当前位置: 仪器信息网 > 行业主题 > >

化学检测

仪器信息网化学检测专题为您整合化学检测相关的最新文章,在化学检测专题,您不仅可以免费浏览化学检测的资讯, 同时您还可以浏览化学检测的相关资料、解决方案,参与社区化学检测话题讨论。

化学检测相关的资讯

  • 流式荧光技术检测与化学发光技术检测那些事儿
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工前段时间,有很多新关注崔工公众号的朋友问崔工一个问题,什么是流式荧光检测技术?它的原理是什么?传统的化学发光检测技术又有什么?问崔工这个问题的朋友应该是刚进入到这个行业,还不是很了解这个行业。今天就跟大家聊聊,供大家参考。— 1 —什么是流式荧光检测技术?从百度百科了解到,流式荧光,又称悬浮阵列、液相芯片等,是近20多年逐渐发展起来的多指标联合诊断技术。该技术以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,多指标并行分析,最多可一管同时准确定量检测2-500种不同的生物分子。具有高通量、高灵敏度、并行检测等特点。可用于免疫分析、核酸研究、酶学分析、受体、配体识别分析等多方面、多领域的研究。流式荧光检测技术的原理是什么?将荧光标记后的单细胞(或颗粒)悬液进入吸样管,进而随鞘液进入流动室。进入流动室之前的管道变细,迫使鞘液从四周、样本在中心进入流动室,在外加压力的作用下由下向上(或由上向下)直线流动。鞘液充满流动室将样品裹挟,当二者通过流动室喷嘴流出时,压力迫使鞘液包裹的液滴包含单一细胞或颗粒垂直通过检测区。在检测区与液滴垂直的位置设置激光,在与激光垂直的位置设置探测器(透镜等),液流、激光、探测器互相垂直并聚焦于一点实现流体动力聚焦。荧光标记的细胞或颗粒在激光激发下发出散射光和荧光的发射波,散射光和发射光被检测器获取,再经一系列滤光片、光栅处理去除干扰并将光信号经光电转换和放大后输入计算机,并由软件分析处理。而细胞分选则是对荧光标记的目的分子分别加载正或负电荷,当其在随液滴滴落的过程中受到外加高压电场的作用发生偏转而落入接收容器,从而获得目的细胞群。流式荧光检测技术有什么技术特点?1、高通量:将许多种不同荧光编码的微球放在同一反应体系内,一次可同时检测2-500种生理病理指标,这与传统方法的逐个检测相比是质的飞跃。2、高敏感性:流式荧光技术最高的检测下限可达0.01 pg/ml,常规的酶联免疫吸附试验(ELISA)仅为μg级,比后者检测的灵敏度提高10—100倍。3、线性范围宽:检测的线性范围比常规的ELISA方法高10倍以上,可达3-5个数量级。检测浓度范围为pg-μg级。4、反应快速:因流式荧光技术的杂交或免疫反应在悬浮的液相中进行,反应所需的时间短(从2 h缩短到20—40 min),杂交后常不用清洗,即可直接读数,所以检测效率高于固相杂交。5、重复性好:杂交发生在准均相液体环境中,其结果稳定,重复性非常好。检测时,抽取其中的100颗微球读数,最终的数据取其均值或中位值,这样可将误差减到最小。6、利于探针和被检测物的充分反应:由于液相环境更有利于保持蛋白质的天然构象,所以也更有利于探针和被检测物的反应。7、操作简便:流式荧光技术平台的整个反应过程只涉及加样和孵育,最后上机读数,操作步骤少,简单易用。— 2 —什么是化学发光检测技术?这里既然是跟流式荧光检测相比较的,那这里的化学发光检测技术指的是化学发光免疫分析技术。化学发光免疫分析:是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。化学发光检测技术的类型及原理化学发光检测技术的类型分为直接化学发光免疫分析,化学发光酶免疫分析和电化学发光免疫分析。直接化学发光免疫分析用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗 原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和 NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、 发光 。由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可从标准曲线上计算出待测抗原的含量。化学发光酶免疫分析酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成 固相包被抗体-待测抗原-酶标记抗体复合物;经洗涤后,加入底物(发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光电倍增管将光信号转变为电信号并加以放大,再把它们传送至计算机数据处理系统,计算出测定物的浓度。电化学发光免疫分析电化学发光免疫分析 (electrochemiluminescence immunoassay, ECLIA)是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。化学发光免疫分析技术的优势是什么?1、灵敏度高:灵敏度高是化学发光免疫分析关键的优越性。化学发光免疫分析能够检出放射性免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。2、宽的线性动力学范围:发光强度在4-6个量级之间,与测定物质浓度间呈线性关系。这与显色酶联免疫分析吸光度(OD 值)2.0 的范围相比,优势明显。虽然同位素放射免疫也有较宽的线性动力学范围,但是放射性限制其应用。3、光信号持续时间长:化学发光免疫分析的光信号持续时间可达数小时甚至一天,简化了实验操作及测量。4、分析方法简便快速:绝大多数分析测定仅需加入一种试剂(或符合制剂)的一步模式。5、结果稳定、误差小:样本本身发光,不需要额外光源,避免了外来因素的干扰(光源稳定性、光散射、光波选择器),分析结果稳定可靠。6、安全性好及使用期长:到目前为止还未发现化学发光免疫分析试剂的危害性;另外这些试剂稳定,保存期可达一年之久。以上是对什么是流式荧光技术检测与化学发光技术检测基本原理做了一个说明,供大家参考。【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)(本文编辑:刘立东 点击查看KOL主页)
  • 陕西省公共检测中心、化学品检测中心揭牌
    11月14日,陕西省公共检测中心、化学品监测中心揭牌授牌仪式在陕西省生产力促进中心举行。科技部科研条件与财务司司长王伟中,科技部中国二十一世纪议程管理中心副主任周元,陕西省科技厅副厅长邱义路出席会议,仪式由省科技厅副巡视员杜克飞主持。   建立公共检测中心和专业化检测中心,是响应省政府进一步整合科技资源,改变目前大型科学仪器设备开发共享总量较低、服务范围相对较窄、仪器设备资源分布不平衡、开展配套服务能力较弱,探索大型科学仪器设备协作共用工作的一项新的举措。建成后的公共检测中心,将以陕西省大型科学仪器设备协作共用网为基础,联合省内60多家专业技术先进的科研、教学和生产单位,通过有效整合相关领域、行业、区域的大型仪器设备及科研技术力量,逐步实现我省部分科研实验室设备整体对社会开放与共享共用,从而在更广大的范围和更深入的领域实现全省科技资源的共享共用,更好地为广大中小企业服务。   目前,公共检测中心有陕西省材料分析研究中心、陕西省地质资源与环境检测中心、陕西省化学品检测中心和陕西大仪科技检测中心4个实体机构开展日常分析检测服务业务,陕西省大型科学仪器设备协作共用网的数百台(套)大型科学仪器设备及陕西省分析测试协会近千名专业技术人员作为公共检测服务的技术支撑,可向全社会提供分析检测领域的信息交流、检测服务、专业培训、技术咨询等方面的服务。下一阶段中心将继续整合、建立若干行业专业化检测中心,增强分析检测服务能力 在完善现有分析测试培训体系基础上,在省内其他地区新建若干培训基地 探索建立公共检测远程服务系统。   新组建的陕西省化学品检测中心是由西安近代化学研究所分析测试中心、陕西应用物理化学研究所分析测试中心 、西北大学分析测试研究中心、陕西师范大学化学实验教学中心、西安工程大学环境与化学工程学院分析测试中心、陕西省大型科学仪器设备协作共用网管理办公室等六个省内从事化学品科学研究试验机构组成的科技资源协作共享联合体。共有100多台(套)大型科学仪器设备,总价值约1.3亿元,技术专家100余名。中心将联合省域内化学品分析测试技术力量,发挥协作单位大型科学仪器设备的资源优势,提高综合科技资源的利用率,以科学、公正、准确的检测手段,面向社会开展广泛的专业检测服务、学术交流和技术合作,为化学品研发培养分析测试技术人才,提供技术咨询、工程示范和化学危险品的应急处置故障分析等服务。
  • 《化学检测仪器核查指南》发布
    在实验过程中,影响化学仪器正常工作和稳定性的因素有很多,有些影响在常规检测工作中不易被察觉,当不良影响积累到一定程度,会造成所使用的化学仪器状态发生变化,并直接影响检测结果准确。为提高和保证仪器使用的准确度,化学检测实验室做好仪器的校准、维护、核查工作等是十分必要的。但由于化学检测仪器的复杂性,实验室在仪器设备核查中存在一定的难点。近日,中国合格评定国家认可委员会发布《化学检测仪器核查指南》,旨在阐明化学检测仪器核查的原则,对不同仪器在不同使用阶段的核查重点提出建议,并介绍一些常用化学检测仪器可供选择的方法和手段。《指南》主要涉及在使用化学仪器开展定性定量分析的情况下,化学仪器核查的技术和方法指导,适用于化学检测过程中常用的化学仪器,对规范化学检测实验室的仪器核查起重要作用。 点击查看
  • 化学发光探针检测技术速查病原菌
    吉林检验检疫局建立的金标法检测单核细胞增生性李斯特氏菌技术作为当今检测病原体和诊断疾病方面最为敏感的免疫学技术之一,不仅操作简便、快速、特异,更为重要的是适用于广大基层食品监管部门的现场检测和诊断,这些特点都是其他免疫学方法所无法比拟的。   该技术不仅具有巨大的发展潜力,而且还具有广阔的市场和应用前景,如可适用于医疗卫生行业,出入境食品口岸抽查和鉴定、流通领域卫生监督和工商行政部门和质监部门的食品企业监管等,甚至可以走进餐馆、家庭进行简易的食品自控和检测等。   由吉林出入境检验检疫局承担的国家质检总局科研课题《应用化学发光探针及免疫金标法检测食品中多种致病菌的研究》在2011年获得了国家质检总局“科技兴检”三等奖。该课题建立的化学发光探针检测技术能够快速检测食品中常见的四种病原菌:空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌。其中对单核细胞增生性李斯特氏菌还建立了应用免疫胶体金试纸条的快速检测方法。   急需速测技术   我国的食品生产加工企业数量多,规模小,较分散,而且为数较多企业过分追求利润法律意识淡薄,社会责任心不强导致其产品质量良莠不齐。   据报道,我国45万个食品生产企业中,员工人数10人以下的食品生产加工小作坊就有35万家,约占80%,因而导致食品安全事故时有发生,给社会和消费者的健康造成了巨大危害。   而目前的食品卫生监管的检测手段主要依据国家标准或行业标准规定方法进行,虽然这些方法准确可靠,但这些方法一般都需要建设专门的微生物检测实验室,配备专业的检测技术人员,需要较长的检测周期,由此造成的检测成本过高,缺乏时效性等问题,使一些突发的食品安全事件不能迅速得以解决。因此发展和建立一种快速、简便、灵敏准确的检测技术,作为标准检测方法的初筛技术,是解决上述问题的有效手段之一。   食品检验新兵   化学发光探针技术的原理是互补的核酸单链会特异性识别并结合成稳定的双链复合物。这一检测系统利用一个标记有化学发光物的单链DNA探针,可以特异性的识别和结合目标微生物的核糖体RNA。微生物中的核糖体RNA释放出来后,化学发光标记的DNA探针就与之结合形成稳定的DNA-RNA杂合体。标记的DNA-RNA杂合体会与非杂交探针分离,并在化学发光检测仪中进行测量。样本的检测结果通过计算与阴性对照进行比较得出结果。利用化学发光剂标记和检测核酸使得许多非放射性标记检测的灵敏度达到甚至超过了同位素标记测定。   在众多的化学发光体系中,应用最多的化学发光体主要有三类:增强鲁米诺发光体系、吖啶类化合物发光体系和碱性磷酸酶催化的1,2-二氧环己烷发光体系。吉林检验检疫局建立的化学发光技术使用吖啶酯标记核酸探针。   利用化学发光杂交保护分析的原理检测空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌4种致病菌特异性RNA序列,这种方法无需物理分离,利用吖啶酯标记DNA探针,通过核酸杂交保护分析法,即应用人工合成的靶DNA保守区的寡核苷酸,在合成时引入一个烷氨基的手臂,经活化后接上吖啶酯,制成化学发光探针。   杂交后无需分离步骤,而是利用差分水解来鉴别,即加入碱性溶液,游离的发光探针遇碱水解失去发光特性,而与特异性目的片段结合的探针形成DNA-RNA杂交体,由于吖啶酯是平面结构很容易进入双螺旋的内部而获得杂交保护,水解速度缓慢(半衰期达10分钟以上),仍有发光性能,可以在发光仪上显示化学发光信号,从而实现对病原菌的检测。   应用前景广阔   该项目利用胶体金技术研制了胶体金检测试纸条,用于单核细胞增生性李斯特氏菌的快速检测,该检测试纸条的灵敏度高,具有很强的特异性,不同批次生产的免疫胶体金具有良好的检测重现性,稳定性好,操作简单,检测时间只需10至20min即可报告结果,胶体金法无污染,不会危害操作者以及环境。胶体金抗体复合物在冻干状态下室温储存相当稳定,有效期长 此外胶体金技术还具有检测迅速、灵敏、不需要复杂仪器设备、产品永不褪色等优点,适合于食品中单核细胞增生性李斯特氏菌的初筛检验。   吉林检验检疫局建立的基因探针化学发光检测方法可在30分钟内快速确定病原体,并可直接于固体或液体培养基上鉴定目标微生物。该方法可直接应用于国外生产的LEADER 50i检测仪上,仪器自动注入检测试剂,立刻测量标记物所产生化学反应的化学发光强度,并自动计算结果及打印报告,该检测方法敏感性高,特异性强,检测成本低,操作简便、快速,对我国食品安全快速检测和监控工作具有重要意义,具有广泛的推广前景。 胶体金快速检测试纸
