当前位置: 仪器信息网 > 行业主题 > >

科研装置

仪器信息网科研装置专题为您整合科研装置相关的最新文章,在科研装置专题,您不仅可以免费浏览科研装置的资讯, 同时您还可以浏览科研装置的相关资料、解决方案,参与社区科研装置话题讨论。

科研装置相关的资讯

  • 走近科研“利器”综合极端条件实验装置
    日出东方,当清晨第一缕阳光照入怀柔科学城的综合极端条件实验装置实验楼时,一位身着蓝色薄羽绒服的科研人员已在实验站开始忙碌。中国科学院物理研究所研究员、综合极端条件实验装置亚毫开实验站负责人刘广同正在观察各种装置设备的数据变化,并对仪器进行相应调试。在新春来临之际,记者走进怀柔科学城,一探科研人员与科研“利器”大科学装置的日夜“纠缠”。要发现更多的可能来自北京量子信息科学研究院的研究人员林飞走进实验楼内的亚毫开实验站,开始对科研样本进行输运性质表征的观测研究。此类样本的研究具有重要的科学意义。2013年薛其坤院士领衔的清华大学—物理所科研团队就曾经在类似样本中首次观测到了量子反常霍尔效应,被杨振宁先生称为诺贝尔奖级的成果。与此同时,在亚毫开实验站内,多项凝聚态物理方面的重要实验正在进行之中。“今天数据有什么异常吗?”刘广同上前询问。这就是刘广同及其团队的日常——不仅需要维护实验装置,负责指导来检测样本的科研人员如何使用装置,有时还按需帮其制订实验方案,甚至直接参与实验过程。实验站先后迎来清华大学、北京大学、上海交通大学等多所高校院所的科研人员,为他们在物理学、材料科学等多学科的实验研究创造条件。记者观察到,实验室核心区域地面上分布着6个深坑。据介绍,这是科研人员为了获取极低温而精心设计的,它的主要目的是给低温设备减振。极低温下,蕴藏着丰富的物理现象。在物理学领域,不少诺贝尔奖成果正是借助极端实验条件取得的。刘广同表示:“我们要创造条件,要发现更多的可能。我们自主研发的一系列实验设备,不仅可以人为达到极低温,还可以创造强磁场、超高压和超快光场等极端条件,旨在发现奇异物性。而且,它们还可以将不同的极端条件‘综合’起来,提供探索未知世界的新维度。”要不断突破上一次两条长长的银色管状仪器装置“躺”在低温强磁场电子波谱学实验站的实验台上,颇为引人注意。这就是刘广同和团队成员自主研发的极低温氦3制冷机。该设备是综合极端条件实验装置量子调控系统的核心低温设备之一。我国的此类设备在相当长一段时期内主要依赖进口。2021年开始,刘广同和团队成员从原材料的设计和采购开始,用特种薄壁不锈钢、高纯无氧铜等原材料加工成零件,再经120多道精密焊口焊接而成,最终打破了之前我国此类极低温科研仪器设备市场被国外垄断的局面,实现了“从无到有”。在刘广同看来,装置的研发,为物理、材料等学科提供了极端特殊的稀有实验条件,利用这样的条件开展科学研究能够极大地促进我国基础研究水平的提高。“时间是挤出来的”。刘广同几乎把全年的节假日都交付实验室,春节假期也不例外。他常说,“搞科研,尤其是基础研究,要有永不磨灭的好奇心、永不认输的韧劲和勇于探索的精神。所以,我从未觉得辛苦,反倒觉得很有乐趣。”“目前,实验站中的实验装置,在最低温度、最高压力等指标上,已处于世界先进水平。”刘广同说,“我们就是要创造更加极端的条件,不断突破上一次。”
  • 评论:要大科学装置,更要大科研队伍
    国外国家实验室建设的启示  打造国家实验室,是上海加快建设具有全球影响力的科创中心、围绕张江综合性国家科学中心建设的一项新使命。发达国家的国家实验室是如何运作管理的?能给上海带来怎样的启示?本报今起推出分析,希望对上海的国家实验室建设有所借鉴。  国家实验室是一种世界通行的科研基地形式,兴起和发展于二战前后,主要围绕国家使命,从事基础性和战略性科研任务,通过多学科交叉协助,解决事关国家安全和经济社会发展全局的重大科技问题。在不同国家,国家实验室名称各异,有的叫“国家(或联邦)实验室”,有的叫“国家科研中心或研究所”,也有的叫“学会、协会或联合会”等。一些发达国家已建成一批高水平的国家实验室,诞生了一大批诺贝尔奖得主,获得了许多科技创新成果。  集中式科研攻关,避免各自为政  美国从20世纪上半期就开始建立国家实验室,迄今已建成一个比较完善的国家实验室系统,在全球具有较大影响力。上海科技情报研究所研究员崔晓文介绍,美国国家实验室的建设布局一般充分考虑大学及大型工业企业的需求及优势,从而有效凝聚和整合全国科技资源,更好发挥国家创新平台和增长引擎的功能。  中科院院士、中科院高能物理所研究员柴之芳表示,综合性强是美国国家实验室一大特点。美国能源部对国家实验室的要求是:“应当更注重科学领域的交叉点,而不是各个学科内部。国家实验室的价值,在于它们能从事高校或民间研究机构难以开展的交叉学科综合性研究。”以位于纽约长岛的布鲁克海文国家实验室为例,它有4个研究方向:先进加速器、同步辐射、分子影像和核成像、计算科学 下设8个科学中心:功能纳米材料中心、神经成像转化中心、计算科学中心、辐射化学中心、环境科学中心、国家核数据中心、加速器物理中心、与日本理化学研究所共建的脑科学中心,可谓“一业(核科学技术)为主,惠及其他”。  国家实验室实体化、大规模运营的好处,是便于组织管理科研团队,集聚优势力量,在重大前沿科技领域快速取得突破,避免各科研团队各自为政。中科院上海应用物理所研究员何建华说:“我国的重大科技专项虽然也是目标导向、任务导向,但都分散在多家单位进行。这种集中式科研攻关,值得我们借鉴。”  大科学装置,不能仅仅是一个平台  还记得人类首次在琥珀里发现的恐龙尾巴吗?科学家们借助上海光源等装置发出的同步辐射光,获得了这段尾巴的纳米级“X 光片”,最终确认这是来自白垩纪手盗龙的尾巴。正在建设的上海张江综合性国家科学中心,拥有上海光源、国家蛋白质科学研究(上海)设施、超强超短激光实验装置等大科学装置。这与同样依托大科学装置的美国国家实验室相比,有什么明显不同?  上海市科学学所研究员任奔认为,上海的大科学装置作为一个专业性研究机构和研发平台,在我国科技界发挥了积极作用,但与美国国家实验室相比,它在开展综合性、跨学科研究方面还存在较大差距。  曾在美国劳伦斯伯克利国家实验室工作的何建华介绍,拥有先进光源(ALS)、粒子加速器、分子铸造工厂、电子显微镜等大科学装置和先进仪器的劳伦斯伯克利国家实验室,有雇员5000人左右,其中的科研人员分为长期人员(类似于固定人员)、项目聘用(聘期通常为5年)、短期聘用等类型。不少科研人员在高校兼职做教授,使实验室项目与高校科研、人才培养紧密结合。  何建华回忆,他在劳伦斯伯克利国家实验室物理生命科学部工作时,部门主任、副主任都是加州大学伯克利分校教授。  市科委基地处处长过浩敏认为,上海的大科学装置目前较好地发挥了平台作用,为许多科学成果的产出做出了贡献,但除了继续对外开放,也要建立起一支颇具实力的科研队伍,使大科学装置的价值最大化。  成立专业机构,“吆喝”科研成果  上海交通大学周岱教授曾牵头有关国家实验室管理体制与运行机制的课题研究。据介绍,德国的国家科研机构每两年会对研究项目进行同行专家评议,其结果作为下一阶段给予该研究所经费的参考依据。一般是先阅读定量数据为主的状态报告,随后实地考察了解情况,最后通过集体讨论形成评价报告。日本的理化学研究所于 1993年设立了由海外诺贝尔奖获得者和国内著名学者组成的“顾问委员会”,每隔7年对主任研究员进行一次非常严格的科研成就评价。目前我国的国家重点实验室,一般由政府主导进行周期性评估,以国内专家为主,只有在某些领域会聘请一些国外专家。周岱指出,对于未来国家实验室的科研项目,政府要逐渐实现“管评分离”,在同行专家评议中引入一定比例的国际权威,使得评价更加国际化和更有针对性。  据了解,美国国家实验室都把技术转移作为服务国家的一个重要使命,国会通过了一系列的法律来促进技术转移并形成激励机制,使国家实验室和美国的企业不仅在技术上,而且在人员、设备、方法、专业知识以及广泛的技术信息上实现共享。眼下,上海一些科研机构在成果转化上做了许多有益尝试,周岱建议,未来的国家实验室可以建立并不断加强专门的知识产权管理和技术转移机构,为科研成果大声“吆喝”,提高科技成果转化率,促进科技与经济的结合,促进产业转型升级。
  • 中国拟15亿建设世界最大纳米真空科研装置
    世界首个集材料生长、器件制备、测试分析为一体的纳米领域大科学装置——纳米真空互联综合实验站正在我国江苏苏州工业园区建设。这个实验站相当于在太空建设了一个全真空的纳米器件研发平台。  正在建设中的这个纳米实验站是目前世界上最大的真空互联科研装置。其总体方案是:用总长近500米的超高真空管道,将上百台用于材料生长、器件制备、测试分析的大型仪器设备互联,实现样品在不同设备之间传送时其表面不被氧化、沾污,不被外界大气环境所破坏。中科院苏州纳米技术与纳米仿生研究所研究员、纳米真空互联实验站常务副总指挥丁孙安说,实验站通过超高空间分辨、时间分辨、能量分辨、质量分辨等的高端能力仪器设备,对物质的“本征性质”进行研究,从而实现量子材料的设计、制备和表征,后摩尔时代器件加工和测试分析,同时开展新材料、新工艺、新结构和新功能的开发和研究,以及形成第三代半导体工艺包。  “这个实验装置是在类似太空的全真空环境下的纳米器件研发平台,相当于把现有的加工设备统一搬到太空。”丁孙安说。  纳米真空互联实验站是依托中科院苏州纳米所,联合清华大学薛其坤院士团队、中科院大连化学物理研究所包信和院士团队建设的。一期建设由中科院、江苏省、苏州市和苏州工业园区共建,预计2018年建成,建设经费3.2亿元。一期建成后将连接30多台设备,形成100米的真空管道。整个实验站的总预算是15亿元。  苏州工业园区是全球纳米领域具有代表性的八大产业区域之一。中科院纳米所所长杨辉说,在此建设纳米真空互联实验站,是力图通过真空条件下的互联集成和若干重大项目验证,突破现有仪器设备的功能限制,实现材料制备、测试分析与微纳加工工艺等方面协同效应,为科研和战略性新兴产业发展提供先进的、开放性的平台。
  • 五千余名科研人员入驻怀柔科学城 大科学装置开始进入科研状态
    最近,怀柔科学城综合极端条件实验装置园区的食堂热闹起来,每天都有约150人在这里就餐。目前,综合极端条件实验装置正在进行设备安装调试,一部分研究单元和实验站开始进入科研状态。“十四五”时期,整个怀柔科学城建设与运行并重。  大科学装置开动期待第四次工业革命  在布局怀柔科学城的五个大科学装置中,综合极端条件实验装置2017年9月第一个动工建设,按计划将于2022年9月正式投入使用。  “综合极端条件实验装置一共有18个实验站,分布在三个中心里,分别是物态调控中心、量子计算中心、超快科学中心,其中,量子计算中心有4个实验站。”中科院物理所研究员、怀柔研究部主任吕力介绍。一个完整的量子计算实验站包含极低温的环境,这就需要有制冷机,要有很多测量线和元器件,其中不少都要靠手工完成,所以安装调试过程需要较长时间。  吕力介绍,物质的状态跟温度、压强、磁场等有关。综合极端条件实验装置就是创造极低温、超高压、强磁场、超快光场等极端条件,用来研究物质科学的。比如水有液态、固态、气态三种状态,调控水的状态把水变成水蒸气,人类发明了蒸汽机,掀起了第一次工业革命 调控电磁的状态,人类开启了第二次工业革命,进入电气时代 调控电子的状态,导致了第三次工业革命——信息化。“从物理学的角度,能不能靠继续调控物质的状态、物质里的电子的状态,对第四次工业革命做出贡献,期待这个大科学装置能够为此出力。”吕力说。  科学装置实验条件世界领先  大科学装置如何创造极端条件?“冷到一定程度不可能再冷了的最低温度,物理学上叫绝对零度,-273.15℃。在量子计算中心,我们能做到仅比绝对零度高0.01℃,甚至是0.001℃,这是世界领先水平。”吕力自豪地说。  量子计算离实用还有一段距离要走,是国际上竞争相当激烈的研究方向。早在2004年,在中关村园区,物理所的科学家们就在设想,在北京找个地方,建非常好的平台,研究极低温下的量子科学问题。“当时可没想到这个装置能建得这么大。”吕力说,目前,物理所在怀柔科学城的“一装置两平台”(综合极端条件实验装置、材料基因组研究平台、清洁能源材料测试与诊断平台)建筑面积达11.8万平方米,为开展科学研究提供了很好的条件支撑和空间保障。  截至目前,布局怀柔科学城的其他四个大科学装置,地球系统数值模拟装置土建工程完工,设备安装调试即将完成,预计今年6月试运行 空间环境地基综合监测网(子午工程二期)预计今年6月土建工程竣工 高能同步辐射光源、多模态跨尺度生物医学成像设施完成主体结构封顶,预计今年底完成土建工程。第一批5个交叉研究平台正在安装调试科研设备和试运行,11个科教基础设施和8个第二批交叉研究平台加快建设进度。  “怀柔四条”鼓励科研人员进驻科学城  截至目前,在怀柔开展工作的科研人员超过5000人。随着科学设施平台的建设和运行,怀柔科学城将在2025年迎来一万名以上科研人员。  为鼓励更多年轻人到怀柔科学城,5月14日,中科院发布“怀柔四条”激励政策,将中科院各院所新增入驻怀柔、全时在怀柔开展科研工作的青年职工、特别研究助理和工程技术支撑人才作为激励对象,给予事业编制、人才指标、薪酬支持、特别补助等专项政策支持,加快聚集怀柔科学城“人气”“科研气”。  为迎接越来越多的科研工作者,怀柔科学城及周边公共配套设施建设也在加快推进。住房方面,积极构建区域统筹、职住平衡的住房保障体系,到今年底可在科学城及周边提供各类住房8000余套 交通方面,同步优化公交网络、配备共享单车,解决入驻院所科研人员“最后一公里”通勤问题 教育资源方面,加快优质教育资源布局、深入推进一体化办学。
