当前位置: 仪器信息网 > 行业主题 > >

化学传感

仪器信息网化学传感专题为您整合化学传感相关的最新文章,在化学传感专题,您不仅可以免费浏览化学传感的资讯, 同时您还可以浏览化学传感的相关资料、解决方案,参与社区化学传感话题讨论。

化学传感相关的资讯

  • 化学传感器在环境领域中的应用-第十六届全国化学传感器学术会议分会报告
    2023年9月23-24日,由中国仪器仪表学会分析仪器分会化学传感器专业学组(专业委员会)主办的第十六届全国化学传感器学术会议(SCCS2023)于山东省济南市举办,两天时间里,湖州师范学院教授王桦(冯路平代讲)、华中科技大学副研究员闫凯、江苏大学副教授殷秀莲、南京大学教授毛亮、中国科学院长春应用化学研究所副研究员余登斌、中国科学院烟台海岸带研究所研究员张志阳在分会场带来了关于化学传感器在环境领域中应用的精彩报告湖州师范学院教授 王桦(冯路平代讲)报告题目:《纳米医学与环境智能传感监测技术及其产业化应用》冯路平介绍道,医学与环境标志物传感的基体材料包括:微纳通道结构的介孔导电材料可用于吸储液体中的标志物,可折叠柔性聚合物用于包埋标志物敏感的导电探针并印制功能电极,改性石墨烯Jet ink打印导线用于连接探头以及微型电化学处理器及信号输出装置,最后通过电聚合、分子自组装、功能涂覆、溶胶-凝胶法等技术将功能材料修饰于微电极上制成高通量芯片探头。通过该技术可研发出智能标志物传感探针,用于对人体健康及水中环境污染物实现在线监测华中科技大学副研究员 闫凯报告题目:《新型光电化学传感体系的构建及其分析应用》闫凯基于环境分析和生物分析的技术发展要求,以光电极性能优化、传感装置小型化、多目标物检测的光电化学传感搭建为目标,在基于近红外光电活性增强的半导体材料构建高性能光电化学传感体系、构建非铂阴极单室PFC用于自供能光电化学检测、基于图案化刻蚀导电基底构建比率型多目标物传感平台研究三个方面进行讨论,实现用电催化、光催化和酶催化来降解污染物。江苏大学副教授 殷秀莲报告题目:《基于图像模式识别的三维荧光光谱库技术及其在水体污染物检测中的应用》殷秀莲教授对自己的研究介绍道,利用三维荧光技术进行多维数据获取,取得每种污染物28个浓度样本,共28×4张EEM图谱图像,其中5×4张作为测试样本,定性识别准确率为100%。该方法为荧光光谱数据库建立和EEM数据分析开辟了一条新的途径,所提出的特征获取、特征提取及谱检索技术,对其他的光谱数据库建立有借鉴意义。此外,为AI大模型在荧光光谱分析中的应用提供数据准备基础,在水环境监测等领域提供帮助。南京大学教授 毛亮报告题目:《海水中氚的食物链传递风险》毛亮教授从核设施和核污染等热点问题出发,结合氚在食物链中的传递规律和内在机制,研究了氚在海洋中的生物效应。他介绍道,采用放射性同位素标记示踪技术进行研究,发现杜氏蓝藻会通过光合作用使氚水快速转化为有机氚,并经过食物链暴露使丰年虾体内有机氚含量上升,最后通过食物链逐级传递。毛亮教授的研究对当下核废水污染问题极具意义,他总结道,核污染中的氚危害不能仅看海水中浓度,更要关注其化学效应。中国科学院长春应用化学研究所副研究员 余登斌报告题目:《水体综合毒性比色检测新方法开发》基于水体检测任务的需要和国家环境政策导向,发展各种水体毒性检测新方法对检测多场景水体必不可少。余登斌介绍道,根据电化学检测原理,分别研发出了利用基因工程改造的绿脓杆菌分泌的大量绿脓菌素构建了免外加媒介体的水体毒性比色检测方法;利用电致变色普鲁士蓝阴极和生物阳极构建了水体毒性可视化检测传感器;基于E. coli-BQ快速颜色反应实现了水体毒性比色/电化学双信号检测和智能手机辅助RGB模型检测;基于容解性不大的铁盐稳定释放下Fe3+生物合成普鲁士蓝指示剂成功构建了水体毒性比色/电化学检测及酶标仪辅助的高效检测方法。同时,他还提到,新技术相较于传统方法具有操作简便、检测全面、快速灵敏等特点,并支持在线监测。中国科学院烟台海岸带研究所研究员 张志阳报告题目:《面向海岸带环境分析监测的光学纳米传感方法研究》海岸带环境分析监测是了解海洋生态系统健康的重要手段,但海岸带污染物情况复杂,环境分析难度大,基于此,张志阳团队发展光学纳米分析原理与技术,为海岸带生态安全与健康提供支撑。他以样品检测案例介绍道,针对污染物,利用纳米材料的光学特性,开发高灵敏纳米比色传感器/阵列和表面增强拉曼传感器,可实现对目标物的检测、鉴定及讲解分析。最后,张志阳提出展望,未来将强化交叉学科,进一步探究传感原理在环境检测上的应用。随着环境保护意识的不断提高和环境监测技术的不断发展,电化学传感器在环境监测领域的应用前景越来越广阔。未来,电化学传感器将朝着更灵敏、更稳定、更耐用的方向发展,实现环境数据的实时采集和远程监控,同时将探索更多的应用领域,为保护人类的生存环境做出更大的贡献。
  • 空前盛况,化学传感新高度-第十六届全国化学传感器学术会议圆满闭幕
    仪器信息网讯 2023年9月24日,由中国仪器仪表学会分析仪器分会化学传感器专业学组(专业委员会)主办的第十六届全国化学传感器学术会议(SCCS2023)于山东省济南市圆满闭幕。本次大会以“化学传感赋能新时代”为主题,本次参会人数超1200名,征集论文近500篇,共有12个大会特邀报告、42个主旨报告、101个邀请报告、153个口头报告和17个简单报告,邀请到国内外众多知名专家学者,共同探讨化学传感领域的最新研究成果和发展趋势,吸引了上千人注册参会。会议现场闭幕式开始之前,特别邀请了中国科学院院士、清华大学教授李景虹、中国科学院院士、中国科学院精密测量科学与技术创新研究院研究员刘买利、北京师范大学教授毛兰群、南京大学鞠熀先教授、上海仪电科学仪器股份有限公司(雷磁)许佰功作出精彩报告。中国科学院院士、清华大学教授 李景虹报告题目:《单分子生物电子学与生物分析》李景虹介绍到,对复杂生命过程的单分子表征可以深入生物分析化学的研究尺度,以核酸、蛋白质和大分子互作为基础的技术可以用于单分子表征过程中。此外,他还对近期主要研究作出汇报:单分子间元-元堆叠的偶极增强效愈、G-四链体的电子学研究和蛋白质相互作用的电子学。最后,他提出了所面临的研究挑战,并指出生命过程关键物理化学机制的微观解析、微观反应机制与宏观现象间的关联和生命过程中量子现象的观测是未来发展方向。中国科学院院士、中国科学院精密测量科学与技术创新研究院研究员 刘买利报告题目:《核磁共振波谱分析》刘买利以核磁共振波普的发展与影响、技术与方法、应用与趋势展开报告。他提到,核磁共振是科学交叉的典范,在多领域促进科学发展,其中核磁共振波普(NMR)和磁共振成像(MRI)是最活跃的两个领域,两种技术相结合可大幅提升检测灵敏度。此外,他还介绍了用于提高核磁共振灵敏度的多种超极化技术及在生物分子领域的应用,对细胞结构研究具有重要作用。北京师范大学教授 毛兰群报告题目:《脑化学活体传感》毛兰群教授首先介绍了脑的化学本质、化学信号研究的关键问题、脑化学测量的机遇与挑战。基于此,他通过解析信号、脑的电化学模拟等手段开展研究,发展了活体传感原理与方法的新构想,创建了原电池型氧化还原电位分析法,实现了化学信号向电信号转化的模拟,在该领域上取得创新性成果。南京大学教授 鞠熀先报告题目:《纳结构增强的电化学发光与光电生物传感》鞠熀先教授以解决癌症精准诊治中的个关键科学问题为目标,对生物分子检测及其介导的诊治应用展开研究,分别在用于生物传感的量子点ECL、用于生物传感的无机纳米粒子ECL、 用于生物传感的聚合物点ECL、Pdots的ECL生物成像五个方面展开报告,对提高癌症诊断治疗精确性及成像分辨率具有重要价值。