当前位置: 仪器信息网 > 行业主题 > >

激光技术

仪器信息网激光技术专题为您整合激光技术相关的最新文章,在激光技术专题,您不仅可以免费浏览激光技术的资讯, 同时您还可以浏览激光技术的相关资料、解决方案,参与社区激光技术话题讨论。

激光技术相关的资讯

  • 863计划“先进激光材料及全固态激光技术”项目申请指南公布
    国家高技术研究发展计划(863计划)新材料技术领域“先进激光材料及全固态激光技术”主题项目申请指南  在阅读本申请指南之前,请先认真阅读《国家高技术研究发展计划(863计划)申请须知》(详见科学技术部网站国家科技计划项目申报中心的863计划栏目),了解申请程序、申请资格条件等共性要求。  一、指南说明  依据《国家中长期科学和技术发展规划纲要(2006-2020年)》,为满足先进制造、精密测量和国家重大科学工程等对全固态激光器的迫切需求,设立“先进激光材料及全固态激光技术”主题项目。  本项目通过突破人工晶体材料及全固态激光器研制和产业化关键技术,开发出具有自主知识产权的系列化高功率、皮秒和紫外全固态激光器产品,促进我国人工晶体材料和全固态激光器产业的发展。  本主题项目的任务落实只针对项目整体进行,项目申请者应针对指南内容,围绕项目总体目标和任务进行申请,而不要只针对项目部分目标和任务进行申请。  项目可以由一家申请,也可以由多家共同申请。对于多家共同申请的主题项目,由研究单位自行组合形成项目申请团队(一个单位只能参加一个申请团队),并提出项目牵头申请单位和申请负责人,由项目牵头申请单位具体负责项目申请。  项目申请要提出项目分解(包括任务分解及经费分解)方案,提出项目课题安排及承担单位建议,并填写课题申请书(项目拟分解的课题数最多不超过10个)。  二、指南内容  1、项目名称  先进激光材料及全固态激光技术  2、项目总体目标  突破人工晶体、全固态激光器及其核心器件的研发和产业化关键技术,开发出系列化高功率、皮秒和紫外全固态激光器产品并实现工业示范应用,促进我国人工晶体和全固态激光器产业的发展。  3、项目主要研究内容  (1)深紫外激光器及人工晶体关键技术  KBBF/RBBF晶体生长、KBBF-PCT器件制备、激光高次谐波和激光线宽控制等技术研究。  (2)新型晶体材料及器件技术  超晶格晶体制备、超晶格可调谐锁模、Nd:YAG激光陶瓷材料制备等技术研究。  (3)千瓦级光纤材料及全光纤激光器  低光子暗化光纤制备、全光纤种子源研制、全光纤激光器整机设计和装配等技术研究。  (4)单频激光器关键技术  纵模控制、增益光纤与标准光纤熔接、倍频晶体抗光损伤工艺等技术研究。  (5)紫外激光器产业化关键技术及应用  光学晶体长寿命使用、激光器单元模块化、系统集成等产业化关键技术开发 紫外激光微加工应用技术开发。  (6)高功率激光器产业化关键技术及应用示范  大批量Nd:YAG单晶高质量低成本生长及加工、激光振荡放大、系统集成等产业化关键技术研发 高功率激光在焊接、表面处理等方面的应用技术开发。  (7)皮秒激光器产业化关键技术及应用示范  皮秒激光振荡、再生与行波放大、系统集成等产业化关键技术研发 皮秒激光微加工应用技术开发。  4、项目主要考核指标  (1)深紫外人工晶体及激光器  KBBF晶体尺寸15×10×4mm3,RBBF晶体尺寸12×6×1.5mm3,KBBF-PCT器件透过率95%@193nm 177.3nm激光器功率100mW。  (2)光学超晶格锁模器件  线性损耗0.5%/cm、尺寸≥20×3×1mm3 锁模激光器:1.0μm/0.5μm双波长和1.3μm 激光陶瓷尺寸≥100×100×20mm3、透光率≥80%@1064nm。  (3)千瓦级光纤材料及激光器  双包层光纤材料光子暗化12dB/m@633nm 全光纤激光器功率1.5kW、光束质量M21.5。  (4)单频激光器  倍频晶体KTP抗光损伤阈值2GW/cm2@1064nm/10ns/10Hz 单频绿光激光器功率10W、线宽2MHz、噪声0.03%RMS 单频光纤激光器功率5W、线宽10kHz、边模抑制比60dB。  (5)紫外激光器  功率10W/20W/30W系列,重复频率50~150kHz,光束质量M2≤1.3,8小时内功率起伏3%,无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  (6)高功率激光器  Nd:YAG晶坯直径≥100mm、单程损耗≤2×10-3/cm@1064nm,键合晶体的键合面损耗≤0.1% 3kW和5kW激光器产品:光纤芯径为400μm,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产 激光器功率≥6kW,8小时内功率起伏±2%。  (7)皮秒激光器产品  千赫兹10~20mJ@1064nm、5~10mJ@532nm、1~2mJ@355nm,脉冲宽度≤20ps,光束质量M2≤2,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  5、项目支持年限为2年。  6、项目国拨经费控制额为9000万元,自筹经费不低于国拨经费控制额。  三、注意事项  1、鼓励“产学研用”联合申报,项目下设每个课题的协作单位原则上不超过5家。  2、受理时间:项目申请受理截止日期为2010年12月8日17时。  3、申报要求:项目申请采取网上申报方式,申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。请按要求编写《国家高技术研究发展计划(863计划)主题项目申请书》,具体申请程序、要求及其他注意事项详见《国家高技术发展计划(863计划)申请须知》。  4、咨询联系人及联系电话、电子邮件  咨询联系人:史冬梅  联系电话:010-88372105/68338919  电子邮件:shidm@htrdc.com  863计划新材料技术领域办公室  2010年10月20日
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laserinterferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 新技术实现激光“逆转” 或可增强激光能量
    7月10日消息,据媒体报道,激光是通过放大光的特定波长,利用镭射触发装置对光子进行作用而形成的科技发明,激光在科技的各个领域都做出了重大的贡献。近期,耶鲁大学科学家发现一种特殊方式可以让激光实现&ldquo 逆转&rdquo ,将其他光束吸收,增强激光的能量。   据报道,科学家找到了一种能够完美吸收部分特定波长光子的物质。这种物质能够分离光束,使各光束分别被反射或继续传输,进而进行两部分间完美地的互相干涉,从而能够很好地抵消特定波长的光束,余下的能量则可通过加热或用电子配对的方式来消耗掉。   在实验的过程中,科学家证明了可以通过逆转过程来吸收激光的部分光束,甚至能成功地将光束整体的吸收。在吸收过程中,光线吸收造成了时空的扭曲,可发生时间的部分扭转。但当众多不同波长的光同时照射,逆转效果可能会不明显,只有照在该特定物质上时,激光才会被吸收。
  • 中科院长春光机所:激光技术的“前世今生”
    p   自1960年美国研制成功世界上第一台红宝石激光器,我国也于1961年研制成功国产首台红宝石激光器(诞生于中国科学院长春光学精密机械研究所)以来,激光技术被认为是20世纪继量子物理学、无线电技术、原子能技术、半导体技术、电子计算机技术之后的又一重大科学技术新成就。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/fa6ca572-ac36-49a3-8c53-3b3f8b976589.jpg" title=" 1.jpg" / /p p   如今,我们家中用的CD和DVD播放器,办公室的激光打印机和商场的条码扫描器都有激光。人们用激光治疗近视视力,通过光纤网络发送邮件浏览视频。无论我们是否意识到,我们每个人每天都使用激光,但是有多少人真正了解激光是什么,如何工作? /p p   激光,是一种自然界原本不存在的,因受激而发出的,具有方向性好、亮度高、单色性好和相干性好等特性的光。 /p p   激光的产生机理可以溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程。众所周知,任何一种光源的发光都与其物质内部粒子的运动状态有关。当处于低能级上的粒子(原子、分子或离子)吸收了适当频率外来能量(光)被激发而跃迁到相应的高能级上(受激吸收)后,总是力图跃迁到较低的能级去,同时将多余的能量以光子形式释放出来。 /p p   如果光是在没有外来光子作用下自发地释放出来的(自发辐射),此时被释放的光即为普通的光(如电灯、霓虹灯等),其特点是光的频率大小、方向和步调都很不一致。 /p p   但如果是在外来光子直接作用下由高能级向低能级跃迁时将多余的能量以光子形式释放出来(受激辐射),被释放的光子则与外来的入射光子在频率、位相、传播方向等方面完全一致,这就意味着外来光得到了加强,我们称之为光放大。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/ab5eeaa4-0704-4844-ae33-97c5ada732a7.jpg" title=" 2.jpg" / /p p br/ /p p style=" text-align: center " strong 图:激光产生机理:(左)受激吸收,(中)自发辐射,(右)受激发射 /strong /p p br/ /p p   而激光的产生需要满足三个条件:粒子数反转、谐振腔反馈和满足阈值条件。通过受激吸收,使处于高能级的粒子数比处于低能级的越多(粒子数反转),还需要在有源区两端制作出能够反射光子的平行反射面,形成谐振腔,并使增益大于损耗,即相同时间新产生的光子数大于散射吸收掉的光子数。只有满足了这三个条件,才有可能产生激光。 /p p br/ /p p strong 激光的特性 /strong /p p br/ /p p 激光之所以被誉为神奇的光,是因为它有普通光完全不具备的四大特性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/cf4f1592-b99a-4837-8b8b-afb9947bff5f.jpg" title=" 3.jpg" / /p p 1.方向性好& nbsp ——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内,这就使得在照射方向上的照度提高千万倍。激光每200千米扩散直径小于1米,若射到距地球3.8× 105km的月球,光束扩散不到2千米,而普通探照灯几千米外就扩散到几十米。 /p p   激光准直、导向和测距就是利用方向性好这一特性。 /p p 2.亮度高& nbsp ——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。太阳光亮度大约是1.865× 109cd/m2,而一台大功率激光器的输出光亮度可以高出太阳光的亮度7~14个数量级。 /p p   尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度的高温。激光打孔、切割、焊接和激光外科手术等实际应用就是利用了这一特性。 /p p 3.单色性好& nbsp ——光是一种电磁波。光的颜色取决于它的波长。普通光源发出的光通常包含着各种波长,是各种颜色光的混合。太阳光包含红、登、黄、绿、青、蓝、紫七种颜色的可见光以及红外光、紫外光等不可见光。 /p p   而某种激光的波长只集中在十分窄的光谱波段或频率范围内。如氦氖激光的波长为632.8纳米,其波长变化范围不到万分之一纳米。激光良好的单色性为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。 /p p 4.相干性好& nbsp ——干涉是波动现象的一种属性。基于激光具有高方向性和高单色性的特性,它必然会是相干性极好的光。激光的这一特性使全息照相成为现实。 br/ /p p strong 激光器的类型 /strong /p p   在光源中,实现能级粒子数反转是实现光放大的前提,也就是产生激光的先决条件。要实现粒子数反转,需借助外来光的力量,使大量原来处于低能级的粒子跃迁到高能级上去,这个过程我们称之为“激励”。 /p p   我们通常所说的激光器,就是使光源中的粒子受到激励而产生受激辐射跃迁,实现粒子数反转,然后通过受激辐射而产生光的放大的装置。激光器虽然多种多样,但使命都是通过激励和受激辐射而获得激光。因此激光器通常均由激活介质(即被激励后能产生粒子数反转的工作物质)、激励装置(即能使激活介质发生粒子数反转的能源,泵浦源)和光谐振腔(即能使光束在其中反复振荡和被多次放大的两块平面反射镜)三个部分组成。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/34e5f14c-4b66-43c1-8be3-c64c88a23970.jpg" title=" 4.jpg" style=" width: 590px height: 320px " width=" 590" vspace=" 0" hspace=" 0" height=" 320" border=" 0" / /p p br/ /p p style=" text-align: center " strong 图:激光器的工作原理 /strong /p p   由于我们可以以许多不同的方式激发许多不同种类的原子,我们可以(理论上)制造许多不同种类的激光。 /p p   激光器有多种分类方式,其中最著名的是固体,气体,液体染料,半导体和光纤激光器。固态激光器介质是类似红宝石棒或其他固体结晶材料,并且缠绕在其上的闪光管泵送其充满能量的原子。为了有效地工作,固体必须掺杂,这是一种用杂质离子代替一些原子的过程,使其具有恰当的能级以产生一定精确频率的激光。固态激光器产生高功率光束,通常是非常短的脉冲。相比之下,气体激光器使用惰性气体(即所谓的准分子激光器)或二氧化碳(CO2)作为介质的化合物产生连续的亮光。 CO2激光器功能强大,效率高,常用于工业切割和焊接。液体染料激光器使用有机染料分子的溶液作为介质,主要优点是可用于产生比固态和气体激光器更宽的光频带,甚至可“调谐”以产生不同的频率。 /p p   按波长来分,覆盖的波长范围包括远红外、红外、可见光、紫外直到远紫外,最近还研制出X射线激光器和正在开发的γ射线光器; /p p   按激励方式不同,有光激励(光源或紫外光激励)、气体放电激励、化学反应激励、核反应激励等; /p p   按输出方式不同,有连续的、单脉冲的、连续脉冲的和超短脉冲等; /p p   从功率输出的大小来看,其中连续的输出功率小至微瓦级,最大可达兆瓦级。脉冲输出的能量可从微焦耳至10万以上焦耳,脉冲宽度由毫秒级到皮秒级乃至飞秒级(1000万亿分之一)。 /p p   各式各样激光器满足不同的应用要求。