  • 快速检测三聚氰胺新招:电化学法
    西北工业大学副教授赵廷凯和该校教授李铁虎等人对采用电化学方法简单快速检测三聚氰胺进行了深入研究,为三聚氰胺的快速准确检测提供了新思路。研究成果近日发表于国际期刊《电化学会志》。   赵廷凯向《中国科学报》记者介绍说,目前三聚氰胺的检测主要采用色谱法、质谱法和荧光法。这些方法在一定条件下可以检测三聚氰胺,但存在灵敏度低、前期处理复杂、耗时长等问题。而电化学方法具有简单快速、灵敏度高、准确等特点。同时,使用碳纳米管与壳聚糖纳米复合材料作为电极材料来检测三聚氰胺,具有实际应用前景。   据悉,近年来,李铁虎团队对碳纳米管及复合材料的制备工艺进行了系统研究,为其进一步在电化学、生物医药、航空航天领域的实际应用打下了基础。   研究人员结合碳纳米管的巨大比表面积和壳聚糖的高溶解性及吸附活性,制备出了碳纳米管与壳聚糖的纳米复合材料。用涂覆在玻碳电极上的该纳米复合材料检测三聚氰胺,检测极限达到3×10-9摩尔/升,比目前使用的传统检测方法提高了近一个数量级。同时,该方法简单环保,无需前期处理且速度快,检测仅需2分钟,为在乳制品或食品中三聚氰胺的简单快速检测提供了试验依据。   事实上,赵廷凯等人在最近的实验中已得到接近10-10摩尔/升的三聚氰胺检测极限。赵廷凯表示,利用该研究制备出的碳纳米管复合材料作为涂层,在普通电化学测试仪器上即可进行三聚氰胺检测,检测成本低。
  • 涨知识丨水质指标-化学需氧量COD检测专题
    化学需氧量COD是一个重要的且能较快测定的有机物污染参数,常以符号COD表示。化学需氧量COD越高,就表示水样中的有机物污染越严重,如果不进行处理,许多有机污染物就会对水生生物造成持久的毒害作用,在水生生物大量死亡后,河中的生态系统即被摧毁。人若以水中的生物或灌溉的农作物为食,则会大量吸收这些生物体内的有害物质,可能产生致癌、致畸形、致突变等负面影响,对人和其他生物造成非常大的危害。因此,检测水中化学需氧量COD对环境综合治理具有不可或缺的意义。化学需氧量COD定义化学需氧量COD的概念是氧化水中还原性物质所消耗氧化剂的量转化成氧的量。通常是指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量(重铬酸钾的量),以氧的mg/L来表示(也就是消耗的重铬酸钾K2Cr2O7的量转化成氧分子O2的量)。监测目的COD是水体有机物污染的一项重要指标,能够反映出水体的污染程度。COD越高,说明水体受有机物的污染越严重,水体自净需要把这些有机物给降解,好氧微生物在降解COD过程中会消耗水中大量的溶解氧DO,而水体的恢复溶解氧能力不足时,水中溶解氧DO就会降为0,成为厌氧状态,在厌氧状态也要继续分解(厌氧微生物的厌氧作用),水体就会发黑、发臭,对生态环境造成巨大的影响。检测方法测定标准:《HJ828-2017 水质 化学需氧量的测定 重铬酸盐法》《HJ/T399-2007 水质 化学需氧量的测定 快速消解分光光度法》常用测定方法:1、国标法:重铬酸盐法(标准HJ828-2017)优点:再现性好,测量准确可靠,是仲裁方法。缺点:回流装置占据空间大,水、电消耗大,试剂用量大,操作不便,批量检测难。2、行标法:快速消解分光光度法(标准HJ/T399-2007)优点:占用空间小,能耗小,试剂用量小,操作简便,安全可靠,适用于大批量检测。缺点:对实验人员要求较高,与国标法数据略有差异。其他测定方法:微波消解法、节能消解法、高锰酸盐指数、总有机碳(TOC)、总耗氧量(TOD)研发阶段检测仪器 《国标法:重铬酸盐法》仪器 示例:连华科技LH-6F化学需氧量(COD)智能回流消解仪LH-6F化学需氧量(COD)智能回流消解仪是完全按照国家新标准《HJ 828-2017 水质 化学需氧量的测定 重铬酸盐法》原理设计制造,同时该仪器兼顾原国标。仪器采用独特的黑晶加热组件及保温措施,可同时消解6个水样,每个加热单元均可独立控温,加热效率更高,控温能力更强,节能的同时,使仪器安全性能大大提高。功能特点1、符合国标,应用广泛:兼顾新旧国标,适用各类水质检测;2、独立控温,节能环保:6个加热单元可单独控温,降低整机功耗;3、黑晶面板,安全可靠:采用黑晶加热组件,耐高温、耐腐蚀、易清理,安全性高;4、智能模式,操作简单:内置智能操作模式,一键自动完成消解冷却过程;5、双冷系统,省时省力:水冷与风冷相结合,快速降低消解瓶温度,节约检测时间;6、人性化设计,便于使用:整体高度65cm,降低了高度空间要求,可在大部分通风橱内使用。技术参数 《行标法:快速消解分光光度法》仪器 示例:连华科技5B-3C(V10)COD氨氮双参数快速测定仪2021年2月1日,连华科技正式推出5B-3C(V10)COD氨氮双参数测定仪,新产品在操作面板、检测项目、内置曲线、标准配件等方面进行了全新升级,大幅优化了用户在水质检测过程中的操作体验,对提升工作效率及水质检测效率提供了更多支持,进一步满足不同领域的水质检测需求。功能特点1、5.6吋彩色触控屏,配置全面升级采用5.6吋彩色触控屏,界面更加清晰美观,操作设置一目了然,标配5B-1(V8)16孔智能多参数消解仪,满足用户大批次样品检测的需求,新产品仪器内置打印机,检测数据实时打印,新增1套1cm比色皿、1套3cm比色皿,多重升级进一步提升工作效率,优化用户使用体验。2、新增多项测量模式,测定更多项目可直接测定化学需氧量(COD)、氨氮,内置多种方法曲线,浓度直读,新增氨氮水杨酸方法高低量程测量项目及610、420nm拓展测量模式,可以测定更多项目。测量模式丰富多样,用户可根据检测需求选择对应模式,化学需氧量(COD)检测<20分钟,氨氮检测<15分钟,操作简单,检测快捷,极大提升水质检测效率。3、践行研发设计理念,智造优质产品内存170条曲线,其中153条标准曲线和17条回归曲线,可根据需要调用相应的曲线,精确存储1.2万个测定数据,每条数据信息包含检测日期、检测时间、检测时仪器参数、检测结果,可向计算机传输当前数据和所有存储的历史数据,支持USB传输、红外无线传输(可选)。标配5B-1(V8)16孔智能多参数消解仪消解功率随负载数量自动调整,实现智能恒温控制,具有延时保护功能。新产品从软硬件层面都进行了更新升级,连华科技始终践行“简单、快速、智能、精确”的研发设计理念,力求打造出让用户用的舒心、放心、安心的满意产品。4、严格执行国家标准 适用更多领域按照国家新标准《HJ 924-2017 COD光度法快速测定仪技术要求及检测方法》原理设计制造,所有检测项目符合国家行业标准:COD-《HJ/T399-2007》、氨氮-《HJ535-2009》,氨氮亦可选择《HJ536-2009》标准。仪器适用于污水处理工程企业、环境监察部门、应急检测部门及对下属部门监察、工业废水排放检测单位或科研院校等各种生活用水和工业废水的检测需求。技术参数 《行标法:快速消解分光光度法》仪器 示例:连华科技5B-3F(V10)化学需氧量(COD)快速测定仪5B-3F(V10)化学需氧量(COD)快速测定仪是连华科技推出的普通经济型COD测定仪,标配LH-9A型9孔智能消解仪,具有操作简单,测量准确的优点。外观升级,配套齐全,操作方便,配制试剂后即可对COD指标进行准确测量,是一款性价比极高的产品。功能特点1. 外观简洁大方,整机轻巧简洁,功能简单实用;2. 3cm皿比色,直读浓度,测定结果准确;3. 冷光源、窄带干涉、光源寿命10万小时;4. 内存标准曲线,可一键校正,具有断电保护功能;5.配套LH-9A智能消解仪,可批量检测9支水样。技术参数 《行标法:快速消解分光光度法》仪器 示例:连华科技LH-COD2M(V11)便携式COD测定仪LH-COD2M(V11)型野外应急COD测定仪,采用全新光路设计理念,测值范围广,配合智能化程序设计,测值准确、便捷。本套仪器专门配备了外置便携式热敏打印机,比色管架等辅助设备和配件,方便用户进行野外测试使用。功能特点1、校准功能:仪器自备校准功能,可根据标准样品校准仪器内置曲线,无需手动制作曲线;2、配备专用配件:配备专用便携式消解仪、消解管组合架,整体消解、冷却,操作便捷;3、配备专用试剂:采用预制试剂管比色方式,消解比色一体,测量更加安全、简单、快捷、准确,测量范围更广;4、创新光路设计:全新的便携光路设计,测试方便快捷,可浓度直读,测量结果更精确;5、数据存储功能:具有数据存储功能,并配备USB接口,可查看并上传存储的数据;6、打印功能:具备打印功能,可连接外置便携式打印机实现数据打印功能;7、轻便美观:机身采用高分子工程塑料注塑成型,轻便、美观、防腐蚀;8、防震防水:高强度便捷主机箱,防震、防水,保护仪器不受伤害;9、中文操作:全中文操作,符合日常操作习惯,更便于掌握。技术参数检测试剂试剂配置:1、LH-D-100试剂100个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入75mL蒸馏 水,加入5mL分析纯硫酸后不断搅拌直至全部溶解。2、LH-D-500试剂500个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入348mL蒸馏水,加入22mL分析纯硫酸后不断搅拌直至全部溶解。3、LH-D3-100试剂100个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入72mL蒸馏水,加入8mL分析纯硫酸后不断搅拌直至全部溶解。4、LH-D3-500试剂500个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入333mL蒸馏水,加入37mL分析纯硫酸后不断搅拌直至全部溶解。5、LH-E-100试剂100个样:将整瓶的粉末状晶体试剂,全部溶解于500mL分析纯硫酸中,不断搅拌或隔夜放置,直至试剂全部溶解。6、LH-E-500试剂500个样:将整瓶的粉末状晶体试剂,全部溶解于2500mL分析纯硫酸中,不断搅拌或隔夜放置,直至试剂全部溶解。7、抗高氯试剂LH-Eg配置方法同LH-E试剂配置方法。8、保质期:固体试剂2年,配置成液体后保质期1个月;液体试剂3个月。标液配置:准确称取在105℃下烘干2小时后在干燥器中放冷却的邻苯二甲酸氢钾(HOOCC6H4COOK),0.4251g,溶于蒸馏水中,然后将该溶液用蒸馏水定溶在1000mL容量瓶中并混匀。此标准溶液COD浓度为500mg/L。使这1升水中0.4251g的邻苯二甲酸氢钾完全分解需要消耗500mg的氧。COD试剂示例 (温馨提示) 使用试剂前,请务必仔细阅读使用说明书功能特点连华科技液体试剂:1、整合配方,精简测定步骤2、节省成本,试剂用量小3、直接量取使用,省略繁琐的试剂配制过程连华科技固体试剂:1、高稳定性,高精确度,测量范围广2、粉末状密封包装,易运输,易保存,保质期长3、电话防伪查询原厂专用试剂,保证测量精确度4、定量的试剂包装,用户无需再次称重,配制方法简单连华科技预制试剂:1、直接将水样加入即可消解2、可直接用于比色出值3、密封效果好,携带方便4、非常适合野外操作实验步骤 COD高量程皿比色实验操作流程 (点击查看大图)COD预制试剂实验操作流程 (点击查看大图)注意事项1、器皿清洗干净。2、样品取样前根据实际需要将水样均质化。3、2.5ml样品取准,稀释建议容量瓶稀释。4、试剂加入注意安全与平行性。5、样品放入消解器前摇匀样品。6、放入消解孔与取出时注意垂直,轻拿轻放。7、加入2.5ml水摇匀后再冷却。8、比色时数值稳定后再按空白键。9、比色时严禁溶液撒入比色池内。10、实验完成后及时清洗器皿。11、废液收集集中处理,严禁外排。企业简介连华科技是一家创新型实体,总部位于北京,在全国16个地区设立分公司及办事处。在近40年的研发与发展过程中,连华科技始终保持水质分析测试领域的核心竞争力,研发出多参数、COD、氨氮、BOD、总磷、总氮、重金属等水质分析仪二十余系列及丰富的专业化配件、试剂,可测定百余项水质指标,已发展成为一家集研发、生产、销售、解决方案服务为一体的复合型企业。连华科技致力于解决当今人类生存环境所面临的一些重大挑战,同时十分注重用户的需要,积累了环保监测、科研院所、石油化工、食品酿造、医药卫生、纺织印染、电镀电力等不同行业的模型与数据,产出更富效率与价值的解决方案,与20余万家的客户和机构共同发展。连华科技已于2017年入驻京东、天猫等线上商城,满足不同用户的多样化体验。我们始终牢记我们的使命:让人类环境更加美好。
