当前位置: 仪器信息网 > 行业主题 > >

疾病研究

仪器信息网疾病研究专题为您整合疾病研究相关的最新文章,在疾病研究专题,您不仅可以免费浏览疾病研究的资讯, 同时您还可以浏览疾病研究的相关资料、解决方案,参与社区疾病研究话题讨论。

疾病研究相关的资讯

  • 质谱技术在肝脏疾病检测中的研究进展
    p   肝脏疾病是严重危害人类健康的疾病,其病因复杂多样,既包括感染、肿瘤等常见因素,也包括自身免疫性、先天性疾病等特殊因素。临床最常见的慢性肝病为乙型肝炎病毒(hepatitisB virus,HBV)和丙型肝炎病毒(hepatitis C virus,HCV)感染所致,在世界范围内分别有3.7亿和1.3亿患者 慢性肝炎通常缓慢进展为肝纤维化和肝硬化,最终可能发展为肝细胞肝癌(hepatocellularcarcinoma,HCC),肝细胞癌死亡率很高,据世卫组织报道,每年全世界死于HCC的患者约为600 000人,而其中一半死亡病例发生在中国[1]。除了病毒感染外,药物和毒物的损害,营养不良和嗜酒,以及代谢异常等因素也是肝脏疾病的主要原因。 p   慢性肝病的诊断对疾病的治疗和预后具有重要的意义,目前对肝炎病毒感染的诊断,通常采用免疫学或分子生物学技术检测病毒的特异性抗原、抗体或核酸片段,而肿瘤标志物及影像学技术对HCC的诊断也有广泛的临床应用。近几年,随着技术的发展和革新,质谱技术也开始广泛应用于各个医学诊断领域,如肿瘤标志物筛选、细菌鉴定、耐药分析以及病毒检测等,成为很多临床实验室的常规检测技术[2]。 /p p   一、质谱分析技术发展状况 /p p   虽然,世界上第一台质谱仪在20世纪早期就已研制成功,但直到20世纪80年代,随着基质辅助激光解析(Matrix–AssistedLaser Desorption/Ionization,MALDI)和电喷雾电离(Electrosprayionization,ESI)等& quot 软电离& quot 技术的发展才使得质谱技术在生物医学领域得到广泛的应用。随后,液质联用技术,如LC–MS/MS的出现,则极大地推动了质谱技术在医学检验领域的发展。目前应用较广泛的质谱技术包括表面增强激光解析电离飞行时间质谱(surface–enhancedlaser desorption/ionization–time of flight,SELDI–TOF–MS)和基质辅助激光解析电离飞行时间质谱(Matrix–AssistedLaser Desorption/Ionization Time of Flight Mass Spectrometry,MALDI–TOF–MS)等,它们是新型的蛋白质组学研究技术,具有高通量和高速度的优势,目前主要用于肿瘤及其他疾病标志物的筛选。但二者的灵敏度和重复性存在一定缺陷,严重制约了它们在临床检测中的应用。而且上述技术只能对目的蛋白或疾病标志物进行定性检测,无法反映疾病的严重程度并对疾病进行预后判断。近年新发展起来的包括核素标记定量(isobarictags for relative and absolute quantitation, iTRAQ)技术可对样品进行蛋白质绝对和相对定量研究,具有分离能力强,分析范围广的特点,但是,对样本要求高,样本处理过程复杂及高试剂成本是该技术的主要缺陷。基于气相色谱–质谱(GasChromatography–Mass Spectrometer,GC/MS)和液相色谱–质谱联用(LiquidChromatography –Mass Spectrometry,LC/MS)技术是目前常用的检测方式,尤其是该技术在代谢组学中的研究价值受到学者的广泛关注,代谢组学的研究对象大都是相对分子质量1 000以内的内源性小分子物质,通常采用核磁共振(nuclearmagnetic resonance,NMR),色谱(high performanceliquid chromatography,HPLC)等技术分离并检测人体尿液或血浆等生物样本中的代谢物谱图,再结合模式识别方法,可以判断出生物体的病理、生理状态,并找出与之相关的生物标志物。相比较蛋白质组研究,代谢物分子检测更加容易,并且种类少,更适合作为疾病的标志物。 /p p   二、质谱技术在病毒性肝炎检测中的应用 /p p   HBV及HCV感染严重威胁着人类健康,目前临床实验室主要采用化学发光和核酸扩增技术进行病毒抗原、抗体和核酸的检测。MassARRAY是基于MALDI–TOF–MS的核酸分析技术,已有学者将该技术用于HBV与HCV的血清分型,该方法的主要优势是快速、廉价。另外,该技术可以检测病毒的变异,区分野生株和突变株,指导临床用药,但缺点是只能用于HBV的B和C型[3]。 /p p   HBV突变可导致拉米夫定耐药,目前主要检测方法是测序,但耗时长,不适合大样本量的检测。Hong SP等采用MALDI–TOF–MS方法进行变异位点的检测,具有更高的灵敏度和特异性,并且可以对HBV感染患者抗病毒药物治疗效果进行监测[4]。另外,对HCV分型的MALDI–TOF–MS方法也有不少文献报道[5,6,7]。MALDI–TOF–MS技术也可用于其他抗病毒药物耐药的检测[8]。 /p p   三、质谱技术在肝纤维化及肝硬化检测中的应用 /p p   肝脏活组织检查是诊断肝纤维化的金标准,但该方法是有创性检查,患者依从性差,因此临床迫切需要寻找简单且易推广的无创性诊断指标用于评估肝纤维化。目前对肝纤维化的无创性诊断方法主要包括影像学和血清学指标,而质谱技术在寻找新的无创性诊断指标中发挥了很大的作用。Poon的研究组应用SELDI–TOF MS技术寻找与肝纤维化分期相关的蛋白指纹峰,并利用差异蛋白峰建立了神经网络(ArtificialNeural Network,ANN)诊断模型,发现了5个蛋白峰(m/z为5905, 5928, 5948,3162,3267)与Ishak纤维化评分显著相关,ANN模型指数与纤维化评分呈显著相关性(r=0.831),并且其对肝硬化的预测正确率可到达89%,对Ishak& gt 4的纤维化患者预测灵敏度可达100%[9]。Marfà 等最近报道采用色谱和SELDI–TOFMS技术发现了一个5.9KDa的多肽具有肝脏早期纤维化的诊断价值,随后证实为纤维蛋白原α链的C末端片段。 /p p   四、质谱技术在酒精性肝病检测中的应用 /p p   酒精性肝病(alcoholicliver disease,ALD)是由于长期大量饮酒所导致的肝脏疾病。ALD的诊断是基于综合临床特征的,包括明确的饮酒史、肝病临床证据和血清异常指标的支持。但常用的实验室检测指标在ALD诊断中的灵敏度和特异度均不能满足临床的需求,因此研究ALD的特异性诊断指标具有重要的现实意义。然而,由于酒精性肝病与其他类型肝病在患者机体生理变化上极其相似,所以寻找ALD特异性的标志物非常困难。Nomura的研究组早在2004年就采用质谱技术进行了这方面的探索,他们的思路是通过对酒精依赖症患者血清中的差异蛋白进行分析,试图找到具有诊断价值的ALD标志物,他们发现在慢性酒精依赖患者血清中纤维蛋白原aE片段和Apo AII以及色素上皮衍生因子(PEDF)都可能成为酒精依赖的特异性标志物]。另一个研究思路是通过对成人酒精摄入前后血清中蛋白质的变化来寻找酒精代谢的标志物,如Liangpunsakul等[13]采用MALDI–TOF–MS技术对16例志愿者饮酒前后的血清蛋白质谱进行比较,发现一个59 000的蛋白质在饮酒后发生了显著改变,经鉴定该差异蛋白为α–纤维蛋白原,并认为该蛋白可以作为ALD的特异性标志物。 /p p   另外,部分学者通过建立酒精依赖的动物模型,通过质谱检测发现了部分具有ALD诊断价值的蛋白质或代谢物分子,如Zhang L等采用蛋白质组学技术对酒精诱导的小鼠模型进行蛋白差异分析,他们提取了肝细胞的胞浆膜,并用双向技术和iTRAQ技术分别进行检测,结果共有15个不同的蛋白被检测出来,其中,角蛋白–8被在两种不同的方法中均被检测出有意义,他们认为该分子可能在酒精对肝脏的损害中发挥一定的作用[14,15,16]。 /p p   五、质谱技术在肝细胞癌检测中的应用 /p p   HCC是常见且致死率高的恶性肿瘤,目前临床使用的甲胎蛋白(alpha–fetalprotein,AFP)一直是HCC诊断的重要指标,但AFP诊断HCC的灵敏度只有39%~65%,无法满足早期诊断和预后判断的要求,因此研究新的血清学标志物具有重要的意义。 /p p   2003年Poon的研究组采用SELDI–TOF–MS技术比较慢性肝病组(chronic liver disease,CLD)和HCC患者的血清蛋白指纹图谱,并根据差异蛋白建立了神经网络预测模型。他们发现m/z为8944和8811的蛋白峰在两组之间具有显著性表达差异,并且与肿瘤转移有关,ANN模型可到达90%的特异性和92%的灵敏度[17]。Liu C等采用MALDI–TOF–MS技术对60例HCC患者,36例其他肝病患者和46名性别年龄匹配的正常人的血清蛋白质谱进行比较,他们发现4471、8936、11670和13752 m/z的蛋白峰具有HCC鉴定的特异性,采用决策树建立诊断模型,其AUC可达到0.927[18]。Xiao等[19]采用超高效亲水性液相色谱与电喷雾四极杆飞行时间串联质谱联用法(PerformanceLiquid Chromatography–Quadrupole Time of Flight–Mass Spectrometry,UPLC–QTOF–MS)技术对HCC患者和肝硬化患者血清小分子代谢产物差异进行比较,最终,甘氨胆酸(glycocholicacid,GCA),甘氨脱氧胆酸(glycodeoxy–cholicacid,GDCA)等代谢产物被发现在HCC组和肝硬化组有显著差异性,有望成为新的HCC诊断标志物。 /p p   六、展 望 /p p   生物质谱技术具有高通量、快速等特点,因此在生物大分子研究领域得到了广泛应用,目前很多具备条件的临床实验室也开始引进质谱仪用于临床样本的检测[20],例如MALDI–TOF–MS已成功进入临床微生物实验室,成为细菌鉴定领域突破性的技术。在肝病的诊断中,生物质谱技术具有很好地发展前景,通过质谱技术有可能发现一些灵敏度高和特异度好的肝病分子标志物,可极大地提高目前的肝病诊断水平。 /p p   (参考文献:略) /p p br/ /p /p
  • 英国将测序万人基因组用于疾病研究
    近日,在英国伦敦的科学博物馆,维康基金会(Wellcome Trust)宣布了英国10K(UK10K)项目,即英国将在接下来的三年内测定10000个人的基因组序列。英国10K项目的负责人Richard Durbin表示,这项宏伟的计划将得到生物医学慈善会约1000万英镑的支持,10K项目旨在找出与肥胖和精神分裂症等疾病相关的罕见基因变异。   研究人员将测定已加入长期研究计划的4000名英国人的全基因组序列,其中一半的研究是针对英国的双胞胎来进行的,另一半则是针对父母与子女来开展。Durbin在英国维康基金会桑格研究所工作,他表示该项目将寻求发现每个人基因组中插入和缺失的位点,以便将这些突变位点与其不适的症状联系起来。他强调说,许多人都是自愿加入到研究计划,从出生起,他们就被研究人员所跟踪观察,许多生理指标也都经过了反复的测量。   另外的6000个人则只是测定其外显子序列,即编码蛋白的那部分基因。Durbin表示,参与外显子测序的人都得有“特别突出的表型”,这样就有利于将某一疾病定位到特定的基因上。其中,2000人是极度的肥胖 3000人患有神经元发育障碍 另外1000人则患有先天性心脏病等比较稀少的疾病,这一情形被认为是多基因相互作用的结果。   Durbin说,这一新的项目将建立在新技术发展的基础之上,同时也将吸取国际“千人基因组计划”的经验教训。但与新计划不同的是,国际千人基因组计划仅仅是记录了人类的遗传变异。   随着DNA测序费用的快速降低,其他一些分析基因组的生物医学项目也如雨后春笋般出现。对此,Durbin表示维康基金会的这项计划是同类项目里的“高端产品”,跟这项计划最具可比性的项目要数美国经济刺激法案资助的糖尿病人基因组计划,而该计划也仅仅是测定3500名糖尿病患者的基因组序列。
  • 上海净信研磨机助力生物节律与衰老疾病研究组
    上海净信JX-FSTPRP全自动样品组织快速研磨仪中国科学院神经科学研究所:生物节律与衰老疾病研究代谢功能障碍是促进衰老和慢性疾病发生的主要危险因子之一。大量证据指出代谢紊乱与心血管疾病, 二型糖尿病及癌症发生有关;并可能在神经系统疾病,包括精神疾病和神经退行性病变中扮演驱动角色。为了建立生理功能障碍和神经变性进展之间的关联性以及研究其联系代谢和昼夜节律的控管机制,中国科学院神经科学研究所生物节律与衰老疾病研究组购买了净信JX-FSTPRP全自动样品组织快速研磨仪,代替传统手工研磨方法对睡眠紊乱和生物钟基因遗传突变小鼠,Sirtuin和AMPK小鼠的各种组织和器官进行研磨,帮助老师更加高效的进行科研研究。上海净信的全自动样品快速研磨仪处理与手工液氮研磨处理后提取 FT 的 DNA、RNA 在浓度、纯度上均无显著性差异(成对检验 P0.05) 。但手工研磨有较大的样本损失率,对于DNA提取浓度较低的样品来说,自动研磨仪可以做到样品0损失,在DNA提取上有着明显的优势,且手工处理的过程复杂、易交叉污染,操作所用时间等方面均不及上海净信的全自动样品快速研磨仪,因此自动研磨仪对于DNA提取工作相对于手工研磨处理有很大优势。 上海净信实业发展有限公司,是目前国内一家生产水平式组织研磨机,垂直式组织研磨机,三维一体式组织研磨机具有全系列生产线的生产厂家。同时还给多家国外品牌及国内企业提供OEM,贴牌代加工服务。