如激光加工和某些军用激光都要求高功率激光或高能量激光(即所谓强激光)。有的希望脉冲时间尽量缩短,以从事某些特快过程的研究。有的还对提高光的单色性、改善输出光的模式、改善光斑的光强分布以及要求波长可调等提出了很高的要求。这些要求促使着激光器的研究者不断探索,从而使激光器的探索深度和应用广度得到前所未有的发展。 /p p strong 蓬勃发展的激光应用 br/ /strong /p p   所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。 /p p   50多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 /p p 1、激光在信息领域的应用 /p p   半导体激光器和光纤放大器是光纤通信的两项关键技术。 /p p   半导体激光器发出的激光不仅单色性和相干性好,而且光波频率比微波频率又高万倍,故以激光为传递信息的载体,用光纤做信息传递线路的光纤通信,不仅通信质量好、抗干扰能力强、保密性好,而且通信容量比微波通信要提高上万倍。 /p p   利用激光技术进行光存储,使信息的存储发生了革命性的飞跃。一张CD声频光盘的记录密度相当于1000万bit/cm2,可记录78分钟的音乐节目,比密纹唱片要大好几个数量级。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/dedc2b11-657b-46c7-b7c6-323f02c9b1b4.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 图: CD或DVD播放机中的光盘的激光和镜头。右下方的小圆是半导体激光二极管,而较大的蓝色圆圈是从激光器从光盘的光滑表面反射后读取光的透镜。 /strong /p p   此外,激光打印机、激光传真机、激光照排、激光大屏幕彩色电视、光纤有线电视以及大气激光通讯等均已得到广泛应用。 /p p 2、激光在全息术领域的应用 /p p   光作为一种波动现象,表征它的物理量有波长(同颜色有关)、振幅(同光的强弱有关)和位相(表示波动起点同基准时间的关系)。 /p p   人们利用感光的照相方法,只能记录下波长和振幅,所以无论照得多么逼真,看照片和看真的景物总是不一样。 /p p   而激光具有高相干性,能获取干涉波空间包括相位在内的全部信息。因此,采用激光进行全息摄影,被拍物体的全部信息都被记录在底片上,通过光的衍射,就能复现被摄取物体栩栩如生的立体形象。 /p p   全息照相具有三维成像的特点,可重复记录,而且每一小块全息底片都能再现物体的完整立体形象,可广泛用于精密干涉计量、无损探伤、全息光弹性、微应变分析和振动分析等科学研究。 /p p   其中,利用全息干涉术研究燃气燃烧过程、机械件的振动模式、蜂窝板结构的粘结质量和汽车轮胎皮下缺陷检查等已得到广泛应用。并且,全息照相用作商品和信用卡的防伪标记已形成产业,用全息照相拍摄珍贵艺术品,不仅欣赏起来令人如临其境,而且为艺术品的修复提供了可靠而逼真的依据。正在发展的全息电视还将为人们增添一种新的生活享受。 /p p 3、激光在医疗领域的应用 /p p   激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。 /p p   在激光诊断方面,激光可穿透到组织较深的地方进行诊断,直接反映组织病况,给医生诊断提供了充分依据。 /p p   在激光治疗方面,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,例如激光手术治疗切口小,对组织基本没有损害或损害极小,毒副作用反应少。目前,激光临床应用领域包括近视矫正、视网膜修补、蛀牙修复、分子级微创手术等,当前激光医学的出色应用研究主要表现在以下方面:光动力疗法治癌;激光治疗心血管疾病;准分子激光角膜成形术;激光美容术;激光纤维内窥镜手术;激光腹腔镜手术;激光胸腔镜手术;激光关节镜手术;激光碎石术;激光外科手术;激光在吻合术上的应用;激光在口腔、颌面外科及牙科方面的应用;弱激光疗法等。目前,激光治疗在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/c865b4af-a3a7-46dd-8f4d-a512edd3bcc7.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 图:激光在口腔医学领域的应用 /strong /p p 4.激光加工 /p p   利用激光的高强度(亮度)聚焦激光束在1 ms内能发射100J的光能量,聚焦起来足以使材料在短时间内融化或汽化,从而对不同特性难以加工的材料进行加工处理,如:焊接、打孔、切割、热处理、光刻等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/9c933388-bd17-4722-8ba2-990a5003e9de.jpg" title=" 7.jpg" style=" width: 600px height: 188px " width=" 600" vspace=" 0" hspace=" 0" height=" 188" border=" 0" / /p p   激光加工具有精度高、畸变小、无接触、能量省等优点,其应用领域几乎可以覆盖整个机械制造业,包括矿山机械、石油化工、电力、铁路、汽车、船舶、冶金、医疗器械、航空、机床、发电、印刷、包装、模具、制药等行业。其中关键零部件和精密设备的磨损和腐蚀都能很好地利用激光熔覆技术进行修复和优化,成为化腐朽为神奇的利器。 /p p 5.精密测量 /p p   精密测量是利用了激光单色性好、相干性强、方向性好的特点。相比于其他测距仪,激光测距具有探测距离远,精度高,抗干扰,保密性好,体积小重量轻的优点。测距仪发出光脉冲,经被测目标反射后,光脉冲回到接收系统,测量发射与接收时间间隔。 /p p   激光同时具有高亮度和高相干性,这使得光的多普勒效应能够在测速方面得到应用。激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,激光雷达与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别,它在军事领域发挥着重要的作用,也成为环境监测的有力武器。 /p p   此外,引力波的探测也是利用激光干涉测量方法,进行中低频波段引力波的直接探测,观测双黑洞并合和极大质量比天体并合时产生的引力波辐射,以及其他的宇宙引力波辐射过程。 /p p   激光是20世纪人类最重大的发明之一,激光技术的应用已广泛深入到工业、农业、军事、医学乃至社会的各个方面,对人类社会的进步正在起着越来越重要的作用,正奇迹般地改变着我们的世界。 /p
  • 浅谈激光干涉技术及应用现状
    激光干涉技术主要应用光波的空间相干特性。具体而言,对于两束光波或电磁波等横波,当波长相等、且相位差为2π整数倍时,合成波的振幅叠加增强至最大;当相位差为π奇数倍时,合成波的振幅抵消减小至最小。早在十九世纪下半叶,科学家们就已发明了多种原理干涉结构装置用于科学研究,其中最著名的是迈克尔逊-莫雷干涉试验,该实验采用钠光源平均谱线近似单色光进行干涉测量,从而否定了“以太”的假说。图1 迈克尔逊-莫雷干涉试验激光干涉仪的构成真正促进干涉技术巨大进步的契机是1960年激光器的发明。激光由于具有极窄的谱线,因而具有非常优秀的空间相干性。目前激光干涉仪主要的用途包括精准的尺寸和移动距离测量,测量准确度最高可以达到纳米甚至亚纳米量级。在构成上激光干涉仪最常使用的波长为632.8 nm,对于经典的迈克尔逊干涉测量原理,由激光器中出射的单色激光经过50:50半透半反的分束镜后分为2束光束,其中一束经过固定的光程后被反射镜反射,称为参考光束;另外一束光束由于存在被测对象,被反射镜反射后光程发生改变(距离或折射率变化引起),称为测量光束。当两束光被反射后在分束镜第二次合成并随后照射探测器上被接收后,将产生干涉条纹的移动。由之前的光波的叠加性可知,假设测量光路距离变化为316.4 nm,当只存在一去程一回程的情况下,此时干涉条纹相位变化2π。目前商用激光干涉仪普遍采用两去程两回程,同时采用1024倍电子细分卡,因此分辨率可达0.16 nm。图2 激光干涉仪原理构造激光干涉仪的应用现状1. 在工业领域应用随着理论研究的深入和技术的不断进步,激光干涉测量技术目前精彩纷呈,在多个领域中都得到了非常广泛的应用。 包括单频激光干涉仪、双频激光干涉仪、激光平面干涉仪、法布里-珀罗干涉仪、皮米激光干涉仪、多波长干涉测距等。 单频和双频激光干涉仪。测量具有非接触和无损检测的特点,能够在线测量长度、角度和转速等参数,因此已成为各国精密数控机床在线定位精度测量的最主要标准之一。在精密加工过程中,位置精度是机床的重要指标,激光干涉仪通过在线位置测量、实时数据处理实现机床误差修正。另外在集成电路制造中,激光干涉仪也是光刻机在线位移测量的核心部件。图3 激光干涉仪在精密机床中的应用激光平面干涉仪。激光干涉仪不仅可以用于测量长度、角度以及位移,也可以测量物体的表面形貌。测量基本原理为激光菲索(Fizeau)干涉,激光经过扩束后先后经过参考平面和待测平面,两个平面的反射光发生干涉后产生干涉条纹,通过成像系统接收。分析条纹形状即可判断是否存在缺陷。图4 激光平面干涉仪皮米激光干涉仪。现在随着微纳测量分辨率要求的进一步提高,出现了商品化的皮米激光干涉仪。皮米激光干涉仪采用包覆光纤作为激光传输介质,有效减小了空气折射率扰动对测量的影响;同时在干涉方式上干涉仪采用法布里-珀罗(F-P)干涉仪原理,是一种多倍程干涉,进一步提高了分辨率。 图5 皮米激光干涉仪多波长干涉绝对测距。采用单波长干涉测距虽然分辨率可达到纳米级,但是单波长干涉测距是相对测量,且测量时光路不能中断,而多波长干涉能很好解决这个问题。因为在干涉测距中波长就像一把量尺,但如果测量距离大于这把量尺,则需要多次拼接测量。多波长干涉能形成很长的等效波长,使量尺范围大于被测距离,实现绝对距离测量。图6 多波长干涉绝对测距光相控阵雷达。随着自动驾驶技术的高速发展,现在激光干涉技术也应用在光相控阵(OPA)激光雷达(LiDAR)中。激光雷达会产生一系列密集超短激光脉冲扫描周围物体,通过脉冲返回时长差判断距离和轮廓。光相控阵雷达利用光栅干涉原理,可以通过改变不同狭缝中入射光线的相位差来改变光栅后中央条纹(主瓣)位置,从而控制激光雷达光束的指向和转向。 图7 激光干涉技术在光相控阵雷达中的应用2. 在科学研究方面应用激光干涉引力波天文台(LIGO)。LIGO用于验证广义相对论预言的引力场扰动产生的时空扭曲。它本质上是一个超大型迈克尔逊干涉仪,由2条4千米长的互相垂直的臂构成,同时光线还会在臂内折返300次。当引力波会产生空间弯曲,干涉结果也会轻微变化。2017年美国科学家借助LIGO观测到双中子星合并引力波事件并获得了诺贝尔物理学奖。图8 激光干涉引力波天文台(LIGO)激光全息干涉测量技术。利用非共面多光束干涉可以在空间形成二维或三维周期性强度分布,从而被用来制作二维或三维光子晶体;利用全息干涉技术可用于位移及形变测量、应变与应力分析、缺陷或损伤探测、振动模式可视化及测量、晶体和蛋白质生长过程监测、流体中密度场和热对流场的观察与测量。图9 激光全息干涉测量技术作者:中国计量科学研究院副研究员 李琪
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 2014年度方法:激光层照荧光显微技术
    我们在进行荧光显微成像的时候,总要在信号强度和光漂白之间做出艰难的取舍,而高强度光照对活细胞和组织的影响也不容忽视。   激光层照荧光显微技术(Light-sheet fluorescence microscopy)能以很高的3D分辨率,长时间对生物学样本进行温和成像。这一技术结合高速相机,足以捕捉细胞或亚细胞水平发生的动态。日前,《Nature Methods》杂志将这个低光毒性的快速三维成像技术评为了2014年的年度技术。   激光层照荧光显微技术的基本原理很简单,它不像宽场或共聚焦显微镜那样照射或扫描整个样本,而是用薄层光从侧边照射样本,然后从样本的上部或下部检测荧光,激发光路与检测光路垂直。激光层照荧光显微镜激发一个层面上的荧光基团,一次成像一个面,这种技术不仅大大降低了光毒性,还提高了长时间成像活样本的能力。   Light-sheet技术始于一百年前,原本是用来成像胶体的。后来,Ernst Stelzer等人用这一技术成像了荧光标记的活斑马鱼胚胎,Light-sheet技术由此重新焕发了活力。Stelzer在本期Nature Methods杂志上撰文,介绍了这一技术的起源、原理和应用潜力。   激光层照荧光显微技术的崛起,离不开荧光蛋白和转基因标记的发展。实际上,只有物理学、生物学等多个领域进行跨学科合作,人们才能充分挖掘出这一技术的潜力。随着商业化仪器的不断推出和升级,相信激光层照技术将为我们揭示以往难以想象的生物学细节。   目前的激光层照荧光显微镜可以实现多角度成像(multiview),并与超高分辨率成像、双光子激发和结构照明结合起来。这一技术能够快速对活细胞进行3D成像,在透明的固定样本中获得惊人的静态图像。举例来说,人们已经用激光层照荧光显微镜成像了活体心脏和运作中的大脑,跟踪了胚胎发育时的细胞迁移。   激光层照荧光显微技术在神经生物学中的应用特别令人期待。因为这一技术能够同时成像大脑中的大量细胞,有望为我们揭示这一神秘器官的整体属性。Misha Ahrens等人在本期的Nature Methods杂志上发表文章探讨了这个问题。   激光层照成像是一项充满挑战性的工作,激光层照实验会生成海量的数据,我们需要找到更好的方法处理和分析这些数据。此外,激光层照成像的样本制备也和成熟的样本制备方案完全不同。   值得注意的是,最佳效果的激光层照成像仍然需要较小的透明样本。对于不那么透明的大样本而言,我们还需要想办法解决散射和相差问题。另外,我们在进行激光层照成像时,依然需要监控潜在的光毒性,虽然激光层照技术的光毒性比较小,但并不等于完全没有光毒性。   原文检索:   Method of the Year 2014
  • 美国海军实验室测试激光水下声源技术
