当前位置: 仪器信息网 > 行业主题 > >

急性毒性

仪器信息网急性毒性专题为您整合急性毒性相关的最新文章,在急性毒性专题,您不仅可以免费浏览急性毒性的资讯, 同时您还可以浏览急性毒性的相关资料、解决方案,参与社区急性毒性话题讨论。

急性毒性相关的资讯

  • 浙江省环境监测协会批准发布《水质 急性毒性 高通量发光细菌测试方法》团体标准
    根据《上海市环境科学学会团体标准管理办法》、《江苏省环境监测协会团体标准管理办法(试行)》、《浙江省环境监测协会团体标准管理办法(试行)》的要求,《水质 急性毒性 高通量发光细菌测试方法》(T/SSESB 6-2023 T/JSEMA 3-2023 T/ZJEMA 2-2023)团体标准按照规定程序编制,经专家组审查通过,现批准发布,发布日期为2023年6月15日,自2023年7月1日起实施。本标准由上海市环境科学学会、江苏省环境监测协会、浙江省环境监测协会解释。 联系人:戚老师(上海市环境科学学会)、丁老师(江苏省环境监测协会)、嵇老师(浙江省环境监测协会)联系电话:021-64756391、025-52372743、0571-28916329电子邮箱:shsseshjjc@126.com、jshjjcxh@163.com、zjema2017@163.com 特此公告。关于批准发布《水质 急性毒性 高通量发光细菌测试方法》团体标准的公告(2).pdf
  • 上海市环境科学学会批准发布《水质 急性毒性 高通量发光细菌测试方法》团体标准
    根据《上海市环境科学学会团体标准管理办法》、《江苏省环境监测协会团体标准管理办法(试行)》、《浙江省环境监测协会团体标准管理办法(试行)》的要求,《水质 急性毒性 高通量发光细菌测试方法》(T/SSESB 6-2023 T/JSEMA 3-2023 T/ZJEMA 2-2023)团体标准按照规定程序编制,经专家组审查通过,现批准发布,发布日期为2023年6月15日,自2023年7月1日起实施。本标准由上海市环境科学学会、江苏省环境监测协会、浙江省环境监测协会解释。 联系人:戚老师(上海市环境科学学会)、丁老师(江苏省环境监测协会)、嵇老师(浙江省环境监测协会)联系电话:021-64756391、025-52372743、0571-28916329电子邮箱:shsseshjjc@126.com、jshjjcxh@163.com、zjema2017@163.com 特此公告。关于批准发布《水质 急性毒性 高通量发光细菌测试方法》团体标准的公告.pdf
  • 中关村材料试验技术联盟发布《水质 急性毒性现场快速监测 发光细菌法》征求意见稿
    附件:CSTM团体标准《水质 急性毒性现场快速监测 发光细菌法》征求意见的资料
  • 产品应用:Microtox 生物毒性测试技术在舱底污水毒性研究中的应用
    modern water microtox 生物毒性检测技术具有快速、简单、廉价等优点,已成为毒性测试领域研究的热点。在环境污染事件监测、饮用水安全保护和应急响应等领域的已成为常规应用,并已成为多个国家认可的官方标准,microtox 技术在废水出水毒性检测和钻井液检测领域也有着广泛的应用。哥德堡大学与瑞典环境科学研究院团队为了调查在瑞典水域航行的大型客轮渡轮的舱底水对海洋环境的毒性。使用利用海洋细菌(vibrio fischeri)的microtox对处理前后七艘渡轮(a-g)舱底水进行了毒性测试(ss-en-iso 11348-3:2008)。结果表明,将发光细菌暴露于2.5-5%的舱底水稀释液中48小时发光抑制程度最大;在4个舱底水样品中,稀释度为5-10%时,死亡率较显著;ec50处于4.3%至52%的稀释度之间(table 2)。在microtox测试中对海洋细菌的毒性与舱底水样品中的化学成分之间进行了相关性分析(table 3)。表明具有低和中等碳原子的油馏分、pahs和阴离子表面活性剂与毒性强弱的负相关性最强;而金属浓度与毒性之间未观测到有明显相关性;阴离子表面活性剂和油含量与毒性作用相关性较强。相关研究结果《toxicity of treated bilge water: the needfor revised regulatory control》已于近期发表在《marine pollution bulletin》上。 Microtox 技术也广泛应用于废水处理厂的出水毒性检测。在澳大利亚新南威尔士州环保署(nswepa)颁发的环境保护许可中,每个废水出水排放监测点必须定期取样并使用 microtox 技术进行急性毒性分析。与使用其他生物(网纹蚤、仔鱼)的系统相比,使用费氏弧菌的 microtox 技术检测时间更短,结果精确度和灵敏性更高,成本更低,是一种理想的废水整体毒性测试方案。Microtox® model 500(M500) 分析仪是一款用于实验室的毒性测试仪,带有温控和自动校准功能,用于急性毒性的分析。microtox® m500 采用生物发光检测技术,可对事故或人为导致的饮用水及废水污染紧急事件进行快速毒性检测。目前已有超过2400 台microtox® m500行销世界,已确定了microtox® m500作为快速毒性检测分析的行业标准的地位。 microtox fx 是一款简单快捷且灵敏度极高的便携式水质检测仪,专门为筛查急性毒性及三磷酸腺苷(atp)而设计。microtox fx 使用生物荧光技术,对饮用水污染及化学品进入水体等造成的紧急事件进行快速毒性检测。microtox fx 是使用 microtox® 技术进行毒性测定的便携仪器。
  • TX1315 便携式生物毒性分析仪在环监站的应用
    TX1315 便携式生物毒性分析仪在环监站的应用哈希公司 污染物之间的毒性效应往往具有加和、协同、拮抗等作用,常规理化参数监测项目单一,难以评估。通过生物综合毒性检测能监测未被检测的污染物的潜在的毒性效应,可以有效反应污染物对人体健康、环境生态系统的综合影响。因此,在供水安全、预警突发环境污染事件场景和公共卫生事件中,生物毒性在水质安全保卫中发挥着重要的作用。急性毒性检测根据选取受试生物不同,分为鱼类急性毒性测试法、浮游生物急性毒性测试法和微生物急性毒性测试法。前 2 种方法工作量大,测试时间长,不适于大批量水样的快速检测,发光细菌法因其检测速度快、自动化程度高、人为错误少等优点得到广泛应用。早在 20世纪 70 年代末,国外科学家就已从海鱼体表分离出了发光细菌用于检测水体的生物毒性,90年代德国与欧盟均颁布了应用发光细菌检测水质急性毒性的标准方法,而我国于 1995 年颁布实施了《水质 急性毒性的测定 发光细菌法》(GB/T15441-1995),现该法已成为我国水质急性毒性快速检测的主要方法。通过建立污染水体作用剂量与毒性效应之间的关系,可以将损害程度量化,直观地反映污染水体对生物种群的影响,提供环境污染预警,更好地指导环境污染防治。因而水质急性毒性检测已经逐步成为评价水质污染地重要手段之一。浙江省某环监站担任着省内环境安全和保证供水系统安全的重任,需要对水质综合毒性指标能进行快速检测的能力,经过与国家标准方法的对比,认为 TX1315 便携式生物毒性分析仪可以胜任毒性检测的需求,并且可以针对突发事故进行现场检测。1) 复苏菌a. 1mL 冷的 2.5% NaCl 加入到冻干粉中;b. 冰箱中复苏 30 分钟。2) 配置测试样品a. Hg 标液 1000mg/L 稀释到 20mg/L;b. Hg 标液 20mg/L 稀释到 2mg/L;c. Hg 标液 2mg/L 稀释到测试用不同梯度浓度。3) 测试a. 加样:2mL Hg 标液/2mL 3% NaCl+ 10ul 发光菌液;b. 反应 15 分钟;c. 每个浓度三个平行样,每个测试管配一个参考管。根据《水质 急性毒性的测定 发光细菌法》(GB/T15441-1995)标准要求,使用明亮发光杆菌作为受试菌种,检测汞的不同当量浓度标准液的 RLU 值和相对发光度,结果如下图所示。发光细菌法测定水质急性毒性可选用参比毒物来表征,也可选用抑制率来表示。我国国标中采用氯化汞作为参比毒物,在检测样品的同时,制作一系列浓度的氯化汞与发光强度关系曲线。以样品的相对发光强度从标准曲线上查得相应的氯化汞浓度,则该样品的毒性即相当于该浓度氯化汞的毒性。发光细菌发能较好的反映水质的综合毒性,但是不能获得具体某一类型毒性物质的毒性信息。
  • 我国生物毒性监测技术及市场分析
    一、生物毒性与环境监测预警体系  常规的水质监测给出的结果一般是各项检测指标的浓度,比如《生活饮用水检测方法》中列出的109项检测指标及其限值。但是水体中可能存在的有毒物质远不止这109种,尤其是许多有毒有害的微污染物,如有机氯农药(OCPs)、多环芳烃(PAHs)、全氟辛烷磺酸(PFOS)和全氟辛酸铵(PFOA)以及消毒副产物等新型污染物,对人体具有致癌、致畸、致突变等严重危害。常规的理化监测虽然可以对污染物做定性定量的检测,但对水环境质量整体评价和生态影响评估来说,理化监测存在着局限性。此外,当突发性污染事件发生时,在找到污染物前需要快速地评判污染危害性,以尽量减少可能造成的人员危害和经济损失。  所以,为了快速直观地反映水污染状况、可以直接利用水中的活体生物来判定有毒物质的质量浓度。在污染物指标明确之前,用一种综合的毒性效应指标快速报告毒性的存在及大小,这就是水质生物毒性监测。它也是一种能够及时快速对水体毒性进行预警的方法。  2020年,新冠疫情突然爆发,生态环境部在1月30日印发《关于做好应对新型冠状病毒感染肺炎疫情生态环境应急监测工作通知》,明确了将饮用水水源地环境质量作为重点进行监控,在原来常规监测指标的基础上,增加余氯和生物毒性等疫情特征指标。  生物毒性的检测原理为利用有毒物质污染应激下生物体的死亡、行为响应和生理生化改变,通过人工观察存活生物数量,或使用仪器自动测量指示生物的发光强度、呼吸作用、氧含量、酶活性、微生物产电量等指标,来判断水中毒性大小。这种方法使用“毒性”代替“毒物”来反映水质情况,确认对生态和健康的影响,也称为综合毒性。  总之,采用常规的化学监测,难以对多种化学污染物进行实时监测,预警迟滞,从发生水环境污染事故,到采取有效的处理措施需要耗费大量时间。生物毒性监测和常规化学指标监测相比,优势在于能够对复合污染和未知污染物快速响应,常用于突发性污染事故监测,饮用水安全监测或者在线预警装置中。 二、技术路线及代表仪器  生物毒性监测使用的指示生物有动物、植物和微生物等。目前我国用于水质毒性监测的指示生物主要有四种:菌类、藻类、蚤类和鱼类。  路线一:菌指发光菌,是一类在正常生理条件下能发出荧光的微生物。在实际应用中常选用费氏弧菌、鳆发光杆菌和明亮发光杆菌。我国于1995年8月1日实施的《水质急性毒性的测定发光细菌法》(GB/T 15441-1995)中,使用的是明亮发光杆菌T3小种,以氯化汞作为参比毒物,通过生物发光光度计来测量水体的相对发光度,从而表示其急性毒性水平。这种方法简单、快速,可用于多种水环境的监测,是目前生物毒性分析仪中应用最为广泛的方法。但同时,发光细菌法也存在测试稳定性和重复性稍差,进口仪器使用的发光细菌冻干粉价格昂贵等缺点。使用发光细菌法测量生物毒性的监测仪器有聚光科技生产的TOX-2000、美国赛默飞生产的AQ4700水质毒性分析仪、清华大学研制的JQ TOX-online、杭州绿洁生产的GR-8800、英国现代水务生产的Microtox LX、哈希生产的Eclox、山东东润生产的DR-2090 、深圳朗石生产的LumiFOX系列等。  路线二:藻类是水生生态系统的主要初级生产者,生存状态与水环境的质量密切相关,因此藻类用于水质监测评价也得到广泛的应用。但是藻类作为受试生物存在不少缺陷,例如由于藻类本身有较强的适应性及变异性,对外部环境有较强的忍耐力,因此灵敏性较其他方法偏低。使用藻类作为受试生物测量生物毒性的监测仪器有德国BBE生产的Algae Toximeter 11等。  路线三:蚤类监测中使用大型蚤(Daphnia magna straus)作为受试生物。大型蚤(也有称 “大型溞”)是一种常见的浮游动物,隶属甲壳纲,枝角亚目。在《水质 物质对蚤类(大型蚤)急性毒性测定方法》(GB/T 13266-1991)中,通过测定物质或废水对蚤的半数抑制浓度或半数致死浓度,来判断物质或废水的毒性程度。以这种原理研发生产的仪器有德国BBE的Daphnia Toximeter 11等。  路线四:国内用于水质毒性监测的鱼类较多,常见的有鲢鱼、鳙鱼、草鱼、斑马鱼等。我国于1992年8月1日实施的《水质 物质对淡水鱼(斑马鱼)急性毒性测定方法》(GB/T 13267-91)中规定,推荐采用斑马鱼并不排除使用其他鱼种,比如还可以选用青鳉鱼等,但对试验条件需做相应的改变,例如稀释水性质及温度。此标准适用于单一化学物质的毒性测定,或者工业废水的毒性测试。在2019年生态环境部发布的《水质 急性毒性的测定 斑马鱼卵法》(HJ 1069-2019)中,使用斑马鱼卵代替了活鱼,灵敏度更高,可用于地表水、地下水、生活污水和工业废水的急性毒性测定。