面积减少的现象。1,3,7 奥斯特瓦尔德熟化(Ostwald ripening)小颗粒溶解在较大颗粒的表面重新沉积的过程。此过程发生的原因是较小颗粒有较高的表面能,有较高的总Gibbs自由能,因而有明显的较高溶解度。1,3,8相反转(Phase inversion)由体系的特性、体积比及能量输入所导致的液-液分散体(乳液)的相转变的现象,即分散相自发地变成了连续相,反之亦然。例如水包油乳液(O/W)相反转成为油包水(W/0)乳液。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018324112_9390_3433167_3.png[/img][align=center][size=12px]F[/size][size=12px]ig[/size][size=12px].1-1 [/size][size=12px]分散体的失稳[/size][size=12px]现象[/size][/align][align=center][size=12px]Instability of dispersion[/size][/align]1,4 影响分散体稳定性的因素分散体状态的改变取决于复杂的物理化学因素。分散相的状态(密度,粒度和分布,粒形,颗粒表面结构等),连续相的状态(密度,溶解度,pH,粘度,表面张力,流变行为等),颗粒的相互作用(排斥,吸引,流体动力学等),分散相和连续相的相互作用(润湿性,界面张力,流变学等),分散相的体积浓度等,都会影响一个分散体的稳定性。1,5 分散体的稳定性和产品设计 产品设计者须根据产品的实际应用场景或客户对符合产品规范及分散体充分稳定的需求进行配方调控。为此产品设计者需选择好分散体的状态(如:粒径分布,形状,密度匹配,对超大尺寸颗粒的限制,表面电荷和表面包裹)以及适合的连续相行为。对于分散体的稳定性,颗粒-颗粒间以及分散相-连续相间的相互作用非常重要。传统上,主要应用静电稳定原理。现在,随着创新产品的涌出(例如常用聚合物添加剂以使连续相适应其产品需求),静电稳定,空间位阻或静电位阻稳定,或其组合变成更常用的方法。这些方法的理论基础是经典的DLVO 理论(Derjaguin, Landau, Verwey, Overbeek)和近来进一步扩展的DLVO理论。应该强调的是,当今产品常含有数种分散相,其连续相也可能含有数种成分,产品设计将会变得更为困难。由于这些分散体的复杂结构,由单一参数来表征和预测分散体状态的稳定性是远远不够的。选择合适的仪器来表征分散体产品的稳定性将会在产品设计过程中的原料筛选,配方调控,工艺优化等环节起到至关重要的作用。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018326858_5189_3433167_3.png[/img][align=center][size=12px]F[/size][size=12px]ig[/size][size=12px].1-[/size][size=12px]2[/size][size=12px] [/size][size=12px]静电位阻[/size][/align][align=center][size=12px]Electrostatic and potential resistance[/size][/align][align=center][/align]2,分散体稳定性表征的方法2,1 LUM稳定性测试原理LUM系列稳定性分析仪器使用近红外光源(或多光源系统)照射样品整体,相比于传统的光谱只能读取样品某个点位置的消光度/透光度信息,LUM运用全球专利的STEP技术(Space and Time Resolved Extinction/Transmission Profiles)可以单次就记录整个样品管所有位置的消光率/透光率信息。并且可照射样品的同时,设置任意长度的光源照射时间间隔(最低1秒),由此可以实现样品消光率/透光率随时间变化的实时监测。对于较不稳定的分散体(如低温酸奶,冷链饮料,原油,浆料等),在若干小时或者若干天就能出现较为明显的失稳现象,可以利用LUMiReader静置(1g)系列的稳定性分析仪来进行实时监测和表征;对于较为稳定的分散体(如常温乳品和饮料,化妆品,涂料,脂肪乳剂等),在若干月甚至若干年才能观察到较为明显的失稳现象,可以利用LUMiFuge或者LUMiSizer离心加速(6-2300g)系列的稳定性分析仪来进行加速测试和表征。无论是LUM的静置还是加速系列的稳定性分析仪,专利的STEP技术(Space and Time Resolved Extinction/Transmission Profiles)都可以得到完整样品在任意空间和时间的透光率信息,形成独特的透光率指纹图谱。由这些特征的指纹图谱,不仅可以定性分析样品分离失稳的过程和变化,还可以对样品的稳定性/不稳定性指数,样品分层情况,颗粒迁移速度,颗粒的粒径和分布等进行定量分析。LUM仪器还可以实现多样品测试,最多可以同时测试12个样品,实现高通量高效的测试需求。此外,仪器配备温度控制模块,4-80℃的温控范围可以满足常规的稳定性测试的温度需求。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018328030_8014_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018329141_2160_3433167_3.jpeg[/img][align=center]Fig.2-1 LUMiReader静置稳定性分析仪[/align][align=center]Real-time Stability analyzer[/align][img]" style="max-width: 100% max-height: 100% [/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018330257_9894_3433167_3.jpeg[/img][align=center]Fig.2-2 LUMiFuge/ LUMiSizer离心加速稳定性分析仪[/align][align=center]Accelerated Stability analyzer[/align][align=center][/align]2,2 Stokes定律[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018331192_4571_3433167_3.png[/img]v – 颗粒移动速度△ρ – 两相的密度差η– 连续相动态粘度r – 粒径a – 颗粒浓度xg –相对重力加速度(LUMiReader=1g,LUMiFuge/LUMiSizer=5-2300g)由Stokes定律可知,分散相和连续相的密度差,分散相颗粒的粒径,连续相的粘度,颗粒浓度等因素都会影响体系里颗粒的迁移速率,最终影响分散体的稳定性。