当前位置: 仪器信息网 > 行业主题 > >

基因剪辑

仪器信息网基因剪辑专题为您整合基因剪辑相关的最新文章,在基因剪辑专题,您不仅可以免费浏览基因剪辑的资讯, 同时您还可以浏览基因剪辑的相关资料、解决方案,参与社区基因剪辑话题讨论。

基因剪辑相关的资讯

  • 基因编辑技术,最后一块拼图补齐:线粒体中实现A到G碱基转换
    生物技术重大发现的历史时间表。图片来源:韩国基础科学研究所  科技创新世界潮韩国基础科学研究所(IBS)基因组工程中心研究人员开发了一种新的基因编辑平台,称为类转录激活因子效应相关脱氨酶(TALED)。TALED是能够在线粒体中进行A到G碱基转换的碱基编辑器。这一发现是长达数十年治愈人类遗传疾病之旅的结晶,而TALED,也被认为是基因编辑技术中最后缺失的一块拼图。研究成果发表在最新一期《细胞》杂志上。“基因剪刀”的魔力与缺憾从1968年第一个限制性内切酶的发现、1985年聚合酶链式反应的发明到2013年CRISPR介导的基因组编辑的示范,生物技术的每一个新突破发现都进一步提高了操纵DNA的能力。特别是,新近开发的CRISPR—Cas系统(“基因剪刀”)允许对活细胞进行全面的基因组编辑。这为通过编辑人类基因组中的突变来治疗以前无法治愈的遗传疾病开辟了新的可能性。虽然基因编辑在细胞的核基因组中取得了很大的成功,然而,科学家们在编辑拥有自己基因组的线粒体方面并不成功。线粒体,即所谓的“细胞的动力室”,是细胞中的微小细胞器,充当能量产生工厂。由于它是能量代谢的重要细胞器,如果基因发生突变,则会导致与能量代谢相关的严重遗传疾病。韩国IBS基因组工程中心主任金镇秀解释说:“由于线粒体DNA缺陷,出现了一些非常严重的遗传性疾病。例如,导致双眼突然失明的Leber遗传性视神经病变是由线粒体DNA中的简单单点突变引起的。”另一种线粒体基因相关疾病包括伴有乳酸性酸中毒和卒中样发作的线粒体脑肌病,它会缓慢破坏患者的大脑。一些研究甚至表明,线粒体DNA异常也可能是阿尔茨海默病和肌肉萎缩症等退行性疾病的原因。线粒体DNA可以编辑了线粒体基因组遗传自母系。线粒体DNA中有90个已知的致病点突变,总共影响至少5000人中的1人。由于向线粒体递送方法的限制,许多现有基因组编辑工具无法使用。例如,CRISPR—Cas平台不适用于编辑线粒体中的这些突变,因为引导RNA无法进入细胞器本身。另一个问题是缺乏这些线粒体疾病的动物模型。这是因为目前不可能设计出创建动物模型所需的线粒体突变。”金镇秀补充道,“缺乏动物模型使得开发和测试这些疾病的治疗方法变得非常困难。”因此,编辑线粒体DNA的可靠技术是基因组工程的前沿领域之一,为了征服所有已知的遗传疾病,必须探索这一前沿领域,世界上最优秀的科学家多年来一直在努力使其成为现实。2020年,由美国哈佛大学博德研究所和麻省理工学院刘如谦领导的研究团队创建了一种新的碱基编辑器,名为DddA衍生的胞嘧啶碱基编辑器,可从线粒体中的DNA进行C到T转换。这是通过创造一种称为碱基编辑的新基因编辑技术来实现的,该技术将单个核苷酸碱基转化为另一个碱基而不会破坏DNA。但是,这种技术也有其局限性。它不仅仅限于C到T转换,而且主要限于TC基序,使其成为有效的TC-TT转换器。这意味着它只能纠正90个已确认的致病性线粒体点突变中的9个,也就是10%。长期以来,线粒体DNA的A到G转换被认为是不可能的。研究第一作者赵兴义说:“我们开始思考克服这些限制的方法。因此,我们创建了一个名为TALED的新型基因编辑平台,可实现A到G的转换。我们的新碱基编辑器极大地扩展了线粒体基因组编辑的范围。这不仅可为建立疾病模型作出巨大贡献,还可为开发治疗方法作出巨大贡献。值得注意的是,其在人类mtDNA中能够进行A到G的转化可纠正90种已知致病性突变中的39种,约为43%。”研究人员通过融合三种不同的成分创造了TALED。第一个组分是转录激活子样效应子,它能够靶向DNA序列。第二个组分是TadA8e,一种用于促进A到G转化的腺嘌呤脱氨酶。第三个组分DddAtox,是一种使DNA更容易被TadA8e获取的胞嘧啶脱氨酶。TALED的一个有趣的方面是TadA8e在具有双链DNA的线粒体中执行A到G编辑的能力。这是一种神秘的现象,因为TadA8e是一种已知仅对单链DNA具有特异性的蛋白质。金镇秀说:“以前没有人想过使用TadA8e在线粒体中进行碱基编辑,因为它应该只对单链DNA具有特异性。正是这种跳出框框的思维方法真正帮助我们发明了TALED。”诺贝尔奖级别的成果研究人员推测,DddA tox允许通过瞬时解开双链来访问双链DNA。这个转瞬即逝的临时时间窗口允许TadA8e作为一种超快作用的酶,快速进行必要的编辑。除了调整TALED的组件外,研究人员还开发了一种能够同时进行A到G和C到T碱基编辑以及仅进行A到G碱基编辑的技术。研究团队通过创建包含所需mtDNA编辑的单个细胞衍生克隆来展示这项新技术。他们发现TALED既不具有细胞毒性,也不会导致mtDNA不稳定。此外,核DNA中没有不良的脱靶编辑,mtDNA中的脱靶效应也很少。研究人员现在的目标是通过提高编辑效率和特异性来进一步改善TALED,最终为纠正胚胎、胎儿、新生儿或成年患者中的致病mtDNA突变铺平道路。研究团队还专注于开发适用于叶绿体DNA中A到G碱基编辑的TALED,叶绿体DNA编码植物光合作用中的必需基因。基础科学研究所科学传播者苏威廉称赞道:“我相信这一发现的意义可与2014年获得诺贝尔奖的蓝色LED的发明相媲美。就像蓝色LED是让我们拥有高能效白光LED光源的最后一块拼图一样,预计TALED将迎来基因组工程的新时代。”
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 迄今最全面人类基因组测序完成,比原图增加2亿碱基对和2000多个基因
    最新测序的完整的人类基因组图谱。图片来源:英国《新科学家》网站20年前,科学家宣布读取了一个人的全部脱氧核糖核酸(DNA),其实,他们漏掉了少许。现在,由于读取DNA方法的改进,科学家终于可以从头到尾读取人类的全部基因组了!据生物预印本网站(biorxiv)近日报道,美国科学家对全部人类基因组30.55亿个碱基对进行了测序,与此前结果相比,新结果增加了2亿个碱基对以及2000多个基因。人类拥有数万个基因,它们储存于DNA分子中,基因信息以4种碱基(C、G、T和A)的形式存在,两个碱基相互配对形成碱基对。科学家于1990年启动了人类基因组测序项目,并于2001年公布了首个人类基因组草图。但当时不得不将基因组分成小段读取,然后重新组装在一起,而这样无法将一些高度重复的片段放回原位。随后遗传学家继续改进,但重点还是放在提高现有序列的精确度,而非增加新序列,仍有约8%的序列缺失或错误。新版本基因组由“端粒到端粒”(T2T)联盟绘制。该联盟由加州大学圣克鲁斯分校的卡伦米加和国家人类基因组研究所的亚当菲利皮领导。研究人员选择从一个被称为CHM13的细胞系中读取DNA。该细胞系来自水泡状胎块——一种妊娠失败情况,可以在实验室中培养这种细胞。菲利皮说:“CHM13的独特之处在于,它不是任何人的基因组。”普通人类细胞的每段DNA都有两个副本,往往存在重大差异,一个来自母亲,另一个来自父亲,这使得对DNA精确测序变得更加困难,因为要搞清楚什么是测序过程中的失误、什么是真正的差异非常棘手。使用CHM13避免了这个问题,因为两个副本几乎完全相同。为组装基因组序列,研究团队利用了两种技术:一种是能读取非常长(超过100万个碱基对)片段的测序技术;另一种是精确度极高、能处理差别极小的片段(比如同一个基因的多个副本)的技术。2020年7月,该团队公布了完整的决定性别的人类X染色体。现在,他们公布了完整的人类基因组,新版本比上一个版本增加了近2亿个碱基对以及2226个新基因,是自人类参考基因组首次发布以来进行的最大改进。
  • 【测评教程】如何拍摄、剪辑仪器测评类视频?