    据中船综研院2011年1月24日综合报道,美国海军实验室的一个研究团队最近对一种水下声源激光技术进行了能力测试,这项技术或将可以使飞行器在不拖曳水下设备的情况下,与潜艇进行声音或数据通信 为潜艇或水下机器人提供导航数据 在浅水域定位水雷或其它水下物体。   进入21世纪,与潜入水下的潜艇进行通信仍是一项具有挑战性的任务,现实中为了实现通信经常要求潜艇浮出水面从而使艇组人员暴露在潜在风险之下。使用拖曳天线或浮标进行通信也会降低潜艇的机动性和匿踪能力。水下无人设备目前也还依赖于容易出错的惯性导航技术。此外,搜索水雷在任何任何情况下都仍是困难、危险和费时巨大的任务。海军实验室等离子物理组负责领导水下激光声源技术团队的特德?琼斯解释称,激光水下声源技术具备在这些领域提供帮助的潜力。   琼斯表示,目前水下发源首先需要有一个声源,这样就要求装备必须处于指定位置并且有可能受到威胁。研究团队开发了一种激光声学源,从而无须在水下放置任何物体。之前也有研究人员曾使用激光在水下产生声音,但该研究团队进行了大量创新性的工作,进一步完善了激光声源技术,使其在海军和其它商用领域的实用性方面前进了一大步。   这些创新性的工作包括使用窄脉冲高强度激光使水电离,通过小体积过度加热产生微小往复运动,从而产生强烈的声学脉冲。研究团队使用水下传播性能最好的波长,从而使其能够控制往复运动的形态和声学脉冲的强度。此外,他们还使用非线性光学聚焦技术,以提高激光源可以距离水面的高度 使用被称为群速度色散的技术来精确地控制声学脉冲。群速度色散技术利用不同颜色激光不同的传播速度,让速度低的激光作用在脉冲的开始,速度高的激光作用在结尾,以此拉伸脉冲,并精确控制纵向压缩的量。   该实验在印第安纳州克兰市格兰度拉湖水声实验场进行,标志着该技术第一次走出实验室。封装在漂浮装置内的毫微米波长激光制造了水下声学脉冲,并被远处一艘装备了水听器的船只捕捉到。转向镜引导激光通过聚焦镜片射入水面。每个激光脉冲产生一个大约190分贝声压级的声学脉冲,传播了190米,而之前实验室测试只传播了3米。   研究团队计划在春夏进行更多致力于提高水下传输距离的测试。初步实验的成果表明,有可能使用不超过1焦耳能量的激光脉冲脉冲产生230分贝的声压。   美国国内其它的研究人员在此领域的研究集中在通信和信号处理技术,海军实验室所做的研究工作将在这些领域也提供参考。琼斯表示,海军实验室希望能利用最紧凑的激光发生器产生尽可能强的声源。
  • 亚赫兹激光器与超窄线宽测量技术
    成果名称 亚赫兹激光器与超窄线宽测量技术 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 超窄线宽激光是光通信、光传感、高精度光谱学等应用中的一个关键技术,也是一些基本物理参数测量的重要工具,而超窄激光线宽测量是实现超窄线宽激光器所必需的辅助技术。 在&ldquo 仪器创制与关键技术研发&rdquo 基金第三期项目中,北京大学信息学院李正斌教授申请的&ldquo 亚赫兹激光器与超窄线宽测量技术研制&rdquo 项目提出并研究了一种获得窄线宽激光器的新机制,即光路分形结构机制。课题组前期的实验发现,在单环有源光纤谐振腔中引入光路分形结构能够获得类似多谐振环耦合的特性,与相同长度的光纤谐振腔相比,其输出激光线宽明显变窄。基于这一发现,课题组在第三期基金的经费资助下,开展了深入的研制工作。其工作主要包括:(1)以理论与实验相结合为手段,以光纤结构为对象,探索利用光路分形结构设计和实现单纵模输出、高频率稳定、线宽赫兹(Hz)以下量级的超窄线宽激光器的原理和方法,并获得原理样机;(2)利用互拍以及光域鉴频的技术设计并搭建超窄线宽激光器的测试平台,实现赫兹(Hz)以下量级超激光线宽的测量。 应用前景: 目前,该项目主要工作已经顺利完成,项目成功通过验收。其研究成果为获得超窄线宽激光器提供新途径,也为光通信、光传感等研究和应用提供了新的手段,相关技术处于成果转化阶段。
  • 浅谈在线激光氧分析技术在石化行业的应用
    浅谈在线激光氧分析技术在石化行业的应用 —— 杜伯会 陈永华 张永茂 2023.6.4(杜伯会,山东省产品质量检验研究院 正高级工程师)摘要:本文主要阐述目前石化行业在线氧分析技术方案状况,分析比较各方案的特点,以及常规应用场景等。重点阐述在线激光氧分析仪的一些特点特性,随着其技术应用方案方法日趋成熟,应用场景将更加丰富。从经济性角度和使用易维护角度看,在线激光氧分析仪的技术方案将会越来越被更多的选择。最后,对在线激光氧分析技术做了市场展望,并提出相关问题和思考。关键词: 在线激光氧分析仪;石化行业;应用;标准一、在线氧分析仪介绍在线氧分析仪是一种工业过程分析仪表,主要用于各种工业过程混合气体中氧含量检测,多应用于石油、空分、化工流程、磁性材料、高温烧结炉保护气体、电子行业保护性气体以及玻璃、建材行业等行业。根据不同的工况工艺,有不同原理的氧分析仪,具体可分为:电化学式氧分析仪(又名燃料电池法氧分析仪)、氧化锆氧分析仪、磁氧分析仪(又名顺磁氧分析仪。顺磁氧的,又分机械顺磁氧和热顺磁氧)、激光式氧分析仪。测量形式有便携式的和在线式的,测量范围有常量的和微量的,不同的气体介质,不同的应用工况条件,不同的技术要求,不同的应用环境下,选用不同原理的氧分析仪方案,各自有着不同的优缺点。1.1 电化学氧分析仪电化学氧气分析仪的核心元件是一个电化学氧气传感器。常见的电化学氧气传感器由一个传感电极(或工作电极)和一个对电极组成,两个电极间有一层薄薄的电解液。要检测的气体先通过一个小的毛细口传感器,然后通过一个疏水膜扩散进入,最终到达电极表面。传感器的结构设计保证会有适量的气体进入与感应电极反应产生足够的电信号,并同时防止电解液泄漏出传感器。通过疏水膜扩散进入传感器里的气体在感应电极发生氧化/还原反应,电极间连接一个电阻,这样,阴极和阳极间会产生一个与氧浓度成正比的电流。通过检测这个电流,就反应出气体中的氧浓度。电化学氧分析仪优点:相对来说通用性好;价格适中;测量精度、准确度较好。电化学氧分析仪缺点:传感器温度范围小,压力不能高,传感器寿命短(化学原理有消耗性),电解液一直在消耗,随着电解液的消耗,仪表会有漂移,稳定性变差;传感器容易受其它气体影响(如腐蚀性气体)。 1.2 氧化锆氧分析仪氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。在常温下为单斜晶体,当温度升高到一定温度时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。若反复加热与冷却,氧化锆就会破裂。因此,纯净的氧化锆不能用作测量元件。如果在氧化锆中加入一定量的氧化钙(CaO)或氧化钇(Y2O)作稳定剂,再经过高温焙烧,则变为稳定的氧化锆材料,这时,四价的锆被二价的钙或三价的钇置换,同时产生氧离子空穴,所以氧化锆属于阴离子固体电解质。氧化锆主要通过空穴的运动而导电,当温度达到600℃以上时,氧化锆就变为良好的氧离子导体。在氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。因为氧化锆的耐高温特性,其多应用于温度条件相对较高的工况(窑炉、锅炉)。氧化锆氧分析仪优点:不受检测气体温度高的影响(氧化锆氧量分析仪耐高温);通过不同导流管可检测各种温度气体中的氧含量;适用于温度较高的工况。氧化锆氧分析仪缺点:采样气体杂质较多时,有可能堵塞采样管;多孔铂电极易受到被测气体中的腐蚀性气体腐蚀而失效;加热器一般用电炉丝加热,寿命不长;1.3 顺磁氧分析仪任何物质,在外界磁场的作用下,都会被磁化,呈现出一定的磁特性。物质在外磁场中被磁化,其本身会产生一个附加磁场,附加磁场与外磁场方向相同,该物质被吸引,表现为顺磁性;方向相反,该物质被排斥,表现为逆磁性。气体介质处于磁场也会被磁化,而且根据气体的不同也分别表现出顺磁性或逆磁性。如O2、NO、NO2等是顺磁性气体,H2、N2、CO2、CH4等是逆磁性气体。体积磁化率——任何物质,在外界磁场的作用下,都会被磁化,不同物质受磁化的程度不同,可以用磁化强度M来表示。顺磁式氧分析仪,是根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。 顺磁式氧分析仪也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为磁机械式、磁压力式和氧热磁对流式分析仪三种。1.4 激光氧分析仪激光氧分析仪原理:在光谱学上,通过气体吸收谱线的构成,可以分辨物质的组分。自然界中,每种气体都会吸收特定波长的光,当光谱发射的特定波长光束在穿透测量管时,被测气体通过选频吸收,从而导致被吸收光强度产生衰减,输出光将减弱或缺失这部分波长成分,系统利用不同气体成分对应不同的特征吸收谱线及气体浓度和红外或激光吸收光谱之间存在的对应关联,再通过检测吸收谱线的吸收大小(即光强度衰减信息)就可以获得被测气体的浓度。如图 1-1。图 1-1二、在线激光氧分析应用技术介绍2.1、在线激光氧按安装工艺分类2.1.1对射式激光技术介绍如图 2-1所示,对射式激光检测分析技术是指安装在待检装置的两端,一端是发射端,一端是接收端,激光穿过待检样的检测监测方法。图 2-12.1.2 产品特点(1)发射单元和接收单元信号对接要求高适用于较大管径的原位场所;但是管径过大会导致发射光和接收管在一致性的保障增加难度,同时距离大小也对激光光源的发散程度会有影响,导致检测信号检测不到。(2)原位取样安装在监测点位置选择合适点位。(3)耐高温通过安装隔热措施,可以将检测点装置的高温隔离,对设备进行保护。同时,激光发射和接收器是检测现场待测样的光谱信息,使检测设备不受现场温度影响。2.1.3 反射式激光技术介绍如图 2-2所示,是一种运用固态激光光源的非接触式测量方式。在化工、石化和炼化行业,利用可调谐二极管分析仪进行检测和监测,其具有高度可靠,维护量小,成本低等优点被越来越多选用气体分析。通过自身光源对镜面反射回来的信号检测分析,一致性有保障,光源不受污染物和腐蚀气体的影响。低浓度气体样本,通过增加激光器的功率来增强对气体的分辨率。图 2-22.1.4 选用特点安装方式为插入式单侧安装或取样式。对管径要求不能太大,否则取样信号的完整性很难保障;对温度要求范围不能太高,否则由于温度对检测设备的影响难以控制,对设备的稳定性和准确性都将影响;对待测对象的粘度要求,粘度太大容易污染检测单元,导致数据失真。2.1.5 抗污染源的应对措施考虑双层防护,重点考虑防尘防腐防爆措施;内层防护层采用特氟龙材料,具有通气性和对大分子的阻隔性如水分子等;外层特制不锈钢材质保护,具有耐压防冲击的特征。2.2 在线激光氧分析技术与其它方案比较分析在线激光氧分析技术与其它氧分析技术相比,具有安装方便简单、快速响应结果、后期使用维护量少、耗材量少、故障率低、寿命长等特点。从工况要求角度分析,在线激光氧分析技术使用工况范围广,原位检测。2.3 在线激光氧分析技术应用时,选择产品需要注意的一些事项防爆性能识别要求;防腐性能识别要求;防潮性能要求;防尘性能。2.4 安装时对检测现场工况注意事项安装位置的选择;安装结构形式设计方案。对射式需要对较粗管径的检测监测,管径太细路径太短容易造成检测信号不识别,对工况的温度环境要求不高;反射式原位检测适用管径相对较细的管路监测,检测路径往返固定,通过自身的对检测信号浓度识别换算和折算,进行判断。根据待测管径大小又可分为取样式(管径极小的待测气体样品)和插入式管径略大的工况。对环境温度要求不大于80度为佳,另外对待检测样品的粘度有一定要求,如果粘度过大,不能冲洗掉就会粘贴到检测器表面,从而使仪器失灵。因而,不适宜粘度过大的样品。另外,由于插入到检测管路中,需要定期检查和清洗,以免有过多的异物粘贴到检测器表面导致数据失灵。维保时间可根据样品的粘度情况制定,一般以3到6个月为宜。定期检查和清洗维护是必须和必要的。三、目前石化行业在线激光氧分析设备技术应用分析3.1 应用领域在线激光氧分析设备应用领域包括:石油、石化、煤化工等;天然气、合成气;半导体制造业;气体纯度;化学反应监测;纯碳氢化合物气流监测;可燃液体、原液给料的保护气氛;乙烯、丙烯、丁二烯、橡胶基和VCM生产的过程监测;尾气排放检测;储罐气体检测。3.2 石化行业工艺路线图石油化工行业生产工艺路线如图 3-1所示。图 3-13.3 在线氧分析技术在石化行业应用领域常关注的监测项目在线氧分析技术在石化行业应用领域常关注的监测项目,见表3-1。表3-13.4 小结在线激光氧分析技术以其结构简单方便、快捷检测、易维护、经济、性价比高等优点,被广大用户更多关注。应用领域也在不断的被创新发展,不断进步和认知成熟,光纤技术和仪器设备硬件的品质不断提升,是其快速发展的基础;大数据库信息系统的建立完善发展是其走向成熟应用有力保障。四、市场展望与问题思考4.1 市场展望随着社会对环保排放意识增强,对企业生产过程中所产生的影响环境空气质量和设备安全的一些关键性气体指标检测监测越来越被重视起来,同时,随着工业化的快速发展,工业企业向大型化规模化发展,安全保障措施要求不断提升,在线激光氧分析技术的使用将会越来越广泛。4.2 问题思考目前在线激光氧分析技术没有标准方法可参照。一项技术的应用成熟与否,其对应的方法标准也要不断归纳、建立、推出,以标准进行客观评价和评判。在线氧分析技术应用越来越广泛,在线激光氧分析技术所对应的应用方法标准有待研究和总结建立。
  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。   加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。   研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。   张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
  • 激光技术在 DNA 测序领域的最新发展
