当前位置: 仪器信息网 > 行业主题 > >

化学毒性

仪器信息网化学毒性专题为您整合化学毒性相关的最新文章,在化学毒性专题,您不仅可以免费浏览化学毒性的资讯, 同时您还可以浏览化学毒性的相关资料、解决方案,参与社区化学毒性话题讨论。

化学毒性相关的资讯

  • 不用动物实验依据毒性模型 基于细胞新方法可测化学品毒性
    p   一项研究发现可以通过基于细胞的方法预测化学物质对人的毒性,而不需要开展动物实验。这项研究展示了基于细胞的毒性模型,或有助于开发出代替传统动物实验测量化合物毒性的方法。相关成果近日发表于《自然—通讯》。 /p p   作为由美国政府主导的21世纪毒理学计划的一部分,美国国立卫生研究院的Ruili Huang 和同事测试了超过1万种化学物质,尝试开发出更好的测试诸如农药、工业化学品、食品添加剂和药品等化合物毒性的方法。他们测试了化学物质在15种不同浓度下和30个靶点(包括人体细胞核受体或者细胞通路)的反应活性,由此获得了超过5000万条数据。他们将数据和化学结构结合起来,创造了一些毒性模型,这些模型可以用于预测化学物质对动物或者人的影响。 /p p   当把这些结果与从动物试验中获得的、或已知从人身上获得的接触毒性物质的数据进行比较后,研究人员发现,相关模型既能预测对人的毒性,也能预测对动物的毒性。虽然这些结论需要用额外的细胞通路和靶点进行更多的试验,但研究人员提出,基于细胞的方法能用于毒理试验,而且能帮助优先选择出用于毒理试验的化合物。 /p
  • 进展|气溶胶中关键毒性化学组分的内在关联机制
    在国家自然科学基金项目(批准号:T2122006、22188102)等资助下,复旦大学李庆教授和清华大学王书肖教授等课题组合作,提出以削减人群健康风险为导向的工业烟气治理策略。相关研究成果以“基于工业源气溶胶毒性效应实现以健康为导向的大气污染控制(Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles)”为题,于2023年10月14日发表在《自然•通讯》(Nature Communications)。论文链接:https://www.nature.com/articles/s41467-023-42089-6  空气污染已成为全球最大的环境健康风险因素。工业化的迅速发展带来了大气污染,为了改善空气质量,各国政府优先对火力发电行业实施了日趋严格的污染物浓度控制政策。然而,近年来学术界在质疑基于污染物质量浓度的控制标准是否能有效降低健康风险。如何有效控制大气污染排放源,以保护人民生命健康,一直是国际上面临的巨大挑战。  针对这一难题,该研究团队对我国重点工业源(包括钢铁、电力和水泥行业)产生的气溶胶开展系统研究,发现了工业源气溶胶的生物毒性差异,阐明了气溶胶中金属等关键毒性化学组分的内在关联机制(图1)。基于气溶胶毒性效应的量化参数,结合我国大气污染物排放清单、空气质量模式、人群暴露模型与费效分析,阐释以削减“健康风险”为导向的大气污染调制机制(钢铁行业实施超低排放改造),相比于以削减气溶胶“质量浓度”为导向的机制(电力行业实施超低排放改造),可以更为有效的降低人群健康暴露风险(约5.4~8.2倍)。此外,若优先对气溶胶毒性效应更高的工业源开展超低排放(钢铁),能节约大量的经济成本(图2)。图1 钢铁厂(Iron and steel plants)、电厂(Power plants)和水泥厂(Cement plants)燃烧排放气溶胶(a)氧化应激效应(ROS)、(b)毒性金属组分以及(c)关键化学组分对ROS效应贡献比例解析(金属是工业源气溶胶的主导毒性成分)  图2 (a)我国工业大气污染基于“质量浓度”和“健康风险”减排策略的花费以及收益(2019年,超低排放削减的PM2.5排放量及基于ROS效应调控的排放量)的概念图 我国大陆区域电力行业(b)和钢铁行业(c)超低改造后的气溶胶基于ROS效应调控的人群暴露健康风险改善效果的分布情形  该研究基于对18个省/直辖市的82个实际工业排放源现场测量、关键毒性组分的化学甄别、生物毒性解析、空气质量模拟、暴露风险评估以及成本效益计算,突破了当前“基于PM2.5质量浓度”的大气污染控制政策,提出“基于PM2.5健康风险”的工业烟气污染治理思路,为建立面向人民生命健康的大气污染调控机制提供了理论依据和数据支撑。
  • 加州政府将氢氰酸和氰化盐归类为已知的生殖毒性化学物清单
    2013年7月5日,美国加州环境健康危害评估环保办公室(OEHHA)在65号提案中将氢氰酸(hydrogen cyanide ,HCN)以及氰化盐(cyanide salts ,CN salts)归类为已知的生殖毒性化学物清单。   氢氰酸和氰化盐的归类是基于权威机构美国环境保护局(EPA)的正式鉴定,该化学物导致生殖毒性(雄性生殖毒性)。OEHHA可在权威机构鉴定下将化学品列入清单的标准可以在加州第27号标题文件25306节中找到。   支持OEHHA将氢氰酸和氰化盐列入行政清单举措的准则文件包含在2013年3月22日题为“加州管制注册通告”(the California Regulatory Notice Register)(2013年注册第12号通知)中。OEHHA对公众就该清单通知意见的反馈可以在网址http://www.oehha.ca.gov/prop65/CRNR_notices/admin_listing/intent_to_list/032213NOIL_HCN.html上获得。   完整、最新的化学物清单将刊登在即将出版的加州管制注册通告上,也可以在OEHHA官网www.oehha.ca.gov获取。氢氰酸和氰化盐在第65号提案下被列为已知的生殖毒性,具体如下: 化学物 CAS号 毒理学终点 清单列入机制 氰化氢(HCN)及的氰化物盐(CN盐) --- 雄性生殖毒性 AB(美国环保局)   【原标题】加州政府将氢氰酸和氰化盐归类为已知的生殖毒性化学物清单于2013年7月5日生效
  • 科学家开发出色变型环境化学毒性检测仪
    目前医院及一些工业企业的员工已经能够采用佩戴辐射指示徽章的方法来实时快速地显示佩戴者所处的辐射等级,不过在检测有毒化学品污染方面,却一直没有出现类似的便携指示装置。为此科学家们最近开发出了一种暴露在有毒化学物质环境下就会自动变色的色素产品,并将这种产品称为“石蕊试纸扩展版”。   负责研制这种设备的Suslick教授表示:“我们开发的设备只不过是石蕊试纸的数字化多维码扩展版。我们采用了几种不同的纳米级多孔色素材料,并把这些材料排列成6x6的阵列。只要把阵列的颜色排列状况与标准表进行对比,就可以很快知道某环境中的化学品毒性程度。“   科学家们在玻璃,纸片或塑料片上使用色素打印出6x6的色素阵列,然后再用特制的平板扫描仪或数码相机对这些阵列进行拍照,并将阵列的初始图像与放入有毒环境后的图像进行对比,便可测出该环境是否具有化学毒性。而且这种色素不会受到环境湿度的影响。这项开发工程是由国家健康部赞助的。   另外,加州一家名为iSense的公司还制造了一台可用于检测的廉价扫描仪原型机,这种扫描仪使用造价便宜的白色LED灯管作为光源,并可配合普通数码相机一起使用,能加快扫描处理的操作方便性,速度,整套系统的价格也有所下降。并且已经进入了商业化生产阶段。   CNBeta编译   原文:dailytech
  • 产品应用:Microtox 生物毒性测试技术在舱底污水毒性研究中的应用
    modern water microtox 生物毒性检测技术具有快速、简单、廉价等优点,已成为毒性测试领域研究的热点。在环境污染事件监测、饮用水安全保护和应急响应等领域的已成为常规应用,并已成为多个国家认可的官方标准,microtox 技术在废水出水毒性检测和钻井液检测领域也有着广泛的应用。哥德堡大学与瑞典环境科学研究院团队为了调查在瑞典水域航行的大型客轮渡轮的舱底水对海洋环境的毒性。使用利用海洋细菌(vibrio fischeri)的microtox对处理前后七艘渡轮(a-g)舱底水进行了毒性测试(ss-en-iso 11348-3:2008)。结果表明,将发光细菌暴露于2.5-5%的舱底水稀释液中48小时发光抑制程度最大;在4个舱底水样品中,稀释度为5-10%时,死亡率较显著;ec50处于4.3%至52%的稀释度之间(table 2)。在microtox测试中对海洋细菌的毒性与舱底水样品中的化学成分之间进行了相关性分析(table 3)。表明具有低和中等碳原子的油馏分、pahs和阴离子表面活性剂与毒性强弱的负相关性最强;而金属浓度与毒性之间未观测到有明显相关性;阴离子表面活性剂和油含量与毒性作用相关性较强。相关研究结果《toxicity of treated bilge water: the needfor revised regulatory control》已于近期发表在《marine pollution bulletin》上。 Microtox 技术也广泛应用于废水处理厂的出水毒性检测。在澳大利亚新南威尔士州环保署(nswepa)颁发的环境保护许可中,每个废水出水排放监测点必须定期取样并使用 microtox 技术进行急性毒性分析。与使用其他生物(网纹蚤、仔鱼)的系统相比,使用费氏弧菌的 microtox 技术检测时间更短,结果精确度和灵敏性更高,成本更低,是一种理想的废水整体毒性测试方案。Microtox® model 500(M500) 分析仪是一款用于实验室的毒性测试仪,带有温控和自动校准功能,用于急性毒性的分析。microtox® m500 采用生物发光检测技术,可对事故或人为导致的饮用水及废水污染紧急事件进行快速毒性检测。目前已有超过2400 台microtox® m500行销世界,已确定了microtox® m500作为快速毒性检测分析的行业标准的地位。 microtox fx 是一款简单快捷且灵敏度极高的便携式水质检测仪,专门为筛查急性毒性及三磷酸腺苷(atp)而设计。microtox fx 使用生物荧光技术,对饮用水污染及化学品进入水体等造成的紧急事件进行快速毒性检测。microtox fx 是使用 microtox® 技术进行毒性测定的便携仪器。
  • 国家科技支撑计划《化学品毒性检测实验室安全评价与质量控制技术研究》课题顺利通过验收
    2010年11月5日,中国合格评定国家认可中心参与的国家科技支撑计划《化学品毒性检测实验室安全评价与质量控制技术研究》课题顺利通过国家科技部、国家质检总局和国家认监委组织的专家组验收。课题的完成情况得到了以魏复盛院士为组长的专家组的一致好评。   与会专家和领导一致认为该课题的成果为我国应对欧盟《化学品注册、评估、授权和限制法令》(REACH)技术法规,以及对促进我国良好实验室规范(GLP)评价体系建设和我国化学品安全评价数据得到国际承认起到了重要作用。
  • 我国生物毒性监测技术及市场分析
    一、生物毒性与环境监测预警体系  常规的水质监测给出的结果一般是各项检测指标的浓度,比如《生活饮用水检测方法》中列出的109项检测指标及其限值。但是水体中可能存在的有毒物质远不止这109种,尤其是许多有毒有害的微污染物,如有机氯农药(OCPs)、多环芳烃(PAHs)、全氟辛烷磺酸(PFOS)和全氟辛酸铵(PFOA)以及消毒副产物等新型污染物,对人体具有致癌、致畸、致突变等严重危害。常规的理化监测虽然可以对污染物做定性定量的检测,但对水环境质量整体评价和生态影响评估来说,理化监测存在着局限性。此外,当突发性污染事件发生时,在找到污染物前需要快速地评判污染危害性,以尽量减少可能造成的人员危害和经济损失。  所以,为了快速直观地反映水污染状况、可以直接利用水中的活体生物来判定有毒物质的质量浓度。在污染物指标明确之前,用一种综合的毒性效应指标快速报告毒性的存在及大小,这就是水质生物毒性监测。它也是一种能够及时快速对水体毒性进行预警的方法。  2020年,新冠疫情突然爆发,生态环境部在1月30日印发《关于做好应对新型冠状病毒感染肺炎疫情生态环境应急监测工作通知》,明确了将饮用水水源地环境质量作为重点进行监控,在原来常规监测指标的基础上,增加余氯和生物毒性等疫情特征指标。  生物毒性的检测原理为利用有毒物质污染应激下生物体的死亡、行为响应和生理生化改变,通过人工观察存活生物数量,或使用仪器自动测量指示生物的发光强度、呼吸作用、氧含量、酶活性、微生物产电量等指标,来判断水中毒性大小。这种方法使用“毒性”代替“毒物”来反映水质情况,确认对生态和健康的影响,也称为综合毒性。  总之,采用常规的化学监测,难以对多种化学污染物进行实时监测,预警迟滞,从发生水环境污染事故,到采取有效的处理措施需要耗费大量时间。生物毒性监测和常规化学指标监测相比,优势在于能够对复合污染和未知污染物快速响应,常用于突发性污染事故监测,饮用水安全监测或者在线预警装置中。 二、技术路线及代表仪器  生物毒性监测使用的指示生物有动物、植物和微生物等。目前我国用于水质毒性监测的指示生物主要有四种:菌类、藻类、蚤类和鱼类。  路线一:菌指发光菌,是一类在正常生理条件下能发出荧光的微生物。在实际应用中常选用费氏弧菌、鳆发光杆菌和明亮发光杆菌。