    科学仪器测评“小红书”活动火热进行中(环球影城门票、百元京东卡等大奖 点击查看参赛作品展播 )!活动至今,我们已经陆续收到广大仪器用户的精彩测评视频,也感受到了大家的工匠精神以及满腔热情。为便于参赛者拍摄出更好的作品,本期3i生仪社社长YOLO联合仪器信息网视频中心剪辑师Andres,教大家如何快速拍摄和剪辑视频。【视频拍摄流程】一、物品准备一部手机手机支架(或者实验记录本/书本/打印纸)待测评的仪器设备二、测评维度1、外观设计2、性能参数3、操作使用感受4、售后服务5、对厂商/仪器提出合理化改进意见6、结束语——“谢谢大家,我的初步测评就先到这里,下次有机会进行深度的测评。请大家持续关注仪器信息网举办的仪器测评“小红书”系列活动。”【拍摄手法技巧】1、环绕拍摄 :将手机对准仪器,从仪器的左边到右边,慢慢地、稳定地拍摄以展示仪器主体的全貌。2、平移拍摄 :如果仪器是上下纵向设计,我们可以上下的进行拍摄;如果仪器是横向设计的话,我们也是从左到右进行缓慢的平移展示。3、细节拍摄:我们将手机设备缓慢的靠近仪器,对焦到需要突出展示的仪器设计细节部分即可。【视频剪辑】视频剪辑其实很简单,我们这里会用到剪映(点击下载)这款软件,在网上搜索剪映即可以免费下载和使用。安装好软件后,我们只需要简单的五步即可完成:第一步——将手机里的视频导入电脑;第二步——将电脑里的素材导入剪映;第三步——将素材中没用部分删减去;第四步——将仪器空镜素材放到说话素材的上方;第五步——导出视频最后将导出的视频按要求上传到仪器论坛↓参赛入口↓即可~~~https://bbs.instrument.com.cn/boardlist/bbs/post/?forumid=706&FTTID=107 在12月30日之前按要求拍摄视频并上传视频作品即可参与评奖参赛标题:【仪器测评“小红书”】XX品牌+品类+型号这就是本期全部内容希望对大家的拍摄剪辑有所帮助期待大家上传精彩作品仪器测评“小红书”活动火热进行中↓大奖等你来拿↓点击下图查看详情
  • 新型安全高效的单碱基编辑系统—TaC9-CBE
    近十年来,以 CRISPR 系统为代表的基因编辑技术迅猛发展,在包括农业、畜牧业和生物医药等各个领域的基础科研和应用中不断涌现出耀眼成果。2020年 CRISPR 技术因其强大的功能和影响力摘得诺贝尔化学奖。然而,随着研究的深入,其引起的 DNA 双链断裂和高脱靶效应等一系列副反应也逐渐走入人们的视野,CRISPR 技术的安全性开始备受关注。单碱基编辑技术以其高效和精确的基因编辑能力,成为目前最有希望治愈各种遗传疾病的明星工具。由 gRNA 与 Cas9-脱氨酶形成 RNP 复合物,gRNA 引导复合物结合在基因组目标位点,Cas9 负责解开 DNA 双链,并将靶向链切断,脱氨酶对非靶向单链 DNA(ssDNA)上的碱基进行脱氨,细胞修复过程中实现碱基转换。然而,单碱基编辑工具被发现具有明显的脱靶编辑效应,主要包括 Cas9 非依赖的 DNA 和 RNA 脱靶效应和 Cas9 依赖的 DNA 脱靶效应。通过对脱氨酶的修饰可大大降低蛋白对核酸链的非特异结合,从而最大限度地减少 Cas9 非依赖的脱靶效应。但由于 Cas9 蛋白本身存在的 Cas9 依赖性脱靶,人们依然对其临床应用的安全性表示担忧。尽管目前已有多种方法尝试解决这一问题,但都无法在保持目标效率的同时解决 Cas9 依赖性脱靶问题。2022年3月,中国科学院广州生物医药与健康研究院赖良学研究员与五邑大学邹庆剑副教授团队合作,首次将腺苷脱氨酶与转录激活因子样效应子(TALE)融合,开发了一种新型腺嘌呤碱基编辑系统——TaC9-ABE。该新型碱基编辑系统可以完全消除Cas9依赖性脱靶,而不影响任何靶向编辑效率。相关成果以:Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to the target site 为题在线发表在 Cell Discovery 期刊上。TaC9-ABE单碱基编辑技术原理近日,该团队再次证实将 TALE 技术与 Cas9 技术结合起来,同样可以实现更加安全高效的胞嘧啶碱基编辑系统——TaC9-CBE。相关成果以:Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE 为题于在线发表在 Molecular Therapy 期刊上。TaC9-CBE单碱基编辑技术原理在 TaC9-ABE 和 TaC9-CBE 碱基编辑系统中,研究人员将脱氨酶与 nCas9 分离,脱氨酶与 TALE 连接,nCas9 与 gRNA 结合,由 TALE 和 gRNA 分别将两个效应器引导到 DNA 靶位点,同时发挥作用,实现靶位点的 A to G 或 C to T 的突变。如果 nCas9 被 gRNA 带到错误的位点,由于没有脱氨酶的存在,碱基转换就不能发生;同理,如果脱氨酶被 TALE 引导至错误的位点,由于没有 nCas9 的存在,不能形成单链 DNA,脱氨酶发挥不了作用,碱基转换也不能发生,这样就彻底地排除了发生 Cas9 依赖性脱靶的可能性。研究结果证实,TaC9-碱基编辑系统在保证高效但碱基编辑的同时,对 gRNA 依赖的脱靶位点以及 TALE 依赖的脱靶位点进行深度测序均未检测到脱靶现象。图3.各种CBE编辑器的Cas9依赖脱靶测试这项研究为基因编辑动植物的培育和人类遗传性疾病的基因治疗提供了一个安全的单碱基编辑工具。TaC9-ABE 论文中,中国科学院广州生物医药与健康研究院博士研究生刘洋和蓝婷、五邑大学周小青博士和广东工业大学博士研究生周继曾为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员和五邑大学邹庆剑副教授为论文的共同通讯作者。TaC9-CBE 论文中,广东工业大学博士生周继曾、中国科学院广州生物医药与健康研究院博士生刘洋、硕士生魏愈惠和五邑大学硕士生郑淑文为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、五邑大学张焜教授和邹庆剑副教授为论文的共同通讯作者。论文链接:https://www.nature.com/articles/s41421-022-00384-4https://doi.org/10.1016/j.ymthe.2022.04.010
  • 小柿子教你如何做视频:第一弹【剪辑软件】
    近年来短视频市场的兴起让大家纷纷投入进来,但是也有很多分析检测与仪器界的网友跟厂商,对视频制作无从下手。我该拍什么?为什么我的视频质量差那么多?脑子里的特效及想法应该怎么实现呢?为解决大家的疑惑,仪器信息网特制作《教你如何做视频》系列视频,那么本期小柿子会给大家讲一些视频入门的实用剪辑工具,希望不管是在为自己的公司投稿视频作品时,还是自己记录生活时,都能帮助到大家。视频中涉及的软件地址小柿子已经为大家放在评论区啦,大家拿取的时候别忘了给小柿子点赞哦下期为大家讲解关于视频用到的音乐及素材版权的问题,我们下期再见(´▽`ʃ♡ƪ)
  • Revvity宣布与阿斯利康签订下一代碱基编辑技术的新许可协议
    根据非排他性协议,阿斯利康(AstraZeneca)有权使用专有基因编辑技术,帮助推进在细胞治疗方面的工作中国上海 – 2023年5月23日 – Revvity 有限公司 (NYSE: RVTY)近日宣布与阿斯利康 (AstraZeneca, LSE/STO/Nasdaq: AZN) 签订新的许可协议,基于Revvity的 Pin-point ™基因编辑系统技术,即一种具有强大安全性的下一代模块化基因编辑平台,可帮助阿斯利康推进其细胞治疗工作。Revvity生命科学资深副总裁Alan Fletcher博士表示:“我们的基本目标是将Pin-point™平台从临床前研究转化为临床研究,并最终影响患者的生活。本着这种精神,我们很高兴地宣布与阿斯利康签订非排他性协议,以支持其在治疗癌症和免疫介导疾病方面所进行的细胞疗法的研究。”Pin-point™技术介绍Pin-point系统及其碱基编辑技术旨在实现高效且精确的单基因和多基因编辑,而不会对细胞的生存能力或功能产生意外影响。与传统的CRISPR技术相比,后者会在DNA中产生双链断裂,而这种新的编辑系统使用修改后的Cas酶仅切割DNA的一条链。这项技术让基因破坏和碱基修复更具有可控性。Pin-point系统与其它碱基编辑系统的区别在于完全实现了模块化,可选择不同组件以实现针对具体基因编辑目标的最佳性能。目前Pin-point系统已经在T细胞和iPSC中展示了碱基编辑的能力,表明该技术在各种细胞类型和治疗指标中具有潜力。Revvity 还开发了全新的专有方法,利用碱基编辑机制来插入基因,例如通过在敲入CAR的同时敲除免疫标志分子来创建同种异体 CAR-T 细胞疗法。Pin-point 碱基编辑系统是Revvity公司细胞和基因疗法产品组合的一部分,该组合涵盖了基因调控和编辑、细胞分析、免疫测定以及优化的AAV和慢病毒载体开发和制造,以提高细胞基因疗法的特异性、有效性和安全性。解决方案涵盖从功能基因组学分析、有效载荷设计、QA/QC 和载体优化以及表征、自动化和工艺开发领域,助力客户实现其细胞和基因治疗研究、开发和制造目标。关于Revvity在Revvity,我们将“不可能”视为灵感,将“做不到”视为原动力。Revvity提供健康科学解决方案、前沿技术和专业服务,业务涵盖科研探索、开发、诊断、治疗的端到端全流程。依托在转化多组学技术、生物标志物鉴定、成像、疾病的预测、筛查、检测与诊断、信息学等领域的多年深耕,Revvity正以科技之能,突破人类潜能的边界。2022年Revvity的营业额超过30亿美元,全球拥有11,000多名员工,为制药和生物技术、诊断实验室、学术界和政府客户提供服务。公司是标准普尔500指数的成员,客户遍及全球190 多个国家和地区。
  • Nature|天津工生所:新一代碱基编辑技术开发获进展