Stokes定律适用于重力场和离心场。2,3 LUM透光率指纹图谱(Transmission profile)[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018332129_9696_3433167_3.png[/img][align=center]Fig.2-3 样品静置测试的透光率指纹图谱[/align]图2-3是某样品在静置测试下的透光率图谱。样品管在仪器里竖直放置,遂纵坐标对应样品管的位置刻度;横坐标对应透光率数值。红色谱线为初始谱线,绿色谱线为实验66h结束后的谱线。我们可以发现,该样品随着实验的进行,底部的透光率逐渐升高,意味着样品里的颗粒发生了上浮(向上迁移)。同时观察样品管实验前后的状态,我们也可以发现该样品确实在底部出现了变澄清的过程。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018333411_7189_3433167_3.png[/img][align=center]Fig.2-4 样品离心加速测试的透光率指纹图谱[/align]图2-4是某两个样品在离心加速测试下的透光率图谱。样品管在仪器里平躺放置,遂横坐标对应样品管的位置刻度;纵坐标对应透光率数值。红色谱线为初始谱线,绿色谱线为实验结束后的谱线。我们可以发现,这两个样品随着实验的进行,顶部的透光率逐渐升高,意味着样品里的颗粒发生了沉降(向下迁移)。同时对比样品管实验后的状态,我们也可以发现这两个样品确实在顶部出现了变澄清的过程。两外,尽管这两个样品都是沉降的过程,左边的样品有明显的界面(或称之为区域沉降),对应的透光率图谱的斜率也是陡峭的形态;而右边的样品没有明显的界面(或称之为多分散沉降),对应的透光率图谱的斜率也是平缓的形态。由此可见,LUM仪器可记录样品的透光率随时间变化的过程,并直观地反应在指纹图谱中,产品设计者由此可以分析判读出分散体详细的失稳过程,从而进一步进行样品间稳定性的比较。2,4 不稳定性指数(Instability index) 产品的透光率变化越剧烈意味着样品越不稳定。LUM稳定性分析系列仪器通过配套的SEPView分析软件,可以直接将产品的透光率随时间的变化计算量化成不稳定性指数(Instability index),从而可以定量比较样品间的稳定性。由此可帮助产品设计者有效快速地筛选和优化配方,大大地缩短研发周期。还可对原料进行控制和筛选,对均质和出料等工艺条件进行优化改善,为质检提供快速便捷的方法。 图2-5展示了同一配方的某分散体,采用不同的工艺控制过程后制备的样品,在LUMiSizer加速稳定性分析仪中测试所得的透光率指纹图谱以及对应的不稳定性指数(Instability index)。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018334424_9357_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018335665_2656_3433167_3.png[/img][align=center]Fig.2-5不同工艺处理对相同配方的稳定性的影响[/align][align=center](LUMiSizer: 328g, 20°C, 15 h)[/align]2,5 界面追踪(Front tracking) 除了从不稳定性指数的角度量化产品的稳定性,产品设计者往往还会考虑产品分层的过程。LUM稳定性分析系列仪器通过配套的分析软件,还可以实时追踪产品界面位置随时间的变化,从而可以量化给出产品分层的速率。由此可以进一步对分散体产品进行稳定性的综合表征。 图2-6展示了为某产品选择不同添加剂后,在LUMiSizer加速稳定性分析仪中测试所得的界面位置随时间的沉降过程以及对应的界面沉降速率。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018336895_8486_3433167_3.png[/img][align=center]Fig.2-6 不同种类添加剂对样品界面沉降的影响[/align][align=center](LUMiSizer: 2300g, 40°C, 2 h)[/align][align=center][/align]图2-7展示了为某产品选择不同添加量的破乳剂后,在LUMiSizer加速稳定性分析仪中测试所得的界面位置随时间的上浮过程以及对应的界面上浮层的高度。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018338135_6561_3433167_3.png[/img][align=center]Fig.2-7 不同添加量的破乳剂对样品界面上浮的影响[/align][align=center](LUMiSizer: 2300g, 35°C, 1 h)[/align]2,6 颗粒表征(Particle characterization)除了稳定性表征外,LUM的部分仪器还选配了粒度检测模块,用于测量颗粒的粒度和分布。由于粒度分析这一块在本书的其他章节做了详细描述,固不再赘述。3, LUM稳定性分析仪的应用场景LUM系列稳定性分析仪广泛应用于食品,化学品,个人护理品,涂料,墨水,电子浆料,纳米材料,生物医药等各类分散体系产品的原浓度快速稳定性分析和定量排序。相比于传统的温箱储存数月(储存法),再进行肉眼比较的方法来说,LUM仪器大大缩短了测试和分析的时间;相比于表征样品中某一特定指标的参数变化(间接法),例如粒度,粘度等,LUM系列稳定性分析仪更着重于样品的所有参数综合影响的最终稳定性的表现。样品的透光率指纹图谱中包含了样品失稳过程的定性信息,产品设计者可以分析出颗粒的沉降,上浮,团聚和絮凝,聚并,转相,奥斯特瓦尔德熟化等各类失稳过程的信息,还可进一步对特定产品,观察网状结构,破乳行为的研究等。结合丰富的软件分析模块,还可以为产品的稳定性进行快速和综合的量化,进而还能为货架期的比较和预测提供良好的数据支持。