我国于1995年8月1日实施的《水质急性毒性的测定发光细菌法》(GB/T 15441-1995)中,使用的是明亮发光杆菌T3小种,以氯化汞作为参比毒物,通过生物发光光度计来测量水体的相对发光度,从而表示其急性毒性水平。这种方法简单、快速,可用于多种水环境的监测,是目前生物毒性分析仪中应用最为广泛的方法。但同时,发光细菌法也存在测试稳定性和重复性稍差,进口仪器使用的发光细菌冻干粉价格昂贵等缺点。使用发光细菌法测量生物毒性的监测仪器有聚光科技生产的TOX-2000、美国赛默飞生产的AQ4700水质毒性分析仪、清华大学研制的JQ TOX-online、杭州绿洁生产的GR-8800、英国现代水务生产的Microtox LX、哈希生产的Eclox、山东东润生产的DR-2090 、深圳朗石生产的LumiFOX系列等。  路线二:藻类是水生生态系统的主要初级生产者,生存状态与水环境的质量密切相关,因此藻类用于水质监测评价也得到广泛的应用。但是藻类作为受试生物存在不少缺陷,例如由于藻类本身有较强的适应性及变异性,对外部环境有较强的忍耐力,因此灵敏性较其他方法偏低。使用藻类作为受试生物测量生物毒性的监测仪器有德国BBE生产的Algae Toximeter 11等。  路线三:蚤类监测中使用大型蚤(Daphnia magna straus)作为受试生物。大型蚤(也有称 “大型溞”)是一种常见的浮游动物,隶属甲壳纲,枝角亚目。在《水质 物质对蚤类(大型蚤)急性毒性测定方法》(GB/T 13266-1991)中,通过测定物质或废水对蚤的半数抑制浓度或半数致死浓度,来判断物质或废水的毒性程度。以这种原理研发生产的仪器有德国BBE的Daphnia Toximeter 11等。  路线四:国内用于水质毒性监测的鱼类较多,常见的有鲢鱼、鳙鱼、草鱼、斑马鱼等。我国于1992年8月1日实施的《水质 物质对淡水鱼(斑马鱼)急性毒性测定方法》(GB/T 13267-91)中规定,推荐采用斑马鱼并不排除使用其他鱼种,比如还可以选用青鳉鱼等,但对试验条件需做相应的改变,例如稀释水性质及温度。此标准适用于单一化学物质的毒性测定,或者工业废水的毒性测试。在2019年生态环境部发布的《水质 急性毒性的测定 斑马鱼卵法》(HJ 1069-2019)中,使用斑马鱼卵代替了活鱼,灵敏度更高,可用于地表水、地下水、生活污水和工业废水的急性毒性测定。中国科学院生态环境研究中心以鱼为指示生物研制出BEWs生物毒性监测仪器已在北京密云水库和山东某市水源地安装使用。此外,选用鱼作为受试生物的还有德国BBE生产的Fish Toximeter、新加坡叡克公司研发的鱼类毒性仪等。  由于各个方法的灵敏度、响应时间、预警范围、适用水体有所差异,因此在实际应用中需根据污染情况来选用合适的单一方法,或者多种方法结合以实现及时、全面、有效的毒性预警监测系统。 三、生物毒性分析仪市场简述  目前国内市场上的生物毒性监测仪有十几家品牌,同总磷、COD、氨氮检测仪等常规污染物检测仪器相比,生物毒性分析仪属于相对小众的水质监测仪。从市场量占比角度看,其中70%为进口品牌,如赛默飞、BBE、哈希、现代水务等。国产品牌仅占30%,如聚光科技、朗石、绿洁等。  根据应用场景,水质毒性分析仪可以分为在线式、便携式和实验室型。其中在线式和便携式约各占40%的市场份额,实验室仪器使用的相对较少,约为20%。在污水厂进水监测和饮用水水源地的监测点位多使用在线式水质毒性分析仪,而便携式仪器多用于突发性污染事件时的应急监测,或者定期的水质监测。进口品牌在线式仪器单台价格在50-60万左右,国产价格约为30-50万左右。进口品牌便携式仪器单台价格约30万元,国产约10万元。  从仪器原理来看,以发光细菌为指示生物研制的生物毒性仪市场占有量最大,约占70%以上。在水库、饮用水水源地等环境水的监测中常选用发光细菌法,而湖泊、河流等水域常使用鱼类作为指示生物。  由于目前水质毒性数据不属于环境监测考核指标,因此存在认可度不高的问题,这也是该类仪器推广过程中的一大难点。因此,使用该类仪器的单位多用于辅助性、预警性的判断水质质量状况,比如在连云港、重庆、汕头、苏州环境监测中心站等长三角和珠三角地区已投入使用。当涉及环境污染定性定量结论时,仍需出具理化检测结果来判定污染程度和污染类型。 四、未来展望  突发性环境污染事故不同于一般的环境污染,它具有事发突然、难以预测、危害严重等特点,常规的理化指标监测已经难以满足当前污染物的监控预警要求。应对突发性环境污染事件需要构建好环境安全预警系统,生物毒性预警就是其中关键而有效的一种。  我国正处于生态环境监测工作转型的阶段,从传统环境监测向现代生态环境监测转变,目标是建成科学、独立、权威、高效的生态环境监测体系。国家近期发布的有关计划中对环境预警系统建设、突发性污染事故防范的重视程度越来越高,生物毒性监测以及环境预警体系建设的重要性已在多个文件中提及。  比如2020年6月21日生态环境部发布的《生态环境监测规划纲要(2020-2035年)》中指出, 2020-2035年,生态环境监测将在全面深化环境质量和污染源监测的基础上,逐步向生态状况监测和环境风险预警拓展,构建生态环境状况综合评估体系。监测指标也从常规理化指标向有毒有害物质和生物、生态指标拓展,从浓度监测、通量监测向成因机理解析拓展。  在2020年7月中国仪器仪表行业协会发布的9项团体标准立项中,《水质生物毒性监测仪(电化学分析法)》即为其中之一。生物毒性监测仪的优势在于能够实现已知有毒污染物的低成本快速监测,和在位、在线和实时监测与预警。随着相关政策和标准的推出,可以预见,在接下来的环境监测工作中,生物毒性监测或许会成为重点手段之一。利用生物毒性预警与化学参数监测的优势互补,联合生物-化学监测,可提升扩展在线监测预警功能,形成更为完善的生态环境整体质量监测体系。  参考文献  [1]王英才,王树磊,胡文,等.生物综合毒性监测技术与多源生物预警体系[J].人民长江,2017,48(11):21-26.  [2]生态环境部.生态环境监测规划纲要(2020-2035年)[Z].2020-06-21.  [3]郑洪领,邹丽.生物监测及其在水环境污染防治中的应用进展研究[J].环境科学与管理,2017,42(4):116-118. 扫二维码加绿仪社为好友 及时了解科学仪器市场深度分析!
  • 新品首发|天尔便携式水质毒性测定仪
    随着环境检测需求的不断完善以及加强,天尔仪器为了满足不同行业的检测需求,今年研发生产了一款便携式水质毒性检测仪,仪器小巧携带方便,适用于自来水公司、环境监测站、疾控中心、水文站、水研中心、水研所等部门,运用于环境污染、紧急事故、安检、饮用水检测、生物污染、有毒化学物质、有毒有害废弃物、市政排水、工业废水排放检测、雨水检测、海水检测、钻井液和泥浆检测、工艺水检测、医疗制药产品检测、食品包装检测、个护用品和家用化学品检测、沉积物检测、雨水径流检测、固体样品检测、食品加工水检测等领域中水质毒性快速检测.天尔TE-790 水质生物毒性测定仪依据GB/T15441-1995《水质急性毒性测定发光细菌法》和ISO-11348-3《发光细菌 急性毒性的测定 费氏弧冻干粉法》检测原理设计,根据发光细菌在新陈代谢时发光强度的变化进行定性和定量检测,采用安卓智能操作系统,可视化模块设计,搭载高清彩色液晶大屏,触控式界面设计,操作简单便捷. 可在现场快速的对水质的污染情况进行检测.天尔便携式水质毒性测定仪01. 5寸高清彩色大屏,引导式界面设计,操作简单便捷;02. 运用安卓智能操作系统,可视化模块设计;03. 样品制备后可快速得到测量结果,数据准确可靠;04. 运用硅光电倍增管,可提高灵敏度,性能稳定;05. 具有电池欠压提醒和充电状态提醒功能;06. 内置大容量锂电池,可实现户外流动性作业;07. 一条曲线可做1-20个曲线浓度点,根据用户需求自由选择,保证曲线值更准确;(曲线浓度点可自由输入)08. 存储空间8GB(可扩展),存储数据大于1000万组;09. 配置USB Type-C 双面充电接口,支持充电,也可实现数据传输;10. 标配蓝牙热敏打印机,检测完成可实时打印检测报告;11. 历史数据可实时查询,可选择开始结束时间调取往期检测数据.
  • Hach推出全新Eclox便携水质毒性分析仪
    Hach公司近日推出了全新的Eclox便携式水质毒性分析仪,该分析仪将创新的EcloxTM化学发光毒性监测方法与高效的Hach水质测试方法结合起来,开发了一种全新的、结合了现场测试方法的水质分析组件。这种现场测试组件为一些市政和水务公司提供了另外一种实用的工具,可对供水污染做出第一时间的响应评估。HACH公司的Eclox水质测试组件也可以用于环境监测、工业现场水质评估以及垃圾场环境监测。这项技术最早是为英国的军队研发的,并得到了USEPA环境技术认证部门的认可,可以在现场可靠地检测出重金属、毒性物质和化学战争制剂等。无论是对于市政和水务公司而言,还是对于军事部门而言,如果您希望得到有效的毒性评估,这种测试都是您的首选方法。      与传统的发光细菌法相比,Eclox便携式水质毒性分析仪所采用的化学发光法具有如下特点:   (1) 测试速度快,5分钟之内就可以得到第一个测量结果,而传统的发光细菌法则至少需要15分钟。   (2) 在常温下即可以进行分析,而传统的发光细菌法则需要15度的恒温培养箱。同时, 试剂可以在常温下保存,而传统的发光细菌法的试剂则需要在零下18度以下的环境中保存。   (3) 试剂稳定,测试方便,数据重复性好,实验室间的数据具有可比性   Hach公司的Eclox测试组件还包括已经得到验证的Hach测试方法,使用Hach公司的PocketPalTM测试仪在现场测量pH和总溶解性固体(TDS) 使用比色盘测量余氯和总氯以及APHA色度 使用试纸可对杀虫剂/神经制剂和砷进行可靠的筛选测试 并具有完整图示操作指南。技术人员和操作人员只需要最少的培训就可以使用这种有效的组件对污染情况做出响应,或者在常规的分析测试中确保水系统的安全。   Eclox已经得到了USEPA环境技术验证项目(ETV)的认可,可以在现场对重金属、毒性物质和化学战争制剂进行可靠的检测。如需了解更多关于本产品的信息,请点击访问
  • 汛期水质安全 | 生物毒性及重金属现场快速分析解决方案
    汛期饮用水水质安全监测环境应急污染事件PART01生态环境部下发汛期饮用水水源环境监管工作通知近期,国内多地降雨量远超往年,连续的暴雨不仅会影响人们的正常生活,而且会发生不同程度的城市内涝,尤其在低洼社区、下凹式立交桥、地下交通设施等都会聚集大量的雨水,并形成严重的城市内地表径流,严重的将导致洪涝和地质灾害。此外,灾害过后将不可避免的导致一系列的饮用水水质安全问题,生态环境部就此类问题于2023年8月11日紧急发布《关于加强汛期饮用水水源环境监管工作的通知》,旨在加强对饮用水水质的监测和安全预警,尤其是重点排污企业,避免洪涝次生灾害的产生。PART02潜在危害 洪水是一种常见的自然灾害,对人类生活和自然环境造成极大的影响。其中,洪水后的饮水安全问题尤为突出。洪水期间,水源易受到污染,水质恶化,直接威胁到人们的身体健康。 洪水会导致水源地取水口受损、自来水厂和水井被淹、供水设施及输配水系统破坏,地表或河床底部泥沙、腐殖质会被冲入水中,造成水质浑浊度增加,影响饮用体验感和后期消毒效果;洪水还会将大量人畜粪便、垃圾、污水、动物尸体冲入水中,造成致病微生物污染,可能导致出现肠道疾病和其他传染病;如果受灾地区有储存有毒有害化学品的工厂、仓库,或者有农田,会造成有毒有害化学物质和农药的污染,可导致急性、慢性化学性中毒。 近年来,国内外学者针对洪水后的饮水安全问题进行了大量研究。一些研究结果显示,洪水过后,城市内的地表径流不仅会对城市排水系统造成巨大的负担,而且大量未经处理的雨水在地表流动的时候,会混入大量地表沉积物,包括固态废弃物碎屑 (城市垃圾、动物粪便、城市建筑施工场地堆积物) 、化学药品 (草坪施用的化肥农药)、车辆排放物等,其中含有较高浓度且成分复杂的细菌、重金属等污染物,而水体中较高含量的微生物和有害物质,如细菌、病毒、寄生虫、重金属等,会通过水体扩散,引发各种疾病,对人类健康造成威胁。 基于此,在应急污染事件发生时,需要对污染物的种类、数量、浓度规模,以及生态的破坏程度、规模等进行监测,旨在发现和查明环境污染情况,掌握污染的规模和程度,这对应急污染事件的后续处理至关重要。PART03环境应急监测 常规水质参数,如溶氧、浊度、pH、氮、磷、COD等对水质安全的检测程度有限,无法给出一个生物性的综合指标,而且应急污染事件中常规参数变化通常不显著,通常无法构成实施水质预警、应急措施的证据基础;而实验室检测的常规方法,虽然可对规定项目进行精确监测,但是可能遗漏许多非常规毒性物质,无法确定对人体的毒性和综合效应;对于生物毒性检测技术,是通过生物传感器监测受试水生生物的生物学指标变化,检测范围广,对大多数有机/无机有毒物质敏感,可反映水体的综合毒性变化,适合用于有毒物质污染事件的应急监测和预警。 对于应急污染事件,主要可对常见的重金属元素铜、镉、铅、锌、砷、汞进行现场应急检测,以确定主要有害重金属元素的污染情况。传统的重金属检测方法是原子光谱法,其准确度、精密度好,但是成本高,分析时间长,操作人员要求高,只能在实验室内进行分析;分子光谱法可进行现场分析,但是其灵敏度低,实际检出限通常高于0.05mg/L,无法满足I类测定要求,且方法抗干扰能力弱,样品色度浊度对结果干扰大;而阳极溶出法安法对重金属的检测,其灵敏度、准确度与原子光谱法接近,数据相关性极高,且方法抗干扰能力强,对样品色度、浊度无要求。便携式水质生物毒性分析仪 Microtox FX Microtox FX 是一款操作简便且灵敏度极高的便携式水质生物毒性分析仪,采用生物发光检测技术,并使用先进的光电倍增管(PMT),可检测到发光细菌在分析过程中的发光量变化,可对事故或人为的饮用水及废水污染紧急事件进行快速毒性检测。,时长02:01快速检测 - 样品准备后5分钟可得到结果生态环境应急监测及新污染物检测轻量便携 - 适用于现场和应急场合通过ISO 13485 质量体系认证便携式重金属分析仪 MicrotraceTM PDV MicrotraceTM PDV 是一款适用于应急场合和现场测试的便携式分析仪,重金属检测是日常理化分析的基础,而基于阳极溶出伏安法的便携式重金属检测仪,由于其灵敏度高、检测限较低、检测快速、所需样本量少等特点,可成为目前实验室进行重金属检测和开展和重金属检测相关科研工作的良好补充。,时长00:55支持检测最多24 种重金属元素与比色法相比,精确度和灵敏度更高,干扰更少用于现场或实验室检测时,检出限低至 0.5μg/L与实验室分析方法(AAS, ICP-MS)有极强相关性,且分析成本更低可搭配 Android 平板 App 使用,可极大提升仪器易用性和便携性