    碱基编辑(base editing,BE)作为前沿的基因组编辑技术,能够在基因组水平上实现精确、高效的单碱基编辑。该技术广泛应用于基础研究、基因治疗和细胞工厂构建等领域。常用的DNA碱基编辑器主要是通过将可编程的DNA结合蛋白(如Cas9)与碱基脱氨酶融合实现的,包括胞嘧啶碱基编辑器(CBE)、腺嘌呤碱基编辑器(ABE)以及糖基化酶碱基编辑器(GBE)等,可以实现C-to-T、A-to-G以及C-to-G等种类的碱基编辑。然而,这些碱基编辑器是针对C和A碱基的直接编辑,且所包含的脱氨酶可能导致非Cas9依赖的DNA或RNA脱靶。 中国科学院天津工业生物技术研究所研究员毕昌昊带领的合成生物技术研究团队,联合研究员张学礼带领的微生物代谢工程研究团队,开发了不依赖脱氨酶(deaminase-free,DAF)的碱基编辑器DAF-CBE和DAF-TBE,分别在大肠杆菌中实现C-to-A、T-to-A的碱基颠换,在哺乳动物细胞中实现C-to-G、T-to-G的碱基颠换编辑。 该研究通过定向进化改造了人源尿嘧啶糖基化酶(UNG)的两个突变体UNG(N204D)和UNG (Y147A),获得了两种高活性的DNA糖基化酶,分别可以作用于胞嘧啶碱基的CDG4和胸腺嘧啶碱基的TDG3。进而,研究将这两种DNA糖基化酶与nCas9(Cas9、D10A)融合,构建了CDG4-nCas9和TDG3-nCas9两种碱基编辑器,用于在大肠杆菌中进行C-to-A和T-to-A的编辑。实验结果显示,CDG4-nCas9和TDG3-nCas9在大肠杆菌中的编辑效率最高分别达到58.7%和54.3%。进一步,研究针对Homo sapiens密码子优化版本的CDG4-nCas9和TDG3-nCas9,在HEK293T细胞中实现了C-to-G和T-to-G的颠换编辑,编辑效率分别达到38.8%和48.7%。这两种编辑器的脱靶效果低于常用的胞嘧啶碱基编辑器(BE4max)和糖基化酶碱基编辑器(CGBEs)。因此,研究将这两个编辑器命名为DAF-CBE和DAF-TBE。此外,通过进一步的工程改造,该团队优化了CDG和TDG的空间位置,得到了DAF-CBE2和DAF-TBE2的新版本。它们的编辑窗口从原来的间隔序列(protospacer sequence)5'端移动到中间区域,且C-to-G和T-to-G的编辑效率分别提高了3.5倍和1.2倍。DAF-CBE和DAF-TBE实现了人诱导多功能干细胞(hiPSC)高效编辑。 综上所述,经过定向进化改造,该团队开发的DAF-CBEs和DAF-TBEs碱基编辑器在大肠杆菌和哺乳动物细胞中实现了高效的碱基颠换编辑,无需使用脱氨酶。与现有的引导编辑器(prime editing)或糖基化酶碱基编辑器(GBEs)相比,DAF-BEs具有相当的编辑效率、更小的尺寸和更低的脱靶率,这扩展了碱基编辑器的编辑类型,为工业菌株铸造和生物医药等领域的相关研究提供了新的技术工具。 近日,相关研究成果发表在《自然-生物技术》(Nature Biotechnology)上。研究工作得到国家重点研发计划、国家自然科学基金、天津市合成生物技术创新能力提升行动专项、中国科学院青年创新促进会和天津市自然科学基金的支持。论文链接DAF-BEs碱基编辑器的设计及进化
  • “还珠”三部曲神剪辑,农残那些事儿
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 微软雅黑,Microsoft YaHei font-size: 14px " 能把还珠格格、大话西游剪辑成仪器视频,谁还有沃特世能秀?一起跟随沃特世小P老师(沃特世Oasis PRiME HLB固相萃取吸附剂)围观农残那些事儿吧!& nbsp /span /p p style=" line-height: 1.75em text-indent: 2em " strong span style=" font-family: 微软雅黑,Microsoft YaHei font-size: 14px " 小P老师课堂时间:牛油果农残检验 /span /strong span style=" font-family: 微软雅黑,Microsoft YaHei font-size: 14px " & nbsp /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 微软雅黑,Microsoft YaHei font-size: 14px " 第一步提取:首先,取出牛油果果肉放进搅拌机,称取5g样品,放入50ml离心管中。加入5ml水和15ml百分之一乙腈/乙酸溶液,涡旋混合30s,然后充分震荡2min.接着放入QuEChERS盐包,使出洪荒之力震荡1min,在10000转/分钟的速度下离心5min。& nbsp /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 微软雅黑,Microsoft YaHei font-size: 14px " 第二步净化:将真空萃取装置设置为最低真空度,并与小P连接,向小P身体中吸取加入0.4ml样品提取液,流干后加入收集管。然后再加入0.6ml提取液,收集全部流出液,取200μL进行分析。& nbsp /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 微软雅黑,Microsoft YaHei font-size: 14px " 第三步上机:将上步样品加入内插管后入样品瓶,在送至APGC仪器进行上机即可。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 微软雅黑,Microsoft YaHei font-size: 14px " /span /p script type=" text/javascript" src=" https://p.bokecc.com/player?vid=D816489B33ADD7869C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" /script p br/ /p p br/ /p p style=" text-align: center line-height: 1.75em text-indent: 0em " a title=" " style=" color: rgb(31, 73, 125) font-family: 微软雅黑,Microsoft YaHei font-size: 14px text-decoration: underline " href=" http://www.instrument.com.cn/demand/InDemand.html" target=" _blank" strong span style=" color: rgb(31, 73, 125) font-family: 微软雅黑,Microsoft YaHei font-size: 14px " 买仪器?一键采购 /span /strong /a /p
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • DNA碱基家族或许迎来第六名成员
    西班牙科学家在最新出版的《细胞》杂志上撰文指出,或许存在着第六种碱基&mdash &mdash 甲基腺嘌呤(mA),其主要作用是确定表观基因组的性质,并因此在细胞的生命过程中发挥重要作用。   脱氧核糖核酸(DNA)是遗传物质的主要组成成分,一般认为,它由A(腺嘌呤)、C(胞嘧啶)、G(鸟嘌呤)和T(胸腺嘧啶)四种碱基结合而成,这些碱基组合成数千种可能的排序,从而提供了遗传多样性,使得活体生物呈现出多种多样的面貌和功能。   上世纪80年代初,由这四种&ldquo 经典&rdquo DNA碱基组成的家族中迎来了第五名成员:甲基胞嘧啶(mC),其源于胞嘧啶。mC的出现引发了科学家们极大的关注,并获得了广泛的研究。上世纪90年代后期,mC被广泛看成是表观遗传机制的主要原因:它能够根据每个组织的生理需要,打开或关闭基因。而且,随着研究的进一步深入,科学家们现在知道,作为一种重要的表观遗传修饰,mC参与基因表达调控、X-染色体失活、基因组印记、转座子的长期沉默和癌症的发生。   据每日科学网4日报道,西班牙Bellvitge生物医学研究所表观遗传学和癌症生物学计划负责人、巴塞罗那大学遗传学教授曼奈· 埃特雷在《细胞》杂志上发表文章,描述了第六种碱基&mdash &mdash mA存在的可能性,他认为,这种碱基也帮助确定表观基因组,并因此在细胞生命过程中发挥着重要作用。   埃特雷在论文中表示:&ldquo 早在数年前,我们就知道,在我们生物学上的远亲&mdash &mdash 细菌的基因组内就存在mA,主要作用保护其免受其他生物体遗传物质的入侵,但当时科学家们认为,这一现象只出现在原始细胞内。&rdquo   埃特雷继续解释说:&ldquo 现在《细胞》杂志发表的三篇论文表明,藻类、蠕虫以及苍蝇都拥有mA,这些生物的细胞像人体细胞一样都是真核细胞,说明人体细胞内也可能拥有第六种碱基。研究表明,mA的主要功能是调控某些基因的表达,因此,构成了一种新的表观遗传标记。在我们所描述的这些基因组内,mA的浓度都很低,但随着拥有高灵敏度分析方法的发展,使得这项研究成为了可能。除此之外,mA可能也在干细胞和发育初期发挥重要作用。&rdquo   研究人员表示,他们接下来打算对相关数据进行确认,以厘清是否包括人在内的哺乳动物也拥有这第六种碱基以及其作用究竟是什么。
  • GOTI技术可灵敏检测基因编辑是否脱靶
    p style=" text-indent: 2em text-align: justify " 基因编辑的“子弹”如果没有命中目标,就会产生脱靶效应,可能会导致诸如癌症等不良的基因变异。这种风险让人们对这种新的技术手段望而却步。近日,中国科学院神经科学研究所与国内外研究机构的研究者们合作开发了一种被命名为GOTI的技术,能够准确、灵敏地检测到基因编辑方法是否会产生脱靶效应,使基因编辑技术向安全地带迈进了一步。 /p p style=" text-indent: 2em text-align: justify " 此前,人们推出过多种检测脱靶的方案。但小鼠或者人类个体间基因存在很大差异,基因编辑所产生的脱靶效应会被淹没在这些差异之中。以往的检测方法很难从这些差异中分辨出哪些是基因编辑所造成的脱靶,哪些是个体本身的差异,因此无法有效判别基因编辑工具的安全性。 /p p style=" text-indent: 2em text-align: justify " GOTI颠覆了原有的脱靶检测手段。实验的精妙之处是利用小鼠胚胎做实验。在受精卵分裂成两个时,基因编辑其中的一个,并用红色荧光蛋白进行标记。编辑之后,让两个细胞继续分裂,等小鼠胚胎发育到14.5天时,基于红色荧光蛋白筛选出基因编辑细胞和没有基因编辑的对照细胞。 /p p style=" text-indent: 2em text-align: justify " 由于这两组细胞基因背景完全一致,且无需基因组体外扩增,避免了遗传背景的干扰,同时还可以清楚地展现单个碱基的突变,GOTI因此展现出强大的灵敏性,对数量极少的基因编辑脱靶也可感知。 /p p style=" text-indent: 2em text-align: justify " 此外,研究人员使用GOTI技术发现BE3单碱基编辑会产生大量脱靶突变。这一发现使人们重新审视原本认为“特别安全、几乎不会有脱靶”的单碱基突变技术,并为基因编辑工具的安全性评估带来了突破性的新技术,有望成为新的行业检测标准。相关研究结果于3月1日发表在《科学》上。 /p p br style=" text-indent: 2em text-align: left " / /p
  • 科学家首次合成含6种碱基的生命:超越自然法则?