    p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 " /span /p p style=" text-indent: 2em " span style=" font-family: 微软雅黑 " 20世纪90年代,全球多个研究实验室的科研人员投入了数百万工时,绘制完成了第一个完整的人类基因组序列。从那时起,在基于多种创新方法的一系列自动化仪器的帮助下,个人 DNA 测序的成本和时间大幅降低了多个数量级。就某种程度而言,所有这些仪器实际都依赖于通常以激光为光源的荧光检测。 /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 "   起初,市场对人类基因测序的需求并不大。而目前市场对这种应用的需求迫切、增长迅速,有这样几个原因。商业化的族源分析现在成为了一个主要应用领域。这种需求在美国尤其旺盛,因为美国有很大一部分人口是20 世纪来到这里的移民后代。他们中的许多人现在希望通过分析了解自己的地域沿袭状况和族谱情况。 /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" font-family: 微软雅黑 " 在中国,产前基因筛查现在发展迅速。许多父母倾向于通过简单的抽血来对母亲的 DNA 进行基因分析,而不再是采用从羊膜腔抽取羊水这种虽然低风险但非零风险的方法。这特别适合高龄产妇(& gt 40 岁),因为她们的婴儿可能面临较高的出生缺陷风险。测序也被作为一种法医工具而广泛使用。在许多国家/地区,任何被判有某种罪行的罪犯的 DNA 都会经过分析并被存储在国家数据库中,通过对当前犯罪活动甚至过去犯罪活动中检测到的 DNA 进行分析,然后与已有的 DNA 数据库进行比对。事实证明,这对解决“悬案”以及为过去被误判的人洗脱罪名方面极其有用。 /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 "   如前所述,目前多种基于激光荧光技术的方法被用于商业化的测序仪器中。Coherent相干公司独有的光泵半导体激光器 (OPSL) 专利技术具有很多突出特性,使其非常适合用于测序中的荧光激发。 /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 "   与许多早期激光器不同,OPSL 技术具有灵活的功率扩展性。这使得激光器的功率范围可以从几毫瓦扩展到几十瓦。对于适合基因测序的激光器而言,Sapphire系列是其中的代表。该系列于十多年前推出,是第一款提供蓝光(488 nm 波长)的固态激光器,输出功率达数十毫瓦。现在其功率高达 500 mW、体型小巧、功耗低且传导冷却简单。(相干公司近期宣布了该系列激光器出货量业已突破50,000台这一里程碑式的成就) /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ea5ba49d-9931-4c26-8f31-a85d0c19787a.jpg" title=" 图 1.目前,大多数 DNA 测序方法依赖于激光荧光技术.jpg" alt=" 图 1.目前,大多数 DNA 测序方法依赖于激光荧光技术.jpg" / /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " i 图 1.目前,大多数 DNA 测序方法依赖于激光荧光技术,不同的荧光染料分别表示四种不同的核苷酸 (ACGT)。 /i /span /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 "   功率有什么重要意义?作为具有商业前景的领域,DNA 测序的发展有赖于检测速度的大幅提升以及相应检测成本的大幅降低。速度提升主要是并行处理和自动化产生的结果 第一次人类基因组测序是按顺序进行的,而今天的技术可以做到同时对数千个较短的基因组片断进行测序。简而言之,并行记录数千个数据点实质上意味着直接或间接地分散降低了激光功率。因此,要获得可接受的信噪比且避免长时间的数据采集,就需要更高的激光功率。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 405px " src=" https://img1.17img.cn/17img/images/202007/uepic/7139f713-8953-4727-8e27-202a17674b7b.jpg" title=" 图 2.OPSL 技术具有波长灵活性.jpg" alt=" 图 2.OPSL 技术具有波长灵活性.jpg" width=" 600" vspace=" 0" height=" 405" border=" 0" / /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " i 图 2.OPSL 技术具有波长灵活性,可使用许多标准波长的激光,并可根据要求提供定制 OEM 波长。 /i /span /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 "   OPSL 技术的另一个重要特性是波长灵活性。气体激光器和早期固态激光器仅限于原子物理学确定的固定频率。而OPSL 是基于半导体芯片,其输出波长可以在很宽的光谱范围内进行定制:从紫外波长到近红外波长。这一点很重要,因为测序取决于能否通过激光激发四种化学标记(荧光染料)中的荧光,它们分别针对四种 DNA核苷酸 ACGT 中的一种。测序的精准度取决于能否区分四种荧光染料,测序速度取决于能否高效激发它们。充分提高仪器效率意味着让激发波长去匹配每个标记的最大吸收峰,而不是尝试反向匹配。相干公司的 OBIS 激光器可以提供20多种不同的波长,智能化、“即插即用”的标准配置,可实现仪器的快速集成和开发。此外,大多数OBIS激光器都提供自由空间或光纤偶合输出选项,这进一步简化了它们在当下和未来测序仪器中的使用。 /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 微软雅黑 " /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " i 作者: /i /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " i   姚建武,michael.yao@coherent.com /i /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " i   Matthias Schulze, matthias.schulze@coherent.com /i /span /p p style=" text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " i   Coherent相干公司 cn.coherent.com /i /span span style=" font-family: 微软雅黑 " /span br/ /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p
  • 中红外固体激光技术和应用论坛在上海举行
    2010年8月16日至17日,由上海市人民政府、中国科学院、中国工程院主办,由中科院上海光学精密机械研究所和上海交通大学共同承办的第158期东方科技论坛在上海沪杏科技图书馆成功举行。本次论坛主题为“中红外固体激光技术和应用”,上海光学精密机械研究所范滇元院士担任论坛执行主席。来自国内外有关科研院所、高校和企业界的知名学者约50位专家出席了会议。   上海市科委陈馨女士主持开幕式,上海交通大学校长张杰院士作为承办单位代表致欢迎辞,东方论坛理事会副秘书长、上海市科委基础研究处胡睦处长应邀出席并讲话。   方家熊院士、祝世宁院士、刘泽金教授、吕跃广研究员、陈卫标研究员等10余位专家学者针对中红外固体激光技术的应用需求、关键技术、发展趋势等重要问题做了精彩的学术报告。上海光学精密机械研究所副所长陈卫标研究员主持了最后的自由讨论,与会代表围绕相关问题进行了气氛热烈的探讨。经过广泛深入的交流,集思广益,范滇元院士在总结发言中凝练出中红外固体激光技术研究的共识和建议,包括若干重要发展方向和待突破的关键技术。      中红外固体激光技术在民用和国防领域均有着非常重要的应用前景。本次论坛的成功举行,将通过多学科交叉和融合,促进我所中红外固体激光相关研究工作向更深层次发展,极大地推动我国中红外固体激光技术的未来发展,提升我国在该领域的整体竞争力。
  • 雷尼绍激光拉曼光谱应用技术研讨会
    2012年11月26日至11月30日,雷尼绍(上海)有限公司与中山大学测试中心合作在广州中山大学南校区成功举行了雷尼绍激光拉曼光谱应用技术研讨会。会议旨在为广大专家学者提供拉曼光谱领域相互交流学习的平台,共同探讨激光拉曼光谱技术在科学研究领域的最新进展及成果,促进我国拉曼光谱分析事业的进一步发展。来自国内外的60多位拉曼专家学者参加了会议。 会议由测试中心技术总监陈建研究员主持,中山大学设备与实验管理处陈敬德副处长、测试中心主任栾天罡教授、雷尼绍公共有限公司光谱部门全球销售经理Ken Williams博士、雷尼绍(香港)有限公司远东区技术总监杨延勇博士、雷尼绍(上海)贸易有限公司拉曼总经理王峥先生出席开幕式并讲话。陈敬德副处长指出:&ldquo 我相信本次由雷尼绍与我校测试中心合作举办的研讨会,将对华南地区高校拉曼光谱研究具有深远的指导意义,也为推进我国激光拉曼光谱应用技术的研究和发展起到积极作用。&rdquo 会议期间,来自国内外的专家们就激光拉曼光谱的应用与前沿研究热点进行了热烈地讨论与交流,主要内容涵盖了其在各领域的学术研究、应用技术发展现状等。雷尼绍新型的inVia系列拉曼光谱仪,以其高灵敏度、高分辨率、高重复性、高自动化程度等卓越的功能特点,成为大家关注的焦点。Ken Williams博士给用户讲述了雷尼绍自1992年推出与英国利兹大学联合研制成功的新型激光共焦显微拉曼光谱和光谱成像仪,在过去的20年如何不断创新开发新技术,引领拉曼光谱行业不断前行。国立台湾大学冯哲川教授与与会者分享了其20年来使用雷尼绍显微拉曼光谱-光致发光联用系统在先进半导体材料及纳米/量子结构方面研究取得的成果。 秦始皇帝陵博物院文物保护修复部副主任,陶质彩绘文物保护国家文物局重点科研基地(秦陵博物院)副主任夏寅向大家介绍了拉曼光谱在颜料分析研究中的应用,并对偏光显微法和拉曼光谱分析的结合进行了探讨,对该方法在文物研究中的地位给予了较高的评价。杨延勇博士介绍了各种拉曼成像技术以及雷尼绍独有的&ldquo Global Imaging&rdquo 以及最新的 &ldquo StreamLineHR&trade 快速大面积扫描成像技术&rdquo ,并详细说明了它们在各个领域的应用。中科院广州地球化学研究所陈鸣研究员在会上做了题为《我国岫岩陨石撞击坑的证实》的报告。 此外,拉曼光谱技术在稀土行业、法医学、生物医学等热门领域的应用也引起了与会者浓厚的兴趣。会议最后一天,雷尼绍(上海)贸易有限公司拉曼部门技术经理杨军涛针对拉曼光谱仪的使用及维护技巧等报告引起了热烈讨论。 关于雷尼绍 雷尼绍是一家跨国公司,总部位于英国。主要提供测量、运动控制、光谱仪和精密加工等核心技术,并拥有最完备的光谱产品系列: 显微拉曼光谱仪、过程监控小型拉曼光谱仪、供扫描电子显微镜使用的拉曼分析仪、光谱仪用激光器、先进的冷却式CCD探测器。产品凭借其优越的性能、模块化的设计及完善的售后服务团队,极大地提高了客户的研发能力和科研水平,被广泛应用于各类科研及应用领域,例如地质科学与宝石学、材料科学、刑侦科学、艺术品与文物鉴定、生物医药、半导体材料、生命科学等。 雷尼绍于1994年在北京开设了第一个办事处,并于2000年在上海设立了办事处。目前,在中国拥有近百名员工,共设三个分公司和八个办事处。雷尼绍集团目前在32个国家或地区设有分支机构,员工逾3100人。
  • 飞秒激光结合自组装复合加工技术获突破
    p style=" text-indent: 2em " 记者从中国科学技术大学获悉,该校工程科学学院微纳米工程实验室利用飞秒激光引导毛细力自组装复合加工方法,实现了手性可控三维微结构和三维金属纳米间隙结构的灵活制备,并实现了在涡旋光手性检测和高灵敏度生化检测方面的应用,相关研究成果日前分别发表在《先进材料》和《先进功能材料》上。 /p p style=" text-indent: 2em " 手性微结构在光学和力学等领域具有重要的应用潜力,可以用于构筑多种多样的光学和力学超材料。目前三维手性微结构的灵活、可控制备仍存在诸多困难。中国科学技术大学微纳米工程实验室在飞秒激光复合加工方面开展了长期的系统性研究。在前期工作中,他们通过将飞秒激光直写与毛细力自组装技术结合,开发了新型的飞秒激光复合加工方法,实现了复杂多层级聚合物结构的制备,并在微物体操纵、微粒制备、微光学、仿毛细血管微通道制备等多个领域开展了应用研究。 /p p style=" text-indent: 2em " 在前期工作的基础上,研究团队将飞秒激光直写与毛细力驱动自组装技术相结合,通过调控微结构的空间排布、结构尺寸等参数,引导毛细力的方向和大小,成功制备了多层级手性微结构,并展示了该方法高度的灵活性和可扩展性。 /p p style=" text-indent: 2em " 此外,该研究团队还利用这种飞秒激光复合加工方法成功制备了三维金属纳米间隙结构,并实现了典型表面增强拉曼光谱SERS标的物R6G和抗癌药物DOX的高灵敏度检测。该研究为非平坦表面上构建金属纳米间隙结构提供了一种新的方法,有望将基于微流体的表面增强拉曼光谱检测技术应用于精准医疗、实时在线检测等领域。(记者吴长锋) /p
  • 青岛与白俄共建海洋光电和激光技术实验室
    近日,青岛市的省海仪所与白俄罗斯国家科学院斯捷潘诺夫物理研究所,于北京钓鱼台国宾馆签署了&ldquo 共建中白海洋光电和激光技术联合实验室&rdquo 科技合作协议。   白俄罗斯是前苏联时期发展微电子技术的基地,发明了世界第一台激光器,在微电子、光电子、激光技术等方面位居世界一流水平。近年来,青岛市以海仪所为代表的院所和企业逐步意识到白方技术独有的先进性,与白俄罗斯合作渠道日益完善,交流和合作日益频繁,合作愈加深入。海仪所在长期与白方进行技术、项目对接的基础上,实现了核心技术国产化,满足了在海洋环保、海洋管理、滨海核电等检测领域的应用需要。   此次双方共建联合实验室,将实现人才、项目、基地的示范和聚集效益,加快大规模人才团队和技术项目的引进,保障合作的长期稳定发展。
  • 科研人员研发用于量子技术的金刚石激光器
    根据俄罗斯国家科学院西伯利亚分院网站报道,西伯利亚分院大电流电子研究所科研人员与托木斯克国立大学合作,研发出一种基于NV中心和光泵浦的金刚石激光器。相关研究结果发表在《Nature Communications》杂志上。制造该设备需要一种人造金刚石,经过辐射热处理,在其晶体结构中形成许多抗激光辐射的色心。对于量子技术来说,最重要的是NV中心(金刚石的色心之一)。NV色心是金刚石的结构缺陷,包括一个氮原子(N)和一个相邻的空位,晶格位置未被碳原子(V)占据。多年来,科研人员从金刚石色心获得激光辐射均未成功。此次,科研人员在含有多达10个NV中心和每百万碳原子多达300个氮原子的合成金刚石样品中,实现了非热发光的增强和激光辐射的产生。
  • 大恒参展ILOPE 2012并应邀做激光技术报告
    在北京举行的国际光电产业博览会暨第十七届北京国际激光、光电子及光显示产品展览会(ILOPE 2012)上,大恒光电、大恒图像、大恒薄膜等一同参展,展出产品主要是镜头及镜头组、光纤光学仪器、光学机具等。 大恒光电展出的镜架,平移台、俯仰台等光学平台产品。 大恒光电也接受大恒光学光电子行业协会邀请,在全国光学元件及光学仪器产业发展论坛发表关于飞秒激光技术的报告。
  • 激光偏振检测新技术可分析太空垃圾成分
    p   据物理学家组织网20日报道,美国麻省理工学院(MIT)的工程师最近开发出一种激光偏振检测新技术,不仅能确定太空垃圾位置,还能分析其成分。 /p p   在地球空间轨道上,数以亿计的太空垃圾高速旋转着,给航天器和卫星带来巨大威胁。目前,美国国家航空航天局(NASA)和国防部在用陆基望远镜和激光雷达(Ladars)跟踪17000块碎片,但这一系统只能确定目标的位置。研究人员指出,新技术能分析出一块残骸由什么组成,有助于确定其质量、动量及可能造成的破坏力。 /p p   该技术利用激光来检测材料对光的偏振效应。MIT航空航天系的迈克尔· 帕斯科尔说,涂料的反射光偏振模式和金属铝有明显区别,所以识别偏振特征是鉴定太空残骸的一种可靠方法。 /p p   为检验这一理论,研究人员设计了一台偏光仪来检测反射光的角度,所用激光波长为1064纳米,与Ladars激光类似,并选择了6种卫星中常用的材料:白色、黑色涂料、铝和钛,还有保护卫星的两种膜材料聚酰亚胺和特氟龙(聚四氟乙烯),用偏振滤镜和硅探测器检测它们反射光的偏振状态。他们识别出16种主要的偏振态,并将这些状态特征与不同材料对应起来。每种材料的偏振特征都非常独特,足以和其他5种区别开来。 /p p   帕斯科尔认为,其他航天材料如防护膜、复合天线、太阳能电池、电路板等,其偏振效应可能也各有特色。他希望用激光偏振仪建一个包含各种材料偏振特征的数据库,给现有陆基Ladars装上滤波器,就能直接检测太空残骸的偏振态,与特征库数据对比,就能确定残骸构成。 /p