  • 探索砷(III)电化学检测影响机制中的进展
    近期,中国科学院合肥物质科学研究院智能机械研究所仿生功能材料与传感器件研究中心&ldquo 973&rdquo 首席科学家刘锦淮研究员和中科院&ldquo 引进海外杰出人才&rdquo 黄行九研究员领导的课题组研究人员在探索砷(III)电化学检测影响机制上实现新突破。   长期以来,实现复杂环境中砷(III)稳定高效的电化学检测是困难且重要的问题。因其他离子如汞(II)、铜(II)和天然有机物等产生的干扰,一直是研究人员特别关注的问题。而此前的诸多报道对干扰的影响机制研究甚少,缺乏理论及实验依据。   合肥研究院智能所研究人员从实际应用的角度出发,依托内蒙古托 克托县兴旺庄村地下水为背景,借助于光谱法深入研究了腐植酸和铁(III)对砷(III)的电化学信号的影响。研究结果表明,腐植酸可以和水中砷 (III)发生络合,从而影响到检测信号;而铁 (III)的存在可以更强的作用力与腐殖酸结合,消除腐植酸与金电极或者As(III)的结合,从而实现砷(III)稳定高效的电化学检测。研究论文发表 在环境类期刊《危险材料》上(J. Hazard. Mater. 2014, 267, 153)。评审人认为&ldquo 相对于砷(III)的检测,该工作对干扰物对电化学信号的影响提出了比较深刻的理解&rdquo ;&ldquo 该工作具有新颖性,并且对消除这些对砷分 析产生影响的腐植酸的新的可能性带来一种思路&rdquo 。   近几年来,该课题组研究人员一直致力于探索纳米材料在电分析行为与吸附性能的相关性。 对此,他们利用氨基功能化氧化石墨烯和多孔双金属氧化物(氧化铈-氧化锆)纳米微球探究了水中重金属如砷(III)、砷(V)、钴(II)的吸附性能。相 关研究深入论证了表面官能团对去除重金属的重要作用。该研究成果也以全文发表在《危险材料》上(J. Hazard. Mater. 2013, 260, 498;J. Hazard. Mater. 2014, 270, 1)。   以上研究工作得到了国家重大科学研究计划项目、中科院&ldquo 引进海外杰出人才&rdquo 百人计划项目以及合肥物质科学技术中心方向项目等的支持。
  • 区域地球化学: “Ag,B,Sn”检测不再是难题
    2014年11月22-23日,为响应中国地质调查局基础部的号召,“区域地球化学调查样品分析技术研讨会”在山东日照山水大酒店隆重召开。会议由中国地质调查局区化样品质量检查组主办,湖北省地质实验测试中心协办。中国地质调查局基础部奚小环处长、区化样品质量检查组组长叶家瑜研究员、中国地质科学院地球物理地球化学勘查研究所张勤主任、浙江省地质矿产研究院郑存江总工等相关领导和专家出席会议。聚光科技受邀携全球首创E5000电弧直读发射光谱仪参会。 中国地质调查局奚小环处长和李敏分别做了《勘查地球化学发展框架结构的讨论》和《多目标区域地球化学调查和区域地球化学勘查现状及今后展望》报告,在报告中,对多目标区域地球化学调查和区域地球化学勘查现状做了全面和详尽的分析,并根据现状对未来的工作任务及方向做了展望。中国地质调查局李敏作报告中国地质调查局奚小环处长作报告 叶家瑜研究员发表了题为《总结2013多目标区域地球化学调查、区域地球化学勘查样品分析质量监控的经验和教训》的大会报告,对于多目标区域地球化学调查、区域地球化学勘查样品分析质量监控中存在的问题以及原因进行了全面的剖析,并对未来可能出现的问题做综合概述,把以往做的成功的经验分享给与会代表,并对需要吸取教训的地方提出警示,会议受到与会代表的好评,代表们纷纷表示,这样的总结还是很有必要性,这相当于站在巨人的肩膀上前进。区化样品质量检查组组长叶家瑜研究员作报告 本次会议不仅对区域地球化学领域内的现状、问题和展望进行了讨论和分析,研讨“Ag,B,Sn”等样品分析技术是本次会议的另一个非常重要的议题。关于本议题,聚光科技实验室研发总监寿淼钧先生针对《E5000全谱直读电弧发射光谱仪结构、性能及适用性情况介绍》向各位与会专家进行汇报。在报告中,寿总详细介绍了研发团队是如何工作的,在每一个细节上是如何处理的。比如,设计“一键激发”式操作,能立刻获得分析结果;全自动电极激光对准系统;内置工作曲线,客户无需手动建线,切实提高工作效率;提供可视化电弧直读专用软件,且软件开放所有高级功能,为客户提供完美的方法开发平台;多重连锁和监控,确保操作安全可靠:可靠的水冷系统,分别对电弧光源和激发电极散热;实时监控仪器的运行状态,所有的连锁状态如冷却水、排风、炬室门等都通过界面和指示灯等多种形式直接提醒;界面上有关键温度的显示,第一时间查看仪器的运行情况;排风监控,消除废气影响;特殊的风道设计提高稳定性等等。研发团队的设计理念和工作方式得到大家的普遍赞同,一致认为如果其他仪器厂家和配件供应商都能这样做,国产分析仪器的春天来了。 E5000全谱直读电弧发射光谱仪产品结构设计 E5000全谱直读电弧发射光谱仪样品实测现场1聚光科技实验室研发总监寿淼钧先生报告现场 浙江省地质矿产研究所郑存江总工的大会报告《E5000全谱直读电弧发射光谱仪使用情况介绍》,分享了使用E5000将近1年来的数据和使用E5000的使用心得,郑存江总工欣慰地说到,E5000电弧直读发射光谱仪如下优点是别的仪器无法比拟的:●直接读取测试数据,减少洗相板、测光步骤;●自由选择扣背景位置,彻底扣除背景干扰,检出限有所降低;●光学部分全部恒温,环境影响小,电弧发射器稳定性好,校准曲线甚至可以重复使用●激光定位上下电极位置,根据预设条件,自动调整上下电极位置,省去了人工造成的偏差;●水冷电极夹,减少高温伤害电极夹;●光谱以数字图储存,可以复现检测过程;●全光谱记录,可以扩展检测元素;●可以采用内标法和标准加入法检测样品●可进行半定量和其他类型样品的定性分析浙江省地质矿产研究所总工程师郑存江报告现场 叶家瑜研究员检查组,姚岚女士做《运用E5000全谱直读电弧发射光谱仪进行多目标区域地球化学调查和区域地球化学勘样品Ag、B、Sn分析数据对比试验情况介绍》报告,将中国地质调查局所送250个样品的实测数据,以及数据的合格率,在会议上作了公开发布。通过实际测试数据得出:E5000全谱直读电弧发射光谱仪采用全谱直读型设计,分析谱线可灵活选择,干扰校正更方便准确,非常适用于高基体含量的地矿样品Ag,B,Sn等元素的分析,同时全谱指纹谱图的采集有利于获取样品的全部信息。 姚岚女士报告现场 在会仪最后,中国地质科学院地球物理地球化学勘查研究所张勤主任与大家分享测试中经验。张主任生动地讲述了交流电弧原子发射光谱法-测定地球化学样品中高含量Sn。中国地质科学院地球物理地球化学勘查研究所张勤主任报告现场 会议在大家的分享和讨论中落幕了,会议得到来自五湖四海代表们好评,纷纷表示,通过本次会议不仅对区域地球化学领域有了更深入的认识,还对未来的发展方向有了清醒的认知;业内领导和专家们表示,这样的会议是很有意义的,本次会议非常有成效,不但涉及到大面上的问题,还针对某个具体的难题深入探讨并提供解决方案,这样的会议模式是值得推荐的,不仅解决了业内的问题,同时还搭建了沟通的平台,希望这样的会议接着办下去,在一些细分领域和行业,针对一些难攻克的问题,开具有针对性的会议,是很有必要的。
  • 国家反恐化学检测鉴定机构挂牌
    防化指挥工程学院被确定为“国家反恐怖化学检测鉴定指定机构”,揭牌仪式8月20日在京举行。   防化指挥工程学院近年来加强在化学检测鉴定方面的探索,逐步建立起结构合理、设备先进、管理高效、开放共用的重点实验室体系。其中特种化学品实验室是我国唯一、国际核准的合成实验室,获得了国家级计量认证 军事化学重点实验室是全军重点实验室。
  • 理工女的诗意化学:检测方法像“孙子兵法”
    前几天是三八妇女节,在这万物复苏、春暖花开的阳春三月,希望姐妹们都能做一个像春天一样的女人!温润而热烈,明媚而有光彩,永远花开绚烂,时时春意盎然!前段时间单位安排我做3.8分享,然后我就在想,工作方面吧我也没值得分享的东西,反而更需要向大家学习。生活方面吧我这人比较简单,不懂流行,不懂时髦,除了油盐酱醋,就是看看书写写文章,好像也没什么拿得出手的壮举。想来想去我就随便说说我对工作、生活、人生的一些感悟吧。我这人比较爱思考,特别在工作的时候,我总觉得化学元素就和每个人一样,都有自己的脾气和性格,优点和缺点。有自己喜欢的一见面就剧烈反应的朋友;也有自己不喜欢不管什么条件都不发生反应的仇人;甚至有的就像灵魂伴侣,和谁也不反应,只对某一个元素反应(如银和氯根);有的就像没主见的墙头草(如三氧化二铝),遇酸就和酸反应遇碱就和碱反应;也有的和所有的金属元素都反应(如EDTA),就像花心的男人,看见哪个女人也喜欢。对于检测方法,我就觉得有点像孙子兵法,就像醋酸锌滴定三氧化二铝,为了滴定铝,先加入足量的EDTA络合三氧化二铝和二氧化钛,用醋酸锌滴定剩余过量的EDTA,再加入氟化钠,置换出络合的EDTA,然后用醋酸锌滴定。为了检测铝,先用EDTA来抛砖引玉,让铝上钩后,然后又反客为主。EDTA滴定钙镁,先调酸度,加入好多的掩蔽剂,最后颜色变成紫棕色,然后开始滴定钙镁,感觉就像是孙子兵法中的混水摸鱼,先把水搅混了好摸鱼。现在的仪器测定有点像顺手牵羊,本来只测一个元素,结果一看这么多元素,一个光谱全分析,测定了所有的元素。所以为了检测一个项目,我们实验室的检测人员也都是灵活运用孙子兵法的大将军。从工作中我也能悟到好多的人生哲理。比如从滴定法一滴一滴滴到终点,让我明白只要一点一滴的积累,定会有质的飞跃,定会有计量点的到来。化学的能量守恒告诉我,人生就是一场氧化还原的反应,有时得到电子,有时失去电子,只要心存善良,按照能量的守恒,每一次的得失便都是爱的传递,只要心中有光,根据能量的转换,每一次的反应便都是温暖的交替。这么多年的矿石分析让我明白,矿石中有的天生就是贵金属,有的是粘土,有的天生就是金刚石,有的是石墨,有的天生就是水晶翡翠,有的却只是破铜烂铁。矿物中有贵金属命的很少,有金刚石能力的很稀有,有水晶翡翠才华的更罕见,大多数的矿石还就是贫土薄壤,还就是破铜烂铁。生活如山,苦痛总是多于欢愉,烦恼总是多于幸福,就像石头总是多于矿物,杂草总是多于草药。铁的化学反应告诉我,人生如铁,锈迹斑斑是人生的底色,要想发射金子般的光芒,需要在烈火中重生,在铁砧上舞动,在铁锤下成长,直至百炼成钢。人生如铁,注定不得清闲,就算你历经打磨光彩射人,长期的懒惰,还会被锈迹重新包裹,失去曾经的骄傲,失去往昔的荣耀,终黯然而失色,只有做个不懈追光的人,才会永披耀眼的光芒。人生如铁,里面有幸福的伴生物,也有痛苦的衍生物,懂得忍受与取舍,不断打造闪光点,不断提升显示度,方可成就好品质,真正的好品质,方经得起岁月的敲打,受得住时间的考验。人生如铁,人间就是一场炼狱越,炼越坚硬,越炼越顽强,炼狱中谁也没有更多的选择,要么做炉中的精华,要么做炉底的废渣。比色法让我明白,用蒸馏水的单纯,才能面对尘世的复杂,用最初的心,方可守住最美的梦。要想得到准确的结果,必须用无尘的心做空白,比色尘世的污浊,时代的试管,加入人性的显色剂,变换着红橙黄绿青蓝紫,我在这绚丽的色彩中,分辨着真实与虚伪,计算着善良与丑恶。关于仪器测定,每次测高含量样品时,怎么测都是标准值的模样,测低含量样品时,不是其它元素干扰,就是背景值太高,就是减个空白,都将7纠结成8的形状,仪器检测的原理告诉我,自己能力高时,再多的干扰都微不足道,背景的大小也无关紧要,自己没能力时,一点干扰便迷失了方向,有点背景便丢掉了自我。