    p & nbsp /p p   近日,美国生物合成领域专家弗洛伊德· 罗穆斯伯格(Floyd Romesberg)在《自然》杂志发表了一项新成果。他首次用实验室合成的X-Y碱基对和相应的氨基酸,在实验室内创造出了含ATGCXY六种碱基的全新生命体。 /p p   这一成果打破了自然界的碱基束缚,创造出了自然界中不存在的全新生命体。然而,这一成果是否意味着人类开启了可以按照自己的需求打造生命体的全新时代?对此,专家有不同看法。 /p p strong   突破第一关 /strong /p p   “整个研究很有深度和广度,这个研究团队在这个方面做了20多年的研究,很系统。” 法国巴黎第六大学生物所计算定量生物系独立课题组组长叶世欣告诉《中国科学报》记者。 /p p   在基因中加入两个碱基,相当于将遗传密码子得到了扩充,也就是说,过去自然系统中的64个密码子,“理论上,扩充到了216个”。 /p p   密码子通过编码形成氨基酸,研究发现自然系统中的64个密码子,形成20种氨基酸,并最终为地球生命的形成提供所需的蛋白质。 /p p   64个密码子和20种氨基酸的组合形成了地球上这么多生命,如果216种密码子与其可能形成的氨基酸进行组合,理论上说,相当于“让细菌利用更多氨基酸来制作蛋白质”。 /p p   一位不愿意透露姓名的基因研究专家告诉记者,能够拓展遗传密码本身具有重大的理论意义。人工氨基酸改造研究已有多年历史,但由于技术瓶颈和应用推广等问题一直较“小众”。而此成果让科学家感觉“看来突破第一关了”。 /p p strong   基因治疗新手段? /strong /p p   新的合成基因密码的出现,让人对基因治疗的未来有了新的期待。然而,合成的新基因密码是否会成为新的基因工具,从而为基因治疗提供全新手段?对此,科学家认为目前并不乐观。 /p p   “完全合成的基因,到用于疾病治疗有很大距离。” 温州医科大学附属眼视光医院研究员谷峰告诉记者,自然界已有的天然工具用于基因治疗,目前都只能在很小的范围转化,如从细菌到人体转化的实现非常困难。 /p p   谷峰介绍称,基因剪刀从细菌移植到哺乳细胞,常常存在效率不高,靶向性不够强甚至脱靶的问题。因而,完全合成的基因想发挥天然系统内的基因工具都难以完成的任务,科学家对此表示怀疑。 /p p   “外来密码子效率有多高”“如何达到生产的标准”“如何解决靶向性问题”,这是相关研究人员关心的问题所在。 /p p   “这一系统能否移植到动物上,如果动物能够实现就很有意思。”谷峰称,从大肠杆菌到动物是一个飞跃。”但这需要对这一系统做进一步的优化,才有可能把外来的基因放到希望的地方去,达到“指哪儿打哪儿”的效果。 /p p strong   效率是最大瓶颈 /strong /p p   谷峰所担心的效率问题,也是叶世欣关注的焦点。 /p p   “问题是现在的效率会很低,毕竟不是天然的密码子,所以虽然有更多的可能性,但在实施方面会有更多困难。”叶世欣所说的效率,是与自然系统中识别天然碱基的效率相对而言。 /p p   以非常容易生产的绿色荧光蛋白(GFP)为例,应用人工合成的这种全新基因密码生产GFP蛋白质,效率是内源密码编辑蛋白质效率的10%,甚至更低。 /p p   正是由于此,科学家才对该技术的应用前景保持十分冷静的态度,因为其仍是“十分基础的研究”。但这并不能否认该成果对于其他相关研究所具有的建设性意义。 /p p   在叶世欣看来,一方面研究对合成生物学是一个巨大推动,有望让细菌体合成有更多化学性质的蛋白质。另一方面,在基础研究中,这一探索也将帮助科学家了解遗传密码的起源。 /p p   “遗传密码,最早是从很简单的碱基、氨基酸开始,扩充过程中就会吸收新的元素,通过倒推这样的研究就会帮助我们探讨遗传密码的起源问题。”她说。 /p p   有媒体报道称,未来或许如科幻电影中的“金刚狼”等生命体,通过这样的技术都可能会成为现实中存在的生命。 /p p   不过专家表示,当前该研究是在细菌系统内进行,并不存在人们所担忧的会影响人类遗传密码等伦理问题。“将来如果把这种想法放入哺乳细胞中,可能伦理问题就是可以探讨的话题了。”叶世欣说。 /p p /p
  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 利用荧光DNA探测分子 单个碱基突变也能被发现
    DNA序列中最轻微的变异也会影响深远,无论对研究还是医学应用,可靠识别这些序列都非常重要。据物理学家组织网近日报道,美国华盛顿大学和莱斯大学研究人员合作,开发出一种荧光DNA探测分子,能检查出一段目标DNA链中单个碱基的变化。而这些微小突变可能是造成某些疾病的根源,或耐抗生素细菌的原因。这一成果有助于诊断和治疗像癌症、肺结核这样的疾病。相关论文发表于7月28日的《自然· 化学》杂志网站上。   不同的DNA序列为不同生物设定了独特的基因标记。现代基因组学研究表明,仅一个碱基对的变化都足以引发严重的生物后果,可能决定了一种疾病能否被治愈,也解释了疾病的突发或某些疾病对常规抗生素治疗无效的原因。论文领导作者、华盛顿大学电力工程和计算机科学与工程副教授乔治· 塞利格说,比如造成肺结核的细菌有很强的耐药性,这种能力通常来自其基因序列中的少量突变。现在,人们已能预先查出这种突变。   &ldquo 我们真正改进了以往的方法。&rdquo 塞利格说,&ldquo 新方法不需要任何复杂的反应或添加酶,就只用DNA。这意味着无论温度及其他环境变量怎样变化,该方法都是稳定的,所以很适合用于低资源设置中的诊断。&rdquo   这种探测分子经过专门设计,采用了新的编程机制,能与一个可疑的DNA序列结合,对其双螺旋链生成互补的DNA序列。把含有两种序列的分子在盐水试管中混合,如果两条链的碱基对都是完好的,它们自然地匹配在了一起,探测分子会发出荧光 如果不发光,则意味着上面有碱基对发生了突变。与以往技术不同的是,探测分子会检查目标DNA双螺旋的两条链是否发生了突变,而不是一条,这使检验更加全面具体。   此外,探测分子由许多寡核苷酸构成,克服了合成上的局限,可以探测更长的DNA序列中更详细的变异信息,达到200个碱基对,而现有探测突变的方法只能检查20个。   目前,研究人员与华盛顿大学商业化中心一起对该技术提出了专利申请,他们希望把这种技术和诊断试纸结合用于疾病测试。
  • 我国科学家研发出检测DNA中第五种碱基的新技术
    DNA的基本元素包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)和脱氧尿嘧啶(dU),然而目前还无法从单碱基分辨率水平上检测dU,严重影响了对dU功能的理解。近期,我国科学家研发出在单碱基分辨率水平上精准检测dU的新技术,研究成果发表在《Journal of the American Chemical Society》期刊,标题为“UdgX-Mediated Uracil Sequencing at Single-Nucleotide Resolution”。  该方法被命名为Ucaps-seq法(UdgX cross-linking and polymerase stalling sequencing)。研究人员利用从耻垢分枝杆菌中发现的新型糖苷酶UdgX,特异性地识别和切除DNA中的dU,形成的缺口与对应的核糖形成共价键,从而将其捕获。由于DNA高保真聚合酶碰到UdgX标记的dU缺口能原地“停车”,研究人员利用的DNA高保真聚合酶这一特性进一步确认了dU的位置。最后,结合高通量测序技术将“停车”信号放大,从而在单碱基水平上精准定位dU在DNA乃至基因组上的位置。  Ucaps-seq法是国际上第一个酶法检测DNA中的dU碱基的技术,灵敏性好、特异性强、分辨率高,将大大推进核酸序列检测、遗传密码破译和人类对核酸的认知。  注:此研究成果摘自《Journal of the American Chemical Society》期刊原文章,文章内容不代表本网站观点和立场,仅供参考。   论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c11269
  • 专家认为韩春雨基因编辑“不能重复不意味着是假的”
    近日,有关NgAgo基因编辑技术首篇论文实验的可重复性受到相关研究者质疑,该论文作者、河北科技大学副教授韩春雨在各类报告上回应这需要“高超的实验技巧”。对此,《中国科学报》记者在采访该领域专家时了解到,所谓“高超的实验技巧”实为实验“标准化”,目前多个实验室的重复实验结果即将出炉。  最近一个月,许多研究者在网络平台上声称无法重复韩春雨发表论文中的实验。科学网上,多名博主转发研究者的评论,参与了对此事的关注。  截至发稿前,韩春雨本人并未就此事细节向媒体进行回应。不过,据《中国科学报》记者了解,世界范围内有几家实验室正在对NgAgo-gDNA基因编辑技术的几项实验进行重复,并且已有从未与韩春雨联系过的研究者独立完成了重复实验,即将在学术刊物上发表论文公布结果。  “韩春雨所说的‘高超的实验技巧’并不准确。”国内一名从事基因技术研究的院士告诉《中国科学报》记者。他推测,无法重复的原因可能是实验过程的“标准化”出了问题,“在细胞生物学的历史上,不能重复的实验时有发生,甚至有时候只是换了一个实验室地点,也得不到相同的实验结果。”  例如,该院士曾亲历,使用不同生产厂家的血清,也会影响哺乳动物细胞培养。而当年基因克隆时,法国科学家一直无法复制加拿大科学家的实验,最终查明原因竟源于两家实验室使用的水的区别。  因此,上述院士表示:“韩春雨的实验其他人不能重复不能代表这一结果是假的。”  目前,已有研究者正在逐步发现“诀窍”。在专门讨论NgAgo的谷歌讨论小组中,一名无法证实身份的研究者“Jan Winter”表示,他因为替换了一项实验材料,取得了重复实验的成功。韩春雨的实验显示,NgAgo能够识别5’磷酸化的ssDNA并利用其作为向导,完成后续的编辑过程,而获得磷酸化的小段DNA是前提。  这名研究者则是在实验室用激酶磷酸化替代了从厂家直接订购,而取得了重复实验的成功。业内人士分析,磷酸化可能是实验中的技术要点之一。  哈尔滨工业大学生命学院教授黄志伟课题组向《中国科学报》记者证实,他带领的研究组正在重复这项实验。“结果还要再等一等。”他表示。  根据《中国科学报》记者调查,针对韩春雨论文的质疑集中在论文中的第四部分结果上,即证明NgAgo能否编辑内源人类基因组。  今天下午,一位来自印度基因与综合生物学研究所的Debojyoti Chakraborty博士向媒体确认“this system works”(这一系统奏效了)。Chakraborty博士表示,他们使用了NgAgo技术剪辑了海拉细胞中的相关序列,并观测到了细胞中的GFP减少的现象,这初步确认了剪辑技术发生了作用。他同时强调:“要判定韩教授的方法的可重复性,必须要等到基因测序结果出来以后才能下结论。”  对此,记者从可靠渠道了解到,韩春雨早在论文发表之初,便意识到,这一新技术目前并不稳定,他也一直致力于优化和改进该技术,并曾表示“很有信心”。目前,韩春雨已向相关研究者发放了质粒,用于NgAgo基因编辑技术的进一步研究。