  • 创建国际前沿——访我国著名激光技术专家许祖彦院士
    前言:我国作为一个人口众多的发展中国家,在很多技术、行业领域都长期处于缺少自己的知识产权、缺少自己的核心技术、缺少自己的核心竞争力的被动境地。我们实施的许多科学技术研究定位于瞄准、跟踪或赶超国际前沿,已取得了丰硕的成果,极大促进了我国高技术的全面发展,使我国在国际高技术舞台占有一席之地。而“创建国际前沿”,使科学技术走在国际科学研究最前沿,则更有利于推动我国相关研究领域的发展,推进产业优化升级。   日前,仪器信息网编辑走访了中科院物理所许祖彦院士,“创建国际前沿”这句令全体中国科研工作者为之振奋的话,正是我国这位著名激光技术专家许院士与我们讨论最多的,许院士和他的同事们在国际激光研究领域,也确实身体力行地不断为“创建国际前沿”而奋斗。   全固态深紫外激光器研制的成功,不仅使得我国激光科技研究突破了200nm以短的深紫外壁垒,实现了实用化、精密化,还极大推进了我国科研人员在激光科技研究领域继续深入,促进了我国前沿科学、光电子产业发展,为这一技术研究领域在国际上持续保持优势地位奠定了坚实的基础。   全固态深紫外激光器核心技术之一的KBBF晶体棱镜耦合装置是我国具有自主知识产权的核心技术,为我国独有并暂时不对外国出售,以保护我们国家先进科研装备的研制,这是我国在高技术领域第一次对发达国家说“不”。   世界首台大色域140英寸大屏幕激光显示样机研制的成功,标志着我国在国际激光彩色显示技术开发的先进行列,以及我国在激光显示研究领域取得国际领先关键技术优势。 我国著名激光技术专家、中科院物理研究所许祖彦院士 我国科学仪器现状与发展任务   谈到仪器,许院士表示:“科学仪器能提升国民经济水平、科学水平、技术水平和促进国防建设的发展,有人曾经统计过,诺贝尔物理、化学奖的获得者1/3与科学仪器发明有关,而发明的科学仪器反过来又促进了科学技术的进一步发展。”   讲到我国仪器现状,许院士无奈地说:“现在我国使用的大型科学仪器,包括激光仪器在内,“八五”的时候,只有9.98%是国产的,到“十五”的时候,不到15%,也就是说,现在我国的大型科学仪器85%还是依赖从国外进口。这样事情就非常严重了,从进行科技前沿方面的研究来说,外国的先进科学仪器,先他们自己用,待他们把‘第一桶金’都淘完了,再把仪器高价卖给我们,回收成本 另一方面,涉及到高、精、尖的仪器,国外往往对我国禁运。”   “从‘八五’到‘十五’近10年间才增长5%左右,增长速度好像有点缓慢?”笔者吃惊地表示。“从‘八五’到‘十五’近10年间才增长5%左右,增长速度的确有点缓慢,其实我们有很多科研技术不一定比国外落后,也做了很多科学研究,发表了很多文章,就是做不成仪器,这与我国的工业化水平有关。现在我们国家正在提倡‘两化融合’,即信息化与工业化结合,将信息产业部与工业部连在一起,这将会很好的促进我国科学仪器的发展。而激光很大程度应用在信息仪器上,应用在分析仪器上也比较多,所以我比较关心国家的‘两化融合’。希望此项举措能推进国家科学仪器的发展,让我们国家的国产大型科学仪器不到15%的比例能够尽快增加。”   针对目前我国国产仪器现状,许院士进一步道出了心中所想,并提出了当前我国科学仪器产业发展的重大任务:“要想将国产仪器做强,首先要提高仪器质量,将15%的比例提高上去,增进我国仪器的国产化,进一步在世界范围内实现仪器创新,在世界上有中国自己的品牌,所以说中国国产仪器的发展也是任重而道远。作为一个研究仪器人的心理话,希望中国仪器产业能有具体目标和历史使命感,也希望仪器信息网也能起到积极的推动促进作用。” 激光技术在仪器方面的应用   激光技术属战略支撑技术,在仪器创新上有广泛应用   “我国的激光技术起步比国外稍晚一些,60年开始起步,但现在差距比较大,这跟当初的国际关系背景、国民经济水平、人才素质背景有关。改革开放后,各方面都有所改观。03-04年国家中长期科技发展战略研究中,将激光技术定义为战略支撑技术,即激光是国家的高新技术产业、科技前沿和国防建设的战略支撑技术。在后来的国家纲要中,进一步将激光定位为国家八大前沿技术之一。”谈到激光技术,许院士首先向笔者介绍了我国激光技术的发展背景及目前现状。   “什么是‘支撑技术’?”笔者问到。   “所谓支撑技术,是指技术本身不一定值很多钱,但它支撑着这个产业产生很大的社会经济效益。”讲到这里,许院士形象的举例道,“支撑技术就像盖大楼时刚开始建的支柱,看似简单,没有太大的用处,但一旦把它移开,整栋大楼也就不存在了 DVD里面的半导体激光器很简单、很便宜,但不代表不重要,如果将其去除,那么DVD连概念都产生不了。”   “那激光技术的发展方向呢?”笔者进一步问到。   “其主要发展方向为:半导体激光、全固态激光、自由电子激光和光纤激光。”许院士笑着说道,“我从毕业到现在干了近40年,一直是课题组组长,近20年主要是做全固态激光,主要应用在三个方面,包括产业工艺、科技前沿和军工。”   谈到全固态激光在仪器上的应用,许院士表示:“全固态激光技术在仪器方面也有很多用途。由于激光本身是一个定向光源,方向性好,单色性好,亮度高,首先在通讯仪器方面,其可以用来做信息载体,如在光纤通讯等方面,具有很宽的带宽,传输性非常好 第二,作为计量仪器,如激光刚发明的时候,就用来探测月球到地球的距离,现在发展到用飞秒频率梳作为长度和时间的标准,是一种很前沿、很重要的仪器技术 第三,在分析仪器上,用途也很广泛,如用在激光谱仪、能谱仪上 第四,主要是借助激光的定向性好、光能量密度大、能量高等特性,作为加工的仪器,如用来金属打孔、焊接等。”   KBBF晶体和它的棱镜耦合装置研究成功,使全固态深紫外激光器得以精密化和实用化   “当前,国家建设要提倡做强、做大,国产仪器也要做强、做大,国家财政部、产业部、科技部、基金委对此一直很重视,深紫外激光仪器就是由此研究开发出来的。”终于,这个令笔者十分感兴趣的话题,也是本次采访的核心话题终于出现了。为了不打断许院士的思路,笔者决定采取静静聆听的方式,让许院士将这个话题阐述完毕。   为了让笔者有所了解深紫外激光仪器,许院士先给笔者“科普”了一下:“深紫外波段光指波长在150~200nm左右的那一段光。从光的受激发射来讲,其泵浦速率与波长倒数的3次方成比例,波长越短,要求泵浦速率就越高,深紫外激光波长很短,直接用受激发射产生技术就非常困难。”   “科普”完毕,许院士继续讲到:“我们要研制的大型科学仪器,应既要实用化,又要精密化。现在的设备产生的深紫外激光,距离实用化和精密化比较远,因而深紫外波段的激光仪器,长期以来在世界上一直发展不起来。当前既实用化又精密化的激光器当数全固态激光器。”   “用固态激光直接产生深紫外波段激光,最好的办法就是利用非线性谐波技术,将激光一次次的倍频,这就要依靠非线性光学晶体,而中科院陈创天院士和他的研究群体研制的非线性光学晶体是世界上公认做得最好的。之所以说是世界上公认做得最好的,是因为目前国际上通用的四种非线性光学晶体中,中国四占其三。(目前世界上能够工业化使用的非线性晶体只有四种:从近红外到可见光使用的KDP晶体——由美国杜邦公司发明 从可见、紫外到深紫外3个波段使用的BBO、LBO、KBBF晶体——都是由中科院陈创天他们发明的。)   外国专家曾预言,200nm波长激光是一个发展壁垒,突破200nm波长这个瓶颈可能要靠中国专家来完成。早在九十年代,陈创天院士课题组就找到了KBBF晶体,用来做倍频,将激光波长缩短至186nm,突破了200nm波长的限制,但是由于其比较笨重,还不能达到实用化。   由于KBBF晶体层状特性很严重,长不厚,要做到深紫外倍频需要切割,但其又不易切割。直到2002-2003年的时候,陈创天院士课题组与我的课题组共同发明了KBBF晶体的棱镜耦合装置,在国际上首次实现了1064nm激光的6倍频输出,将全固态激光波长缩短至177.3nm,首次将深紫外激光技术实用化、精密化,并申请到了中国、日本、美国的专利。就目前情况而言,中科院的专利已垄断了深紫外全固态激光研究的全部领域。”   相对于同步辐射而言,在体积方面,配有KBBF晶体棱镜耦合装置的全固态激光器体积变得很小 在能量分辨率方面,比同步辐射提高5-10倍以上 在光子流密度方面,提高了3-5个量级 同步辐射在纳秒、皮秒条件下工作,而KBBF晶体的深紫外全固态激光器在纳秒、皮秒、飞秒条件下都能工作 同步辐射只能探测到1-2nm,而全固态激光器能探测到10个nm的深度。   真空紫外激光角分辨光电子能谱仪成功问世,令世界瞩目   许院士继续说道:“光电子能谱仪是当今研究凝聚态物质电子行为的先进仪器,目前都使用同步辐射光源,如改用深紫外激光源,其性能将获得全面的突破。1.773nm深紫外全固态激光研制成功后,日本东京大学提出用于光电子能谱仪(积分式)。2004年周兴江博士回国研制深紫外激光高能量分辨、角分辨光电子能谱仪,在中科院创新工程计划支持下,研制计划顺利进行,06年获得成功,并应用于高温超导材料研究,这立即引起国际科仪界的强烈关注,许多国际著名实验室慕名前来,要求购买深紫外全固态激光相关技术。中科院和上级领导部门经慎重考虑,认为这一自主创新的原创性“敏感技术”首先应服务于国内前沿科学研究,推动我国创建学科研究国际前沿。 周兴江研究员向许祖彦院士和仪器信息网采访人员介绍仪器及取得的成果 真空紫外激光角分辨光电子能谱仪   7台深紫外激光器应用在物理、化学、材料科学领域,开发7台国际首创的大型科学仪器   现在,中国科学院、基金委、科技部、财政部对此都很重视,许院士在报告中也曾指出:这个研究在中国是完整的研发链:KBBF晶体材料是中国人把它长出来的,外国人没有 激光器是中国人的,外国人没有 用这个激光器研制的角分辨能谱仪也是中国人的,外国人也没有 再往下进一步研究,将由中科仪公司将这种仪器商品化,推向国内、外市场 仪器商品化之后,搞前沿科学研究的人就可以利用这种仪器进行发现新现象、阐明新理论、找到新方法等方面的研究。   深紫外全固态激光器出来后,许院士给中国科学院大连化学物理研究所做紫外拉曼光谱研究的李灿院士打了一个电话,李灿院士听到这个消息后,很受振奋,立即要求尽快提供一台深紫外激光器。根据李灿院士的要求,我们正量身制作一台全新的深紫外激光器,对此,李灿院士表示:“这种深紫外拉曼光谱仪将属于新一代的谱仪”。   现在我们正在加紧研制5类7台深紫外全固态激光器,提供给物理、化学和材料学家,帮助他们研制7台新的应用深紫外全固态激光器的国际首创的大型科学仪器,例如周兴江博士研发深紫外激光同时具有自旋分辨和角分辨的光电子能谱仪、光子能量可调谐深紫外激光光电子能谱仪用来将电子参数测全,包括电子能量、动量、自旋等。   李灿院士研发深紫外激光拉曼光谱仪,当初新型拉曼光谱仪将光谱波长检测范围最低限从205nm降低到193nm时,拉曼光谱就大大的增加了,如今采用深紫外全固态激光器再将检测范围最低限降至177.3nm,可想而知,拉曼光谱会增加多少……   包信和研究员研发深紫外激光光发射电子显微镜。目前,国际上最先进的光发射电子显微镜,其精确度最高能达到20nm的水平,而采用全固态激光器后,其精确度将能提高到5nm。   王占国院士研发深紫外光致发光光谱仪,用于超宽带隙半导体材料方面的研究。它将使这类新材料的基础参数检测成为可能。   佟振合院士研发深紫外光化学反应仪,现在有3000万个有机化合物,90%的吸收光谱在深紫外区,而现有的技术只能采用双光子效应来检测,效率非常低,采用深紫外激光器后,就可以用单光子激发的方式检测,探测到很多的化合物以及观察到化合物更深层次的反应。   王恩哥院士等研发深紫外激光原位时间分辨隧道电子谱仪,用于表面物理方面的研究,将使10nm左右小量子系统方面的研究成为可能。   这仅仅是深紫外波段仪器应用的第一期,主要应用在物理、化学、材料方面,已不再是瞄准、跟踪或追赶国际前沿,而是在创建国际前沿 第二期将应用在信息、资环、生命等领域,这将为各大学科提供全新研究手段,对科研活动起到革命性的推动作用。 激光全色显示样机研究成功   有人问许院士:“您近些年都做了些什么?”   许院士幽默地回答道:“近10年做了3件比较大的事情,第一件就是深紫外激光器,‘坐了10多年的冷板凳’,但有它自己的好处,没人和你竞争,能够踏踏实实的自己搞研究 第二件事情,在高功率、高光束质量和变频全固态激光产生和应用方面 第三件事情,就是激光显示,从八五开始到现在。”   信息链包括信息的获取、处理、存储、传输、显示几大步骤,显示作为信息链的最终环节。许院士认为:显示技术目前走过了黑白显示、彩色显示、数码显示三个过程,但在这三个过程中普遍存在的、至今仍未解决的问题就是:色域覆盖率低。如果以人眼可识别自然界的色彩范围为100%,现在显示器的色域覆盖率只在33%左右,采用激光显示器,其理论色域覆盖率可达到90%以上。激光显示也被许院士称为显示技术发展的第四个过程或平面显示的终端过程。   十五期间,许院士和中科院五个研究所的科学家们合作已用激光全色显示技术做出了一台原理样机,色域覆盖率达到了73%,这个覆盖率为当今世界上最大的。样机做出来以后请显示专家及一般群众来观看鉴定,这给鉴定者带来了意想不到的视觉享受与冲击,得到了大家一致的赞许与认可。   当前,激光全色显示技术发展遇到最大的问题就是如何将此项技术推向产业化。“一台200多英寸的样机,其成本就100多万,这是中国许多用户所承担不起的,这是将激光显示技术推向产业化遇到的问题之一 一旦激光显示技术推向产业化,电视台传输带宽、标准等方面也需要重新制定。如果将上述问题全部解决,从而将激光显示技术彻底推向产业化,需要巨大的投资,仅靠现在的几千万政府科研经费投入是远远不够的,这也是制约将此项技术推向产业化的关键所在。”许院士感慨地说道,“数十上百亿元人民币的费用,对国家、对企业来说都是一笔不小的投入,但对于此项技术每年上千亿美元的市场而言,这些投入带来的效益回报也是巨大的!”   至此,笔者希望中国本土企业能够联合起来,对我们国家自主创新的技术予以积极的支持,开创我国显示技术领跑世界的新局面。否则,中国显示行业企业又将形成在标准上受制于人、在市场上为外国人打工的尴尬局面。打造中国企业的国际竞争力,又将成为一代人的一个壮志未酬的遗憾。许祖彦院士与仪器信息网采访人员合影   编者后记:   采访结束后,笔者一行又在许院士的带领下参观了周兴江研究组的实验室,亲眼看到了这台令世界瞩目的深紫外激光光电子能谱仪,亲耳听到了周兴江研究员对这台光电子能谱仪如数家珍的介绍。作为炎黄子孙,切身感受到了“创建国际前沿”给我们带来的骄傲。   回来的路上,笔者的情绪久久不能自已,遂作小诗一首: 追梦依稀四十载, 白发皓首燕归来。 艰苦钻研终不辍, 硕果丰存桃李开。   *许祖彦院士和他的科研团队最近已调到中科院理化技术研究所,继续从事激光物理和技术研究。
  • 正业科技:超快激光技术,为FPC精密加工增添新动力!