所有,你如果有高大的背景,自身一定得有很强的能量,才可以发射自己的特征谱线,实现从低能级到高能级的人生跃迁。仪器测定的原理告诉我,一定要提高自己的分辨率,明辨是非,祛除干扰、扣除背景,才可以认清本元素的特征,发挥自己的价值。新方法验证让我明白,面对人生的生存法则,我们必须不断进取不断创新,人生没有操作规程,我们所走的每一步都是新方法验证,成功了便获得了资质,失败了便堕入凡尘,所谓的红尘难度,佛道难修。所以人生就像化学反应,决定你成功的因素很多,改变外界的环境,就会改变化学反应的速率,但有的改变却可能使反应逆转。加入催化剂,可以加快反应的步伐,但往往凡事有度,过犹不及。化学反应和人一样,有的人很容易就成功,有的人需努力才能成功,有的人再努力也不会成功,但容易成功的都是一成不变的模板,不容易成功的才充满了机遇和挑战。别灰心,突破束缚,大胆创新,或许一个不经意的加入,就会看到柳暗花明,就会体会绝处逢生,就会成就科学巨匠,就会推动人类文明。所以反应能不能成功,起决定作用的还是你的內焓(内涵),而且化学反应后,所有的产物(回报),都少于它的原料(付出),但所有的产物,都昂贵于它的原料。说实话,其实我这人缺点很多,嘴比较笨,脑子比较简单,不会八面玲珑,不会左右逢源,人们所说的职场、官场应该具备的东西我好像都没有。好多人曾告过我“没有心机、没有城府的人,在社会上是混不下去的,迟早被人踩死!”我也认真的思考过这个问题,思考过我人生的出路。但化学原理告诉我:对待得失就像氧化还原反应,得到会使你的价位降低,而失去反而会使你的价位升高。我就觉得老天给我这样的缺点,就是让我做一个不一样的自己,让我把更多的心思和精力花在更重要的事情上。不用溜须拍马,不用阿谀奉承、不用苦于算计!专心研究技术,靠技术吃饭,靠能力赚钱。像相信化学的原理一样,我始终相信“付出就有收获”,我始终相信“自助者,天亦助之,爱人者,人恒爱之”,我始终相信“得道者多助失道者寡助”,我始终相信“你若精彩、天自安排,你若芬芳,蝴蝶自来”。所以面对所有的委屈和不公,我不会在意,也不会计较。默默的努力,隐隐的发力,努力充实完善自己,才是最有力的说服力。所以我一直学习,从专业知识到国学经典,从软件编程到诗歌散文,前年到现在,我发表了5篇论文,其中两篇科技核心期刊,申请了一个软著。还有幸成为“简书”平台多个专题主编,多个“技术培训平台”特约编辑。关于人生这个话题,是一个终极话题,从古至今所有人都会想,所有文人墨客都会写的一个话题。我以前也经常想,人生应该怎样活?人生奋斗的意义是什么?直到有一次听几个退休的师傅聊天,那几个师傅里有的是奋斗了一辈子功成名就的退,有的是潇洒了一辈子一事无成的退,我就在看他们的差别。奋斗了一辈子的师傅说起当年那是慷慨激昂,心潮澎湃,满脸的自豪感。潇洒了一辈子的师傅相对平静,说对过往有太多的遗憾,对好多人和事都有所亏欠,有明显的负罪感。我就在想,这或许就是奋斗的意义,当你在老的时候,也有值得炫耀的丰功伟绩,和后辈们聊天时,会说“遥 想 当 年......”然后就开始讲他的光辉历史。在后辈们心中,你永远是那个可敬可爱的老人,而不是一句“糟老头子”或“糟老婆子”。人生是短暂的,但奋斗的意义就是让精神永恒。一说到三八,我脑海中闪过一个词“三八定律”。上帝在时间上对于每个人都是公平的,无论达官贵人,还是平民百姓,一天都拥有24小时。我们将24小时平均分成三份,一份8小时用于工作,一份8小时用于睡觉,一份8小时用于自由支配,这就是所谓的“三八定律”。而人与人之间差距的增大,起决定性作用的就是最后的“自由支配的8小时”,在这8小时中你可以娱乐、消费,也可以刷抖音、逛淘宝,你可以阅读、学习,也可以健身塑形......你如何利用这8小时,将决定你过怎样的人生!世界上有两种耀眼的光芒,一个是太阳,一个便是你努力的模样!今天是咱们的节日,我想送大家一首我的小诗,祝各位女神们节日快乐,青春永驻,幸福美满! 把自己躬成了一座桥我想把铅灌注在时光里拖住时光的匆匆我想把金镶嵌在岁月里惊艳岁月的沧桑我想把钙溶解在生命里强壮生命的脆弱我想把铁加入在精神里治疗精神的贫血我想用酒精麻醉神经用抗坏血酸美白心灵用伽马射线穿透心脏我想深吸一口氧气平静内心的欲望都说这年代要想挺直了腰靠的是钞票都说这年代要想满目琳琅都要寻找高高的庙堂我却早已把自己躬成了一座桥虽然挺直了腰会疼但我知道我的灵魂一直高昂虽然满目尽是疮痍但我知道我的精神仍旧激昂
  • 奶瓶中化学物迁移的阶梯检测法
    p span style=" FONT-FAMILY: times new roman"    /span span style=" FONT-FAMILY: times new roman" 科学家正在开发一种新的质谱方法用以检测从塑料奶瓶迁移到奶液中的未知物质。 /span /p p span style=" FONT-FAMILY: times new roman"   尽管全世界有不计其数的塑料奶瓶在使用中,但对从奶瓶迁移至婴儿食品中化学物质的研究非常有限。从双酚A被禁用后,聚碳酸酯瓶销量出现下降。这些塑料奶瓶中的有害物质有可能诱发人体的一系列疾病,特别是可能带来生殖系统不调或基因毒性。 /span /p p span style=" FONT-FAMILY: times new roman"   这种塑料奶瓶的代替品是用聚丙烯和聚酰胺制造而成的奶瓶。但是,欧洲科学家认为并没有充分的调查结果说明新奶瓶的潜在化学物质迁移情况。也许这种奶瓶中的其它有害物质会造成健康影响,特别是对小宝宝。 /span /p p span style=" FONT-FAMILY: times new roman"   新的方法发表在Journal of Mass Spectrometry(质谱杂志),这种阶梯式的步骤也适用于其它食物容器。这种方法非常实用,用六个市售婴儿奶瓶的案例试验来阐释,不依赖于之前的化学物相关知识。方法中食物模拟物是乙醇溶液。 /span /p p span style=" FONT-FAMILY: times new roman"   .第一个步骤是GC/MS,首先用四极杆质谱和离子库来查找配对质量。如果有的峰不能确定,那么再使用更高分辨率的质谱来得到碎片离子的精确值,并从其它的数据库来查找化学元素组成。然后用软电离和飞行时间质谱来测定分子离子。 /span /p p span style=" FONT-FAMILY: times new roman"   当然,并不是所有的潜在迁移物质都具有挥发性的或者都适合使用GC/MS。所以,在待测物不适合GC/MS时可以使用LC/MS Q-TOF检测。这些检测发现将用以建立塑料生产中化学物和添加剂的数据库。 /span /p p span style=" FONT-FAMILY: times new roman"   这个方法可以检测出很多潜在迁移物,如二环戊基二甲氧基硅烷、十二内酰胺二聚体、棕榈酸酯和十八碳烯酸等。 /span /p p span style=" FONT-FAMILY: times new roman"   虽然研究人员在方法研究上取得了一定的成功,但他们强调这个试验“需要具有一定的分析经验和洞察力,是一个具有挑战而又相当单调的工作。” /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman" 编译:郭浩楠 /span /p
  • 经“碘”检测,从化学滴定到ICPMS
    一小小知识“碘”1811年法国药剂师库特瓦首次发现单质碘。谈起碘,大家会联想到升华的物理现象、淀粉显色的实验和甲状腺疾病等等。碘作为一种人体必需的非金属微量元素,主要功能是参与甲状腺素的合成。碘与人体的生长发育、新陈代谢密切相关,其摄入量不足可能导致甲状腺肿大、侏儒症等碘缺乏症,适当补碘有利于预防碘缺乏病的发生,(5月15日是“全国碘缺乏病宣传日”),但碘摄入过量对健康也有一定的危害,如引起高碘甲状腺肿、碘中毒或碘过敏等。人体中碘主要来源于食品,食物碘含量可以参考《中国食物成分表》,因此食品中总碘的研究一直备受关注,食品中碘形态以碘酸盐、碘化物、单质碘和有机碘形式存在,准确测定食品中碘对于人体健康和经济发展具有十分重要的意义。二食品中碘的检测方法食品中碘的分析方法主要有化学滴定法、光谱分析法、电化学分析法、色谱分析法和质谱分析法等,先列出几种常见的方法。化学滴定法样品经炭化、灰化后,将有机碘转化为无机碘离子,在酸性介质中,用溴水将碘离子氧化成碘酸根离子,生成的碘酸根离子在碘化钾的酸性溶液中被还原析出碘,用硫代硫酸钠溶液滴定反应中析出的碘。该方法测定操作繁琐,易产生误差。分光光度法分光光度法中比较典型的是砷铈催化分光光度法,也是被收录进国家标准的检测方法。原理:采用碱灰化处理试样,使用碘催化砷铈反应,反应速度与碘含量成定量关系。LAMBDA™ 265/365/465 紫外/可见分光光度计气相色谱法试样中的碘在硫酸条件下与丁酮反应生成丁酮与碘的衍生物,经气相色谱分离,电子捕获检测器检测,外标法定量。Clarus® 690/590三 “碘” 亮 ICPMS最新的GB 5009.267-2020食品安全国家标准食品中碘的测定[1]采用了ICPMS作为第一法。ICPMS测定碘元素具有速度快、灵敏度高的优势,但是也存在着两大难点:1 碱性体系食品中其他元素的ICPMS检测如钾钠钙镁铅镉等一直采用硝酸酸性进样体系,而碘检测却采用碱性进样体系,对于仪器的进样系统是个考验。2 记忆效应碘元素的记忆效应非常强,需要在分析过程中能够快速清洗。PerkinElmer在食品碘元素分析部分很早就进行了相关的应用开发,2001年,Andrey等人就采用了PerkinElmer的ICPMS对食品和饲料中的碘含量进行检测[2]。现在PerkinElmer采用NexION系列ICP-MS对乳粉中的碘按照GB 5009.267-2020中的方法进行验证。a标准曲线NexION系列ICPMS,采用高纯度聚合材料制造的蠕动泵管,配合大锥孔三锥设计,提供稳定可靠的进样,可轻松应对酸性体系和碱性体系。NexION系列ICPMS标准曲线范围为1-20μg/L时, R=0.9999b记忆效应应对NexION系列ICPMS即使面对碘的强记忆效应也能轻松应对,测完曲线最高点后,只需清洗很短时间,即可回到初始水平。c奶粉质控样结果_碘元素含量(mg/kg)奶粉质控样GBW100171.12±0.23测定值1.26四食品中碘的形态研究碘是一个具有多种形态的非金属元素,人体对于食品中不同形态的碘的吸收效率有差异,未来碘分析的一个重要方向是弄清楚食品中碘的形态组成。孙凯峰等人采用液相色谱ICPMS联用技术对奶粉中的碘形态进行分析,其加标回收率均在98%-106%之间,精密度在2.67%-4.11%之间,完全满足实验的要求[3]。更多食品中碘检测应用资料请扫码获取。参考文献
  • CSA增资中国 在沪建全球首个化学检测实验室
    全球领先的测试、认证和标准发展机构CSA集团宣布完成对位于上海的产品评估中心(Product Evaluation Center)的扩建,正式成立CSA集团全球首个独立的化学检测实验室。新成立的CSA上海化学检测实验室将主要为出口北美市场及其他欧盟各国的消费品毒性及化学成分进行相关测试和评估,以确保产品符合北美及各国的安全标准。 CSA中国化学实验室实验员人正在提取化学样品试剂用于检验和评估   &ldquo 欧洲和北美地区对大众消费品的化学成分及其含量有严苛要求。&rdquo CSA集团产品评估中心全球业务总监Adam Davies先生在为CSA集团上海化学检测实验室揭幕时说道,&ldquo 通过成立这个化学实验室,我们希望能为中国出口北美及全球零售渠道的产品提供专业的化学测试和全方位的评估,确保其更为安全可靠。同时也帮助中国的出口商提升产品的标准与质量,满足全球零售商的需求,成为国际零售市场可信赖的供应商。&rdquo   此次CSA集团新成立的化学检测实验室配备了先进的化学检测设备,可主要用于消费品中重金属含量及其它化学成分的检测和测试,帮助客户产品符合CPSIA、TPCH、CFR1303、加利福尼亚州65号提案、RoHS等北美与欧盟的法规条例。   &ldquo 北美是中国主要的出口区域之一,零售消费品大多来自中国制造。然而,随着近年来北美市场对有毒有害化学物质的限制门槛提高,国内制造商也面临除安全认证外更多的挑战。&rdquo CSA集团上海产品评估中心运营经理刘厚俊先生表示,&ldquo CSA上海化学检测实验室的成立将CSA集团在华的消费品测试和评估范围及功能扩展至消费品毒性安全测试领域,进一步完善了上海产品评估中心的测试能力和范围。&rdquo   欧盟及美国是中国最重要的家电、家居用品等消费品出口地区。然而,随着欧盟及北美国家先后对有毒有害化学物质出台新的限制规定,由于对国际法规动态的了解不够及时,中国的出口商时常会因为违规而遭受不必要的损失。根据美国消费品安全委员会(CPSC)发布的信息显示,在2012财政年度,共防止了480万件违规或危险消费品流入美国市场,其中中国产品占多数。   其中,消费品的有毒有害化学含量是国际市场的重点把关领域。欧盟北美对于消费品的化学含量都有严格的标准限制,美国加州虽然没有相关认证要求,但为了减少被指控的风险,越来越多的零售商通过第三方机构对所销售的产品进行化学检测。这些标准涵盖的内容既广且深,对最资深的法规和质量专家来讲也非常复杂。因此,零售商及生产商就更加依赖国际权威的认证机构,在产品流通之前不但要进行强制性的基本安全检测,还需从产品选用材料的环保健康性以及质量细节问题上进行细致的评估,才能及时应对不同国际市场复杂的贸易标准壁垒,减少产品出口的质量违规风险。   成立于2012年的CSA集团上海产品评估中心提供以消费者产品为主的产品综合检测服务。中心拥有完备而先进的设备,可测试燃气具、卫浴管道产品、照明电器、家具、办公用品等大众零售消费品。服务项目覆盖整个产品周期,包括产品设计咨询、产品说明、产品评估,数据分析等。服务客户包括北美各大零售商、采购商及国内生产厂家等。CSA化学检测实验室的成立将为产品评估中心一站式的客户服务提供进一步保证。