  • NIH出资$3.13亿用于疾病基因组测序研究
    p   美国国立卫生研究院(NIH)将资助一些基因组测序分析中心,致力于破解人类常见病和罕见病的基因信息。NIH下属的国家人类基因组研究所(NHGRI)14日宣布成立“常见疾病基因组学中心(CCDG)”,该中心将利用基因组测序技术,从基因水平研究心脏病、糖尿病、中风以及自闭症等常见疾病产生的原因。NHGRI同时也宣布了其互补项目“孟德尔基因组学中心(CMG)”的下一阶段工作,将继续研究罕见遗传疾病(例如囊性纤维化和肌肉萎缩症)的基因致病机制。 /p p   NHGRI所长Green博士表示:“DNA测序的发展可帮助我们进一步探索人类疾病产生过程中基因是如何发挥作用的。我们将持续关注常见疾病和罕见疾病,希望能够揭示一些重要的基因信息。” /p p   CCDG的研究人员计划先对一组疾病、15万~20万个患者进行基因组测序,在基因组水平研究常见疾病产生的原因,及基因组的差异是如何影响患病风险的,同时也将开发出一套研究模型用于今后常见疾病的研究。CMG研究者将建立一个国际研究合作网络,对世界范围内存在的罕见疾病进行基因组测序。这两个项目通过研究引发疾病的基因以及基因组变异,有助于对疾病的诊断和潜在治疗。 /p p   NHGRI将在未来四年内分别资助CCDG和CMG项目2.4亿美元和4千万美元,同时出资约400万美元资助一个新的协调中心,促进这些项目者之间的合作、数据的分析和项目的推广。 /p p   除此之外,美国国家心脏、肺和血液学研究所(NHLBI)将同时资助CCDG和CMG项目,美国国家眼科研究所(NEI)将为CMG项目提供资助,这两个机构同属于NIH。 /p p   CCDG项目的开展代表着NHGRI的基因组测序计划(GSP)又向前迈出了一大步。最早期阶段,GSP是NIH对人类基因组计划的重要贡献。随着DNA测序成本的降低,GSP开始将重心转移到大规模基因组测序项目上,并组织成立 了“大规模基因组测序和分析中心”。这些测序中心进行了一系列开创性的基因组学研究,包括千人基因组计划,对世界各地不同人群中数千人进行基因组测序,记录不同个体的基因组差异性 和癌症基因组图谱(TCGA)计划,由NHGRI和美国国家癌症研究所合作,记录癌症相关的基因组变异信息。 /p p   常见疾病基因组学中心(CCDG) /p p   高血压、糖尿病以及精神疾病等常见疾病影响世界范围内数亿的人群,然而到目前为止我们都无法解释这些疾病产生的根源,因为它们的发生往往源自基因和环境因素的双重作用。 /p p   CCGD研究人员将首先关注心血管/代谢疾病以及神经精神性疾病,同时考虑研究其他疾病包括炎症/自身免疫病、骨骼疾病,阿兹海默症等。每一种常见疾病都代表着一系列的健康问题,从发病年龄到潜在的生物学改变都各不相同。对于每一种疾病,CCDG研究人员都将对数万个患者及正常对照人群进行基因组测序,NHGRI也将挑选一些其他疾病用于该中心后续的研究。 /p p   NHGRI基因组测序计划负责人Felsenfeld博士说:“该中心的研究人员计划利用基因测序,尽可能广泛地检测出与常见疾病相关的基因和基因组变异。这些基因信息将在我们的临床管理中起到非常大的作用。” /p p   NHGRI将在未来四年中为四个中心提供约2.4亿美金,NHLBI则额外提供2000万美金,具体资助情况如下: /p p   1. 圣路易斯华盛顿大学 6000万美元,4年 /p p   主要研究人员:Richard Wilson, Ph.D. /p p   2. 麻省理工学院-哈佛大学博德研究所 8000万美元,4年 /p p   主要研究人员:Eric Lander, Ph.D., Mark Daly, Ph.D., Stacey Gabriel, Ph.D.和Sekar Kathiresan, M.D. /p p   3. 休斯顿贝勒医学院 6000万美元,4年 /p p   主要研究人员:Richard Gibbs, Ph.D. /p p   4. 纽约基因组中心 4000万美元,4年 /p p   主要研究人员:Robert Darnell, M.D., Ph.D. /p p   孟德尔基因组学中心(CMG) /p p   NHGRI自2011年启动了CMG计划,总体目标是从基因组学角度系统地分析孟德尔遗传病产生的原因,这类疾病通常是由单基因突变引发的罕见疾病。到目前为止,已经发现了7400多种孟德尔疾病,并阐明了其中4300种疾病的潜在致病基因变异信息。 /p p   在过去的四年中,CMG研究人员对超过2万个人的蛋白编码区进行测序分析,发现超过740种致病基因,同时开发出一种分析工具可快速查找这些致病基因。 /p p   CMG计划负责人Wang博士介绍说:“罕见疾病为我们进行罕见和常见疾病的生物学研究提供了重要资源。CMG研究人员将继续利用基因测序和分析寻找孟德尔疾病产生的致病基因,尤其是发现新的致病基因。” /p p   NHGRI将资助4000万美元支持CMG计划,同时NHLBI和NEL也将分别资助800万美元和100万美元用于该计划实施。具体资助情况如下: /p p   1. 麻省理工学院-哈佛大学博德研究所 1340万美元,4年 /p p   主要研究人员:Daniel MacArthur, Ph.D.和Heidi Rehm, Ph.D. /p p   2. 耶鲁大学 1200万美元,4年 /p p   主要研究人员:Richard Lifton, M.D., Ph.D., Murat Gunel, M.D., Shrikant Mane, Ph.D.和MarkGerstein, Ph.D. /p p   3. 西雅图华盛顿大学和休斯顿贝勒医学院,1200万美元,4年 /p p   主要研究人员:Deborah Nickerson, Ph.D. (华盛顿大学), Michael Bamshad, M.D. (华盛顿大学) and Suzanne Leal, Ph.D. (贝勒医学院) /p p   4. 约翰霍普金斯大学和贝勒医学院,1160万美元,4年 /p p   主要研究人员:David Valle, M.D. (约翰霍普金斯大学) 和 JamesLupski, M.D., Ph.D. (贝勒医学院) /p p   GSP协调中心 /p p   GSP协调中心将促进项目者间的合作并进行项目推广活动,提升测序数据的利用率,并引导进行各种不同的数据分析工作。 /p p   NHGRI将提供以下资助: /p p   1. 美国罗格斯大学 400万,4年 /p p   主要人员:Tara Matise, Ph.D.和Steven Buyske, Ph.D. /p p br/ /p
  • 海外研究者利用质谱探索疾病“呼吸印记”
    在现代医学实验室技术面世之前,“闻”是医生诊断某些疾病的一种手段。据美国化学学会《纳米》杂志报道,以色列研究人员鉴别出每种疾病独特的“呼吸印记”,并利用该信息设计出通过筛选呼吸样本对多种疾病进行分类和诊断的纳米传感器阵列。  人类呼出气体中含有氮气、二氧化碳、氧气以及上百种微量挥发性化学成分。这些物质的相对量基于个体健康状况发生改变。早在公元前400年,古希腊名医希波克拉底就让他的学生通过嗅闻病人的呼吸来寻找疾病的线索,如糖尿病患者的呼吸会有一种香味。在近代,多个科学团队也曾开发出实验性呼气分析仪,但大多数此类仪器专注于像癌症这样的单一类型疾病。  以色列理工学院胡萨姆海克教授与全球14个临床科室开展合作,研制出一种可区分多种疾病的呼吸分析仪。研究人员开发的纳米传感器阵列可检测出数千个呼气样本中的不同成分,这些样本来自健康人群以及患有不同疾病(17种类型)的患者。通过人工智能技术对结果进行分析,研究团队就可使用纳米阵列对病情进行分类和诊断。  研究团队利用质谱分析鉴别出与疾病相关的呼吸成分。他们发现,基于13种呼吸成分量的不同,每一种疾病会产生一个独特的挥发性化学“呼吸印记”。研究还表明,一种疾病的存在也不会阻止检出另一种疾病,这是开发以无创、廉价和便携方式筛选和诊断多种疾病的实用型装置的必要条件。
  • 安捷伦科技公司授出心血管代谢疾病转化研究基金
    安捷伦科技公司授出心血管代谢疾病转化研究基金美国杜克大学 Christopher Newgard 博士的团队采用安捷伦平台对疾病机制展开深入研究 2014 年 1 月 13 日,北京 — 安捷伦科技公司(纽约证交所代码:A)今日宣布向新成立的美国杜克大学分子生理学研究所(DMPI)授予研究基金。DMPI 研究团队目前正在使用安捷伦的整合生物学解决方案深入研究主要慢性疾病(如,心血管疾病)的代谢和生理学机制。 DMPI 团队的负责人是 Christopher Newgard 博士,他在美国杜克大学医学院药理学和癌症生物学系担任教授,同时担任 Sarah W. Stedman 营养及代谢研究中心和分子生理学研究所的主任。 Newgard 博士说:“杜克分子生理学研究所致力于将强大的基因组学、表观基因组学、转录组学和代谢组学平台与计算生物学、临床转化医学和基础科学经验相融合,以深入研究心血管代谢疾病的机制,我们衷心感谢安捷伦在研究方面给予的支持,并且十分期待与他们的进一步合作,推进心血管疾病和未确诊代谢疾病的深入研究。” Newgard 博士的生物学通路研究以 Agilent GC/MS、三重四极杆 LC/MS 和四极杆飞行时间 LC/MS 系统,以及带化学工作站功能的 MassHunter 工作站等软件为基础,辅以 Agilent-Fiehn GC/MS 代谢组学 RTL 谱库和使用 METLIN 个人代谢物数据库和谱库的 MassHunter 定性软件。安捷伦的 GeneSpring GX 软件、Mass Profiler Pro 和 Pathway Architect 将在数据集成和通路导向解析方面发挥重要作用。 “我们很高兴能够为杜克大学 Newgard 博士和他的团队在开创性转化医学研究领域提供支持,”目前正在与该团队紧密协作的安捷伦“组学应用”主管 Steve Fischer 说道,“他们将拥有整合不同“组学数据”的强大功能,深入研究复杂疾病机制并查明之前不为人知的疾病表型通路。此外,我们的解决方案还将帮助他们更快速地了解心血管代谢疾病的复杂过程,从而更快速地开发治疗方案。” “我们在将整合方案应用于解决心血管代谢疾病之类的重要健康问题方面拥有强大的技术基础,”安捷伦整合生物学总监 Leo Bonilla 补充道,“所以,我们非常期待能够为 Newgard 博士在杜克进行的开创性研究提供进一步支持。”关于安捷伦科技公司的大学事务 安捷伦在支持全球高等教育和研究方面发挥着积极作用。要了解有关最新研究合作、研究工具、教育支持、顶尖大学人才招募和慈善机构的详细信息,请访问:安捷伦大学事务。关于安捷伦整合生物学解决方案 安捷伦科技公司为研究者们提供了涵盖所有四门主要“组学”学科的分析产品。这些组合式硬件/软件和信息学解决方案正在推动新一代生物学通路的多组学研究,并且获得了与药物响应、耐药性、诊断标志物和基础疾病/毒理学途径相关的重要信息。有关安捷伦整合生物学解决方案整套产品的更多信息,请访问 http://biology.chem.agilent.com。关于安捷伦科技公司 安捷伦科技公司(NYSE:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后电子测量公司名字为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 华大基因人类遗传与疾病研究技术实现新突破
    中国经济网记者今日从华大基因获悉,华大基因正推出一种新型人类基因组区域捕获技术,即超级序列捕获技术(简称Allinone),该技术主要通过对特定群体设计探针集,从基因组水平上对人类全基因组的外显子区域、群体特异的tagSNP(标签SNP)区域和MHC区域(人类白细胞抗原系统区域)实现同步捕获,然后再进行高通量测序分析。 据悉,Allinone所捕获的这些DNA区域与人类疾病的发生发展紧密关联,且具有简便、经济、高效、覆盖范围广等优点,因此该技术将成为人类遗传和疾病研究领域的一种新型高效的基因组研究工具。 据了解,Allinone探针集将会覆盖整个基因组的5%-10%,不但可以捕获基因编码区域,还可以捕获很多非编码区域。目前广泛应用的外显子测序技术可以捕获基因编码区,但是基因组中的很多功能区域是非编码的,这些非编码区虽然不能够转录信使RNA,但是能够调控遗传信息的表达,所以了解非编码区域的遗传信息将提供更加完整的基因表达控制信息,而Allinone平台可轻松解决这个问题。 Allinone探针集覆盖了群体特异的tagSNP区域,所以通过该技术可以高效、快捷的了解群体的特异性变异情况,这对复杂疾病研究具有非常重要的意义。单核苷酸多态性(SNP)是人类基因组中最丰富的遗传变异,其中少量的标签SNP(挑选出的SNP集合)就能够提供与全部SNP位点大致相同的图谱信息。由于各种群之间存在遗传差异性,所以每个种群也拥有代表该种群基因图谱的标签SNP,只需通过这些标签SNP便可以对大量样本或整个种群的变异情况进行研究。 Allinone目标捕获区域还整合了华大基因最近研发的MHC区域捕获探针集,即可对人类MHC区域实现高度覆盖及有效富集。MHC区域广泛参与免疫应答的诱导与调节,与已发现包括自身免疫疾病、癌症、多种复杂疾病等至少百余种疾病密切相关。由于该区域和多种复杂疾病的发生以及人类免疫系统活动具有密切关系,因此Allinone对该区域的覆盖无论对人类疾病的机理研究还是药物研发都具有非常重要的意义。 华大基因执行院长王俊称:“目前,我们已经开始使用中国疾病患者的样本对汉族人群的Allinone捕获技术进行测试评估。只要建立一个‘种群特异性’的参考基因组,就可以应用Allinone捕获技术对其他更多的样本进行重测序研究。除了针对汉族人群的Allinone,华大基因还将针对世界其它主要人群设计及推出相应人群的Allinone研究工具,从而推动全世界的基因组学研究的快速发展。” 华大基因研究人员高玉池表示:“目前,我们所研发的Allinone的总体目标区域大小为180M左右,可以广泛应用于以汉族人群或汉族近缘群体为研究对象的基因组学研究。”对该技术的测试评估结果表明,目标区域覆盖度达到97%以上,检测的SNP位点与高深度全基因组测序结果一致性率在99.5%以上。此外,华大基因还在研发更加多样化的高级信息分析内容,以更好的解释基因组数据的生物学意义。高玉池表示:“我们相信Allinone凭借其数据全面性、操作灵活性、高性价比等多方面优势将成为人类疾病基因组学、表型-基因型关联研究及其它人类遗传学研究的最佳工具。”