中国科学院生态环境研究中心以鱼为指示生物研制出BEWs生物毒性监测仪器已在北京密云水库和山东某市水源地安装使用。此外,选用鱼作为受试生物的还有德国BBE生产的Fish Toximeter、新加坡叡克公司研发的鱼类毒性仪等。  由于各个方法的灵敏度、响应时间、预警范围、适用水体有所差异,因此在实际应用中需根据污染情况来选用合适的单一方法,或者多种方法结合以实现及时、全面、有效的毒性预警监测系统。 三、生物毒性分析仪市场简述  目前国内市场上的生物毒性监测仪有十几家品牌,同总磷、COD、氨氮检测仪等常规污染物检测仪器相比,生物毒性分析仪属于相对小众的水质监测仪。从市场量占比角度看,其中70%为进口品牌,如赛默飞、BBE、哈希、现代水务等。国产品牌仅占30%,如聚光科技、朗石、绿洁等。  根据应用场景,水质毒性分析仪可以分为在线式、便携式和实验室型。其中在线式和便携式约各占40%的市场份额,实验室仪器使用的相对较少,约为20%。在污水厂进水监测和饮用水水源地的监测点位多使用在线式水质毒性分析仪,而便携式仪器多用于突发性污染事件时的应急监测,或者定期的水质监测。进口品牌在线式仪器单台价格在50-60万左右,国产价格约为30-50万左右。进口品牌便携式仪器单台价格约30万元,国产约10万元。  从仪器原理来看,以发光细菌为指示生物研制的生物毒性仪市场占有量最大,约占70%以上。在水库、饮用水水源地等环境水的监测中常选用发光细菌法,而湖泊、河流等水域常使用鱼类作为指示生物。  由于目前水质毒性数据不属于环境监测考核指标,因此存在认可度不高的问题,这也是该类仪器推广过程中的一大难点。因此,使用该类仪器的单位多用于辅助性、预警性的判断水质质量状况,比如在连云港、重庆、汕头、苏州环境监测中心站等长三角和珠三角地区已投入使用。当涉及环境污染定性定量结论时,仍需出具理化检测结果来判定污染程度和污染类型。 四、未来展望  突发性环境污染事故不同于一般的环境污染,它具有事发突然、难以预测、危害严重等特点,常规的理化指标监测已经难以满足当前污染物的监控预警要求。应对突发性环境污染事件需要构建好环境安全预警系统,生物毒性预警就是其中关键而有效的一种。  我国正处于生态环境监测工作转型的阶段,从传统环境监测向现代生态环境监测转变,目标是建成科学、独立、权威、高效的生态环境监测体系。国家近期发布的有关计划中对环境预警系统建设、突发性污染事故防范的重视程度越来越高,生物毒性监测以及环境预警体系建设的重要性已在多个文件中提及。  比如2020年6月21日生态环境部发布的《生态环境监测规划纲要(2020-2035年)》中指出, 2020-2035年,生态环境监测将在全面深化环境质量和污染源监测的基础上,逐步向生态状况监测和环境风险预警拓展,构建生态环境状况综合评估体系。监测指标也从常规理化指标向有毒有害物质和生物、生态指标拓展,从浓度监测、通量监测向成因机理解析拓展。  在2020年7月中国仪器仪表行业协会发布的9项团体标准立项中,《水质生物毒性监测仪(电化学分析法)》即为其中之一。生物毒性监测仪的优势在于能够实现已知有毒污染物的低成本快速监测,和在位、在线和实时监测与预警。随着相关政策和标准的推出,可以预见,在接下来的环境监测工作中,生物毒性监测或许会成为重点手段之一。利用生物毒性预警与化学参数监测的优势互补,联合生物-化学监测,可提升扩展在线监测预警功能,形成更为完善的生态环境整体质量监测体系。  参考文献  [1]王英才,王树磊,胡文,等.生物综合毒性监测技术与多源生物预警体系[J].人民长江,2017,48(11):21-26.  [2]生态环境部.生态环境监测规划纲要(2020-2035年)[Z].2020-06-21.  [3]郑洪领,邹丽.生物监测及其在水环境污染防治中的应用进展研究[J].环境科学与管理,2017,42(4):116-118. 扫二维码加绿仪社为好友 及时了解科学仪器市场深度分析!
  • 新品首发|天尔便携式水质毒性测定仪
    随着环境检测需求的不断完善以及加强,天尔仪器为了满足不同行业的检测需求,今年研发生产了一款便携式水质毒性检测仪,仪器小巧携带方便,适用于自来水公司、环境监测站、疾控中心、水文站、水研中心、水研所等部门,运用于环境污染、紧急事故、安检、饮用水检测、生物污染、有毒化学物质、有毒有害废弃物、市政排水、工业废水排放检测、雨水检测、海水检测、钻井液和泥浆检测、工艺水检测、医疗制药产品检测、食品包装检测、个护用品和家用化学品检测、沉积物检测、雨水径流检测、固体样品检测、食品加工水检测等领域中水质毒性快速检测.天尔TE-790 水质生物毒性测定仪依据GB/T15441-1995《水质急性毒性测定发光细菌法》和ISO-11348-3《发光细菌 急性毒性的测定 费氏弧冻干粉法》检测原理设计,根据发光细菌在新陈代谢时发光强度的变化进行定性和定量检测,采用安卓智能操作系统,可视化模块设计,搭载高清彩色液晶大屏,触控式界面设计,操作简单便捷. 可在现场快速的对水质的污染情况进行检测.天尔便携式水质毒性测定仪01. 5寸高清彩色大屏,引导式界面设计,操作简单便捷;02. 运用安卓智能操作系统,可视化模块设计;03. 样品制备后可快速得到测量结果,数据准确可靠;04. 运用硅光电倍增管,可提高灵敏度,性能稳定;05. 具有电池欠压提醒和充电状态提醒功能;06. 内置大容量锂电池,可实现户外流动性作业;07. 一条曲线可做1-20个曲线浓度点,根据用户需求自由选择,保证曲线值更准确;(曲线浓度点可自由输入)08. 存储空间8GB(可扩展),存储数据大于1000万组;09. 配置USB Type-C 双面充电接口,支持充电,也可实现数据传输;10. 标配蓝牙热敏打印机,检测完成可实时打印检测报告;11. 历史数据可实时查询,可选择开始结束时间调取往期检测数据.
  • 现代水务:加强水质综合毒性监控 防范突发环境风险
    p    strong 仪器信息网讯 /strong 近年来,突发性污染事件导致水质突变的现象时有发生,水质恶化对水生态系统造成危害,直接影响的就是用水安全。常规的水质监测给出的结果一般是各项检测指标的浓度,比如GB 5749-2006 《生活饮用水卫生标准》中列出的106项检测指标,但是水体中可能存在的有毒物质远不止这106种。 /p p   所以为了直观地反映水污染状况,可以直接利用水中的活体生物来判定有毒物质的质量浓度。在单项毒性指标明确之前,用一种综合的毒性效应指标快速报告毒性的存在及大小,为下一步准确确定毒性物质提供指导,这就是 strong 水质综合毒性检测 /strong 。 /p p   2020年初,新冠疫情爆发,生态环境部于1月31日印发了《应对新型冠状病毒感染肺炎疫情应急监测方案》,其中将生物毒性明确列为饮用水水源地疫情防控特征指标之一。之后生态环境部回应新增的生物毒性监测参照《水质急性毒性的测定 发光细菌法》(GB/T 15441-1996)执行。为了帮助相关用户学习、了解水质毒性分析方法与检测技术的最新进展等内容,仪器信息网特别策划了 strong “ a href=" https://www.instrument.com.cn/zt/watertoxicity" target=" _blank" 水质检测之综合毒性 /a ” /strong 专题,并邀请到莫尔顿水务技术(上海)有限公司中国区总经理李丽年就相关问题发表她的看法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/0c0b6b7d-a119-4014-b860-78c4f253cf7f.jpg" title=" 李丽年 中国区总经理.jpg" alt=" 李丽年 中国区总经理.jpg" / /p p style=" text-align: center "   李丽年:莫尔顿水务技术(上海)有限公司中国区总经理 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:首先想请您介绍一下我国现行的水质检测中综合毒性检测主要应用在哪些领域?相关的标准和方法有哪些? /strong /span /p p   span style=" color: rgb(255, 0, 0) "   strong 李丽年: /strong /span 近年来,随着我国工业化和城市化的加快,城市生活污水和工业废水的排放总量和所含各种污染物的成分也在迅速增加,有些排放废水虽然常规理化指标达标,但实际上仍可能含有对人体健康具有危害的污染物,这些污染物在水环境中的长期积累,使得水体综合污染和复合毒性的现象越来越突出。 /p p   因此,加强水质综合毒性监控和生态健康风险评价很有必要,这将对保证水体的生态环境安全具有重要的意义,我国在《城镇污水处理厂污染物排放标准》(GB 18918—2002)修订后的征求意见稿中新增了综合毒性指标,以防范环境风险。 /p p   在综合毒性的测定上,我国现行的主要标准有:1.《水质 急性毒性的测定 发光细菌法》(GB/T 15441-1995) 2.《水质 物质对蚤类(大型蚤)急性毒性测定方法》(GB/T 13266-91) 3.《工业废水的试验方法 鱼类急性毒性试验》(GB/T 21814-2008) 4.《水质 物质对淡水鱼(斑马鱼)急性毒性测定方法》(GB/T 13267-91) 5.《水质 急性毒性的测定 斑马鱼卵法》(HJ 1069-2019)。 /p p   在以上众多的生物综合毒性监测方法中,发光细菌法以其快速、简便、灵敏的特点,目前已经成为最为广泛的污水和沉积物综合毒性监测方法之一,在水质、环境评价以及生态规划中得到了广泛的应用。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:在我国现行的水质综合毒性相关检测方法中,您认为技术难点主要在哪?还有哪些方面需要进行改进和完善? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽年 /strong /span :以发光细菌法为例,国内现行的标准方法《水质急性毒性的测定 发光细菌法》(GB/T 15441-1995)是于1995年8月实施的,该方法在实际应用中存在过程繁杂、菌种单一、数据处理简单、重现性准确度不高、作为参照物的氯化汞为剧毒物质,危害人体健康和生态环境等不足,已越来越不能适应新形势下环境管理的需要。为此,国家环境保护部也于2009年下达了关于修订该方法的项目计划。 /p p   在技术改进方面,国内学者已经有研究结果显示,在借鉴国际标准化组织ISO 11348-3-2007 方法的基础上,通过对实验条件和操作步骤的优化改良,并在数据处理过程中引入原始发光光强,可以进一步减少菌种发光稳定性差异和手工加样带来的误差。另外,相对于剧毒的氯化汞,使用锌离子作为参照毒物具有毒性中等、结果稳定、价格便宜等诸多优点,可以方便地表征不同化学物质的毒性,而且可以直观地表征复杂环境样品的毒性,从而为污水排放控制和处理工艺优化提供理论依据。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:2020年6月30日施行的《HJ 1069-2019 水质 急性毒性的测定 斑马鱼卵法》,替代了《GB/T 13267-1991水质物质对淡水鱼(斑马鱼)急性毒性测定方法》。作为一项时隔多年推出的新标准,您认为它的施行将会给仪器和市场带来哪些变化? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽 /strong /span span style=" color: rgb(255, 0, 0) " strong 年 /strong /span :《HJ 1069-2019 水质 急性毒性的测定 斑马鱼卵法》标准的制订以 ISO 15088-2007“Water quality-Determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio)”方法为基础,参照借鉴OECD 236“Fish Embryo Acute Toxicity (FET) Test”指南,这一新标准的实施表明了我国环境管理对毒理学指标需求的提升,同时反映了对高通量测试和高敏感性的需求。 /p p   随着我国对综合毒性测定方法的不断开发和修订,毒性分析仪器的市场将日趋规范,终端用户对产品的技术要求势必会不断提升。我认为对仪器厂商来说,只有在技术上不断创新,并拥有高灵敏度、精确度、重现性和可靠性的仪器产品,才能在市场上保持高竞争力。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:贵公司在水质综合毒性检测方面有哪些仪器产品或产品组合?可以提供哪些解决方案?相比于同类产品,贵公司的产品主要有哪些优势? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽年 /strong /span :现代水务(Modern Water)公司起源于1960年代初,在发光细菌毒性测试行业具有丰富的经验,自从1978年推出功能完备的 Microtox 生物发光光度计以后,使用发光细菌作为指示生物检测毒性逐渐发展成为一种经济、快速的急性毒性测试体系,得到了广泛的应用。人们也将发光细菌毒性测试称为 Microtox 测试,并誉为毒性测试的“黄金标准”。 /p p   随着技术的发展,公司将发光细菌法和电子、光电技术相结合,逐步发展为实验室台式仪器、便携式现场应急和在线监测系统的综合毒性测试方案提供者。 /p p   Microtox& reg 生物毒性检测技术的特性包括: /p p   l 使用发光细菌 - 费氏弧菌(Vibrio Fischeri),符合 ISO 11348-3 标准 /p p   l 对超过2700种化学污染物质敏感 /p p   l 测定水中未知污染物质的综合毒性(多种成分的协同效应) /p p   l 样品准备完毕后最短5分钟内获得结果 /p p   Microtox& reg LX 是一款适用于实验室用户的台式分析仪,仪器自带温控装置和自检校准功能,内置多种急性毒性分析方法,如ISO,DIN,ASTM等标准。仪器还创新性地加入了样品自动色度校正功能,在测试有色度的样品(如高毒性的印染、制药废水等)时通过专用算法自动在结果中对样品色度进行补偿校正,用户无需在分析前对样品进行额外预处理,大幅缩短了分析时间并提升了检测效率。除此之外,仪器在设计上对样品存放区和检测区做了更彻底的分隔,即使发生意外漏液也可以保护仪器的电气部分免受损害。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C312900.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/d6099885-0570-4e68-9ae4-9e4b62e1b389.jpg" title=" Microtox LX.png" alt=" Microtox LX.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C312900.htm" target=" _blank" style=" font-size: 14px text-decoration: underline " i strong span style=" font-size: 14px " Microtox& reg LX /span /strong /i /a /p p   Microtox& reg FX是一款应用 Microtox 测试技术的便携式急性毒性分析仪,具有操作简便,检测速度快,灵敏度高等特点。作为一款便携式仪器,Microtox& reg FX主机重量仅为1kg,电池续航长达8-10小时,非常适合现场应急和中小型化验室使用。另外,仪器还内置了ATP(三磷酸腺苷)测试模式,配合专用试剂可以在测试样品急性毒性之外对微生物含量进行快速检测。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230440.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59ebc3b0-571f-4ce8-abfe-18022d182ddc.jpg" title=" Microtox FX.png" alt=" Microtox FX.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230440.htm" target=" _self" style=" font-size: 14px text-decoration: underline " i strong span style=" font-size: 14px " Microtox& reg FX /span /strong /i /a /p p   Microtox& reg CTM是一款在线生物毒性监测仪,具有实时连续监测功能,系统每两秒读取一次数据并即时指示水体的污染程度,连续运行时间长达四周,期间无需任何人工干预,操作方法简单易学,维护费用低且简便易携,适用于饮用水水源地和水厂进、出水的在线监测。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230475.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f48515cc-51f8-492b-b36b-2083a350a240.jpg" title=" Microtox CTM.jpg" alt=" Microtox CTM.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230475.htm" target=" _blank" style=" font-size: 14px text-decoration: underline " i strong span style=" font-size: 14px " Microtox& reg CTM /span /strong /i /a /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您认为水质综合毒性检测在未来会有什么样的发展趋势?将会成为哪些行业重点关注的指标? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽年 /strong /span :目前,我国污水排放的监督和管理主要采用物理化学监测方法,然而这些理化指标并不能反映废水排放后对生物的综合毒性。考虑到在排放标准中应体现防范环境风险的理念,保护人体健康和生态环境,综合毒性指标的应用近些年来得到人们越来越多的关注。像美国、加拿大、德国等发达国家早在上世纪七八十年代就已经开始实施废水综合毒性控制,排水综合毒性评价技术在这些国家的环境管理、改善环境水质的过程中起到了重要作用。 /p p   我国是在2008年制药工业系列排放标准(GB 21903~GB 21908)中首次引入综合毒性指标,旨在与理化检测手段进行优势互补,为环境管理以及相关决策提供全面、快捷、可靠的依据。目前,有望通过完善一系列生物毒性测定方法,配套相关排放标准(如《城镇污水处理厂污染物排放标准》),达到进一步加强我国水生态系统保护的目的,所以我认为中国的环境管理对毒理学指标需求的提升是未来发展的必然趋势。 /p p   综合毒性指标适用于水质比较复杂、难以提出特定污染物排放控制要求的场合。许多发达国家,比如德国已经在废水性质比较复杂的有机化工、钢铁、印染等行业的水污染物排放标准中引入了综合毒性指标,对于水质最为复杂的化学工业等则采用多种综合毒性指标同时控制的方式,确保有效控制环境风险。在我看来,随着国内相关标准的进一步完善,未来在上述行业以及农药、电镀等特定行业中,综合毒性指标必将受到更多关注,在消减污染物排放、保障人体健康、保护生态环境中发挥重要作用。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 小结:随着近代工业的发展,有毒化学物质的使用日益增多,水污染事故发生的频率也随之上升。生物综合毒性检测在应急检测中发挥了举足轻重的作用,今年新冠疫情的爆发也再一次地验证了综合毒性检测的必要性。目前国内的相关标准正在进一步完善中,仪器厂商们也在积极的改进产品的功能以满足将来现场的需求,相信在不远的未来,这项检测将会在各行业受到更多的关注。 /span /p
  • 产品应用:Microtox 生物毒性测试技术在页岩气开采过程中的应用
    Microtox 生物毒性测试技术在页岩气开采过程中的应用 ——香港理工大学、哈尔滨工业大学、伦敦帝国理工学院与韩国江原大学团队基于Microtox对页岩气开采过程中周边的土壤生态系统进行了毒性评价 Modern Water Microtox 生物毒性检测技术具有快速、简单、廉价等优点,已成为多个国家认可的官方标准,并在废水出水毒性检测、钻井液检测、船舱水检测领域也有着广泛的应用。水力压裂技术促进了页岩气开采的发展,而由于含盐量高,金属/准金属(As,Se,Fe和Sr)以及有机添加剂等原因,无意溢出的回流水可能会对周围环境造成危害。本研究对东北地区4个代表性页岩气开采区域,采用Microtox生物测定法(费氏弧菌)和酶活性测试,对回流水溶液对土壤生态系统的影响进行评估。结果显示,在回流溶液影响的老化土壤中观察到毒性的轻微增加(即,较低的EC20值)(Table 3)。已知砷(V)阻碍ATP的产生并因此抑制费氏弧菌生物发光发射(Rubinos等,2014)。另一方面,每种土壤中回流溶液的EC20值几乎相同,这可能与第14天和第90天回流溶液中的土壤-金属相互作用有关,因为它们可能会限制费氏弧菌对金属的生物利用度(Tsiridis等,2006 Rubinos等,2014)。在BY土壤中检测到了光辐射的刺激,这可能是由于土壤基质中的有机化合物有利于费氏弧菌的生物发光过程(Tang et al,2012)。结果表明,受影响的土壤对Vibrio fischeri的毒性仅在老化后呈现适度增加,而脱氢酶和磷酸单酯酶活性随着回流水溶液离子强度的增加而受到显着抑制。相反,回流溶液中的聚丙烯酰胺导致更高的脱氢酶活性,即土壤酶活性对回流溶液的组成非常敏感。Microtox 技术也广泛应用于废水处理厂的出水毒性检测。与使用其他生物(网纹蚤、仔鱼)的系统相比,使用费氏弧菌的 Microtox 技术检测时间更短,结果精确度和灵敏性更高,成本更低,是一种理想的废水整体毒性测试方案。Microtox® Model 500(M500) 分析仪是一款用于实验室的毒性测试仪,带有温控和自动校准功能,用于急性毒性的分析。Microtox® M500 采用生物发光检测技术,可对事故或人为导致的饮用水及废水污染紧急事件进行快速毒性检测。目前已有超过2400 台Microtox® M500行销世界,已确定了Microtox® M500作为快速毒性检测分析的行业标准的地位。Microtox FX 是一款简单快捷且灵敏度极高的便携式水质检测仪,专门为筛查急性毒性及三磷酸腺苷(ATP)而设计。Microtox FX 使用生物荧光技术,对饮用水污染及化学品进入水体等造成的紧急事件进行快速毒性检测。Microtox FX 是使用 Microtox® 技术进行毒性测定的便携仪器。
  • Modern Water 推出 Deltatox II 便携式毒性仪升级版 - Microtox FX
    Modern Water 现已推出原 Deltatox II 便携式急性毒性分析仪的升级版 - Microtox FX。这款仪器应用了公司专利的Microtox分析技术,对超过2,700种复杂化合物敏感,且对饮用水中微生物的检出限低至100 cfu/ml。Microtox技术已在超过700篇经同行评议的文献中被引用,该技术因其极高的可靠性和易用性已被各国监管部门列为水质急性毒性分析的标准方法。Microtox 技术广泛应用于废水处理厂的出水毒性检测。在澳大利亚新南威尔士州环保署(NSWEPA)颁发的环境保护许可中,每个废水出水排放监测点必须定期取样并使用 Microtox 技术进行急性毒性分析。与使用其他生物(网纹蚤、仔鱼)的系统相比,使用费氏弧菌的 Microtox 技术检测时间更短,结果精确度和灵敏性更高,成本更低,是一种理想的废水整体毒性测试方案。此外,美国环保局(EPA)、加拿大已批准 Microtox 方法为石油钻井废弃液排放毒性监测的标准方法。Mictotox 技术是中国石油天然气集团公司重大专项‘高温高密度钻井液与可排放海水基钻井液成套技术研发’项目中的一大研究内容。
  • 标准 | 墨西哥国家环境与自然资源部将生物毒性纳入污水排放监测指标体系