  • "植物激素"安全性惹争议 专家称毒性比味精小
    ●农业专家:毒性比味精还小 ●食品专家:滥用会危害健康   最近催熟剂、膨大剂、催红剂、增甜剂等植物生长调节剂被推向风口浪尖,这些调节剂被媒体冠名为"植物激素"之后,引起了消费者的不少担忧。   究竟"植物激素"危害大不大?应该禁止还是推广?针对这些消费者关心的问题,记者昨天采访了有关专家和官员。记者了解到,目前,植物生长调节剂在国内已被广泛应用于多种农作物。农业专家表示,植物生长剂属于农药范畴,基本都属于低毒和微毒农药,大部分毒性比味精和盐还小,是一种农业增产、增效的重要技术措施,并且是安全的。   不过一些食品专家也担忧,瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。   植物生长剂已被广泛使用于多种农作物   "我们认为,最近的一些报道对消费者有误导作用。"昨天,广东省农业厅植保总站研究员江腾辉开门见山地对记者说,最近一些媒体把植物生长剂讲得太过恐怖。   "事实上,植物生长剂归属农药管理,并且属于低毒和微毒农药。"江腾辉说,前几天,省农业厅植保总站邀请华南农业大学、省农科院部分专家,专门召开会议研究植物生长调节剂的问题,与会专家一致认为,包括催熟剂和膨大剂在内的植物生长调节剂作为农作物生产中一项重要的技术措施,在农业增产、增效中发挥了重要作用。应加强对植物生长调节剂使用技术的宣传普及,指导农业生产者科学合理使用,引导社会公众科学看待,避免因一些不实信息或虚假消息误导消费者,切实维护公众的健康安全和广大农民的利益。   "作为一项农业增产、增效的重要技术措施,植物生长剂已被广泛使用于多种农作物,技术也已经比较成熟。"江腾辉说"广东每年使用植物生长调节剂约220吨,大概占全国使用量的3%多一点。"江腾辉说。   "植物生长剂跟化肥以及其他的农药本质是一样的,而且它还是低毒、微毒的。"江腾辉说。   农业专家毒性比味精和盐还小   "绝大部分的植物生长调节剂毒性比味精和盐还小。"华南农业大学资环学院徐汉虹教授说。   徐汉虹说,首先,作为一种农药,我国的农药管理制度还是比较严的。凡是在我国境内生产、销售和使用的植物生长调节剂,都必须进行农药登记。在申办农药登记时,必须进行药效、毒理、残留和环境影响等多项使用效果和安全性试验,经国家农药登记评审委员会评审通过后,才允许登记。   "如果植物生长剂是一种危害很大的农药的话,国家为什么还要允许它的存在和使用?"徐汉虹说,与杀虫剂、除草剂等其他的农药相比,植物生长调节剂的毒性要小得多。   "另一方面,在一些农作物中,植物生长调节剂的使用是必须的。例如香蕉便是这样。"徐汉虹说,在香蕉等一些水果中,使用"乙烯利"几乎是惯例,如果不这样,就得等到香蕉自熟以后再采摘,那么香蕉往往会在运输的过程中便烂掉。   食品专家过量激素聚集人体会危害健康   "植物激素添加剂真的无害吗?"中国人民大学农业与农村发展学院教授郑风田,一位研究食品安全问题的专家,昨天对记者表示,对这个问题的判定应该看看医学专家们的意见,毕竟那些用了膨大剂的西瓜最终还是要被人吃掉的。那些搞植物激素的专家们应该不会做人体健康试验的,因为这是医学专家们的领地。   "我接触的不少医学专家都认为:反季节蔬菜和水果大部分都是激素催成的,短期内影响不大,但长期食用会对人体产生副作用。"郑风田说,一份报告称,土耳其伊斯坦布尔大学生物系植物学教授因萨尔警告说,果菜中含有的过量激素,聚集在人体内对健康非常有害。   "瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。"郑风田担忧地说。   "其实许多生长剂都不应该去使用,乙烯利等催熟剂必须要去禁止。"郑风田表示。他甚至"教大家一招":在瓜果市场,形状异常,外观色泽太美丽,味道差而平淡,一般都是被催熟剂、膨大剂搞出来的,要尽量少买少吃!   不过对于郑风田的观点,徐汉虹提出了不同的看法。他认为,以一种物质的化学成分来分析它的危害是片面的,科学的态度是,要考虑它的含量问题"植物生长调节剂一般在作物上使用剂量极低,不会对农产品(16.80,0.05,0.30%)质量安全造成危害。"徐汉虹说,作为一种激素,植物生长调节剂很低的含量就可以发挥作用,一般都是几千分之一,甚至上万分之一。"而且植物生长调节剂超剂量使用或使用剂量不够,不但难以达到理想的调控作物生长效果,甚至会影响农作物的正常生长,造成减产减收。"   关键是加强激素残留监测   "植物生长调节剂作为一种低毒或微毒的农药,已有38个经过国家批准登记,它们的安全性都是经过严格的试验的。"广东省农业厅植保总站研究员江腾辉呼吁,各界不要妖魔化植物生长调节剂。   "关键还是要加强监督和管理。"业内人士表示,目前,美国、加拿大、日本等发达国家都对植物生长调节剂制订了严格的农药残留标准。我国今后应加快制订和完善相关标准,加强农产品中农药的残留监测,切实保障农产品质量安全。
  • 哈希带您云游进博会 直击毒性仪新品亮相
    哈希带您云游进博会 直击毒性仪新品亮相哈希公司2020年11月5日,第三届中国国际进口博览会(The 3rd China International Import Expo)在上海国家会展中心正式举办,丹纳赫集团等多家大型国际企业参会。本次进口博览会囊括食品及农产品、汽车、技术装备、消费品、医疗器械及医疗保健、服务贸易六大展区,并首次设置了包括公共卫生在内的新主题。向右滑动查看更多丹纳赫集团作为连续三年参会的进博伙伴,以“丹心一片,矢志健康”为主题,携哈希等各子公司在疫情展区的最大展台8.1C02-002亮相,为专业观众呈现疫情防控及全方位健康解决方案。哈希在水质分析领域深耕70余年,以担当世界水质守护者为己任,在本次进口博览会上重装亮相。以多样化的水质分析前沿产品和全面化的水质分析解决方案,吸引众多在场客户观展咨询。国家及各地方政府代表团莅临丹纳赫展台,央视财经、东方卫视跟踪报道本次进博会上哈希TX1315便携式生物毒性分析仪新品首次重磅呈现。TX1315可被广泛应用于地表水、饮用水、污水、石油石化、工业用水、食品饮料、环境应急等行业。它不仅可用于发光细菌法生物毒性分析,还可用于化学发光毒性法分析,具有突破性的微生物检测技术,只需几分钟就能获得关键数据。同时,产品还附带应急便携包,提高了其便捷性,能支持户外使用。TX1315便携式生物毒性分析仪是哈希在毒性及微生物检测领域获得革命性突破的重要展现。第三届进博会展期为11月5日至11月10日,在此期间哈希诚挚欢迎专业观众前来丹纳赫展台参观咨询、洽谈签约。点击阅读原文,了解更多展品信息!END
  • 大连化物所实现低毒性量子点近红外上转换与太阳光合成
    近日,大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点光化学研究中取得新进展,实现了低毒性量子点敏化的近红外光至可见光的上转换,并将该体系与有机光催化融合,实现了高效快速的太阳光合成。红外光到可见光的上转换在能源、医学、国防等诸多领域具有重要意义。例如,对太阳能电池而言,上转换能使器件有效利用阳光中大量的低能量红外光子,颠覆性地提升太阳能转换效率。在各类上转换技术中,基于有机分子三线态湮灭的光敏化技术可对非相干、非脉冲光源实现上转换,具有较强的实用前景。然而,此前报道的近红外光敏剂普遍效率较低或含有贵金属和有毒金属,相对廉价环保的高效近红外光敏剂仍然有待开发。吴凯丰研究团队一直致力于胶体量子点的超快光物理与光化学研究。在超快光化学领域,团队深入系统研究了量子点敏化有机分子三线态的动力学机制,并探索了这些新机制在光子上转换、有机光合成等领域的初步应用。在这些前期基础之上,团队开发了CuInSe2基量子点,用于替代剧毒性的铅基近红外量子点,实现三线态敏化和近红外上转换。本工作中,团队首先制备了ZnS包覆的Zn掺杂CuInSe2核壳量子点,有效解决了该类量子点缺陷多和稳定性差的难题。团队在量子点表面修饰羧基化的并四苯分子作为三线态受体,并采用红荧烯分子作为湮灭剂,构建了溶液相上转换体系。时间分辨光谱研究表明,该类量子点的光生电子和空穴都会在皮秒尺度被局域在量子点本身的缺陷位点。该局域化电子—空穴对仍然能够在纳秒尺度传递至量子点表面的并四苯分子,高效生成自旋三线态,并进一步传递至溶液中的红荧烯分子,进行三线碰撞湮灭。该体系实现了近红外至黄光的上转换,量子效率高达16.7%。此外,团队进一步将该上转换体系与有机光催化融合,将上转换产生的红荧烯单线态直接用于“原位”有机氧化、还原、光聚合等反应。该设计巧妙避免了上转换光子传播至溶液表面所经历的量子点重吸收损失。此外,得益于近红外光子的有效利用和量子点的宽谱吸收特性,该上转换—有机催化融合体系可在太阳光下高效快速运行。在室内窗台上(光照强度约32 mW cm-2),几秒内即可实现丙烯酸酯的光诱导聚合。该工作不仅实现了低毒性量子点敏化的近红外至可见高效上转换,还发展了一种高效快速太阳光合成的新路径。这一交叉创新型研究成果对光化学和光合成技术的发展具有重要意义。相关成果以“Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals”为题,于近日发表在《自然—光子学》(Nature Photonics)上。该工作的共同第一作者是我所1121组梁文飞、聂成铭博士、杜骏副研究员。上述工作获得了中科院稳定支持基础研究领域青年团队计划、国家重点研发计划、国家自然科学基金、我所创新基金等项目的支持。
  • 美国加州未将二甲苯定为发育或生殖毒性物质
    2013年3月5日消息,美国加州发育和生殖毒性物质鉴定委员会(Developmental and Reproductive Toxicant Identification committee)近日投票,反对将二甲苯(xylene)列入65提案(Proposition 65)下的发育或生殖毒性物质清单。该委员会是加州环境卫生风险评估办公室(OEHHA)的一个咨询机构。   该决定是在2月25日会议后决定的。会议上委员作了相关阐述,并考虑了公众评议意见。此次投票还决定从2700种未充分测试化学物质清单中移除8种物质。这8种都是经美国环保署(EPA)确定,已受到了所要求测试的杀虫剂。   更多有关上述决定的信息可在OEHHA网站上查询。
  • 赵宇亮/陈春英/谷战军研究团队——人造纳米材料的毒性研究