  • 国家老年疾病临床医学研究中心在京揭牌
    p   国家老年疾病临床医学研究中心9日在首都医科大学宣武医院揭牌。该中心将围绕延缓衰老和老年疾病领域的重大关键问题,整合国内临床和基础研究资源,构建全国性老年医疗服务技术网络和科学创新体系,引领国家创新老年疾病诊疗、研究和健康管理模式,为实现重大战略转型和决策提供依据。 /p p   该中心以首都医科大学宣武医院为主体,涉及全国近千家医院和科研单位。据首都医科大学宣武医院院长赵国光介绍,目前已建立帕金森病、脑卒中、抗衰老等13个临床和科研协作联盟,近期还将建立高龄外科中心、老年多系统疾病诊疗中心等特色临床机构,并建设多组学、干细胞、神经影像等5个创新研究平台。“主要临床科研任务是突破帕金森病、脑卒中等老年重大慢性疾病防治及高龄外科围手术期评估、老年用药管理、老年共病、老年重症等关键领域的重大技术。” /p p   当前,我国已逐渐进入老龄化社会,提升老年疾病防控能力成为健康中国建设的重要任务之一。民政部公报显示,截至2016年底,全国60岁及以上老年人口2.3亿人,占总人口的16.7%。据中国老年医学学会发布的《中国中老年健康状况白皮书》,我国中老年人群目前主要面临认知健康、心血管健康和骨骼健康三方面的健康风险。 /p p /p
  • 中国检科院鼠传疾病研究室挂牌成立
    中国检验检疫科学研究院院长李怀林、内蒙古检验检疫局局长周永生一行来到二连浩特检验检疫局进行考察,并为二连浩特检验检疫局鼠疫检测实验室挂牌,该实验室被正式确定为“中国检验检疫科学研究院鼠传疾病研究室”。   挂牌仪式上,周永生代表内蒙古检验检疫局向检科院领导和专家介绍了二连浩特检验检疫局鼠疫实验室的基本情况,特别指出该实验室凝聚了好几代人的心血,一直得到了内蒙古检验检疫局的大力支持,该实验室将成为内蒙古检验检疫局唯一一个重点实验室,在技术力量和人员配置等方面有着传统的优势。李怀林提出,该鼠传疾病研究室的成立,具有重要的战略意义,实现了中国检科院及内蒙古检验检疫局的资源共享和优势互补。   据介绍,二连浩特检验检疫局鼠疫实验室被确定为中国检验检疫科学研究院二连浩特鼠传疾病研究室,有利于提高该实验室人员的业务水平和科研水平,实现双方在人才、设备、技术、信息等方面的资源共享,在鼠传疾病的防控和研究领域发挥越来越重要的作用。
  • 多个类器官串联共培养在疾病模型研究中的意义
    多个类器官串联共培养在疾病模型研究中的意义翻译整理:北京佰司特贸易有限责任公司,2023-07-04人类系统性疾病的发生过程都是通过破坏两个或多个器官的自我平衡和相互交流。研究疾病和药物治疗就需要复杂的多器官平台作为体外生理模型的工具,以确定新的药物靶点和治疗方法。2型糖尿病(T2DM)的发病率正在不断上升,并与多器官并发症相关联。由于胰岛素抵抗,胰岛通过增加分泌和增大胰岛体积来满足胰岛素不断增加的需求量。当胰岛无法适应机体要求时,血糖水平就会升高,并出现明显的2型糖尿病。由于胰岛素是肝脏代谢的关键调节因子,可以将生产葡萄糖的平衡转变为有利于葡萄糖的储存,因此胰岛素抵抗会导致糖稳态受损,从而导致2型糖尿病。过去已经报道了多种表征T2DM特征的动物模型,但是,从动物实验进行的研究往临床上转化的效果不佳。更重要的是,目前使用的药物,虽然能缓解糖尿病症状,但对疾病进一步发展的治疗效果有限。在此,我们以胰腺和肝脏在芯片上的串联共培养为例(参考文献:Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model,2017, Nature Scientific Reports)来说明一下。胰腺和肝脏是参与维持葡萄糖稳态的两个关键器官,为了模拟T2DM,阿斯利康(AstraZeneca)的科学家利用TissUse GmbH公司的微流控多器官芯片(MOC)平台,通过微流控通道相互连接,建立一个双器官串联芯片(2-OC)模型,实现芯片上胰腺和肝脏类器官的串联共培养,在体外模拟了胰腺和肝脏之间的交流通讯。建立串联共培养类器官(胰岛+肝脏)和单独培养类器官(仅胰岛或肝脏),在培养基中连续培养15天,串联共培养显示出稳定、重复、循环的胰岛素水平。而胰岛单独培养的胰岛素水平不稳定,从第3天到第15天,降低了49%。胰岛与肝球体串联共培养中,胰岛可长期维持葡萄糖水平,刺激胰岛素分泌,而单独培养的胰岛,胰岛素分泌显著减少。胰岛分泌的胰岛素促进了肝球体对葡萄糖的利用,显示了串联共培养中类器官之间的功能性交流。在单独培养中的肝球体中,15天内循环葡萄糖浓度稳定维持在~11 mM。而与胰岛共培养时,肝球体的循环葡萄糖在48小时内降低到相当于人正常餐后的水平度,表明胰岛类器官分泌的胰岛素刺激了肝球体摄取葡萄糖。T2DM是一种多器官疾病,疾病表型和对药物的反应依赖于具有完全代谢功能的器官和它们之间的相互作用。这篇文章提出了一个胰岛和肝球体之间的类器官串联共培养的模型。与单一培养相比,在GTT(葡萄糖耐量测验)第一天内,串联共培养中的血糖水平从高浓度降至正常范围,随后保持平衡。在没有胰岛素刺激时,单独培养类器官(仅胰岛或肝脏)中的葡萄糖水平一直保持在高浓度。通过测量胰岛在葡萄糖负荷下释放到培养基中的胰岛素水平来评估肝脏和胰岛的串联共培养的作用。胰岛素促进了肝球状体对葡萄糖的利用,在共培养中葡萄糖维持在正常水平,而单独培养中葡萄糖水平一直偏高。因为,串联共培养中,分泌到循环中的胰岛素刺激了肝球体对葡萄糖的摄取,随着葡萄糖浓度的降低,胰岛素分泌会随之减少,这就表明肝脏和胰岛之间存在一个功能反馈回路。长期暴露于高糖水平下,缺乏肝球体的胰岛释放胰岛素的能力会降低,提示了长期高血糖损害胰岛功能。另外,与单层HepaRG细胞相比,受刺激和未受刺激的AKT磷酸化比例在肝球体中明显更高,这表明3D培养环境更利于模拟人体内的生理反应。这些结果鼓励我们建立2-OC模型来模拟T2DM的特征,通过胰岛-肝脏串联共培养揭示与T2DM疾病相关的机制,包括β细胞衰竭、胰岛素抵抗、脂肪变性、脂肪性肝炎和肝硬化。多器官芯片(MOC)的发展目标是建立各种不同的器官组合模型,用于药物有效性和安全性评估以及药动学/药效学(PK/PD)测试。
  • 对4500万美国人研究发现:40%疾病由遗传引发,25%由环境造成
    p style=" text-indent: 2em " span style=" text-indent: 2em " 据英国《每日邮报》1月14日报道,美国 strong 哈佛大学 /strong 的科学家们通过对 strong 4500万美国人进行长达24年的跟踪调查 /strong ,研究哪些疾病是由基因引起的,而哪些疾病更容易受到环境的影响,是迄今为止同类研究中规模最大的研究。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c3ecca16-6445-44e3-b73b-35eb2a461d1d.jpg" title=" 00.jpg" alt=" 00.jpg" width=" 300" height=" 200" border=" 0" vspace=" 0" style=" width: 300px height: 200px " / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 据其最新发表在《自然遗传学》(Nature Genetics)期刊上的研究结果显示,在 strong 调查研究的560种疾病中,疾病中40%是由遗传导致,而至少有25%的疾病是由环境造成的,其中,认知问题与遗传基因关系最为密切,而眼疾则受环境的影响最为严重 /strong 。 /span /p p   一般来说,大多数疾病是先天基因与后天环境相互作用的结果。 strong 环境可以改变基因排序方式,基因可以影响人们身体对环境的反应 /strong 。而每个人的DNA都是独一无二的,所处的环境更是独一无二且不断变化的。而基因与环境的相互作用也因疾病而异。 /p p   哈佛大学的研究人员通过保险信息数据库收集了4500万人的数据,将基因数据、疾病诊断以及诸如身高、体重等生命医学统计数据与受试者的邮政编码进行了比较,从而推测出社会经济地位等环境对于疾病的影响。尽管所有信息对他们的分析都很重要,但 strong 受试者中5.6万对双胞胎的数据为他们的研究提供了一些最为关键的信息 /strong 。尤其是同卵双胞胎,可以为遗传学家观察不同环境下相同DNA发生的变化提供难得的机会。 /p p   哈佛大学的科学家们开始研究哪些因素对哪些疾病影响最大。通过对6000多粒遗传性疾病研究发现,遗传性疾病均是由某些基因序列缺失而导致的基因缺陷。而在研究检测的疾病中,包括 strong 肌肉骨骼疾病、认知疾病、眼部疾病、呼吸系统疾病和生殖疾病等,有近40%的疾病由遗传导致。 /strong /p p   该研究团队共对560种疾病进行了研究,发现至少 strong 有25%的疾病是由环境造成 /strong 的。其中,42种眼病中,有27种是由环境因素引起的 除眼病外,呼吸系统疾病是与环境因素联系最密切的疾病 生殖障碍受环境影响最小。在认知疾病中,五分之四是遗传的 而结缔组织疾病,如类风湿关节炎等,受DNA影响最小。 /p p   通过遗传倾向性,还可以预测每人每月在医疗保健上约60%的花费。因为,遗传因素甚至可能改变环境因素(社会经济地位),从而进一步改变疾病风险。总的来说,环境因素对疾病的预测能力弱于遗传因素。 /p p   但环境因素对疾病风险的影响极大。该研究显示,社会经济地位影响了145种不同的疾病,其中,肥胖最易致病。研究结果也表明,气候变化已经并将继续对人们的健康产生重大影响。气温变化使117种不同疾病的风险发生变化,甚至高于空气污染的风险。 /p p   该研究的作者帕特尔博士表示:“我们研究的核心问题是‘先天与后天的关系’。这种大规模分析的价值在于,它将揭示基因相对于共同的大环境在许多疾病中的影响,将有助于疾病更好的预防和治疗。” /p
  • 多模态分子成像研究所加入沃特世创新中心 致力质谱疾病研究
    马萨诸塞州米尔福德市 - 6月22日 - 沃特世公司近日在荷兰马斯特里赫特大学举办了庆祝典礼暨主题研讨会,隆重欢迎该校多模态分子成像研究所M4I加入沃特世创新中心(COI)支持计划。该研究所在负责人Ron Heeren教授的带领下,主要从事肿瘤学、神经学和心血管病学三大领域的质谱应用研究。  马斯特里赫特大学校长Martin Paul教授表示:“2014年,我校有幸聘请到Ron Heeren教授,由他发起的创新科学研究计划极大促进了林堡省的经济发展。不仅如此,Heeren教授的研究团队在推动UM研究的扩大和发展方面也发挥着至关重要的作用。M4I研究所是目前欧洲规模最大的成像研究中心之一,主要包括Heeren领导的质谱实验室和Peter Peters领导的纳米显微学实验室。M4I正致力于扩大Brains Unlimited等日益成熟的成像研究基础设施,同时进一步提升马斯特里赫特大学作为人体和分子成像研究领域国际化研究中心的地位。”  沃特世创新中心支持计划总监Eric Fotheringham说道:“我们非常荣幸能够邀请到Heeren教授这样一位具有远见卓识的大师级人物加入COI计划。多模态分子成像研究所利用质谱成像技术取得了众多骄人研究成果,这让我们对医疗科学以及医疗保健领域未来的发展更加充满信心。”  M4I研究所采用了三种质谱技术:质谱成像(MSI)技术、离子淌度技术和高分辨率质谱技术。Heeren教授将质谱成像技术应用到了各个领域,并利用该技术确定了不同类型分子(脂质、完整蛋白质、内源性肽、药物代谢物)在组织样品中的分布位置及浓度高低,进而深入了解疾病发展和患者复原情况。  在2014年的某次采访中,Heeren教授曾表示:“我相信,未来十年内,这种成像技术有望成为标准诊断工具,届时我们可以根据患者体内单个分子的状态来诊断疾病。目前,我们在肿瘤学、神经学和心血管病学领域的发展势头良好。”  精准医疗或个体化医疗是指根据每位患者独有的生物学特征专门开发治疗方案。更确切地说,就是在充分了解肿瘤分子异质性及其不同细胞表型之后制定精准的疗法,最大限度延长患者的健康生存期。  为了表彰Heeren教授以及马斯特里赫特大学多模态分子成像研究所的研究工作,沃特世公司特别举办了一场以转化医学研究中的MS成像技术:以精准医疗为目标的分子病理学研究为主题的研讨会。会上邀请了诺华生物医学研究所Markus Stoekli教授、明斯特大学Klaus Dreisewerd教授、瓦格宁根大学Michel W. F. Nielen教授、莱顿大学医学中心Liam McDonnell博士和帝国理工学院Zoltan Takats教授等质谱成像领域的多位知名专家发表演讲。