    生物毒性被纳入墨西哥废水排放污染物限值标准近期,墨西哥国家环境和自然资源部在联邦官方公报 (DOF) 上发布了墨西哥官方标准《NOM-001-SEMARNAT-2021》,该标准规定了废水排放中污染物的允许限值,以及在任何水资源利用活动中所需要遵守的水质安全保护措施,该标准对所有类型的废水排放机构将是强制性的,并且将在其运营过程中建立合规性和有效性。《NOM-001-SEMARNAT-2021》更新了墨西哥于1996年发布的官方标准《NOM-001-SEMARNAT-1996》,在新标准中,相应的技术规范、检测指标、测试方法、温度参数、合格评定程序都得以更新,并保持与国际标准(ISO)的一致性,此外,生物毒性也被纳入全新监测指标体系,并更新了相应的检测方法和评估标准。该标准《NOM-001-SEMARNAT-2021》建立了使用海洋生物发光细菌费氏弧菌 (Aliivibrio fischeri) 评估急性毒性的方法。Modern Water 很荣幸能够与墨西哥当地合作伙伴 Equipos para Diagnóstico Analítico, S.A. de C.V. 合作,参与墨西哥该污水排放标准的制定,并基于 Microtox 生物毒性测试技术和生物毒性检测国际标准(ISO 11348-3)给予相关技术性建议,协助当地客户遵守新的急性毒性测试标准,以保证运营的合规性。Microtox LX 实验室生物毒性分析仪Modern Water 作为 Microtox 生物毒性检测技术的开发者和推广者,拥有丰富的生物毒性检测分析技术和经验,使用生物发光细菌作为生物传感器已有30多年的历史。Microtox 生物毒性检测技术简单,快速,经济,方便和可重复性,已成为当今世界上最受认可的生物毒性测定法之一。Microtox 可以在不到1个小时的时间内提供结果,可为全球的市政,工业和政府客户提供快速、准确、可靠的生物毒性检测/预警解决方案。,时长02:01
  • 海洋安全 | Microtox 生物毒性测试技术用于船舶压载水检测
    Microtox® 船舶压载水检测—生物毒性01 船舶压载水 船舶压载水,又称压舱水,被用于调整船舶的重心、浮态和稳定性。远洋大型货船通过装载和排放压载水能够保持船体平衡,用以避免倾斜,并能抵御风浪。随着压排过程,大量物种也借机“漂洋过海”。 船舶压载水潜在危害&公约02 船舶压载水中含有大量生物,包括浮游生物、微生物、细菌甚至是小型鱼类以及各种物种的卵、幼体或孢子,这些生物在跟随船舶航行的过程中有的因为无法适应温度、盐度等因素的变化而死亡,但有的能够生存下来,并最终随着船舶压载水排入新的环境中。由此导致一个水域的生物或种类繁多的生物组随着压载水传送到另一个地理性隔离水域,如果这些生物因为缺乏天敌或其他原因能够在自然或半自然的生态系统或生境中生长繁殖、建立种群,就可能威胁到这些海湾、河口或内陆水域的生态系统结构及其物种多样性,成为外来入侵种,而且压载水还会传播有害的寄生虫和病原体,甚至可能导致当地物种的灭绝。 对于这一系列的潜在生态风险,国际社会已形成共识。中国于2019年加入《国际船舶压载水和沉积物控制与管理公约》。在国际海事组织的合作框架下,远洋船舶须安装压载水处理系统,按公约标准处置压载水。依照公约,我国在加入后有5年的经验积累期。而随着履约时间点临近,我国船舶将面临港口国更加严格的执法检查。 船舶压载水检测-Microtox® 生物毒性03 2022年7月中国太平洋学会发布了《船舶压载水检测方法》团体标准(T/PSC 1.6—2022),该团体标准由国家海洋局东海环境监测中心、上海海洋大学、国家海洋局东海标准计量中心联合起草,并基于使用费氏弧菌的生物毒性测试方法制定,Microtox® 方法所对应的生物毒性分析流程符合相应的标准要求。 此前,相关研究团队曾对大型客轮渡轮的舱底水进行了生物毒性研究,旨在表征舱底水样品中不同组分与生物毒性的关系,包括油脂、多环芳烃(PAH)、金属、悬浮固体和表面活性剂等,该研究使用基于费式弧菌(Vibrio fischeri)的Microtox® 生物毒性检测技术对舱底水进行毒性分析(SS-EN-ISO 11348-3:2008),研究结果表明,环境中多环芳烃的浓度与毒性效应强弱具有显著的相关性。 Microtox® 生物毒性检测技术,主要是通过生物传感器监测受试水生生物的生物学指标变化,它的检测范围广,对大多数有机/无机有毒物质敏感,可反映水体的综合毒性变化。Modern Water 作为 Microtox® 生物毒性检测技术的开发者和推广者,拥有丰富的生物毒性检测分析技术和经验,使用生物发光细菌作为生物传感器已有30多年的历史。01实验室生物毒性分析仪-Microtox® LX,时长02:01 Microtox® LX 是新一代实验室生物毒性分析仪,在对样品进行测试分析时更为精确、简便和可靠,内置了多达17种急性毒性分析模式,针对不同样品的毒性强弱提供高、中、低三档稀释模式和快筛功能,最大程度地减少了测试未知样品EC50(半数效应浓度)时的检测时间和试剂消耗。对超过3500种简单或复杂化合物敏感全自动样品色度校正样品和读取槽主动冷却控温02便携生物毒性分析仪-Microtox® FX,时长02:01Microtox® FX 是一款操作简便且灵敏度极高的便携式水质生物毒性检测仪,采用生物发光检测技术,并使用先进的光电倍增管(PMT),可检测到发光细菌在分析过程中的发光量变化,可对事故或人为的饮用水及废水污染紧急事件进行快速毒性检测。快速检测 - 样品准备后5分钟可得到结果生态环境应急监测及新污染物检测轻量便携 - 适用于现场和应急场合通过ISO 13485 质量体系认证END
  • Modern Water 完成对广东省某水文局 Microtox FX 便携式生物毒性检测仪的交付
    广东省某水文局于近期采购了 Modern Water 的 Microtox FX 便携式生物毒性检测仪,作为应急检测能力的重要组成部分,用于地表水水质安全的日常检测以及地表径流的生物毒性预警与分析。上周,Modern Water 的工程师前往客户所在地,对其 Microtox FX 相关操作人员进行了操作方法和日常维护的全面培训。培训过程对 Microtox FX 便携式生物毒性的基本原理、检测流程及应用等面进行了详细介绍,并且结合广东省内其他单位的 Microtox FX 应用情况和相关经验与客户做了详尽的交流。Microtox FX 便携式生物毒性检测仪Microtox FX 是一款操作简便且灵敏度极高的便携式水质生物毒性检测仪,采用生物发光检测技术,并使用先进的光电倍增管(PMT),可检测到发光细菌在分析过程中的发光量变化,可对事故或人为的饮用水及废水污染紧急事件进行快速毒性检测。Microtox 生物毒性检测技术采用纯度与稳定性极高的费氏弧菌冻干试剂,符合ISO11348-3和污水生物毒性监测技术规程-发光细菌急性毒性测试-费歇尔弧菌法标准方法,费氏弧菌无毒且淡水体系中无法存活,不会造成二次污染。,时长02:01
  • Modern Water 将向卡塔尔 2022 FIFA 世界杯综合供水系统提供完整的生物毒性在线监测解决方案
    2022 fifa world cupmicrotox ctmmodern water 与 avanceonmodern water 于近期和卡塔尔当地供水机构达成协议,将为 2022 fifa 世界杯场馆所在区域的综合供水系统提供超过20台的 microtox ctm 在线生物毒性监测仪,并将集成至当地供水监管机构的中央控制中心,以保证在世界杯期间的供水安全。该项目 modern water 将会和当地合作伙伴 avanceon 一同完成,avanceon 在水质监测领域提供先进的自动化解决方案。modern water microtox® ctm 在线毒性监测仪是一种即时的、连续的利用费氏弧菌(v.fischeri)作为生物传感器检测水源或排放水急性毒性的设备,可以在监测现场用作生物预警系统(bews),用于监测站点的在线连续监测,并可显示这些化合物对水体的综合污染状况,提供快速的早期预警,使相关机构对污染能够及时做出反应和控制,以避免严重后果。,时长02:03
  • 北京协和医学院药物研究所靳洪涛、贺玖明团队成果:空间代谢组整合网络毒理学和质谱成像探究何首乌D组分肝毒性机制
    何首乌(PM)作为传统中药具有广泛的药理活性且临床应用广泛,其肝毒性一直备受关注,但由于其多成分、多靶点的特性,其毒性物质和机制尚未阐明。前期研究发现PM 70%乙醇提取物中,D组分(95%EtOH洗脱,PM-D的肝毒性最高,然而PM-D的肝毒性机制尚不清楚。  2022年8月,北京协和医学院药物研究所靳洪涛、贺玖明团队在Journal of Ethnopharmacology发表了题为“Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb”,提出系统整体的中药毒理研究策略,整合网络毒理学和空间质谱成像技术探究何首乌D组分肝毒性的潜在靶点及代谢机制,为何首乌肝毒性机制发现及中草药的相关组分药理毒理机制研究提供了新的方法和技术支持。  研究背景  前期基于斑马鱼胚胎模型对何首乌不同组分及单体成分进行肝毒性评估,发现何首乌D组分的急性毒性和肝毒性明显高于其他提取物,并分离鉴定了PM-D中27个化学成分,主要包含蒽醌类、多酚类、蒽酮类、二蒽酮类等,进一步以斑马鱼胚胎模型的表型终点(肝脏大小、肝脏灰度值和卵黄囊面积)评价何首乌D组分中主要化学成分的毒性,发现蒽醌和二蒽酮类与其他成分相比具有显著的肝毒性。前期的毒性筛选确定潜在毒性物质基础有助于进一步阐明其肝毒性分子机制。  本研究首次整合了网络毒理学和质谱成像技术应用于中药毒理机制研究,网络毒理学基于系统和整体的角度衡量复杂的“成分-靶点-疾病”网络关系为中药毒性机制探索提供了新的思路。基于质谱成像技术衍生的空间分辨代谢组学技术可在保留空间位置信息的基础上揭示生物组织中代谢物的时空分布特征,有助于理解代谢活动时空变化与组织病理和生理功能之间的关联和作用机制。以何首乌D组分的肝毒性机制研究为例,两种方法的整合应用为中药药理毒理机制研究提供新的研究策略。  技术流程    研究结果  1、病理及生化指标  急性毒性实验中,14 d内所有剂量均未观察到小鼠死亡或异常毒性症状且大体解剖未见明显病理改变。2g/kg剂量反复给药7天后,组织病理学检查发现给药组肝细胞肿胀,肝窦轻度扩张,少量微肉芽肿,肝细胞轻度变性/坏死等改变,血清生化分析显示,血清AST活性和TBIL含量显著升高,ALT和ALP活性水平呈上升趋势(图1)。  图1 | PM-D给药后小鼠病理及生化指标变化  2、毒性物质的定量检测  PM-D中蒽醌类化合物大黄素和大黄素-8-β-D-葡萄糖苷的含量分别为3,989.820 μg/g和12,677.423 μg/g (图2)。反式-大黄素-大黄素二蒽酮和顺式-大黄素-大黄素二蒽酮含量分别为1,847.708 μg/g和1,455.940 μg/g(图3)。    图2 | HPLC谱图  标准溶液(A)和样品溶液(B), 大黄素-8-β-D-葡萄糖苷(1)和大黄素(2)    图3 | MS谱图  标准溶液(A)和样品溶液(B), 反式-大黄素-大黄素二蒽酮(1)和顺式-大黄素-大黄素二蒽酮(2)。  3、网络毒理学分析  3.1PM-D肝毒性靶点和网络构建  经药物靶点预测和疾病靶点收集共获得了30个目标靶点网络构建结果显示mTOR、PIK3CA、AKT1、EGFR、ERBB2、ESR1、RPS6KB1、CTNNB1是核心的相关靶点(图4)。    图4 | 网络构建及靶点分析  (A)共同靶标集合  (B)药物-靶点-疾病网络  (C)PPI网络。  3.2 GO和KEGG富集结果分析  GO富集结果主要集中在生物过程中,涉及细胞内信号转导的正调控、TOR信号、对外来生物刺激的响应、细胞对内源性刺激的反应、激酶活性的正向调节、MAPK级联调控、凋亡过程的调控、活性氧代谢过程的调控等(图5A)。KEGG的富集信号通路主要包括PI3K-Akt信号通路、ERBB信号通路、AMPK信号通路、mTOR信号通路、肝细胞癌、HIF-1信号通路、Ras信号通路及MAPK信号通路等(图5B)。  图5 | GO富集分析(A)和KEGG富集分析(B)  3.3分子对接  分子对接结果显示大部分核心毒性成分都能与靶点紧密结合,二蒽酮类化合物顺式-大黄素-大黄素二蒽酮(Cis-emodin-emodin dianthrones),反式-大黄素-大黄素二蒽酮(Trans-emodin-emodin dianthrones),Polygonumnolide C4相较于其他成分结合能更低。 图6 | PM-D中成分与核心靶点的分子对接分析  (A)结合能热图分析 (B-D)结合构象可视化:  (B)反式-大黄素-大黄素二蒽酮- mTOR   (C)反式-大黄素-大黄素二蒽酮- EGFR   (D)Polygonumnolide C4- mTOR。  4.质谱成像分析  4.1高分辨、高覆盖、高灵敏的代谢物成像  质谱成像在单个像素点提取的代谢物峰可达数万种,覆盖了丰富的代谢物。作者发现两种含量较高的药物成分大黄素和大黄酸相关代谢产物仅在药物组的肝脏中高度富集。内源性代谢物精氨酸和牛磺胆酸等分布具有区域特异性(图7)。  图7 |AFADESI-MSI可视化PM-D给药后代谢物变化 (A)负离子模式下平均质谱  (B-E)内外源性化合物的空间可视化:大黄素(B), 大黄酚(C),精氨酸(D),牛磺胆酸及牛磺去氧胆酸(E)。  4.2代谢轮廓分析及差异代谢物鉴定  差异代谢物经过MS/MS鉴定,并采用MassImager软件可视化其空间分布特征,代表性差异代谢物的质谱图像如图8所示, 可观察到精氨酸、鸟氨酸、脯氨酸、牛磺酸类和肉碱类代谢物显著上调,部分脂质类代谢物显著下调。  图8 | 代表性差异代谢物质谱成像图  4.3通路富集分析  基于通路富集的结果,构建了包括已鉴定的关键生物标志物在内的代谢网络,揭示了胆汁酸合成、嘌呤代谢、脂肪酸氧化、三羧酸(TCA)循环和脂质代谢等参与了PM-D致肝毒性过程的代谢变化(图9)。图9 | 代谢网络分析  研究讨论  本研究首次应用质谱成像技术可视化PM-D中关键代谢物在肝脏中的分布并首次对PM中毒性成分二蒽酮类化合物进行定量检测及网络药理学分析预测潜在毒性靶标为何首乌毒性物质基础研究及潜在肝毒性靶点发现奠定了新的基础。  空间分辨代谢组学进一步挖掘出何首乌D组分的肝毒性生物标志物,包括氨基酸、酰基肉碱、胆汁酸、脂类等。基因富集和代谢网络综合分析表明,何首乌D组分的毒性机制可能涉及氧化应激、线粒体损伤和AMPK通路等导致的胆汁酸代谢、能量循环、嘌呤代谢和脂质代谢的紊乱相关,该研究有望为临床诊断和监测何首乌肝毒性的发生发展提供参考,并作为代谢适应和重编程的资源,以指导未来临床预后研究,为探索中药毒性机制提供新思路。