上海仪电科学股份有限公司(雷磁) 许佰功报告题目:“雷磁”电化学传感器及仪器技术发展许佰功介绍道,“雷磁“是上海仪电科学仪器股份有限公司的自主品牌,创建于1940年,是中国pH计和玻璃电极的诞生地,也是国内分析仪器的重要发源地。 “雷磁”研发了丰富的科学仪器产品,涵盖电化学传感器、电化学分析仪器、滴定仪/水分仪、水质分析仪、在线水质监测仪器、化学试剂和系统集成等众多门类。雷磁作为国内自主研制高端专业型电化学传感器的企业,研制出众多功能、材料和结构的专业型电极,为用户带来了更多高性能智能化的产品体验大会特邀专家报告结束后,开始颁奖环节,奖项包括颁发优秀青年报告奖和优秀墙报奖,并由济南大学魏琴教授宣布获奖名单。济南大学魏琴教授宣布获奖名单优秀青年报告奖颁奖仪式优秀墙报奖颁奖仪式颁奖仪式后,由湖南大学吴海龙教授做大会总结发言。湖南大学吴海龙教授做大会总结发言吴海龙教授首先对济南大学和所有参会者表示由衷的感谢。他说道,大会自成立以来,在老一辈科研工作者的领导下,会议举办得蒸蒸日上,第十六届全国化学传感器学术会议是历届以来人数最多,规模最大的一次会议,大会以“化学传感赋能新时代”为主题,给众多专家、学者和年轻的科研工作者创造了一次宝贵的交流学习机会。最后,吴海龙教授邀请所有参会专家和济南大学的工作人员共同合影,并期待下一届会议再相聚。闭幕式合影
  • 化学所新型温敏化学荧光传感材料研究取得重要进展
    近年来,化学荧光传感材料和器件的研究作为材料科学研究中的重要内容,受到化学研究者的极大关注。化学荧光传感器由于具有高灵敏度、可实时检测等优势,在分子识别和传感器的应用方面得到蓬勃发展。   在科技部、国家自然科学基金委和中国科学院的支持下,化学研究所光化学院重点实验室的课题组多年来致力于化学荧光传感材料的设计合成及其新型器件的研究,曾利用化学荧光传感原理和具有特殊结构的发光分子,对金属正离子、氟离子进行了高效识别和检测(Inorg. Chem., 2006, 45 (8), 3140 J. Phys. Chem. A, 2007, 111 (46), 1793 J. Phys. Chem. B, 2007, 111 (21), 5861, J. Phys. Chem. C, 2009, 113 (9), 3862 J. Phys. Chem. A, 2009, 113 (20), 5888,Angew. Chem. Int. Ed. 2010, 49, 4915-4918)。   最近,该课题组设计合成了一类新型的三芳基硼化合物,实现了对温度在很宽范围的灵敏响应。   在以前利用温敏材料制备的化学荧光传感器中,随着温度的增加,发光组分的发光效率会大大降低,很难实现较大温度范围的检测。在本工作中,课题组研究人员设计合成了一类新型的三芳基硼化合物作为发光组分,利用其在溶液中高温和低温时不同分子构象之间的转变,保证了在很宽的温度范围内都具有很高的发光量子效率,并在不同温度下表现出明显的发光颜色变化。在低温表现为绿色发光,高温表现为蓝色发光。将这种发光溶液密封在薄膜中,制备出了大面积的温度敏感材料,其温度敏感的空间分辨率可以达到几十微米。   相关研究论文发表在Angew. Chem. Int. Ed.(2011, 50, 8072 –8076)上。 图1 发光随温度变化的机理示意图 图2 a) 温度渐变情况下的DPTB溶液荧光颜色变化 b) CIE色度空间中DPTB发光颜色与温度的相关性。
  • 连续三届赞助全国化学传感器学术会议,“雷磁”助推中国化学传感器事业发展
    2023年09月23-24日,第十六届全国化学传感器学术会议(SCCS2023)在美丽的泉城济南举办,本次会议由中国仪器仪表学会分析仪器分会化学传感器专家组主办,济南大学承办,化学生物传感与计量学国家重点实验室(湖南大学)、上海师范大学、上海仪电科学仪器股份有限公司(雷磁)、临沂大学等单位共同协办。会议主题是“化学传感赋能新时代”,邀请了国内外众多知名专家学者,共同探讨化学传感领域的最新研究成果和发展趋势,是化学与生物传感领域的学术交流盛会。会议同期颁发了“中国化学传感器成就奖”学术奖项。该奖项的奖励基金由上海仪电科学仪器股份有限公司(简称上海仪电科仪)赞助支持,自2019年首届至本届已是第三届,该奖项的设立旨在奖励在我国化学生物传感器科研领域取得优秀成果,并对我国化学生物传感器事业发展做出突出贡献的中国科研工作者。第三届“中国化学传感器雷磁终身成就奖”被授予中国科学院院士、发展中国家科学院院士,中国科学院生态环境研究中心研究员江桂斌;“中国化学传感器雷磁杰出成就奖”分别颁发给湖南大学教授张晓兵、南京大学教授龙亿涛、广州大学/中山大学教授牛利。大会期间,本公司市场营销部总经理许佰功作了《“雷磁”电化学传感器及仪器技术发展》的主题报告,与现场嘉宾共同探讨了关于电化学传感器现状和技术创新等多方面的内容。“雷磁”是上海仪电科学仪器股份有限公司的自主品牌,创建于1940年,是中国pH计和玻璃电极的诞生地,也是国内分析仪器的重要发源地。“雷磁电化学分析仪器”自2008年起连续获得“上海名牌产品”称号,“雷磁”自2013年起连续获“上海市著名商标”,雷磁“L系列电化学仪器、ZDJ-5B系列自动滴定仪”等先后通过“上海品牌”认证。“雷磁”拥有丰富的科学仪器产品线,涵盖电化学传感器、电化学分析仪器、滴定仪/水分仪、水质分析仪、在线水质监测仪器、化学试剂和系统集成等众多门类。在专业专用型电化学传感器方面,“雷磁”研制出众多满足特殊应用场合的不同功能、材料和结构的专业专用型电极,为用户带来了更多高性能智能化的产品体验,是电化学行业的头部领军企业。上海仪电科仪将继续围绕市场,做好产品,做好品牌,做好服务,做好合作,不断地向高端、高品质发展。在科学仪器展览活动中,上海仪电科仪(雷磁)展示了引领L系列、智能T系列、超凡F系列和经典系列实验室台式和便携式等多款电化学仪器,最新款滴定仪ZDJ-4D和全新升级版便携式水质分析仪器等一系列产品,以及包括pH电极,电导率电极,溶解氧电极、温度电极、参比电极、金属电极、滴定专用电极等系列电化学传感器,“雷磁”根据具体的行业应用和操作习惯,不断推陈出新,优化配方和工艺,改进电极的性能和结构,适应新的应用场景,用持续创新向业界展示中国科学仪器企业的实力和风采。
  • “雷磁”携手中仪学分析仪器分会化学传感器专家组设立“中国化学传感器成就奖奖励基金”