  • 化学键形成首次成功监测
    据物理学家组织网近日报道,英国科学家借助高质量X射线衍射技术以及固态核磁共振技术,首次成功监测到化学反应的不同阶段——一个键断裂,另一个键形成的细节,最新成果有望促进催化剂领域相关研究的发展。  科学家们认为,很难确定化学反应的不同阶段,因为你要么看见反应原材料,要么看见反应得到的产物,很难看到中间过程是怎样的。但最新研究让他们能够测量和观察键形成的程度,包括有多少个电子参与,以及键形成时键两端两个原子之间的磁相互作用。  在最新研究中,来自诺丁汉特伦特大学、华威大学等的科学家使用高质量的X射线衍射数据以及固态核磁共振(NMR)技术,研究了多个由6个原子组成的分子,其中氮原子和碳原子之间的键形成程度各有不同。  他们指出,在单晶体上使用X射线衍射技术精确测量,让他们能够首次跟踪键形成时电子的重新分布情况;而核磁共振技术则作为补充,监测当键形成时两个原子之间的磁相互作用。  该研究负责人、诺丁汉特伦特大学科技学院名誉教授约翰沃利斯说:“我们的工作为其他键形成过程的研究提供了方法。这一点很重要,因为催化剂旨在通过稳定键形成和断裂的途径来加速反应。”同样的两个分子,键形成不同阶段的视图。
  • 山西矿产资源监督检测中心化学品自燃起火
    今日8时50分,位于山西省城并州北路太原矿产资源监督检测中心顶层的一间化学实验室内,工作人员做实验时,化学品突然自燃,导致实验室被引燃,所幸没有造成人员伤亡。   接警后,消防十二中队迅速出动一部抢险车、3部水罐车以及19名消防员赶往现场。到场后,只见烟从检测中心楼冒出。经过仔细勘察和向知情者了解,消防员得知起火地点是三层的一间化学实验室,事发时,一名工作人员正在对“高氯酸”进行实验,可能是由于实验中出现一些变故导致化学品自燃,把操作台引燃,同时引燃了与其连接的排烟通道。   消防官兵随即铺设水带,进行灭火。同时,考虑到实验室里的一些化学品在燃烧后可能会散发出对人体有害的气体,以及一些化学品容易爆炸等因素,十二中队的指挥员决定,迅速将楼内无关人员疏散到安全地点并加以警戒,禁止无关人员进入该楼。   大约半个小时后,明火被完全扑灭。目前,具体的起火原因还在进一步调查中。
  • 福华化学布局分析检测中心,助力公司科研创新“硬实力”
    作为一家全球领先的综合性化学品企业,福华通达化学股份公司(以下简称“福华化学”)长期致力于精细化学品的应用研究与开发。在科研工作中,福华化学深知分析测试中心扮演着核心角色,是学科建设的重要基石,为科研水平的提升提供有力支持。一个设备齐全、技术先进的分析测试中心,已成为评价高校科研与教学质量的重要标准。作为企业科技基础条件的核心平台,分析测试中心不仅能体现公司的科技实力,更是吸引一流创新人才、承担重大科研项目、产出高水平研究成果的重要保障。因此,福华化学积极建设福华研究院,并下设6 个研究中心,其中包括分析检测中心。建成后的分析检测中心将汇聚一批掌握先端微观谱图分析与化学分析技术的专业人才和专家,专注于多个领域,包括产品配方还原及改进、成分分析、工艺分析、失效分析、工业问题解决以及产品检测。中心将为福华化学提供全面的技术服务,涵盖样品分析检测、工艺过程监测以及配方还原分析等。分析检测中心的主要服务对象为福华研究院下属的其它研究中心,如植物保护研究中心、新能源化学品研究中心、新材料研究中心以及阻燃剂研究中心,为其相关产品提供分析、检定以及标准制定服务,辅助夯实福华化学的科研“硬实力”。福华化学通过不断地技术革新和科研投入打造分析检测中心,为公司的长远发展提供强大的技术支持。分析检测中心的建设不仅提升了福华化学的科研实力,更为公司未来的创新发展奠定了坚实基础。
  • 我国烟火药剂化学成分检测攻克世界难题
    广西检验检疫局(北海)烟花爆竹检测中心完成的《烟花爆竹用烟火药剂的化学成分检测方法研究》获得国家质检总局2011年度“科技兴检奖”三等奖。该课题为我国进出口烟花爆竹的检验监管、进一步扩大国际市场和促进烟花爆竹可持续发展提供了科学手段,同时也为烟花爆竹的安全生产管理、产品质量控制及安全事故的原因分析提供了强大的技术支撑。      广西(北海)烟花爆竹检测中心人员进行业务交流   北部湾畔,魅力北海,风生水起正扬帆,推动富民强桂新跨越 千年古郡,烟花之乡,丝绸之路始发港,传承中华文化耀五洲。   北海是北部湾海上丝绸之路较早的始发港,也是中国人从海洋走向世界的一个起点,当一个昌盛的中国崛起于世界的东方,历经繁荣与昌盛的北部湾正承载起新时期一个崭新的期望,走上时代的潮头浪尖。   烟火药剂研究迫在眉睫   我国已成为世界上最大的烟花爆竹生产国和出口国,世界上发达国家所用烟花爆竹主要从我国进口,据不完全统计,我国现有烟花爆竹生产企业5000多家,生产总值达100多亿元。在湖南、江西、广西等省区,烟花爆竹已成为不少市县的支柱产业。   根据联合国《全球化学品统一分类和标签制度》,必须对烟花爆竹用烟火药剂的化学成分进行全面的定性和定量分析检测。但是,国内外至今没有烟花爆竹用烟火药剂的化学成分检测标准方法及相关的技术规范。我国现有的有关烟花爆竹的国家标准和行业标准只有部分禁用化学成分的定性分析方法,如GB 10631-2004《烟花爆竹 安全与质量》、SN/T 0306-2006《出口烟花爆竹检验规程》,国外主要烟花爆竹进口国的标准或条例中只规定了禁用的化学物质,没有相关的检测方法,如美国的APA烟花条例、日本的烟花标准等。   国家标准GB/T15814.1-1995《烟花爆竹药剂 成分定性测定》中检测成分种类有限,当前烟花爆竹用化工原材料更复杂,且有些方法已过时,烟花爆竹标准化技术委员会正在组织有关单位进行修订。行业标准SN 0545-1996《出口烟花爆竹烟火药剂安全检验规程》[11]已被SN/T0306-2006《出口烟花爆竹检验规程》取代,该行业标准也只规定了烟花爆竹中禁限用药物的定性检测,没有其他大部分成分的定性检测方法,更没有烟火药中主要化学成分的定量分析方法。开展烟花爆竹用烟火药剂的化学成分分析方法研究成为当务之急。   检测方法研究取得突破   广西局(北海)烟花爆竹检测中心是全国质检系统首家通过CNAL/CNAS认可的烟花爆竹实验室,也是第一个通过危险性分类定级项目认可的烟花爆竹实验室。   《烟花爆竹用烟火药剂的化学成分检测方法研究》是国家质检总局批准立项的科研项目,由该中心承担完成,项目比较系统全面的对我国目前烟花爆竹用烟火药剂的主要成分进行研究,分为主要成分定性检测方法研究和定量分析方法研究,样品预处理方法贯穿其中。   课题组通过查阅大量分析化学资料和国内外相关的最新烟花法规、技术标准,充分考虑现阶段常用烟火药剂的特点,假定目前有可能出现的最为复杂的烟火药剂成分为本方法的研究对象。通过科学的反复试验,最后确定了以特定的有机溶剂分离出含聚乙烯醇、糊精、酚醛树脂等有机黏合剂的样品预处理方法 利用烟火药剂中各组分的物化特性,通过大量试验,成功对其实行分组分离,以最简单的方法准确地解决了烟火药剂的化学成分定量分析这一最大的难题,研究各类烟花爆竹用烟火药剂的试样制备方法、烟火药剂试样的预处理方法,烟火药剂中钡、重铬酸盐、锌、铜、钛、锶、铅、钠、镁、硫、钾、高氯酸盐、铝、铋、铁、硝酸盐、碳等30多种化学成分化学定性分析和利用X荧光光谱仪快速定性分析、干扰离子的消除方法和化学成分定量检测方法。   成果推广应用前景广阔   该成果已在广西区内外200多个烟花爆竹生产厂家和国内主要检测机构中应用,解决了烟花爆竹检验监管中的难题,在药种药量控制、事故原因分析等方面效果明显。同时,课题组利用课题成果及其关键技术为广西区内100多个生产企业培训专职检验员400多人次,这些人员大多成为各个烟花爆竹企业的技术骨干和中坚力量,为烟花爆竹产业快速发展提供了技术和人员保障。   广西区内近百家企业应用该成果后,产品质量稳步上升,促进了出口。据悉,2011年,广西检验检疫部门共受理出口烟花爆竹检验2048批次、货值6908.7万美元。共检出不合格产品21批、货值6.8万美元,同比分别下降了27%和70%,国外客户反应良好,未发现由于质量原因退货和索赔现象。在国内,该科研成果及其关键技术成功应用,解决了烟花爆竹检验监管的难题,为安监部门加强烟花爆竹安全监管起了较大作用,为烟花爆竹安全与环保提供了坚实的技术保障,广西辖区内烟花爆竹安全事故得到了有效地遏制。   “行百里者半九十”,课题主要负责人、该中心主任肖焕新说。肖焕新作为广西检验检疫局首批学科带头人、国家质检总局《全球化学品统一分类和标签制度》(简称GHS)9名国家专家之一,该烟花中心去年承担完成17项行业标准制订任务,填补了国内外该领域空白,对加强我国烟花爆竹用原材料的质量控制起到重要作用,帮助企业从源头把好烟花爆竹产品质量关和安全关,有力地保障了进出口烟花爆竹的产品安全。目前,该中心还有《联合国烟花分类默认表中闪光成分试验装置的研制及其应用研究》、《烟火药剂制样安全系统的研制》等国家总局科研项目、11项行业标准和1项国家标准项目正在紧锣密鼓地开展中。   链 接   四大创新   课题在完成过程中完成科技论文4篇、行业标准草案11项、国家标准草案6项。所确立的烟花爆竹烟火药剂主要化学成分定量分析方法,解决了烟火药剂中化学成分定量分析的世界性难题,方法快速、准确、实用,该课题实现以下创新:   一是系统地对当前最为复杂的烟花爆竹用烟火药剂的化学成分开展研究,提出了采用化学法进行30多种成分的定性检测方法和采用仪器分析法对10多种成分进行快速分析方法,较系统地完成了对烟火药剂中各成分的定性分析。   二是通过对烟火药剂预处理,利用烟火药的物理特性和化学特性,对烟火药剂中的主要成分实行分组分离,成功完成了17种主要成分的定量分析方法。   三是首次使用X荧光光谱仪对烟火药剂进行定性分析研究,快速准确,同时也为烟火药剂定量分析提供科学依据,起到“初筛”的作用,优化了技术方案和节省了分析时间。   四是我国较早开展GHS应用研究的科研成果之一,课题的顺利完成,为我国烟花爆竹行业顺利实施GHS奠定了技术基础。
  • 中益油墨化学检测中心获得国家CNAS认可
    “2009年12月11日-12日,中益油墨化学检测中心顺利通过中国合格评定国家认可委员会(CNAS)专家评审组关于“实验室质量文件符合性 实验室质量管理体系运行符合性 能力验证活动的情况”等现场评审,现场评审时所安排的2类检测产品的现场试验共12项(即检测能力范围),也取得满意的试验结果。      中益油墨化学实验室      中益油墨化学实验室   2010年2月10日,中国合格评定国家认可委员会(CNAS)正式向中益油墨化学检测中心颁发了实验室认可证书。      中国合格评定国家认可委员会实验室认可证书(中文)      中国合格评定国家认可委员会实验室认可证书(英文)   CNAS实验室认可证书的获得表明中益油墨化学检测中心具备了按有关国际准则开展校准/检测的技术能力,CNAS实验室认可准则的依据是ISO/IEC17025,这是个国际通用的实验室质量管理和技术要求的标准。实验室获得了CNAS的认可,就标志着其已经依据国际标准建立了一套质量管理体系,只要严格依据该体系开展工作,则实验室的技术能力就有了保障,实验室为顾客所提供的检测/校准服务就可以声称是符合国际标准要求的。实验室的产品是检测报告或校准证书,检测报告或校准证书的质量对实验室的信誉和生存起着重要作用,决定着实验室的竞争能力。ISO/IEC17025为实验室在“产品”的生产和形成过程中,通过各项质量管理活动帮助实验室进行质量策划、质量控制、质量保证和质量改进,以确保实验室“产品”以及服务的质量。对于实验室顾客而言,选择技术能力得到认可的实验室可以减少提供不合格“产品”的风险。通过这些可赢得政府部门和社会各界的“信任”。   化学检测中心获得国家CNAS认可,使中益油墨质量体系标准化向前迈进了一大步,同时使该公司产品得到可“信任”的环保质量保证,实现公司的宗旨“专注专业,让客户用上放心的环保油墨!”   批准的实验室检测能力范围(中文)