    近几十年来,纳米材料或纳米产品在能源、航空航天、农业、工业、生物医药等诸多领域得到了蓬勃发展和广泛应用。然而近些年报道的纳米材料对人类健康和环境安全造成的潜在负面影响引起了各界的担忧,这催生了“纳米毒理学”领域的诞生。该领域主要研究纳米材料或纳米产品在生命周期内对生物的不良健康影响,并进行安全性评估和风险管理,最终实现纳米材料的安全生产、使用和废弃。大量的基础毒理学研究和国际纳米技术标准表明纳米材料的物理化学性质包括化学组分、尺寸、形状、表面化学、结晶度、溶解度、氧化还原电位等会广泛地影响纳米材料与生物体在器官/组织、细胞和分子层次上的相互作用。因此,深入了解纳米材料的理化性质在介导不同水平纳米–生物相互作用中所扮演的角色具有重要意义,这不仅利于实现进行可靠的纳米毒性评估,也有助于设计更加安全的纳米产品。为此,赵宇亮/陈春英/谷战军团队在Particuology上发表综述文章,深入探讨了人造纳米材料的关键物理化学性质对诱发潜在生物毒性的影响。该文章首先概述了纳米材料如何在器官/组织、细胞和分子水平上与生物体发生相互作用,并在此基础上深入讨论了尺寸、形状、化学性质、表面化学,以及上述理化性质所介导的纳米材料的团聚/聚集、生物冠形成和降解等行为对其毒理学特征的影响。另外,该文章还介绍了研究纳米–生物相互作用的主要分析方法、不同地区和/或国家目前对含纳米材料产品的监管和立法框架,提出了纳米毒理学领域面临的挑战和可能的解决方案,以期为纳米材料的安全性评价提供参考。图1. 纳米材料的毒性相关特性及研究纳米–生物相互作用的分析方法器官、细胞、分子层面上的纳米-生物相互作用根据所处的生命周期阶段的不同,人造纳米材料对人类的主要暴露方式包括肺部吸入、口服摄取、皮肤接触和静脉注射等。大多数经肺、胃肠和皮肤暴露的纳米产品会被滞留在暴露器官中并可能在被机体逐渐清除之前诱发毒性;只有少数局部暴露的纳米材料可能被吸收到血液和/或淋巴循环。由于缓慢的剂量率、独特的吸收途径和特殊生物冠的生成/演变,非静脉注射的纳米材料在体内分布更广泛、更均匀。相比之下,静脉注射纳米材料则更快地从血流中清除,并主要聚集在富含单核-吞噬系统(MPS)的器官,如肝脏和脾脏。此外,无论暴露途径如何,进入体循环的纳米材料可能通过血脑屏障、血睾丸屏障和胎盘屏障,并对这些器官造成影响。基于纳米材料的性质,其代谢和排泄方式多种多样,主要发生在肝脏和肾脏。综上,根据纳米材料的毒物动力学过程,可以推断肺、肠、肝、脾和肾是纳米材料的主要毒性靶点。 图2. 器官、细胞和分子水平上的纳米生物相互作用。(a) 毒物动力学(即纳米材料在体内的吸收、分布、代谢和排泄) (b) 纳米材料的潜在毒性机制在细胞、亚细胞和分子水平上,纳米材料可能粘附、切割、嵌入细胞膜而造成膜损伤,或被细胞内化而进入细胞。包括网格蛋白依赖、小窝蛋白依赖、非网格蛋白和非小窝蛋白依赖的内吞、微胞饮和吞噬在内的多种胞吞途径是纳米材料进入细胞的主要方式。不同的内化途径将进一步影响其在细胞内的定位、命运和下游的细胞毒性。纳米材料通过多种毒性机制发挥细胞毒性,本质上可归因于其对细胞组分和结构的氧化损伤和物理损伤。一方面,纳米材料可以通过促进活性氧(ROS)的生成、消耗细胞内抗氧化系统和/或干扰线粒体的功能而引起氧化应激,造成脂质、蛋白质和核酸分子的氧化损伤。另一方面,纳米材料可能会改变生物大分子的构像和功能,通过直接的生物物理相互作用干扰或破坏细胞。二者可能引起的下游事件包括:细胞膜渗漏、线粒体功能障碍、溶酶体膜通透性(LMP)、内质网应激、刺激或阻断涉及细胞增殖和死亡、细胞骨架破坏、基因毒性等信号通路,最终导致炎症反应、细胞周期阻滞和细胞死亡(凋亡、坏死、自噬、铁死亡和焦亡等)。影响纳米材料毒性的关键特性 本节作者重点讨论了经合组织成立人造纳米材料工作组提出的11种典型纳米材料(包括纳米氧化铈、纳米氧化锌、纳米二氧化钛、金纳米材料、银纳米材料、富勒烯、多壁碳纳米管、单壁碳纳米管、纳米粘土、二氧化硅、树状聚合物)的关键理化性质以及其所介导的团聚/聚集、形成生物冠和降解行为对不同水平纳米–生物相互作用的影响。化学组成纳米材料核心的化学本质决定了纳米材料的溶解性、催化活性、氧化还原能力、电离特性、与生物大分子的亲和性,从而决定了纳米材料的毒性及其机理。除了核心纳米材料的化学性质,表面涂层/接枝和元素掺杂等材料设计也会影响纳米材料的毒理学特征。元素掺杂通过改变纳米材料的催化性能和溶解特性而影响其毒性。另外,纳米材料制备过程中的金属和杂质残留、内毒素污染等也是其生物毒性的潜在来源。粒径经肺、胃肠、皮肤暴露的纳米材料,其吸收行为表现出不同的尺寸依赖性。体循环中的纳米材料因其尺寸不同可能发生:快速经肾脏清除、被肝脾吞噬而积聚、经胆汁排泄或实现相对长的血液循环而遍布全身,可见其分布和排泄行为也受尺寸的影响。在细胞水平,尺寸是影响纳米材料内吞途径的重要因素。另外,尺寸直接影响纳米材料造成氧化应激和物理破坏的能力。形状纳米材料可以制成多种形状,如纳米球、纳米管、纳米棒、纳米线、纳米立方体、纳米片等。不同形状的纳米材料可能表现出不同的毒代动力学行为、细胞摄取和毒性效应。这可能与形状影响纳米材料晶面暴露、催化性能、生物冠形成等有关。表面特性由于纳米生物相互作用通常发生在纳米–生物界面上,故而纳米材料的表面性质(特别是表面电荷、表面疏水性和表面原子/基团)对其吸收、分布、排泄、细胞摄取及毒性潜力等至关重要。这些表面特性通过综合影响纳米材料在生物介质中的分散性、所形成的生物冠、与细胞表面配体的亲和力、核心纳米材料的ROS生成能力和有毒离子释放程度等方面而发挥作用。影响纳米材料毒性的生物转化行为纳米材料由于其超高的表面能而极不稳定,倾向于发生系列转变以降低其表面活性。形成团聚体、表面吸附生物分子而形成生物冠、发生降解是其常见的降低表面能的方式。聚集状态本质上,团聚对纳米材料的毒物动力学、细胞摄取和毒性的影响可归因于纳米材料表观尺寸的增强。在人体暴露前形成聚集体可极大地减小经肺、肠、皮肤的吸收而降低系统暴露风险和毒性。然而,纳米材料一旦进入或在机体中形成聚集体,似乎具有很高的毒性潜力。在细胞水平,团聚状态可以改变原始纳米材料的细胞内化途径和摄取程度而产生复杂的影响。总之,团聚状态对最终纳米毒性的影响仍存在争议,需进一步讨论。生物冠的形成及演化生物冠的形成及演化高度依赖于初级纳米材料的理化性质(如尺寸、表面化学、形状等)及其周围生物环境。它会改变原始纳米材料的合成特性并赋予其全新的生物特性。生物冠在介导纳米生物的吸收、血液循环、分布、代谢、细胞摄取和毒性机制等多种相互作用中发挥着主导作用。在大多数情况下,纳米材料表面生物冠的形成可缓解其非特异性的毒害作用,这可能与生物冠抑制细胞摄取、减少ROS生成、降低团聚率、减轻有毒表面活性剂诱导的细胞毒性,减缓纳米材料溶解及释放有毒金属离子等有关;然而生物冠可能具有激活免疫而诱发炎症、改变基因表达、诱发内质网应激、细胞凋亡等负面影响。生物降解纳米材料暴露可能会经历恶劣的胃肠道环境、肝细胞微粒体酶、MPS系统的酸性富含氧化性物质和离子的溶酶体环境,这都将挑战纳米材料的完整性并促进其降解。根据降解程度和速率、完整纳米材料和降解产物的毒性潜力,生物降解对纳米材料的毒理学特征具有深远的影响。例如,银纳米材料降解释放银离子已经被认为是其毒性作用的重要机制之一。而二硫化钼纳米片降解产生的钼酸盐可以参与肝细胞的钼酶合成并提高其活性。吸入不可降解的碳纳米管会长时间聚集在肺部而诱发肉芽肿、肺泡炎和纤维化反应。纳米毒理学研究的分析方法 本小节作者首先从分子层面探讨了用于原位分析蛋白冠结构、组成、形成动力学的先进技术,接着在细胞层面介绍了用于可视化纳米材料摄取、转位、毒性作用的高分辨显微镜成像和质谱成像技术、以及基于流式的单细胞技术和多组学技术;最后,在器官层面概述了纳米材料的体内定量方法和活体成像技术用以研究纳米材料的吸收、分布、代谢、排泄。图3. 针对不同水平纳米-生物相互作用的分析方法纳米产品的监管 现阶段,世界各国对含纳米材料产品的监管由现有的一般和特定行业的监管和立法体系覆盖。例如,不同领域纳米产品在欧盟的流通均须遵守the Registration, Evaluation, Authorization, and Restriction of Chemicals regulations和the Classification, Labelling and Packaging Regulation regulations。此外,欧洲食品安全局、欧洲医药局、健康和消费者保护联合研究中心以及欧洲工作安全与健康机构等细分机构还出台了针对本领域纳米产品的监管办法和指导。另外,各国普遍认为纳米材料的风险评估应在个案基础之上,可能的风险与特定的纳米材料和特定的用途有关。比如,美国的食品药品监督管理局(FDA)以特定纳米产品作为重心,通过上市前审查和/或上市后监管系对其进行监管。FDA针对纳米材料的详细监管参见“FDA’s Approach to Regulation of Nanotechnology Products”。美国的环境保护署还出台了一系列法规包括Toxic Substances Control Act, Federal Insecticide, Fungicide and Rodenticide Act, CleanAir Act, and Clean Water Act等对纳米材料整个生命周期进行监管。虽然目前纳米材料与普通化学品有着相似的监管和立法框架,但几乎所有的监管机构都对纳米材料安全性评价的几乎每个阶段都给予了特别的关注,并推出了指南或标准化。还有一些倡导者呼吁建立专门针对纳米材料的立法和监管框架。相信随着纳米材料风险评估的发展,对纳米材料的监管和立法将进一步完善。总结与展望 尽管纳米毒理学领域取得了巨大的进展,但纳米材料的安全性评价仍面临着严峻的挑战。第一,确定纳米材料毒性与其理化特性之间的因果关系非常困难。为此,通过精细的材料设计和制造提供一个可在单变量水平控制的覆盖广泛毒理学相关性质的纳米材料库尤为紧迫。第二,有相当一部分的毒理学研究忽略了诱导纳米毒性的现实情况。在这方面,有必要避免内毒素污染、未纯化或分离的有毒催化剂/表面活性剂和剂量过大而造成的毒性。第三,针对纳米材料在生物环境中的动态转化,特别是非静脉注射给药的纳米材料所形成的生物冠,对其毒性的影响仍然十分匮乏。第四,基于多组学技术的系统毒理学手段对微小的生物分子改变的解读具有挑战性,很难获得纳米材料毒性机制的整体图像。幸运的是,上述问题已经引起了广泛的关注,并有望通过精细的实验设计、先进的原位分析技术和生物信息学方法的发展来解决。这些努力将在纳米材料理化性质和纳米生物相互作用之间的因果关系方面带来重大突破,从而促进人造纳米材料的风险评估和管理,以及更好地设计生物兼容的新型纳米产品。
  • 生物毒性应急监测 | 新型冠状病毒疫情防控监测与Microtox生物毒性检测技术
    2020年伊始,由新型冠状病毒(2019-nCoV)所引发的肺炎疫情牵动着每一个人的心。随着各个医疗及隔离场所疫情防治工作的逐步展开,在此过程中产生的各种废水及废弃物对环境生态所产生的影响也逐渐受到关注。为了避免污染物对水源地、地表水、地下水和土壤等产生的污染和破坏,1月31日生态环境部印发了《应对新型冠状病毒感染肺炎疫情应急监测方案》,研究部署应对新型冠状病毒感染肺炎疫情应急监测工作,防止疫情次生灾害对生态环境和人民群众造成不良影响。在该应急监测方案中,明确提出加强饮用水水源地水质预警监测,方案中表明在疫情防控期间,在饮用水水源地常规监测的基础上,增加余氯和生物毒性等疫情防控特征指标的监测,控制风险,切实保障人民群众饮水安全。Modern Water 作为先进水质生物毒性监测设备的所有者,所有用的Microtox® 生物毒性检测技术起源于20世纪60年代,是生物毒性检测行业内的“黄金标准”。这项技术应用生物传感原理(发光细菌法),可对水中广谱污染物质进行快速测定。产品Microtox® 系列检测产品包括:Microtox® LX/Microtox® M500 台式毒性仪,适用于实验室;Microtox® FX/Delatox 便携式毒性仪,适用于应急监测和小型水厂化验室;Microtox® CTM 在线毒性仪,适用于水源地监测,大型水厂进/出水口监测。应用Microtox® 系列生物毒性分析仪自2007年进入中国以来,广泛应用于水源地、净水构筑物出水、出厂水的应急监测,在环境监测、供水、疾控和公共卫生管理等领域中发挥了重要作用。2008年北京奥运会,2010年广州亚运会,2010年上海世博会均采用了Microtox毒性检测仪;2008年汶川地震期间,国家环监总站、震区及国内多家检测机构应急小组均配备了Microtox便携毒性仪对震区进行了全面全程的水质毒性监控;美国911事件以后,美国各水司、水厂将Microtox® 毒性仪大量应用于公共场所、饮用水源、出厂水等的检测。Microtox® 生物毒性检测技术通过了工业界、研究单位和政府的验证,截至05年已有超过500篇的关于Microtox系统应用和评价的论文。
  • 哈希便携式水体综合毒性测试系统入选水利部先进实用技术推广目录
    近日从水利部科技推广中心获悉,哈希便携式水体综合毒性测试系统已成功入选至2010年度水利先进实用技术重点推广指导目录。   哈希便携式水体综合毒性测试系统——Eclox水质毒性监测组件是一套专门用于水质综合毒性快速检测的分析设备,可满足环保、水利、卫生疾控以及自来水行业日益增强的对便携式毒性测试仪的需求。由于毒性分析反映的是水体的综合性表现,该分析方法不能用化学分析的方法获得解决。故毒性分析仪在人为投毒监控、有毒有害化学品泄露、突发污染事故监控与处置、以及水源水的预警等方面有着其他分析技术和分析方法不能取代的地位。
  • 药物中为何有基因毒性杂质?质控技术应怎样保障用药安全