  • 大科学装置科研联合基金Ⅱ期启动 经费6000万元/年
    7月12日,国家自然科学基金委和中国科学院在京签署协议,双方共同设立的大科学装置科学研究联合基金(简称大装置联合基金)Ⅱ期协议正式生效,协议执行期从2012年至2014年。国家自然科学基金委副主任沈文庆、中科院副院长詹文龙出席会议,并在协议书上签字。   这是双方就大装置联合基金第二次签署协议。2009年2月,双方就共同设立大装置联合基金首次签署协议,设立联合基金。首期联合基金总量为1.2亿元,中科院和基金委各出资2000万元/年,执行期至2011年。联合基金依托于中科院承建并运行北京正负电子对撞机及北京同步辐射装置、兰州重离子加速器及冷却储存环装置、上海光源装置和合肥同步辐射装置等4个大装置。   在大装置联合基金Ⅱ期,这一基金总量将增至6000万元/年。并增加稳态强磁场装置,扩大所依托的大装置范围。根据协议,联合基金将选择物质科学前沿、信息、生命科学、环境和资源等领域的科学问题以及课题研究牵引的诊断技术等一系列课题进行资助和研究。   据了解,作为我国承担大科学装置建设、运行和管理的骨干力量,中科院长期以来都在积极探索和实践大科学装置开放共享的运行模式和管理机制。中科院基础局局长刘鸣华表示,大科学装置的一个显著特点就是开放共享。它们的建成与高水平运行是一个国家科技水平发展的标志,也是国家科技的核心竞争力之一。   国家自然科学基金委有关领导指出,联合基金的设立旨在以基金项目的形式,引导全国科研人员将自己的研究工作与我国大科学装置密切结合,充分发挥大科学装置支撑科研能力。这一方面是为了提升科学家的研究水平和创新能力,培养一批依托大科学装置开展工作的研究队伍 另一方面不断更新和补充大科学装置实验终端的实验能力,持续增强其多学科研究支撑能力。   国家自然科学基金委数理学部常务副主任汲培文在签字仪式上介绍了大装置联合基金I期的执行情况与科研成果。他透露,在I期,联合基金面向全国受理项目申请。在2009年至2010年两年中,联合基金共资助重点项目15项,面上项目116项。   从资助情况来看,两年中,所依托大科学装置运行单位内的科研团队在重点、面上项目上的项目数和经费数所占的比重仅略高于1/4。这一结果说明:大科学装置运行单位之外的用户是科研主体。   据介绍,大装置联合基金这一新模式激发了研究新思路,促进了不同学科科研人员的思想碰撞,产生了一系列重大成果。据了解,中国科大、中科院近代物理所、中科院大连化物所、中山大学等单位的研究人员在项目的资助下,均取得了原创性的科研成果。
  • 国之重器!怀柔科学城首个大科学装置进入科研阶段
    div class=" article-content" p span class=" bjh-p" 作为肩负原始创新重任的“国之重器”,布局在怀柔科学城的大科学装置建设一直备受关注。近期,随着中国科学院物理所怀柔园区投用,园区内综合极端条件实验装置也成为了怀柔科学城首个进入科研阶段的大科学装置。这一装置目前的最新进展如何?未来将具备哪些实验条件?记者走进中科院物理所怀柔园区一探究竟。 /span /p div class=" img-container" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/5af7127e-d740-4e05-b8aa-35fa846862b4.jpg" title=" b151f8198618367ab033d49c5e391ed3b21ce58f.png" alt=" b151f8198618367ab033d49c5e391ed3b21ce58f.png" / /div p span class=" bjh-p" 俯瞰中科院物理所怀柔园区。怀柔科学城供图 /span /p p span class=" bjh-p" 朝霞掩映下,中科院物理所怀柔研究部主任吕力踏入了刚启用不久的物理所怀柔园区。“现在已经把超过一半的工作重心转移到这里,开始在中关村和怀柔两头跑。最近,我们正打算搭建视频会议系统,实现几处园区更好联动。”吕力说。 /span /p p span class=" bjh-p" 记者看到,相比此前竣工验收时的清冷,如今园区内已热闹起来,来自物理所的研究人员,以及多家高校的学生走入崭新的实验楼宇内,开始各自的研究工作。“目前,园区已有150余人入驻办公,年底会达到200人。”吕力说。 /span /p p span class=" bjh-p" 按照规划,综合极端条件实验装置将于2022年6月全面建成。为何如今提早进入了科研阶段?吕力解释:“在怀柔园区进行土建施工的同时,综合极端条件实验装置所需的内部仪器设备已经在物理所中关村园区同步搭建和调试,例如营造极低温、超高压等实验环境的设备已经先期在中关村园区预研甚至搭建完成。一部分设备等到怀柔园区土建竣工后,可以直接搬移至园区。”由此,综合极端条件实验装置目前已经具备了部分的实验功能。 /span /p p span class=" bjh-p" 综合极端条件实验装置具体将营造哪些极端条件?聚焦哪些科研领域?吕力介绍,所谓极端条件,指的是在实验室中人为创造出来特别低的温度、特别强的磁场、特别高的压力等,用超快的“高速摄影机”来观察实验现象。“通过创造极端条件,可以发现和揭示许多在通常条件下观察不到的奇异物质特性,探索新的规律,开辟新的应用。” /span /p p span class=" bjh-p" 吕力进一步举例:“例如超导体,此前这种现象是在非常低的温度下才会出现,但近来发现,在超高压的条件下,也可以在接近室温的条件下出现超导体。”此外,极低温、强磁场等极端条件还可以帮助量子计算、非常规超导机理等研究取得成果。 /span /p p span class=" bjh-p" 值得一提的是,关键极端条件的营造主要依赖了国内研究团队的自主研发。“营造极低温、超高压等实验环境,主要依靠物理所研发团队。强磁场方面,合作单位中科院电工所王秋良团队在去年成功研制出中心磁场高达32.35特斯拉(T)的全超导磁体,打破了此前美国国家强磁场实验室创造的32.0特斯拉超导磁体的世界纪录。”吕力透露,目前王秋良团队仍在研发营造强磁场实验环境的“升级版”,未来会将“升级版”入驻到综合极端条件实验装置中。 /span /p p span class=" bjh-p" 除了综合极端条件实验装置,随着怀柔园区启用,材料基因组研究平台、清洁能源材料测试诊断与研发平台两大研究平台也进入了科研状态。中科院物理所怀柔研究部副主任禹习谦介绍,两大平台中的电子显微镜、计算子平台等已经可以对用户开放进行实验。目前,除了物理所内部实验,已有在京高校前来进行实验。未来,两大平台还将与多家高校、科研院所、行业龙头企业成立联合实验室。 /span /p div class=" img-container" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/bccda7fe-6841-4459-9c3e-fb9ab903fb32.jpg" title=" 279759ee3d6d55fb22fddf9d1968da4d20a4dd20.png" alt=" 279759ee3d6d55fb22fddf9d1968da4d20a4dd20.png" / /div p span class=" bjh-p" 中科院物理所怀柔园区全景图。怀柔科学城供图 /span /p p span class=" bjh-p" 此外,怀柔园区内还建起了5000平方米的科学仪器研发中心,重点解决科学仪器被国外垄断问题。“目前,我们的部分科学仪器和部件还有赖进口。近年来随着国际关系的变化和今年疫情暴发,这一问题凸显。我们希望利用物理所多年累积的自主研发优势,在超快电子显微镜、稀释制冷机等方面研发优秀的国产科学仪器。”中科院物理所怀柔研究部副主任郭建东表示。 /span /p /div p br/ /p
  • 吉林大学国家重大科研仪器研制项目“新一代大型超高压产生装置”通过验收
    4月28至29日,国家重大科研仪器研制项目“新一代大型超高压产生装置”验收会在吉林大学举行。国家自然科学基金委员会副主任谢心澄、浙江大学张泽、南方科技大学校长薛其坤、北京高压科学研究中心毛河光、燕山大学田永君、复旦大学龚新高、北京理工大学方岱宁等有关领导和相关领域专家,吉林大学校长张希,邹广田等参加了项目验收会和现场考察。会议由国家自然科学基金委员会数理学部常务副主任董国轩主持。  在评审验收工作中,专家组一致认为,“新一代大型超高压产生装置”项目取得了大直径液压系统长行程自找平技术、分瓣式高压腔体与预应力钢带缠绕技术、压力梯度材料设计与三级密封组装技术三项创新性技术突破,为推动我国高压科学技术研究发展提供了大吨位单轴加载试验平台,总体完成了计划设计指标,正式通过国家项目验收。  会上,张希代表吉林大学向国家自然科学基金委领导和专家们的指导表示感谢,向邹广田院士及项目组八年多的辛苦付出表示敬意。他表示,高压物理、高压化学和高压材料研究是吉林大学的优势学科方向,“新一代大型超高压产生装置”的建成,是开始的结束,而不是结束的开始。他希望相关科研团队和师生充分发挥装置效用,不断产生重要的新发现、新发明、新创造。希望国家基金委对项目接续支持,使装置得到充分利用,成为国内外学术交流合作的重要平台,为培养更多高层次人才、推动科技进步作出贡献。  谢心澄在讲话中向邹广田带领的科研团队自装置项目立项以来,积极面向国家重大需求、坚持开展科研攻关表示感谢,同时,向吉林大学对装置研发工作的大力支持表示感谢,并希望吉林大学将该装置广泛应用于国家相关领域建设和转化应用,不断产生新的重要成果。  验收会上,项目组技术负责人作项目工作情况报告。与会专家组分别听取了监理组、技术测试、技术档案和财务工作验收介绍,并前往大压机实验楼现场考察仪器设备有关情况。  据了解,“新一代大型超高压产生装置”是吉林大学截至目前获批经费最多的国家自然基金项目。作为目前国际上最高吨位的单缸液压机,该项目成功研制的大腔体液压机将高压腔体体积的现有水平提高了2个数量级,可以开展以前所不能进行的高温高压研究工作,极大推进高压研究成果的转化应用。该装置的研发不仅实现了我国大腔体超高压装置从无到有“零”的突破,而且在物理、化学、材料、地学和能源等基础学科的高压科学研究中都将起到不可替代的重要作用,将在提升我国静高压研究水平和国际地位,解决国家行业重大需要等方面积极贡献吉大力量。  国家自然科学基金委、教育部有关负责同志,来自国内20所高校和科研单位的验收专家,吉林大学常务副校长郑伟涛,科研院、财务处、审计处、资产管理处、实验室管理处、基础设施建设办公室、物理学院、超硬材料国家重点实验室等相关部门和学院负责同志及技术人员参加了评审验收会。
  • 山东着力推动大型科研仪器和中试装置开放共享 为产业升级和转型注入新动力