  • 哈佛医学院与通用电气医疗集团在神经退行性疾病的研究中展开合作
    美国马萨诸塞州Cambridge和新泽西州Piscataway 2005年8月11日消息 —— 通用电气公司下属的医疗集团(GE Healthcare)宣布与哈佛大学神经退行性变及修复研究中心(HCNR,Harvard Center for Neurodegeneration & Repair)合作,采用其尖端的细胞成像系统 IN Cell Analyzer,加强对例如帕金森氏病(Parkinson’s disease)和阿尔茨海默氏病(Alzheimer’s disease)的神经退行性疾病以及人类中枢神经系统的研究。此外,HCNR和通用电气医疗集团将共同开发新的分析软件,以加快此类疾病的实验室研究工作。 通用电气医疗集团的IN Cell Analyzer 是一种卓有成效的高速细胞成像系统,在疾病机制研究和药物开发过程中,研究机构和制药企业的科研人员都可以使用它来分析细胞的各种生理过程。通过与通用电气医疗集团的合作,HCNR将致力于探索治疗神经退行性疾病的新方法。在科学家破解帕金森氏病、阿尔茨海默氏病、亨廷顿病(HD,Huntington’s disease)、ALS病(Lou Gehrig’s disease)和多发性硬化(MS,multiple sclerosis)等疾病的分子和病理机制的征途上,这种新的成像系统将起到巨大的推动作用。 HCNR生物信息学中心主任、哈佛医学院放射学副教授Stephen Wong(PhD, P.E.)说:“目前医学界对严重影响大脑功能的神经退行性疾病仍然所知甚少,这种合作使我们有可能对它有更多的了解。通过IN Cell Analyzer,研究人员能更清楚地观察细胞,分析细胞对特定药物的反应过程。这就使我们能够更有效地研究复杂的神经生理过程,而这种过程对诸如帕金森氏病和阿尔茨海默氏病这类疾病的进展至关重要。” 通用电气医疗集团Discovery Systems部门的负责人Joel McComb说:“我们相信,将GE创新的疾病研究技术与HCNR的重大突破结合,必将大大提高未来医疗保健的质量和患者治疗的成效。” 神经退行性疾病在美国 - 帕金森氏病、阿尔茨海默氏病、HD、ALS和MS均属于神经退行性疾病。 - 在美国,除了目前已有的150万帕金森氏病患者以外,每年约会新增60,000名病例(详见www.parkinson.org)。 - 目前约450万美国人患有阿尔茨海默氏病,并且这个数字还在持续增长,到2050年患有此病的人数可能达到1130万至1600万(详见www.alz.org)。 - 以当前美国人口计,将会有超过300,000人死于ALS病(详见www.projectals.org);美国每年约有5,600多人被诊断患有ALS病(每天大约新增15名患者);在任意一个时间,均有约30,000美国人患有ALS病(详见www.alsa.org)。 - 每10,000个美国人中就有1个患有HD病,超过200,000人存在罹患这种致命遗传疾病的风险(详见www.hdsa.org)。 - 目前超过200,000美国人正在遭受多发性硬化的折磨,每周新增病例20余人(详见www.nationalmssociety.org)。 关于通用电气医疗集团 通用电气医疗集团革命性的医疗技术为疾病治疗开辟了一个崭新的时代,其在医学成像和信息技术、医疗诊断、患者监护和生命支持系统、疾病研究、药物开发和生物制药方面都具有丰富的专业经验,致力于疾病的早期诊断和针对不同患者提供个性化医疗服务。通用电气医疗集团提供范围广泛的产品和服务,使我们能够更好地诊断和治疗包括癌症、心血管疾病和神经系统疾病在内的各种病症,从而大大提高医疗保健和疾病治疗的水平。 通用电气医疗集团是通用电气公司(NYSE: GE)的下属企业,年营业收入达150亿美元,总部设在英国,在全球范围内拥有超过43,000名员工,致力于向世界100多个国家的医疗专业人士及其患者提供医疗服务。欲了解更多有关通用电气医疗集团的信息,请访问我们的网站www.gehealthcare.com。 关于哈佛大学神经退行性变及修复研究中心(HCNR) HCNR创办于2001年,汇集了来自于哈佛医学院、Beth Israel Deaconess医学中心、Brigham妇女医院、儿童医院,Dana Farber癌症研究所、麻省总医院和McLean医院的神经科医师和神经病学专家。2003年,麻省眼耳科医院以及Schepens 眼科研究所加入HCNR。2004年秋季,HCNR终于囊括了在哈佛工作的全部相关研究人员。 HCNR的目标是将基础神经科学中的发现尽快应用于临床,缓解神经退行性疾病对人类健康的影响。其策略是把志趣相投的科学家组织成一个具有专一目标的研究团体,并将此方法作为全面了解这类疾病的最佳途径。由于人数众多的研究人员来自于各个专业,因此HCNR建立了一种无界限合作的、精简高效的组织结构来减少重复工作。欲了解更多有关HCNR的信息,请访问我们的网站www.hcnr.med.harvard.edu。
  • 博奥生物将参加第二届疾病基因组学研究国际论坛
    近年来,全基因组关联研究(Genome Wide Association Study,GWAS)被广泛应用于人类遗传学研究,发现了众多疾病的大量遗传易感基因/位点。对前期GWAS发现的遗传易感基因/位点进行精细定位,应用测序等技术搜寻疾病的罕见变异和突变,同时深入开展功能学研究,揭示出其在疾病发生、发展中的作用机制,进而推动转化医学的发展,显得尤为重要。为进一步探讨疾病基因组学研究,加深人类对自身疾病的认识,推动疾病发病机制研究,《自然遗传》(Nature Genetics)与安徽医科大学再度共同主办&ldquo 第二届疾病基因组学研究国际论坛&rdquo ,兹定于2012年5月17-19日在杭州黄龙饭店举行。   博奥生物凭借高质量的全方位服务平台,为研究人员提供了GWAS的一站式解决方案,支持客户发表了多篇高水平研究文章。其中2011年已发表SCI文章142篇,影响因子在5分以上的高档次文章达30篇。在此次疾病基因组学研究国际论坛中,博奥生物将全面展示在基因组关联研究中雄厚的科研实力,为国内外研究人员提供一流的服务。
  • 国际表型组中心网络创立 质谱与核磁应用于疾病代谢表型研究
    由世界各地领先研究中心组成的新的全球性网络于今天推出,以应对自闭症、癌症、糖尿病和痴呆症等现如今一些最为紧迫的全球健康挑战。国际表型组中心网络 (IPCN) 将显著增强表型组学领域的全球科研能力。通过对生物体液或组织样本进行全面分析,表型组学研究我们的生活方式和我们所处的环境如何与我们的基因相互作用。它可帮助解释为何有些人会患病,而有些人就不会。该网络在卡塔尔多哈举行的世界健康创新峰会 (WISH) 特别推介会上推出。  人们普遍认为,人类基因不足以解释疾病如何发展,了解我们的基因、环境、微生物、饮食与生活方式之间的动态相互作用及它们对不同个体和人群的影响,有助于改善疾病的预防、检测和治疗。IPCN 的宗旨是更好的了解基因环境相互作用的变化如何在人的一生中对不同人群的疾病产生影响。该研究将使用代表世界不同人群的稳定、一致的数据集,为全球公共健康政策和新治疗方案的开发提供信息。  MRC-NIHR 国家表型组中心 (NPC) 负责人兼伦敦帝国学院 (Imperial College London) 外科与癌症系主任杰里米-尼科尔森 (Jeremy Nicholson) 教授表示:“在全球范围内,显著增加慢性疾病风险的环境和生活因素前所未有地融合在一起,如今构成了最大的全球公共健康挑战。IPCN 正在打造国际分析科学协调中心,专注于了解增加疾病风险的基因环境相互作用,以及重大疾病的比较生物学,并满足未被满足的保健和医疗需求。”  IPCN 由伦敦帝国学院国家表型组中心发起,由超过12家国际合作伙伴组成,这些合作伙伴在澳大利亚、加拿大、中国大陆、日本、新加坡、台湾、美国和英国设有区域多机构中心。  自2012年以来,国家表型组中心已创建表型组学领域的最佳实践实验室和研究方法论,新推出的IPCN将在全球范围内分享这一知识。如果以相同、一致的方式开展研究,数据集合并和结果比对就会变得更加简单。这意味着,以这种方式可以开展更大规模、更复杂的研究,而且与一家单独的中心独立完成相比,能够以更快的速度完成复杂性较低的研究。  英国首席医疗官莎莉-戴维斯 (Dame Sally Davies) 教授称:“事实上,表型组研究是我们新一批医疗尖端科学之一,可以增进我们对疾病和病情总体情况的了解。这一领域的研究可以彻底改变自闭症、癌症、心理健康、中风、肥胖症、代谢性疾病和2型糖尿病的治疗方式。通过国际合作找到解决方案,更快的解决我们如今所面临的最大全球公共健康挑战,这是非常好的一件事。”  南洋理工大学 (Nanyang Technological University) 李光前医学院院长詹姆士-贝斯特 (James Best) 教授说:“在新加坡,我们对国际表型组中心网络的推出表示欢迎。通过这项合作,南洋理工大学的新加坡表型组中心将有更多机会开展国际合作。通过合并一致方法论收集的数据和分享理念,我们将更好地了解有可能引发糖尿病等代谢性疾病的生化异常。”  伦敦帝国学院全球健康创新研究院院长、教授达兹勋爵 (Ara Darzi of Denham) 表示:“该世界健康创新峰会计划专注于了解全球健康需求的变化以及迫切的医疗和健康问题,并进行相关筹划。IPCN 将肩负肥胖症、糖尿病、癌症和自闭症等医疗健康挑战,并创建一项技术架构,在全球范围内对疾病的比较生物学进行研究。”  该网络的创始机构为伦敦帝国学院及其企业合作伙伴沃特斯公司 (Waters Corporation) 和布鲁克公司 (Bruker Corporation)。沃特斯和布鲁克已开发了质谱分析与核磁共振光谱技术,进而实现了高级、精准和高效的代谢表型。代谢表型涉及识别存在生物体液和组织样本中的代谢物,提供有关个人当前健康状况和生理机能的信息。反过来,这也会提供疾病和代谢病理相关信息。
  • 质谱新技术 | 美CDC 研究人员开发出筛查新生儿代谢性疾病的新方法
    美国疾病控制和预防中心的研究人员已经开发一种检测新生儿高同型半胱氨酸血症的方法,这是一种常被常规新生儿筛查测试忽略的病症,可能导致永久性损害或死亡。在上周发表在 Clinical Chemistry 杂志上的一项研究中描述该测试时,作者指出,高同型半胱氨酸血症影响到婴儿代谢蛋氨酸的能力,导致蛋氨酸和另一种生物标记物——同型半胱氨酸的水平升高。此外,它还会引起眼部和骨骼问题、智力缺陷和血管异常等问题。 传统的病症筛查方法使用的是以蛋氨酸为生物标记物的多重快速流注分析质谱(FIA-MS/MS)测试,但这种方法通常在新生儿筛查时蛋氨酸水平仍然较低。该测试可以检测到该病症但常常会漏诊。 该试验中引入了还原步骤以及使同型半胱氨酸灵敏度提高的衍生化步骤,使得新测试方法可以更准确地检测到高同型半胱氨酸血症,而不受其他生物标记物的影响。该测试可以无缝集成到现有和未来的一级新生儿筛查测试中,具有实际应用价值。 此测试是第一种能在常规的FIA-MS/MS新生儿筛查测试中实现同型半胱氨酸多重定量的测试方法。此前的属于二级筛查,总同型半胱氨酸进行分离、质谱分析,时间较长,并且比FIA-MS/MS测试使用频率低。该试验可能会漏诊低蛋氨酸水平下的同型半胱氨酸血症患儿,因此一般将其作为第二级筛查生物标记物,但有时在新生儿出生后两天内采集的血液样本中蛋氨酸水平还不够高会导致漏诊。同型半胱氨酸更加接近同型半胱氨酸血症代谢途径并且在受影响的新生儿身上更早出现,而且不受管路喂养的影响,因此可以提高新生儿筛查的准确性。 该试验被测试在152位临床标本中,其中有100个被判定为健康样本,50个是在医院接受管路营养治疗的婴儿样本,以及2个被诊断为同型半胱氨酸血症样本,测试结果准确无误。 测试方法可集成现有和未来的一级新生儿筛查测试中,成本低,具有实际应用价值。只需在现有筛查测试中添加额外的化学物质即可无缝集成。该方法需要进一步测试、验证并取得监管批准后方可大规模使用。 研究人员还计划将其他两个生物标记物引入测试中,以区分同型半胱氨酸血症和其他疾病。此外,该测试方法可以为检测使用总同型半胱氨酸作为生物标记的其他罕见代谢性疾病打开大门。在新生儿筛查中,检测其他与同型半胱氨酸水平相关的疾病也被提出作为一种选择。 总之,该测试方法为早期检测同型半胱氨酸血症提供了一种更准确、更快速和更经济的方法。研究人员表示,该方法的适用范围不仅限于CDC实验室,其他新生儿筛查实验室也可以采用该方法,并且这种化学物质成本较低,便于实际应用。 研究人员表示,该测试方法具有重要的临床意义和应用前景。在医学实践中,检测同型半胱氨酸血症很重要,因为它是一种罕见但可能会引起永久性损伤或死亡的疾病。