    p   strong  仪器信息网讯 /strong 以奖励在我国化学生物传感器科研领域取得优秀成果,并对我国化学生物传感器事业发展做出突出贡献的中国科研工作者,中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会)将在第十四届全国化学传感器学术会议(14th SCCS)上颁发首届“中国化学传感器成就奖”学术奖项。 /p p   为了保证该学术奖项的持续性,大会组委会特设立“中国化学传感器成就奖奖励基金”。上海仪电科学仪器股份有限公司作为该基金的赞助方,携手中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会),于2019年8月8日假上海市松江区绿地铂骊酒店举办合作签约仪式,设立“中国化学传感器成就奖奖励基金”。仪电科仪秉承“雷磁”品牌的“务实、创新、求精、致远”的发展宗旨,为中国化学传感器事业的发展贡献力量。 /p p   合作协议的签订,由化学传感器专业委员会主任委员、14th SCCS组织委员会主席、湖南大学吴海龙教授和仪电科仪董事长兼总经理汤志东签署。由化学传感器专业委员会原主任委员、湖南大学原化学计量学与化学传感技术教育部重点实验室主任、二级教授沈国励老先生、中国仪器仪表学会分析仪器分会关亚风理事长、刘长宽常务副理事长、中国仪器仪表行业协会分析仪器分会曾伟秘书长、上海市科委张露路处长、上海科学仪器产业技术创新联盟、上海市分析测试协会马兰凤秘书长等专家,以及上海仪电科学仪器股份有限公司副总经理殷传新、金建余,雷磁传感器公司总经理何海东等人共同见证。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201908/uepic/d1ed5a03-4998-4985-9797-e94353fc23da.jpg" title=" 微信图片_20190809004300_副本.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201908/uepic/0578fbe2-94b5-4f6b-8906-0108585449dd.jpg" title=" 微信图片_20190809004215_副本.jpg" / /p p style=" text-align: center " strong 吴海龙教授与汤志东董事长签署合作协议 /strong /p p   中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会)成立于1985年,目前为第六届,由吴海龙教授为组长、俞汝勤院士为主编,分别组成新一届“化学传感器专家组”和《化学传感器》编委会。组织机构有汪尔康、俞汝勤、姚守拙、陈洪渊、张玉奎、董绍俊、马立人、程京、谭蔚弘等9位顾问,其中5位为中科院院士。由其主办的全国化学传感器学术会议(SCCS),从最初的全国离子选择性电极学术交流会到如今的全国化学传感器学术会议,SCCS学术会平均每三年一届,迄今已成功举办十三届,反映见证了我国化学传感器研究领域的发展历程。 /p p   “雷磁”是上海仪电科学仪器股份有限公司的自主品牌,创建于1940年,是中国pH计和玻璃电极的诞生地,也是国内分析仪器的发源地。长期以来专注于电化学分析仪器事业,历经七十多余年发展,雷磁逐步发展成为集研发、生产、销售、应用、集成、服务为一体的高新技术企业。以“为提高人们的生活质量,提供高科技产品和优质服务”为企业目标,创新驱动、转型发展,成为不断进步的科学仪器制造商和检测溯源系统解决方案与运行服务的提供商。 /p
  • “雷磁”携手中仪学分析仪器分会化学传感器专家组,设立“中国化学传感器成就奖奖励基金”
    为了奖励在我国化学生物传感器科研领域取得优-秀成果,并对我国化学生物传感器事业发展做出突出贡献的中国科研工作者,中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会)将在第十四届全国化学传感器学术会议(14th sccs)上颁发首届“中国化学传感器成就奖”学术奖项。 为了保证该学术奖项的持续性,大会组委会特设立“中国化学传感器成就奖奖励基金”。上海仪电科学仪器股份有限公司作为该基金的赞助方,携手中国仪器仪表学会分析仪器分会化学传感器专家组(原专业委员会),于2019年8月8日假上海市松江区绿地铂骊酒店举办合作签约仪式,设立“中国化学传感器成就奖奖励基金”。仪电科仪秉承“雷磁”品牌的“务实、创新、求精、致远”的发展宗旨,为中国化学传感器事业的发展贡献力量。 合作协议的签订,由化学传感器专业委员会主任委员、14th sccs组织委员会主席、湖南大学吴海龙教授和仪电科仪董事长兼总经理汤志东签署。由化学传感器专业委员会原主任委员、湖南大学原化学计量学与化学传感技术教育部重点实验室主任、二级教授沈国励老先生、中国仪器仪表学会分析仪器分会关亚风理事长、刘长宽常务副理事长、中国仪器仪表行业协会分析仪器分会曾伟秘书长、上海市科委张露路处长、上海科学仪器产业技术创新联盟、上海市分析测试协会马兰凤秘书长等专家,以及上海仪电科学仪器股份有限公司副总经理殷传新、金建余,雷磁传感器公司总经理何海东等人共同见证。
  • 俄罗斯院士驻哈研发电化学传感器
    7月17日,黑龙江省首个外籍院士工作站&mdash &mdash 哈尔滨盈江科技有限公司电化学传感器院士工作站在高新区科技大厦揭牌。俄罗斯科学院亚历山大· 布加耶夫(Alexander S. Bugaev)院士驻站与盈江科技公司合作,主要从事电化学传感器的研发,并为相关电化学传感元器件的产业化提供必要的技术支持。   物联网的兴起离不开传感器的广泛应用。其中,电化学传感器因为体积小、灵敏度高、装配便捷成为传感器领域的新兴高端产品。为更好地消化吸收该领域的新技术,盈江科技有限公司建立电化学传感器外籍院士工作站,采用联合攻关的方式,与亚历山大· 布加耶夫院士及其团队合作,主要从事电化学传感器的研发,包括新型电化学惯性传感技术的研发和电化学气体传感器检测仪器及系统的理论研究,为中国电化学传感器发展提供技术支撑。   在揭牌仪式上,盈江科技公司还与俄罗斯莫斯科物理技术学院签署了关于电化学传感器的技术合作协议。   盈江科技公司是以研发电化学气体传感器和电化学惯性传感器为主导的高科技企业,主要从事化学传感器研发及成果转化,产品质量已达到国际先进水平。
  • 第11届全国化学传感器学术会议日程
    第十一届全国化学传感器学术会议第三轮通知   各位参会代表:   2011年是国际化学年。好消息!金秋时节,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议定于10月22-25日在湖南长沙市芙蓉华天大酒店召开。现将有关与会的具体安排通知如下:   一、大会学术安排   10月22日:全天报到   10月23日:大会开幕式,大会报告   10月24日:大会报告,闭幕式   10月25日:代表离会或参加考察   二、大会报告安排   1、陈洪渊 院士 南京大学 细胞图案化与细胞传感研究   2、张玉奎 院士 中科院大连化学物理研究所 色谱分离与蛋白质组学的最新研究进展   3、庄乾坤 国家自然科学基金委员会 (NSFC) 国家自然基金委分析化学学科发展战略与项目资助情况   4、杨秀荣 中科院长春应用化学研究所 双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子   5、周飞艨 加利福尼亚州州立大学洛杉矶分校,中南大学电化学和光谱学方法用于生命体系中动态过程研究   6、王柯敏 湖南大学 基于氧化石墨烯的DNA聚合酶检测新方法   7、周道民、章宗穰 美国Second-Sight公司,上海师范大学 生物医学植入器件的刺激电极和传感电极   8、陶农建 Arizona State University,USA Plasmonic-Based Electrochemical Current and Impedance Imaging and Applications   9、鞠熀先 南京大学 纳米生物传感新策略   10、钟传健 State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes   11、庞代文 武汉大学 量子点标记多靶单病毒示踪研究流感病毒侵染动态过程   12、谭蔚泓 湖南大学 生物传感的基石:分子识别   三、会务安排   1. 