    8月1日,省政府新闻办举行政策例行吹风会,介绍山东加速推进科研仪器开放共享、服务重大科技创新情况。推动大型科研仪器和中试装置开放共享,能够增加科技创新资源有效供给,减少仪器重复购置、闲置,便于企业链接会聚科技人才团队,降低企业创新成本。“特别是对中小企业,能够通过支付非常少的成本,共享使用先进的仪器设备,高效开展新产品研发、新技术验证,以此有效激发企业创新活力,加速科技成果向现实生产力的转化,为产业升级和转型注入新的动力。”省科技厅副厅长梁恺龙说。据介绍,我省2005年启动大型科研仪器共享工作,搭建了山东省大型科研仪器开放共享服务网,目前入网的价值10万元以上的仪器有1.8万多台,入网会员单位近4万家。近日,我省又出台了《关于加强大型科研仪器及中试装置开放共享的若干措施》(以下简称《若干措施》),加力推进大型科研仪器和中试装置开放共享。《若干措施》提出要加大科研仪器开放共享力度,优化提升大型科研仪器开放共享服务网功能,到2026年年底,入网大型科研仪器达到3万台,仪器设备原值达250亿元,入网数量和仪器设备原值均达到全国前列。《若干措施》特别提出要强化使用单位支持激励,对符合条件的中小微企业,通过共享大型科研仪器开展科技创新活动,可以以创新券形式获得40%—60%的补助;对省内仪器资源无法满足需求,使用省外设备产生的费用,也可获得创新券补助。同时,将实现创新券“免申、即时”使用,针对后补助形式兑付创新券存在的流程较为繁琐、兑付周期长等问题,升级大型科研仪器开放共享服务平台,创新券将以优惠券形式嵌入,实现直接抵扣,审核频次由“一月一审”变为“一单一审”,实现“免申即享”“即时兑付”,大幅提高创新券补助申领效率。《若干措施》提出,加强政策激励与管理。对开放共享程度高、服务质量好、用户评价高的设备供给方,省科技厅将给予最高200万元奖励,提高供给单位服务的积极性。同时,按照“应入网尽入网”的原则,推动各级财政资金购置的30万元以上大型科研仪器设备全部入网管理。据统计,我省大型科研仪器和中试装置主要集中在高校,高校拥有50万元以上的大型科研仪器6614台,占全省的54.4%。“推进高校大型仪器设备市场化运营,向社会提供开放共享服务,符合条件的服务收入不上缴国库,留归单位纳入预算管理。”省财政厅二级巡视员王永振说。在推进中试基地开放共享方面,我省将对省级中试示范基地每年开展绩效评价,根据其上年度对外开展中试服务绩效给予最高200万元奖补支持。梁恺龙介绍,《若干措施》提出鼓励中试设备开放共享,将系统梳理分散在高校院所、企业等各类单位的中试设备资源,对符合条件的中试设备资源纳入开放共享服务网管理,从机制上解决中试平台开放性不足,中小企业建不起、用不上的问题,打造“中试+”生态。“推动科研仪器共享对促进我省科技创新和高质量发展的作用是多维度的。”梁恺龙介绍,近5年来,我省享受科研仪器共享服务和创新券补助的中小微企业,有74%通过了国家科技型中小企业认定,1285家中小微企业成长为高新技术企业。
  • 北京怀柔科学城:多项大科学装置稳步推进 已取得一批重要科研成果
    作为综合性国家科学中心的承载区——北京怀柔科学城目前正在加速建设。先期布局的五大科学装置稳步推进,部分装置2024年有望投入正式运行。我国首台高能同步辐射光源建筑主体完成在北京怀柔科学城,我国首台高能同步辐射光源的建筑主体已经完成建设,其内部正在进行科学仪器的安装和调试。可发射比太阳亮1万亿倍的光 用途广高能同步辐射光源是世界上亮度最高的第四代同步辐射光源之一。从空中看,这个建筑就像一个放大镜,特别的是,这个放大镜可以发射比太阳亮1万亿倍的光。通俗讲,亮度越高意味着看得更清楚,在这里可以更深层次地解析物质微观结构和演化机制,提升我国国家发展战略与前沿基础科学技术领域的原始创新能力。与此同时,多模态跨尺度生物医学成像设施、子午工程二期等国家大科学装置,都将努力在2024年完成国家验收并投入正式运行。国内外科学家的国际化公共服务中心——城市客厅的建设目前也已进入收尾阶段,即将亮相。集极低温 强磁场 超高压 超快光场于一体人们对物理世界极限的探寻从未停止。如果说,高能同步辐射光源项目是在追求地球上最亮的光,那与它相邻的“中国科学院物理研究所综合极端条件实验装置”追求的则是地球上最低的温度、最高的压力、最强的磁场和最快的光场,帮助我们进行前沿科学研究。可用于材料合成 量子调控等前沿研究“综合极端条件实验装置”是国家十二五重大科技基础设施项目,集极低温、强磁场、超高压、超快光场等极端条件于一体。利用这些极端条件,可以开展材料合成、物性表征、量子调控、超快过程等物质科学的前沿研究。“综合极端条件实验装置”项目自2017年9月30日开工建设,是怀柔科学城第一个开工的国家重大科技基础设施。目前,已经进入试运行阶段,并向国内外用户开放申请,已经取得一批重要的科研成果。从生物分子到人体的全尺度都可“拍照”在北京怀柔科学城中,我国首创的生物医学领域的大科学工程——多模态跨尺度生物医学成像设施已经投入试运行。目前,设备陆续进场,整体布局日益完善,将可提供从生物分子到人体的全尺度多模态成像能力。多模态跨尺度生物医学成像设施是全球首个多模态、全尺度、全景式、一体化的生物医学成像技术集群大型设施,也是由我国科学家首创的生物医学成像领域的大科学工程。主要建设内容包括四大装置,即多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像数据整合装置,提供从生物分子到人体的全尺度多模态成像能力。用于支撑脑科学 肿瘤等疾病的研究多模态跨尺度生物医学成像设施面向生物医学的基础科研和临床研究需求,用于支撑脑科学、肿瘤、心血管疾病等生物医学问题研究。目前,多模态跨尺度生物医学成像设施的二期建设内容,分子影像与医学诊疗探针创新平台正在加速推进。建成后,将助力成像设施全功能运行和技术转化,全景式研究和解析生物医学重大科学问题。打造“虚拟地球” 可研究全球气候变化作为国家先期在怀柔科学城布局的五大科学装置之一——我国自主研发的首个地球系统数值模拟装置已完成国家验收,并正式对外开放使用。这一装置将为全球气候变化、环境保护等重大问题提供科学支撑。地球系统数值模拟装置又称“地球模拟实验室”,是我国首个具有完全自主知识产权的地球系统数值模拟平台。它通过集成大气圈、水圈、冰冻圈、岩石圈和生物圈等多个地球系统圈层的数值模拟软件,构建了一个综合性的研究平台。地球系统数值模拟装置不仅可以广泛应用于气候变化研究、环境监测与评估和自然灾害预测等领域。在当下最为紧迫的气候变化应对与碳中和领域中,该系统还能够全方位关注全球生态和生物地球化学过程及其与气候系统的相互作用,并在此基础上建立起“生态—气温—二氧化碳浓度—碳排放量”的清晰关系,对温室气体核算、未来升温预估提供有力的模拟支撑,助力碳达峰、碳中和愿景目标的实现。
  • 怀柔科学城大科学装置——高能同步辐射光源安装首台科研设备电子枪
    中国新建于北京怀柔科学城的大科学装置——高能同步辐射光源(HEPS)28日正式安装首台科研设备电子枪,为其提供技术研发与测试支撑能力的先进光源技术研发与测试平台(PAPS),当天也在科学城同步转入试运行。  高能同步辐射光源由中国科学院高能物理研究所(中科院高能所)承担建设,是中国“十三五”重大科技基础设施项目之一,建成后将成为中国第一台高能量同步辐射光源、世界上亮度最高的第四代同步辐射光源之一,为基础科学和工程科学等领域原创性、突破性创新研究提供重要支撑平台。  中科院高能所表示,高能同步辐射光源首台科研设备安装标志着该工程正式进入设备安装阶段,首台安装的加速器设备电子枪,位于高能同步辐射光源直线加速器端头,是加速电子产生的源头,采用全国产技术,自主设计、国内加工。  电子枪由枪体、陶瓷桶、防晕环、阴栅组件四大部件构成,其中阴栅组件是电子枪的关键“卡脖子”部件。中科院高能所提前布局,通过多年技术攻关,克服诸多困难,解决了阴极发射以及微米级栅网编制、变形和焊接等难题,基本实现了阴栅组件的国产化。  高能同步辐射光源也是中科院、北京市共建的怀柔科学城核心装置,由国家发展改革委立项支持并于2019年6月开工建设,建设周期6.5年。截至2021年6月底,其建安工程约完成总工程量的70%,磁铁、电源等设备完成样机试制,进入批量加工阶段,束流位置测量电子学、像素阵列探测器研制取得阶段性进展。预计2022年初,各建筑单体全部交付使用,高能同步辐射光源将全面转入设备安装阶段。  当日,作为第一个通过工艺验收、转入试运行的北京市首批交叉研究平台项目,先进光源技术研发与测试平台同步启动试运行,其超导高频及低温、精密磁铁测量、X射线光学检测等设备开机运转。这既为高能同步辐射光源建设测试和技术研发提供更好支撑,也将为后续其他平台验收起到很好带头作用,标志着北京怀柔综合性国家科学中心已由建设为主转向建设与运行并重的关键阶段。  先进光源技术研发与测试平台由北京市发展改革委立项支持,项目位于高能同步辐射光源对面。该项目创新采取中科院高能所、怀柔科学城公司“双主体”建设模式,开展前瞻性和系统性的研究,解决高能同步辐射光源建设所需的超导高频及低温、精密磁铁测量、探测器技术研发测试、X射线光学检测等一系列关键技术,为先进光源建设、运行及后续发展提供有力的技术支撑。  先进光源技术研发与测试平台于2017年5月启动建设,建设周期4年,本月中旬已顺利通过工艺测试验收,高质量实现项目建设目标。目前,先进光源技术研发与测试平台已取得多项成果,尤其是在1.3G赫兹(Hz)9腔室超导腔研制方面达到国际领先水平。  据了解,高能同步辐射光源、先进光源技术研发与测试平台等所在的北京怀柔科学城,当前正全力推进科学设施建设运行,不断推动综合性国家科学中心建设取得新突破,“十三五”时期布局的29个科学设施平台已全部开工,科技创新的集聚效应和溢出效应正持续显现。
  • 苏州医工所“全脑在体单神经元解析成像实验装置” 重大科研设施预研筹建项目正式立项
    近日,江苏省科技厅发布《2022年省科技计划专项资金(创新能力建设计划)暨中央引导地方科技发展资金(创新能力建设项目)拟支持项目》公示。苏州医工所牵头组织的“全脑在体单神经元解析成像实验装置” 是苏州大市唯一获批立项的重大科研设施预研筹建项目。“全脑在体单神经元解析成像实验装置”定位于面向脑与认知科学的重大需求,建成世界首个具备三维曲面动物全脑皮层单神经元解析能力的在体实时成像装置,开展哺乳动物全脑皮层单神经元活动图谱的实验研究。本装置的顺利实施,将开拓“皮层功能组学”新领域,打造世界重要的脑科学研究实验基地,助力我国脑科学研究进入世界领先水平,推动人工智能理论方法的发展,同时提升我国高端光学装备自主研制能力。重大科研设施预研筹建,是以江苏省经济社会发展的重大需求为导向,围绕国家战略部署,聚焦长三角科技创新共同体建设、苏南国家自主创新示范区一体化发展等,以培育创建国家重大科技(科教)基础设施,支持有条件的地方集聚国家战略科技力量,预研建设重大创新基础设施(平台),支撑综合性国家科学中心或区域性创新高地建设。“全脑在体单神经元解析成像实验装置”获准启动之后,将攻克系列关键技术和核心器件。前期,将重点开展“全脑皮层单神经元在体成像系统”的建设任务。后期,将以此为基础,积极争取国家和地方等多方面的资金投入,进一步将此装置建成突破型、引领型、平台型的国家重大科技(科教)基础装置,服务于在体脑科学前沿和基础研究。
  • 国家重大科研仪器研制专项(部委推荐)“基于可调谐红外激光的能源化学研究大型实验装置”顺利通过验收
    3月8-9日,国家自然科学基金委员会(以下简称基金委)组织专家在中国科学技术大学对厦门大学孙世刚教授主持的国家重大科研仪器研制专项(教育部推荐)“基于可调谐红外激光的能源化学研究大型实验装置(项目批准号:21327901)”进行验收。会议期间,专家组认真审阅了验收材料,听取了项目负责人孙世刚教授的项目工作报告和监理组的监理情况报告,并进行质询和现场考察。在听取仪器测试组报告、财务组验收意见及档案组审核情况报告并经过充分讨论后,专家组认为项目达到预期研制目标,符合验收要求,同意通过验收。“基于可调谐红外激光的能源化学研究大型实验装置”项目由厦门大学、中国科学技术大学、复旦大学和中国科学院大连化学物理研究所共同承担,并由我校孙世刚院士主持。四家承担单位集中优势建设了一套具有国际先进水平的波长连续可调、覆盖中红外到远红外波段的可调谐红外自由电子激光光源,和以红外自由电子激光为光源的固/气和固/液表界面反射吸收红外光谱实验线站、原子力显微红外光谱实验线站、和频光谱实验线站、光解离光谱实验线站和光激发光谱实验线站五条实验线站。历时8年攻关,我校参研人员在孙世刚院士带领下建成了国际上首个红外自由电子激光反射吸收光谱实验线站,首次实现了低至200波数的宽波段电化学原位红外检测,建成的和频光谱实验线站实现了低波数皮秒级时间分辨和频光谱检测。该装置的研制为化学、物理、材料以及生物医学等相关领域提供了一个有力的工具和研发平台。