如今,通过该测试方法,新生儿可以接受更及时、更准确的筛查,以确保他们的健康和幸福。此外,这种测试方法还可以进一步提高新生儿筛查的准确性,为其他代谢性疾病的早期筛查提供参考和借鉴。 然而,该测试方法并非百分之百准确,仍存在漏诊和误诊的风险。因此,在实践中,研究人员建议采用多种测试方法相结合的筛查方法,从而最大程度地减少漏诊和误诊的风险。 总之,对于新生儿来说,早期筛查是非常重要的,因为许多疾病在早期就可以通过筛查被发现和治疗,避免造成长期的不可逆损伤。而这项新的同型半胱氨酸血症测试方法的出现,将有助于提高新生儿筛查的准确性和效率,为新生儿健康保驾护航。 研究人员表示,该测试方法是基于最新技术的成果,并得到了现代技术的支持。基于这个方法,他们也在尝试开发其他新的测试方法,以提高新生儿筛查的准确性和覆盖面。同时,他们还将继续研究同型半胱氨酸血症的治疗方法,为患者提供更好的治疗方案。 该新测试方法的出现为新生儿筛查提供了一种更准确、更快速和更经济的方法,有助于预防和治疗同型半胱氨酸血症等代谢性疾病。这是一个非常好的消息,使我们相信,随着先进技术的不断发展和应用,我们能够更好地保障人类健康和幸福。 该测试方法还需要进一步开发和优化。研究人员将继续改进该方法,包括增加生物标记物的数量和灵敏度,并且要将该测试集成到更多实际应用中。此外,他们还将考虑将该测试方法应用于其他人群的筛查中,以扩大其应用范围。 此外,该测试方法的出现也受到了一些限制和挑战。例如,该测试需要采集新生儿的血液样本,这可能会造成疼痛和不适,需要专业医护人员进行操作。此外,该测试方法还需要耗费一定的时间和资源,这将对筛查的效率和成本产生一定的影响。因此,在实际应用中,需要权衡各种因素,并与其他筛查方法一起使用,以最大程度地提高筛查效果。新生儿高同型半胱氨酸血症是一个危险的罕见疾病,早期筛查尤为重要。该研究开发出的测试方法可以提高筛查准确性,有望在实践中应用。这项成果不仅对筛查同型半胱氨酸血症有很大帮助,而且还为其他罕见代谢性疾病的早期筛查提供借鉴。我们期待着更多的科技成果能够为人类健康事业作出贡献。 Petritis也提出了检测与同型半胱氨酸水平相关的其他疾病作为一种选择。将同型半胱氨酸分析加入到基于串联质谱的主要筛查中,“打开了检测使用总同型半胱氨酸作为生物标志物的其他罕见代谢性疾病的大门。”Petritis指出,举例来说,重甲基化障碍是其中之一。该研究小组还在致力于将另外两种生物标志物多重复合到测试中,以区分同型半胱氨酸尿症和其他疾病。 参考文献: https://academic.oup.com/clinchem/advance-article/doi/10.1093/clinchem/hvad007/7068836
  • 3192万!重庆医科大学脑科学与脑疾病研究院科研仪器设备采购
    项目号:CQS22A00052 采购执行编号:1708-BZ2200460174AHS项目名称:重庆医科大学脑科学与脑疾病研究院科研仪器设备采购采购方式:公开招标预算金额:31,923,400.00元最高限价:31,923,400.00元采购需求:包号:1包内容最高限价数量单位简要技术要求脑科学与脑疾病研究院仪器设备110,299,000.00元1批双光子显微镜:全自动控制采集光路,全自动调整激光光斑位置和角度包号:2包内容最高限价数量单位简要技术要求脑科学与脑疾病研究院仪器设备21,364,400.00元1批小型垂直电泳槽:能制备的凝胶厚度:1mm包号:3包内容最高限价数量单位简要技术要求脑科学与脑疾病研究院仪器设备34,460,000.00元1批高速离心机:可保存≥99个程序,连续运行包号:4包内容最高限价数量单位简要技术要求脑科学与脑疾病研究院仪器设备49,150,000.00元1批小动物行为分析及神经评估系统:实验设置和分析设置可通过拷贝粘帖、存储载入等方法重复使用包号:5包内容最高限价数量单位简要技术要求脑科学与脑疾病研究院仪器设备56,650,000.00元1批小动物活体检测系统:检测方式:直流安培、脉冲安培检测方式最高限价总计:31,923,400.00元合同履行期限:所投产品若为进口产品,中标人应在采购合同签订后90个日历日内交货并完成安装调试;所投产品若为国产产品,中标人应在采购合同签订后30个日历日内交货并完成安装调试。本项目是否接受联合体:否
  • 安捷伦科技公司与威尔康乃尔医学院合作推进ALS疾病研究
    2015年 9月 1日,北京——安捷伦科技公司(纽约证交所:A)近日宣布与纽约市威尔康乃尔医学院(Weill Cornell Medical College)药理学系老师 Steven Gross博士合作,共同推进肌肉萎缩性侧索硬化症(ALS,也称为葛雷克氏症)的研究。安捷伦将提供最新的质谱技术支持其研究,共同努力揭示这种疾病的最常见形式在体内的发展过程。  Agilent 6230B LC TOF与 6550A LC Q-TOF质谱仪将安装在 Gross博士的实验室中,他是国际公认的使用质谱进行代谢组学研究的专家。他的专长是药理学与细胞生物学,尤其精通以一氧化氮作为信号分子的相关领域。  Gross博士与威尔康乃尔医学院药理学系研究助理教授 Qiuying Chen博士,以及该学院医学研究生院药理学博士生 Ben Schwartz正在研究 ALS的最常见形式。ALS是一种致命的进行性神经系统退行疾病,能够影响大脑和脊髓中的神经细胞,并以代谢控制受损为主要特征。  散发型肌肉萎缩性侧索硬化症(sALS)在所有ALS 病例中占 90%,且无明显遗传驱动因子。Gross博士和他的搭档威尔康乃尔 Feil家族大脑与思维研究所神经科学教授 Giovanni Manfredi博士,以及斯隆凯特林研究所干细胞生物学中心主管 Lorenz Studer博士正在对 ALS的这种形式进行分子基础研究。安捷伦工具能够帮助研究人员采用以多学科为基础的方法理解这种疾病的根源所在。借助精确质量数质谱,研究人员能够对成纤维细胞表达系统性代谢标记物形成 ALS的可能性进行检验。  安捷伦科研与政府市场生命科学研究营销总监 Steven Fischer表示:“利用基因组学、蛋白组学、转录组学与代谢组学等多生物学科结合进行转化研究是科学研究的一种新趋势。然而大多研究人员并不了解如何开展多组学分析,他们需要一个成功范例。安捷伦与威尔康乃尔的 Gross实验室正在共同努力推进以多组学为基础的方法用于疾病研究,他们将利用 sALS的研究成果证明这种方法的巨大前景。”  Gross博士说道:“我们非常荣幸能与安捷伦联手推动散发型 ALS研究计划的进展。我们新建立的科学合作关系是获得并整合多组学数据的难得机遇,同时也有可能对这种毁灭性疾病的分子基础得到前所未有的认识。我们期望能够与安捷伦一直保持科学合作,这样我们就能够将多组学方法应用于其他知之甚少的疾病,满足供不应求的临床需求。”  安捷伦作为质谱领域的领导者,可提供涵盖所有主要组学领域的全套解决方案。安捷伦解决方案包括样品前处理、仪器以及处理与分析研究数据的软件,帮助用户获得对复杂疾病的生物学认知。  关于安捷伦科技公司  安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014财年,安捷伦的净收入为 40亿美元,全球员工数约为 12000人。今年是安捷伦进军分析仪器领域的 50周年纪念。如需了解安捷伦科技公司的详细信息,请访问www.agilent.com.cn。
  • 安捷伦科技公司与威尔康乃尔医学院合作推进 ALS 疾病研究
    安捷伦科技公司与威尔康乃尔医学院合作推进 ALS 疾病研究 2015 年 9 月 1 日,北京 —— 安捷伦科技公司(纽约证交所:A)近日宣布与纽约市威尔康乃尔医学院(Weill Cornell Medical College)药理学系老师 Steven Gross 博士合作,共同推进肌肉萎缩性侧索硬化症(ALS,也称为葛雷克氏症)的研究。安捷伦将提供最新的质谱技术支持其研究,共同努力揭示这种疾病的最常见形式在体内的发展过程。 Agilent 6230B LC TOF 与 6550A LC Q-TOF 质谱仪将安装在 Gross 博士的实验室中,他是国际公认的使用质谱进行代谢组学研究的专家。他的专长是药理学与细胞生物学,尤其精通以一氧化氮作为信号分子的相关领域。 Gross 博士与威尔康乃尔医学院药理学系研究助理教授 Qiuying Chen 博士,以及该学院医学研究生院药理学博士生 Ben Schwartz 正在研究 ALS 的最常见形式。ALS 是一种致命的进行性神经系统退行疾病,能够影响大脑和脊髓中的神经细胞,并以代谢控制受损为主要特征。 散发型肌肉萎缩性侧索硬化症(sALS)在所有 ALS 病例中占 90%,且无明显遗传驱动因子。Gross 博士和他的搭档威尔康乃尔 Feil 家族大脑与思维研究所神经科学教授 Giovanni Manfredi 博士,以及斯隆凯特林研究所干细胞生物学中心主管 Lorenz Studer博士正在对 ALS 的这种形式进行分子基础研究。安捷伦工具能够帮助研究人员采用以多学科为基础的方法理解这种疾病的根源所在。借助精确质量数质谱,研究人员能够对成纤维细胞表达系统性代谢标记物形成 ALS 的可能性进行检验。 安捷伦科研与政府市场生命科学研究营销总监 Steven Fischer 表示:“利用基因组学、蛋白组学、转录组学与代谢组学等多生物学科结合进行转化研究是科学研究的一种新趋势。然而大多研究人员并不了解如何开展多组学分析,他们需要一个成功范例。安捷伦与威尔康乃尔的 Gross 实验室正在共同努力推进以多组学为基础的方法用于疾病研究,他们将利用 sALS 的研究成果证明这种方法的巨大前景。” Gross 博士说道:“我们非常荣幸能与安捷伦联手推动散发型 ALS 研究计划的进展。我们新建立的科学合作关系是获得并整合多组学数据的难得机遇,同时也有可能对这种毁灭性疾病的分子基础得到前所未有的认识。我们期望能够与安捷伦一直保持科学合作,这样我们就能够将多组学方法应用于其他知之甚少的疾病,满足供不应求的临床需求。” 安捷伦作为质谱领域的领导者,可提供涵盖所有主要组学领域的全套解决方案。安捷伦解决方案包括样品前处理、仪器以及处理与分析研究数据的软件,帮助用户获得对复杂疾病的生物学认知。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在2014 财年,安捷伦的净收入为 40 亿美元,全球员工数约为 12000 人。今年是安捷伦进军分析仪器领域的 50 周年纪念。如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 中国检科院首个食源性疾病研究室在宁波挂牌成立
    12月1日上午,中国检验检疫科学研究院食源性疾病研究室在宁波大榭公共卫生与食品安全检测中心挂牌成立。中国检验检疫科学研究院院长李怀林、大榭开发区管委会主任蔡希良、宁波检验检疫局局长山巍出席仪式。   据悉,该研究室是中国检科院在全国范围内设立的第一个食源性疾病研究室,也是中国检科院继石油化工产品实验室、光电电气产品实验室之后设在宁波的第三个院外实验室。   因为受食品供应全球化、国际贸易加快、国际间人员流动频繁、微生物和病毒变异加速、易感人群增加等因素影响,食源性传染病已成为日益严重的国际性公共卫生问题,所以在宁波口岸成立食源性疾病研究室意义重大。   研究室的成立既是提升口岸公共卫生核心能力的需要,又是宁波市外向经济发展转型升级的客观需求。同时将为国家相关部门制定防控措施提供指导依据,对防止食源性传染病在口岸传播具有重要意义。   “十一五”期间,宁波检验检疫局大力实施“科技兴检”战略,共投入设备3507台套,资金2.7亿元,形成了由9个国家重点实验室、5个区域中心实验室、36个常规实验室组成的实验室检测体系。大榭公共卫生与食品安全检测中心作为体系的重要组成部分,近年来,在服务地方经济发展,严守国门安全方面取得突出成绩。这次双方将在有关口岸食源性疾病的检测技术与监测体系、病原体的流行病学研究、食物中毒事件应急体系建立与分析等领域开展科研合作,通过局院合作模式,双方将共享人才、设备、技术和研究资源,共同提高科研水平,防控食源性疾病在国境口岸传播。
  • 兰大二院神经内科获批国家神经免疫与感染疾病研究分中心
    p   近日,在北京举办的“国家神经系统疾病临床医学研究中心建设推进与战略研讨会”上,兰州大学第二医院神经内科成为全国首批29家“国家神经免疫与感染疾病研究分中心”之一,成为甘肃省唯一一家分中心单位。 /p p   兰大二院神经内科成为全国首批“国家神经免疫与感染疾病研究分中心”,标志着兰大二院神经免疫感染性疾病的诊治及科研与国内高水平和国际水平接轨。中心将致力于建设并完善我国神经免疫与感染疾病医疗与临床科研体系,在全国范围内整合神经免疫专科力量,通过高层次对话与合作搭建专家与政府、医院之间以及医患之间的沟通桥梁,为甘肃省神经内科事业的发展做出新的贡献。 /p
  • 史上最大的血浆蛋白质组研究发布 有助建立基因组与疾病之间的关联