    药物杂质研究贯穿于整个药物质量研究过程,并且对于一些可能具有特殊的生理活性或毒性的杂质,更需要进行结构确证和安全性验证。在此背景下,仪器信息网于2024年7月30日成功举办了“第八届化学药物杂质研究及质控技术”主题网络研讨会,本次会议汇聚了来自各药物研究院所、高校和仪器厂商的专家学者,共同探讨了化学药物杂质研究的最新进展和技术应用。会议内容涵盖了药物杂质研究的新思路、新技术,以及针对基因毒性杂质、元素杂质等特定杂质的分析方法。与会专家分享了他们在药物杂质研究领域的丰富经验和研究成果,并通过实际案例分析展示了新技术和新方法在药物杂质检测中的应用价值。点击看精彩报告回放》》中国医学科学院医药生物技术研究所副研究员山广志针对化学药物杂质研究新思路和新技术,指出对于药物中的杂质研究包括对已知杂质、特定杂质、潜在杂质和毒性杂质研究四种类型。从化学药物杂质研究方法趋势上,需要更全更快的技术对化药杂质进行检测。报告中也有对水苏糖有关物质HPLC-CAD测定、UHPLC-紫杉醇有关物质检测的实例介绍,还有对二维色谱定量基因毒杂质和超临界色谱分析手性异构体实际应用案例的方法开发和优化,展现了新技术新方法助力精准化学药物杂质检测的思路。岛津企业管理(中国)有限公司高级应用工程师孟海涛从液质联用技术在药物杂质分析中应用进行了报告,包括普通杂质定性分析的方法及案例、基因毒性杂质测定的相关方案两个方面。在报告中,展示了Trap-free 2D-LC/MS杂质分析系统、多/单中心捕集环二维杂质鉴定系统和二维捕集柱杂质鉴定系统等的适用范围以及应用案例。对基因遗传毒性杂质中磺酸酯类、亚硝胺类等常见种类检测进行了介绍,并对雷尼替丁、二甲双胍中NDMA的检测进行了实际案例的介绍。最终展示了岛津在药物杂质分析上有着丰富的应用方案以及仪器技术支持。中山大学药学院副教授徐新军依据其团队对罗达那非原料药的研究进行了报告,报告介绍了其团队研究发现罗达那非是一种PDE5抑制剂,可选择性的抑制PDE5,而对其他的亚型磷酸二酯酶没有或具有微弱的抑制作用,主要用于治疗男性勃起功能障碍。同时对罗达那非原料药进行了残留溶剂分析、有关物质分析、杂质谱分析、杂质结构鉴定、含量分析等。最终依据研究结果,制定了罗达那非原料药质量标准草案,建立和验证了罗达那非原料药含量测定和有关物质检查HPLC方法,以及残留溶剂GC检查方法,还初步建立了罗达那非原料药的杂质谱。在研究过程中所展现出的晶型差异、校正因子测定和杂质谱等方面的不足是后续指导该研究推进的方向。安捷伦科技(中国)有限公司原子光谱应用工程师曾梦根据多年原子光谱检测仪器的经验,对ICP-OES/ICP-MS 在化学药物元素杂质分析中的应用研究进行了报告。曾老师提出在制药行业分析杂质元素时面临的挑战包括有如何快速建立仪器分析方法?高盐样品如何兼顾检出限和稳定性?有机溶剂直接进样?前处理过程如何保证元素的稳定性?元素质谱干扰如何消除/数据准确性如何保证?针对以上无机元素在分析中面临的挑战,展现出ICP-MS在制药行业分析无机元素时所具有的解决方案优势。另外还介绍了ICP-OES在制药行业中针对检测难点,该技术具有其Intelli Quant半定量技术、全谱直读且分析时间最优化、软件的全流程实时监测等优势,能更好的应用于药物杂质元素的检测中。广东省科学院测试分析研究所(中国广州分析测试中心)博士周熙通过高分辨技术、药物杂质、有关物质定性分析和基因毒性杂质定量分析四个部分对高分辨质谱技术在药物杂质分析中的应用进行了报告。报告中详细介绍了杂质研究的重要意义、化学结构鉴定难点,并通过实际案例进行了辅证,最终表明利用高分辨质谱技术是可以实现有关物质的快速定性。同时结合制备液相分离,可以解决液相与质谱流动相不兼容的问题。报告中也体现出高分辨质谱已经越来越广泛的应用于基因毒性杂质的定量分析。本次会议为广大药学工作者和检测人员提提供了药物杂质研究的最新进展和技术应用,有助于推动化学药物安全和质量控制水平的研究进程。会议内容丰富,案例靠实,是一次宝贵的学习和交流机会。相信在新技术和新方法的推动下,化学药物杂质研究能够朝着更全更快的检测趋势发展,为保障公众用药安全做出更大的贡献。
  • 研究称“毒奶粉”的毒性与肠道细菌有关
    原标题:“毒奶粉”的毒性与肠道细菌有关   上海交通大学和美国北卡来罗纳大学格林波洛分校的研究人员对近年来毒奶粉事件中的主角——“三聚氰胺”在哺乳动物体内的毒性进行了系统研究,成果近日发表于《科学》杂志的子刊《科学—转化医学》。美国北卡罗来纳大学的贾伟(Wei Jia)教授(贾伟科学网博客)和上海交通大学的赵爱华(Aihua Zhao)副教授为这篇论文的共同通讯作者。   三聚氰胺是一种用于制造塑料、涂料、化肥等化工产品的工业原料。由于其含氮量高达66.6%,近年来该化合物被一些不法厂家添加进牛奶用以增加食品的蛋白质测试含量。2007年美国发生猫、狗等动物中毒死亡的事件,经查这些中毒的动物曾经食用了被添加三聚氰胺的宠物食品。在2008年中国“毒奶粉”事件中,中国多个省份数万名婴儿因食用被添加了三聚氰胺的奶粉后出现肾结石和肾功能衰竭。   由于三聚氰胺被认为在人体中不吸收,难以单独形成结石,迄今其临床毒性机制一直不甚明了。这项研究工作首次发现了2008年中国毒奶粉中的三聚氰胺引发的婴幼儿肾衰竭是和肠道细菌的代谢有着密切关系。一些肠道细菌,尤其是Klebisella属的细菌,具有代谢含氮化合物的活性,能够在肠道中代谢三聚氰胺,转化为三聚氰酸并逐步将其降解。三聚氰胺和三聚氰酸本身毒性极低,但极易互相结合形成晶体,这两类物质进入血液循环后,在肾小管中与尿酸结合形成大分子复合物类的结石,堵塞肾小管,导致肾毒性。   研究人员在前期研究中发现,由三聚氰胺单一化合物导致的肾毒性大鼠模型的肾脏中有结石形成,同时肠道细菌的代谢产物也发生显著的变化。因此,他们提出了三聚氰胺的毒性和肠道细菌代谢存在相关性的假说,并在实验中发现三聚氰胺的肾毒性在大鼠肠道细菌通过广谱抗生素抑制时出现显著的下降。体外实验进一步证实三聚氰胺可以被实验动物的粪便中培养出的肠道细菌所降解,这些肠道菌利用三聚氰胺作为氮源进行生物降解,通过连续脱氨基作用逐步形成三聚氰酸二酰胺、三聚氰酸一酰胺、三聚氰酸。研究者在种类繁多的肠道细菌中发现Klebsiella属的细菌并验证了其对三聚氰胺转化能力,他们将Klebsiella属细菌定植于大鼠的肠道中,发现三聚氰胺的毒性显著增加,肾脏中的结石数目增多。由此明确肠道细菌尤其是Klebsiella属能转化三聚氰胺生成三聚氰酸,进而产生结晶而具有肾毒性。研究者最后通过肾脏中三聚氰胺、三聚氰酸、尿酸的比例,以及体外重结晶实验,推断出三聚氰胺在肾脏中形成结石的动态过程,即三聚氰胺和三聚氰酸首先结合形成晶核,继而形成三聚氰胺-三聚氰酸-尿酸的共结晶,结石堵塞肾小管导致肾脏中毒。   人们在日常生活中对饮食、药物的代谢能力和生物反应存在着显著的个体差异,而这些代谢和毒性反应上的个体差异很大程度上可能来自于肠道微生物的差异。相关研究发现,不到1%的婴幼儿在食用含三聚氰胺奶粉后出现三聚氰胺所致的肾毒性和泌尿系统疾病,这样的结果提示这一部分婴幼儿之所以发生中毒现象,是由于他们的肠道含有较高丰度的能够代谢三聚氰胺的细菌如Klebsiella菌的缘故。
  • 现代水务:加强水质综合毒性监控 防范突发环境风险
    p    strong 仪器信息网讯 /strong 近年来,突发性污染事件导致水质突变的现象时有发生,水质恶化对水生态系统造成危害,直接影响的就是用水安全。常规的水质监测给出的结果一般是各项检测指标的浓度,比如GB 5749-2006 《生活饮用水卫生标准》中列出的106项检测指标,但是水体中可能存在的有毒物质远不止这106种。 /p p   所以为了直观地反映水污染状况,可以直接利用水中的活体生物来判定有毒物质的质量浓度。在单项毒性指标明确之前,用一种综合的毒性效应指标快速报告毒性的存在及大小,为下一步准确确定毒性物质提供指导,这就是 strong 水质综合毒性检测 /strong 。 /p p   2020年初,新冠疫情爆发,生态环境部于1月31日印发了《应对新型冠状病毒感染肺炎疫情应急监测方案》,其中将生物毒性明确列为饮用水水源地疫情防控特征指标之一。之后生态环境部回应新增的生物毒性监测参照《水质急性毒性的测定 发光细菌法》(GB/T 15441-1996)执行。为了帮助相关用户学习、了解水质毒性分析方法与检测技术的最新进展等内容,仪器信息网特别策划了 strong “ a href=" https://www.instrument.com.cn/zt/watertoxicity" target=" _blank" 水质检测之综合毒性 /a ” /strong 专题,并邀请到莫尔顿水务技术(上海)有限公司中国区总经理李丽年就相关问题发表她的看法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/0c0b6b7d-a119-4014-b860-78c4f253cf7f.jpg" title=" 李丽年 中国区总经理.jpg" alt=" 李丽年 中国区总经理.jpg" / /p p style=" text-align: center "   李丽年:莫尔顿水务技术(上海)有限公司中国区总经理 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:首先想请您介绍一下我国现行的水质检测中综合毒性检测主要应用在哪些领域?相关的标准和方法有哪些? /strong /span /p p   span style=" color: rgb(255, 0, 0) "   strong 李丽年: /strong /span 近年来,随着我国工业化和城市化的加快,城市生活污水和工业废水的排放总量和所含各种污染物的成分也在迅速增加,有些排放废水虽然常规理化指标达标,但实际上仍可能含有对人体健康具有危害的污染物,这些污染物在水环境中的长期积累,使得水体综合污染和复合毒性的现象越来越突出。 /p p   因此,加强水质综合毒性监控和生态健康风险评价很有必要,这将对保证水体的生态环境安全具有重要的意义,我国在《城镇污水处理厂污染物排放标准》(GB 18918—2002)修订后的征求意见稿中新增了综合毒性指标,以防范环境风险。 /p p   在综合毒性的测定上,我国现行的主要标准有:1.《水质 急性毒性的测定 发光细菌法》(GB/T 15441-1995) 2.《水质 物质对蚤类(大型蚤)急性毒性测定方法》(GB/T 13266-91) 3.《工业废水的试验方法 鱼类急性毒性试验》(GB/T 21814-2008) 4.《水质 物质对淡水鱼(斑马鱼)急性毒性测定方法》(GB/T 13267-91) 5.《水质 急性毒性的测定 斑马鱼卵法》(HJ 1069-2019)。 /p p   在以上众多的生物综合毒性监测方法中,发光细菌法以其快速、简便、灵敏的特点,目前已经成为最为广泛的污水和沉积物综合毒性监测方法之一,在水质、环境评价以及生态规划中得到了广泛的应用。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:在我国现行的水质综合毒性相关检测方法中,您认为技术难点主要在哪?还有哪些方面需要进行改进和完善? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽年 /strong /span :以发光细菌法为例,国内现行的标准方法《水质急性毒性的测定 发光细菌法》(GB/T 15441-1995)是于1995年8月实施的,该方法在实际应用中存在过程繁杂、菌种单一、数据处理简单、重现性准确度不高、作为参照物的氯化汞为剧毒物质,危害人体健康和生态环境等不足,已越来越不能适应新形势下环境管理的需要。为此,国家环境保护部也于2009年下达了关于修订该方法的项目计划。 /p p   在技术改进方面,国内学者已经有研究结果显示,在借鉴国际标准化组织ISO 11348-3-2007 方法的基础上,通过对实验条件和操作步骤的优化改良,并在数据处理过程中引入原始发光光强,可以进一步减少菌种发光稳定性差异和手工加样带来的误差。另外,相对于剧毒的氯化汞,使用锌离子作为参照毒物具有毒性中等、结果稳定、价格便宜等诸多优点,可以方便地表征不同化学物质的毒性,而且可以直观地表征复杂环境样品的毒性,从而为污水排放控制和处理工艺优化提供理论依据。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:2020年6月30日施行的《HJ 1069-2019 水质 急性毒性的测定 斑马鱼卵法》,替代了《GB/T 13267-1991水质物质对淡水鱼(斑马鱼)急性毒性测定方法》。作为一项时隔多年推出的新标准,您认为它的施行将会给仪器和市场带来哪些变化? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽 /strong /span span style=" color: rgb(255, 0, 0) " strong 年 /strong /span :《HJ 1069-2019 水质 急性毒性的测定 斑马鱼卵法》标准的制订以 ISO 15088-2007“Water quality-Determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio)”方法为基础,参照借鉴OECD 236“Fish Embryo Acute Toxicity (FET) Test”指南,这一新标准的实施表明了我国环境管理对毒理学指标需求的提升,同时反映了对高通量测试和高敏感性的需求。 /p p   随着我国对综合毒性测定方法的不断开发和修订,毒性分析仪器的市场将日趋规范,终端用户对产品的技术要求势必会不断提升。我认为对仪器厂商来说,只有在技术上不断创新,并拥有高灵敏度、精确度、重现性和可靠性的仪器产品,才能在市场上保持高竞争力。