    时代在发展技术在进步20世纪60年代第一台红宝石激光器诞生制造业进入“光”时代从纳秒、皮秒到飞秒人们对激光技术的探索未曾止步 时间换算:1秒=109纳秒=1012皮秒=1015飞秒时间越短,激光作用在材料表面的时间越短,对材料表面的影响越小,加工效果也更好,因此超快激光技术已成为制造业精密加工领域的热点话题。 在精密加工领域,传统纳秒激光加工设备仍占据了大部分市场。但是就加工效果而言,飞秒及皮秒激光加工更具优势与前景,可飞秒激光器由于自身的可靠性低、价格昂贵等原因,从科研到工业应用,还需一段时间。与纳秒激光相比较,皮秒激光加工具有更短的脉冲宽度、更高的峰值功率,能够达到更好更精细的加工效果,实现真正冷加工,基本无炭化,逐步成为主流选择。 ▲正业激光切割效果图(皮秒VS纳秒) 正业皮秒激光切割机 正业科技研发生产的皮秒激光切割机应用超快激光技术,适用于覆盖膜(CVL)、柔性板(FPC)、软硬结合板(RF)和薄多层板的切割成形。 01切割实例 02独特优势 1、真正冷加工,基本无炭化:激光脉宽小于10ps,炭化范围极小,基本看不到炭化现象。 2、切割效果更精细:采用小单脉冲能量,高频加工,精雕细作,加工面更加精细光滑,综合加工精度高达±20μm。 3、双台面,零上下料时间,效率高,速度更快:皮秒的重复频率非常高,可达兆赫兹,大幅度提升加工效率。 4、加工前预览功能:避免切板报废。 正业激光 正业科技在PCB行业历经22载,始终认为技术创新才是企业的立足之本,是企业长久生存和可持续发展的不竭动力,不断攻克激光技术难题,探索超快激光技术奥秘。 目前,正业科技承担的激光类国家重点计划项目有典型硬脆构件的超快激光精密智造技术及装备、激光高性能连接技术与装备和激光高精度快速复合制造工艺与装备。 未来,正业科技将不断增强核心竞争力,积极拓展激光技术应用产业链,满足市场及广大客户需求,通过做强“激光”助力制造业转型升级发展。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm, (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 光纤激光器技术市场份额2013有望增长到30%。
    过去的10年,大功率光纤激光器技术快速从实验室向商业化转移。同传统的二氧化碳激光器技术相比较,光纤激光器技术可以提供高质量、更完美和远距离的激光束,额外的优势还包括高效低能耗、低运营成本、工业化维修和便于生产工艺的自动化。在快速增长的世界激光技术应用市场中,光纤激光技术的市场份额已从2006年的占8%增长到2008年的占10%,2013年有望增长到中30%。   先进的光纤激光器技术,以毫微微秒(Fentosecond,10-15秒)量级产生激光脉冲,自诞生之日起就以复杂、昂贵和不稳定的特点而闻名。欧盟第七研发柜架计划(FP7)资助1000万欧元,总研发投入1600万欧元,由德国科技人员进行总协调,欧盟7个成员国及联系国德国、瑞士、英国、法国、芬兰、丹麦和瑞典21家机构科技人员参与的欧洲LIFT研发团队,成功地研制出新型的、稳定的和价格合理的大功率毫微微秒光纤激光源,为光纤激光技术的推广应用奠定了基础。研发团队能在相对较短的时间内开发出基于光纤的短脉冲激光发生器和被称作“冷处理”的超短脉冲激光发生器,完全得益于研发团队科技人员的构成及相互协调配合。研发团队的科技人员来自广泛的学科领域,覆盖激光技术科研机构、激光源供应商和光学仪器组件生产企业的科研、实验和工程研究人员及工程师。   研发团队在开发光纤激光器技术上的成功,将继续保证欧盟在激光技术及激光制造业的世界领先水平和竞争力。目前,研发团队的主要目标已转向光纤激光技术的商业化应用,包括:利用新一代光纤激光技术的运程切割与焊接工艺的开发 应用于医学的痤疮及粉刺技术已申请发明专利 应用于部分癌症治疗技术的开发 应用于太阳能电池组件制造技术的开发等。
  • 激光多普勒测速技术发展及应用漫谈(1)
    仪器信息网讯 2020年 12月1日23时11分,嫦娥五号探测器稳稳软着陆在月球,落月过程中,中国科学院上海技术物理研究所研制的激光测距测速敏感器发挥着重要作用,该多普勒激光测速精度可达0.1米/秒,将三个方向的多普勒激光测速的结果反馈给导航系统,确保航天器着陆更平稳。据悉,这也是多普勒激光测速技术首次在太空导航上得到应用。嫦娥五号激光测距测速敏感器和激光三维成像敏感器激光多普勒测速是什么?激光多普勒测速仪发展史又是怎样?本期,我们邀请北京航天光新科技有限公司 CEO 杨开健分享激光多普勒测速技术发展及应用。杨开健 北京航天光新科技有限公司 创始人兼CEO 1.激光多普勒测速仪原理激光多普勒测速仪基于光学多普勒效应利用多普勒频移实现对物体线速度的非接触测量。多普勒效应(Doppler effect)主要内容为:当声源与接收器(或观察者)之间存在相对运动时,使得接收器(或观察者)收到的声音频率,和声源发出的声音频率不同(出现频差)的现象。接收器接收的频率和声源发出的声波频率之间的差值就叫多普勒频率,其大小同声源与接收器之间的相对运动速度的大小、方向有关。多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。当然光波也具有多普勒效应。如图所示,激光多普勒测速仪出射的激光束入射到运动物体上,部分散射光仪器接收。由于仪器相对于物体有一定的运动速度,根据多普勒效应可知,仪器接收到散射光的频率与出射激光的频率不同,分别是和,这里指仪器出射激光的频率,指多普勒频率。多普勒频率与物体的运动速度有关,通过探测多普勒频率即可计算出物体的运动速度。激光多普勒测速仪原理示意图2.激光多普勒测速仪发展史——解决不同时代用户的需求痛点1964年Yeh和Commins首次观察水流中粒子的散射光频移,并证实了可利用激光多普勒频移技术来确定流动速度,Foreman和George,Golesfecion和Kreid,Pike,Huffaker等人进一步论述了多普勒技术原理、特点及其应用,使该项技术初步得以实用化,不仅可以测量液体流速,还可以测量气体的流速。70年代是激光多普勒技术发展最为活跃的一个时期,Durst和Whitelaw提出的集成光单元有了进一步的发展,使得该系统的光路结构更为紧凑。光束扩展、偏振分离、频率分离、光学移频等近代光学技术在激光多普勒技术中得到了广泛的应用,信号处理采用了计数处理、光子相关及其它一些方法使激光多普勒技术测量范围更广泛,它的精度高、线性度好、动态响应快、测量范围大、非接触测量等优点得到了长足的发展。1975年在丹麦首都哥本哈根举行的“激光多普勒测速国际讨论会”标志着这一技术的成熟。80年代,激光多普勒技术进入了实际应用的新阶段,它在无干扰的液体和气体测量中成为一种非常有用的工具。可应用于各种复杂流动的测试,如:湍流、剪切流、管道内流、分离流、边界层流等。随着大量实际工程、机械测试的需要,目前,固态表面的激光多普勒技术也越来越受到重视:A. E. Smart,C. J. Moore等把该项技术应用到航空发动机的研究上 清华大学利用激光多普勒技术分析磁头的运行姿态溯;美、德开始激光光栅多普勒测量的研究,由光栅衍射主极大光束形成的多普勒信号,具有信噪比高、抗干扰能力强等优点,可用于各种机械的振动测量,但使用时须将光栅和测量目标相连接,限制了它的适用范围;F. Durst和M. Zare提出了PDA(相位多普勒)技术;他们研究发现,球形粒子对两束相交光束散射,会在周围光场形成明暗相间的干涉条纹。当用两个探测器接收多普勒信号时,两路信号之间存在的相位差与粒子大小成呈线性关系。这一技术被广泛应用于粒子大小的测量中,目前也被用于折射率的测量中;天津大学进行将激光多普勒技术用于固体表面面内位移远距离测量研究。3.从应用有限到技术逐渐商品化激光多普勒技术虽被证明是一种非常有用的技术,但它的仪器化产品在过去相当一段时期内受气体激光器体积庞大、信号处理技术相对落后的限制,在机械工业和大型工程领域的实际应用比较有限。近年来,许多微光学元件己经商品化,激光二极管的应用也为实现仪器小型化提供了便利条件,微小透镜取代了传统的透镜。计算机和数字信号处理技术的结合增大了振动量测量和分析的实时性和自动化程度,信号时域波形分析法、函数分析法、调和分析法等技术的成熟大大提高了测量的准确性和实用性。特别是随着传感技术和信息技术的发展,产生了一些新的测量方法,将多传感数据实时综合处理及分析变为可能,信号处理过程实现了信息化和综合化。半导体技术使得信号处理器体积减小的同时可靠性得到大大增强。这些技术的涌现,使得激光多普勒技术向着小型化、数字化、多维化、实用化、商品化等方向发展。目前,世界上许多国家已经有成熟的激光多普勒测速产品,如美国、德国、英国、丹麦、瑞典、新加坡等。应用于工业测量领域的光路结构大部分是双光束差动结构,该结构具有易对准、接收口径大等优点。该技术已经可以在钢铁、有色金属的轧机生产线的在线测量,或者用在线缆、造纸、印刷等行业的生产线的速度测量和长度累计。补充:国内激光多普勒技术研究现状据公开资料表明,国内目前从事激光多普勒技术研究的单位越来越多,清华大学、中国科学技术大学、大连理工大学、电子科技大学、国防科技大学、中国科学院上海技术物理研究所等单位都展开了激光多普勒测速技术研究。本网根据相关资料整理如下:(图源网络公开整理)欢迎广大业内人士分享更多科学技术干货内容,请投稿至liuld@instrument.com.cn
  • 约稿:激光衍射技术在吸入制剂研究中的应用
    1. 引言   通过吸入方式将药物直接输送到人体肺部,已是世界公认的治疗哮喘和慢性阻塞性肺病的最好方法,同时肺部及呼吸道也可作为一个通道,递送的药物通过气道表面进入人体血液系统,然后再进入到身体其他器官,达到全身作用的目的。然而影响药物在肺部及呼吸道沉积的因素有很多,其中气雾的粒度大小分布就是最重要的影响因素之一。目前吸入制剂粒度大小测量最经典的方法还是惯性撞击器法,其利用不同大小的药物颗粒具有不同的动能,从而具有不同的动力学特征而将其分离,不但能够得到雾滴中不同大小的活性成分的绝对含量,而且也是美国药典和欧洲药典评价吸入制剂体外粒度分布推荐使用的方法。但惯性撞击器法本身也存在不足,比如测试比较麻烦,尤其是其洗涤干燥以及色谱分析过程,往往测试一个样品需要较长的时间,这在现代医药研发过程中就显得&lsquo 节奏&rsquo 偏慢,同时随着吸入制剂研究的发展,大家不但对揿次之间的稳定性有更高的要求,而且希望对于每一揿次的吸入或者喷射过程能够获得更多的信息,而在这些方面,惯性撞击器法都略显不足,而激光衍射技术恰恰可以弥补。激光衍射技术是基于不同大小的颗粒其衍射光在空间分布的不同,利用米氏理论反演计算而获得颗粒体系的粒度分布,其本身快速无损的测试方式、对于喷雾细节的展现、以及快速比对的特点,使其在吸入制剂研究和筛选过程中大大提高研究效率,尤其是其本身可以跟惯性撞击器以及USP人工喉联合使用,大大拓展了其应用范围。本文将根据其特点选取一些剂型和领域就激光衍射技术的应用研究跟大家做一些沟通和介绍。   2. 鼻喷剂   近年来,通过鼻粘膜给药已被认为是一种药物能被快速高效吸收的给药方式,鼻粘膜细胞上有很多微细绒毛,因此大大增加了药物吸收的有效面积,粘膜细胞下有着丰富的血管和淋巴管,药物通过粘膜吸收后可直接进入体循环,此外,鼻腔内酶的代谢作用远远小于胃肠道,因此,鼻腔给药系统正日益受到人们的重视,比如,在肽类和蛋白质类药物的剂型研究领域。 图1. 马尔文喷雾粒度仪测试鼻喷剂粒度分布   在众多给药剂型中,喷雾剂是比较常见的剂型,仅通过雾化装置借助压缩空气产生的动力使药液雾化并喷出,由于其不含抛射剂,不使用耐压容器,目前应用越来越广泛。在鼻喷剂研究过程中,对于鼻喷剂粒度分布大小有两个因素影响至关重要,即药物配方和喷射装置,下面我们就通过一些模拟实验来看看激光衍射技术如何来体现这些影响因素。   首先简单介绍一下激光衍射技术测量鼻喷剂的一个过程。图1为马尔文的喷雾粒度仪,两端竖起的装置分别为激光的发射端和接收端,其可以自由移动以调整空间位置,中间的装置为鼻喷的触发装置,通过该装置我们可以按需求设置不同的触发压力或者触发速度(也有用触发时间的),同时可以调整喷射角度,这样我们就可以灵活快速地调整测试参数。   测试完成后,激光粒度仪将会实时给出整个喷射过程的状态。图2为鼻喷剂一个揿次的数据。其中横坐标为时间,纵坐标为粒径大小,几条不同颜色的曲线分别代表D10、D50、D90以及喷射浓度随喷射时间的变化。在整个0.16秒的喷射过程,可以被被分为三个阶段,0-0.02秒为触发阶段,此时颗粒喷出还不稳定,粒度迅速变小,浓度也迅速变低 0.02-0.09秒为稳定阶段,此时粒度分布数据趋于稳定 0.09-0.16秒为消散阶段,此时粒度分布变得极其不稳定,有大量大颗粒出现。激光衍射技术不但可以给出清晰的变化过程,而且可以给出整个测试过程或者每个阶段的平均粒径,图3给出每个阶段的平均粒度分布及粒径数据。 图2. 鼻喷剂一个揿次整个过程 图3. 鼻喷剂一个揿次三个阶段的分别的粒度分布及累计数据   从这也可以看出,初始阶段平均粒径在68微米左右,而稳定后粒径变小达到37微米,而消散阶段粒径进一步变大达到45微米左右。而图4则给出了连续4个揿次的喷射数据,这样我们不仅可以看到每个揿次的粒径变化、粒径平均值等,而且还可以方便快捷地看到其不同揿次间的数据变化及稳定性。 图4. 鼻喷剂4个揿次的喷射数据   图5为一款设计为50揿次的喷雾剂配方整个喷射周期内的粒径数据,从该数据可以看出,除第一揿次粒径偏大外,一直到60揿次数据都还是比较稳定,其中41揿次可能是由于操作失败造成喷射粒径明显变大,这样对于鼻喷剂以及罐体设计的喷射周期及稳定性提供了良好的数据基础。 图5. 一款设计为50揿次的鼻喷剂整个喷射周期内的粒径数据   除了看揿次间的稳定性,我们还可以观察不同配方、不同喷射泵以及不同喷射口径对于喷射粒径的影响。图6为同一鼻喷剂配方采用不同的喷射泵条件下的液滴粒径大小。 图6. 