    在2日发表于英国《自然遗传学》杂志上的一项研究中,安进 (Amgen)制药属下deCODE基因公司的科学家们展示了通过结合序列多样性和RNA表达的数据,测量出迄今最大规模血浆中大量蛋白质的水平,以深入了解人类疾病和其他表型。  deCODE基因公司的科学家们使用了血浆中的5000种蛋白质,这些蛋白质以群体规模的多重平台为目标,以解开它们的遗传决定因素以及它们与人类疾病和其他特征的关系。  利用技术平台“SOMAscan”的蛋白质组学测定法测量的血浆蛋白质水平,deCODE基因公司的科学家们测试了2700万个序列变异与35559名冰岛人血浆中4719种蛋白质水平的关联。他们发现了18084个序列变异与蛋白质水平之间的关联,其中19%与通过全基因组测序确定的罕见变异相关。总体而言,93%的关联是新颖的。此外,他们分别基于“SOMAscan”方法和基于抗体的OLINK精准蛋白质组学分析,从现有最大的血浆蛋白质组学研究中重复了83%和64%的报告关联。  科学家们测试了血浆中蛋白质水平与373种疾病和其他特征的关联,并产生了257490个这样的关联。他们整合了序列变异与蛋白质水平、疾病和其他特征的关联,发现已报告的与疾病和其他特征相关的大约5万个变异中的12%,也与蛋白质水平相关。  deCODE基因公司首席执行官、该论文的资深作者之一凯瑞斯蒂凡森表示,蛋白质组学可以帮助解决遗传研究中的一个主要难题:确定哪个基因负责序列变异对疾病的影响。此外,蛋白质组还提供了一些时间相关的测量方法,因为血液中的蛋白质水平会随着事件发生和发生的时间而上升和下降。
  • 血浆甘油磷脂与生活方式和心血管代谢性疾病风险研究获进展
    中国科学院上海营养与健康研究所研究员林旭研究组与中国科学院分子细胞科学卓越创新中心研究员曾嵘研究组合作,分别在Diabetologia、The American Journal of Clinical Nutrition上,发表了题为Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese、Plasma glycerophospholipid profile, erythrocyte n-3 PUFAs, and metabolic syndrome incidence: a prospective study in Chinese men and women的研究论文。  近几十年来,我国居民的肥胖、代谢综合征及糖尿病等心血管代谢性疾病的患病率快速攀升,威胁居民健康。健康的生活方式是国际公认的预防和控制这类疾病经济有效的方法,但目前人们对其在疾病过程中的复杂影响和调控路径认识有限。近年来,包括脂质组在内的代谢组学技术的快速发展,为发现疾病早期的生物标记物、阐释疾病发生发展相关的代谢通路和调控因素提供了契机。在诸多脂质分子中,甘油磷脂(glycerophospholipid, GPLs)作为哺乳动物细胞膜含量丰富的磷脂,参与了多种生理功能,如细胞信号传导、脂蛋白分泌和代谢,以及内质网、线粒体的功能等。大量动物研究提示,GPL代谢紊乱能引发内质网应激、以及肥胖、胰岛素抵抗、血脂异常等代谢异常。迄今为止,国际上有关GPL与糖尿病、代谢综合征的前瞻性队列研究有限,尤其是在亚洲人群中的研究十分匮乏。  林旭团队与曾嵘团队合作,通过采用高通量靶向液相色谱-电喷雾串联质谱法定量检测了2248名参加“中国老龄人口营养健康状况研究”志愿者的基线血浆脂质组(728种脂质),其中包括160种GPLs。林旭组博士生陈双双和副研究员孙亮等在GPL与糖尿病的相关研究(Diabetologia)中发现:(1)8种GPLs [1种溶血磷脂酰胆碱、6种磷脂酰胆碱(PC)以及1种磷脂酰乙醇胺(PE)],尤其是与脂质从头合成途径(de novo lipogenesis pathway,DNL)脂肪酸相关的PC水平升高可显著增加6年糖尿病发病风险(相对风险比值比:1.13-1.25;图1);(2)其中4种仅包含饱和、单不饱和的脂肪酸酰基链的GPLs[PC(16:0/16:1, 16:0/18:1, 18:0/16:1)和PE(16:0/16:1)]与高精制谷物(大米和面条),低鱼类、奶制品和大豆制品摄入相关的膳食模式呈显著正相关(P 0.001;图2);(3)上述8种GPLs与糖尿病风险之间的正相关性在体力活动水平较低的个体中更为显著(P-inter 0.05;图3)。而在与代谢综合征相关的研究(AJCN) 中则发现:(1)11种GPLs(1种PC、9种PE以及1种磷脂酰丝氨酸)水平的升高可显著增加6年后代谢综合征的发病风险(相对风险比值比:1.16-1.30;图4),而这些GPLs的sn-2位置大部分含有长链或超长链多不饱和脂肪酸(PUFAs);(2)其中7种GPLs与代谢综合征发病风险之间的正相关性在红细胞膜n-3 PUFAs水平较低的人群中更显著(P-inter 0.05;图5)。上述研究提示特定GPL能显著增加6年后糖尿病或代谢综合征的发病风险,但增加体力活动或摄入n-3 PUFAs可能有助于降低其对心血管健康的负面影响。  研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金及上海市科技重大专项等的资助。  论文链接:1、2
  • 人工智能技术揭示前所未知细胞成分 为人类发育和疾病研究提供新线索
    大多数人类疾病实质上是细胞故障的产物。但要了解细胞的哪些部分出错会导致疾病,科学家首先需要对细胞有完整的了解。美国加州大学圣地亚哥分校医学院的研究人员及其合作者在24日发表于《自然》杂志上的论文中,介绍了尺度集成细胞(MuSIC)技术,这是一种结合了显微镜、生物化学和人工智能的技术,揭示了以前未知的细胞成分,为人类发育和疾病提供新线索。  “如果你想象一个细胞,你可能会在细胞生物学课本上画出五颜六色的图,上面有线粒体、内质网和细胞核。但你以为这就结束了吗?绝对不是。”美国加州大学圣地亚哥分校医学院和摩斯癌症中心教授特雷依德克博士说,“科学家们早就意识到这点了,但现在我们终于有办法更深入地进行研究了。”  在这项初步研究中,MuSIC揭示了人类肾脏细胞系中包含的大约70种成分,其中一半是我们以前从未见过的。研究还确定了一种新的结合RNA的蛋白质复合物。该复合物可能参与重要的细胞剪接机制,这一机制使基因能够翻译成蛋白质,并帮助确定哪些基因在哪些时间被激活。  MuSIC技术的不同之处在于,首次将不同尺度的测量结果结合在一起,利用深度学习直接从细胞显微镜图像绘制细胞图谱。  通过显微镜成像,研究人员将各种颜色的荧光标记添加到被研究的蛋白质上,并跟踪它们在显微镜视野中的运动和生物物理关联。  科学家可以利用显微镜看到1微米尺度的物体,这大约是一些细胞器(如线粒体)的大小。更小的元素,比如单个蛋白质和蛋白质复合物无法通过显微镜看到,而生物化学技术使科学家能够深入观察到纳米尺度。  此外,该团队训练了MuSIC人工智能平台来查看所有数据并构建细胞模型。然而,它还没有像教科书图表那样将每一部分内容映射到特定的位置,部分原因是细胞内结构的位置会变化。  依德克指出,这是一项测试MuSIC的试点研究。他们只研究了661种蛋白质和一种细胞类型。下一步是研究所有人类细胞,再过渡到不同的细胞类型和物种。最终,通过比较健康细胞和患病细胞的不同之处,或许能够更好地理解疾病的分子基础。
  • 2017年度聚焦:利用血液进行疾病诊断的重磅级研究!
    p strong   【1】Anal Methods:新型血液检测技术可用于诊断多发性硬化 /strong /p p   DOI:10.1039/C7AY01922J /p p   最近,来自Huddersfield大学的研究者们开发出了一种快速检测多发性硬化的方法。 /p p   该方法引用了先进的质谱技术,并且能够从简单的血液样本中找到多发性硬化发生的信号。目前用于检测多发性硬化的手段都是从大脑或脊髓中抽取体液,而这种创伤性的取样过程往往伴随着巨大的痛苦。 /p p   总的来说,作者两种天然生物标志物,能够预测多发性硬化的发生。这两类化合物分别为鞘氨醇以及二氢鞘氨醇,他们在多发性硬化患者体内的水平明显较低。 /p p   根据该文章的共同作者,来自Huddersfield大学的博士研究生Sean Ward的说法,这项研究除了找到一种新的检测多发性硬化的手段以外,还将帮助揭示上述化合物对疾病发生的作用,并且将有助于药物的开发。 /p p    strong 【2】Cancer Cell:重大进展!新型血液活检技术可通过读取血小板信息来快速检测肺癌 /strong /p p   DOI:10.1016/j.ccell.2017.07.004 /p p   最近,来自荷兰的研究人员通过研究设计了一种进行液体活检的不同方法,相比寻找血液中癌细胞DNA或其它生物标志物的证据而言,这种名为thromboSeq的新型检测手段能够通过检测被血液中循环血小板所吸收的肿瘤RNA来对非小细胞肺癌进行诊断,而且该技术的诊断准确率能够达到90%,非小细胞肺癌占到了大部分的肺癌患者病例,相关研究刊登于国际杂志Cancer Cell上。 /p p   文章第一作者Myron Best表示,基于液体活检的癌症检测技术的目的就是在疾病早期一次性对所有癌症进行诊断,也就是一体化的检测手段 而thromboSeq技术不仅能够提供对肺癌的诊断,还还能够潜在对任何一种癌症类型进行诊断,同时还能对不同的肿瘤类型进行分层分析。血小板是血液中形成血凝应对损伤寿命较短的血细胞,然而血小板同时还会对一系列炎性事件和癌症产生反应,由于血小板自身并不具有细胞核,因此血小板中的所有RNA都来自于巨核细胞或在循环血液中所吸收的RNA 相比肿瘤患者机体中的血小板而言,无癌患者机体中的血小板通常含有不同类型的RNA。 /p p   strong  【3】Science子刊:重磅!新型胰腺癌早期血液检测技术或有望进入临床试验 /strong /p p   DOI:10.1126/scitranslmed.aah5583 /p p   日前,一项刊登在国际杂志Science Translational Medicine上的研究报告中,来自宾夕法尼亚大学的研究人员通过研究发现开发出了一种新型生物标志物检测盘(biomarker panel),或能够帮助进行胰腺癌的早期诊断并且开发新型治疗癌症的疗法 每年美国都有超过5.3万胰腺癌新发患者,而且胰腺癌是引发癌症患者死亡的第四大原因。 /p p   大部分胰腺癌患者都是到疾病晚期才被诊断出癌症,而这时候往往已经错过了肿瘤被手术移除的最佳时机 研究者Ken Zaret博士表示,文章中我们鉴别出了一对生物标志物,其能够帮助研究人员及早对胰腺癌患者进行诊断 通过对模拟人类胰腺癌进展的细胞模型进行研究,研究人员鉴别出了所释放的蛋白质,随后他们发现这些蛋白质中的一个亚群能够作为诊断胰腺癌的潜在血液生物标志物。 /p p strong   【4】PNAS:如何利用简单的血液检测来诊断癌症? /strong /p p   DOI:10.1073/pnas.1618088114 /p p   最近,一项发表在国际杂志Proceedings of the National Academy of Sciences上的研究报告中,来自普渡大学的研究人员通过研究表示,医生们未来或有望利用简单的血液检测来诊断和监测患者的癌症,从而或许就能够降低或消除一些侵入性手段的使用,文章中,研究者在血浆中鉴别出了一系列蛋白质,当这些蛋白水平升高时就意味着患者会患上癌症。 /p p   研究者Andy Tao表示,我们对乳腺癌患者的样本进行了分析,但这种血液检测手段似乎对于任何一种癌症和其它疾病都适用,同时该研究还依赖于对血浆中的微泡和外来体进行分析。蛋白质的磷酸化能够诱发癌细胞形成,因此诸如一些磷蛋白质等磷酸化蛋白或许就能够作为指示癌症的候选生物标志物 然而截止到目前为止,研究人员并不能够对血液中的磷蛋白质进行纯化,因为肝脏会释放磷酸酶到血液中,而磷酸酶能够对磷蛋白质进行脱磷酸作用。 /p p strong   【5】Nature Genetics 新型血液检测可以定位肿瘤生长部位 /strong /p p   DOI:10.1038/ng.3805 /p p   来自加州大学圣地亚哥分校(UCSD)的生物工程师开发了一种检测癌症的新方法,可以确定体内正在生长的肿瘤的位置。这项研究提供了一种无创的肿瘤早期诊断方法,相关研究成果于近日发表在Nature Genetics上。 /p p   肿瘤血检主要通过检测死亡肿瘤细胞释放出的DNA,这些测试具有检测出癌症病人血液中少量的肿瘤细胞DNA,但是这些结果并不能显示肿瘤所处的位置。“知道肿瘤的位置对于有效的早期诊断至关重要。”UCSD工程学院生物工程学教授、论文通讯作者Kun Zhang说道。 /p p   在这项研究中,Zhang及其团队发现了血液中一个可以检测肿瘤细胞并定位肿瘤位置的重要线索。当肿瘤细胞开始在身体某个部位生长时,它们会和正常细胞争夺营养和空间,并在这个过程中杀死正常细胞。当这些正常细胞死亡后,它们会把DNA释放到血液中,而通过检测这些DNA就可以确定受影响的组织。 /p p    strong 【6】Annals of Oncol:新型血液检测技术有望帮助预测皮肤癌患者的疾病复发 /strong /p p   doi:10.1093/annonc/mdx717 /p p   近日,一篇发表在国际杂志Annals of Oncology上的研究报告中,来自英国癌症研究中心(Cancer Research UK)的科学家通过研究发现,检测皮肤癌患者血液中的肿瘤DNA或能帮助预测患者恶性癌症复发的可能性 相关研究或为研究人员有效鉴别癌症容易复发的患者,以及开发新型免疫疗法有效治疗皮肤癌患者提供新的思路和希望。 /p p   文章中,研究人员对患2级和3级黑色素瘤的161名患者术后提取的血液样本进行研究,随后寻找和70%黑色素瘤发生相关的基因错误,即便BRAF和NRAS基因。