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:贵公司在水质综合毒性检测方面有哪些仪器产品或产品组合?可以提供哪些解决方案?相比于同类产品,贵公司的产品主要有哪些优势? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽年 /strong /span :现代水务(Modern Water)公司起源于1960年代初,在发光细菌毒性测试行业具有丰富的经验,自从1978年推出功能完备的 Microtox 生物发光光度计以后,使用发光细菌作为指示生物检测毒性逐渐发展成为一种经济、快速的急性毒性测试体系,得到了广泛的应用。人们也将发光细菌毒性测试称为 Microtox 测试,并誉为毒性测试的“黄金标准”。 /p p   随着技术的发展,公司将发光细菌法和电子、光电技术相结合,逐步发展为实验室台式仪器、便携式现场应急和在线监测系统的综合毒性测试方案提供者。 /p p   Microtox& reg 生物毒性检测技术的特性包括: /p p   l 使用发光细菌 - 费氏弧菌(Vibrio Fischeri),符合 ISO 11348-3 标准 /p p   l 对超过2700种化学污染物质敏感 /p p   l 测定水中未知污染物质的综合毒性(多种成分的协同效应) /p p   l 样品准备完毕后最短5分钟内获得结果 /p p   Microtox& reg LX 是一款适用于实验室用户的台式分析仪,仪器自带温控装置和自检校准功能,内置多种急性毒性分析方法,如ISO,DIN,ASTM等标准。仪器还创新性地加入了样品自动色度校正功能,在测试有色度的样品(如高毒性的印染、制药废水等)时通过专用算法自动在结果中对样品色度进行补偿校正,用户无需在分析前对样品进行额外预处理,大幅缩短了分析时间并提升了检测效率。除此之外,仪器在设计上对样品存放区和检测区做了更彻底的分隔,即使发生意外漏液也可以保护仪器的电气部分免受损害。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C312900.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/d6099885-0570-4e68-9ae4-9e4b62e1b389.jpg" title=" Microtox LX.png" alt=" Microtox LX.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C312900.htm" target=" _blank" style=" font-size: 14px text-decoration: underline " i strong span style=" font-size: 14px " Microtox& reg LX /span /strong /i /a /p p   Microtox& reg FX是一款应用 Microtox 测试技术的便携式急性毒性分析仪,具有操作简便,检测速度快,灵敏度高等特点。作为一款便携式仪器,Microtox& reg FX主机重量仅为1kg,电池续航长达8-10小时,非常适合现场应急和中小型化验室使用。另外,仪器还内置了ATP(三磷酸腺苷)测试模式,配合专用试剂可以在测试样品急性毒性之外对微生物含量进行快速检测。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230440.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59ebc3b0-571f-4ce8-abfe-18022d182ddc.jpg" title=" Microtox FX.png" alt=" Microtox FX.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230440.htm" target=" _self" style=" font-size: 14px text-decoration: underline " i strong span style=" font-size: 14px " Microtox& reg FX /span /strong /i /a /p p   Microtox& reg CTM是一款在线生物毒性监测仪,具有实时连续监测功能,系统每两秒读取一次数据并即时指示水体的污染程度,连续运行时间长达四周,期间无需任何人工干预,操作方法简单易学,维护费用低且简便易携,适用于饮用水水源地和水厂进、出水的在线监测。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230475.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f48515cc-51f8-492b-b36b-2083a350a240.jpg" title=" Microtox CTM.jpg" alt=" Microtox CTM.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103577/C230475.htm" target=" _blank" style=" font-size: 14px text-decoration: underline " i strong span style=" font-size: 14px " Microtox& reg CTM /span /strong /i /a /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您认为水质综合毒性检测在未来会有什么样的发展趋势?将会成为哪些行业重点关注的指标? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 李丽年 /strong /span :目前,我国污水排放的监督和管理主要采用物理化学监测方法,然而这些理化指标并不能反映废水排放后对生物的综合毒性。考虑到在排放标准中应体现防范环境风险的理念,保护人体健康和生态环境,综合毒性指标的应用近些年来得到人们越来越多的关注。像美国、加拿大、德国等发达国家早在上世纪七八十年代就已经开始实施废水综合毒性控制,排水综合毒性评价技术在这些国家的环境管理、改善环境水质的过程中起到了重要作用。 /p p   我国是在2008年制药工业系列排放标准(GB 21903~GB 21908)中首次引入综合毒性指标,旨在与理化检测手段进行优势互补,为环境管理以及相关决策提供全面、快捷、可靠的依据。目前,有望通过完善一系列生物毒性测定方法,配套相关排放标准(如《城镇污水处理厂污染物排放标准》),达到进一步加强我国水生态系统保护的目的,所以我认为中国的环境管理对毒理学指标需求的提升是未来发展的必然趋势。 /p p   综合毒性指标适用于水质比较复杂、难以提出特定污染物排放控制要求的场合。许多发达国家,比如德国已经在废水性质比较复杂的有机化工、钢铁、印染等行业的水污染物排放标准中引入了综合毒性指标,对于水质最为复杂的化学工业等则采用多种综合毒性指标同时控制的方式,确保有效控制环境风险。在我看来,随着国内相关标准的进一步完善,未来在上述行业以及农药、电镀等特定行业中,综合毒性指标必将受到更多关注,在消减污染物排放、保障人体健康、保护生态环境中发挥重要作用。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 小结:随着近代工业的发展,有毒化学物质的使用日益增多,水污染事故发生的频率也随之上升。生物综合毒性检测在应急检测中发挥了举足轻重的作用,今年新冠疫情的爆发也再一次地验证了综合毒性检测的必要性。目前国内的相关标准正在进一步完善中,仪器厂商们也在积极的改进产品的功能以满足将来现场的需求,相信在不远的未来,这项检测将会在各行业受到更多的关注。 /span /p
  • 水质综合毒性测定仪-一款便携式发光菌毒性检测仪器2024实时更新
    型号推荐:水质综合毒性测定仪-一款便携式发光菌毒性检测仪器2024实时更新,水质综合毒性测定仪,作为现代水质监测技术的重要组成部分,以其独特的检测方式和广泛的应用领域,为水质分析提供了强有力的支持。本文将从四个方面阐述其对水质分析的帮助。 一、快速准确检测多种污染物 水质综合毒性测定仪能够快速、准确地检测水样中的多种污染物,包括重金属、有机污染物等。通过发光细菌法的应用,该仪器能够实时反映水样中的毒性水平,为水质分析提供及时、可靠的数据支持。 二、评估水质对水生生物的影响 除了检测污染物外,水质综合毒性测定仪还能评估水质对水生生物的影响。通过模拟水生生物在自然环境中的反应,该仪器能够预测水质变化对水生生物种群结构和生态平衡的影响,为水质管理和生态保护提供科学依据。 三、辅助决策与预警 水质综合毒性测定仪的检测结果能够为管理部门提供决策支持。当水质出现异常时,该仪器能够迅速发出预警信号,提醒相关部门及时采取措施,防止水质进一步恶化。同时,通过长期监测和数据分析,该仪器还能为水质改善方案的制定提供重要参考。 四、促进水资源可持续利用 水质综合毒性测定仪的应用有助于实现水资源的可持续利用。通过科学评估水质状况,该仪器能够指导水资源的合理开发和利用,减少污染排放,保护水资源生态环境。同时,它还能为公众提供水质信息,提高公众对水资源保护的意识。 五、仪器特点 1、符合国家标准(GB/T154411995)及国际标准(ISO11348-3); 2、对超过近3000种以上毒性化合物敏感的生物早期预警系统; 3、样品制备后15分钟内得到结果,快速、可靠、可再现; 4、检测结果和其他传统毒性分析方法高度相关,可应用于应急水体污染检测,帮助用户实时监控排水是否符合当地法规和排放标准; 5、Android智能操作系统,更智能,更具人性化; 6、具有自主研发的生物毒性暗室自动升降检测装置,解决行业内开盖测试受强光影响的难题;同样的菌量,用我们仪器可以节省5倍的耗材成本; 7、便携性PVC工程箱设计,可外出携带现场检测; 8、7英寸超大显示触控屏幕,省去按键繁琐操作,更方便; 9、使用硅光电倍增管,大幅提升检测灵敏度; 10、具有RJ45、WIFI、4G和蓝牙连接传输功能,可实现无线传输至相关监控、监管平台,实现数据的实时性,更符合监管部门的场景需求; 11、仪器内置6000mAH锂电池组,在外部断电或无供电情况下,可支撑连续工作8个小时以上; 12、一条曲线可做20个曲线浓度点,可随意选择曲线点是否参与整条曲线计算,无需手动记录,保证曲线值更精准;(曲线浓度点可定制增加) 综上所述,水质综合毒性测定仪在水质分析中发挥着重要作用。它不仅能够快速准确检测多种污染物,评估水质对水生生物的影响,还能为管理部门提供决策支持和预警服务,促进水资源的可持续利用。随着技术的不断进步和应用领域的不断拓展,相信水质综合毒性测定仪将在未来发挥更加重要的作用。
  • 产品应用:Microtox 生物毒性测试技术在页岩气开采过程中的应用
    Microtox 生物毒性测试技术在页岩气开采过程中的应用 ——香港理工大学、哈尔滨工业大学、伦敦帝国理工学院与韩国江原大学团队基于Microtox对页岩气开采过程中周边的土壤生态系统进行了毒性评价 Modern Water Microtox 生物毒性检测技术具有快速、简单、廉价等优点,已成为多个国家认可的官方标准,并在废水出水毒性检测、钻井液检测、船舱水检测领域也有着广泛的应用。水力压裂技术促进了页岩气开采的发展,而由于含盐量高,金属/准金属(As,Se,Fe和Sr)以及有机添加剂等原因,无意溢出的回流水可能会对周围环境造成危害。本研究对东北地区4个代表性页岩气开采区域,采用Microtox生物测定法(费氏弧菌)和酶活性测试,对回流水溶液对土壤生态系统的影响进行评估。结果显示,在回流溶液影响的老化土壤中观察到毒性的轻微增加(即,较低的EC20值)(Table 3)。已知砷(V)阻碍ATP的产生并因此抑制费氏弧菌生物发光发射(Rubinos等,2014)。另一方面,每种土壤中回流溶液的EC20值几乎相同,这可能与第14天和第90天回流溶液中的土壤-金属相互作用有关,因为它们可能会限制费氏弧菌对金属的生物利用度(Tsiridis等,2006 Rubinos等,2014)。在BY土壤中检测到了光辐射的刺激,这可能是由于土壤基质中的有机化合物有利于费氏弧菌的生物发光过程(Tang et al,2012)。结果表明,受影响的土壤对Vibrio fischeri的毒性仅在老化后呈现适度增加,而脱氢酶和磷酸单酯酶活性随着回流水溶液离子强度的增加而受到显着抑制。相反,回流溶液中的聚丙烯酰胺导致更高的脱氢酶活性,即土壤酶活性对回流溶液的组成非常敏感。Microtox 技术也广泛应用于废水处理厂的出水毒性检测。与使用其他生物(网纹蚤、仔鱼)的系统相比,使用费氏弧菌的 Microtox 技术检测时间更短,结果精确度和灵敏性更高,成本更低,是一种理想的废水整体毒性测试方案。Microtox® Model 500(M500) 分析仪是一款用于实验室的毒性测试仪,带有温控和自动校准功能,用于急性毒性的分析。Microtox® M500 采用生物发光检测技术,可对事故或人为导致的饮用水及废水污染紧急事件进行快速毒性检测。目前已有超过2400 台Microtox® M500行销世界,已确定了Microtox® M500作为快速毒性检测分析的行业标准的地位。Microtox FX 是一款简单快捷且灵敏度极高的便携式水质检测仪,专门为筛查急性毒性及三磷酸腺苷(ATP)而设计。Microtox FX 使用生物荧光技术,对饮用水污染及化学品进入水体等造成的紧急事件进行快速毒性检测。Microtox FX 是使用 Microtox® 技术进行毒性测定的便携仪器。