同一种鼻喷配方在两种不同泵条件下的喷射粒径影响   从该图可以看出,两种泵随着触发压力增大,液滴粒径都在显著减小,但相比之下,B泵对压力并不敏感,而A泵在压力比较低的时候,随着压力变化粒径会发生巨大变化,这些在泵体设计和选型时必须考虑的问题。 图7. 不同浓度的PVP对喷射粒径的影响(A泵)   当然药物配方对于喷射粒径也会产生较大的影响,在这里我们通过一个模拟实验来观察结果。我们在同样的装置、同样的泵速条件下(40mm/S),分别采用不同浓度的PVP水溶液来观察雾化效果,PVP浓度分别为0、0.25%、0.5%、1.0%以及1.5%。图7给出了五种配方下的喷雾中值粒径结果,从中可以看到,随着PVP浓度的增加,雾化的粒径逐渐变大,而且雾化稳定期越来越短,当PVP浓度达到1.5%时,基本已经无法找到稳定的雾化状态了。产生这样的原因可能是随着PVP浓度的增加导致雾化液粘度增加,从而导致雾化液滴粒径显著变大,但对于同样趋势的配方,我们更换了喷射泵B,结果见图8。 图8. 不同浓度的PVP对喷射粒径的影响(B泵) 图9. 孔径更小的喷嘴实验结果(B泵)   从该图可以看到,虽然随着PVP浓度增加粒度变大的趋势没有变,但喷雾稳定性明显增加,这也说明B泵提供的剪切力完全克服了雾化液粘度增加带来的波动。为了进一步考察影响喷雾粒径的影响因素,在保持图8的实验条件下,我们更换了更细的喷嘴观察雾化效果。图9展示了PVP浓度在0、0.5%和1.0%三种情况下,在更细的喷嘴下的雾化粒径结果,可以发现雾化液粒径分布显著变小,尤其是1.0%PVP浓度下,其雾化液滴中值粒径由200微米降到120微米左右。   3. Nebulizer喷雾剂   喷雾剂是指通过压缩空气驱动药液通过喷孔达到分散药物的给药剂型,其无需抛射剂、储罐容器无需加压、一般采取水性配方辅以固定的辅料等,同时对于吸入剂量较高的药物(比如诺华公司300mg妥布霉素)其雾化递送也具有明显的优势,再加上可以采取潮式呼吸的方式,因此目前喷雾剂广泛应用于医院急救室,特别是患哮喘或慢阻肺的儿童和老年患者。喷雾剂也是一个非常强调配方和雾化方式的剂型,换句话说,只有一个好的配方搭配以合适的雾化方式,才能够做出一款好的喷雾剂。当然由于呼吸的模式不同,可能也会对吸入雾滴粒径产生影响,因此我们在研究过程中,就必须三方都要考虑到,即雾化配方、雾化方式以及呼吸模式等。   图10是马尔文喷雾粒度仪测试喷雾制剂的一个示意图。其中两边是激光的发射和接收端,紧贴中间的是一个吸入式样品池,模拟人的呼吸道,而上面白色的弯管为USP人工喉,而吸入式样品池下面是接泵或者呼吸装置,这样液雾通过上面人工喉进入激光测试区域,然后通过我们的吸入样品池被泵抽走。 图10. 马尔文喷雾粒度仪测试液雾示意图   图11是一个持续液雾雾化的粒径分布结果,图中横坐标为时间,纵坐标为粒径大小,三种颜色的曲线分别为雾滴粒径的D10、D50以及D90,可以看到雾滴的粒径分布在长达10分钟的雾化时间内相对比较稳定。下面我们就将结合一些实验来考察影响雾化粒径的各种因素。我们知道,液雾雾化的方式较多,比如常见的喷射雾化、振动雾化或者超声雾化等,每种雾化都有各自的优缺点,其中喷射雾化就是比较常见的一种方式,其主要原理是通过一定速度的压缩空气携带药液通过狭小喷嘴而雾化,这时候压缩空气的流动速率就对雾化效果产生非常大的影响,图12给出了同一喷嘴在不同空气流速下的雾化粒径结果。 图11. 持续的nebulizer雾化粒度测试结果 图12. 压缩空气流动速率对雾化粒径的影响   从图中可以看出,随着空气流速速率增大,雾化液滴的粒径参数D10、D50以及D90都呈下降趋势,当流速达到11L/min时,雾化粒径达到最小,随后空气流速进一步增大,其雾化粒径反而变大,这可能是流速太大导致部分大的液滴越过挡板造成的。   同时马尔文喷雾粒度仪可以跟呼吸模拟机相连使用,从而对雾化进行更加深入的研究。图13给出了一个雾化系统在正弦呼吸模式下的雾化粒度结果,刚开始随着吸入速率逐渐增大,雾化液滴浓度迅速增加并趋于稳定,而雾化液滴粒径迅速减小然后缓慢增加,而当吸入速率逐渐变小时,雾化液浓度迅速衰减并且雾化液粒径开始显著增加并且很不稳定,这个数据也很好地体现了呼吸过程中发生的变化。 图13. 某雾化系统在正弦呼吸模式下的雾化粒度结果 图14. 不同呼吸频率下的雾化液滴粒径结果   当然我们也可以改变呼吸的方式,比如保持相同的配方和管路结构,增加呼吸频率,观察呼吸方式对于雾化粒径的影响(图14)。从图中可以看出,随着呼吸频率的增加,吸入时间也相应减少,同时吸入雾滴的流动速率也跟着增加,液滴粒径显著减小。   除了呼吸方式,雾液配方对于雾化粒径也会有显著的影响,图15给出了三种不同浓度的PVP溶液的雾化粒径结果。可以看出随着PVP的加入以及浓度的增加,其雾化粒径显著增加,这主要是由于PVP的加入增加了雾化液的粘度造成的。 图15. 不同浓度的PVP溶液雾化粒径结果 图16. 不同浓度的PVP溶液雾化吸入浓度的结果   同时图16给出了上述三种雾化液在吸入过程中雾液吸入浓度的变化,从图中可以看出,随着PVP的加入以及浓度增加,吸入浓度明显变小,这也就意味着,要想达到相同的递送剂量,对于粘度较高的雾化液可能需要更长的吸入时间。   4. DPI干粉吸入剂   干粉吸入剂(DPI)又称吸入粉雾剂,是在定量吸入气雾剂的基础上,结合粉体输送工艺而发展起来的新剂型。它是将微粉化药物单独或与载体混合后,经特殊的给药装置,通过患者的主动吸入,使药物分散成雾状进入呼吸道,从而达到局部或者全身给药的目的。干粉吸入剂具有自身显著的特点:比如无需氟利昂抛射剂,不存在大气污染问题 不含酒精、防腐剂等溶媒溶剂,减少对于喉部的刺激,同时也更加易于保存 不受药物溶解度限制,可以携带的剂量较高 固体剂型,尤其适合多肽和蛋白类药物。然而干粉吸入剂虽然不需要考虑溶解悬浮等问题,但由于粉体颗粒之间容易产生团聚,同时活性成分与辅料载体之间包覆或者相互作用因素也必须详细考量,这就对吸入装置有着更高的要求,换句话说,必须是合适的活性成分及载体,控制合适的颗粒大小,并配以合适的吸入装置,才能达到稳定安全的剂量输送。   为了进一步说明这个问题,我们用了两种不同的药物采取不同的吸入装置观察雾化效果。其中两种粉体药物分别为柳丁氨醇和布地奈德,表1给出了雾化细颗粒所占的比例。 表1. 两种粉体在不同的吸入装置下的细颗粒比例   其中可以看出,同一种物料在不同的吸入装置中分散效果差异非常大,比如布地奈德的细颗粒比例可以从14%变为63%。而如果单从粉体物性角度来说,布地奈德的分子表面能是柳丁氨醇的5倍以上,这意味着分散布地奈德的颗粒要比柳丁氨醇难得多,但我们看到最终结果却恰恰相反,布地奈德粉体分散的细颗粒更多,这也进一步说明粉体吸入分散并不是简单的按照其物理性质的规律进行的,因此如果要进行干粉吸入制剂的研究开发,就必须将粉体配方和吸入装置同时相互考量。   接下来,我们就通过一个小的实验来看看粉体配方工艺、吸入装置以及吸入速率是如何影响雾化效果的。我们选了三种配方的粉体(见表2),第一种就是普通微粉化的乳糖粉体,第二种是微粉化的乳糖添加了5%的MgSt,采取实验室普通的混合设备加工,第三种同样是微粉化乳糖添加5%的MgSt,但采用的是高强度的混合设备混合(该技术由Vectura开发)。由于硬脂酸镁本身作为一个两性的物质,可以对微粉化的乳糖形成包覆结构,从而减少乳糖的团聚,但同时混合的方式和效率也将极大地影响乳糖的包裹效率和均匀程度,这也就直接导致粉体输送的复杂性。图17给出了纯的微粉乳糖在不同吸入速率下的粒径分布情况,从图中可以看出随着吸入速率增大,其颗粒粒径明显减小,这说明虽然乳糖本身颗粒是比较小的,但由于细颗粒具有较强的团聚作用,因此随着吸入速率增加,剪切作用力增强,导致颗粒越来越小,但团聚情况依然明显。   表2. 三种不同配方及加工工艺的粉体 图17. 纯微粉化乳糖在不同吸入速率下的粒径分布 图18. 普通混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径分布 图19. 采取高能混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径分布   图18则给出了普通混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径大小,相比较纯的乳糖,首先在低吸入速率条件下,其颗粒分散粒径更小,尤其是大颗粒方面显著减小,这说明硬脂酸镁的包裹从一定程度下减小了乳糖团聚,但随着吸入速率增大,其粒度变化不明显,而且团聚依旧非常明显,这说明硬脂酸镁的包裹并不均匀,换句话说其并没有形成单个乳糖颗粒表面的包裹,而是多个乳糖团聚颗粒被包裹,这样这些大的包裹颗粒并不会随着吸入速率增加而分散,因此就造成了在高流速下,其粒径反而要比纯乳糖的要大。但如果改善了加工方式,提高了硬脂酸镁的分散均匀性和包裹效率,实现了单个乳糖颗粒的包裹,则可大大改善其分散粒径。图19则是采取高能混合方式的粉体在不同吸入条件下的粒径结果,从图中可以发现其分散粒径大大减少,基本上都在20微米以下,而且其粒度分布对于吸入速率并不敏感,这些都说明乳糖的包裹效率和均匀性得到了显著提升。   5. 激光衍射&撞击器连接 图20. 激光衍射粒度仪和安德森撞击器相连接   为了能够使激光衍射的测量条件跟碰撞法的测试条件一致,激光粒度仪还可以跟相关碰撞器相连接。图20是马尔文喷雾粒度仪跟安德森撞击器相连接的示意图,其中吸入制剂通过上面的人工喉进入到吸入样品池中进行粒度检测,然后通过下部的接口进入到撞击器中,由于是在同一通路中,大大提高了测试条件的匹配性,同时激光衍射作为一种无损检测技术,其本身不会对通路中的液滴、雾滴造成任何影响,因而大大扩展了其应用性。   6. 总结   现在吸入制剂越来越受到大家的重视,不论是气雾、液雾还是粉雾,不论何种形式,粒度检测毫无疑问都是体外检测中不可或缺的一环。当前医药研发的过程实际上就是跟时间赛跑的一个过程,因此在研发期间如何能够快速对大量配方、喷射装置以及测试条件进行筛选和甄别就显得非常关键。而激光衍射技术恰恰具有快速无损的特性,同时其结果比对性又非常强,能够快速提供大量粒径检测的相关数据,为吸入制剂的研发和生产提供坚实的保障。   (作者:李雪冰,英国马尔文仪器公司激光衍射产品专家,负责激光衍射及颗粒图像等产品的技术支持。)   注:文中观点不代表本网立场,仅供读者参考。
  • 我国攻克大功率半导体激光器关键技术
    从中国科学院长春光学精密机械与物理研究所了解到,由该所研究员王立军带领的课题组攻克了大功率半导体激光器关键核心技术,成功开发出千瓦量级、高光束质量、小型化的各种半导体激光光源,并将成为工业激光加工领域的新一代换代产品。   王立军对记者说,大功率半导体激光器是激光加工、激光医疗、激光显示等领域的核心光源和支撑技术之一。由于西方发达国家掌控着大功率半导体激光器关键核心技术,长期以来,我国工业用激光加工设备不得不依赖进口。   王立军介绍说,他们的团队历经数年努力,通过激光光束整形、激光合束等关键技术,实现了高光束质量半导体激光大功率输出。   据了解,日前由王立军团队承担的这项研究——“高密度集成、高光束质量激光合束高功率半导体激光关键技术及应用”荣获了2011年度国家技术发明奖二等奖。项目组已经开始与一汽集团和北车集团接洽,尝试将这项技术应用于汽车制造等领域。
  • 激光精密测量技术及其在高端装备制造业中的应用
    “中国制造 2025”发展战略对高端装备制造业的质量提出了更高要求。超精密测量对提升高端装备制造质量具有基础支撑作用,并在制造全过程中的质量控制发挥决定性作用;只有解决整体测量能力问题,才能从根本上解决高端装备制造质量问题。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。目前,越来越多的激光精密测量系统已作为产品检测的重要环节融入高端装备制造生产线,并已成为大型装备制造业中质量保证的重要手段,包括激光干涉仪、激光跟踪仪等。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器,广泛应用于材料几何特性表征、精密传感器标定、精密运动测试与高端装备集成等场合;特别是基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。为帮助用户更好地了解激光精密测量技术及其在高端制造中的应用,仪器信息网将于2022年10月20-21日举办首届“精密测量与先进制造”主题网络研讨会,特邀中国科学院微电子研究所主任周维虎、清华大学教授张书练、哈尔滨工业大学长聘教授胡鹏程、中国计量科学研究院副研究员崔建军分享主题报告。 点击图片直达报名页面中国科学院微电子研究所主任/研究员 周维虎《激光跟踪仪精密测量技术与应用》(点击报名)周维虎研究员长期从事精密光电测量技术与仪器研究,主持科技部重大仪器专项、国家重点研发计划、自然基金重大仪器专项、国防科工局重点预研、装备发展部军用测试仪器、中科院仪器装备项目等50余项精密测量与仪器类课题,获得中国机械工业科学技术发明特等奖、中国计量测试学会技术发明一等奖等7项省部级奖励,发表论文近200篇,申请专利近50项,编写教材1部,起草国家计量检定规程和规范4部,获得国务院特殊津贴、中科院朱李月华优秀教师奖、江苏省双创领军人才、青岛市创新领军人才等称号。成功研发国际上首台飞秒激光跟踪仪、国内首台三自由度激光跟踪仪和六自由度激光跟踪仪,打破了国外在激光跟踪测量领域的技术垄断。担任中国科学院大学岗位教授、博士生导师,北京航空航天大学、华中科技大学、大连理工大学、吉林大学、合肥工业大学等十余所高校兼职教授和博士生导师,南京航空航天大学特聘教授,湖北工业大学楚天学者教授。担任《计测技术》、《测控技术》、《中国测试》和《光电子》期刊编委,《Optical Engineering》、《中国航空学报(中、英文)》等十余份国内外期刊审稿人。