  • 国家重大科研仪器研制项目(部门推荐)“基于超高帧频激光诊断的高温高压湍流燃烧研究装置”进行现场考察
    2022年8月26日,由国家自然科学基金委员会(以下简称自然科学基金委)副主任谢心澄院士带队,化学科学部组织专家对拟资助的国家重大科研仪器制项目(部门推荐)“基于超高帧频激光诊断的高温高压湍流燃烧研究装置”进行了现场考察,该项目由上海交通大学齐飞教授牵头负责。自然科学基金委化学科学部和计划与政策局相关工作人员,项目推荐部门教育部、依托单位上海交通大学及合作单位相关领导和项目组成员出席。 谢心澄副主任指出,专家组要对项目全面考察、严格把关,推动项目按期完成,项目依托单位和合作单位要为项目实施提供充分的政策支持和条件保障,期待通过本项目的实施,切实提升我国先进发动机燃烧研究的综合水平和国际地位。 化学科学部常务副主任杨俊林指出,原创仪器研制是产出创新科技成果的重要基础,科学仪器研制需要面向国家需求和科学前沿,以解决基础科学问题为目标,全面支撑我国科技原始创新能力的提升,为我国基础研究的发展提供强有力的手段和工具。同时,他强调了项目实施质量、建设条件保障和科技资源共享的重要性。 上海交通大学常务副校长丁奎岭院士代表依托单位感谢自然科学基金委对该项目的支持,强调上海交通大学将落实好依托单位责任,在各个方面全力支持和保障该项目的实施。 齐飞教授代表项目组汇报了项目的科学目标、研制方案、保障条件和研制基础,现场回复了专家组质询。随后,专家组实地考察了上海交通大学激光燃烧诊断实验室和拟建设的装置场地,并根据项目申请材料、负责人汇报和现场考察情况,提出了考察意见和项目实施建议,形成了考察报告,圆满完成了考察任务。
  • 俄科研人员研制出铁轨磨损自动检测装置
    p & nbsp & nbsp & nbsp & nbsp 轨道磨损会降低列车通行的安全性并增加燃料成本,为此俄罗斯托木斯克理工大学的研究人员开发出一种高精确的、可替代手工测量铁路钢轨磨损程度的方法。 /p p   据开发人员介绍,目前测量铁轨磨损最常见的方法是使用活动支架、卡钳、模板进行手工测量。在繁忙的铁路线上,则由配备了自动系统的专门列车进行测量,但这种方式成本太高,且只能用在大型主干线上。新研发的装置主要用在那些仍在使用手工检测的铁路支线上。 /p p   该装置是一个金属结构,使用时将其固定在轨道上,由激光传感器围绕轨道一次性选取300个点测量其到轨道表面的距离,从而得到高精度的数据,测量过程仅需5秒左右。此外,研究人员还开发了一款配套的手机应用软件,根据测量数据,将轨道的轮廓图显示在智能手机上,与国家标准进行对比。 /p p   目前托木斯克理工大学已造出测试样机。电子与自动化设备教研室的工作人员正在改进其机械部件并研究更精确的数学算法。 /p
  • 沈阳科仪:正参与同步辐射装置、先进光源等大科学装置建设
    近日,上交所表示,终止半导体设备厂商中国科学院沈阳科学仪器股份有限公司(以下简称“沈阳科仪”)发行上市审核。在沈阳科仪得招股说明书中显示,其正参与同步辐射装置、先进光源等大科学装置建设。招股书显示,沈阳科仪主要从事干式真空泵、真空仪器设备的研发、生产和销售,并提供相关技术服务。干式真空泵是半导体制造工艺设备的核心附属设备,为集成电路、光 伏、LED、平板显示、锂电池等行业的生产设备提供所必需的高度洁净真空环境。沈阳科仪得真空仪器设备产品主要包括大科学装置、真空薄膜仪器设备、新材料制备设 备三大类。其中大科学装置指用于基础科学研究的国家重大科学工程的大型科研 装置与设施;真空薄膜仪器设备主要包括用于科研的PVD、CVD设备;新材料制备设备主要包括晶体材料制备设备、真空冶金设备等。在招股书的发行人的主营业务经营情况部分中显示,发行人正在参与北京高能同步辐射光源、上海同步辐射装置、合肥先进光源、大连相干光源等国家重大科学基础设施的建设,发行人已成为国内大科学装置真空技术及真空科研仪器设备领域领先的产品与服务提供商。资料显示,合肥先进光源(HALS)是基于衍射极限储存环的第四代同步辐射光源,其发射度及亮度指标的设计目标为世界第一,建成后将是全世界最先进的衍射极限储存环光源。合肥先进光源(HALS)设计定位世界唯一、位于中低能区、“具有鲜明衍射极限及全空间相干特色”的第四代同步辐射光源,将应用于动态世界的观测,为能源与环境、量子材料、物质与生命交叉等领域带来前所未有的机遇。图源 大连相干光源大连相干光源是一台采用高增益谐波放大运行模式的极紫外自由电子激光用户装置,是一种以相对论高品质电子束作为工作介质,在周期磁场中以受激发射方式放大电磁辐射的新型强相干激光光源。该装置是我国第一台自由电子激光大型用户装置,是世界上唯一工作在极紫外波段的自由电子激光用户装置,也是世界上最亮的极紫外光源。自由电子激光是近年来国际科技界飞速发展的一类重大科技基础设施,被称为“第四代先进光源”,具有超高亮度、超短脉冲、全相干等优异特性,大大提高了实验研究的时间和空间分辨率。
  • 北京怀柔仪器和传感器有限公司受邀参加超强激光源助力怀柔高端科研装置发展院士专家圆桌论坛并做特邀报告
    2023年11月10日,北京光学学会与北京工业大学科协、北京工业大学理学部、北京市科学技术协会创新服务中心等单位在中国科技会堂联合主办“超强激光源助力怀柔高端科研装置发展院士专家圆桌论坛。北京怀柔仪器和传感器公司受邀参会。 为具体贯彻北京市科协引导高端智力资源为重点区域及行业高科技企业发展出谋划策的精神,此次论坛邀请北 京光学学会理事长、中科院理化技术研究所研究员许祖彦院士、中国光学光电子行业协会名誉理事长、中国电科集团公司第十一研究所首席专家周寿桓院士、北京科技社团中心副主任李纯鸣、北京市科学技术协会创新服务中心王妮娜部长、北京光学学会常务副理事长、北京工业大学副校长翟天瑞教授、北京大学电子信息工程学院张志刚教授等多位业内知名专家出席并致辞。 此次论坛包括三个特邀报告和一个圆桌对话环节,论坛特邀报告环节由大会执行主席北京交通大学延凤平教授主持。中国工程院许祖彦院士做了《深紫外激光仪器》的报告,系统介绍了深紫外前沿科学装备的发展及在国家重大专项的支持下,我国在紫外科学装备研制领域的成果。中国电子科技集团公司第十一研究所眭晓林研究员代周寿桓院士做了《基于光频调制的动目标指示(MTI)激光雷达》的报告,介绍为了解决动目标指示(MTI)激光雷达出现的盲距和距离模糊问题,对激光测距发射波形、本振波形以及解算方法进行的研究。 北京怀柔仪器和传感器有限公司总工程师刘海锋《激光技术与光学仪器在大科学装置中的应用机遇与挑战》报告,全面介绍了怀柔科学城和怀柔大科学装置布局,超强激光与加速科学、超快激光、激光时空测量、生物医学成像、地球数值模拟等大科学装置对激光技术和光学仪器的需求,及面临的重大机遇和挑战,刘海锋总工程师向全国的专家学者、企业家、在校生发出邀请,欢迎大家莅临怀柔共享怀柔科学城大装置资源和发展机遇,共同建设北京怀柔综合性国家科学中心和北京国际科技创新中心。 圆桌对话环节由北京大学张志刚教授主持。中科院半导体研究所全固态光源实验室主任林学春研究员、中科院物理研究所滕浩研究员、北京工业大学科协秘书长、北京工业大学科学技术发展院闫健卓副院长、北京工业大学怀柔科教融汇基地筹建办公室吴奇副主任、大恒星图(北京)激光技术有限公司杨帅帅总经理、北京光学学会常务副秘书长万玉红教授作为特邀嘉宾发言。各位专家围绕怀柔大科学装置的建设与运营、超强激光技术如何助力怀柔大科学装置发展、怀柔科学园区科研合作、科技创新、科技成果转化模式等问题进行了探讨。在张志刚教授风趣幽默的主持下,大恒星图杨帅帅总经理分享了来怀柔“图”什么的思考,在怀柔科研创业的美好经历和成绩,同时对园区运营单位给予的贴心帮助和专业服务表达衷心感谢。刘海锋总工程师还细心解答了张志刚教授关于怀柔区轨道交通规划、怀柔区人才政策、多模态跨尺度生物医学成像装置进展、太瓦激光器产业化前景等问题,为来怀工作科研、创新创业的人士提供了专业指导,广泛引起了在场专家、企业家来怀柔调研考察的热情。 在京高校、科研院所、怀柔科学城科技企业等各领域专家、嘉宾60余人现场参加此次圆桌论坛,相关领域专家学者逾万人通过蔻享学术线上直播参与本论坛。与会人员论坛期间与报告人展开了积极的讨论、探讨合作意向,受益匪浅。本次院士专家圆桌论坛为与会者提供了一个了解科学前沿、展示研究成果、推进产学研用合作的高水平交流平台,为激光技术助力怀柔科学城发展注入了新鲜的活力。北京怀柔综合性国家科学中心 怀柔科学城是北京加强全国科技创新中心建设主平台“三城一区”之一,规划范围约100.9平方公里,以怀柔区为主,并拓展到密云区的部分地区。战略定位是世界级原始创新承载区,是国家发展改革委、科技部联合批复的北京怀柔综合性国家科学中心的集中承载地,综合性国家科学中心是怀柔科学城的显著特色和明显标志。主要围绕物质科学、信息与智能科学、空间科学、生命科学、地球系统科学五大科学方向,力争实现率先突破。重点推进“五个一批”,即:建成一批国家重大科技基础设施和交叉研究平台;吸引一批科学家、科技领军人才、青年科技人才和创新创业团队;集聚一批高水平的科研院所、高等学校、创新型企业;开展一批基础研究、前沿交叉、战略高技术和颠覆性技术等科技创新活动;产出一批具有世界领先水平的科技成果,提高我国在基础前沿和交叉科学领域的原始创新能力和科技综合实力。北京怀柔仪器和传感器有限公司:北京怀柔仪器和传感器有限公司是怀柔区高端仪器装备和传感器产业研究与产业发展国有平台公司,未来将持续围绕北京怀柔综合性国家科学中心建设,聚焦高端仪器装备和传感器等硬科技领域,以“科创平台+科技服务+基金投资”为核心业务及抓手,提供专业化研究与咨询服务、专业化中试平台服务,应用场景构建服务等,引导高端仪器和传感器产业领域的技术、人才、资本、服务等创新要素聚集,打造产业发展创新生态。
  • SHMFF装置助力科研团队首次人工实现纳米螺旋-解旋-再螺旋
    近期,南京大学陆轻铱教授&高峰教授课题组与中国科学院合肥物质院强磁场中心、中国科大合作,依托稳态强磁场实验装置(SHMFF),发现一种晶体结构中微妙的竞争和协作关系,在螺旋和解旋产物晶体结构之间建立了微妙的能量平衡,首次实现了纳米线与纳米螺旋之间的多重可逆变化(图1)。研究成果在线发表在Nature Communications上。   纳米螺旋的可逆变化是自然界、生命过程中最精致和最重要的现象之一。然而,纳米材料扭转形成螺旋晶体通常比较困难。目前已报道的纳米螺旋生成的驱动力通常是不可逆的,其反向过程(解旋)难以实现,纳米螺旋经解旋后再重新螺旋则更加困难。因此,化学反应的两个稳定晶态产物之间的多重可逆扭转变化是超低概率事件,需要在它们之间建立非常微妙的能量平衡。长期以来,这种纳米螺旋的可逆变化一直被认为难以获得。本项研究中,电子顺磁共振(ESR,包括高场ESR)(图2)证明纳米螺旋中Co(II)配位环境的变化以及对称性的降低。固体核磁共振谱和太赫兹谱表明π-π相互作用是螺旋生长中的关键作用力。研究人员结合理论计算和各种验证实验,推测出螺旋机制来源于缩合反应和π-π堆积过程之间的竞争作用(图3),这种独特的竞争生长机制以及生长方式的微观可调性,是构建细致可调的能量平衡体系、实现螺旋可逆变化的关键。针对性地设计改变分子间作用力,精细调控不同方向生长速度,使整体结构保持不变,能量平衡方向定向改变,成功实现了纳米结构的螺旋、解旋和再螺旋。   本研究提出了一种晶体可逆变化设计的新概念,这种基于调控分子间相互作用促成晶体多重可逆转化的精细调变技术,为晶体学带来一个全新视角,丰富了晶体学理论,使多重复杂可逆过程的实现成为可能。   南京大学博士研究生杜薇为文章的第一作者,南京大学陆轻铱教授和高峰教授、中国科学院强磁场中心陆轻铀研究员和王俊峰研究员、中国科大江俊教授为共同通讯作者,该研究得到了国家自然科学基金、国家重点研发计划等的经费资助。
  • 东京理化隔膜真空泵、旋转蒸发仪、冷却水循环装置中标黑龙江省中医药科学院科研设备采购项目