  • 新药典观察 | 9306遗传毒性杂质控制指导原则解读
    截图来源:2020版《中国药典》 2020版《中国药典》已正式发布,在四部中新增“9306遗传毒性杂质控制指导原则”(以下简称9306指导原则),以适应当前国外内法规(如ICH M7)和化学药品遗传毒性杂质控制的实际需要。 概述遗传毒性杂质(genotoxic impurities, GTIs),又称基因毒性杂质。9306指导原则主要关注致突变机制的遗传毒性杂质。致突变性杂质(mutagenic impurities)指在较低水平也可直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。遗传毒性杂质和致突变性杂质的关系 9306指导原则包括危害评估方法、可接受摄入量(acceptable intake,AI)计算方法和限值制定方法。 9306指导原则不适用于:生物制品、中药和天然产物、已上市使用的辅料和包材等,但可参考其风险评估方式。 危害评估致突变性杂质的危害评估方法通过监管机构要求、数据库、文献、定量构效关系评估和遗传毒性试验等评估方法,参考ICH M7等相关分类方法,根据致突变和致癌风险危害程度将杂质分为5类。 遗传毒性杂质分类、控制方式和限度依据 可接受摄入量计算对于可接受摄入量的计算方法,有以下几种情况:1、基于化合物特异性风险评估的可接受摄入量适用于已知可接受摄入量或每日允许暴露量(permitted daily exposure,PDE),这几年热点关注的N-二甲基亚硝胺(NDMA),其AI值约为96 ng/d。2、基于毒理学关注阈值的可接受摄入量对于无毒理学研究数据的杂质,可根据毒理学关注阈值(threshold of toxicological concern,TTC)计算可接受摄入量,TTC为1.5μg/d。3、与给药周期相关的和多个致突变杂质的可接受摄入量。 杂质的可接受摄入量(μg/d)限值制定有了上述过程得到的可接受摄入量,就可根据药物的每日最大用量计算杂质限度,公式如下:在药品生产和药品标准提高及上市药品再评估过程中发现潜在遗传毒性杂质后,根据危害评估方法将杂质进行分类,然后计算杂质的可接受摄入量,结合生产工艺、检测方法、临床使用情况等制定合适的限值,也可采用公认的限值。 岛津 解决方案 岛津为药检机构、制药企业、研发机构、CRO/CDMO等提供完善的遗传毒性杂质检测方案,不限于沙坦类药物、替丁类药物、二甲双胍、磺酸盐类药物等。 遗传毒性杂质样本下载
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 蓄能|2020版药典系列-当新版药典遇上基因毒性杂质
    药品中的杂质被定义为无任何疗效、影响药物纯度且可能引起副作用的物质。对药物杂质的分析与控制是国内外药品生产企业共同关注的话题。 2020版药典二部“化学药”在安全性方面要求:进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;四部通则增修订内容(第四批)中新增《遗传毒性杂质控制指导原则审核稿》。 近年来,一系列基因毒性杂质风波事件加之国内外法规的严格规定,此类杂质的风险评估和分析检测到了紧迫的位置。基因毒性杂质分析面临的挑战是什么呢? 01 样品基质复杂,需要合适的前处理方法进行分离,纯化,富集;02 杂质结构多样和差异大,含量很低,选择性要求高,需要多种分析手段和高灵敏度的分析方法。那么如何应对新版药典及分析挑战?针对缬沙坦及雷尼替丁事件的罪魁祸首--N-亚硝基二甲胺(NDMA),小编给您推荐以下几种方法。一 Q Exactive™ 高分辨质谱方法利用Q Exactive静电场轨道阱高分辨质谱保持高分辨的情况下不损失定量灵敏度的特点,运用PRM(平行反应监测)及SIM(选择离子监测)同时扫描来实现定量;再根据Q Exactive能够实现快速正负切换的特点,方法采用正负切换进行扫描,从而达到一针同时分析6个基因毒性杂质。从混标样品特征图谱可以看出:NDEA标准溶液2ng/mL连续进样7针,峰面积RSD值为1.51%,方法稳定性极好。此外,Q Exactive提供精确质量数可以有效的避免假阳性或者假阴性,特别是检定结果在检出限附近时。并且高分辨质谱具有未知物定性能力,可以一机多用,满足未来的拓展应用需求。 二 TSQ Fortis LC-MS/MS方法该方法稳定灵敏,在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,从下图中可以看出建立的方法灵敏、快速和稳定,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。混标样品特征图谱三ISQ7000气质联用仪+TriPlus500 方法采用ISQ 7000气质联用仪,结合新一代TriPlus 500顶空自动进样器方法。连续6针进样0.050μg/mL标准样品的结果,NDMA和NDEA的RSD分别为2.38%和2.14%;远优于一般方法学要求的5%的要求。0.050μg/mL亚硝胺标准溶液连续进样色谱图叠加四 TSQ 9000气质联用仪+液体直接进样本方案采用赛默飞AEI源配置的TSQ 9000气质联用仪+液体直接进样法,建立了一种选择性强,灵敏度高的检测十二种亚硝胺的方法。验证结果表明该方法线性良好,重复性好,灵敏度高,在5 ng/mL浓度下,各亚硝胺类化合物的信噪比均远大于10,连续6针进样十二种亚硝胺标准样品的RSD均小于5%,满足FDA的要求,可将其应用于制药领域中痕量亚硝胺的控制。 T-SRM模式下十二种亚硝胺以及两种内标的重叠谱图是否意犹未尽?接下来,赛默飞将继续开展“2020版药典系列”系列讨论,与您一起蓄能,迎接史上“最严”药典标准,助您从容应对药典变化。
  • 2020版《中国药典》│遗传毒性杂质检测,您准备好了吗?
    ? 导 读2020版《中国药典》已于今年6月正式发布,并将于12月30日起开始实施。2020版与此前版本的药典相比,有多处重要的增删与修改,四部新增《9306 遗传毒性杂质控制指导原则》为其中之一。该指导原则的出现,为遗传毒性杂质的控制提供了理论依据。据此,药典二部又在十种药物项下规定了对磺酸烷基酯类和N-亚硝胺类遗传毒性杂质的监控要求。如何建立遗传毒性杂质的监控能力成为一些制药企业与检测机构必须完成的挑战,需尽早做好相应准备。 什么是遗传毒性杂质,新版药典为什么要加入这些内容,具体都有哪些规定呢?让小编为你一一解读。 新版药典遗传毒性杂质内容的解读 根据新版药典的定义,遗传毒性杂质(genotoxic impurities)是指能引起遗传毒性的杂质,包括致突变性杂质和其他类型的无致突变性杂质。其主要来源于原料药或制剂的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。 新版药典之所以要增加遗传毒性杂质的内容是为了加强国际标准协调,参考了人用药品注册技术要求国际协调会(ICH)相关指导原则。 药典四部新增《9306 遗传毒性杂质控制指导原则》,用于指导药物遗传毒性杂质的危害评估、分类和限制规定,以控制药物中遗传毒性杂质潜在的致癌风险,为药品标准制修订,上市药品安全性再评估提供参考。 药典二部有10种药物明确指出在必要时,应采用适宜的分析方法对产品进行分析,以确认相关遗传毒性杂质的含量符合我国药品监管部门相关指导原则或ICH M7指导原则的要求。这10种药物关于遗传毒性杂质的规定列表如下: 为了更好的推进磺酸烷基酯及N-亚硝胺的检测方法,岛津根据相关标准开发了多种检测方案。 岛津解决方案之磺酸烷基酯篇 磺酸烷基酯磺酸烷基酯一般是在磺酸盐类药物生产过程中产生的,2007年6月国际制药巨头罗氏制药公司在欧盟国家销售的一种抗HIV药物甲磺酸奈非那韦某些批次检出了甲磺酸乙酯,该事件导致此种药物在欧盟市场一度停售,直到罗氏修正了工艺并增加对甲磺酸乙酯的控制,此后多个国家及国际组织均加强了对磺酸烷基酯的监控。 磺酸烷基酯结构,R1为甲基、苯基或甲苯基,R2为烷基 磺酸烷基酯的分类不同的磺酸盐药物中需要检测的磺酸烷基酯的种类是不同的,下表罗列了各种磺酸盐原料药需要检测的磺酸烷基酯的种类。方案1 顶空+色相色谱质谱岛津HS-20+ GC-MS分析系统 岛津顶空自动进样器特点主要有:• 均一稳定的恒温控制技术,卓越的重现性• 加热炉可以位重叠加热,提高分析效率• 混合振荡功能,可使样品快速达到平衡,缩短分析时间 各磺酸烷基酯衍生物SIM色谱图 方法原理:在顶空条件下使用碘化钠将磺酸烷基酯衍生为的碘代烷烃,然后使用气质检测。方法特点:前处理简单,对仪器污染小,但不能同时检测不同类的磺酸烷基酯。 方案2 气相色谱质谱岛津GC-MS分析系统 岛津气质特点主要有:• 高灵敏度抗污染型离子源,良好的稳定性• 强劲大容量真空系统,大幅度缩短质谱开机后的稳定(抽真空)时间• OD Lens双偏转透镜,聚焦目标离子,减低噪音 八种磺酸酯标准品TIC色谱图 方法原理:药品溶于乙酸乙酯后有机滤膜过滤,直接采用气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,基质复杂样品检测效果可能欠佳。 方案3 三重四极杆气相色谱质谱岛津GCMSMS分析系统 GCMSMS NX系列气质还具有以下特点:• ClickTek技术仪器维护更方便• 新一代AFC全惰性流路,提供更高的检测精度• 智能钟、Smart EI/CI 复合源提高实验效率 八种磺酸酯标准品MRM色谱图 方法原理:药品溶于乙酸乙酯,,有机滤膜过滤后使用三重四极杆气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,三重四极杆气相色谱质谱抗干扰能力强可用于复杂基质样品的检测 岛津解决方案之N-亚硝胺篇 N-亚硝胺N-亚硝胺类化合物是一类强致癌有机化合物,它由前体物质硝酸盐、亚硝酸盐和胺类通过化学或生物学途径合成。典型代表化合物有N,N-二甲基亚硝胺(NDMA)、N,N-二乙基亚硝胺(NDEA)。2018年被爆出沙坦类药物中含有遗传毒性杂质NDMA,尤其是缬沙坦和氯沙坦尤为严重。 N-亚硝胺化合物结构 方案1 液相色谱最高130Mpa的高耐压,完美应对各种分析• 高通量自动进样器,实现样品的连续分析• 可配备流动相精灵,诊断精灵以及修复精灵• 最新设计的三维中文色谱软件,符合GMP标准 NDMA和NDEA 均在10min以内出峰,分离度良好,5 ng/mL标准品溶液灵敏度轻松满足ANSM French OMSL法规要求。 方案2 三重四极杆气相色谱质谱下图为6种N-亚硝胺定量限MRM图,峰型完美。应对欧洲药典质量控制要求so easy。 方案3 液相色谱质谱 • UF-Swiching技术:真正意义上实现了正、负离子同时采集;• UF-Scaning技术:扫描速度可达30000u/sec;• UF- Sweeper Ⅲ技术:离子碰撞过程的超低串扰;• UF- Senstivity技术:三重脱溶剂系统,实现超高灵敏度 轻松再现FDA和EDQM法规中规定的NDMA和NDEA检测方法,并使用LabSolutions软件实现了内标法和外标法同时定量。 5.0 ng/mL标准样品MRM色谱图 岛津自1875年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不仅视自己为仪器供应商,而且努力向各个行业的用户分享岛津丰富的专业资源和强大的应用支持。为应对制药行业相关用户对遗传毒性杂质的检测需求,岛津公司开发了基于LC、GCMS、HS-GCMS、GC-MS/MS以及LC-MS/MS等平台的相关药物中遗传毒性杂质的检测方法。岛津分析中心也精心推出《沙坦类药物中遗传毒性杂质检测方案》和《药品中遗传毒性杂质检测整体解决方案》,希望我们的工作对您有所帮助。
  • ​芳基重氮酯毒性大、易爆炸?看微通道反应器如何安全保驾护航