  • 标准 | 加拿大艾伯塔省能源监管机构在指令050《钻井废弃物管理》中将 Microtox 测试技术作为生物毒性检测的标准方法
    Alberta Energy Regulator (AER)加拿大艾伯塔省能源监管机构 (Alberta Energy Regulator, AER) 指令 050:钻井废物管理 (Directive 050: Drilling Waste Management) 规定了艾伯塔省产生的钻井废物的处理和处置要求。钻井废料是指油砂勘探、地热钻井及管道建设的定向钻孔过程中产生的泥浆和岩屑。该指令旨在为钻井或管道的作业单位提供钻井废物有效的管理方法,并与当地环境保护和其他废物管理标准相协调,同时顾及到钻井废料场地的土壤恢复能力和当地的钻井废物管理的合规要求。在该指令中明确指出了生物毒性的检测要求,并在附录中指出使用发光细菌及 Microtox 生物毒性检测的方法对钻井废物进行毒性检测,同时对参考标准、评估方法等做出了详细说明和要求。该指令还指出钻井过程中一些添加剂和泥浆作业中的产物是有毒的,常规化学分析方法对这类物质不能够准确的识别检测,也不能合理评估其对植被、微生物、水生物种、野生动物或人类的毒害程度,需使用 Microtox 生物毒性测试对钻井废物进行分析,生物毒性测试还可用于预测环境因素对生态环境的影响以及钻井废物的短期和长期毒性水平。此外,对钻井废物的毒性测试应能够对有机物、金属离子、有机金属聚合物或气态成分产生毒性效应,而不是高度依赖主要营养物或离子浓度。此外,在该指令中之还引用了一些使用 Microtox 生物毒性测试方法进行毒性检测的国际及行业标准,并表示评估钻井废物的优先方法是加拿大标准委员会或加拿大协会认可的已获得或预期获得实验室认证的方法。常规水质参数,如溶氧、浊度、pH、氮、磷、COD等对水质安全的检测程度有限,无法给出一个生物性的综合指标;而实验室检测的常规方法,虽然可对规定项目进行精确监测,但是可能遗漏许多非常规毒性物质,无法确定对人体的毒性和综合效应;对于生物毒性检测技术,主要是通过生物传感器监测受试水生生物的生物学指标变化,它的检测范围广,对大多数有机/无机有毒物质敏感,可反映水体的综合毒性变化,适合用于有毒物质污染事件的应急监测和预警。Modern Water 作为 Microtox® 生物毒性检测技术的开发者和推广者,拥有丰富的生物毒性检测分析技术和经验,使用生物发光细菌作为生物传感器已有30多年的历史。Microtox® LX 分析仪内置了多达17种急性毒性分析模式,针对不同样品的毒性强弱提供高、中、低三档稀释模式和快筛功能,极大程度地减少了测试未知样品EC50(半数效应浓度)时的检测时间和试剂消耗。同时,功能强大的Microtox® Omni 分析软件允许用户自定义各种测试参数,包括平行样数量、稀释倍数、反应时间等,以满足科研人员的实验需求。Microtox® 生物毒性检测技术简单,快速,经济,方便和可重复性,已成为当今世界上最受认可的生物毒性测定法之一。Microtox® 可以在不到1个小时的时间内提供结果,可为全球的市政,工业和政府客户提供快速、准确、可靠的生物毒性检测/预警解决方案。,时长02:01
  • 水质监测专家谈如何评估再生水安全性
    仪器信息网讯 2014年9月25日,&ldquo 第25届中国国际测量控制与仪器仪表展览会科学仪器服务民生学术大会&rdquo --环境与安全检测技术及仪器研讨会第二天会议在北京国际展览中心(新国展)召开。会议由中国仪器仪表学会、中科院安徽光学精密机械研究所主办,中国仪器仪表学会科学仪器学术工作委员会、中国仪器仪表学会环境与安全检测仪器分会承办,仪器信息网作为战略合作媒体参加了此次研讨会。   北京城市排水集团有限责任公司翟家骥   报告题目:再生水回用及安全性评估体系的建立   翟家骥高级工程师在报告中介绍了再生水的定义、再生水回用的意义、再生水目前研究的主要内容和再生水安全性评价。   我国现有6项再生水水质国家标准,但未对再生水水质安全评价的指标进行规定。再生水水质安全评价不仅可以保障再生水回用过程的人类健康及生态安全,指导再生水回用的监督管理,而且对再生水工艺的选择和优化有广泛的指导意义。   目前,再生水水质安全评价方法主要有淡水发光细菌抑光率、大型蚤急性毒性、斑马鱼毒性等试验内容。翟家骥高级工程师介绍:参考水质毒性指标相关标准,消毒副产物浓度升高可增加再生水的急性毒性 再生水毒性与TOC相关性为0.847,证明再生水中急性毒性主要由有机物引起 依照现有评价标准及方法,再生水厂出水急性毒性等级为IV级即为无毒。
  • 生物打印肝脏模型评价药物的肝脏毒性研究
    背景介绍 药物性肝损伤(DILI)会影响肝脏代谢和解毒能力,但其根本机制仍有很多未知。为了准确和可再现地预测人的DILI,非常需要体外肝脏模型来替代昂贵和低通量的2D细胞培养系统、动物研究和芯片实验室模型。我们提出了一种新的“droplet in droplet”(DID)生物打印方法,该方法可以产生用于肝毒性研究的生理相关肝脏模型。这些模型,或称微型肝脏,是用BIO X微滴打印包裹在ⅰ型胶原中的肝(HepG2和LX2 肝星状细胞)和非肝(HUVEC 人脐静脉血管内皮细胞)细胞制成的。培养7天后,将微型肝脏暴露于急性和高剂量的对乙酰氨基酚或氟他胺,然后评估细胞活力、白蛋白分泌、丙氨酸氨基转移酶(ALT)活性和脂质积累的变化。微型肝脏ALT活性增加,白蛋白和脂质生成减少,表面这两种药物均有细胞毒性反应。这项研究的结果进一步验证了3D生物打印是一种可行的、可用于模拟肝组织和筛选特异性药物反应的中到高通量的解决方案。 材料和方法 细胞准备根据建议的方案培养两种肝细胞(HepG2和LX2)和一种非肝细胞(HUVEC)细胞系,并每3-4天传代一次。HepG2在含有谷氨酰胺的MEMα中生长,并补充1%丙酮酸钠(Gibco,Cat#11360070)和1%MEM非必需氨基酸溶液(Gibco,Cat-#11140050)。LX2细胞在IMDM(Gibco,Cat#12440053)中生长,HUVEC在EGM-2生长培养基(Lonza,Cat#CC-3156)中培养,并添加单体补充剂(Lonza,Cat#CC-4176)。所有培养基均添加10%的FBS(Gibco,16000044类)和1%的青霉素链霉素(Gibco,参考文献1509-70-063)。.生物墨水的制备和DID生物打印中和并制备3mg/mL浓度的Coll I bioink(CELLINK,SKU#IK4000002001)用于生物打印。以1:1:2(LX2:HUVEC:HepG2)的比例将5x106个细胞/毫升装入冷冻墨盒。在未经处理的96孔板(Thermo Fisher Scientific)中,使用BIO X(CELLINK,SKU#0000000 2222)上的液滴打印功能对微型肝脏进行生物打印。使用设置为8°C的温控打印头(TCPH,SKU#0000000 20346)将胶原液滴分配到设置为8°C–10°C的冷却打印床上。在第一轮液滴打印后,样品在37°C下培养3分钟,然后返回BIO X,使用相同参数进行第二轮液滴打印。在37°C条件下,将得到的封装液滴热交联20分钟,并为每个孔提供200微升混合培养基(25%IMDM+25%DMEM+50%MEM)。培养液每2-3天更新一次。药物处理和分析培养7天后,用不同浓度的APAP[0.1,0.5,1,5,10,25,50 mM](Abcam)或FLU[10,25,50,75,100,150,200µM](Selleckchem)处理微型肝脏72小时。采用比色溴甲酚绿(BCG)测定法(Sigma-Aldrich)、ALT活性测定法(BioVision)和活/死染色试剂盒(Invitrogen)分别检测白蛋白产生、肝损伤和细胞活力。所有分析均按照制造商的说明进行。 结论 胶原I中的细胞生长和球体形成胶原I中的细胞生长和球体形成在这项研究中,我们评估了Coll I bioink中的细胞生长、球体形成和迁移模式。到第2天,HepG2和LX2已紧密组装成小簇,HUVEC已拉长,形成同心网络(图1)。使用胶原蛋白作为支架可以在整个培养过程中进行细胞重组、球体极化和细胞增殖(数据未显示)。此外,根据图1,很明显,细胞在整个培养过程中渗透DILI模型,并可能在内部和外部液滴层之间迁移。生物打印微型肝脏的药物治疗和细胞毒性第10天的毒性评估结果表明,生物打印微型肝脏对APAP(图2A)和FLU(图2B)具有细胞毒性和剂量依赖性反应。这种肝功能下降表现为白蛋白分泌和脂质生成减少,ALT活性上调。同样明显的是,基于ALT活性的增加,两种药物的毒性剂量都会对细胞活力产生破坏性影响。后者在图3中尤为明显,其中活/死图像表明,在较高浓度的APAP或流感病毒下,细胞活力显著降低。药物治疗的动态细胞内反应研究了APAP和FLU如何调节细胞内脂肪含量。肝组织的ORO染色通常用于识别脂肪酸或药物引起的不同阶段纤维化或脂肪变性(Pingitore,2019)。在我们的研究中,经处理的微型肝脏的ORO染色显示,在高剂量药物处理的样本中,脂肪积累最小,而在未经处理或低剂量药物治疗的样本中,脂肪积累显著(图4A)。一种解释是APAP和FLU与脂质过氧化有关,其中毒性药物水平引起的氧化应激可能引发脂质降解和膜损伤(Behrends,2019)。图4B中未处理样品的详细观察提供了液滴模型中液滴的横截面图。这张图片显示了大量细胞向液滴外壳迁移并产生脂肪,可能表明存在营养和氧气梯度,并验证了细胞重组模式和胶原内的球体极化。▶ 作为2D细胞培养系统、动物研究和芯片实验室原型的可靠替代品,BIO X可作为中高通量工具,用于制作功能性3D生物打印肝脏模型,实现药物筛选和分析,并减轻药物消耗的成本。▶ CELLINK Coll I作为DID模型的支架,为模型提供了一个稳定、可调和高度相容的环境,且具有丰富的肝细胞重排和球体形成的结合位点。▶ 基于脂质过氧化、白蛋白分泌减少和ALT活性上调的证据,我们的研究结果表明,DID微型肝脏具有功能性,并且对APAP和FLU具有剂量依赖性和细胞毒性反应。▶ DID模型允许组织层之间的细胞间相互作用,并为研究不同硬度层之间的迁移模式提供了独特的机会。未来的毒性研究可以采用该模型复制纤维化的各个阶段,或研究药物治疗后肝脏组织的再生能力。参考文献:1.Behrends, V., Giskeødegård, G. F., Bravo-Santano, N., Letek, M., & Keun, H. C. Acetaminophen cytotoxicity in HepG2 cells isassociated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Archivesof Toxicology. 2019 93(2): 341–353. DOI: 10.1007/s00204-018-2371-0.2.Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. Drug-induced liver injury: Interactions between drug properties andhost factors. Journal of Hepatology. 2015 63: 503–514. DOI: 10.1016/j.jhep.2015.04.016.3.Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. Human multilineage 3D spheroids as a model of liversteatosis and fibrosis. International Journal of Molecular Sciences. 2019 20(7): 1629.