报到   报到时间:10月22日8:00—22:00, 会议代表在报到处确认注册后,领取代表证、会议指南、论文集、就餐券、纪念品等。   报到地点:芙蓉华天大酒店,地址:长沙市湖南省 芙蓉区五一大道176号   电话:(0731)84401888。   2. 住宿   会议期间与会人员住宿费用自理,住宿费标准:芙蓉华天大酒店单人间,标准间:268元/间 银河大酒店双标间:160元/天,豪华双标:200元/天。   四、会议注册   与会代表的食宿统一安排,差旅、住宿费用自理。注册费包括资料费、会务费和餐费等,报到时以现金交付。会议代表每位900元(在读研究生代表每位600元,注册时请出示学生证件)。   五、会议日程安排   请见本通知附件及会议网站,如有疏漏、问题或希望调整,望及时反馈,谢谢!   六、会议联系方式   会议主页(http://huiyi114.cn)   联系人:吴海龙 庞新宇   联系方式:0731-88821848 传真:073188821848   E-mail:cbsc@hnu.edu.cn   七、会议考察   会议协助旅行社安排三条考察线路,费用自理。   八、友情提示   1. 由于参会代表较多,会务组无法安排接送,对此我们深表歉意。   2. 提供交通信息如下:   (1)、从火车站乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟   (2)、从高铁火车站乘148路公交车至终点火车站,乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟 打出租车约25-30元。   (3)、从机场乘坐机场大巴到终点站:民航大酒店,步行横穿五一路人行通道即到。打出租车约70元。   中国分析仪器学会化学传感器专业委员会   第十一届全国化学传感器学术会议组委会   2011年10月 10日 第十一届全国化学传感器学术会议 会 议 程 序 初 步 安 排 2011年10月22日 星期六 全天 报到注册 时间 内容 地点 08:00-22:00 注册 芙蓉华天大酒店 18:30- 晚餐 (自助餐) 21:00- 学术委员会会议 2011年10月23日 星期天 上午 时间 内容 地点 07:00- 早餐 08:20-08:50 会议开幕式 主持人:章宗穰 芙蓉华天大酒店---华天全厅 08:50-09:20 合影酒店正门前 主持人:杨秀荣、王柯敏 时间 类型 报告人 单位 报告题目 09:20-09:45 PL1 陈洪渊 院士 南京大学 细胞图案化与细胞传感研究 09:45-10:10 PL2 张玉奎 院士 中科院大连化学物理研究所 色谱分离与蛋白质组学的最新研究进展 10:10-10:35 PL3 庄乾坤 国家自然科学基金委员会 (NSFC) 国家自然基金委分析化学学科发展战略与项目资助情况 10:35-11:00 PL4 杨秀荣 中科院长春应用化学研究所 双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子 11:00-11:25 PL5 周飞艨 加利福尼亚州州立大学洛杉矶分校,中南大学 电化学和光谱学方法进行生命体系中的动态过程研究 11:25-11:50 PL6 王柯敏 湖南大学 基于氧化石墨烯的DNA聚合酶检测新方法 11:50-12:15 PL7 周道民、章宗穰 美国Second- Sight公司,上海师范大学 生物医学植入器件的刺激电极和传感电极 12:10- 午餐 (自助餐) 14:00-18:00 报展 I (尺寸为 高120厘米、宽90厘米) 2011年10月23日 星期天 下午 第一分会场: 主持人:李根喜、于聪 时间 类型 报告人 单位 报告题目 14:00-14:20 IL1 李根喜 南京大学 基于蛋白质电化学研制的若干生物传感器 14:20-14:40 IL2 于 聪 中国科学院长春应用化学研究所 核酸诱导的小分子探针的集聚及自组装 14:40-15:00 IL3 郑建斌 西北大学 生物电化学与生物传感器的研究 15:00-15:20 IL4 王进义 西北农林科技大学 微流控芯片细胞分析 15:20-15:30 OP1 贾能勤 上海师范大学 基于有序介孔材料的生物传感应用 15:30-15:40 OP2 李钟卉 南京大学 基于蛋白质芯片的雌激素受体药物多靶点筛选方法 15:40-15:50 OP3 赵伟洁 浙江大学 基于多孔硅光子晶体的微流控体系实现细胞的实时非标记分析 15:50-16:00 OP4 赖国松 湖北师范学院 基于银沉积电化学溶出分析的高灵敏多通道免疫传感 16:00-16:10 茶歇 主持人:叶邦策、袁若 时间 类型 报告人 单位 报告题目 16:10-16:30 IL5 袁 若 西南大学 电化学蛋白质生物传感器的研究 16:30-16:50 IL6 叶邦策 华东理工大学 生物纳米传感器设计及在生化分析中的应用 16:50-17:10 IL7 胡乃非 北京师范大学 可开关的生物电催化与生物传感 17:10-17:20 OP5 董俊萍 上海大学 基于硅钼酸柱撑水滑石复合材料的电化学传感器研究 17:20-17:30 OP6 李珏瑜 浙江大学 HA修饰对细胞捕获的影响 17:30-17:40 OP7 甘 峰 中山大学 基于镍纳米线的过氧化氢传感器的研究 17:40-17:50 OP8 汪庆祥 漳州师范学院 基于一步电沉积壳聚糖-ZrO2-CeO2复合膜的DNA电化学传感器 17:50-18:00 OP9 陈建平 漳州师范学院 基于富勒烯衍生物修饰玻碳电极的电化学免疫传感器 18:00-18:10 OP10 李周敏 南京大学 基于纳米银生物探针的IgE可视化检测方法的研究 第二分会场: 主持人:由天艳、朱俊杰 时间 类型 报告人 单位 报告题目 14:00-14:20 IL8 朱俊杰 南京大学 量子点功能化与电化学生物传感 14:20-14:40 IL9 蒋兴宇 国家纳米科学中心 基于微纳尺度技术传感器的应用研究 14:40-15:00 IL10 许丹科 南京大学 生物微阵列芯片检测新方法的研究 15:00:15:20 IL11 由天艳 中国科学院长春应用化学研究所 电纺碳纳米纤维及其复合材料在电分析化学中的应用 15:20-15:30 OP11 刘清君 浙江大学 中华蜜蜂化学感受蛋白阻抗传感器的研究 15:30-15:40 OP12 孙兆辉 华侨大学 基于石墨烯增敏的印迹电化学传感器的制备 15:40-15:50 OP13 荆 莉 华东师范大学 基于链接反应的碳纳米管功能化及其应用 15:50-16:00 OP14 曹 忠 长沙理工大学 钆掺杂纳米二氧化钛修饰平板金电极测定火腿肠中微量亚硝酸根 16:00-16:10 茶歇 主持人:施国跃、王坤 时间 类型 报告人 单位 报告题目 16:10-16:30 IL12 牛 利 中国科学院长春应用化学研究所 石墨烯纳米组分电化学传感器应用 16:30-16:50 IL13 王 坤 江苏大学 基于介孔TiO2修饰电极实现多巴胺的选择性测定 16:50-17:10 IL14 施国跃 华东师范大学 新型复合纳米材料的电催化行为研究及其在活体分析中的应用 17:10-17:20 OP15 吴 硕 大连理工大学 虾中4-己基间苯二酚的高灵敏电化学检测 17:20-17:30 OP16 崔 亮 厦门大学 基于变构探针设计的荧光偏振技术用于小分子的高灵敏检测 17:30-17:40 OP17 彭 晖 华东师范大学 PEDOT修饰的微通道硅电极用于多巴胺、抗坏血酸及尿酸的同时测定 