    一、项目编号:[230001]HLJZS[CS]20220025二、项目名称:科研设备一批三、采购结果合同包1(科研设备一批):供应商名称供应商地址中标(成交)金额哈尔滨华仪行经贸有限公司南岗区汉广街41号531699,780.00元四、主要标的信息合同包1(科研设备一批):货物类(哈尔滨华仪行经贸有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)1-7其他专用仪器仪表隔膜真空泵东京理化NVP-10002.00(台)12,000.0024,000.001-14其他专用仪器仪表旋转蒸发仪东京理化N-1300+OSB-22001.00(台)19,000.0019,000.001-15其他专用仪器仪表冷却水循环装置东京理化CA-1116A1.00(台)21,000.0021,000.00五、评审专家(单一来源采购人员)名单:刘莉、鲁金凤、徐家奇其余详细信息详见中国政府采购网。
  • 大科学装置“上海光源”建成并试开放
    新华社上海4月29日电(记者 杨金志、张建松)我国迄今为止最大的大科学装置和大科学平台——上海同步辐射光源29日建成竣工,并对用户试开放。“上海光源”的建成使用,其意义绝不仅仅在于为我国的科研史增添几项“最大”“最先进”,更在于它可以打破科学界长期存在的条块分割、零敲碎打的现象,成为理顺我国科研体制的重大契机。   “上海光源”可同时容纳几百名不同学科领域、不同公司企业的科学家和工程师开展实验工作。诚如老一辈科学家所言,如此多的研究人员同时使用“上海光源”,自然就能创造特有的科研氛围,为不同学科间的学术交流提供天然环境 也能为萌发新思想、创造新方法和开辟新学科创造有利条件。   至今,我国仍有一些投入数千万元乃至上亿元的科研设备因为“单位所有”限制,只能自家设备自家用,基本处于“半沉睡”状态,维护成本高昂。许多大型科研设备重复建设、重复引进,浪费惊人。譬如我国海洋科研至今未建成一只可以共享的科考船队,不同系统的科研单位都热衷造船购船,出海的耗费巨大。   在国有大型研究单位科研设备利用率低下的同时,还有不少中小企业、科研院所却由于资金所限,无力购买和使用大型科学装置,导致研发受阻,创新不足,最终影响产业结构的升级换代和国家的整体竞争水平。   近年来,上海及其他长三角地区建立大型科学仪器服务平台,力推科学仪器共享。这种通过政府引导和一定的财政补贴,在使用者和所有者之间建立合理租用关系的模式,已经取得显著效果。   国家中长期科学和技术发展规划纲要确立了我国到2020年进入创新型国家行列的远大目标。要实现这一点,就要深化科研领域的体制改革。“上海光源”也好,其它科学装置也好,只有打破“各自为政”的制度壁垒,才能最大限度地发挥作用,成为建设创新型国家的“国之利器”。
  • 北京怀柔科学城首个大装置开工 综合极端条件实验装置启动建设
    p   由中国科学院物理研究所等建设的国家重大科技基础设施项目——综合极端条件实验装置9月28日在北京怀柔正式启动建设,这也是怀柔科学城第一个开工的国家重大科技基础设施。该工程拟通过5年左右时间,建成国际上首个集极低温、超高压、强磁场和超快光场等极端条件为一体的用户装置,极大提升我国在物质科学及相关领域的基础研究与应用基础研究综合实力。 /p p   综合极端条件实验装置工程由国家发改委审批,中科院、教育部共同申请,得到了北京市和怀柔区的鼎力支持。装置由极端实验条件产生系统、极端条件下的样品表征和测量系统,以及能满足上述各系统研制、升级、维护与运行的支撑系统等部分组成。建成后,该装置将成为开展物质科学及相关领域研究的重要实验基地,成为具有国际领先水平和重要国际影响力的科学与技术研究中心。 /p p   在项目启动会上,中科院副院长王恩哥表示,综合极端条件实验装置是中科院站在国家科技创新总体布局的高度,面向全球科技创新发展态势作出的一项重大部署,是落实习近平总书记关于在北京“建设具有全球影响力的科技创新中心”要求的具体举措之一。 /p p   王恩哥对项目建设法人单位中科院物理所提出了几点要求。他说,物理所要以对人民负责、对历史负责、对党和国家负责的态度,强化建设标准和要求,按照既定建设周期,保质保量完成建设任务 抢抓机遇,认真做好前沿科学领域布局规划 大胆探索大科学装置管理体制机制改革,运行好综合实验设备,多出成果,早出成果,出大成果,勇攀科学高峰 发现、吸引、凝聚顶尖科学家,形成国际科技创新人才高地。 /p p   王恩哥强调,综合极端条件实验装置在国际上是首创,是一项“功在当代,利在千秋”的国家科技基础设施建设工程。他希望该装置能够建设成为世界领先的用户装置,与相关交叉平台一起构成具有全球影响力的凝聚态物质科学研究中心。努力探索世界科学前沿,实现技术引领性突破,在怀柔科学城建设中作出重要贡献。 /p p   “极端条件实验手段的整体水平直接影响着我国在若干核心领域的竞争力。”中科院物理所所长方忠认为,项目建设将大幅提升我国综合极端条件科学与技术研究及尖端实验设备的研制、运行能力,提升我国在相关基础研究、高技术研究领域的综合水平,使我国在该领域的综合实力步入世界一流水平,促进我国从科技大国走向科技强国。 /p p   利用装置,科研人员可以开展非常规超导、拓扑物态、新型量子材料与器件等研究工作,并可在物理、材料、化学和生物医学等领域开展超快科学研究,探索极端时空尺度上的物质结构信息和动力学信息。项目首席科学家、国家“千人计划”入选者、中科院物理所研究员丁洪举例说,倘若科学家能利用装置做出室温超导体,电影《阿凡达》中壮观的“哈利路亚悬浮山”就有望成为现实。 /p p   此外,装置还具有广泛的实际应用价值。依靠该装置,人们可以开展各种特殊功能材料和技术的研发,还能够促进凝聚态物理、材料科学、化学、地质、能源科学及信息科学等不同学科之间的相互渗透、交叉融合。 /p p   项目首席科学家、中科院物理所研究员吕力透露,装置建成后将向国内外用户全面开放,遵循“开放、共享、流动、合作”的运行管理机制,严格保证全面对外开放机时。 /p p   据了解,综合极端条件实验装置是指综合集成低温、高压、强磁场、超快光场等一系列配套的集群设备所构成的大型科学实验设施。近年来,利用极端实验条件取得创新突破已成为科学研究发展的一种重要范式,不少工作获得了诺贝尔奖,大量成果得到了重要应用。世界上许多发达国家或地区,如美国、欧洲、日本等都在该领域展开了激烈竞争,许多著名研究机构都拥有先进的极端条件实验设施。 /p p /p
  • 人民日报:科学装置半闲置谁之过
    最近,《中国科学报》一篇名为《“第一缕曙光”的美丽与哀愁》的报道,读后让人真的感到很哀愁。   探测“宇宙第一缕曙光”,是当代天体物理领域一个非常前沿的课题。它的主要科学目标是研究“宇宙在大爆炸后什么时刻形成第一代恒星”,进而揭示宇宙从黑暗走向光明的历史。2007年建成的21CMA项目,被《科学》、《自然》杂志称为“可得诺奖的举措”。   让人大跌眼镜的是,耗资3000万元的21CMA建成后从未正常运行过。而且,由于很难再筹措到运行经费,今年8月份21CMA可能再次面临被关闭的命运。   据报道称,21CMA项目所面临的困境并非个案。很多已建成的科学装置,包括一些花钱更多的大科学装置,目前处于闲置和半闲置状态。这无疑是一种巨大的浪费。   是什么原因导致如此多的科学装置成了鸡肋?笔者认为,有两个原因不容忽视:一是科研立项时论证不严谨、审批不严格,二是科学装置类项目管理上的“重建设、轻运行”。   据业内人士介绍,有的科研课题在立项时未经同行专家的严格论证,有的项目提出人专门找“同意”的专家来论证,有的项目则是“领导拍板”。这就导致一些课题项目在未充分论证的情况下就仓促上马。   此外,我国的科学装置工程一直存在着“重建设、轻运行”现象。相关部门往往是在装置建设之初很有热情,愿意花大功夫、投大力气,到后期运行时就缺乏系统的管理,当出现困难时甚至撒手不管。   如何防止类似的事情重演?   首先要把好课题立项和项目审批关。比如,在一个项目上马之前,必须经过多方权威专家长期深入调研和充分客观论证,不能只听一种声音。特别是对于像21CMA这类可能取得重大突破但预知风险大的项目,在立项时更要论证充分,对项目技术方案的可靠程度、运行存在的困难等,尽可能做到心中有数。同时,在立项前要科学评估出心理所能承受的最大风险系数,当评估结果在这个系数以上时,就要慎之又慎、三思而行。   立项审批关把好了,不仅科研经费能得到有效合理的分配,避免“饿的饿死、饱的撑死”,同时也可有效防控科研项目的重复设置和科学装置的闲置。   同时,要重视和加强对科学装置的运行管理。经过严格审批的项目上马建成之后,应成立专门的机构来维持运行。相关部门应给与充分信任,保证持续稳定的经费投入。如果项目在运行中遇到困难,也要尽最大能力帮助解决问题,不宜轻言放弃。
  • 上海崛起世界最密大科学装置群
    p   浦东张江的“超级光源”将闪出更耀眼的光芒:今年夏天,能拍摄“分子电影”的软X射线自由电子激光装置,将有望得到第一束自由电子激光 超强超短激光装置,将于年内完成挑战瞬时输出功率10拍瓦的“世界纪录” 上海光源二期线站也在紧锣密鼓地建设中…… br/ /p p   算上已经建成的国家蛋白质科学中心、已经开工的活细胞结构和功能成像平台等,上海张江已成为世界上大科学装置密度最高的地区。依托先进的大科学基础设施群,这里已集聚起全球高端创新资源,向着跻身世界一流实验室行列的目标不断接近。 /p p    strong 大科学装置群营造大科学生态 /strong /p p   去年2月,上海张江综合性国家科学中心获批建设。一年来,超强超短激光实验装置、软X射线自由电子激光用户装置、活细胞结构与功能成像平台等顶级大科学装置,实现了当年立项、当年开工的目标,展现出令人赞叹的“上海速度”。 /p p   “这些项目建成后,张江地区将成为全球规模最大、种类最全、综合能力最强的光子大科学设施集聚地之一。”上海市科委主任寿子琪说,目前张江还在积极争取硬X射线自由电子激光装置、高效低碳气轮机实验装置、国家生物医药大数据等项目落地。 /p p   前沿探索的科研利器汇聚,一个世界级基础研究平台呼之欲出。眼下,超强超短激光装置正在冲击10拍瓦的“世界纪录”,它的未来目标是100拍瓦。 /p p   它的“前身”———中科院上海光学精密机械研究所的嘉定园区内,1拍瓦的超强超短激光装置已开始科学实验探索。去年,我国科学家已利用该装置产生了反物质,成果列入2016年中国十大科技进展新闻。 /p p   超强超短激光装置项目负责人、上海光机所研究员冷雨欣说,比建造一个“世界第一”的装置更重要的,是让更多优秀科学家利用装置,做最前沿的基础原创性研究。 /p p   已建成运行8年的上海光源,截至去年底,共接待用户3.2万多人次,发表论文3200多篇。比这更重要的是,它更加强烈地激发出了中国科学家探索前沿的热情和勇气。曾参与光源建设,目前正负责二期线站工程的中科院上海应用物理研究所研究员邰仁忠说,8年来,光源机时一直供不应求,中国科学家已从被动使用光源,到根据自己学科的发展需求,对光源线站建设提出明确需求。围绕上海光源,一个冲击前沿的创新生态氛围正在形成。 /p p    strong 大科学装置群呼唤大科学计划 /strong /p p   事实上,张江综合性国家科学中心的建设,已经引起国际科技界的广泛关注。中科院上海应用物理研究所党委书记赵明华告诉记者,已进入可行性研究阶段的硬X射线自由电子激光,建成后将成为世界上最先进的同类装置。闻讯后,“一些身在海外的华人科学家主动联系我们,表示想到张江工作,他们有的已在美国工作20多年,这个装置很可能把他们吸引回国”。 /p p   作为当今全球生命科学领域首家综合性大科学装置,上海蛋白质设施已经吸引了国内外近200家单位、1.3万多人次科学家,开展2000多项重大前沿创新课题研究。中心主任雷鸣认为,评判一个大科学装置的功用,应该看它关注了多少根本而重大的科学问题,“张江大科学装置群的崛起,正呼唤与之相匹配的大科学计划。” /p p   放眼全球,大科学装置的崛起无不推动和孕育着超越前人的创新。例如美国布鲁克海文国家实验室聚集了同步辐射光源、成像设施、相对论重离子对撞机、自由电子激光等一大批重要的科研装置,1947年至今,该实验室催生了至少7个诺贝尔科学奖。而作为世界高能物理研究的高地,欧洲核子中心也成就了多个国际大科学计划,比如大型强子对撞机,以及由华裔物理学家丁肇中领导的阿尔法磁谱仪项目等。 /p p   在建设具有全球影响力的科技创新中心的历史机遇下,作为赶超者的张江大科学装置群,正等待着创新灵魂的注入。据市科委总工程师傅国庆介绍,正在谋划的张江综合性实验室的主要构架是“1+N”。“1”指一个大科学设施群,“N”指若干研究方向,包括光子科学与技术、生命科学、能源科技、类脑智能、纳米科技等。这意味着,张江国家科学中心已在各学科领域前沿筑好“巢穴”,引“凤”前来。 /p p br/ /p