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 赛默飞与克睿基因携手共建基因编辑研发中心并合作开发液体活检市场
    2018年2月1日,赛默飞世尔科技(中国)有限公司实验室产品和服务与苏州克睿基因生物科技有限公司,双方达成战略合作协议,携手共建基因编辑研发中心并合作开发液体活检市场。双方的战略合作旨在有机结合各自的技术优势和市场资源,共同推动CRISPR基因编辑技术在医疗、诊断等领域的产业化及商业化。CRISPR基因编辑技术能够在细胞中精准识别特定DNA序列并制造双链断裂,从而实现定向基因改造,特异性调控细胞功能。相比上一代的TALEN及锌指核酸酶等技术,CRISPR系统具有高效、快速、简单易用等特点。因此自2013年张锋教授与丛乐博士成功利用CRISPR/Cas9在哺乳动物细胞中实现基因组编辑,便立即获得了学术界、工业界及资本界的高度关注。在2015年由国际顶尖学术杂志《Science》评选出的“年度十大科技突破”中,CRISPR基因编辑技术位居榜首。随着对CRISPR系统的工程改造以及基于应用场景的持续优化,CRISPR基因编辑技术已经广泛应用于医疗、诊断、新药开发、畜牧、育种、科研等多个领域,市场潜力巨大。克睿基因首席运营官李秋实博士表示:"在十亿级的基因组中精准识别二十个碱基序列的能力以及高效的基因定向改造能力,赋予了CRISPR系统无限的应用潜力。通过对CRISPR系统及其应用方法的优化,克睿基因建立了国际顶尖的医疗级CRISPR基因编辑技术平台以及多条独特的医疗及诊断产品管线。与赛默飞世尔一流的实验室整体解决方案以及丰富的液体活检市场资源的结合,将进一步提高CRISPR基因编辑技术原创性应用的开发及商业化速度。"赛默飞实验室产品和服务事业部总经理谢英女士评价说:"克睿基因是国内外最有前途的基因编辑公司并将此技术造福于人类,赛默飞非常愿意全力支持高科技公司的发展。"让我们拭目以待,赛默飞世尔与克睿基因的强强联手,定能在共同推动CRISPR基因编辑技术在医疗、诊断等领域的产业化及商业化等方面取得卓越成绩。
  • 快速解读DNA碱基序列技术问世
    日本研究人员在6日的英国《自然纳米技术》杂志网络版上发表论文说,他们开发出只需少量DNA(脱氧核糖核酸)就能快速解读其碱基序列的新技术。这将有助于提高基因诊断、犯罪侦破等工作效率。   日本大阪大学产业科学研究所田中裕行等研究人员利用能在真空中以千分之一秒速度喷射液体的喷雾器,将含有微量DNA的水溶液喷射到铜板上。为使水溶液更容易附着到铜板上,研究人员令铜板倾斜45度,喷射后再冷却铜板。这时,在细胞内呈螺旋状的DNA就会在铜板上伸展开并停留在铜板上。这样一来,研究人员利用“扫描隧道显微镜”就很容易观察DNA的碱基序列。
  • Nature Biotechnology综述,叩响CRISPR之门 -- 基因编辑进化史
    近年来,CRISPR被认为是最简单高效的基因编辑方式,也成为了生物技术发展史上进展最为迅猛的新兴技术之一。2022年6月,正值CRISPR发文十周年,Nature Biotechnology 同步发表了一篇名为《Knock-in on CRISPR' s door》的Reviw,梳理了10年来科学家们对CRISPR基因编辑技术不断探索突破的成果[1]。图1. 2022年6月Nature Biotechnology 发文基于CRISPR的基因疗法如火如荼基因治疗(Gene Therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。基因治疗以其一次给药终生治愈遗传疾病的独特潜力让一切不可能变为有可能。截止今日,通过对clinicaltrials.gov检索,全球已有56项基于CRISPR的临床试验正在进行,中国就有21项,占到3成以上。目前大部分的基因疗法为体外疗法(ex vivo),即细胞在体外通过CRISPR编辑后再输注到体内发挥功能,常见疾病如肿瘤免疫疗法CAR-T,遗传性疾病如地中海贫血,镰刀状贫血症血红蛋白遗传病等在内的各种血液病。与之相对的即体内疗法(in vivo)则是直接将治疗基因递送到患者病患部位,从而治疗疾病,目前已在先天性黑蒙、遗传性甲状腺转淀粉样变性和遗传性血管性水肿等疾病表现出巨大潜力。图2. 全球CRISPR临床试验分布热点图图源:clinicaltrials.gov基因编辑的发展历程早期基因编辑--ZFN和TALEN基因编辑技术主要发展了三代,早期的两代基因编辑主要以ZFN和TALEN为主,这两种基因编辑技术相对简单,可以理解为“基因剪刀”——切割特定 DNA 序列的限制酶。但ZFN技术存在很明显的缺点,如容易脱靶,且可能产生一系列不可预测的基因突变,引发细胞毒性。TALEN技术的出现,在一定程度上优化了ZFN技术存在的脱靶问题,具有设计简单,特异性和活性更高的优点,因此成为基因功能研究和基因治疗研究中有力的工具。美中不足的是,由于TALEN针对不同靶点,每次都需重复构建融合蛋白,因此会造成一定的工作繁琐。第三代基因编辑--CRISPRCRISPR/Cas9是继ZFN、TALEN之后出现的第三代“基因组定点编辑技术”。CRISPR/Cas9 系统由两部分组成,分别是Cas9 蛋白和guide RNA(single-guide RNA,sgRNA)。Cas9蛋白具有解旋酶活性,可以将DNA链解旋,同时具有核酸内切酶活性,可以切割DNA链。其原理是核酸内切酶 Cas9 蛋白通过向导 RNA (guide RNA, gRNA)识别特定基因组位点,并对双链 DNA 进行切割造成 DSB后,通过HDR和NHEJ实现基因的定向敲除或插入。图3. CRISPR/Cas9 示意图[2]相比于传统的ZFN和TALEN技术,CRISPR/Cas9技术更为简单,只需要构建针对特定位点的sgRNA,而且效率也比前面几种技术更高,在疾病治疗研究中发挥越来越重要的作用。然而,CRISPR/Cas9系统仍然存在着一定的局限性,这种局限性主要体现在功能发挥时系统对DNA上PAM序列的依赖性以及切割时潜在的脱靶效应。因此科学家们在CRISPR/Cas9的基础上开发了更加高效且广谱的精准基因编辑工具—单碱基编辑技术BE(Base Editor)和精准基因编辑工具PE(Prime Editors)。单碱基编辑技术BE(Base Editor)单碱基编辑技术是一种基于脱氨酶与CRISPR/Cas9系统融合形成的技术。2016年哈佛大学David Liu实验室首次报道开发出CBE单碱基编辑工具,通过将SpCas9与胞嘧啶脱氨酶(cytidine deaminase, CyD, 如APOBEC1)融合,可以在一定的突变窗口内实现胞嘧啶(C)到胸腺嘧啶(T)的单碱基转换(图4)[3]。2017年10月底,该实验室进一步开发出ABE单碱基编辑工具,实现了从腺嘌呤(A)到鸟嘌呤(G)的精确转换(图5),为基因编辑提供了新的研究工具[4]。图4. CBE示意图[3]图5. ABE示意图[4]相比于CRISPR/Cas9技术,BE技术可以既不引入DNA双链断裂,又不需要重组修复模板,整体提高了编辑的安全性和精准性,而且其效率远远高于由发生DSB引起的HDR和NHEJ修复方式,对于许多点突变造成的遗传疾病具有很大的应用潜能。近年来,多个实验室也发表了类似的工具,并在这些工具的基础上进行了更为深入的改造与优化。邦耀生物科学家团队以不同单链DNA脱氨酶结构域与Cas9切口酶相结合为基础,开发全新一代的DNA碱基编辑工具—超高活性的HyCBEs和双碱基编辑器A&C-BEmax以及等多种碱基编辑新工具,提高了编辑活性并拓宽靶点范围,以实现更广泛、更精确的基因编辑,相关研究成果也发表在Nature Cell Biology、Nature biotechnology等国际著名期刊[5]。图6. 超高精度碱基编辑器HyCBE示意图图7. 双碱基编辑器示意图精准基因编辑工具PE(Prime Editors)2019年10月21日,哈佛大学David Liu实验室开发出了全新的精准基因编辑工具PE (Prime Editors)[6],PE是以CRISPR/Cas9系统为基础,在两方面加以优化:1. pegRNA:pegRNA(prime editingguide RNA)是一段改造后的sgRNA,它在传统sgRNA的3' 末端增加了一段RNA序列。这个RNA序列包括一段引物结合位点(Primer-binding site, PBS),用于与被切割的目标DNA链互补;还包括一段进行逆转录的模板(RT template)的序列,它与切口下游的DNA序列同源,且在RT序列上存在有相应的编辑突变(如点突变或插入缺失突变)。图8. pegRNA的改造[4]2.融合蛋白:将nCas9(H840A)与M-MLV逆转录酶融合。图9. PE结构示意图[4]在pegRNA的引导下,融合蛋白会到达基因组上的目的序列,并对含PAM的靶DNA链进行切割(pegRNA的非互补链)。此后,PBS序列与被切割的目标DNA链互补配对,逆转录酶即从端口空缺处启示逆转录。逆转录产物(DNA)即包含我们所期待的编辑突变。这段逆转录DNA会入侵并进入基因组DNA,发生整合,并进行切口的修复。只要RT序列允许,那么就可以采用此原理完成碱基的点突变(任意转换或颠换)以及片段的插入和缺失。图10. PE原理示意图[4]相比于其它基因编辑工具(采用ZFN,TALEN,CRIPSR/Cas9等产生DSB进行HDR或NHEJ修复或通过base editing系统进行单碱基编辑),PE的优势在于可以在不依赖DSB的前提下,能够实现更精准的编辑,更广的试用范围。但同时相比CBE和ABE,PE的劣势也随之体现,编辑效率不如前者,并且产生随机Indels的可能也会随之提高。图11. PE与ABE、CBE的效率比较[6]最后,除了上述几种基因编辑工具以外,科学家们还发现了除Cas9外的Cas家族的其它一系列蛋白,如 Cas12、Cas13、CasX等。这些新的发现有望使基因疗法能够解决更广泛的遗传疾病,推动生物医学的基础研究和临床基因治疗研究。