5年后,血液检测发现上述两种基因中任意一种基因突变阳性的的患者中有33%的人群存活下来了,未出现上述两种基因突变阳性的对照的生存率为65%。研究结果表明,携带两种基因错误突变的患者在术后一年内黑色素瘤复发的可能性很大。 /p p strong   【7】eLife:新型血液检测方法可有效诊断卵巢癌的发生 /strong /p p   DOI:10.7554/eLife.28932 /p p   最近,研究者们利用人工智能的手段开发出了快速准确诊断卵巢癌的方法。他们发现血液样本中循环的microRNA网络与卵巢癌的发生之间有很强的相关性。相关结果发表在最近一期的《elife》杂志上。 /p p   大部分被诊断患有卵巢癌的女性都处于癌症末期,其中仅有四分之一的患者能够存活5年以上的时间。然而,对于得到早期诊断的女性来说,存活的时间则会显著地增加。目前还没有FDA批准的卵巢癌筛查手段,因此大规模地实现卵巢癌的早期诊断具有很大的挑战。 /p p   研究者们分析了血液样本中一类叫做microRNA的分子,这类分子是由基因组非编码区表达产生,能够控制其它基因的表达。 /p p strong   【8】Sci Trans Med:新型血液DNA检测手段可用于早期癌症的鉴定 /strong /p p   DOI:10.1126/scitranslmed.aan2415 /p p   为了能够无创性地对癌症进行早期诊断,来自约翰霍普金斯大学Kimmel癌症中心的研究者们开发出了一种基于微量血液样本的癌症特意性DNA检测技术,并且利用该技术对138名处于早期结肠癌、肺癌以及卵巢癌的志愿者进行了检测。结果显示,该技术能够对其中超过一半的患者提供准确的诊断结论。科学家们称该方法能够区分癌症特异性DNA分子以及其它种类的突变DNA分子,因而相比其它技术大大提高了准确性。相关结果发表在最近一期的《Science Translational Medicine》杂志上。 /p p   癌症的血液检测是临床癌症学研究的热门领域,但目前仍处于早期阶段。为了鉴定癌症患者血液中少量存在的癌症特异性DNA分子,科学家们往往会根据肿瘤样本中存在的基因突变信息,去寻找血液中是否存在相似的成分。为了开发出一种适用于无症状人群的癌症血液检测手段,研究者们试图去寻找此前未被发现过的新型DNA突变。 /p p   & quot 这一项目的挑战在于如何开发出能够在不清楚肿瘤组织遗传突变信息的条件下预测癌症发生的血液检测手段& quot ,研究者之一Velculescu说道。 /p p strong   【9】新型血液检测能够在症状出现前预测癌症 /strong /p p   新闻阅读:This Simple Blood Test Can Predict Cancer Years Before Symptoms appear /p p   最近一项无创性的癌症诊断前期试验效果显著,这一新突破有助于未来高精度癌症血液诊断与筛查技术的提高。这一技术的主要原理是检测血液中的肿瘤细胞特异性DNA,而前期的试验结果让我们对癌症的诊断有迈进了一步。 /p p   如今,我们对于癌症的诊断技术的最佳方法是活组织切片,即通过从肿瘤患者体内提取一小部分肿瘤组织进行切片分析。然而,切片法会产生一定的创伤,而且只有在观察到有一定大小的肿瘤实体之后才能够进行组织提取。 /p p   因此,科学家们试图寻找基于血液的检测方法,这种方法能够在不进行手术的前提下进行癌症的诊断,不仅对患者的伤害低,而且能够使诊断的时间大幅提前。 /p p strong   【10】Sci Trans Med:胰腺癌血液检测初见成效 /strong /p p   DOI:10.1126/scitranslmed.aal3226 /p p   科学家们最近发现了一类新的鉴定胰腺癌的血液检测技术,这一技术能够帮助早期诊断的进一步提前。 /p p   胰腺癌是一类致命的肿瘤类型,而究其原因,是由于检测与治疗往往不够及时。这项仍在试验阶段的技术是通过对胰腺肿瘤分泌的特有蛋白质进行检测而诊断肿瘤的发生,这一技术相比目前仍在使用的& quot CA19-9& quot 技术间更加准确。 /p p   该研究的共同作者之一Cesar Castro博士称CA 19-9疗法十分不完美。具体来说,CA 19-9只有在胰腺癌晚期才会有所上升,而此时的诊断结果对于治疗没有实际的帮助。此外,被检测蛋白也并非特异性存在于癌细胞中,当胰腺处于炎症反应阶段,或者胆囊阻塞的时候也会有所表达。根据Castro的说法,CA19-9技术在胰腺癌患者的治疗过程中追踪疾病的恶化情况或许有用处,但作为诊断标志物来说则十分不合格。 /p p strong   【11】Sci Rep:突破性成果!科学家鉴别出指示多发性硬化症的首个血液生物标志物 /strong /p p   doi:10.1038/srep41473 /p p   最近,来自澳大利亚麦考瑞大学的研究人员通过研究发现了指示多发性硬化症(MS)的首个血液生物标志物,多发性硬化症是一种发病于中枢神经系统的严重疾病,其在澳大利亚大约影响着2.3万人的健康,而在全球影响着230万人的健康。 /p p   相关研究刊登于国际杂志Scientific Reports上,这项研究发现是科学家们历时12年的成果,新型生物标志物的鉴别能够使得研究人员鉴别多发性硬化症的准确率达到85%至90% 从传统角度来讲,追踪该病的发病过程一直被认为存在一定问题,而且耗时较长,同时还需要对病人进行一系列实验,但最新研究结果表明,利用简单的血液检测就能够简化并且加速科学家们探究疾病发病机制的过程。 /p p   研究者Gilles Guillemin教授说道,在Dianti MS Pty公司的资助下,目前我们开发出了一种新型的诊断试剂盒,其将能够帮助来自全球的科学家对多发性硬化症患者进行快速简便地鉴定。这种临床血液检测试剂盒在两年内均可以使用,同时其也为研究人员开发治疗多发性硬化症的可能性个体化靶向疗法提供了一定的研究基础和线索。 /p
  • “重大慢性非传染性疾病防控研究”重点专项2016年度项目安排
    关于对国家重点研发计划“重大慢性非传染性疾病防控研究”重点专项2016年度项目安排进行公示的通知  根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现将“重大慢性非传染性疾病防控研究”重点专项拟进入审核环节的2016年度项目信息进行公示(详见附件)。  公示时间为2016年9月6日至2016年9月10日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。  联系人:耿红冉  联系电话:010-88225064  传真:010-88225200  电子邮件:genghr@cncbd.org.cn  中国生物技术发展中心  2016年9月5日  附件:国家重点研发计划“重大慢性非传染性疾病防控研究”重点专项拟进入审核环节的2016年度项目公示清单序号 项目编号 项目名称 项目牵头承担单位 项目负责人 中央财政经费 (万元) 项目实施周期(年) 12016YFC1300100肥胖和高血压的生活方式和营养干预技术及策略应用研究北京市石景山区高血压联盟研究所周宪梁11474.522016YFC1300200心脑血管疾病营养及行为干预关键技术及应用策略研究北京大学武阳丰10324.532016YFC1300300冠状动脉粥样硬化病变早期识别和风险预警的影像学评价体系研究中国人民解放军总医院陈韵岱10384.542016YFC1300400冠状动脉粥样硬化病变早期识别和风险预警的影像学评价体系研究中国医学科学院阜外医院吕滨8304.552016YFC1300500脑小血管病发病机制及临床评估关键技术研究中国科学技术大学申勇11074.562016YFC1300600慢性脑小血管病发病机制及临床诊治新策略研究中山大学王敏11074.572016YFC1300700颅内动脉瘤破裂出血早期规范治疗和未破裂动脉瘤出血风险的研究中国人民解放军第二军医大学黄清海8824.582016YFC1300800颅内动脉瘤破裂出血早期规范治疗和未破裂动脉瘤出血风险的研究首都医科大学宣武医院张鸿祺8824.592016YFC1300900急慢性心力衰竭生命支持技术应用评价研究中国医学科学院阜外医院胡盛寿11014.5102016YFC1301000急慢性心力衰竭生命支持技术应用评价研究首都医科大学附属北京安贞医院董建增8814.5112016YFC1301100急性心肌梗死全程心肌保护体系构建及关键技术研究哈尔滨医科大学于波10514.5122016YFC1301200急性心肌梗死全程心肌保护体系研究复旦大学葛均波10514.5132016YFC1301300冠心病血栓事件预测及优化干预技术研究中国人民解放军沈阳军区总医院王效增10034.5142016YFC1301400基于大数据的人体健康管理系统在冠心病抗栓治疗中的应用中国人民解放军总医院高长青9024.5152016YFC1301500急性缺血性卒中再灌注治疗关键技术与流程改进研究首都医科大学附属北京天坛医院缪中荣9404.5162016YFC1301600数字化脑血流储备功能诊断评估技术及其应用研究吉林大学杨弋8754.5172016YFC1301700数字化脑血流储备功能诊断评估技术及其应用研究首都医科大学宣武医院焦力群8754.5182016YFC1301800复杂性脑血管疾病复合手术新模式治疗技术研究首都医科大学附属北京天坛医院王硕8634.5192016YFC1301900先天性心脏病微创治疗临床路径优化研究中国人民解放军第四军医大学俞世强8664.5202016YFC1302000心血管外科临床路径优化研究中国医学科学院阜外医院郑哲8664.5212016YFC1302100细胞稳态破坏导致肿瘤发生的分子机制中国医学科学院肿瘤医院刘芝华10654.5222016YFC1302200胃癌发生的分子基础研究中国人民解放军第三军医大学董辉9584.5232016YFC1302300长非编码RNA在微环境调控肿瘤发生发展中的作用和机制研究中山大学宋尔卫9864.5242016YFC1302400肿瘤微环境-内在驱动分子互动机制与干预途径中国医科大学曹流9364.5252016YFC1302500中国主要恶性肿瘤的危险因素监测及控制关键技术研究中国医学科学院肿瘤医院张亚玮9304.5262016YFC1302600以精准防控为导向基于大数据的主要恶性肿瘤危险因素监测及控制关键技术研究中国疾病预防控制中心吴静8374.5272016YFC1302700恶性肿瘤高危人群识别及预防策略的研究中山大学贾卫华9854.5282016YFC1302800消化道恶性肿瘤(食管癌、胃癌、大肠癌)高危人群识别及高危人群预防研究中国医学科学院肿瘤医院王贵齐9854.5292016YFC1302900宫颈癌筛查与干预新技术及方案的研究浙江大学吕卫国9034.5302016YFC1303000乳腺癌、宫颈癌筛查及干预技术研究辽宁省肿瘤医院朴浩哲8574.5312016YFC1303100卵巢癌临床关键问题导向的诊疗标志物验证及应用研究复旦大学徐丛剑9514.5322016YFC1303200消化道肿瘤诊疗生物标志物验证及应用研究中国人民解放军第四军医大学聂勇战9514.5332016YFC1303300基于组学特征的肺癌免疫治疗疗效预测指标的构建和验证上海交通大学陆舜9514.5342016YFC1303400恶性肿瘤免疫治疗关键技术研究中国人民解放军第三军医大学钱程10904.5352016YFC1303500恶性肿瘤免疫治疗关键技术研究中国人民解放军第二军医大学万涛9814.5362016YFC1303600消化道癌的立体多层次临床路径优化研究中国人民解放军总医院令狐恩强8914.5372016YFC1303700卵巢癌治疗方案及临床路径优化研究中国医学科学院肿瘤医院吴令英8914.5382016YFC1303800肺癌诊疗方案及临床路径优化研究广东省人民医院周清8914.5392016YFC1303900慢阻肺危险因素、病因与发病机制研究中日友好医院王辰7254.5402016YFC1304000基于临床生物信息学技术的慢阻肺危险因素、病因与发病机制研究温州医科大学附属第一医院陈成水6534.5412016YFC1304100慢阻肺早期药物干预效果评价及有效药物筛选广州医科大学附属第一医院冉丕鑫5914.5422016YFC1304200慢阻肺急性加重救治体系和支持技术应用效果评价及优化研究广州医科大学附属第一医院罗远明5674.5432016YFC1304300慢阻肺急性加重预警与救治体系构建研究中日友好医院詹庆元5674.5442016YFC1304400慢阻肺并发症和合并疾病的诊治技术研究中国医学科学院阜外医院何建国5464.5452016YFC1304500慢阻肺并发症和合并疾病的诊治技术研究中国医科大学附属第一医院康健5184.5462016YFC1304600慢阻肺预防、诊断和治疗分级质控体系建设及效果评价研究北京医院孙铁英6934.5472016YFC1304700慢阻肺规范管理的质量控制及评价研究华中科技大学徐永健6234.5482016YFC1304800表观遗传在2型糖尿病发生发展中的作用研究复旦大学李小英6484.5492016YFC1304900成人2型糖尿病发生发展的危险因素及机制研究北京大学人民医院纪立农5844