  • 大科学装置铸就“中国枢纽”
    实验装置是科学家的“枪”,随着知识探索的不断深入,科学家对实验装置的需求也向着大型、复杂、综合的方向迅速发展。   现在,世界上许多国家级实验室里,人们都可以见到不同肤色、不同语言的学者在一起工作 而在一些大科学计划、大科学装置的建立中,对资金、技术和人力的需求往往超过了一个国家的能力。国际合作由此日渐成为各国科研机构的不二选择。   实验室里的国旗墙   在中科院高能物理所北京谱仪III(BESIII)狭长的地下实验室尽头,有一面特殊的墙,墙上挂满了五颜六色的各国国旗。   “墙上的国旗代表着现在参与北京谱仪III的合作单位。”高能物理所常务副所长、BESIII国际合作组发言人王贻芳告诉《科学时报》记者,“现在搞高能物理研究的人,都知道北京谱仪。”   截至今年6月,BESIII合作组国内外成员单位已扩大到49个,其中外国单位20家,中国香港2家,合作组专家达300多人。   用王贻芳的话说,在北京谱仪之前,中国对高能物理的贡献度“几乎为零”。直到1988年,BESIII的前身——北京正负电子对撞机(BEPC)和北京谱仪建成并投入运行后,这样的局面才得以扭转。   基于北京谱仪,高能物理所也取得了一批重要成果,发表科学论文达150多篇,跻身于世界八大高能物理研究中心之一。   “中国现在已经是世界高能物理界的一支举足轻重、不可或缺的力量。”提起这几十年的变化,王贻芳感到自己和合作组同事的努力全都值了。   中国的,世界的   坐落在上海张江高科技园区的上海光源,是我国迄今为止最大的大科学工程,同时也是目前世界上性能最好的第三代中能同步辐射光源之一。   2004年开工不久,上海光源工程经理部就发现了人力资源的严重短缺。根据当时的测算,上海光源工程建设期间需要约380人的骨干队伍,但开工时却只有130人左右。因此,工程经理部开始注意从国外引进或短期聘请工程建设特别需要的专家,不久就收到了明显效果,工程在编人员很快超过了200 人。   为了保证上海光源建成时仍居国际先进水平,工程经理部积极开展国际合作工作,与国外各主要同步辐射实验室建立了良好的合作关系,进行人员和技术的交流,及时了解国际同步辐射装置的发展趋势、新技术的发展方向,在工程建造过程中得到了国际上的帮助与支持。   上海光源开工一年内,就已有外宾来访47人次,涉及11个国家 出访40人次,涉及8个国家。   安装在中科院近代物理研究所兰州重离子加速器上的ECR离子源,也离不开以“ECR离子源之父”、法国格勒诺布尔技术研究所物理学家Richard Geller为代表的国际同行们的鼎力帮助。   Richard Geller曾几次到近代物理所介绍有关技术。经过与外国专家的交流,近代物理所离子源组在过去十几年间,先后自主研制了4台具有国际先进或领先水平的高电荷态ECR离子源。   2008年,该所副研究员孙良亭获得了首届Richard Geller奖。近代物理所离子源组也在两年内获得了国际离子源领域两项最重要的国际奖项,被认为是目前国际上最活跃和最具创新能力的离子源小组之一。   像Geller这样“无私奉献”的老外,在中科院各大科学装置的建设和运行中还有很多。科学家们明白,大科学装置是技术复杂的综合性工程,它涉及到许多不同的学科领域和高新技术,只有大家通力配合,才能解决关键的技术问题,为人类共同的科学事业争取时间和节省经费。   始于装置 瞄准未来   不管是中科院大科学装置里的“老大哥”北京谱仪,还是近年来赫赫有名的上海光源和合肥强磁场,这些大科学装置都不约而同地冠上了中国的地名。它们在各学科领域发挥重要作用的同时,也让长期以来发达国家在高技术领域对我国的“冷战”思维迅速转变。   这些大科学装置的落户,让中国终于有条件作为东道国,组织多国科学家参与的大规模科学实验,推进以我国为主的国际科技合作。   托卡马克(Tokamak)是一种利用磁约束来实现受控核聚变的环性容器。通电时,托卡马克内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。因此,托卡马克被公认为是探索、解决未来稳态聚变反应堆工程及物理问题的最有效的途径。   在国外同行研究的基础之上,1994年,中科院等离子体物理研究所通过国际合作,研制出HT-7超导托卡马克,使我国成为继俄、日、法之后第四个拥有该类装置的国家,中国聚变事业从此走上了国际舞台。   2007年,该所独立设计制造的世界上首个全超导托卡马克装置“东方超环”(EAST)通过验收,进入实验阶段后,“东方超环”面向全世界聚变领域的专家开放。2010年,近百人次的国内外同行参加了实验,并取得了许多重要的成果。   作为“十一五”国家重大科技基础设施,稳态强磁场实验装置尚未全部完工,主持建设的中科院合肥物质科学研究院就迎来了一波又一波的国外考察团队,一些世界知名的学者也陆续被聘为中科院强磁场科学中心的研究员。   而上海光源的用户则几乎“挤破头”。从2009年5月6日试运行以来,上海光源在短短半年多时间里,中外用户的数量就上升到了4位数。   承担上海光源建设的中科院上海应用物理所也因此受益。通过上海光源项目,应用物理所与英国、日本、法国、德国等国家的同步辐射光源及其研究机构建立了全面的合作与交流关系,并与美国五大实验室保持着密切的人员交流与技术合作。   2007年,大亚湾反应堆中微子实验在我国启动,它不仅成为具有重要国际影响力的大型基础科学研究项目,也是中美两国历史上最大的合作项目之一。   这样的例子不胜枚举。截至2010年底,中科院已与全球50多个国家和地区签署院级合作协议200多个,所级合作协议1000多个,每年在研国际合作项目800余项。   2009年、2010年两年间,有近500名国外高水平专家来华参与大科学装置的建设和研究。而2010年6月30日中科院与国家外国专家局签署的《引进国外智力为大科学装置服务合作框架协议书》,则标志着我国大科学装置引智工作进入了新的层面。   相识系于缘,相交系于诚。透过这些扎根中国的大科学装置,国际合作的含义早已超越了“凑份子”的阶段。中外科研人员互访、合作开展科研项目、联合培养研究生等越来越丰富的手段,让中国在科技全球化的浪潮中,逐渐成长为一个融合与开放的枢纽。
  • 空气采样装置8.8折
    我公司是生产粉尘、气体系列采样器及配套设备的专业厂家,我公司独家生产的:ETKC空气采样装置,是我在&ldquo 全国车间空气监测科研协作组&rdquo 有关专家的指导下研制设计的,它适用于工矿企业,科研教学,劳动安全,环境监测和卫生防疫等部门,对工作场所进行浓度测定。该仪器体积小,重量轻,结构紧凑,操作简易,维护方便,坚固耐用,经广大客户的使用,获得一致好评。可以同时采集空气中的有毒有害气体,和微生物的采样。 ETKC空气采样装置、有二部分组成: (1)ETT-2000双路大气采样器 是一种对有害气体进行平行样采集的常规仪器。 仪器采用最新微电脑芯片控制技术、记时精度高,方便快捷。 一、主要技术指标及工作条件 1、流量范围:0.1-1.5L/min、双路大气采样     2、采样负压:&ge 25000Pa 3、流量误差:&le +5% 定时误差:&le +1%  4、工作电源:10VDC  工作温度:温度-10℃到45℃ 5、相对湿度<85%  仪器重量:2Kg  6、带可充电电池。 (2)ETW-6空气微生物采样器 是六级撞击式空气微生物采样器是《国际标准的空气微生物采样器》依据微粒撞击原理,即经典的Stokes方程式而设计制造的。本机可将空气中的微生物直接收集到半固态的营养琼脂表面上,经过培养计数、计算、进而测定出每立方米空气中所含的微生物菌落数。本仪器具有采集效率高,采样时间短,检测范围全的优点。广泛应用于医疗卫生、食品、制药、洁净室、车间、医院、室内环境等空气微生物的采样研究。 测量范围 捕获率:&ge 98% 捕获粒子范围 第一级:>7.0&mu m 孔径 1.18mm 第二级:4.7&mu m &ndash 7.0&mu m 孔径0.91mm 第三级:3.3&mu m&ndash 4.7&mu m 孔径0.71mm 第四级:2.1&mu m&ndash 3.3&mu m 孔径0.53mm 第五级:1.1&mu m - 2.1&mu m 孔径0.34mm 第六级:0.65&mu m&ndash 1.1&mu m 孔径0.25mm 采样流量 28.3L/min可调节精度&le 5% 噪声 &le 60 db 电子定时器 范围1-99分钟精度<1% 工作电源 220V/AC功率 &le 45W 保修期 1年
  • 大科学装置陆续投用 “国之重器”高速前行
    p   散裂中子源、强磁场装置、同步辐射光源、大型天文望远镜……近年来,一项项神秘的大科学装置陆续建成并投入使用,它们或隐世于高山峡谷,或藏身在喧嚣城市的地下,虽然不被世人所熟悉,却自带耀眼的光环。它们作为重大科技基础设施,伴随着一项项大科学计划,缔造着中国乃至世界科学的未来。 /p p   这些大科学装置何以成为“国之重器”?它们究竟发挥着怎样的作用?又将承载什么样的使命? /p p    strong 大科学装置发展进入快车道 /strong /p p   在国家蛋白质科学研究(上海)设施运行之前,中国科学家想要完成蛋白质结构的解析,只能去日本、美国。而现在,一批又一批跨国企业和国外优秀科学家纷纷来到中国,使用国家蛋白质科学研究(上海)设施的设备和服务开展前沿课题研究,一系列诞生于此的重要成果发表在Nature、PNAS等高水平国际学术刊物上。 /p p   国家蛋白质科学研究(上海)设施何以有如此吸引力?这项大科学装置集中了我国自主研发的规模化蛋白质制备系统,实现了蛋白质制备全流程的高度集成和流水线作业,而且在样品处理通量上超过半自动化系统10倍、超过传统的人工系统100倍,居于国际领先水平。因此,它很快就成为国际上有重要影响的大型综合研究创新基地,也是我国科学家探索生命奥秘的利器。 /p p   作为当今全球生命科学领域首个综合性的大科学装置,国家蛋白质科学研究(上海)设施能够满足80%以上研究用户的需要。在开放试运行的第二年底,就已经执行用户课题800多个,服务150多家单位,各系统累计运行95000多小时。 /p p   从无到有、从小到大、从学习跟踪到自主创新,这些年,我国一大批大科学装置横空出世,惊艳世界。中国“天眼”FAST,500米口径球面射电望远镜,将覆盖30个足球场大小的信号,聚集在药片大小的空间里,实现了新的突破 中国西南野生生物种质资源库,主要收集和保存云南及周边地区和青藏高原的种质资源,与世界其他著名的种子库相比,是唯一建立在“生物多样性热点地区”的种质资源库 上海同步辐射光源,是世界上性能最好的第三代中能同步辐射光源之一…… /p p   这些各领风骚的大科学装置不但覆盖面越来越广,包括时间标准发布、遥感、粒子物理与核物理、天文、同步辐射、地质、海洋、能源和国家安全等众多领域,而且近年来装置设施的数量、建造规模也逐步扩大。中科院高能物理研究所北京正负电子对撞机国家实验室主任陈和生表示,我国的大科学装置发展已经进入快车道,取得了很多重大科学成果,有些已经处于国际领先地位。 /p p   这批“国之重器”为研究物质结构提供了最先进的技术手段,支撑着国内外科学家开展物质基本结构、宇宙起源与演化、生命起源等重大科学问题的探索,在世界科学研究的舞台上熠熠生辉。 /p p    strong “神兵利器”带来累累硕果 /strong /p p   对于大科学装置,建好仅仅是开始,用好才是关键。大科学装置陆续投入使用,满足了国内日益增长的科研需求。 /p p   自上世纪90年代以来,中科院高能物理研究所借助北京正负电子对撞机,获得了多项重大成果,居于国际领先水平,成为世界领先的高能物理研究中心之一。