  • 盘点基因编辑新利器: 韩春雨发现的NgAgo只是工具库中一员
    Argonaute蛋白模型  CRISPR-Cas9工具让科学家几乎能随意改变基因组。人们称赞它比以往的技术明显更简单、更廉价及更通用。CRISPR-Cas9在全球各地的实验室中大放光彩,并带来了一些医学和基础研究的新应用。  但该技术也有其局限性。美国加州大学圣地亚哥分校生物工程师Prashant Mali指出,它擅长到基因组的一个特定位点,并在那里完成切割。“但有时候你感兴趣的应用还要多一点。”  今年年初,研究人员怀着热情扑向了一种名为NgAgo的新基因编辑系统。这也显示了他们对CRISPR-Cas9存在不满,以及寻找替代方法的强烈动机。哈佛大学医学院遗传学家George Church说:“这暗示了每种新技术是多么的脆弱。”  NgAgo只是不断扩大的基因编辑工具库中的一员。在该工具库中,有些是CRISPR的变体,另一些则为编辑基因组提供了新途径。  迷你版Cas9  或许有一天,CRISPR-Cas9会被用来改写导致遗传疾病的一些基因。但这一系统的组件——Cas9酶和引导其到达目标序列的一段RNA过大,无法填塞到基因治疗最常用病毒的基因组中并将外源遗传物质运送到人类细胞中。  从葡萄球菌中取得的迷你Cas9形式是一种解决方案。它非常小,可以硬塞进当前市场上基因治疗采用的病毒中。去年12月,两个研究小组利用迷你Cas9在小鼠中纠正了导致杜氏肌营养不良的基因。  扩大范围  Cas9不会到处进行切割——某一DNA序列必定存在于切割位点附近。这一要求在许多基因组中很容易得到满足,但对于一些实验来说可能是令人痛苦的限制。研究人员正在寻找一些微生物提供有着不同序列要求的酶,这样便可以扩大能够改造的序列数量。  这样的一种酶Cpf1,可能成为有吸引力的替代品。比Cas9更小的Cpf1有不同的序列要求,且高度特异。另一种叫作C2c2的酶,靶向RNA而非DNA——这一特征有潜力用于研究RNA及利用RNA基因组对抗病毒。  真正的编辑器  许多实验室只利用了CRISPR-Cas9删除基因的一部分,由此破坏其功能。Church说:“人们想将这样的编辑宣布为胜利,但烧掉书的一页并不等于编辑了这本书。”  那些想用一段序列交换另一段序列的研究人员,则面对着一个更艰难的任务。当Cas9切割DNA时,细胞往往会在缝合断裂端时生成一些错误。这可以造成许多研究人员想要的缺失。  想要改写一段DNA序列的研究人员,依赖于可以插入新序列的不同修复信号通路——发生这一过程的频率比容易出错的缝合要低得多。明尼苏达大学植物学家Daniel Voytas说:“每个人都说,未来或能一次编辑多个基因,而我认为:‘我们现在甚至无法高效编辑一个基因。’”  但过去几个月里的一些进展给Voytas带来了希望。在今年4月,研究人员宣布他们让Cas9丧失功能,将其与可将一种DNA碱基转变为另一种DNA碱基的酶连接在了一起。丧失能力的Cas9仍然靶向它的向导RNA指定的序列,但无法进行切割:其连接的酶转变了DNA碱基,最终将此处的C碱基转变成了T碱基。近日,发布在《科学》杂志上的一篇论文报道了类似结果。  Voytas等人希望连接其他使得Cas9丧失功能的酶将生成不同的序列改变。  追逐Argonaute  今年5月,发表在《自然—生物技术》杂志上的一篇论文推出了一个全新的基因编辑系统。研究人员称,他们能够利用一种叫作Argonaute的蛋白无需向导RNA或一段特定的邻近基因组序列,可在预定位点切割DNA。转而他们采用了对应靶区域的一段短DNA序列编程了Argonaute蛋白。  这一研究发现引发了关于CRISPR-Cas9将被取代的兴奋与猜测,但一些实验室迄今为止无法重现这些结果。韩国首尔国立大学基因组工程师Jin-Soo Kim提到,即便如此,来自其他细菌的Argonaute仍有望提供一条前进的道路。  编程一些酶  另一些基因编辑系统也在准备中,尽管有些已徘徊多年。在一个大型细菌研究计划中,Church的实验室并没有触及CRISPR,而是依靠了一种叫作lambda Red的系统,无需向导RNA可以编程lambda Red以改造DNA序列。然而,尽管该实验室已开展了13年的研究,lambda Red还是只能在细菌中起作用。  Church等人表示,实验室也正在致力于开发整合酶和重组酶,用作基因编辑器。 “通过利用酶的多样性,我们可以生成更强大的基因组编辑工具箱。我们必须继续探索这些未知的事物。”
  • 新“基因魔剪”按需敲入长DNA序列
    据最新一期《自然生物技术》发表的一项研究,在CRISPR基因编辑系统的基础上,美国麻省理工学院研究人员设计了一种新工具,可以更安全、更高效的方式剪除有缺陷的基因并用新基因替换它们。使用这个系统,研究人员可将长达36000个DNA碱基对的基因传递给几种类型的人类细胞,以及小鼠的肝细胞。这种被称为PASTE(通过位点特异性靶向元素进行可编程添加)的新技术有望治疗由具有大量突变的缺陷基因引起的疾病,例如囊性纤维化。新工具结合了CRISPR-Cas9的精确定位,CRISPR-Cas9是一组最初源自细菌防御系统的分子,与整合酶结合在一起,病毒使用这种酶将自己的遗传物质插入细菌基因组。这些整合酶来自细菌和感染它们的病毒之间的持续斗争,它说明了人们如何能够不断从这些自然系统中找到大量实用新工具。此次开发的新工具,可切除有缺陷的基因并用新基因替换它,而不会引起任何双链DNA断裂。研究人员专注于丝氨酸整合酶,它可插入大块DNA,大至50000个碱基对。这些酶以称为附着位点的特定基因组序列为目标,这些序列起到“着陆点”的作用。当在宿主基因组中找到正确的着陆点时,它们就会与之结合。研究团队意识到,将这些酶与插入正确着陆位点的CRISPR-Cas9系统相结合,可轻松地对强大的插入系统进行重新编程。一旦结合了着陆点,整合酶就会出现并将其更长的DNA有效载荷插入到该位点的基因组中。研究人员表示,这朝着实现可编程插入DNA梦想迈出了一大步。研究人员使用PASTE将基因插入多种类型的人类细胞,包括肝细胞、T细胞和淋巴母细胞(未成熟的白细胞)。他们使用13种不同的有效载荷基因(包括一些可能具有治疗作用的基因)测试了递送系统。在这些细胞中,研究人员能够以5%到60%的成功率插入基因。研究还证明,可将基因插入小鼠的“人源化”肝脏中。这些小鼠的肝脏由大约70%的人类肝细胞组成,PASTE成功地将新基因整合到大约2.5%的这些细胞中。
  • 德国研究小组开发出台式机的基因分型测序法
    Monica HEGER供稿 德国哈雷市(Halle)马丁· 路德大学的研究人员已经开发出适用于低通量台式仪器的基因分型测序法,如Life Technologies的Ion Torrent PGM,他们认为,这种方法可以应用到非模式生物的群体研究中,并可能取代常规的方法,如微卫星基因分型法。 并未参与这项研究的美国得克萨斯州AgriLife研究所基因组学和生物信息学主任查尔斯· 约翰逊(Charles Johnson)告诉&ldquo In Sequence&rdquo 说,&ldquo 这真是一种非常明智的方法,并且相当有用&hellip &hellip &rdquo 。 这项名为RESTseq的方法适用于限制性片段测序,于本月初发表在&ldquo PloS One&rdquo 期刊上,其与利用限制性内切酶从大量样本中对准所关注的目标基因组区的其他基因分型测序方法相类似。然而,不同之处在于它采用了两步限制性内切酶切割以减少测序的片段数。在第一步中,该小组采用一种通常能在整个基因组中进行切割的限制性内切酶,产生多个片段。随后,该小组在这些片段上连接了专用于PGM的测序适配器。为减少必须完成的实际测序量,其采用了第二种限制性内切酶,以减少文库大小,从而使PGM测序变得易于进行。 &ldquo 通过采用多种限制性内切酶,我们极大地减少了文库,以便于分析]1000种以上的SNP&rdquo ,马丁· 路德大学生物研究所的研究员和论文资深作者埃卡特· 斯托勒(Eckart Stolle)告诉IS,&ldquo 我们采用条码适配器和合并序列对其进行扩增和测序。&rdquo 斯托勒的团队首次证实,其分别采用TaqI和MseI作为第一种和第二种限制性内切酶,通过在两种蜜蜂样本中的应用,该方法是可重现的。此外,由于限制性内切酶能产生极短的片段,该小组还纳入了一项大小选择步骤,只选择约90个碱基的片段。在PGM 316芯片上对每个文库进行测序,产生了367万和271万reads数,其平均读长分别为83个碱基和86个碱基。 在第一种限制性内切酶进行酶解后,99%的reads启动了正确的三联体。选择第二种酶以减少AT含量,由此研究人员发现,事实上,与蜜蜂基因组约32%的总GC含量相比较,这两个文库拥有更高的GC含量,约为44%。作者表示,&ldquo 这种可能富含编码区的片段在筛选选择性群体模式时是非常可取的&rdquo 。 采用保守性设置,该研究小组发现,72%和77%的reads与基因组明确匹配,且分别以20倍和17倍的覆盖率覆盖了11.06和10.05的巨碱基。 为了检验该方法在无参考序列条件下对基因组的分析能力,研究小组采用两个样本的reads进行了de novo组装,并发现,产生的contig(重叠群)覆盖了71%的参考序列,这证实&ldquo 由于组装计算,de novo方法比基于参考序列的方法产生较少的共识序列,但对于生成高质量的声分析数据仍是可行的。&rdquo 接下来,研究小组证明,该方法可以应用于无参考序列基因组的物种,在几种无刺蜜蜂基因组中进行检验。对此,斯托勒表示,研究小组只查看了一对位点,但展望未来,研究人员计划对更多个体和更多的SNP进行基因分型,&ldquo 甚至希望扩展至整个基因组。&rdquo 此外,斯托勒还说,其希望改进该方法,以便能够产生更少的片段。他说,&ldquo 我们确实希望减少片段的数量,以便您能够以较少量片段终止,从而去完成小规模的基因分型,这与人们处理微卫星相类似。&rdquo 微卫星基因分型取决于产生已知位点的标记引物。斯托勒认为,该技术经济划算且效果良好,但在生物体不具有标记引物的情况下(如其研究小组研究的多个蜜蜂物种),采用按比例减少的迭代RESTseq法似乎更具吸引力,因为该方法不要求具有基因组的先验知识。 &ldquo 即使我们事先并未获得任何信息,只要我们制作了限制性文库,我们就能 (通过其他限制性内切酶酶解)减少文库,然后对其进行测序 。&rdquo 斯托勒说,&ldquo 最终,该方法将逐渐取代微卫星基因分型法。&rdquo 约翰逊说,其有可能对该方法进行检验,其认为该方法是对其他基因分型测序法(如RAD-seq)的&ldquo 很好改进&rdquo 。AgriLife研究所是德克萨斯农工大学体系研究所是德克萨斯农工大学体系内的一个农业和生命科学研究机构,目前进行了大量基因分型的测序研究项目,主要集中于植物基因组。 约翰逊补充说,该方法的一个潜在问题是,其在高度重复的区域进行测序时可能会遇到麻烦。限制性内切酶将 &ldquo 在这些重复区域内造成多个切口&rdquo 。 约翰逊认为,这可能使该方法在植物应用中变得具有挑战性,如棉花和甘蔗,因为这些植物中具有一段很长的重复序列。 约翰逊说,所有基因分型测序方法都可能存在这方面的问题,但研究人员已经获得一种解决办法,即采用甲基化敏感的限制性内切酶,由于这种酶只剪切转录活跃的区域,因而使该过程变得更为容易。约翰逊补充说,也可以在第二次酶解中与RESTseq试验方案一起使用这种酶,这将使其更适用于处理具有重复序列的物种。