  • 6大类中药非法添加化学药检测方法建立
    记者近日从国家食品药品监管局科技办公室获悉,由国家食品药品监管局承担的国家科技支撑计划项目“安全用药检测研究与预警技术系统的研究及应用”课题近日通过验收,该课题形成了6大类中药非法添加化学药的检测方法和技术标准,并建立了中药材有害物质的快检方法。目前,国家食品药品监管局已批准将该检测方法作为国家药品补充检验方法和检验项目的法定技术标准,逐步推广应用。   据介绍,该课题对降糖、安神、降压、止咳平喘、抗风湿、补肾壮阳等6大类中药中非法添加化学药品建立了检测方法和技术标准,涉及62种可能添加的化学药或化学物质,基本涵盖了常见违法添加化学药的物质种类,解决了多年困扰监管部门的一项检测难题。   另外,课题还建立了中药材中铅、镉、砷、汞等4个重金属,总有机磷、总有机氯2类农药残留的快速检测方法。此方法操作简单、使用者不需专门培训,携带实验用具少,检测速度快,价格便宜。该方法已在药品快检车上试运行,具有灵敏度高、简便快速、可行等特点。   国家食品药品监管局科技办相关人士表示,降糖等6大类中药非法添加化学药品的补充检验方法和标准的推广应用,将全面提升我国在该领域的检测能力和水平,提高药品监管检验的针对性和靶向命中率,在有限的资源下增加监管力度和扩大覆盖面,打击制售假药违法行为,而中药中有害物质残留的快速检测技术也将为有效监管提供更有力的技术支撑。
  • 电化学法可快速准确检测三聚氰胺
    西北工业大学副教授赵廷凯和该校教授李铁虎等人对采用电化学方法简单快速检测三聚氰胺进行了深入研究,为三聚氰胺的快速准确检测提供了新思路。研究成果近日发表于国际期刊《电化学会志》。   赵廷凯向《中国科学报》记者介绍说,目前三聚氰胺的检测主要采用色谱法、质谱法和荧光法。这些方法在一定条件下可以检测三聚氰胺,但存在灵敏度低、前期处理复杂、耗时长等问题。而电化学方法具有简单快速、灵敏度高、准确等特点。同时,使用碳纳米管与壳聚糖纳米复合材料作为电极材料来检测三聚氰胺,具有实际应用前景。   据悉,近年来,李铁虎团队对碳纳米管及复合材料的制备工艺进行了系统研究,为其进一步在电化学、生物医药、航空航天领域的实际应用打下了基础。   研究人员结合碳纳米管的巨大比表面积和壳聚糖的高溶解性及吸附活性,制备出了碳纳米管与壳聚糖的纳米复合材料。用涂覆在玻碳电极上的该纳米复合材料检测三聚氰胺,检测极限达到3×10-9摩尔/升,比目前使用的传统检测方法提高了近一个数量级。同时,该方法简单环保,无需前期处理且速度快,检测仅需2分钟,为在乳制品或食品中三聚氰胺的简单快速检测提供了试验依据。   事实上,赵廷凯等人在最近的实验中已得到接近10-10摩尔/升的三聚氰胺检测极限。赵廷凯表示,利用该研究制备出的碳纳米管复合材料作为涂层,在普通电化学测试仪器上即可进行三聚氰胺检测,检测成本低。
  • 我国率先实现对重金属离子高灵敏的电化学检测
    p   中科院合肥物质科学研究院智能所黄行九研究团队利用表面具有大量氧空位的TiO2-x纳米片,实现对重金属离子高灵敏的电化学检测,对一直困扰人们的重金属离子检测干扰机制做了深入的探索,并提出了“电子诱导干扰机制”这一原理。相关成果日前已发表在美国化学学会的《分析化学》(Analytical Chemistry)杂志上。 /p p   纳米材料已经被广泛的应用于电分析化学中。然而,对于纳米材料活性位点与电化学传感机制的构效关系,仍然缺乏一个原子层面的解释。由于电化学分析原理的内在原因,重金属离子之间的相互干扰在电化学检测领域中也是研究人员不可回避的一个问题。 /p p   研究人员已经发现了二氧化钛TiO2表面掺杂氧空穴调控晶面的表面电子结构,激发了惰性半导体纳米材料对重金属离子的检测活性。在此基础上,研究人员通过调控反应物中氟化氢的比例,制备了具有大量表面氧空位的TiO2-x纳米片。通过高分辨透射电子显微镜(HRTEM),X射线衍射(XRD),拉曼,电子顺磁共振(ESR),X射线光电子能谱(XPS)等多种技术揭示了纳米材料活性位点与电化学传感性能的构效关系。实验证实,在离子共存体系中,研究人员利用同步辐射技术(EXAFS),从原子层面上系统的阐述了二价镉离子Cd(II)对二价铜离子Cu(II)的干扰原因。研究表明,Cd(II)能够促进电子从TiO2-x纳米片表面向Cu(II)的转移,同时,Cu(II)的存在增长了Cu-O的键长,导致解吸能降低。 /p p   这些发现为从原子层面上发展高灵敏纳米材料和研究电化学检测干扰机制夯实了坚定的道路。 /p p br/ /p
  • 神奇电化学指环实时监测化学毒素
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/78bd2ed6-e7a3-41e7-855c-2a1b604b415c.jpg" title=" 1.jpg" / /p p   可穿戴设备正在改变世界,除了设计时尚、能够跟踪心率等人体各项生理指标之外,加州大学研究人员发布最新报告显示,可穿戴式传感器也可以应用于检测身体外部的威胁,为此他们设计了一款可以检测诸如爆炸物等化学威胁的戒指。当检测到爆炸物和神经毒剂时,可穿戴的设备就会发射无线警报。 /p p   很多人使用手环来跟踪身体活动。致力于防御的可穿戴设备却始终不怎么被重视,但是加州大学圣地亚哥分校的Joseph Wang和同事们已经为解决这一差距迈出了一步。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/8cbdaab0-ab2d-4b4c-897e-2c8c5a520041.jpg" title=" 2.jpg" / /p p   研究者们设计、构造并测试了一个电池供电的指环,它可以监测空气和液体中的爆炸物和神经毒剂,并能立即将无线警报发送到手机上。指环外表面有印刷电极。表面上的半固态琼脂糖凝胶促进分析物扩散至电极,电极与设备内的微型电子器件连接,用来分析电化学信号并传输数据。 /p p   这个戒指使用计时电流和快速方波伏安法来监测硝基芳香化合物和过氧化爆炸物及有机磷类神经毒剂。研究者们确信这种设备能够扩展至监测其他有毒制剂。洛维拉依维尔基里大学的纳米传感器团队领导Francisco Andrade评论道:“在我看来,这项研究最显著的成就在于,将电子产品和传感器小型化和集成化在一个简单、紧凑、自发和无线连接的单元里。”他建议:“还可以将这个设备安装在腕带、帽子或通过魔术贴用到服装中。” /p p   据全球分析公司“CCS Insight”称,到2020年,可穿戴电子产品市场将达到340亿美元。目前正在开发的可穿戴产品包括纹身、口罩、腕带和头带等形式,所有这些设备所应用的传感器都还面临着一定的挑战,行业内对传感器要求经济实惠、设计紧凑、对使用者无创、使用便捷,但是就目前而言,更加先进的传感器昂贵并且难以生产。例如,戴在手臂上的汗液传感器,需要使用者产生足够的汗液才能使装置正常工作,就是目前所遇到的一个尴尬现状。 /p
  • 新型电化学检测方法问世 有望解决地下水铬污染难题
    日前,中国科学院合肥物质科学研究院智能机械研究所研究员、&ldquo 973&rdquo 计划项目首席科学家刘锦淮和该所副所长、研究员黄行九领导的课题组在探索铬(VI)电化学检测方法上取得新进展。   长期以来,地下水铬污染问题已成为世界性的环境问题,严重危害着人类健康。因此,实现对地下水中铬的快速、痕量、高灵敏度、高选择性检测,对于正确评估环境污染意义重大,也是倍受关注的研究难点和热点问题。电化学检测由于其本身具有快速、灵敏、便携等特点,被广泛应用于铬的检测。然而,此前的报道大多采用溶出伏安法,这种方法需要选用贵金属电极或贵金属纳米粒子修饰电极,并且修饰电极需要很均一的形貌 同时,由于发生氧化还原反应的条件限制,检测需在强酸性环境下进行。   智能所科研人员利用冠醚对铬的特殊相互作用而造成电极表面电子传递/传质受阻的特性,采用电化学阻抗法实现了对铬的高灵敏度、高选择性检测。在pH5.0的弱酸条件下,铬以HCrO4- 的形态存在,两分子氮杂冠醚与一分子HCrO4- 通过氢键与静电作用,形成夹心配合物,阻碍了电极与探针分子之间的电子传递和探针分析向电极表面的传质,从而引起阻抗的增大,实现了对Cr(VI)的高灵敏和高选择性检测。该研究成果被美国化学学会《分析化学》接收发表。   以上研究工作得到了国家重大科学研究计划项目、中科院&ldquo 引进海外杰出人才&rdquo 百人计划项目以及国家自然科学基金等项目的支持。
  • 国家化学品安全检测重点实验室将落户上海
    国家化学品安全检测重点实验室将落户上海。6月26日,上海出入境检验检疫局、金山区人民政府和上海化工区管委会签订三方战略合作协议,决定在金山第二工业区筹建国家化学品安全检测重点实验室,打造国际领先、国内一流的国家级化学品安全检测和科研的权威平台,服务地方检验检测高端服务业的发展。   上海检验检疫部门推出5项举措,支持金山经济发展,将为上海化工区申请全国首个国家级&ldquo 进出口化学品质量安全示范区&rdquo ,还将加快自由贸易试验区中贸易便利化政策创新在金山地区化工产业方面的复制和推广。
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。   联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。   该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
  • 首批皮革化学品检测方法团体标准发布
    记者日前从中国皮革协会获悉,经过大量的基础性研究、征求行业意见以及多次专家研讨审定,标准内容不断完善。8月2日,中国皮革协会正式批准发布《制革用聚(甲基)丙烯酸树脂复鞣剂测试方法》(T/CLIAS008-2023)、《制革用氨基树脂复鞣剂测试方法》(T/CLIAS009-2023)、《制革用中和剂测试方法》(T/CLIAS010-2023)、《制革用脱灰剂测试方法》(T/CLIAS011-2023)等4项团体标准,并将于今年9月1日正式实施。中国皮革协会表示,上述四项皮革化学品检测方法团体标准有效填补了国内外标准空白,为皮革化工生产企业和制革企业的生产管理、质量检验、推进制革行业高质量发展提供了必要的技术支撑,对规范皮革化学品市场具有重要意义。据介绍,皮革化学品是决定皮革质量与风格的核心要素之一,与皮革机械一起被形容为制革工业高质量发展的“双翼”。然而,市场上皮革化学品质量参差不齐、缺少统一的产品质量标准。近年来,兴业皮革科技股份有限公司等制革企业反映,在生产过程中经常出现皮革化学品消耗量明显超过工艺需求的情况,一方面严重影响了制革企业的正常生产,另一方面还加大了环境治理的难度,并且在供需双方遇到皮革化学品质量纠纷时无标可依,企业合法利益难以得到充分保障。为着手解决这些问题,兴业皮革科技股份有限公司于2018年开始重点研究皮革化学品品质管控标准的制定。中国皮革协会对此高度重视,并委托兴业皮革科技股份有限公司牵头,邀请皮革行业部分皮革化学品生产企业和制革企业,共同参与制定皮革化学品的产品质量标准。重点针对出现问题较多、用量较大、对皮革质量影响较突出的聚(甲基)丙烯酸树脂复鞣剂、氨基树脂复鞣剂、中和剂、脱灰剂等四类化学品检测方法进行分析研究,制定首批皮革化学品检测方法团体标准。
  • 美女化学分析专家谈赛马兴奋剂检测的那些事儿