报告摘要:激光跟踪仪用于超大尺寸空间几何量测量,具有测量速度快、精度高、范围大,可现场测量等特点。在航空航天、船舶、雷达、高铁、能源设备、汽车、大科学装置等大型装备制造领域具有广泛应用,本报告重点介绍激光跟踪仪研发技术及相关领域中应用。清华大学教授 张书练《激光回馈精密测量技术新进展》(点击报名)张书练,清华大学教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。曾任清华大学精密测试技术及仪器国家重点实验室主任,现任广东省计量院重点实验室学术委员会主任。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。哈尔滨工业大学长聘教授 胡鹏程《超精密激光干涉位移测量技术进展与挑战》(点击报名)胡鹏程,哈工大长聘教授、博导,精密仪器工程研究院副院长,2019年入选国家高层次青年人才计划。校内兼职:第二届校学术委员会,委员;超精密仪器技术及智能化工信部重点实验室,副主任;超精密光电仪器工程研究所,常务副所长。校外兼职:中国计量测试学会,第八届计量仪器专业委员会,副主任委员;IEEE Senior Member;中国电子学会、中国光学工程学会,高级会员;中国仪器仪表学会传感器分会,理事;教育部学位与研究生教育发展中心,中国高校创新创业教育研究中心,评审专家;《光学精密工程》编委,《哈尔滨工业大学学报》青年编委,《红外与激光工程》青年编委;国家重点研发计划引力波探测重点项目,咨询专家组,成员;ISPEMI 2018, Secretary General;IFMI&ISPEMI 2020,Cochair of organizing committee,IFMI&ISPEMI 2022,Cochair of organizing committee 学术研究:围绕超精密激光测量与光电仪器方向,从事基础研究、关键技术突破和仪器研制测试。承担国家科技重大专项课题、技术基础项目、国家重大工程项目、国家自然科学基金国际合作研究项目、国家自然科学基金重大研究计划课题、国家自然科学基金面上项目等,项目经费1.2亿余元;发表SCI检索论文60篇,出版编著1部,申请/授权国内外发明专利152项。 科研成果奖励:中国计量测试学会科学技术进步奖,一等奖(第1完成人,基础类,2021年);国家技术发明奖,二等奖(第5完成人,2013年)等。报告摘要:甚多轴高速超精密激光干涉测量技术与仪器是高端装备发展与前沿研究的重大核心基础技术,作为光刻机等高端装备中不可替代的核心单元,其直接决定了装备所能达到的极限运动精度与整体性能;作为溯源精度最高的长度计量测试仪器,其准确统一全国相关量值,支撑国际单位制量子化变革等前沿研究。随着高端装备发展与前沿研究的迅猛发展,其甚多轴、高速、超精密测量需求越加显著,使激光干涉测量技术发展不断面临新的挑战。为此,开展了甚多轴高速超精密激光干涉测量技术研究,突破了激光稳频、多轴干涉镜组、干涉信号处理等多项关键技术,研制成功系列超精密激光干涉测量仪器,测量速度优于5m/s,动态测量分辨力0.077nm,光学非线性误差优于0.02nm,并在微电子光刻机、国家基准装置、德国PTB超测量装备等成功应用,为我国高端装备发展与前沿研究奠定重大共性技术基础。中国计量科学研究院课题组长/副研究员 崔建军《差分珐珀激光干涉微位移计量及应用研究》(点击报名)崔建军副研究员长期从事精密几何量测量技术及计量标准研究,主持和参加科技部重大仪器专项、国家重点研发计划、国家及北京市自然科学基金项目、国家市场监管总局项目等30余项精密测量与几何量计量研究项目,获得浙江省科学技术进步二等奖、国家质检总局科技兴检二等奖、中国计量测试学会科学技术进步三等奖等多项省部级奖励,发表论文近40余篇,申请专利近30项,软件著作权20余项,正在负责及参加起草的国家计量检定规程规范10余项。主持建立新一代双频激光干涉仪计量标准装置、激光测微仪、光栅式测微仪校准装置、纳米薄膜厚度计量标准装置等多项国家量值最高的计量标准装置。提出了双频差分法布里珀罗激光干涉技术原理,研制了准确度达到数十皮米的微位移及干涉仪非线性计量装置。担任担任全国半导体器件、全国光学和光子学光纤传感、全国试验机等3个标准化技术委员会委员,担任中国机器人检测认证联盟技术委员会分工作专家组专家,国家计量标准的一级考评员和一级注册计量师,中国计量科学研究院研究生导师,南方科技大学、河南理工大学等多所高校兼职研究生导师,担任《计量学报》、《计量科学与技术》、《中国计量》、《中国激光》,《光学学报》、《sensor review》《measurement》、等十余份国内外期刊审稿人。报告摘要:微位移测量是高端装备核心零部件设计和先进制造急需的应用基础技术,也是几何量计量、微纳制造和光刻技术等发展所急需的关键技术。报告针对当前急需的纳米及亚纳米精度的激光干涉仪、亚纳米电容测微仪和纳米位移传感器等难以计量的现状,创造性提出采用固定频差双频激光建立差分珐珀干涉系统的光学理论,并研究基于该理论构建精度达到数十皮米甚至更高量级的位移测量技术实现方法,研制实现皮米级分辨力的高精度位移测量装置,推动国家精密测量、先进制造等领域的高质量发展,也为建立皮米级国家最高微位移计量标准装置提供技术方法。扫码报名抢位指导单位:中国计量测试学会主办单位:仪器信息网协办单位:上海大学会议日程报告时间报告主题报告人单位职务10月20日上午09:30-10:00工业视觉技术进展及装备应用邾继贵天津大学精密仪器及光电子工程学院院长10:00-10:30激光跟踪仪精密测量技术与应用周维虎中国科学院微电子研究所主任/研究员10:30-11:00激光回馈精密测量技术新进展张书练清华大学教授11:00-11:30待定胡鹏程哈尔滨工业大学长聘教授10月20日下午14:00-14:3020年来齿轮测量技术的发展石照耀北京工业大学长江学者特聘教授14:30-15:00基于波长移相技术的光学平行平板轮廓和厚度信息测量技术于瀛洁上海大学机电工程与自动化学院院长15:00-15:30视觉在线测量与检测技术卢荣胜合肥工业大学教授15:30-16:00面向智能制造的全过程、全样本、全场景测量李明上海大学教授10月21日上午09:00-09:30工业摄影测量技术研究及应用郑顺义武汉大学教授09:30-10:00装备空间运动误差被动跟踪测量方法与仪器娄志峰大连理工大学副教授10:00-10:30差分珐珀激光干涉微位移计量及应用研究崔建军中国计量科学研究院课题组长/副研究员10:30-11:00面向先进制造过程的在线计量技术研究赵子越中国航空工业集团公司北京长城计量测试技术研究所高级工程师
  • 高分辨率激光外差光谱技术研究取得进展
    近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所副研究员许振宇团队在激光外差光谱技术研究中获进展。相关研究成果发表在《光学通信》(Optics Letters)上。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,研究人员提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明,相比于传统的高分辨率激光外差光谱仪,所研发的基于半导体光放大的高分辨率激光外差光谱仪的弱光信号探测和气体浓度测量精度得到大幅提升。该研究有助于提高高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大应用潜力。相关研究工作获得国家自然科学基金、国家重点研发计划等项目的资助。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • 欧波同应邀参加中国激光微纳加工技术大会
    2016 年 9 月 21-23 日,“中国激光微纳加工技术大会”在苏州召开。国内著名激光专家集结于此,共同商讨微纳加工,为推动苏州乃至全国的激光产业发展贡献力量。欧波同有限公司应邀出席了此次盛会并带来了报告分享,为激光行业注入了国际尖端的科技力量。 本次会议的三大主题分别为“激光微纳加工前沿技术”、“集成电路 IC、光伏、电子芯片等的激光处理”、“激光在电子产品、移动终端的工艺解决方案”。 欧波同高级工程师为与会专家学者带来了“欧波同微纳米结构显微分析系统解决方案”的精彩分享。介绍了欧波同旗下微纳米分析产品线,从光学微观形貌观察到电子光学纳米形貌的分析,以及能谱、背散射、背散射衍射、波谱、阴极荧光等一系列电镜辅助分析手段,为与会专家提供了一套完整的微纳米全系统实验室解决方案,充分拓展了蔡司显微镜在微纳米研究中的功能。 工程师还为与会专家学者现场展示了蔡司的显微镜设备,并与许多参会专家纷纷就自己在实际工作中遇到的问题进行了深入的交流探讨。 目前,微纳加工技术已成为国家科学技术发展水平的重要标志。近年来,微纳技术的出现促使微纳加工向其极限加工精度——原子级加工进行挑战。 未来,激光微纳加工技术市场前景将更加广阔,此次论坛的开展将有利于激光微加工技术的普及推广,帮助客户找到最适用的显微镜分析系统解决方案一直是欧波同所追求的方向,作为将国际尖端显微镜检测技术引进到中国的先驱,提高中国激光微纳加工技术的整体质量控制水平是我们的责任。希望通过我们的技术与服务,不断为中国各领域的质量检测和科研创新带来全新的视野!
  • 上海光机所杨上陆:国产电镜助力激光制造技术创新
    希望能够跟国内外企业协同创新,共同打造更加先进的高端装备,从而更快地推动我们在应用基础研究及技术开发上的发展——中国科学院上海光学精密机械研究所研究员 杨上陆焊接,是连接金属材料的重要方式。从最初的电弧焊接到今天的激光焊接,每一次焊接技术的革新,都绘就了现代工业文明的壮丽画卷。图片来源:摄图网持续创新,为中国激光制造技术添砖加瓦近年来,随着新能源汽车、航空航天等领域对轻质高强度材料的需求不断增长,传统的材料焊接技术已无法满足业界需求。中国科学院上海光学精密机械研究所作为我国建立最早、规模最大的激光专业研究所,设立了激光智能制造研发中心,重点深耕激光焊接、激光精密制造、激光增减材制造、激光冲击强化等核心器件开发、关键工艺的突破和高端装备的研发。中心负责人杨上陆研究员介绍:“我们团队主要围绕轻量化、高性能材料先进激光制造技术的研发,努力构建新材料-新工艺-新装备-新结构之间的新的技术体系,注重应用基础研究、知识产权布局和技术转移转化相结合,坚持通过创新为社会创造价值的理念。近年来,在铝硅涂层热成型钢激光填丝焊接、铝合金电阻点焊、异质材料连接等领域取得了突破”。“牛顿环”铝合金电阻点焊技术攻克了几十年的行业难题,可实现板材、型材、铸铝等铝合金材料的高质量焊接。自2023年起,该技术已应用于吉利、极氪、路特斯等品牌汽车的制造中,也应用在宁德时代、威唐等企业的储能产品,在半导体行业也实现了应用。针对新能源汽车轻量化关键轻量化材料之一的铝硅涂层热成型钢,团队打破了该材料激光焊接技术长期被垄断的局面,实现了不同强度级别、不同涂层厚度和不同供应商材料的“多合一”一体化解决方案。从用户反馈来看,该技术不仅提升了生产效率,也大幅降低了制造成本,提升了制造利润。2023年9月开始,该技术已在多家汽车公司应用。从电极材料制造到失效分析,国仪电镜服务创新全流程为观察焊接接头微观组织及形貌和接头失效分析,通过机理的理解来指导先进焊接工艺开发与改进,激光智能制造研发中心于2022年通过公开招采,引进了国仪量子研制的场发射扫描电镜SEM5000。从材料到制造,再到最终产品性能分析的全过程,都离不开对产品微观结构的检测。传统光学方法无法观测微观细节,因此必须借助扫描电镜来深入分析内部微观组织。“扫描电镜不仅是我们团队每天必须使用的重要工具,更是推动科研创新的强大利器。” 杨上陆说,“它极大加快了我们的研发步伐。”激光智能制造研发中心博士后张家志介绍:“团队通过国仪量子的扫描电镜,对高强钢、铝合金、铜合金、钛合金等材料的焊接接头和失效断口进行组织分析和元素分析。找出断裂机理,指导工艺优化和改进。在‘牛顿环’铝合金电阻点焊技术和铝硅涂层热成型激光焊接技术开发研究过程中,我们也广泛使用了国仪量子扫描电镜,分析接头微观组织和失效断口。国仪量子扫描电镜为“牛顿环”电阻点焊工艺优化和电极改进以及铝硅涂层激光焊接技术开发提供了重要依据。”与国产品牌协同创新,实现自主可控,推动技术升级 牛顿环、盘古界、昆仑镜......激光智能制造研发中心团队的工程师们为他们自主研发的多项技术装备赋予了独特的称谓。杨上陆介绍:“铝合金电阻点焊技术之所以取名“牛顿环”,是因为这项技术所发明的电极形状与光学上的“牛顿环”图样相似,我们想传承牛顿为人类社会进步所做出伟大贡献的科学精神,所以取名为牛顿环。随着新技术、新成果的不断涌现,我们希望这些成果能够建立起属于国人的品牌符号,也就有了盘古界、昆仑镜这些富有传统文化特色的名称。”从产品命名到科研创新,对自主可控的追求贯穿了团队上下。杨上陆说:“实验室仪器装备至关重要。中心希望通过与国内企业的合作,实现高端分析仪器设备的自主可控,拥有自主品牌,形成先进装备与制造技术的良性互促,从而加速科技自主创新,推动制造业高质量发展。扫描电镜对我们这个领域非常重要,我们也希望能够自主可控。”自主可控、用户友好是国仪量子扫描电镜的重要优势。“国仪量子的扫描电镜界面更加人性化,操作简单,即使是没有扫描电镜基础的人员,经过短时培训就可以很快上手。”张佳志说,“而且分辨率和探测器性能都非常优秀,与进口电镜相当,但中文界面和操作更加友好。”他还很赞赏国仪量子的售后服务,“只要有需求,基本能在24小时内得到高效响应和解决。”“国产新能源汽车的不断发展,背后是无数中国科研人的智慧与汗水,是牛顿环、盘古界、昆仑镜等自主创新技术的推广与应用,也是国仪量子等国产科学仪器厂商的执着与坚守。未来,随着更多国产技术装备的突破,先进装备与制造技术必将实现良性互促,推动产业发展升级。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制