  • 基因检测新突破: 长序列DNA的分子探针检测
    DNA序列中稍有变异就会对身体产生深远的影响。现代基因组学研究已经表明,只要一个突变就占领了决定是否成功治愈一种疾病还是使该病猖獗地蔓延到全身各部位的制高点。   研究人员通过一种新的方法检测特定DNA片段,找出单一突变位点,从而帮助疾病(如癌症、肺结核)的诊断和治疗。DNA序列中这些微小变化是导致疾病或某些传染性疾病具有抗生素耐药性的根源所在。 这项最新的研究结果已经发表在《自然化学》杂志上。   &ldquo 相较之传统的检测方式,我们的方法的确有所改善。它不需要任何复杂的反应或添加一些活性酶,唯一使用的就是DNA。这就意味着该方法对温度变化及环境变量的敏感性很低,极适合低资源配置下的诊断应用。&rdquo 华盛顿大学的电气工程和计算机科学与工程系助理教授 Georg Seelig说。   随着基因组学研究的发展,人们深知哪怕仅有一对碱基对发生变化(突变、插入或删除)都会引起重大的生物学后果。基因位点的突变也可用来解释疾病的发生或某些疾病产生抗生素耐药性的原因。   &ldquo 以肺结核为例,其对抗生素的耐药性往往是由于特定基因的少数序列发生突变引起,如果某位患者对治疗肺结核的抗生素产生耐药性,证明很可能存在某个位点的突变。&rdquo Georg Seelig说。现在,研究人员有能力做到检查该突变的可预见性。   Seelig、莱斯大学的 David张和威斯康星大学的电气工程学博士Sherry 陈设计了一组探针,可检测目标DNA片段中单一碱基对的突变。该探针可详细检测DNA长序列中的某些突变片段,范围达到200碱基对,而当前的基因突变检测方法其范围仅能达到20个碱基对。   测试探针与怀疑突变的DNA序列绑定在一起,研究人员首先创建一个免费的双螺旋DNA分子,将分子混合于含盐水的试管中,如果碱基对完好无损,双链DNA会采取配对原则结合在一起。相对传统技术而言,新的分子检测探针可检测目标DNA双螺旋链的特异突变,而不是单一的仅一条链,这也解释了该探针的特异性所在。如果分子探针和目标DNA 达到最大匹配度,将发出荧光。如果探针没有发射荧光,意味着目标DNA没有与其达到最佳匹配度,即发生了突变。   研发人员已为该技术申请了专利,并希望它能够应用于疾病的诊断与测试。
  • 我国学者改进简化基因测序方法 有效简化基因建库仪器配置
    p   在二代测序基础上发展起来的RAD-seq技术是一项基于全基因组酶切位点的简化基因组测序技术。由于特异性酶切位点在全基因组范围内广泛分布,通过RAD-seq能够在大多数物种内获得数万至数十万的单核苷酸多态性(single nucleotide polymorphism,SNP)标记。在此基础上,RAD-seq技术又衍生出多种简化基因组测序方法,包含GBS,ddRAD,ezRAD以及2b-RAD等。其中,ddRAD-seq通过一个稀有酶与一个常见酶相结合对基因组DNA进行双酶切,免去随机打断的过程,是一种非常有前景的简化基因组测序技术。不过,ddRAD技术虽然在建库流程上比RAD做了一定程度的简化,但仍然包括12步,实验耗时较长。因此,有必要对现有的ddRAD简化基因组测序文库构建方法进行改进,以克服其需要多次选酶、使用仪器复杂、成本偏高等缺陷,提高测序效率。 /p p   中国科学院昆明植物研究所博士研究生杨国骞在研究员郭振华与李德铢指导下,与中科院海洋研究所李莉研究组一起,开发出一种被子植物中通用的双酶切简化基因组(Modified ddRAD,简称MiddRAD)二代测序文库构建方法。该方法首先发现一种被子植物通用酶切组合“AvaII + MspI”,减少了不同物种间需要多次选酶的步骤 其次,该方法将复杂的建库专用仪器优化为通用的分子生物学仪器 再次,该方法将P1测序接头由37个碱基简化为25个碱基(barcode按5个碱基计算)并设计出一套新的barcode-adapter体系 最后,该方法还减少了纯化酶切产物、连接前定量及混样后纯化连接产物的步骤,简化了建库流程,允许仅使用50ng DNA即可完成文库构建。该技术操作简单灵活、检测成本低、检测通量高,更易被科研人员掌握并能在通用分子实验室中实现,特别适用于需要对大量个体进行SNP标记开发及分型的遗传图谱构建、系统发育分析及群体遗传学等研究。因此,MiddRAD-seq在农业分子育种、进化生物学和保护生物学等领域具有良好的应用价值和推广前景。 /p p   研究以Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants 为题发表于Plant Methods上。 /p p   该研究得到国家自然科学基金项目(31470322、31430011)的支持。 /p p    a title=" " href=" http://plantmethods.biomedcentral.com/articles/10.1186/s13007-016-0139-1" target=" _blank" 文章链接  /a   /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 451px" title=" W020160808405086590129.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201608/insimg/c28b45f8-39be-4ae3-b8f1-430392964b3b.jpg" width=" 600" height=" 451" / /p p style=" TEXT-ALIGN: center" MiddRAD(a)与ddRAD(b)实验流程图 /p p br/ /p
  • 重磅:韩春雨基因编辑实验在国外得到实验事实证实
    p   澳大利亚国立大学Gaetan Burgio博士公布的实验结果Sanger测序图。该图看起来很混乱,但仔细观察可以发现,每一个碱基的峰图,后面都跟着一个滞后的峰,如下图所示,我们用与碱基相同颜色的箭头标出了峰的位移,这实际上是移码突变造成的。我们在一个诱变/恢复试验中,将发生移码突变的片段和野生型的片段的混合物进行Sanger测序,就会出现类似的峰图。 /p p style=" text-align: center " img title=" 科学网.jpg" src=" http://img1.17img.cn/17img/images/201608/noimg/02f28637-3ef1-47f6-976c-f5cb14ab27b7.jpg" / /p p   因此事实上,Burgio博士的实验中,目的基因发生了移码突变,造成这种峰图,可能恰恰证实了NgAgo有效。不过似乎NgAgo切割基因组的效率并不高,造成了多种移码型的混合物。众所周知,基因编辑技术的主要作用之一,就是在基因中造成移码突变,使其失去功能. p   Burgio博士说他们所用的引物已经过验证,是特异性的,那么,如果NgAgo无效,实验中除了目的基因的完整片段以外,不会出现任何额外条带,更不会出现移码现象。 /p p   那么出现的那些额外条带,为什么经过Sanger测序,序列是非特性的呢?我估计是因为他们设计的guider ssDNA的序列特异性不好导致的。他们的guider序列,应该就是之前CRISP/CAS9实验所用的guider,但CRISP/CAS9识别序列必须包含PAM序列,所以对序列特异性的要求没有那么高,而NgAgo方法采用ssDNA作为guider,没有PAM序列的限制,但同时对guider序列的特异性要求就高了。如果guider序列的特异性不够,肯定会对基因组序列乱切。 /p p   打个比方,这就像用google查找一个词“韩春雨”,找到的一定是“韩春雨”,但是如果你只输入“春雨”,那么出来的就不一定是“韩春雨”,还有“春雨贵如油”,“春雨医生”,...,等等。 /p p   一种新技术在诞生之际,一般都存在很多问题。如果韩春雨没有造假, 那么NgAgo技术作为一种新技术,前途是光明的,但无疑需要针对不同的生物、细胞和基因序列,进行设计、实验条件优化,提高基因组切割和编辑效率。 /p /p
  • 中国基因组研究跻身世界前列