同时还“一机两用”,成为我国众多学科的同步辐射大型公共实验平台。 /p p   上海光源一期虽然只有7条光束线站,但是自2009年建成后需求极大,去年已有近400家单位、1万多人成为用户,线站供不应求,取得了众多有价值、有影响力的科研成果。从地域分布上看,上海光源的用户几乎覆盖我国所有省区市,还有10多个国家和地区的科研人员以合作形式来到这里,开展研究工作。 /p p   有这些“神兵利器”加持,我国的科研水平迅速提升,取得的成果日益丰富。 /p p   世界最大单口径、最灵敏的500米口径球面射电望远镜(FAST)落成启用,大幅提升我国深空测控能力。上海超强超短激光实验装置达到国际最高激光脉冲峰值功率,合肥稳态强磁场装置实现了40万高斯稳态强磁场,全超导托卡马克装置(EAST)创造聚变等离子体稳态高约束模大于60秒的世界纪录,大亚湾中微子实验发现了新的中微子振荡并精确测量其振荡几率。 /p p   除了大科学装置结出的累累硕果外,反观大科学装置的存在本身,已经远远超出一件新“神器”的意义。因为它们本身就集成了许多科学前沿领域的重大原创突破,凝聚了各个方面的创新驱动力,培育了一批科研后备力量。它们更多在发挥着“科技航母”的关键作用,直接促进了大批原始创新成果、核心关键技术的产生。 /p p   当承建单位研发出符合FAST要求的新钢索时,申请了12项专利 上海光源不仅推动生命科学、材料科学、环境科学等多学科领域科技创新,还对现代高性能加速器、高精密机械加工、X射线光学等先进技术和相关产业升级起到了重要作用 不少过去参与北京正负电子对撞机建造的厂家现在已经成长为领军企业,他们都谈到,当年对撞机的建造对于企业自身生产工艺带来很大提升。 /p p   每建设一项大科学装置,对我国工业基础就是一次严峻的考验。在高标准的技术要求筛选下,大科学工程建设培养和汇聚了一批国内最牛的施工单位和高技术企业,它们边“追赶”边“补课”,创造了一个又一个“中国制造”的奇迹。 /p p    strong 面向未来抢占科技制高点 /strong /p p   从2011年9月到2015年6月,经过3年多巡天,LAMOST共观测了2669个天区,对外释放了约570万条光谱数据,成功获取高质量恒星光谱462万个,比世界上所有已知光谱巡天项目获取的数据总数还要多,让我国占据了学术的高地。 /p p   当LAMOST在探望苍穹之时,一艘名叫“科学”号的海洋科学综合考察船桅杆高立,威武浩荡地驶向大海。目前,借助“科学”号,科学家已经成功开展了西太平洋冲绳海槽热液、南海冷泉、主流系、马努斯海盆和雅浦海山等航次综合调查,获得了大量珍贵的海洋资料。 /p p   不同领域的先进科技装备使我国走向自主创新高地,抢占科学前沿阵地。这些集“颜值”与“实力”于一体的大科学装置,代表着各种大型复杂科学的研究系统,为科学家探索未知世界、发现自然规律及实现技术变革提供极限研究手段,也是经济社会发展不可或缺的技术基础设施。它们推动了我国粒子物理、核物理、生命科学等领域的科研水平进入国际先进行列。通过发挥大科学装置的最大能量,让我国在国际合作与竞争中更具话语权,更好地参与国际前沿科技的竞争。 /p p   如何帮助人们远离越来越频繁发生的灾难?在煤炭、石油等资源枯竭后,人类将依靠什么能源继续生存下去?怎样保持这颗美丽星球的生物多样性?这一系列未知的难题,大科学装置正在一一破解。 /p p   EAST,是我国自行设计建设的世界首个“全超导托卡马克”核聚变实验装置,被誉为“人造太阳”。据中科院合肥分院等离子物理研究所助理研究员鄢容介绍,依靠环形磁场作为“容器”,聚变原料实现可控的核聚变反应,获得大量能量,进而得到清洁能源。“核聚变的原料从海水中提取,非常安全,一升海水可以提取33克原料,相当于300升石油释放的能量。海水里的核聚变原料非常丰富,可以供人类使用上亿年。”鄢容说。 /p p   不仅未来可期,当前人类已经在大科学装置的建设中受益。如今,一种新的治疗癌症的方法诞生,它利用高速的重离子束对病变组织进行治疗。重离子治疗癌症是当代世界上公认的先进有效的放疗方法,与传统的放射治疗相比,重离子束对健康组织辐射损伤轻、疗程短、治愈率高。而重离子治疗技术的开展,正是依托于一个属于“大科学装置”的机器——重离子加速器。 /p p   这批重大科技基础设施,不光是高高在上的科研利器,它还解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾等方面也发挥着不可替代的作用。可以说,大科学装置正在加速改变我们的现在和未来。 /p p br/ /p
  • 《焦点访谈》:国家重大科技基础设施稳态强磁场实验装置顺利验收,综合极端条件实验装置启动建设
    近期,重大科技基础设施“稳态强磁场实验装置”在合肥通过验收,使我国成为继美国、法国、荷兰、日本之后五个拥有稳态强磁场的。而在北京怀柔,另一个大科学装置——“综合端条件实验装置”也启动建设。听起来,“稳态强磁场”“综合端条件”都很陌生,它们都属于重大科技基础设施。为什么要建这样的设施,对于科学研究来说,这两个大装置有着什么样的重要意义呢? 稳态强磁场实验装置 磁现象是物质的基本现象之一。科学研究早已证实,当物质处在磁场中,其内部结构可能发生改变,磁场因而一直是研究物理等诸多学科的一种非常有用的工具。物质结构和状态在强磁场环境下都可能发生变化,呈现出多样的物理、化学现象和效应。磁场强度越高,物质的变化就越为明显,也就越有利于新的科学发现,就像显微镜放大10000倍比放大10倍能告诉研究人员更多一样。但是,磁场强度的提高,每一步都走得很艰难。强磁场中心的“稳态强磁场实验装置”达到了40万高斯的磁场强度,这是二十几年来,上几个有实力的都在尝试的目标。中国科学院强磁场科学中心(图中设备为磁性测量设备mpms,图片来源于网络)混合磁体装置(已产生稳态磁场强度达40t、二高场强,图片来源于网络) 强磁场是现代科学实验重要的端条件之一。在强磁场这种端条件下,物质的特性可以被调控,这就给科学家提供了研究新现象、发现新技术的机遇。因此场也被称为诺贝尔奖的摇篮,包括1985年和1998年诺贝尔物理奖的整数和分数量子霍尔效应、2003年获得诺贝尔奖的核磁共振成像技术。从生命科学到医疗技术,从化学合成到功能材料̷̷在各个科学领域,强磁场都是科学家们渴求的研究环境。 ”稳态强磁场实验装置”运行期间,为清华、北大、复旦、中科大等106家用户单位的1500余项课题提供了实验条件,产出了一大批具有国际影响力的科研成果。综合端条件实验装置 任何物质都是在一定的物理条件下形成的,通过使物理实验条件达到端状态,可以形成许多在常规物理条件下不能得到的新物质和新物态。综合端条件实验装置是指综合集低温、超高压、强磁场和超快光场等端条件为一体的用户装置。就在“稳态强磁场实验装置”通过验收的二天,我国在北京市怀柔科学城启动建设“综合端条件实验装置”,比“稳态强磁场实验装置”更进一步。 综合端条件实验装置启动(图片来源于网络) 项目席科学家、中科院物理研究所研究员吕力(quantum design 公司产品用户)说:“比如低温可以抑制物质中电子、原子的无规运动;强磁场作为可以调控的热力学参量,能够改变物质的内部能量;超高压可以有效缩短物质的原子间距,增加相邻电子轨道的重叠,从而改变物质的晶体结构,以及原子间的相互作用,形成全新的物质状态;超快激光则具有无与伦比的超快时间特性,快速变化的光场是人们能够操作并且控制的快物理量。” 综合端条件实验装置建成之后,将是国际上集低温、超高压、强磁场和超快光场等端条件为一体的用户装置,在非常规超导、拓扑物态、量子材料与器件等领域,提供实验手段的支撑,进而为相关材料的人工设计与制备,以及诸多科学难题的破解提供前所未有的机遇。 稳态强磁场实验装置、综合端条件实验装置等的重大科技基础设施,是科学家们进行科学研究的重要平台,也是提升科研水平的利器。它们的建成,既是我国科研人员创新进取的成果,也将以巨大的磁力,吸引更多人才从事相关领域的研究,推动我国基础领域的科学研究进一步走向前沿。文章原文部分摘自:cctv焦点访谈、人民网 相关产品链接: mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms 综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统 dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计 versalab 系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense 振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器 (ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm
  • 全球首个单向时间隐形装置问世
    美国康奈尔大学的科学家研制出了一种隐身装置,可通过加速或放慢光束的不同部分,令一个事件彻底消失约40皮秒(一万亿分之一秒)。由于之后光束将被复原,因此人们无法探查在这段极短的时间内发生了什么,也不存在任何有关该时间缺口的可重建信息。相关研究报告发表在1月4日的《自然》杂志网络版上。   不同于其他空间隐形设备需要借助扭曲电磁场或弯曲物体周围的光线而工作,新装置会借助分割特殊的时间镜头,压缩穿过光纤电缆的光线,使它的移动速度快慢不等,从而形成微小的时间间隔而实现。   在这个名为电光调制器的装置中,光波会在投射于第一个分割时间镜头后,压缩形成暂时的“孔洞”以隐藏某个事件,而在通过第二个分割时间镜头后,光波又会解压缩恢复原状,继续沿光纤电缆传播,因此由此事件引发的任何时间或空间的变化都将在“孔洞”中隐形,无任何记录可查,仿佛未发生过一般。到目前为止,这一技术仅能持续工作一秒的0.00012时长。   康奈尔大学的莫蒂弗里德曼等人表示,这一方法基于加速探测光线的前端部分,并减慢光线的后端部分,能制造出控制良好的时间缺口,而探测光却不会因为“孔洞”内发生的事件而发生改变。“概括来说,我们实现了首个实验性的关于时间隐形的展示,可在时间域内借助探测光束隐藏某一事件,这象征着我们距研制出完全的时空隐形装置迈出了意味深长的一步。”弗里德曼说道。   科研团队表示,他们所展示的首个单向时间隐形装置,已经可以在超安全通信等领域发挥作用,例如增加光纤系统的安全通信系数等。如果加密的信息能够被隐藏在一系列这种隐形装置中,将为它们的破译带来极大的困难。另一方面,如果这种隐藏的时间间隔能在控制下启动或关闭,也可被用于截获传输的数据,而不被记录下来。
  • 两会代表:设立自主科学仪器装置研发类专项,鼓励使用国产科学仪器装置
    科学仪器装置是探索自然现象的研究工具,是科学研究的基础平台,也往往是科技创新成果的体现形式,长远来看对国民经济发展具有有力的作用。江苏省政协委员、中国科学院南京天文光学技术研究所所长宫雪非在接受记者采访时表示,这次他带来了和科学仪器装置有关的提案。宫雪非在前期调研时发现,当前江苏省科技厅发布的系列科技计划项目中尚无自主科学仪器装置研发类专项的设立,从事科学仪器研发相关类型的项目获批比例始终较低,围绕仪器研发的关键技术研究项目布局也显得不足。据此,宫雪非提出,首先应组织相关研讨,分析江苏在仪器设备国产化方面的优势,给予定向支持。此外,他建议省科技厅增设自主科学仪器装置研发类科技项目,每年安排2亿至3亿元经费进行专项支持,如额度100万至500万元的关键技术研究、500万至2000万元的仪器设备研发。鼓励科研机构、高校同企业开展联合攻关,实现高水平科技仪器装置自主可控的国产化,解决仪器制造领域的“卡脖子”问题。宫雪非建议政府在引导科研机构和工业企业率先使用国产科学仪器装置方面给予政策引导,如在项目考核中设置一定的国产化率的指标,为国产仪器设备的研发营造良好的市场环境。同时加强对国产仪器设备市场使用情况的跟踪调研,推动国产仪器设备的市场占有率稳定上升。“在时代大变局、大国博弈的情况下,事实上我们依赖传统的增长方式是不可行的,必须要通过科技创新引领新质生产力,才能够带动经济建设更好发展。”宫雪非说道。
  • 大科学装置好事多多,代表委员为何喜忧参半?