  • 话说实验室第八期:实验室常见试剂、药品毒性及处理 3
    大家好,欢迎来到话说实验室!作为实验室人员常常会和实验室中的各种试剂、药品打交道,但是对于他们的毒性以及中毒后的应急处理方法,您又知道多少呢?今天我们将来讲讲在实验室中的氰化物、三氯化砷和农药(有机磷、有机氯)发生烧伤或中毒后的应急处理方法:氰化物按化学结构可分为无机氰化物和有机氰化物,后者变称腈类化合物,氰化物进入体内后,氰离子迅速与氧化型细胞色素氧化酶的三价铁结合,阻碍其细胞色素还原为带二价铁的还的型细胞色素氧化酶,使细胞不能得到足够的氧,造成"细胞内窒息"。急性中毒者动静脉血氧差可自正常的4%~5%降至1%~1.5%,故易致呼吸中枢麻痹,并造成死亡。 氰化物的烧伤处理:氰化钠、钾及氢氰酸等,先用大量水冲洗,冲洗后用3%硼酸水湿敷,或1:4000高锰酸钾溶液冲洗。 氰化物中毒的主要临床表现为乏力、胸痛、胸闷、头晕、耳鸣、呼吸困难、心律失常、瞳孔缩小或扩大、陈发性或强直性抽搐、昏迷,最后呼吸,心跳停止而死亡。 其中毒处理为给予亚硝酸异戊酯和亚硝酸钠。现场或运送途中,可给患者吸入亚硝酸异戊酯0.2~0.4ml,每隔15~30秒至数分钟一次,不要超过5~6支,吸入至静注亚硝酸钠为止。30%亚硝酸钠10~20ml(6~12mg/kg),以2~3ml/分的速度静脉注射,然后在同一针头下给予25%硫代硫酸钠50ml,必要时1小时重复注射一次。注射时速度勿快,以免引起低血压。局部创面应先用大量流动清水冲洗,然后用0.01%的高锰酸钾冲洗,再用5%硫代硫酸钠冲洗,应该注意的是亚硝酸钠及硫代硫酸钠对有机氰中毒无解毒作用,且亚硝酸钠本身对机体有损害作用。 三氯化砷发生中毒后的应急处理方法:先用水冲洗,再用25%氯化铵溶液湿敷,最后用2%二巯基丙醇软膏涂。农药(有机磷、有机氯)发生中毒后的应急处理方法:立即用小苏打或肥皂水洗涤,再用清水冲洗。但敌百虫禁用上述碱性液处理,因敌百虫遇碱后毒性反应大。在受上述灼伤后,若创面起水泡,均不宜把水泡挑破。 以上就是本期人和《话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。更多详情欢迎来电咨询:400 820 0117同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、GRABNER、EXAKT、ATAGO、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、SIEMENS、YAMATO等。】
  • 汛期水质安全 | 生物毒性及重金属现场快速分析解决方案
    汛期饮用水水质安全监测环境应急污染事件PART01生态环境部下发汛期饮用水水源环境监管工作通知近期,国内多地降雨量远超往年,连续的暴雨不仅会影响人们的正常生活,而且会发生不同程度的城市内涝,尤其在低洼社区、下凹式立交桥、地下交通设施等都会聚集大量的雨水,并形成严重的城市内地表径流,严重的将导致洪涝和地质灾害。此外,灾害过后将不可避免的导致一系列的饮用水水质安全问题,生态环境部就此类问题于2023年8月11日紧急发布《关于加强汛期饮用水水源环境监管工作的通知》,旨在加强对饮用水水质的监测和安全预警,尤其是重点排污企业,避免洪涝次生灾害的产生。PART02潜在危害 洪水是一种常见的自然灾害,对人类生活和自然环境造成极大的影响。其中,洪水后的饮水安全问题尤为突出。洪水期间,水源易受到污染,水质恶化,直接威胁到人们的身体健康。 洪水会导致水源地取水口受损、自来水厂和水井被淹、供水设施及输配水系统破坏,地表或河床底部泥沙、腐殖质会被冲入水中,造成水质浑浊度增加,影响饮用体验感和后期消毒效果;洪水还会将大量人畜粪便、垃圾、污水、动物尸体冲入水中,造成致病微生物污染,可能导致出现肠道疾病和其他传染病;如果受灾地区有储存有毒有害化学品的工厂、仓库,或者有农田,会造成有毒有害化学物质和农药的污染,可导致急性、慢性化学性中毒。 近年来,国内外学者针对洪水后的饮水安全问题进行了大量研究。一些研究结果显示,洪水过后,城市内的地表径流不仅会对城市排水系统造成巨大的负担,而且大量未经处理的雨水在地表流动的时候,会混入大量地表沉积物,包括固态废弃物碎屑 (城市垃圾、动物粪便、城市建筑施工场地堆积物) 、化学药品 (草坪施用的化肥农药)、车辆排放物等,其中含有较高浓度且成分复杂的细菌、重金属等污染物,而水体中较高含量的微生物和有害物质,如细菌、病毒、寄生虫、重金属等,会通过水体扩散,引发各种疾病,对人类健康造成威胁。 基于此,在应急污染事件发生时,需要对污染物的种类、数量、浓度规模,以及生态的破坏程度、规模等进行监测,旨在发现和查明环境污染情况,掌握污染的规模和程度,这对应急污染事件的后续处理至关重要。PART03环境应急监测 常规水质参数,如溶氧、浊度、pH、氮、磷、COD等对水质安全的检测程度有限,无法给出一个生物性的综合指标,而且应急污染事件中常规参数变化通常不显著,通常无法构成实施水质预警、应急措施的证据基础;而实验室检测的常规方法,虽然可对规定项目进行精确监测,但是可能遗漏许多非常规毒性物质,无法确定对人体的毒性和综合效应;对于生物毒性检测技术,是通过生物传感器监测受试水生生物的生物学指标变化,检测范围广,对大多数有机/无机有毒物质敏感,可反映水体的综合毒性变化,适合用于有毒物质污染事件的应急监测和预警。 对于应急污染事件,主要可对常见的重金属元素铜、镉、铅、锌、砷、汞进行现场应急检测,以确定主要有害重金属元素的污染情况。传统的重金属检测方法是原子光谱法,其准确度、精密度好,但是成本高,分析时间长,操作人员要求高,只能在实验室内进行分析;分子光谱法可进行现场分析,但是其灵敏度低,实际检出限通常高于0.05mg/L,无法满足I类测定要求,且方法抗干扰能力弱,样品色度浊度对结果干扰大;而阳极溶出法安法对重金属的检测,其灵敏度、准确度与原子光谱法接近,数据相关性极高,且方法抗干扰能力强,对样品色度、浊度无要求。便携式水质生物毒性分析仪 Microtox FX Microtox FX 是一款操作简便且灵敏度极高的便携式水质生物毒性分析仪,采用生物发光检测技术,并使用先进的光电倍增管(PMT),可检测到发光细菌在分析过程中的发光量变化,可对事故或人为的饮用水及废水污染紧急事件进行快速毒性检测。,时长02:01快速检测 - 样品准备后5分钟可得到结果生态环境应急监测及新污染物检测轻量便携 - 适用于现场和应急场合通过ISO 13485 质量体系认证便携式重金属分析仪 MicrotraceTM PDV MicrotraceTM PDV 是一款适用于应急场合和现场测试的便携式分析仪,重金属检测是日常理化分析的基础,而基于阳极溶出伏安法的便携式重金属检测仪,由于其灵敏度高、检测限较低、检测快速、所需样本量少等特点,可成为目前实验室进行重金属检测和开展和重金属检测相关科研工作的良好补充。,时长00:55支持检测最多24 种重金属元素与比色法相比,精确度和灵敏度更高,干扰更少用于现场或实验室检测时,检出限低至 0.5μg/L与实验室分析方法(AAS, ICP-MS)有极强相关性,且分析成本更低可搭配 Android 平板 App 使用,可极大提升仪器易用性和便携性
  • 生物毒性应急监测 | 新型冠状病毒疫情防控监测与Microtox生物毒性检测技术
    2020年伊始,由新型冠状病毒(2019-nCoV)所引发的肺炎疫情牵动着每一个人的心。随着各个医疗及隔离场所疫情防治工作的逐步展开,在此过程中产生的各种废水及废弃物对环境生态所产生的影响也逐渐受到关注。为了避免污染物对水源地、地表水、地下水和土壤等产生的污染和破坏,1月31日生态环境部印发了《应对新型冠状病毒感染肺炎疫情应急监测方案》,研究部署应对新型冠状病毒感染肺炎疫情应急监测工作,防止疫情次生灾害对生态环境和人民群众造成不良影响。在该应急监测方案中,明确提出加强饮用水水源地水质预警监测,方案中表明在疫情防控期间,在饮用水水源地常规监测的基础上,增加余氯和生物毒性等疫情防控特征指标的监测,控制风险,切实保障人民群众饮水安全。Modern Water 作为先进水质生物毒性监测设备的所有者,所有用的Microtox® 生物毒性检测技术起源于20世纪60年代,是生物毒性检测行业内的“黄金标准”。这项技术应用生物传感原理(发光细菌法),可对水中广谱污染物质进行快速测定。产品Microtox® 系列检测产品包括:Microtox® LX/Microtox® M500 台式毒性仪,适用于实验室;Microtox® FX/Delatox 便携式毒性仪,适用于应急监测和小型水厂化验室;Microtox® CTM 在线毒性仪,适用于水源地监测,大型水厂进/出水口监测。应用Microtox® 系列生物毒性分析仪自2007年进入中国以来,广泛应用于水源地、净水构筑物出水、出厂水的应急监测,在环境监测、供水、疾控和公共卫生管理等领域中发挥了重要作用。2008年北京奥运会,2010年广州亚运会,2010年上海世博会均采用了Microtox毒性检测仪;2008年汶川地震期间,国家环监总站、震区及国内多家检测机构应急小组均配备了Microtox便携毒性仪对震区进行了全面全程的水质毒性监控;美国911事件以后,美国各水司、水厂将Microtox® 毒性仪大量应用于公共场所、饮用水源、出厂水等的检测。Microtox® 生物毒性检测技术通过了工业界、研究单位和政府的验证,截至05年已有超过500篇的关于Microtox系统应用和评价的论文。
  • "植物激素"安全性惹争议 专家称毒性比味精小
    ●农业专家:毒性比味精还小 ●食品专家:滥用会危害健康   最近催熟剂、膨大剂、催红剂、增甜剂等植物生长调节剂被推向风口浪尖,这些调节剂被媒体冠名为"植物激素"之后,引起了消费者的不少担忧。   究竟"植物激素"危害大不大?应该禁止还是推广?针对这些消费者关心的问题,记者昨天采访了有关专家和官员。记者了解到,目前,植物生长调节剂在国内已被广泛应用于多种农作物。农业专家表示,植物生长剂属于农药范畴,基本都属于低毒和微毒农药,大部分毒性比味精和盐还小,是一种农业增产、增效的重要技术措施,并且是安全的。   不过一些食品专家也担忧,瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。   植物生长剂已被广泛使用于多种农作物   "我们认为,最近的一些报道对消费者有误导作用。"昨天,广东省农业厅植保总站研究员江腾辉开门见山地对记者说,最近一些媒体把植物生长剂讲得太过恐怖。   "事实上,植物生长剂归属农药管理,并且属于低毒和微毒农药。"江腾辉说,前几天,省农业厅植保总站邀请华南农业大学、省农科院部分专家,专门召开会议研究植物生长调节剂的问题,与会专家一致认为,包括催熟剂和膨大剂在内的植物生长调节剂作为农作物生产中一项重要的技术措施,在农业增产、增效中发挥了重要作用。应加强对植物生长调节剂使用技术的宣传普及,指导农业生产者科学合理使用,引导社会公众科学看待,避免因一些不实信息或虚假消息误导消费者,切实维护公众的健康安全和广大农民的利益。   "作为一项农业增产、增效的重要技术措施,植物生长剂已被广泛使用于多种农作物,技术也已经比较成熟。"江腾辉说"广东每年使用植物生长调节剂约220吨,大概占全国使用量的3%多一点。"江腾辉说。   "植物生长剂跟化肥以及其他的农药本质是一样的,而且它还是低毒、微毒的。"江腾辉说。   