    当今在赛马这项竞技比赛中,用于提高马匹速度的各种兴奋剂层出不穷,针对市场上不断增多的新型药物的出现,化学分析专家们不得不争分夺秒地开发相应的新分析方法,以期达到打击各类禁用兴奋剂的目的。  最近,我们采访了一位该领域的专家,来自中国香港赛马会的Karen Y. Kwok博士。    Karen Y. Kwok毕业于香港城市大学环境分析化学专业,后就职于香港城市大学海洋污染国家重点实验室。2013年,她开始作为一名化学家在香港赛马会赛事化验所工作。此后,她全身心投入于赛马运动中的兴奋剂控制测试工作。Kwok博士目前是皇家化学学会(MRSC)的成员,至今已出版了两本书,并在国际杂志期刊上公开发表了10篇论文,多次作为报告人参加各种国际会议。  您受邀在瑞士日内瓦的HPLC 2015大会上做关于检测马鬃中雄激素合成类固醇的报告,请问为什么在赛马中使用雄激素合成类固醇是值得我们关注的问题呢?  雄激素合成类固醇(AASs)是一种可以用来增加肌肉力量、改善身体物理性能的物质。20世纪60年代以来,该类物质就常被作为兴奋剂在人类体育竞技运动和赛马运动中使用,其实该类物质属于违禁物质。自2014年开始,国际联合会发布的国际协议第6E条款明确规定,对于比赛用马,在其整个参赛生涯中,包括育种、竞赛和赌马,都禁止使用AASs。[1]  在您看来,分析比赛用马的禁用药物,主要的挑战是什么?  随着生物科学和医学的快速发展,越来越多的违禁物质被开发出来。不幸的是,针对新兴违禁药物,即使分析专家们能够以最快的速度开发出相应的检测方法,但相对于违禁药物在市场上的应用,不可避免地会存在时间滞后性。另外,赛马比赛中使用的违禁药物种类繁多,有些是用来增强马的运动机能的,而有些是削弱其机能的。而没有一种成熟的方法是可以检测出所有的违禁药物的 我们只能尽可能地充分利用现有的资源,以实现最广泛的药物检测的可能。  为什么您选择检测比赛用马的马鬃为样品,而不是它们的血液或尿液为首选样品?  作为药物测试的目标样品,尿液、血液和毛发各有各的优点。毫无疑问,毛发的主要优点是具有宽的检测窗口。毛发分析的一个典型特征是有可能通过分析不同段的毛发,确定其用药的时间。这样的信息对于确定给药的比赛用马来说,是非常有用的。此外,毛发样品不像尿液和血液样品,它很稳定,易于运输和贮存,并且很难掺假,具有非侵入性。当然话虽如此,很多药物是不适合采集毛发样品用来分析的,只能在尿液或血液中检测。因此对于兴奋剂的检测,尿液、血液和毛发样品它们存在互补关系。  您为什么要开发用于检测马鬃中48种AASs和(/或)其酯类的方法?  AASs通常是以它们的酯化形式使用,这样它们能够被存储在肌肉中,然后通过缓慢地释放以延长其作用期。对于一些内源性AASs如睾酮,在毛发中鉴别其酯化形式是其外源性的铁证。AASs类药物是赛马运动中任何时候都被禁止使用的药物,其药效的持续作用时间远长于尿液和血液样品的检测时间。因此,毛发就成为了用来追溯赛马中使用AASs的理想样品。  在使用超高效液相色谱-高分辨质谱(UHPLC-MS)技术测定马鬃中AASs之前,马鬃样品的制备方法有什么特别值得注意的因素吗?  与尿液和血液不同,毛发是一直暴露在外界环境中的。所以我们需要特别严格的去除污染物的过程,以避免错误的分析结果。其次,毛发中药物的含量通常是很低的(从10-2至10-9级),所以采用提取药物的方法需要足够高的提取率,这样才能满足UHPLC-MS的分析要求。另外,毛发是一种很复杂的基质,我们需要有效的净化方法,以降低MS分析时的基质效应。    这项工作中,您遇到的主要挑战是什么?您又是怎么克服的呢?相比其他方法,您采用UHPLC-MS的优势是什么?  主要的挑战是建立一种有效的提取方法来消除一些化学物质干扰,以保证后续UHPLC-MS分析的准确性。试验发现通过组合使用固相萃取(SPE)和液-液萃取技术,可以获得满意的样品净化结果。然后在选择性反应监测(SRM)模式下,我们采用具有高分辨能力的轨道阱(质量窗仅± 10 ppm)来进一步降低化学干扰。质量数测定的准确性通过在柱后添加质量参考物苄基二甲基苯胺来校准目标分析物可能存在的质量偏移来保证。  据我们所知,我们给出的关于马鬃中48种AASs和(/或)其酯类物质测定的方法是首次的。  该方法适合使用的领域有哪些呢?接下来您的研究内容是什么?  答:目前,我们的方法可用于检验AASs和(/或)其酯类化合物(含量从10-12到10-9级),方法灵敏度、准确度高。由于方法中添加的目标类固醇,方法可用于马鬃样品的筛选以及马鬃样品中AAS酯类物质的确认。实际上,随着我们研究工作的完成,采用我们建立的方法可用于更多的目标物的筛选。接下来的工作将是进一步验证我们所建立的方法,对于给药后的马鬃样品中AASs和(/或)其酯类物质代谢物测定的适用性。  马匹使用兴奋剂和人类使用兴奋剂之间有相似之处吗?分析方法可以通用吗?  比赛用马和人类运动员所使用的兴奋剂中所含的禁用物质可能是相似的,也可能是不同的。这不仅是由于药物在不同的群体上的作用机理不同(例如,人体运动是不受非甾体抗炎药控制的) 而且也由于对于不同的群体,一些药物产生的效果是不同的。此外,赛马中违禁药物不仅仅局限于机能增强药物(包括使狂躁的马平静下来的镇静剂),而且还包括削弱机能的药物。因此,相较之人类运动员的违禁药物,马的药物范围更广。  另外,马和人所采用分析方法也不是可以直接通用的。相较之人类,马的生物样品尤其是尿液,要复杂得多,测定之前样品需要更全面的净化过程。此外,马和人的药物代谢机理也是不同的。  如果一个年轻的化学分析师将开始该领域的研究,您会给一些什么建议呢?  首先兴奋剂检测是一个非常有意义并具有挑战性的领域。对于一个年轻的化学分析师,首先从思想上要认识到,无论是人类运动还是赛马比赛,诚信和公平都是基石,兴奋剂控制测试则是维护这一价值观的重要因素。由于检测结果是具有法律效力的,所以兴奋剂的控制测试需要按法医鉴定过程实施。除了挑战科学技术上的难题,年轻的科学家们也必须精通法医分析的各方面能力,如保证适当的物证保管链、作为专家证人在法庭上作证等。我们需要不断地向经验更丰富的化学家们学习和借鉴经验,以增强我们自己处理不同困难的能力。  此外,兴奋剂控制测试是相当苛刻的,新兴的违禁药物只会不断地增多 因此,我们需要不断掌握新的兴奋剂发展趋势和不同领域的科技进步。  最重要的一条建议就是,我们要赋予我们这份工作最高的热情,面对挑战时永不放弃。在兴奋剂控制测试领域工作,我相信年轻人们会获得巨大的成就感。  参考文献:  [1] http://www.horseracingintfed.com/resources/2015Agreement.pdf  [2] K.Y. Kwok, T.L.S. Choi, W.H. Kwok, and T.S.M. Wan, “Detection of Anabolic Steroids and/or Their Esters in Horse Hair Using Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry,” poster presented at HPLC 2015, Geneva, Switzerland, 21–25 June 2015.  作者:Karen Y.Kwok  原文出处:《The Column》第12卷第6期2-5页  译自:chromatographyonline
  • 半导体行业湿电子化学品常用检测仪器及技术盘点
    湿电子化学品是半导体、集成电路等多个领域的重要基础性关键化学材料,是当今世界发展速度较快的产业领域。我国湿电子化学品2012年市场规模仅为34.81亿元,到2018年已增至79.62亿元,而2021年湿电子化学品市场规模预计超过100亿元。湿电子化学品(又称电子级试剂、超净高纯化学试剂、工艺化学品、湿化学品等)一般主体成分纯度大于99.99%,是电子行业湿法制程的关键材料,常用于湿法刻蚀、清洗等微电子、光电子湿法工艺制程,约占集成电路制造成本的5%。湿电子化学品湿电子化学品可分为通用性湿电子化学品和功能性湿电子化学品。通用湿电子化学品一般为单组份、单功能、被大量使用的液体化学品,包括酸、碱、有机溶剂等,常用于集成电路、液晶显示器、太阳能电池、LED制造工艺等;功能湿电子化学品指通过复配手段达到特殊功能、满足制造中特殊工艺需求的复配类化学品,包括蚀刻液、清洗液、光刻配套试剂等,常用于半导体刻蚀、清洗等工艺中。常见湿电子化学品(数据自中国电子材料行业协会)类别湿电子化学品约占湿电子化学品总需求比例(%)合计占比估计通用湿电子化学品过氧化氢16.70%88.20%氢氟酸16%硫酸15.30%硝酸14.30%磷酸8.70%盐酸4.80%氢氧化钾3.80%氨水3.70%异丙酮2.80%醋酸1.90%功能湿电子化学品MEA等极佳溶液3.20%11.80%显影液(半导体用)2.70%蚀刻液(半导体用)2.20%显影液(液晶面板用)1.60%剥离液(半导体用)1.20%缓冲刻蚀液(BOE)0.90%湿电子化学品的国际分类标准国际半导体设备和材料协会(SEMI)根据金属杂质、控制粒径、颗粒个数和应用范围等制定了湿电子化学品国际等级分类标准。Grade1等级湿电子化学品常用于光伏太阳能电池等领域;Grade2等级湿电子化学品常用于平板显示、LED、分立器件等领域;Grade3等级湿电子化学品常用于平板显示、LED、集成电路等;Grade4等级湿电子化学品常用于集成电路等领域。 IC制造不同线宽对应湿电子化学品国际等级分类标准SEMI等级IC线宽(μm)金属杂质(10-9)控制粒径(μm)颗粒(个/mL)C1(Grade1)>1.2≤1000≤1≤25C7(Grade2)0.8-1.2≤10≤0.5≤25C8(Grade3)0.2-0.6≤1≤0.5≤5C12(Grade4)0.09-0.2≤0.1≤0.2*Grade5*≤0.01**国际湿电子化学品市场国际湿电子化学品市场份额的80%主要被德国的E.Merck 公司、美国的Ashland 公司、Sigma-Aldrich 公司、Mallinckradt Baker 公司、日本的Wako 、Summitomo 等占据。欧美传统老牌企业的湿电子化学品产品市场份额(以销售额计)约为34%,主要企业有德国巴斯夫公司、美国亚什兰集团、亚什兰化学公司、美国Arch 化学品公司、美国霍尼韦尔公司、AIR PRODUCTS、德国E.Merck 公司、美国Avantor Performance Materials 公司、ATMI 公司等。日本企业约占30%的市场份额,主要企业关东化学公司、三菱化学、京都化工、日本合成橡胶、住友化学、和光纯药工业(Wako)、stella-chemifa 公司等。中国台湾、韩国、中国大陆企业(即内资企业)约占全球市场份额的35%。全球湿电子化学品行业主要企业国家及地区企业名称美国霍尼韦尔、ATMI、Arch化学品、亚仕兰集团、空气化工产品、Avantor™ Performance Materials德国巴斯夫、汉高、E.Merck日本关东化学、三菱化学、京都化学、东京应化、住友化学、宇部兴产、Stella Chemifa、Wako、日本合成橡胶韩国东友精细化工、东进世美肯、soulbrain ENG中国台湾台湾联仕电子、台湾侨力 国内湿电子化学品研究 自1980 年北京化学试剂研究所在国内率先研制成功适合5µm技术用的MOS级试剂开始,经过数十年积累,国内湿电子化学品企业陆续获得了 G1、G2 等级的化学试剂生产技术,少数部分技术领先企业已经具备 G2 等级化学试剂规模化生产的能力,部分产品的关键技术指标已经达到了国际G3 标准的水平。2010 年之后,技术领先企业的部分产品具备了 G3 等级的生产技术,行业进入快速发展阶段。国内的湿电子化学品目前主要生产G2、G3级别,仅部分达到G4级别,产品主要进口自欧美、日本、韩国、中国台湾的企业。湿电子化学品常用检测仪器与技术湿电子化学品的纯度和洁净度对于电子元器件产品的成品率、性能和可靠性有重要影响。仪器信息网特将湿电子化学品纯度及杂质分析和颗粒检测常用的仪器进行整理。湿电子化学品常用检测仪器常用仪器用途对应仪器专场(点击进入)粒度仪颗粒分析等粒度仪仪器专场电感耦合等离子体—质谱仪(ICP-MS)纯度和杂质分析等电感耦合等离子体—质谱仪(ICP-MS)仪器专场离子色谱纯度和杂质分析等离子色谱仪器专场电位滴定仪纯度和杂质分析等电位滴定仪仪器专场紫外可见分光光度计纯度和杂质分析等紫外可见分光光度计仪器专场液相色谱纯度和杂质分析等液相色谱仪器专场液质联用纯度和杂质分析等液质联用仪器专场
  • 1075万!中国科学院长春应用化学研究所国家电化学与光谱研究分析中心和江西省检验检测认证总院食品检验检测研究院仪器设备采购项目