17:40-17:50 OP18 孙芳洁 大连理工大学 基于YSZ和Au敏感电极的混合电位型NO2传感器的特性 17:50-18:00 OP19 赵 路 南京师范大学 氯霉素复合分子印迹膜的制备及电化学研究 18:00-18:10 OP20 羊小海 湖南大学 一种基于G四聚体自身猝灭能力的新型单标记DNA探针用于Hg2+及半胱氨酸的检测 第三分会场: 地址: 主持人:杨黄浩、屠一锋 时间 类型 报告人 单位 报告题目 14:00-14:20 IL15 王振新 中国科学院长春应用化学研究所 功能化金纳米粒子的合成与应用 14:20-14:40 IL16 何治柯 武汉大学 规模合成水溶性低毒量子点用于疾病诊断及可视化检测 14:40-15:00 IL17 杨黄浩 福州大学 基于切刻内切酶的荧光型核酸适体传感器用于放大检测蛋白质 15:00-15:20 IL18 屠一锋 苏州大学 基于纳米增敏电化学发光的氧传感技术 15:20-15:30 OP21 姜大为 华东师范大学 氮掺杂二氧化钛/石墨烯复合材料的制备及其光催化性能的研究 15:30-15:40 OP22 王 颖 南京大学 一种新颖的基于银纳米粒子荧光增强的适配体传感器 15:40-15:50 OP23 张 妍 福州大学 多壁碳纳米管表面茶碱印迹材料的制备与吸附性能 15:50-16:00 OP24 代 昭 天津工业大学 固相有机合成对基于无机纳米材料的荧光DNA探针微结构的控制作用 16:00-16:10 茶歇 主持人:冯锋、赵睿 时间 类型 报告人 单位 报告题目 16:10-16:30 IL19 赵 睿 中国科学院化学研究所 以石英晶体微天平研究尿液中三聚氰胺与三聚氰酸层层自组装相互作用 16:30-16:50 IL20 徐静娟 南京大学 新型电致化学发光生物传感器研究 16:50-17:10 IL21 冯 锋 山西大同大学 基于表面等离子体共振技术用鸡蛋黄抗体IgY测定转铁蛋白 17:10-17:20 OP25 姜 晖 东南大学 CdSe纳米颗粒的电化学发光动力学及其检测应用 17:20-17:30 OP26 李 慧 南京大学 聚合纳米银荧光探针检测人IgE的新方法 17:30-17:40 OP27 李 娟 福州大学 以氧化石墨烯为平台研究多肽和蛋白质的相互作用 17:40-17:50 OP28 王 荣 上海师范大学 基于TPAA载体的Fe3+离子选择性电极研究 17:50-18:00 OP29 陈荣生 武汉科技大学 核壳结构TiO2/C纳米纤维阵列的制备、微观结构及电化学行为 18:00-18:10 OP30 杨海峰 上海师范大学 钯纳米粒子修饰电极对过氧化氢电催化性能研究 时间 内容 地点 14:00-18:00 报展 I (尺寸为 高120厘米、宽90厘米) 18:30-20:00 欢迎晚宴 20:30- 专业委员会和刊物编委会联席会议 2011年10月24日 星期一 上午 时间 内容 地点 07:00- 早餐 8:00-12:00 报展 II (尺寸为 高120厘米、宽90厘米) 第一分会场: 地址: 主持人:双少敏、张文 时间 类型 报告人 单位 报告题目 08:00-08:20 IL22 张 文 华东师范大学 双酶传感器对大鼠血清与腹腔巨噬细胞内葡萄糖和胆固醇的同时检测 08:20-08:40 IL23 双少敏 山西大学 基于酶固定的新型抗坏血酸传感器的研究 08:40-09:00 IL24 王利兵 湖南出入境检验检疫局 一种测定双酚A的弛豫开关免疫传感器09:00-09:20 IL25 王升富 湖北大学 电化学生物传感器用于Fenton反应产生羟自由基对蛋白质损伤的监测研究 09:20-09:30 OP31 刘文娟 山西大学 基于酶固定的新型抗坏血酸传感器的研究 09:30-09:40 OP32 韩根亮 甘肃省科学院传感技术研究所 碳纳米管增强的谷氨酸生物传感器 09:40-09:50 OP33 艾仕云 山东农业大学 基于石墨烯-纳米金-锁核酸修饰的分子信标及酶催化放大反应的电化学microRNA传感器的设计 09:50-10:00 OP34 李 臻 浙江大学 用于微生物快速检测的微通道免疫分析芯片 10:00-10:10 茶歇 主持人:夏兴华、何品刚 时间 类型 报告人 单位 报告题目 10:10-10:30 IL26 夏兴华 南京大学 生物分子的界面行为及生物传感 10:30-10:50 IL27 杨小弟 南京理工大学 石墨烯和碳纳米管修饰电极间接测定生物体液中的铝 10:50-11:10 IL28 何品刚 华东师范大学 基于重氮功能化直立碳纳米管阵列的核酸适配体传感器的制备及其应用于凝血酶的检测 11:10-11:20 OP35 丁应涛 漳州师范学院 基于靛蓝胭脂红为杂交指示剂的高选择性电化学DNA传感器 11:20-11:30 OP36 胡涌刚 华中农业大学 伪狂犬病毒抗体磁性免疫传感器的研制 11:30-11:40 OP37 刘志敏 河南工业大学 基于石墨烯-纳米金复合物的乙酰胆碱酯酶生物传感器于马拉硫磷的测定 11:40-11:50 OP38 高峰 安徽师范大学 A DNA Sensor Based on FRET between Fluorescent Silica Nanoparticles and Gold Nanoparticles 11:50-12:00 OP39 张旋 漳州师范学院 空心球状CeO2–ZrO2–壳聚糖在金电极表面的一步电沉积及DNA传感分析应用 12:00-12:10 OP40 嵇海宁等 湖南大学 基于纳米金颗粒增强/猝灭荧光效应的多目标物检测及其逻辑门操作 第二分会场: 地址: 主持人:刘松琴、李景虹 时间 类型 报告人 单位 报告题目 08:00-08:20 IL29 李景虹 清华大学 石墨烯的电化学传感器研究 08:20-08:40 IL30 刘松琴 东南大学 掺氮碳空心微球制备及其电催化性质 08:40-09:00 IL31 胡文平 中国科学院化学研究所 自组装纳米材料与纳米器件/分子器件的研究? 09:00-09:20 IL32 宋世平 中国科学院上海应用物理研究所 生物传感器与生物芯片在现代分子诊断学中的应用? 09:20-09:30 OP41 陈旭 北京化工大学 新型石墨纳米材料修饰电极电化学生物传感研究 09:30-09:40 OP42 何婧琳 长沙理工大学 结合金纳米的层层自组装膜用于致癌基因c-myc蛋白的检测 09:40-09:50 OP43 丁亚平 上海大学 基于石墨烯氧化钴萘酚膜修饰玻碳电极的L-色氨酸电流型传感器 09:50-10:00 OP44 杨园园 西南大学 基于聚甲基丙烯酸-聚咔唑杂化型分子印迹聚合物的手性电化学传感器 10:00-10:10 茶歇 主持人:杜丹、杨荣华 时间 类型 报告人 单位 报告题目 10:10-10:30 IL33 杨荣华 湖南大学 茎部可控核酸探针设计策略 10:30-10:50 IL34 徐国宝 中国科学院长春应用化学研究所 三联吡啶钌电化学发光免疫分析和核酸测定? 