农业专家毒性比味精和盐还小   "绝大部分的植物生长调节剂毒性比味精和盐还小。"华南农业大学资环学院徐汉虹教授说。   徐汉虹说,首先,作为一种农药,我国的农药管理制度还是比较严的。凡是在我国境内生产、销售和使用的植物生长调节剂,都必须进行农药登记。在申办农药登记时,必须进行药效、毒理、残留和环境影响等多项使用效果和安全性试验,经国家农药登记评审委员会评审通过后,才允许登记。   "如果植物生长剂是一种危害很大的农药的话,国家为什么还要允许它的存在和使用?"徐汉虹说,与杀虫剂、除草剂等其他的农药相比,植物生长调节剂的毒性要小得多。   "另一方面,在一些农作物中,植物生长调节剂的使用是必须的。例如香蕉便是这样。"徐汉虹说,在香蕉等一些水果中,使用"乙烯利"几乎是惯例,如果不这样,就得等到香蕉自熟以后再采摘,那么香蕉往往会在运输的过程中便烂掉。   食品专家过量激素聚集人体会危害健康   "植物激素添加剂真的无害吗?"中国人民大学农业与农村发展学院教授郑风田,一位研究食品安全问题的专家,昨天对记者表示,对这个问题的判定应该看看医学专家们的意见,毕竟那些用了膨大剂的西瓜最终还是要被人吃掉的。那些搞植物激素的专家们应该不会做人体健康试验的,因为这是医学专家们的领地。   "我接触的不少医学专家都认为:反季节蔬菜和水果大部分都是激素催成的,短期内影响不大,但长期食用会对人体产生副作用。"郑风田说,一份报告称,土耳其伊斯坦布尔大学生物系植物学教授因萨尔警告说,果菜中含有的过量激素,聚集在人体内对健康非常有害。   "瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。"郑风田担忧地说。   "其实许多生长剂都不应该去使用,乙烯利等催熟剂必须要去禁止。"郑风田表示。他甚至"教大家一招":在瓜果市场,形状异常,外观色泽太美丽,味道差而平淡,一般都是被催熟剂、膨大剂搞出来的,要尽量少买少吃!   不过对于郑风田的观点,徐汉虹提出了不同的看法。他认为,以一种物质的化学成分来分析它的危害是片面的,科学的态度是,要考虑它的含量问题"植物生长调节剂一般在作物上使用剂量极低,不会对农产品(16.80,0.05,0.30%)质量安全造成危害。"徐汉虹说,作为一种激素,植物生长调节剂很低的含量就可以发挥作用,一般都是几千分之一,甚至上万分之一。"而且植物生长调节剂超剂量使用或使用剂量不够,不但难以达到理想的调控作物生长效果,甚至会影响农作物的正常生长,造成减产减收。"   关键是加强激素残留监测   "植物生长调节剂作为一种低毒或微毒的农药,已有38个经过国家批准登记,它们的安全性都是经过严格的试验的。"广东省农业厅植保总站研究员江腾辉呼吁,各界不要妖魔化植物生长调节剂。   "关键还是要加强监督和管理。"业内人士表示,目前,美国、加拿大、日本等发达国家都对植物生长调节剂制订了严格的农药残留标准。我国今后应加快制订和完善相关标准,加强农产品中农药的残留监测,切实保障农产品质量安全。
  • 不用动物实验依据毒性模型 基于细胞新方法可测化学品毒性
    p   一项研究发现可以通过基于细胞的方法预测化学物质对人的毒性,而不需要开展动物实验。这项研究展示了基于细胞的毒性模型,或有助于开发出代替传统动物实验测量化合物毒性的方法。相关成果近日发表于《自然—通讯》。 /p p   作为由美国政府主导的21世纪毒理学计划的一部分,美国国立卫生研究院的Ruili Huang 和同事测试了超过1万种化学物质,尝试开发出更好的测试诸如农药、工业化学品、食品添加剂和药品等化合物毒性的方法。他们测试了化学物质在15种不同浓度下和30个靶点(包括人体细胞核受体或者细胞通路)的反应活性,由此获得了超过5000万条数据。他们将数据和化学结构结合起来,创造了一些毒性模型,这些模型可以用于预测化学物质对动物或者人的影响。 /p p   当把这些结果与从动物试验中获得的、或已知从人身上获得的接触毒性物质的数据进行比较后,研究人员发现,相关模型既能预测对人的毒性,也能预测对动物的毒性。虽然这些结论需要用额外的细胞通路和靶点进行更多的试验,但研究人员提出,基于细胞的方法能用于毒理试验,而且能帮助优先选择出用于毒理试验的化合物。 /p
  • 小动物活体成像系统在急性心力衰竭小鼠模型治疗中的应用
    2023年11月8日,由山西农业大学王金明教授、海军军医大学梁晓及美国威斯康星大学Hector H. Valdivia 团队共同在国际一流期刊《Materials Today Bio》(IF= 8.200)中发表了题为“OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine”的文章。在急性心脏疾病中,通过钙素(calcin)作用于利亚诺定受体(RyR)减少肌浆网中的Ca2+含量,是一种潜在的干预策略,可用于减轻β-肾上腺素能应激触发的SR Ca2+过载。然而,作为一种含有33-35个氨基酸的球形肽,calcin主要对抗轻度的室性早搏(PVCs)或和双向室性心动过速(BVTs),而不是严重持续性的双向室性心动过速(BVTs)或多形性室性心动过速(PVTs)。像大多数肽类药物一样,calcin在体内具有快速的代谢率,其半衰期甚至不到2小时,因此,有必要通过增加心脏局部浓度来提高其药效,并通过长效的药剂学方法延长其作用持续时间。本研究通过将calcin家族中最活跃的成员Opticalcin1(OpiCa1)与最常见的无毒纳米载体PEG-PLGA聚合物连接,首次合成了Opticalcin-PEG-PLGA(OpiCa1-PEG-PLGA)纳米胶束。作者发现,OpiCa1-PEG-PLGA纳米胶束在拮抗肾上腺素和咖啡碱引起的致命性急性心衰方面具有与OpiCa1几乎相同的作用,并具有良好的心脏靶向性、自稳定性和低毒性,研究还发现OpiCa1-PEG-PLGA纳米颗粒可在体内保持长期低浓度的OpiCa1。主要实验方法1.纳米胶束的制备: 使用特定的配方制备了OpiCa1-PEG-PLGA纳米胶束,确保其稳定性和有效性。2.动物模型: 使用相关的动物模型模拟急性心力衰竭,实验对象接受肾上腺素和咖啡因的混合物。3.纳米胶束给药: 给实验组注射OpiCa1-PEG-PLGA纳米胶束,对照组分别接受安慰剂或其他干预措施。4.监测指标:监测各种心脏参数,如心率、血压和生化标志物,以评估纳米胶束对急性心力衰竭的影响。在研究中,作者将5-8周龄的ICR小鼠,分为对照组、PEG-PLGA组、OpiCa1组和OpiCa1-PEG-PLGA组(n = 6)。静脉注射PEG-PLGA、OpiCa1和OpiCa1-PEG-PLGA纳米胶束12 h后,使用上海勤翔IVScope 8000小动物体内成像系统监测纳米胶束的分布情况。结果表明,与FITC标记的PEG-PLGA的分散分布相比,FITC标记的OpiCa1和OpiCa1-PEG-PLGA纳米细胞在12 h内更集中在心脏组织中,在体内表现出良好的心脏靶向性。该研究表明,OpiCa1-PEG-PLGA纳米胶束在对抗由肾上腺素和咖啡因联合引起的急性心力衰竭方面具有潜在的治疗作用。需要进一步的研究和临床试验来验证这些发现,并探索OpiCa1-PEG-PLGA纳米胶束在治疗心脏急症中的转化潜力。
  • 哈希带您云游进博会 直击毒性仪新品亮相
    哈希带您云游进博会 直击毒性仪新品亮相哈希公司2020年11月5日,第三届中国国际进口博览会(The 3rd China International Import Expo)在上海国家会展中心正式举办,丹纳赫集团等多家大型国际企业参会。本次进口博览会囊括食品及农产品、汽车、技术装备、消费品、医疗器械及医疗保健、服务贸易六大展区,并首次设置了包括公共卫生在内的新主题。向右滑动查看更多丹纳赫集团作为连续三年参会的进博伙伴,以“丹心一片,矢志健康”为主题,携哈希等各子公司在疫情展区的最大展台8.1C02-002亮相,为专业观众呈现疫情防控及全方位健康解决方案。哈希在水质分析领域深耕70余年,以担当世界水质守护者为己任,在本次进口博览会上重装亮相。以多样化的水质分析前沿产品和全面化的水质分析解决方案,吸引众多在场客户观展咨询。国家及各地方政府代表团莅临丹纳赫展台,央视财经、东方卫视跟踪报道本次进博会上哈希TX1315便携式生物毒性分析仪新品首次重磅呈现。TX1315可被广泛应用于地表水、饮用水、污水、石油石化、工业用水、食品饮料、环境应急等行业。它不仅可用于发光细菌法生物毒性分析,还可用于化学发光毒性法分析,具有突破性的微生物检测技术,只需几分钟就能获得关键数据。同时,产品还附带应急便携包,提高了其便捷性,能支持户外使用。TX1315便携式生物毒性分析仪是哈希在毒性及微生物检测领域获得革命性突破的重要展现。第三届进博会展期为11月5日至11月10日,在此期间哈希诚挚欢迎专业观众前来丹纳赫展台参观咨询、洽谈签约。点击阅读原文,了解更多展品信息!END
  • 服用者血液具有毒性,灭杀蚊切断疟疾传染
    p   国际知名医学杂志《柳叶刀传染病》近期发表的一项研究显示,一种药丸可以使人的血液对蚊子产生毒性并杀死它们,这将有利于防控蚊子传播疟疾等疾病。 /p p   一组由英国主导的研究团队将139名来自肯尼亚的志愿者分成三组。疟疾患者被随机选择三天服用600mcg/kg或300mcg/kg伊维菌素或服用安慰剂。结果显示,两种剂量伊维菌素对蚊子的毒性可达28天之久。吸食伊维菌素摄入量较高患者的血液两周后,97%的蚊子死亡。 /p p   来自肯尼亚医学研究所和美国疾病控制与预防中心的科学家们将从志愿者身上采集的血液样本喂给实验蚊子进行测试。研究人员希望这种药物可以用于控制疟疾和其它由蚊子传播的疾病。研究人员认为,考虑到高剂量的副作用,300mcg/kg剂量比较理想。研究发现即使受试者服用伊维菌素一个月后,他们的血液仍能杀死蚊子。 /p p   这一发现对非洲十分重要,仅仅在尼日利亚,数百万人死于由雌性蚊子引起的疟疾。尼日利亚连续几届政府都投入巨资抗击疟疾,但收效甚微,许多尼日利亚人仍在继续受到感染。在肯尼亚,每年有600多万人感染疟疾。这种新型药物的发现,将可能有效防控疟疾等蚊子传播的疾病。 /p
  • 研究称“毒奶粉”的毒性与肠道细菌有关