    一、项目一(一)项目基本情况:项目编号:NCYC-202409040项目名称:江西省检验检测认证总院食品检验检测研究院2024年食品中微生物及样品前处理等仪器设备采购项目(包1:高通量农残检测设备采购项目)采购方式:公开招标预算金额:1720000.00 元最高限价:1720000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024B001243993江西省检验检测认证总院食品检验检测研究院2024年食品中微生物及样品前处理等仪器设备采购项目(包1)1批1720000.00元详见公告附件合同履行期限:中标供应商在签订合同后,自接到采购人要求交货通知之日起60个日历日内完成所有货物的交货、安装、调试。本项目不接受联合体投标。2.项目编号:NCYC-202409041项目名称:江西省检验检测认证总院食品检验检测研究院2024年食品中微生物及样品前处理等仪器设备采购项目(包2:一批快检产品开展及验证设备采购项目)采购方式:公开招标预算金额:1161000.00 元最高限价:1161000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024B001243992江西省检验检测认证总院食品检验检测研究院2024年食品中微生物及样品前处理等仪器设备采购项目(包2)1批1161000.00元详见公告附件合同履行期限:中标供应商在签订合同后,自接到采购人要求交货通知之日起60个日历日内完成所有货物的交货、安装、调试;如遇特殊情况、不可抗力因素,无法按期交货的,中标供应商须书面告知采购人,经采购人同意后方可适当延长供货时间。(延长供货时间最长不超过1个月)本项目不接受联合体投标。3.项目编号:NCYC-202409042项目名称:江西省检验检测认证总院食品检验检测研究院2024年食品中微生物及样品前处理等仪器设备采购项目(包3:一批样品前处理设备采购项目)采购方式:公开招标预算金额:1979800.00 元最高限价:1979800.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024B001243991江西省检验检测认证总院食品检验检测研究院2024年食品中微生物及样品前处理等仪器设备采购项目(包3)1批1979800.00元详见公告附件合同履行期限:中标供应商在签订合同后,自接到采购人要求交货通知之日起60个日历日内完成所有货物的交货、安装、调试;如遇特殊情况、不可抗力因素,无法按期交货的,中标供应商须书面告知采购人,经采购人同意后方可适当延长供货时间。(延长供货时间最长不超过1个月)本项目不接受联合体投标。(二)获取招标文件:时间:2024年09月21日 至 2024年09月28日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )地点:江西省公共资源交易平台(网址:https://www.jxsggzy.cn)方式:网上确认和下载招标文件。(详见其他补充事宜)售价:0.00元(三)对本次招标提出询问,请按以下方式联系:1.采购人信息名称:江西省检验检测认证总院食品检验检测研究院地址:江西省南昌市南昌县金沙二路1899号联系方式:150709488342.采购代理机构信息名称:南昌誉驰招标咨询有限公司地址:南昌市红谷滩新区丰和北大道59号丰和时代大厦24层2405室联系方式:0791-866667193.项目联系方式项目联系人:熊芳 汪丹 邹婷婷 谭家裕电话:15083516164二、项目二(一)项目基本情况1.项目编号:OITC-G240531507项目名称:中国科学院长春应用化学研究所国家电化学与光谱研究分析中心之三重四极杆质谱仪采购项目预算金额:240.000000 万元(人民币)最高限价(如有):240.000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1三重四极杆质谱仪1套本设备主要配合高分辨质谱,进行代谢物鉴定和代谢组学研究。收到信用证后4个月内到货或签订合同后4个月内到货240万元中国科学院长春应用化学研究所是 投标人须以包为单位对包中全部内容进行投标,不得拆分、分包、转包,评标、授标以包为单位。合同履行期限:收到信用证后4个月内到货或签订合同后4个月内到货本项目(不接受 )联合体投标。2.项目编号:OITC-G240531506项目名称:中国科学院长春应用化学研究所国家电化学与光谱研究分析中心之超高分辨场发射扫描电子显微镜采购项目预算金额:350.000000 万元(人民币)最高限价(如有):350.000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1超高分辨场发射扫描电子显微镜1套该仪器主要功能是在超低电压下直接观察各种材料超精细纳米形貌及结构,同时获得形貌微区内元素的定性、半定量及元素面分布线分布等信息,特别是在高分子材料、生物材料及新能源材料方面的表征具有不可或缺的独特优势。通过分析获得的信息,能够建立材料形貌、结构和微区内元素分布和含量与材料性质之间的关系,为材料设计制备和性能研究提供理论和实验支撑。出口许可批复后6个月内到货或合同签订后6个月内到货350万元中国科学院长春应用化学研究所是 投标人须以包为单位对包中全部内容进行投标,不得拆分、分包、转包,评标、授标以包为单位。合同履行期限:出口许可批复后6个月内到货或合同签订后6个月内到货本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年09月19日 至 2024年09月26日,每天上午8:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层方式:登录东方招标平台www.oitccas.com注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院长春应用化学研究所     地址:吉林省长春市人民大街5625号         联系方式:赫老师;0431-85262186      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:余睿、王军、郭宇涵、李雯; 010-68290563, 010-68290508            3.项目联系方式项目联系人:赫老师电 话:  0431-85262186
  • 噻苯达唑化学发光检测新方法开发方案
    噻苯达唑化学发光检测新方法开发方案一、实验目的旨在开发一种利用钴修饰黑磷纳米片(Co@BPNs)激活高铁酸盐(VI)高级氧化过程(AOP)的化学发光(CL)检测平台,以实现对噻苯达唑(TBZ)的高效、灵敏、选择性检测。通过生成高产率的活性氧(ROS),该系统能够有效分解TBZ,并产生强烈的CL信号,从而实现环境样品中TBZ的检测。二、实验使用的仪器设备和耗材试剂1. 仪器设备(1). 超微弱化学发光分析仪:BPCL-2-TGG(2). 透射电子显微镜(3). 荧光光谱仪(4). X射线光电子能谱仪(5). X射线衍射仪(6). 拉曼光谱仪(7). 电子顺磁共振光谱仪(8). 紫外-可见分光光度计(9). 红外光谱仪(10). 核磁共振波谱仪(11). Zeta电位仪(12). 高效液相色谱-飞行时间质谱仪2. 耗材试剂(1). 红磷、碘、锡(2). 氯化钴、乙醇、N-甲基-2-吡咯烷酮(NMP)(3). 硝基四氮唑蓝氯化物(NBT)、1,3-二苯基异苯并呋喃(DPBF)(4). 对苯醌(PBQ)、氢氧化钠(NaOH)、硫脲、L-组氨酸(L-His)、抗坏血酸(AA)。三、实验过程1. Co@BPNs的制备(1). 材料准备:将2 mL NMP试剂和10 mg块状BP研磨成均匀粉末,转移到150 mL圆底烧瓶中。加入5 mg氯化钴和98 mL NMP,超声处理20分钟,形成表面均匀分布的Co-BP块状材料。(2). 氮气通入:向溶液中通入氮气30分钟,以去除氧气。(3). 微波加热反应:加入100 mg NaOH,进行微波加热反应(1小时,140°C,375 W)。(4). 冷却和离心:自然冷却后,离心收集上层悬浮液,进一步离心得到Co@BPNs沉淀,真空干燥后储存。2. 化学发光实验(1). CL反应系统:在石英池中加入800 μL Co@BPNs溶液(0.05 mg/mL)和TBZ溶液(0.01 mg/mL),然后注入200 μL FeO4² ⁻ 溶液(10⁻ ³ mol/L)触发CL反应。(2). 数据记录:记录CL发射,PMT电压为0.8 kV,数据采集间隔为0.01秒,实验温度为20°C。每个数据点重复测量三次。3. 表征和分析(1). 结构表征:通过TEM、HRTEM、XRD、拉曼光谱、EDS、XPS和FT-IR等手段对Co@BPNs的结构和组成进行表征。(2). ROS生成研究:使用EPR和化学探针法研究Co@BPNs-FeO4² ⁻ 体系中ROS的生成。(3). CL响应评估:通过CL强度-时间曲线和线性关系图评估TBZ浓度对CL响应的影响。(4). 抗干扰能力评估:考察不同阳离子、阴离子和农药对CL信号的干扰。四、实验结果与讨论1. Co@BPNs的表征(1). TEM和HRTEM表征:TEM图像显示,Co@BPNs呈层状形态,分布均匀,尺寸约为17 nm(图1A)。HRTEM图像表明,Co@BPNs具有高度晶体结构,晶格间距为0.334和0.256 nm,分别对应于Co氧化物和BP的晶面(图1B)。(2). XRD和拉曼光谱:XRD和拉曼光谱进一步确认了Co@BPNs中钴的存在和分布(图1C, 1D)。(3). XPS和FT-IR分析:XPS和FT-IR分析显示,Co@BPNs表面具有多种氧功能团,这些功能团在CL反应中起重要作用(图1E, 1F, 1G)。图1. (A) Co@BPNs的TEM图像、尺寸分布直方图及钴的分布;(B) Co@BPNs的HRTEM图像;(C) Co@BPNs的XRD图谱;(D) Co@BPNs和未修饰BPNs的拉曼光谱;高分辨率XPS光谱:(E) P 2p峰,(F) Co 2p峰,(G) O 1s峰。2. 化学发光特性(1). CL光谱:Co@BPNs-FeO4² ⁻ 体系在引入TBZ后CL信号显著增强,表明Co@BPNs和FeO4² ⁻ 对CL发光的协同作用(图2A)。(2). 捕获剂实验:不同捕获剂对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系CL强度的影响表明,AA、L-His、EthOH、PBQ、硫脲对CL信号有不同程度的抑制作用(图2B)。(3). ROS生成验证:EPR光谱研究显示,Co@BPNs-TBZ-FeO4² ⁻ 体系中生成了大量1O2(图2C)。化学捕获实验表明,DPBF在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中吸收光谱变化显著(图2D)。(4). 结构变化研究:1H NMR和FT-IR光谱分析显示,TBZ在加入Co@BPNs前后的结构变化明显(图2E, 2F)。图4. (A) Co@BPNs-TBZ-FeO4² ⁻ 体系的化学发光光谱。 (B) 不同捕获剂(AA、L-His、EthOH、PBQ、硫脲)对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的影响。 (C) Co@BPNs-TBZ-FeO4² ⁻ 体系中1O2生成的EPR光谱研究。 (D) 1O2的化学捕获测定:410 nm处DPBF的紫外吸收光谱以及在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中的DPBF吸收光谱。 (E) 加入Co@BPNs前后的TBZ的1H NMR光谱。 (F) 加入Co@BPNs前后的TBZ的FTIR光谱。3. 方法性能评估不同浓度TBZ下Co@BPNs-TBZ-FeO4² ⁻ 体系的CL强度-时间曲线显示,TBZ浓度越高,CL信号越强(图3A)。在1.43 × 10⁻ ³ -1.43 μg/mL范围内,CL强度与TBZ浓度的线性关系良好(图2B)。多种阳离子、阴离子和其他农药对Co@BPNs-TBZ-FeO4² ⁻ 体系的CL响应几乎没有干扰,表明该体系具有良好的选择性和抗干扰能力(图5C)。图3. (A) 不同浓度TBZ下Co@BPNs-TBZ-FeO42&minus 体系的化学发光强度-时间曲线。(B) 在1.43 × 10&minus 3-1.43 μg/mL范围内,化学发光强度与TBZ浓度之间的线性关系。(C) 各种阳离子、阴离子和农药(浓度分别为10&minus 5 M, 10&minus 5 M 和10&minus 4 mg/mL)对Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的响应。五、结论本方案开发的基于Co@BPNs激活高铁酸盐(VI)的化学发光检测方法,可实现噻苯达唑的高效、灵敏、选择性检测。该平台通过生成高产率的活性氧,选择性氧化TBZ,产生强CL信号。实验结果表明,该方法具有良好的抗干扰能力和高检测灵敏度,在环境样品中噻苯达唑的检测中具有广泛应用前景。*因学识有限,难免有所疏漏和谬误,恳请批评指正*资料出处:免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制