.5502016YFC13050001型糖尿病的遗传与免疫学发病机制研究中南大学湘雅二医院周智广7084.5512016YFC13051001型糖尿病的遗传与免疫发病机制和相关防控技术研究复旦大学陈思锋5674.5522016YFC1305200儿童青少年糖尿病患病与营养及影响因素研究中国人民解放军总医院母义明6404.5532016YFC1305300儿童青少年糖尿病患病与营养及影响因素研究浙江大学傅君芬5764.5542016YFC1305400糖尿病肾病发生发展的危险因素及机制研究北京大学第一医院赵明辉6434.5552016YFC13055002型糖尿病肾病发生发展危险因素及机制与防治研究复旦大学附属中山医院丁小强5784.5562016YFC13056002型糖尿病高风险的早期识别与适宜切点研究上海交通大学医学院附属瑞金医院毕宇芳6354.5572016YFC1305700糖尿病的危险因素早期识别、早期诊断技术与切点研究东南大学孙子林5714.5582016YFC1305800阿尔茨海默病神经慢性退变机制及危险因素研究华中科技大学王建枝6934.5592016YFC1305900遗传和环境因素交互作用下神经环路的沉默与早期AD发病中国科学技术大学周江宁6594.5602016YFC1306000帕金森病的发病机制与危险因素研究中南大学唐北沙6854.5612016YFC1306100注意缺陷多动障碍的综合干预策略研究首都医科大学附属北京安定医院郑毅6434.5622016YFC1306200儿童脑发育障碍的早期识别和综合干预北京大学第一医院姜玉武5794.5632016YFC1306300阿尔茨海默病的早期诊断新技术研发首都医科大学王晓民6284.5642016YFC1306400基于创新学说的阿尔茨海默病诊断新靶标研究及应用复旦大学钟春玖5674.5652016YFC1306500帕金森病(PD)的早期诊断新技术研发北京大学章京6704.5662016YFC1306600帕金森病早期诊断生物标记及综合诊断指标体系研发浙江大学张敏鸣6034.5672016YFC1306700抑郁障碍临床诊断、干预与转归的客观标记物研究东南大学张志珺7874.5682016YFC1306800精神分裂症分期识别生物学标记与多级风险布控体系建构上海交通大学王继军7094.5692016YFC1306900抗精神病药物个体化优选治疗方案的研究中南大学湘雅二医院赵靖平6464.5702016YFC1307000抗精神病药物个体化优选治疗方案的研究北京大学第六医院岳伟华5814.5712016YFC1307100基于抑郁障碍临床病理特征的多维度诊断、个体化治疗及管理技术上海交通大学方贻儒5664.5722016YFC1307200基于客观指标和量化评价的抑郁障碍诊疗适宜技术研究首都医科大学附属北京安定医院王刚5664.5732016YFC1307300中美卒中临床研究协同网络建设与血压管理策略研究首都医科大学附属北京天坛医院刘丽萍7474.5
  • 研究指出:环境污染造成食源性疾病增长
    一部揭示经济社会发展质量安全规律的学术专著指出,食品安全与自然环境密不可分,环境污染给食品安全带来了不确定性。环境污染对人类健康的危害通过食源性疾病增长反映出来。   刚刚由中国质检出版社出版的《论质量安全型经济》指出,工业污染中以持久性有机污染物和重金属污染物最为严重。未经处理的工业废水、城市污水用于农田灌溉的现象时有发生,农用化学品造成的污染也司空见惯。   这部专著还介绍说,为了农业高产,我国耕地化肥平均施用量是国际化肥安全施用上限的1.93倍,耕地农药残留率达60%至70%。过量施用化肥、农药特别是高毒农药,违法使用瘦肉精等饲料添加剂,不仅造成食品直接污染,还可能导致人畜共患疾病增加。   《论质量安全型经济》的作者徐明焕在书中指出,环境污染对人类健康的危害通过食源性疾病增长反映出来。根据美国疾病预防控制中心预计,全球由食品安全事件导致的食源性疾病将会达到10亿例,其中因为食源性疾病死亡的人数将达到180万人。我国每年向国务院卫生部门上报的数千件食物中毒事件中,大部分都是因致病微生物污染引起的。
  • 希腊研究人员新发现一种造成神经退行性疾病的分子机制
    希腊分子生物学和生物技术研究所(IMBB)的研究人员新发现一种使神经细胞变异的分子机制。研究人员Kostoula Troullinaki和Nektarios Tavernarakis宣称,这项研究成果将为预防、延迟或治疗神经退行性病变的医疗手段和药物的开发作出贡献。 神经退行性疾病如肌萎缩性侧索硬化症,阿尔茨海默氏症,帕金森氏症和亨廷顿氏病是破坏性的人类疾病,大大影响人的生活质量和生命期望。这些疾病的一个主要特点是在细胞坏死过程中使大脑和脊髓神经细胞逐渐丧失。神经细胞坏死的结果给病人身体和心理造成巨大障碍。希腊分子生物学和生物技术研究所的研究人员通过利用简单的线虫卵试验发现,细胞内吞作用和胞内贩运这两个基本过程也会造成细胞死亡。 以上信息有HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱、高低温交变湿热试验箱、盐雾腐蚀试验箱、药品稳定性试验箱、两三厢冷热冲击试验箱、精密曲线编程旋转烘箱、远红外线干燥箱、防爆干燥箱、精密烘箱、真空测漏箱、人工气候箱、光照培养箱、生物安全柜、干培两用箱、超净工作台、真空脱泡箱等。
  • GMR议程首发 | 第二届肠道微生态与疾病研究转化论 会议通知
    肠道微生态领域的活菌药物开发、多组学科研转化、FMT治疗等方向吸引了很多科研投入与初创企业。作为国内专注于肠道微生态诊疗转化的品牌年会,GMR 2021第二届肠道微生态与疾病研究转化论坛将于11月25-26日在上海召开。主办单位:上海市生物工程学会、上海商图信息Biomap协办单位:中华炎症性肠病多学科联合诊治联盟支持单位:深圳市合成生物学协会、北京华元生物技术研究院、广州市生物产业联盟、上海市微生物学会、武汉东湖国家自主创新示范区生物医药行业协会GMR 2021首发议程现揭晓,全嘉宾阵容及精彩议题先睹为快!主旨专场开幕致辞赵国屏,中科院院士、中科院上海生命科学研究院研究员调控肠道微生态增强肿瘤免疫治疗的临床研究发现秦环龙,同济大学附属第十人民医院院长话题待定欧易治疗2型糖尿病的肠道微生物多组学研究与转化赵立平,美国微生物科学院院士、上海交通大学生命科学技术学院微生物学特聘教授从肠道微生物多组学到医学转化(FMT治疗,早筛诊断)NASH-微生物相互作用关系研究与临床转化研究吴健,复旦大学基础医学院教授,复旦大学附属中山医院,消化科双聘教授肠道微生组学与肝硬化疾病的关系研究陆伦根,上海交通大学附属第一人民医院消化科主任,教授,博士生导师肠道菌群代谢产物改善非酒精性脂肪性肝病新机制范建高,上海交通大学医学院附属新华医院消化内科主任,教授,博士生导师FMT在IBD炎性肠病中的临床实践吴坚炯, 上海交通大学炎症性肠病诊治中心主任话题待定奇辉肠道微生物多组学在肿瘤免疫精准医疗中的研究与转化刘杰,复旦大学消化病研究所所长,附属华山医院消化科主任;复旦大学免疫学系教授洗涤菌群移植治疗自闭症的临床疗效分析何兴祥,广东药科大学附属第一医院消化内科主任医师、教授、医院党委书记肠道菌群FMT与抗肿瘤药物治疗李苏宜,中国科学技术大学附属第一医院肿瘤营养与代谢治疗科(西区)主任、肿瘤化疗科主任话题待定善行加速肠道微生态治疗药物研发与产业化细菌作为靶向性抗肿瘤活体生物药物的研究华子春,南京大学生科院教授、中国药科大学生物药物学院院长靶向精神类疾病的肠道微生态治疗药物研发与产业化段云峰,北京华元生物技术研究院院长肠道微生物群作为免疫治疗的新靶点朱永亮,普瑞森基因董事长、首席科学家肠菌移植药物的IND申报经验分享谭验,深圳未知君生物科技有限公司首席执行官/联合创始人圆桌讨论:中国如何加快完善微生态制药产业链与国际接轨?向斌,和度生物 CEO柳丹,鼎晖VGC(创新与成长基金)合伙人知易生物奕景生物调节肠道微生态小分子药物的新药发现与临床开发马振坤,丹诺医药创始人和首席执行官国际案例分享:肠道微生物治疗从科研走向产业化的关键因素 Dr. Alex Stevenson, 4D Pharma CSO欢迎联系主办方获取论坛完整议程:180 1793 9885赞助招募截止在即!主题演讲、产品展示、合作邀约等多种形式全方位供您展示肠道菌群微生态研究:多样性研究、宏基因组学、代谢组学、微生物组学等多组学技术,及诊断、FMT以及制药等领域的多样赞助方式。欢迎咨询主办方:180 1793 9885(同微信)。多重限时粉丝福利:1、拼团大促,仅限本周!本周五(10月29日)前,若三人成团注册参会,可享受标准价立减1000元钜惠!拼团详情及优惠,欢迎联系小助手图图:180 1793 9885(同微信)。2、早鸟倒计时启动!10月29日前注册,可享受立减500元的早鸟价格,费用包含两天的会议门票、午餐、茶歇、会议资料以及会后演讲嘉宾授权可分享的PPT资料。扫码查看官网扫码或联系图图加入专业交流群欢迎联系组委会,获取大会议程!电话:+86 180 1793 9885邮箱:gmr@bmapglobal.com
  • 文献速递|动物活体成像系统在细胞外囊泡与神经退行性疾病关系研究中的应用
    ● 快讯近日,同济大学医学院附属上海市第十人民医院神经内科赵延欣教授及刘学源教授课题组在细胞外囊泡与神经退行性疾病关系研究领域取得了新的进展。该项研究从小细胞外囊泡的角度为阿尔兹海默症中发生的兴奋抑制失衡提供了新见解。相关研究成果已发表在国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR 2区)。图1|国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR2区)细胞外囊泡 (EV) 是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质。根据它们的大小,通常分为三种类型,小EVs (sEVs) (50-150 nm)、大EVs (100-1000 nm) 和凋亡小体 ( 5 μm)。其中,sEVs 通常可通过血脑屏障 (BBB),成为中枢神经系统 (CNS) 细胞之间通讯的关键介质,有证据表明,sEV 中的微小RNA (miRNA)参与到众多细胞和生物过程,例如神经元细胞的生长和凋亡。目前,E/I(兴奋/抑制)失衡假设被概念化为谷氨酸能和氨基丁酸(GABA)能突触输入之间的不平衡。E/I 失衡被认为是神经退行性疾病脑功能障碍的基础,包括阿尔茨海默病 (AD)、帕金森病 (PD)、精神分裂症和其他神经疾病。谷氨酸兴奋性毒性和 GABA 能神经元功能障碍似乎是 AD 中发生的神经元细胞死亡的关键原因。但是关于 E/I 失衡对AD的影响,其中的机制仍不明确。为了对该机制进行进一步阐释,赵延欣教授及刘学源教授团队在本研究中用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。然后,将不同来源的 sEV 添加到用 Aβ(β淀粉样蛋白)处理的神经元或注射到 AD 模型小鼠中。此后对经 Aβ 治疗的小鼠和神经元进行了评估。经GABA 处理的神经元释放的 sEVs 减轻了 Aβ 诱导的损伤,而谷氨酸处理的神经元释放的 sEVs 加重了 Aβ 的毒性。此外,本研究通过 miRNA 测序比较了从谷氨酸/GABA/PBS 处理的神经元中分离的 sEV 的 miRNA 组成。该研究进一步表明,sEV 中 miR-132 的变化加速了表征病理的生化改变。图2|实验方案示意图分离原代神经元后,用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。将不同来源的 sEV 添加到用 Aβ 处理的神经元或注射到 AD 模型小鼠中,并对小鼠进行MWM测试。文章中,在评估在小鼠体内系统传递的 sEVs 的分布的实验中,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。该实验中使用近红外染料DiR进行标记,同时进行了阴性对照实验(仅注射 DiR,不注射 sEV)。通过 APP/PS1 小鼠的尾静脉注射 DiR 标记的 sEV,使用Aniview100活体成像系统在注射后 24 小时拍摄小鼠的图像并评估分布情况。在带有 DiR 标记的 sEV 的小鼠的大脑和重要器官中均检测到荧光。随后,处死小鼠,取出器官并成像,目的为识别荧光信号来源的器官并使信号干扰最小化。此外,为了排除游离染料干扰实验结果的可能,在收集器官前用不含 sEV 的游离 DiR处理小鼠。实验结果显示,脑、心、肝、肺、脾、肠、肾均呈不同程度荧光。图3|sEV的体内外分布情况在注射 DiR 标记的 sEV 后 24 小时,使用活体成像系统对A - C活小鼠进行成像。a)、小鼠背面成像b)、小鼠腹侧成像c)、收集指定器官后使用活体成像系统成像本研究中证明了 sEV 的功能可以受神经递质平衡状态的调节,并对神经元中的 Aβ 毒性有不同的影响。并且该研究从 sEV 的角度为 AD 中发生的 E/I 失衡提供了新见解,并表明通过GABA 能系统对 sEV 进行生物学改造可能是预防或减轻 AD 发病机制的治疗途径。论文链接:https://doi.org/10.1186/s12951-021-01070-5
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制