  • 【讨论】说说你已购买或者计划采购的材料表征仪器,总有一款属于你~

    【讨论】说说你已购买或者计划采购的材料表征仪器,总有一款属于你~

    http://ng1.17img.cn/bbsfiles/images/2011/02/201102191324_278448_2193245_3.jpg材料表征仪器很多,SEM、TEM、SPM、AFM、XRD、XPS、金相显微镜、生物显微镜X射线荧光光谱仪、热分析依、颗粒度、硬度计、粘度计……相信大多数材料方面的实验室拥有很多种上述的仪器。元宵节已经过去几天啦,2011农历年离我们远去,大部分版友已经上班有一段时间了,是否已经进入工作状态了呢?不妨先总结一下过去的收获,计划一下2011年的采购项目吧~参考格式:仪器类别:仪器品牌及型号:是否购买:(已购买或计划购买)仪器图片:其它:欢迎大家踊跃发言,版主可以奖励鼓励哦~众多材料表征仪器,总有一款属于你~

  • 任中京教授受邀参加2013年SAC/TC168颗粒分技术委员会年会

    任中京教授受邀参加2013年SAC/TC168颗粒分技术委员会年会全国颗粒表征与分检及筛网标委会颗粒分技术委员会(以下简称“分委会”)年会于10月19日-21日在安徽池州召开。会议由国家非金属矿深加工产品质量监督检验中心承办,共有28名委员和代表参会。会议讨论了立项项目的拟定标准及其颗粒分析技术在国内的适用性、应用领域、标准名称的适宜性以及与国际标准的关系等。作为全国颗粒测试技术的领航者济南微纳颗粒仪器股份有限公司的董事长任中京教授受邀参加了此次会议。任中京教授从事激光颗粒分析理论与技术研究工作30年有余。期间主持并完成国家省部科技攻关项目4项。发表论文60余篇,其中收入美国工程索引(EI)研究论文20余篇,在国际颗粒学研究领域享有很高声誉。--------------- 中国颗粒测试技术的领航者---------------济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪等。

  • 第二届“颗粒研究应用与检测分析”主题网络研讨会(2021)

    [align=center][img]https://img1.17img.cn/17img/images/202103/webinar/36af542f-66e9-44ec-897d-7a91fa340fc4.jpg[/img][/align]颗粒学研究包罗万象,涉及食品、医药、化工、材料、冶金等各行各业。2020年,席卷全球的新型冠状病毒平均直径约为100纳米,属于纳米颗粒,新冠病毒的气溶胶传播也属于颗粒研究的范畴。疫情进一步推动颗粒学的研究与应用向着更小、更复杂、更尖端的纵深快速发展,同时,颗粒研发与质控所必须的相关检测分析技术也在不断迭代升级。基于此,仪器信息网联合中国颗粒学会,将于2021年3月24日-3月26日组织召开第二届“颗粒研究应用与检测分析”主题网络会议。分设[b]能源颗粒和电池材料、药物制剂与粒子设计、气溶胶与新冠病毒、超微及纳米颗粒、颗粒测试与表征[/b]五个分会场,邀请业内著名颗粒学学者、检测分析专家及企业代表,针对颗粒学研究应用及检测分析的前沿热点和疑难问题进行探讨,为颗粒学的研发应用端与检测分析端搭建交流平台。热忱欢迎国内外颗粒领域的专家、学者、技术人员、企业界代表及研究生踊跃参会、交流。报名链接:https://insevent.instrument.com.cn/t/w2

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制