    2024年,国家科技基础设施领域有许多值得期待的消息。地下700米,江门中微子实验项目有望建成;海拔5250米,阿里原初引力波探测实验将迎来初光;高空600余公里,中法合作的太空望远镜卫星即将发射、运行……位于北京怀柔的我国第四代同步辐射光源将打出第一束光;位于广东东莞的中国散裂中子源二期工程、先进阿秒激光设施计划开工建设;覆盖全中国的空间环境地基综合监测网子午工程二期即将完成验收……“今年,我们会听到很多好消息。不过,我还是对发展前景非常担忧。”全国人大代表、中国科学院院士、中国科学院高能物理研究所所长王贻芳在接受《中国科学报》采访时直言。装置那么多,怎样体系化布局?目前,我国已经布局建设了不少国家重大科技基础设施,其中30多个已经建成并投入运行。今年,政府工作报告提出,要加快重大科技基础设施体系化布局,推进共性技术平台、中试验证平台建设。“对于前沿基础研究来说,大科学装置是必不可少的工具。它与基础研究的关系不仅仅是简单的促进关系,有时是有和没有的关系。有,你就能做研究;没有,你就做不了研究。”王贻芳说。在他看来,繁荣的表象背后藏有隐忧。“这些年,大家对大科学装置更加重视,却也有了一些不太正确的期望,认为大科学装置可以立刻进行技术转移转化或带来其他实际的价值。”他还发现,这些年国家立项的一些大科学装置,“从严格意义上讲,不是大科学装置,而是大技术装置”。“目前在建、运行的大科学装置项目很多是‘十二五’时期立项的。‘十三五’到‘十四五’时期,国家立项的重大科技基础设施重点集中在技术上,如共性技术平台、中试验证平台等,对基础科学的关注和重视程度越来越低。”王贻芳认为,大科学装置是用来做基础科学研究的设施,而大技术装置则是通过研究装置本身获得技术参数的设施。“未来,我国需要从理念上对大科学装置、大技术装置有所区分,在布局上加以平衡。”同样关注大科学装置体系化布局的,还有全国人大代表、中国科学院院士、中国科学院国家空间科学中心主任王赤。“国家重大科技基础设施数量越来越多、种类也越来越多。现在地方政府、高校都非常重视这方面的布局,这就需要国家进一步加强体系化布局和分类管理。”王赤说。在他看来,对于面向世界科技前沿、面向国家重大需求的设施,建议由国家主导,目标是提升我国原始创新能力,抢占科技制高点;对于探索共性技术的设施,建议由地方政府和企业主导,目标是进一步激发创新活力、发展新质生产力。而且,不同类型设施的运行状况和成果产出的评价也需要分类开展。规模那么大,如何建好用好?大科学装置规模大,经费投入也大。今年全国两会上,不少代表委员都在探讨如何利用大科学装置推动建制化基础科学研究,使大科学装置物尽其用。在王赤看来,我国在大科学装置的建设和运行上都取得了很大进展,但为了更好促进依托大科学装置的建制化基础研究,需要消除一些制约因素。“首先就是要加强顶尖科学家团队的力量。”王赤说,“以往我们以跟跑为主,现在开始并跑、引领,这更加需要顶尖科学家准确识别重大前沿科学方向,把握时代科技脉搏。”王赤认为,顶尖科学家要能够提出世界科技前沿问题,找到国家重大需求背后的科学问题,并用好大科学装置。此外,他表示,无论是大科学装置的建设和运行,还是利用装置开展科学研究,都需要建设、运行、科研队伍更好融合,实现合作和数据开放共享。王赤告诉《中国科学报》,目前国家重大科技基础设施子午工程二期已经基本完成建设和联试任务,正在试运行,预计今年5月完成验收和全部工艺测试。去年,子午工程二期的标志性装置——稻城圆环阵太阳射电成像望远镜建成,观测能力国际领先。为了“早出成果、多出成果,出好成果、出大成果”,中国科学院国家空间科学中心与中国科学院成都分院在成都成立π中心,以充分利用圆环阵太阳射电成像望远镜开展科学研究。“我们以π中心为平台,一方面,组织科研队伍,聚焦空间天气的主责主业,开展太阳射电探测,研究太阳活动对地球空间天气的影响;另一方面,与来自其他装置、科研机构的科学家开展合作,特别是与‘中国天眼’等装置开展联合探测,加强空间天文等学科交叉研究,充分挖掘圆环阵的创新潜力,发挥效能。”王赤说。周期那么长,何以稳住人心?阿里原初引力波探测实验项目建设历时7年,如今即将见到初光。从2014年提出项目计划至今,全国政协委员、项目首席科学家张新民都不敢松一口气。“2017年初,项目开工建设,7年来整个团队成员克服了高原、疫情等带来的重重困难。”张新民说。这7年里,在推进项目建设进度之外,最让他头痛的问题就是“如何留住年轻人”。“大科学项目的特色就是周期长,而周期长带来的最大问题就是年轻人的发展问题。”张新民说。在项目建设过程中,年轻人怎么写文章、发文章,怎么让他们留下来安心做项目,都是张新民需要考虑的问题。每年全国两会期间,张新民都能听到很多“‘帽子’满天飞,应该纠正”的话。他知道,要解决这件事,不那么容易。他只希望,那些暂时还难以减少的“帽子”可以向大科学项目、有组织科研团队的年轻人倾斜一点,让他们能留得下来,保证项目顺利实施。过去的7年,让他感受同样深刻的还有疫情等因素导致项目工期延迟时的煎熬。“大科学装置的管理机制比以前有了很大改善,但是条条框框依然存在。与工程项目不完全一样,大科学项目具有创新性、探索性,很多工作没有任何可借鉴的经验,在探索过程中,存在各种不确定性。”张新民说。他建议,要充分发挥首席科学家和项目经理部在大科学项目中的作用,在经费管理等方面给予他们更大的决定权。如今,阿里原初引力波探测实验项目即将建成,张新民又开始考虑下一步运行所需的经费问题。“建成后,阿里原初引力波探测实验项目将成为国际上北天区唯一的高海拔原初引力波探测装置。我们有专门的经理部统筹管理,也有实力不错的科研团队。但现在有一个问题,就是运行经费。第一年,运行经费问题不大,第二年以后的运行经费我们还要再去申请,到处筹措。”他说。他期望,有一天国家能拨给大科学装置稳定的运行经费,让科学家们可以真正把精力聚焦到科研上。
  • 依托大科学装置 抢占未来科技竞争制高点
    中科院是我国承担大科学装置建设、运行和管理的“国家队”——截至“十一五”,我国已建、在建和立项待建的大科学装置中,由中科院建设、运行和管理的约占80%。在科研生涯始自大科学装置、现在又是中科院分管此项工作副院长的詹文龙院士看来,“大科学装置集中体现了国家科学基础设施的水平和技术制造能力,是一个国家综合科技实力的象征”。   所谓大科学装置,通俗地理解,是人类感知觉能力的延伸,是对诸如距离更远、信号更弱、时间更短、能量更高、温度更低、压力更强、规模更大等观测能力极限的突破,是现代前沿科学研究必不可少的条件。现实中,它是同步辐射光源,是强磁场,是大型粒子对撞机,是有望帮助人类找到终极科学问题答案的机器,通过它,人类或许能够知道:我们来自何处,我们由何物构成,以及生命和宇宙的意义何在。总之,它本身就是科学的“加速器”。   2009年,中科院决定与国家自然科学基金委员会共同设立“大科学装置科学研究联合基金” (简称联合基金),自掏腰包,3年共投入6000万元,在全国范围而不仅仅是中科院系统,支持基于大科学装置的研究。如今,第一期联合基金执行已近尾声,双方第二期的合作协议也于7月12日续签,联合基金由原来的4000万元/年增加至6000万元/年,执行期为2012—2014年。近日,科技日报记者就相关问题专访了詹文龙。   中科院为何把这笔经费用途的决定权交出去   联合基金由中科院和基金委各出一半,所有项目按照科学基金“依靠专家、发扬民主、择优支持、公正合理”的原则进行评审,也就是说,中科院相当于把每年几千万元经费的决定权交给了基金评审的专家。在自身已是大科学装置的主要运行、管理方的情况下,中科院这么做是出于什么考虑?   詹文龙介绍说,为了充分发挥大科学装置作为国家科技基础设施的建设效益,中科院长期以来都在积极探索和实践大科学装置开放共享的运行模式和管理机制,包括设立开放经费、发挥装置科技委员会与用户委员会作用等。“不过限于支持体量、受众范围等诸多因素,大科学装置的开放共享虽在不断改善,但总体上仍有潜力可挖。”   他表示,设立联合基金,可以利用基金委面向全国的申请受理平台,依靠其项目评审体系和专家资源,以基金项目的形式,引导全国的科研人员将自己的研究工作与我国的大科学装置密切结合,在充分发挥大科学装置强大科研支撑能力的同时,一方面提升科学家的研究水平和创新能力,培养一批依托大科学装置开展工作的研究队伍,另一方面不断更新和补充大科学装置实验终端的测试能力,持续增强其多学科研究支撑能力。   第一期联合基金共3年(2009—2011年度),经过全面论证,双方选择了北京正负电子对撞机、上海同步辐射光源、兰州重离子研究装置和合肥同步辐射光源4个装置,面向全国受理项目申请。詹文龙介绍,选择这4个装置的原因是,它们都属于具备多学科研究支撑能力的平台型装置。第二期联合基金协议中,稳态强磁场实验装置也被纳入其中,成为第5个依托装置。   促进大科学装置开放共享新模式初见成效   “联合基金这两年的执行情况基本实现了我们设立时的初衷。”詹文龙说。   据介绍,2009年和2010年两年中,联合基金共收到项目申请533项,资助133个项目。这些项目的学科主要分布在10个学科方向。其中,材料学交叉、化学交叉、凝聚态物理和生命科学交叉是份额最大的4个研究方向,四者总数接近三分之二。   詹文龙还介绍说,这两年,中科院之外有38个单位(含中国科技大学)获得了3780万元的支持,另外,大科学装置的用户中,出现了四分之一的新面孔。   他总结认为,大装置联合基金的明显效果主要体现在4个方面:一是在稳定原有队伍的同时,促进了新队伍的培养,增强了人员合作 二是激发了研究新思路,加强了多学科交叉,促进了重大成果的产生,部分项目已有研究论文发表或接收 三是进一步提升了大科学装置的开放共享度及其与全国研究单位的合作 四是增强了大科学装置的科研支撑和服务能力。联合基金项目覆盖了广泛的学科领域,提出了大量新的科学问题,为解决这些问题,从装置性能到各实验线站都得到了进一步发展。“以前我们有些实验方法是借鉴国外的,现在,科学家提出的新的科学问题是国际上所没有的,只能自己创新了。”詹文龙说。   建设大型多学科综合研究基地 抢占未来科技竞争制高点   “虽然项目进展都不错,但也有些遗憾,比如联合基金没有收到一份来自企业的申请,获得资助的研究单位中,只有两家是中科院和大学以外的。”詹文龙说,第二期联合基金应当吸引地方科研单位、企业等更多用户依托大科学装置开展研究工作。   他介绍,国家越来越重视发挥大科学装置在国家科技和社会经济发展中的战略作用。从“十五”后期开始,国家发改委由以往“提一个议一个”的审批模式改变为中长期规划指导下的成批次建设的模式。据悉,“十一五”期间,发改委批准了12个建设项目,“预计‘十二五’期间批准的建设项目将不少于‘十一五’。除了物理学科外,可能还会包括能源等学科的装置”。   具体到中科院在这方面的计划,詹文龙指出,目前,我国已有和在建的大科学装置主要集中在北京、上海、兰州、合肥、广东5个地方,另外还有分布在全国各地的天文台。5个地方的大科学装置要在提高水平和效益上做文章,并逐步形成集聚效应。谈到此,詹文龙提出了一个概念——大型多学科综合科研基地。   他指出,西方发达国家的科学技术水平和强大的国际竞争能力,相当大程度上是通过一批高水平的大型科研基地体现的。这些基地科研力量集中,科研任务集中,国家投资集中,科学技术成果累累 学科多样,学科交叉,发展新型、边缘科学和突破重大新技术的能力强。而这些基地往往是在大科学装置的基础上发展起来的,逐渐拥有了大科学装置群,作为支撑其强大科技竞争力的基本条件。   建设大型科研基地,抢占未来科技竞争制高点,是提升国家科技创新能力、发展高科技的要求。根据大科学装置目前的布局,中科院决定,把第一个依托大科学装置建设的大型科研基地选在北京。   在他的描述中,记者了解到,这将是一个拥有同步辐射光源、综合极端条件实验设施、超级计算设施等多个装置的科学中心,论文不再是在这些装置上产出的唯一“产品”,纳米、生物等多个产业的集聚会让成果迅速转化,这里将是吸引国际高水平人才的“梧桐树”,不同学科的研究人员会在这里比邻而居……   詹文龙说,这不仅仅是一幅愿景图。按照计划,“十二五”期间将重点进行装置的建设,争取在2020年前使这些“速度更快、温度更低、压力更大、电磁场更强”的高水平装置全部投用,而其运行模式也将是全新的。   前不久的一则新闻算是詹文龙这番话的一个注脚:中科院怀柔园区北京综合研究中心规划用地约2200亩,将重点规划建设国家“十二五”规划中部分大科学装置项目。初步估算,项目总投资达到60亿元,计划于“十二五”至“十三五”规划期间分步建设。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制