    个连续流光化学反应器在芳基重氮酯参与的环丙烷化反应中的应用研究背景芳基重氮酯在有机合成领域中应用广泛,特别是与杂环进行环丙烷化反应,能够得到重要的药物中间体(图1)。芳基重氮酯在学术研究中也具有很高的价值,但由于其毒性和爆炸性,在工业化中的应用受限。图1. 衍生自环丙烷化杂环的医药中间体和药物化学工艺的发展受安全性、工艺稳定性、成本和环境等因素驱动。连续流微通道反应器可以有效解决芳基重氮酯在工业应用中的安全性问题。它的明显优势包括,其更大的比表面积,能够提供更好的传质换热效果;持液体积大大减少,能够有效降低重氮化合物爆炸产生的危害性;在背压条件下可便捷的处理重氮类化合物参与的析气反应。可见光作为一种清洁、无污染的能源在成本、原子效率和可持续性等方面于连续流反应器相结合。可用于在环境条件下为化学反应提供动力。连续流光化学反应器可解决由于透射光与路径长度的对数相关性(比尔-兰伯特定律)导致光化学间歇反应的放大效应问题。近期,德国雷根斯堡大学Joshua P. Barham教授等人在前人研究的基础上,通过使用康宁连续流光化学反应器AFR-Lab Photo,对芳基重氮酯与杂环的反应进行了深入研究(图2,图3),该文章发表在Green Chemistry上。研究过程一.釜式工艺条件探讨与光催化确认作者首先在釜式条件的基础上对反应温度、停留时间、光强度、反应浓度、溶剂等条件进行了考察(表1)。研究中,作者发现碳酸二甲酯(DMC)能够有效提升反应的选择性和收率,且避免使用毒性大、易挥发、对环境有害等缺点的二氯乙烷(DCE)。此外,作者通过对照实验,验证了该反应只有在光催化条件下才能够发生反应。图2. A:釜式条件下进行的可见光参与的光化学环丙烷化;B:续流条件下不饱和碳进行的光化学环丙烷化;C:连续流条件下杂环的光化学环丙烷化图3. 光化学反应器实验装置的整体布局表1. 初始单因素筛选实验二. DoE工艺条件设计接着,作者利用DoE实验方法对光强、反应底物当量、反应停留时间等因素进行了考察,为了研究单因子的显著(α=0.05)效应以及多因子相互作用对反应的可能存在,采用了“两水平全因子”设计,设计包括了8个实验和几个验证误差的中心点。三. 工艺条件筛选得益于连续流反应器快速筛选的能力,仅用了两个下午的时间就完成了全部DoE条件的筛选(图4)。图4. 针对反应转化率、收率、选择性、产能的DoE条件筛选表2. DoE模型结果确认从DoE的结果分析可以看出,四种应变量都不受多因子相互作用的影响。转化率仅受两个因素的影响,总流速和光强。正如预期的那样,流速越大,停留时间越短,则转化率下降;而光强越强,则转化率更高。作者进而以反应选择性为最高优先级,选择最佳实验条件,进行了模型结果的确认(表2)。四. 最佳工艺条件下克级放大随后,作者在此实验基础上对反应液浓度进行了提高,对比了釜式和连续流条件下的最佳结果,并进行了克级的放大,产能由原来的0.61 g/h提升至1.34 g/h,运行了7.4 h获得了9.9 g的产物(图5),由图中可以明显看出,连续流与釜式相比,效率大幅度提高,由于连续流反应器持液体积更小,相比釜式而言安全风险更低。图5. 釜式反应与连续流反应的结果对比五. 底物拓展性研究最后,作者以该模板反应为基础对不同底物进行了反应适用性扩展,其对大部分底物均有良好的反应转化率和选择性。此连续流光化学催化方法每小时能成功地提供数百毫克的产物,作为高度官能团化的中间体,可以用于进一步的合成。总结研究者报告了一种光催化连续流方法,以杂化化合物和芳基重氮化合物为原料,高选择性、高转化率的制备环丙烷类化合物;重氮化合物的爆炸性及其在反应中氮气释放有关的危害性可以通过微通道模块的背压和较小的持液体积来安全控制;反应器系统的稳健性允许通过DoE快速筛选最优条件,并确定了对反应选择性和产率提高的关键因素;该反应适用各种杂环化合物和芳基重氮酯的反应,使用碳酸二甲酯作为一种无毒、可生物降解的绿色溶剂可以容易地将反应放大到克/小时的产能。参考文献:Green Chem., 2021,23, 6366-6372
  • 中粮等企业面粉添加增筋剂 分解物毒性超标90倍
    面粉"增筋剂"安全性调查 目前国内面粉业仍在使用增筋剂,专家称其毒性尚无检测标准,分解物具毒性,建议禁止使用 2月中旬,赛百味美国被曝光面包制品中含有一种名为偶氮甲酰胺(ADA)的工业发泡剂,引发媒体关注,该成分同样添加于鞋底当中。而就在不久之前,赛百味还被美国第一夫人米歇尔称赞为"每一项食物内容符合最高营养标准".赛百味中国声明称,中国市场食品中并不含有这一成分。之后星巴克中国承认,在华出售面包制品中含有偶氮甲酰胺成分,但表示这一食品添加剂符合中国食品添加剂使用标准。 偶氮甲酰胺是否有毒害?能否添加到食品中?我们目前平时食用的食品中是否含有这一成分?国家粮食局标准质量中心原高级工程师谢华民告诉记者,虽然"偶氮甲酰胺"的毒性目前无法精确测定,但偶氮类化学物质都具有一定的致癌性。国家虽定有安全剂量标准,但偶氮甲酰胺在使用中无法检测具体用量;此外,化学物质对人体健康的影响其实具有累积效应。国内多款面粉添加增筋剂 目前,偶氮甲酰胺作为面粉处理剂,允许被作为食品添加剂使用。国内多款面粉的配料表中,就标明含有这一成分。 国内最新修订版的《食品添加剂使用标准》里,其中标注"偶氮甲酰胺"的功能是面粉处理剂,允许作为食品添加剂在中国使用,使用范围是小麦粉,最大使用量为0.045g/kg. 资料显示,偶氮甲酰胺最初的用途是添加在塑料制品之中以增强其韧性。在致癌物质溴酸钾被禁止使用之后,作为其替代品添加到面粉之中。 在欧盟,偶氮甲酰胺因怀疑其对人体致癌而被禁止用于食品添加,"即使是儿童使用的塑料地垫里,法国等国也不允许生产商添加这一成分。而我们却可以随意添加到每天食用的主食里。"国家粮食局标准质量中心原高级工程师谢华民说。 在中粮集团的在线食品销售网站我买网上,记者看到,一款中粮面业出品的名为"香雪面粉"的配料表里,直接标明内含有偶氮甲酰胺成分。而在北京的一家超市内,一款维维集团出品的"维维面粉"里,偶氮甲酰胺也是添加剂配料之一。 记者在中粮我买网随机查询其在线出售的二十款面包粉中,配料表中标明含有这一成分的共有五款。在北京一家大型超市里,记者看到,货架上出售的十余款面粉中,标明含有偶氮甲酰胺成分的有三种,分别是名为古船金牌面包粉、中粮香雪面包粉以及中裕小麦粉。 在京东商城上,记者看到,一款面包粉的介绍中特别标明本产品不含偶氮甲酰胺,请消费者放心购买。 据记者不完全统计,淘宝上有约三十家网店销售偶氮甲酰胺这一添加剂,每千克价格在40-55元左右。一位来自河南郑州的淘宝商家表示,"偶氮甲酰胺主要用做面粉改良剂和面包口感的改良剂,可以提高面粉的筋度,目前使用得很广泛,很好用。全国各地很多面粉生产商都在使用。至于用量你们可以自己配置。但别超过国内标准就行。" 该商家同时表示,虽然有些企业不会在配料表标明含有偶氮甲酰胺,但并不意味着没有添加。
  • 有害毒性浸出物在环境保护中的重要地位
    转自:密理博中国博客 作者:郭一峰 当含有有害物质的固体废物在堆放或处置过程中,遇水浸沥,其中的有害物质就会迁移转化,污染环境。浸出实验是对这一自然过程的野外或实验室模拟。在实验中,当浸出的有害物质的量值超过相关法规所提出的阈值时,则该废物就被认为具有浸出毒性。固体废物浸出毒性鉴别是危险废物的判定依据,也是固体废物管理、处置技术开发的重要技术环节。 毒性特征沥滤方法(TCLP)(US EPA方法1311)是美国政府为了执行资源保护和再生法(RCRA)对危险废物和固体废物的管理,该方法使用浸提剂调节固相废物的酸碱度进行翻动提取实验。TCLP方法研发的目的是确定液体、固体和城市垃圾中多项毒性指标的迁移性。中国国家环境总局也将此方法纳入国家标准。(中华人民共和国环境保护行业标准译为浸出毒性浸出方法) TCLP包括对重金属成分和挥发性有害成分的检测。 根据USEPA所规定的1311方法所设计,测定重金属成分时,可以使用Millipore提供的有害废物压力过滤装置。所有与样品有接触的装置表面均采用独特的特氟龙(Teflon)涂层,可以降低样品被污染的风险。在设备的出入口处,都使用卫生的TC接口,以便移动,清洗或者维修。 对于挥发性有害成分,Millipore提供ZHE(零顶空萃取器),活塞是可移动设计,加压时不会引入外界空气,也可避免因挥发性样品损失而导致的实验结果的不准确。在萃取液的输送过程中,为了使用的安全和方便,Millipore提供压力容器输送装置。同时,Millipore提供便于直观观察的透明气密注射器。 作为TCLP的重要设备之一,密理博提供的旋转搅拌器可以按照国家标准做长时间运作,混合均匀,充分萃取,并标配有保护盖,提供最大程度的安全性,并可以同时装入4只ZHE。 固体废弃物经TCLP程序萃取后,萃取液体再使用原子吸收光谱仪(AA)或者ICP,气相色谱仪(GC),液相色谱仪(HPLC)等分析进行检测。 目前TCLP产品被广泛应用在环境监测 (如环监站)、出入境产品预期无风险评估 (出入境检验检疫)、高校科研等领域。 作为一家具有50多年历史的过滤纯化产品的专业供应商,Millipore除了实验室纯水,还提供各种环境分析及监测用的专业产品,包括气溶胶分析监测过滤器,空气放射性颗粒监测,流体污染物分析监测用过滤器,流体污染物分析套件,斑贴测试套件,地下水取样皿等。 联系技术支持:400-889-1988
  • 生物3D打印应用 | 构建体外肝毒性模型
    受伦理和费用影响,使用动物来进行毒理实验变得越来越困难。同时,动物所得到的结果很有可能与实际临床试验有差别,因而给临床试验带来了潜在的风险。于是,科研工作者开始尝试在体外构建三维细胞培养物——类器官。类器官通常具有相应器官的关键特征,以此科研工作者就可以使用它们来进行相应器官的药物毒理学试验,常见的如使用肝脏类器官检测药源性肝损伤(Drug Induced Liver Injury,DILI)。一些较为简单的模型构建事实上已经使用了较长时间,但这些模型缺乏长效性(Longevity)和组织复杂度(Tissue-level Complexity),得出的结论往往不具有充分的可靠性。 在此背景下,Deborah G. Nguyen等人使用病人来源的肝脏细胞和非薄壁细胞以3D打印的形式构建了无支架类器官。相较于传统的偏二维模型或简单三维模型,该类器官在4周后仍然能够维持一定程度的ATP、白蛋白甚至是药物介导的活性细胞色素P450s酶。为评估该类器官的功能性,作者选用曲伐沙星——一种因肝毒性较强而无法用标准临床前模型评估肝毒性的药物——与无明显肝毒性药物左氧氟沙星进行对比。发现曲伐沙星在临床浓度下(≤4 μM)的肝脏毒性与浓度呈显著性正比关系。图1 置于24孔板中的肝脏类器官此外,尽管有很多相关的文献,但对于准备进入这一领域的科学工作者而言,面对各种各样的细胞模型、种类繁多的模型构建方法,可能会耗费许多时间理清头绪。面对这种情况,Xihui等人在综述Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation一文中,详细阐述了构建体外三维肝脏模型的相关内容。分为模型建立方法、细胞种类、在药源性肝损伤(DILI)中的重要性及相关商业化情况,主要内容如下: l 模型构建:根据辅助材料的使用与否分为有支架(主要为水凝胶、琼脂糖等遇水形成一定支撑力的材料,其中便提到在regenHU技术和产品的推动下,利用细胞外基质(extracellular matrix,ECM)作为支架材料进行肝脏3D打印成为了非常重要的模型构建方法)和无支架模型两种,分别介绍了建立方法和优缺点。 l 细胞种类:原代人类肝脏细胞(Primary Human hepatocytes)、干细胞分化的类肝脏细胞(stem cell derived hepatocyte like cells)、永生化肝细胞系(immortalized hepatic cell lines)等三种不同类型的肝脏细胞。 l 肝毒性研究应用:肝毒性主要有两个来源——药物本身或经由药物代谢产生的产物。因而在本章节对直接毒性和慢性毒性均进行了介绍。同时,作者也总结了纳米药物的肝脏毒性。 l 商业化情况:因生物3D打印的速率尚不足以满足批量生产,因而作者认为该项应用仍以定制为主。通过使用病人来源的细胞,科研工作者可构建类器官进行个性化药物筛选和个体化药效评价,随着商业医疗的逐步完善,这一市场将极具发展前景。 该综述全面的内容为正要和即将进行类似实验的科研工作者提供了便利。但正如作者所言,类器官仍在多个国家遭受不同程度的文化、法规障碍,在努力争取科研许可的同时,也应牢记科学底线,为社会带来正能量。 参考文献:[1] Zhang X, Jiang T, Chen D, et al. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation[J]. Critical Reviews in Toxicology, 2020(11):1-31.[2] Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro[J]. Plos One, 2016, 11(7):e0158674.目前,regenHU产品可经由我司购买。regenHU生物3D打印机具有高精度、高稳定性、打印方式广泛、应用面广等特点,欢迎大家咨询!联系电话021-37827858 或 13818273779(微信同号)。点击以下链接,查看往期回顾生物3D器官打印——人工角膜生物3D器官打印——肠道体外模型生物3D器官打印——喉部软骨
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制