10:50-11:10 IL35 杜丹 华中师范大学 磷化蛋白phospho-p5315的电化学免疫传感器 11:10-11:20 OP45 龚静鸣 华中师范大学 纳米增效型固相提取剂在典型环境污染物的净化和电化学检测中的应用 11:20-11:30 OP46 华亮 上海师范大学 碳纳米管复合材料修饰电极对芦丁和抗坏血酸的同时检测 11:30-11:40 OP47 王海霞 山西大学 基于β-环糊精接枝的磁性纳米共聚物修饰电极对色氨酸的化学传感器研究 11:40-11:50 OP48 费俊杰 湘潭大学 葡萄糖氧化酶在-环糊精共价键修饰SWCNTs/CTAB复合膜中的直接电化学及电催化 11:50-12:00 OP49 亓秀娟 福州大学 一种简单、快速、高灵敏检测痕量铜离子传感器的研制 12:00-12:10 OP50 马嘉悦等 湖南大学 基于大孔/中空碳球修饰玻碳电极的硝基苯高灵敏电化学传感研究 第三分会场: 地址: 主持人:杨朝勇、赵书林 时间 类型 报告人 单位 报告题目 08:00-08:20 IL36 杨朝勇 厦门大学 An Agarose DropletMicrofluidic Approach for Highly Efficient Single Molecule mplification and Its Application to Aptamer Selection 08:20-08:40 IL37 赵书林 广西师范大学 基于CdTe/CdS量子点与金纳米粒子的荧光共振能量转移测定三聚氰胺 08:40-09:00 IL38 肖丹 四川大学 金纳米颗粒的绿色制备及其在生物传感器中的应用 09:00-09:20 IL39 李向军 中国科学院研究生院 表面等离子共振法研究β淀粉样蛋白和金属离子相互作用 09:20-09:30 OP51 秦利霞 华东理工大学 CdTe/ZnS 量子点的表面修饰及在细胞中的应用 09:30-09:40 OP52 徐章润 东北大学 PDMS气动喷射混合器用于微流控芯片量子点合成 09:40-09:50 OP53 卢丽敏 江西农业大学 基于电聚合荧光素的高灵敏度和高选择性亚硝酸盐电化学传感器的研究 09:50-10:00 OP54 张海娟 浙江大学 基于离子液体修饰的多孔硅光学气体传感器 10:00-10:10 茶歇 主持人:谢青季、卢小泉 时间 类型 报告人 单位 报告题目 10:10-10:30 IL40 卢小泉 西北师范大学 Photoelectrochemical Study Based On The Functionalized-Metalporphyrin 10:30–10:50 IL41 谢青季 湖南师范大学 生物传感和生物燃料电池研究 10:50-11:10 IL42 徐景坤 江西科技师范学院 基于导电高分子复合材料的抗坏血酸氧化酶电化学生物传感器的开发和农业应用 11:10-11:20 OP55 汪海燕 华东理工大学 基于纳米通道传感技术对老年痴呆症致病蛋白的结构特性研究 11:20-11:30 OP56 马 巍 华东理工大学 选择性识别糖-蛋白作用的荧光传感器 11:30-11:40 OP57 余 刚 湖南大学 交流电沉积自组装金铂和金钯合金纳米线及传感性能 11:40-11:50 OP5, 8 邬建敏 浙江大学 基于多孔硅的光学传感器研究 11:50-12:00 OP59 魏广芬 山东工商学院 基于压缩传感的气体传感器检测技术新框架 12:00-12:10 OP60 张晓兵 湖南大学 新型荧光化学生物探针研究 12:10- 午餐(自助餐) 时间 内容 地点 8:00-12:00 报展II (尺寸为 高120厘米、宽90厘米) 2011年10月24日 星期一 下午 主持人:谭蔚泓、鞠熀先 时间 类型 报告人 单位 报告题目 15:00-15:25 PL8 陶农建 Arizona State University,USA Plasmonic-Based Electrochemical Current and Impedance Imaging and Applications 15:25-15:50 PL9 鞠熀先 南京大学 纳米生物传感新策略 15:50-16:15 PL10 钟传健 State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes 16:15-16:40 PL11 庞代文 武汉大学 量子点标记多靶单病毒示踪研究流感病毒侵染动态过程 16:40-17:05 PL12 谭蔚泓 湖南大学 生物传感的基石:分子识别 17:05-18:00 会议闭幕式 主持人:吴海龙 总结、颁奖、下一届代表发言 18:30- 晚餐 (自助餐) 2011年10月25日 星期二 全天 时间 内容 地点 06:20- 早餐 市外考察: 7:00 出发 选项 项目 备注1.市外考察I 韶山 (1天) 详见会议网站 2.市外考察II 凤凰 (2天) 详见会议网站 3.市外考察III 张家界 (3天) 详见会议网站 4.市内考察 长沙市内 附件:报展目录.doc
  • 移动传感分析让分析化学走入普通人的生活
    仪器信息网讯 2014年11月8-9日,第十二届全国化学传感器学术会议在成都都江堰举行。本次会议期间,中国科学院长春应用化学研究所现代分析技术工程实验室牛利研究员做了题为《移动设备上的传感分析》的报告。 中国科学院长春应用化学研究所现代分析技术工程实验室牛利研究员   智能移动设备近年来发展迅速,不仅市场占有率急剧增长,而且其功能愈来愈多样化。它们早已不再是简单的通讯设备,它们可以帮你监测环境质量,还可以是你的医疗助手,也可以随时变身为日常生活中的各种日用品。在这些引人注目的变化背后,离不开传感技术的默默支持。在此次报告中,牛利研究员介绍了为了满足日益增长的移动分析检测需求,国内外研究人员所开发的各类基于传感技术的智能移动设备分析检测方法。   据介绍,目前有很多研究者致力于将智能移动设备作为传感装置的探索,将其应用于不同的分析检测领域。依照其实现方式的不同,可将基于智能移动设备的分析检测方法分为三类:一是以智能移动设备内置的传感器为基础,配合相关的应用,直接对一些物理量或人体特征进行检测 二是以智能移动设备内置的传感器为基础,配合相关的检测附件,再加上相关的应用软件和数据处理算法,对被测对象进行检测 第三种是采用独立的外部便携式检测设备,两者之间通过有线或者无线的通信方式传递数据,或将智能移动设备内置的传感器与外部传感器相结合,实现更加复杂的检测功能。无论是采取哪种方式,新型的、高效的微型化传感器件都是移动分析检测设备的重要组成部分。   牛利表示,近年来研究者们在传感器的微型化、移动化方面开展了大量的研究,已经有一些商业化分析应用产品研制成功,并投入市场。如在生物医学方面的应用有:Runtastic 公司的心率检测应用,通过智能手机上的摄像头采集皮肤颜色变化来监测人的心率 华盛顿大学医学中心开发了一款 iPhone 应用程序,可以运用呼吸的音频算法来测量肺活量 在 iOS 设备底部连接便携式的酒精传感器件,可以准确地检测呼出气体中的酒精含量 根据反射式光学技术检测手指的血容量随着心脏功能的变化,可以获得用户心率、血液氧含量和呼吸频率等方面的信息。其他相关的应用还有皮肤含水量测试仪、超声波成像系统、智能家用血压计、便携式脑部扫描仪、手机听诊器、移动尿检实验室等。   在环境监测方面,也有不少基于移动设备和传感器的新应用。如墨迹推出的空气果(编者注:从公开消息渠道显示,截止9月23日销售2000台),采用了使用激光散射技术的传感器,可以用于监测PM2.5、二氧化碳、温湿度等数据 Alima内部嵌入了独特的气流响应传感器,可以将VOC、颗粒物、温湿度等数据结果和建议发送到移动设备上 另外还有紫外线强度监测、室内电磁辐射监测、水体氯气含量光分析、土壤中TNT光学检测、环境光芯片显微镜、鱼塘水体远程监控及无线传感网络等应用。   此外,还有一些特别的创新应用,如台湾Opaike公司推出激光演示器应用,通过在耳机插孔中插入一个精细的小光钉,即可用作演示文档翻页 苏黎世联邦理工学研究人员基于手机的惯性传感器将普通的Adroid智能手机变成了移动的3D扫描仪……   基于电化学传感器的移动检测系统有着许多优点,因为电化学分析方法本身具有检测灵敏度高、选择性好、设备简单、操作方便和应用范围广等优点,并且许多方法便于自动化,可用于连续、自动及遥控测量。   在报告最后,牛利研究员介绍了自己的课题组所做的一些电化学传感器研究工作,以及这些研究成果与移动设备的联接应用。如无线数据传输电化学系统、人体酒精含量电化学传感芯片、便携式双酚A电化学检测系统、多通道电位分析系统、毒害气体电化学传感分析,以及与其他单位合作推出的智能家居化学传感系统等。   虽然,目前这些产品销售并未显示出良好业绩,有些应用甚至给人以“无厘头”的感觉;但是,随着移动设备和传感器结合越来越紧密,产品、应用也会越来越完善,类似当年只能接、打电话的“大哥大”,最终能进化成今天功能繁多的“智能手机”;今天的智能移动设备与传感器结合之路,谁能说就一定没有“春天”?