    今年是国际“人类基因组计划”协作组发表人类基因组序列草图20周年。20年前,我国圆满完成了承担的“人类基因组计划”1%的任务。中国科学家通过参与这一被誉为生命科学“登月计划”的国际大科学计划,带动了中国基因组学研究从追赶到并跑,从而跻身世界前列。  6月26日,中国科学院遗传与发育生物学研究所、中国科学院北京基因组研究所(国家生物信息中心)和华大基因联合举办“纪念国际人类基因组工作草图绘制和‘1%项目’完成座谈会”,回顾基因组学发展历程,推动我国生命科学更快、更好地发展。  从1%到第一梯队 基因测序刻上“中国”印记  “人类基因组计划”于1990年在美国首先启动,进而英、日、法、德相继参与,组成了国际“人类基因组计划”协作组,其核心内容是测定人类基因组的全部DNA序列,获得人类全面认识自我最重要的生物学信息。  这场被誉为生命科学领域“阿波罗登月计划”的“盛宴”,中国要参与吗?  答案是肯定的。1994年,中国“人类基因组计划”在谈家桢、吴旻、强伯勤、陈竺、沈岩、杨焕明等科学家倡导下启动。1999年9月,继美、英、日、法、德之后,中国成为第六个“人类基因组计划”的参与国,也是其中唯一的发展中国家。  人类基因组由约30亿个碱基对组成。“作为参与这项工作的唯一发展中国家,1999年起,中国集中了一批生物学家参与并负责测定人类基因组全部序列的1%,也就是三千万个碱基的排序。”中科院院士、华大基因联合创始人杨焕明说。  2001年8月26日,中国科学家提前高质量完成“1%项目”的基因序列图谱。  “也许‘1%项目’对整个项目而言有些微不足道,但它的实施给我国基因组学发展所带来的意义却是重大的。同时,‘1%项目’也对社会公众进行了一次声势浩大的基因及基因组普及教育,为中国生命科学研究和生物产业发展开拓了无限的空间。”杨焕明说。  加入国际“人类基因组计划”,可以使中国平等分享该计划所建立的所有技术、资源和数据,并使我国成为世界上少数几个能独立完成大型基因组分析的国家。  杨焕明表示,中国科学家“抢”到的“人类基因组计划”1%份额,让这个人类科技史的重要里程碑上刻下了“中国”二字。更重要的是,它还带动了中国基因测序技术从追赶实现并跑,并在测序仪的研制和量产以及生物信息学软件的开发等方面逐渐走向全球第一梯队。  生命科学的“大科学”时代曙光初现  20年来,“人类基因组计划”所取得的划时代成就,给人类对疾病和物种演化的认知带来了革命性变化。  通过参与这一计划,中国科学家得以在短时间内学习并追赶发达国家的先进生物技术,先后完成了水稻基因组、小麦A基因组、SARS冠状病毒的基因组研究,以及对熊猫、家猪、家鸡、家蚕等动物基因组的测序和分析工作,使我国的基因组学研究得以跻身世界前列。  2010年,科学家怀揣了数十年的梦想成为现实。基于基因组全序列发现了一个个遗传病的致病基因的突变,使得基因治疗取得了良好疗效。近年来,有多位地中海贫血、白血病患者等受益于基因技术被治愈。这些治疗奇迹也给科学家巨大的信心。在新冠肺炎疫情中,病毒及人类的基因组序列在病毒检测、疫情跟踪以及疫苗研制等方面发挥了重要作用。  “人类基因组序列就像元素周期表一样重要。可以说人的生、老、病、死都与人类基因组序列携带的遗传信息相关,其重要性不言而喻。”杨焕明说。  他表示,这场疫情也再次提醒我们:我们对生命的认识还远远不够。“人类基因组计划”不仅促进了生物学和医学的发展,而且正在积极深化遗传学、生物化学、分子生物学和信息科学等多学科合作的“大科学”融合,共同构建生命科学的“大数据”时代。
  • 东南大学研制新技术:1000美元一天搞定基因测序
    记者日前从第十一届设计与制造前沿国际会议上了解到,东南大学在第三代人类基因测序关键技术研制上取得重大进展,研究人员造出了只有头发丝1/30000左右粗细的小孔,让DNA中的碱基挨个通过小孔,通过给碱基&ldquo 量个头&rdquo 的方法来测定序列。这种新方法将原本要6个月的测序时间缩短到了24小时,费用也从500万美元降到了1000美元以下。利用这种技术,将来人们测基因序列,可能就像做血常规检查那么简单。   碱基   构成基因的&ldquo 字母&rdquo ,总是两两配对   在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(腺嘌呤)、T(胸腺嘧啶)、C(胞嘧啶)、G(鸟嘌呤)。每种碱基分别与另一种碱基的化学性质完全互补,通俗来说,就是A总与T配对,G总与C配对。这四种化学&ldquo 字母&rdquo 沿DNA骨架排列。&ldquo 字母&rdquo (碱基)的一种独特顺序就构成一个&ldquo 词&rdquo (基因)。   在DNA双螺旋结构中,碱基对就像&ldquo 拉链齿&rdquo   人类基因组共有23对染色体,其中22对为常染色体,还有一对性染色体X染色体或Y染色体,含有约30亿个碱基,组成大约20000到25000个基因。如果将DNA稳定的双螺旋结构看成拉链的话,四种碱基两两配对,每一对碱基就是拉链骨架上互相咬合的齿。它们的独特顺序就构成一个基因。   让碱基挨个通过&ldquo 小孔&rdquo 验明正身   东南大学机械工程学院陈云飞副院长介绍,基因实际上是DNA的一个片段,而基因的遗传信息其实就存贮在碱基的序列中。30亿个碱基排列略有变化,就有了人高矮胖瘦等分别。要完成全序列的基因测定,是个浩大的工程。第一代测序法用的是化学方法,要把长的基因打成很多段,然后进行荧光测定,第二代集成度高了,所以时间缩短很多,第三代测序的目标是更短的时间、更廉价的费用。为此,依托东南大学的江苏省微纳生物医疗器械设计与制造重点实验室从2006年就开始了相关的研究。   &ldquo 每个碱基的长度约为0.34纳米,30亿个碱基长度也就是1.03米。&rdquo 陈云飞副院长介绍,他们的物理测序方法,就是让这个总长度只有1米多实际上却浩浩荡荡的碱基队伍挨个通过一个纳米孔,然后给每个碱基&ldquo 量个头&rdquo 。这个原理是什么呢?&ldquo 4种碱基有的大小是不一样的。我们造出一个孔,让碱基挨个走过去,碱基个头不一样,引发的电流大小也就不一样。&rdquo 通过纳米孔传感器绘制电流变化,就能自动分辨出碱基的排列顺序了。   &ldquo 碱基&rdquo 被电极吸引,就像线穿过针眼   陈云飞副院长口中的这个孔,相当有技术含量。他们这个孔做到直径2纳米,在全世界都是领先水平。2纳米是个什么概念,陈云飞举了个例子,我们的一根头发丝是7万纳米,1纳米相当于头发丝直径的1/70000。东大研究人员选用的两种材料是石墨烯与氮化硼,这两种材料本身都是单层片状结构,只有零点几纳米厚,强度却是钢的1000倍。   有了小孔,碱基却不会主动&ldquo 钻&rdquo 小孔,那就得给碱基加点&ldquo 动力&rdquo 。&ldquo 我们将溶液用特殊的薄膜隔开,薄膜上集成的是纳米孔的阵列,在溶液的一边加正电极,一边加负电极,因为DNA本身带有负电,电极一起作用,DNA就会主动往正极方向跑。&rdquo 陈云飞说,只要DNA的&ldquo 头&rdquo 通过小孔了,原本&ldquo 蜷缩&rdquo 成一团的DNA就被&ldquo 拉直&rdquo ,DNA上的碱基也就能挨个&ldquo 量个头&rdquo 了,就像线被穿过针眼一样。东大从想法形成到做出这个原理样机,大约用了14年。   基因测序有多难?   要测30亿个碱基,第一代测定法花了12年   2003年人类基因组计划完成人体全序列的基因测定,历时长达12年,耗资达30亿美元。近两年第二代测序仪让人类基因组测序的时间缩短到了2-4周,价格也降到了500万美金,但这样的价格和时间,极大地限制了其临床应用和基础理论研究。于是,在2004年美国国家人类基因组研究所启动了&ldquo 千元基因组测序研究项目&rdquo ,目的是让人类基因组的测序的费用降到1000美元以下。   新测序法带来啥改变?   基因检查更快更便宜,可以&ldquo 私人定制&rdquo 药品   如今新技术能在24小时内完成对个体的基因测序,有了基因图谱,未来用药治病将可能迎来本质的改变。&ldquo 比如说,我们确定某种基因和某种疾病的关系,而患者本身就有这种基因,我们就能根据患者的基因图谱来制作针对这个患者的药品,个性化药物时代将到来。&rdquo 除了药品的&ldquo 私人定制&rdquo 外,疾病的预防也成了可能。&ldquo 我们知道患者本身有某种疾病的基因缺陷的话,修复基因也有了可能。&rdquo
  • 先声诊断首张基因分型飞行时间质谱法检测试剂盒获批
    近日,先声诊断CYP2C19试剂盒正式获得国家药品监督管理局(NMPA)第三类医疗器械注册证(国械注准20233400263),这也是国内首个基于飞行时间质谱技术进行药物基因组(PGx)检测的获证试剂盒,可用于指导心脑血管疾病常用药物(如氯吡格雷)的临床精准用药。  心脑血管疾病已经成为全球第一大死亡原因,在死亡原因中占比增速甚至远超过恶性肿瘤。在中国,据推算现有心脑血管疾病患病人数达3.3亿,心脑血管疾病也是导致因病致贫、因病返贫的主要疾病。  氯吡格雷是一种新型抗血小板药物,广泛应用于心脑血管疾病临床治疗。研究发现,约30%的患者不能将氯吡格雷充分代谢成为其活性成分,也就不能发挥抗血小板聚集作用,究其原因和CYP2C19基因有关。  21世纪,基因检测技术已经得到了长足的发展,如荧光定量PCR、数字PCR、基因芯片、Sanger测序、NGS等技术均不同程度地应用于临床检验领域。事实上,临床诊断正在向"组学"方向(多基因、多位点)发展 另一方面,能够进入临床应用的都是基因意义明确、指南规定、临床可治疗的位点组合,因而临床急需一种能够承接同时检测多基因、多位点的分析检测技术,并拥有检测通量灵活,灵敏度高、成本低、简单易行的特点,应对临床的广泛需求。近些年,飞行时间质谱多基因检测技术快速发展,它结合了质谱技术的高灵敏度、高特异性和芯片技术的高通量和低成本特性,能够精确分辨A、T、C、G碱基之间的质量差异,适用于多种基因变异类型检测,在药物基因组学、肿瘤基因突变检测、肿瘤液体活检、遗传病筛查等领域有广泛应用前景。目前这种多基因多位点检测平台尚未见临床应用。而从基因角度探讨基因的遗传变异对药物治疗效果的影响正是药物基因组学(PGx)的领域。先声诊断“人CYP2C19基因分型检测试剂盒”是目前国内已获批CYP2C19检测试剂盒中唯一采用飞行时间质谱技术的产品,基因分型准确率超过99.7%,可为临床提供更精准的用药指导,并通过1800+例正在服用或将要服用氯吡格雷进行抗血小板治疗的冠心病和缺血性卒中患者样本的验证。  先声诊断CEO任用表示:“药物基因组检测的应用在欧美已经比较成熟,在国内尚处于起步阶段。先声诊断在药物基因组学领域布局比较早,我们希望帮助广大患者匹配最佳药物选择、优化药物剂量、减少不良反应并降低医疗支出,用精准医疗为更多人带来获益。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制