    原标题:“毒奶粉”的毒性与肠道细菌有关   上海交通大学和美国北卡来罗纳大学格林波洛分校的研究人员对近年来毒奶粉事件中的主角——“三聚氰胺”在哺乳动物体内的毒性进行了系统研究,成果近日发表于《科学》杂志的子刊《科学—转化医学》。美国北卡罗来纳大学的贾伟(Wei Jia)教授(贾伟科学网博客)和上海交通大学的赵爱华(Aihua Zhao)副教授为这篇论文的共同通讯作者。   三聚氰胺是一种用于制造塑料、涂料、化肥等化工产品的工业原料。由于其含氮量高达66.6%,近年来该化合物被一些不法厂家添加进牛奶用以增加食品的蛋白质测试含量。2007年美国发生猫、狗等动物中毒死亡的事件,经查这些中毒的动物曾经食用了被添加三聚氰胺的宠物食品。在2008年中国“毒奶粉”事件中,中国多个省份数万名婴儿因食用被添加了三聚氰胺的奶粉后出现肾结石和肾功能衰竭。   由于三聚氰胺被认为在人体中不吸收,难以单独形成结石,迄今其临床毒性机制一直不甚明了。这项研究工作首次发现了2008年中国毒奶粉中的三聚氰胺引发的婴幼儿肾衰竭是和肠道细菌的代谢有着密切关系。一些肠道细菌,尤其是Klebisella属的细菌,具有代谢含氮化合物的活性,能够在肠道中代谢三聚氰胺,转化为三聚氰酸并逐步将其降解。三聚氰胺和三聚氰酸本身毒性极低,但极易互相结合形成晶体,这两类物质进入血液循环后,在肾小管中与尿酸结合形成大分子复合物类的结石,堵塞肾小管,导致肾毒性。   研究人员在前期研究中发现,由三聚氰胺单一化合物导致的肾毒性大鼠模型的肾脏中有结石形成,同时肠道细菌的代谢产物也发生显著的变化。因此,他们提出了三聚氰胺的毒性和肠道细菌代谢存在相关性的假说,并在实验中发现三聚氰胺的肾毒性在大鼠肠道细菌通过广谱抗生素抑制时出现显著的下降。体外实验进一步证实三聚氰胺可以被实验动物的粪便中培养出的肠道细菌所降解,这些肠道菌利用三聚氰胺作为氮源进行生物降解,通过连续脱氨基作用逐步形成三聚氰酸二酰胺、三聚氰酸一酰胺、三聚氰酸。研究者在种类繁多的肠道细菌中发现Klebsiella属的细菌并验证了其对三聚氰胺转化能力,他们将Klebsiella属细菌定植于大鼠的肠道中,发现三聚氰胺的毒性显著增加,肾脏中的结石数目增多。由此明确肠道细菌尤其是Klebsiella属能转化三聚氰胺生成三聚氰酸,进而产生结晶而具有肾毒性。研究者最后通过肾脏中三聚氰胺、三聚氰酸、尿酸的比例,以及体外重结晶实验,推断出三聚氰胺在肾脏中形成结石的动态过程,即三聚氰胺和三聚氰酸首先结合形成晶核,继而形成三聚氰胺-三聚氰酸-尿酸的共结晶,结石堵塞肾小管导致肾脏中毒。   人们在日常生活中对饮食、药物的代谢能力和生物反应存在着显著的个体差异,而这些代谢和毒性反应上的个体差异很大程度上可能来自于肠道微生物的差异。相关研究发现,不到1%的婴幼儿在食用含三聚氰胺奶粉后出现三聚氰胺所致的肾毒性和泌尿系统疾病,这样的结果提示这一部分婴幼儿之所以发生中毒现象,是由于他们的肠道含有较高丰度的能够代谢三聚氰胺的细菌如Klebsiella菌的缘故。
  • 水质综合毒性测定仪-一款便携式发光菌毒性检测仪器2024实时更新
    型号推荐:水质综合毒性测定仪-一款便携式发光菌毒性检测仪器2024实时更新,水质综合毒性测定仪,作为现代水质监测技术的重要组成部分,以其独特的检测方式和广泛的应用领域,为水质分析提供了强有力的支持。本文将从四个方面阐述其对水质分析的帮助。 一、快速准确检测多种污染物 水质综合毒性测定仪能够快速、准确地检测水样中的多种污染物,包括重金属、有机污染物等。通过发光细菌法的应用,该仪器能够实时反映水样中的毒性水平,为水质分析提供及时、可靠的数据支持。 二、评估水质对水生生物的影响 除了检测污染物外,水质综合毒性测定仪还能评估水质对水生生物的影响。通过模拟水生生物在自然环境中的反应,该仪器能够预测水质变化对水生生物种群结构和生态平衡的影响,为水质管理和生态保护提供科学依据。 三、辅助决策与预警 水质综合毒性测定仪的检测结果能够为管理部门提供决策支持。当水质出现异常时,该仪器能够迅速发出预警信号,提醒相关部门及时采取措施,防止水质进一步恶化。同时,通过长期监测和数据分析,该仪器还能为水质改善方案的制定提供重要参考。 四、促进水资源可持续利用 水质综合毒性测定仪的应用有助于实现水资源的可持续利用。通过科学评估水质状况,该仪器能够指导水资源的合理开发和利用,减少污染排放,保护水资源生态环境。同时,它还能为公众提供水质信息,提高公众对水资源保护的意识。 五、仪器特点 1、符合国家标准(GB/T154411995)及国际标准(ISO11348-3); 2、对超过近3000种以上毒性化合物敏感的生物早期预警系统; 3、样品制备后15分钟内得到结果,快速、可靠、可再现; 4、检测结果和其他传统毒性分析方法高度相关,可应用于应急水体污染检测,帮助用户实时监控排水是否符合当地法规和排放标准; 5、Android智能操作系统,更智能,更具人性化; 6、具有自主研发的生物毒性暗室自动升降检测装置,解决行业内开盖测试受强光影响的难题;同样的菌量,用我们仪器可以节省5倍的耗材成本; 7、便携性PVC工程箱设计,可外出携带现场检测; 8、7英寸超大显示触控屏幕,省去按键繁琐操作,更方便; 9、使用硅光电倍增管,大幅提升检测灵敏度; 10、具有RJ45、WIFI、4G和蓝牙连接传输功能,可实现无线传输至相关监控、监管平台,实现数据的实时性,更符合监管部门的场景需求; 11、仪器内置6000mAH锂电池组,在外部断电或无供电情况下,可支撑连续工作8个小时以上; 12、一条曲线可做20个曲线浓度点,可随意选择曲线点是否参与整条曲线计算,无需手动记录,保证曲线值更精准;(曲线浓度点可定制增加) 综上所述,水质综合毒性测定仪在水质分析中发挥着重要作用。它不仅能够快速准确检测多种污染物,评估水质对水生生物的影响,还能为管理部门提供决策支持和预警服务,促进水资源的可持续利用。随着技术的不断进步和应用领域的不断拓展,相信水质综合毒性测定仪将在未来发挥更加重要的作用。
  • 生物3D打印应用 | 构建体外肝毒性模型
    受伦理和费用影响,使用动物来进行毒理实验变得越来越困难。同时,动物所得到的结果很有可能与实际临床试验有差别,因而给临床试验带来了潜在的风险。于是,科研工作者开始尝试在体外构建三维细胞培养物——类器官。类器官通常具有相应器官的关键特征,以此科研工作者就可以使用它们来进行相应器官的药物毒理学试验,常见的如使用肝脏类器官检测药源性肝损伤(Drug Induced Liver Injury,DILI)。一些较为简单的模型构建事实上已经使用了较长时间,但这些模型缺乏长效性(Longevity)和组织复杂度(Tissue-level Complexity),得出的结论往往不具有充分的可靠性。 在此背景下,Deborah G. Nguyen等人使用病人来源的肝脏细胞和非薄壁细胞以3D打印的形式构建了无支架类器官。相较于传统的偏二维模型或简单三维模型,该类器官在4周后仍然能够维持一定程度的ATP、白蛋白甚至是药物介导的活性细胞色素P450s酶。为评估该类器官的功能性,作者选用曲伐沙星——一种因肝毒性较强而无法用标准临床前模型评估肝毒性的药物——与无明显肝毒性药物左氧氟沙星进行对比。发现曲伐沙星在临床浓度下(≤4 μM)的肝脏毒性与浓度呈显著性正比关系。图1 置于24孔板中的肝脏类器官此外,尽管有很多相关的文献,但对于准备进入这一领域的科学工作者而言,面对各种各样的细胞模型、种类繁多的模型构建方法,可能会耗费许多时间理清头绪。面对这种情况,Xihui等人在综述Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation一文中,详细阐述了构建体外三维肝脏模型的相关内容。分为模型建立方法、细胞种类、在药源性肝损伤(DILI)中的重要性及相关商业化情况,主要内容如下: l 模型构建:根据辅助材料的使用与否分为有支架(主要为水凝胶、琼脂糖等遇水形成一定支撑力的材料,其中便提到在regenHU技术和产品的推动下,利用细胞外基质(extracellular matrix,ECM)作为支架材料进行肝脏3D打印成为了非常重要的模型构建方法)和无支架模型两种,分别介绍了建立方法和优缺点。 l 细胞种类:原代人类肝脏细胞(Primary Human hepatocytes)、干细胞分化的类肝脏细胞(stem cell derived hepatocyte like cells)、永生化肝细胞系(immortalized hepatic cell lines)等三种不同类型的肝脏细胞。 l 肝毒性研究应用:肝毒性主要有两个来源——药物本身或经由药物代谢产生的产物。因而在本章节对直接毒性和慢性毒性均进行了介绍。同时,作者也总结了纳米药物的肝脏毒性。 l 商业化情况:因生物3D打印的速率尚不足以满足批量生产,因而作者认为该项应用仍以定制为主。通过使用病人来源的细胞,科研工作者可构建类器官进行个性化药物筛选和个体化药效评价,随着商业医疗的逐步完善,这一市场将极具发展前景。 该综述全面的内容为正要和即将进行类似实验的科研工作者提供了便利。但正如作者所言,类器官仍在多个国家遭受不同程度的文化、法规障碍,在努力争取科研许可的同时,也应牢记科学底线,为社会带来正能量。 参考文献:[1] Zhang X, Jiang T, Chen D, et al. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation[J]. Critical Reviews in Toxicology, 2020(11):1-31.[2] Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro[J]. Plos One, 2016, 11(7):e0158674.目前,regenHU产品可经由我司购买。regenHU生物3D打印机具有高精度、高稳定性、打印方式广泛、应用面广等特点,欢迎大家咨询!联系电话021-37827858 或 13818273779(微信同号)。点击以下链接,查看往期回顾生物3D器官打印——人工角膜生物3D器官打印——肠道体外模型生物3D器官打印——喉部软骨
  • 有害毒性浸出物在环境保护中的重要地位
    转自:密理博中国博客 作者:郭一峰 当含有有害物质的固体废物在堆放或处置过程中,遇水浸沥,其中的有害物质就会迁移转化,污染环境。浸出实验是对这一自然过程的野外或实验室模拟。在实验中,当浸出的有害物质的量值超过相关法规所提出的阈值时,则该废物就被认为具有浸出毒性。固体废物浸出毒性鉴别是危险废物的判定依据,也是固体废物管理、处置技术开发的重要技术环节。 毒性特征沥滤方法(TCLP)(US EPA方法1311)是美国政府为了执行资源保护和再生法(RCRA)对危险废物和固体废物的管理,该方法使用浸提剂调节固相废物的酸碱度进行翻动提取实验。TCLP方法研发的目的是确定液体、固体和城市垃圾中多项毒性指标的迁移性。中国国家环境总局也将此方法纳入国家标准。(中华人民共和国环境保护行业标准译为浸出毒性浸出方法) TCLP包括对重金属成分和挥发性有害成分的检测。 根据USEPA所规定的1311方法所设计,测定重金属成分时,可以使用Millipore提供的有害废物压力过滤装置。所有与样品有接触的装置表面均采用独特的特氟龙(Teflon)涂层,可以降低样品被污染的风险。在设备的出入口处,都使用卫生的TC接口,以便移动,清洗或者维修。 对于挥发性有害成分,Millipore提供ZHE(零顶空萃取器),活塞是可移动设计,加压时不会引入外界空气,也可避免因挥发性样品损失而导致的实验结果的不准确。在萃取液的输送过程中,为了使用的安全和方便,Millipore提供压力容器输送装置。同时,Millipore提供便于直观观察的透明气密注射器。 作为TCLP的重要设备之一,密理博提供的旋转搅拌器可以按照国家标准做长时间运作,混合均匀,充分萃取,并标配有保护盖,提供最大程度的安全性,并可以同时装入4只ZHE。 固体废弃物经TCLP程序萃取后,萃取液体再使用原子吸收光谱仪(AA)或者ICP,气相色谱仪(GC),液相色谱仪(HPLC)等分析进行检测。 目前TCLP产品被广泛应用在环境监测 (如环监站)、出入境产品预期无风险评估 (出入境检验检疫)、高校科研等领域。 作为一家具有50多年历史的过滤纯化产品的专业供应商,Millipore除了实验室纯水,还提供各种环境分析及监测用的专业产品,包括气溶胶分析监测过滤器,空气放射性颗粒监测,流体污染物分析监测用过滤器,流体污染物分析套件,斑贴测试套件,地下水取样皿等。 联系技术支持:400-889-1988
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制