  • 有机核壳纳米线实现化学气体高效传感
    中科院化学所光化学院重点实验室的科研人员利用有机纳米光子学材料,实现了高效化学气体传感,相关成果发表在近期出版的国际期刊《先进材料》杂志上,并被作为即将出版的《先进光学材料》的内封面文章重点介绍。   据了解,光波导传感器具有普通传感器无法比拟的灵敏度高、体积小、抗电磁干扰、便于集成等优点,在气体与生物传感中扮演着越来越重要的角色。   中科院化学所光化学院重点实验室的研究人员近年来一直致力于低维有机光子学方面的研究,围绕光子学集成器件中所需要的光波导、微纳光源、光子路由器等开展了一系列探索工作。   近来,他们又在有机纳米材料电化学荧光转换方面取得突破,相关工作证实了低维有机材料在纳米光子学领域的巨大潜力,为实现有机纳米光子学传感器件奠定了基础。   最近,在国家自然科学基金委、科技部和中科院的支持下,科研人员在前期工作的基础上,通过超分子自组装方法制备出二元有机复合纳米带,利用荧光共振能量转移中受体的杠杆效应,制备出高效的酸碱气体传感器。他们进一步将有机金属配合物的单晶纳米线引入电化学发光传感体系,实现了对生物分子多巴胺的高效、灵敏检测,相关工作发表在《先进材料》杂志上。   在此基础上,研究人员与活体分析化学实验室合作,制备出有机核/壳纳米结构作为光波导传感器,利用核壳之间的消逝波耦合,有效地放大了波导材料对气体的响应,从而实现了对H2O2气体的快速、高灵敏、高选择性的原位检测。
  • “感”知世界——创造独特的电化学传感器
    瑞士万通DropSens,电化学传感器定制和生产的理想合作伙伴。现在,电化学传感器进入市场的机会近在眼前。 瑞士万通DropSens生产的定制化电化学传感器具有可扩展、低成本的制造工艺,并且可应对大规模生产。 一个想法、一个应用或是一个初期研究设想都可以变成一个理想的,经过权威认证的,可立即投入市场使用的解决方案。该解决方案可以满足各种需求,无论您处于哪个领域。 瑞士万通DropSens具有设计和定制化电化学解决方案的能力,且可以应对大批量生产,为开发小型传感器和生物传感器创造了巨大的机遇。专业制造能力可以确保较低生产成本,高水平的产品质量和稳定性以及无缺货风险的交付能力,为许多潜在的项目和研究拓宽视野。 由于传感器的可定制性,因此可以进行多种修改和选择,例如空间分布、形状、面积、基材或多种材料的使用。这种多功能性使该传感器适合于各种应用,以测量各种参数。 其中包括人类健康、污染、食品和饮料信息、环境分析、水污染、非法药物检测、病毒、农业和畜牧业等。 电化学传感器的定制和大批量生产能力是进入市场,响应新的分析范式并获得强大而准确结果的有力保障,同时也是各个行业所迫切寻找的。从小规模的原型制作到大规模的传感器生产,瑞士万通DropSens将在全过程中提供支持:概念化、原型设计和具有高质量标准的结果,另外还有服务于全球,可靠和专业的技术团队。
  • 传感有情 相约桂林——第十三届全国化学传感器学术会议圆满闭幕
    p    strong 仪器信息网讯 /strong 2017年11月7日下午,为期两天的第十三届全国化学传感器学术会议(13th SCCS)进入尾声。闭幕式上,数百位参会代表重聚会场3层银河厅,聆听六位专家的精彩报告。主办方颁发“优秀口头报告奖”及“优秀报展奖”,同时宣布下届化学传感器大会的承办单位。 /p p style=" text-align: left " span style=" color: rgb(255, 0, 0) " strong   大会报告环节 /strong /span /p p style=" text-align: left " span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/852ade74-e251-4816-a83d-539fdb01fbfb.jpg" title=" 卢小泉.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 报告题目:功能纳米材料界面化学传感器的设计与应用研究 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 报告人:天津大学 卢小泉教授 /strong /span /p p   重金属离子广泛存在于人类的社会生活中,不仅严重污染环境,并且危害人体健康。团队基于可视化传感器设计理念,开发了一系列常见重金属离子可视化检测的策略,如氧化石墨烯负载Au/Fe sub 3 /sub O sub 4 /sub 纳米颗粒超灵敏度检测汞离子 氧化石墨烯负载的Pd纳米颗粒超灵敏度检测汞离子高选择性、超灵敏度、快速化检测金离子 高选择性、超灵敏度可视化检测三价铬离子等策略。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/af5853b8-a8e7-4aff-b9f5-976fdc68b928.jpg" title=" 孙立贤.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告题目:功能材料与化学传感器 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告人:桂林电子科技大学 孙立贤教授 /span /strong /p p   由于低维纳米粒子属于原子簇和宏观物体之间的过渡区域,内部原子存在有序-无序结构,因此低维纳米粒子具有独特的壳层结构,与体相材料的完全长程有序不同,导致低维纳米材料出现一系列特有的现象和性质。团队以纳米多孔材料如 MOFs、多孔碳为基体,复合金属纳米粒子、导电聚合物等材料,设计制备了新型多功能复合材料,用于传感器的研究,表现出良好的性能。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f33cfcc0-fc27-4d51-a594-72949aea68bd.jpg" title=" 逯乐慧.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告题目:有机纳米探针的设计及应用 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告人:中科院长春应化所 逯乐慧研究员 /span /strong /p p   黑色素广泛分布在人体的毛发、皮肤、肝脏的器官中,其主要成分为聚多巴胺。聚多巴胺能有效包裹在几乎任何材料的表面,团队利用这一特性,开发了新型聚多巴胺成像纳米探针,成功应用于癌症的诊断和治疗中。此外,团队开发了针对卵巢癌的诊断试剂盒,实现卵巢癌的及时、简便、快速诊断。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/b4147ef0-d2a6-4419-9c70-4c89e52bd6f8.jpg" title=" 张晓兵.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告题目:高性能荧光生物成像探针的研究 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告人:湖南大学 张晓兵教授 /span /strong /p p   过去几年团队采用了双敏感团策略、FRET机理以及跨键能量转移机理,构建了一系列比率型探针用于各类目标物的成像研究。如开发一系列双光子及近红外荧光成像探针,提高了成像分辨率及组织成像深度 利用具有分子内质子转移性质的HPQ化合物开发固态发光荧光成像探针,用于蛋白水解酶、碱性磷酸酯酶活性的检测及原位成像研究等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/dab9bc85-b5b4-4987-ab9c-3d75b7b1f6b0.jpg" title=" 牛利.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告题目:电化学传感及分析仪器设计 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告人:中科院长春应化所 牛利研究员 /span /strong /p p   团队针对电化学分析及传感技术方法现存问题,围绕环境分析、生物分析、食品分析等领域开展了一些研究工作,研制开发了多种用于有毒有害气体、水体离子监测、生物检测芯片、食品抗氧化分析等多种具有明显实际应用前景的实用化电化学及光电化学传感器件。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/abd5f0ac-74bf-43e5-8f08-9d03827dddba.jpg" title=" 吴海龙.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告题目:高阶化学传感与复杂体系精准定量 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 报告人:湖南大学 吴海龙教授 /span /strong /p p   吴海龙教授以团队相关研究工作为基础,结合三维荧光光谱(EEMs)、LC-DAD、LC-MS等多维多通道传感响应,着重报告化学多维校正策略及其在生命、环境、食品、医学等领域的高效定量分析应用,如人体液样中兴奋剂和抗癌药物及其代谢药物含量、环境废水中有害成分含量等快速定量分析。 /p p   span style=" color: rgb(255, 0, 0) " strong  闭幕式环节 /strong /span /p p   本次会议共安排口头报告41个,墙报展示146篇。两天的会议中,组委会特别安排报展集中参观讨论时间,邀请专家评委对口头报告和大会墙报评审打分,评选出优秀口头报告奖9名,优秀报展奖17名,现场颁发证书与奖金。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/b13381ef-c163-4cfa-ad1b-a8685a98a2e2.jpg" title=" IMG_0916_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 俞汝勤院士、章宗穰先生、沈国励先生颁发大会优秀口头报告奖 /strong /span /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/bfb29e42-730a-4839-b248-72ef9852a0de.jpg" style=" " title=" 三等奖_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/28d21075-eb36-444b-ad6f-66a0bd577ad9.jpg" style=" " title=" 二等奖_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/63d3d9fc-b62e-40dc-b7b0-e96bce67db01.jpg" style=" " title=" 一等奖.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 依次颁发大会优秀报展奖(一等级2名,二等奖5名,三等奖10名) /strong /span /p p   最后,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主任、湖南大学吴海龙教授宣读本次大会纪要,回顾两天学术交流取得的累累硕果。吴海龙教授宣布,下届全国化学传感器学术会议将由大同大学承办,于2019年在美丽大同再次召开。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/bc3283ae-10cc-47f8-a138-ef1ff0a62927.jpg" title=" 吴海龙.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 化学传感器专业委员会主任、湖南大学吴海龙教授宣读纪要 /span /strong /p
  • 吴海龙教授谈化学传感器专业委员会近期工作
    吴海龙教授在第十一届全国化学传感器学术会议开幕式上的近期工作汇报 化学传感器专业委员会主任委员、湖南大学吴海龙教授   相关新闻:第十一届全国化学传感器学术会议成功召开   尊敬的中国仪器仪表学会分析仪器分会副理事长兼秘书长刘长宽先生,尊敬的国家自然科学基金委庄乾坤主任,尊敬的俞汝勤院士、姚守拙院士,尊敬的各位嘉宾、各位代表,女士们、先生们:   上午好!   今天,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议,在湖南长沙胜利召开了。这是我国化学生物传感技术领域的又一次学术盛会,将为我国化学生物传感技术领域的科技人员和研究生们提供一个良好的交流学习平台和机会。首先,请允许我代表化学传感器专业委员会对于各位的光临,表示最诚挚的欢迎和衷心的感谢!   各位知道,化学传感器专业委员会作为中国仪器仪表学会分析仪器学会下设的一个专业委员会,是于1984年4月提出申请,后经中国分析仪器学会批准正式成立的。然而,化学传感器专业委员会的历史却可追溯到上世纪七十年代末的全国离子选择性电极协作组。全国离子选择性电极协作组开展了卓有成效的学术交流等工作,包括组织召开了1979年第一届全国离子选择性电极学术交流会(后被认定为第一届全国化学传感器学术会议)。在老一辈科学家高鸿、高小霞及汪厚基先生的支持下,确定创刊“离子选择性电极通讯”,即后来的“化学传感器”杂志。1984年在扬州组织召开了第二届全国离子选择性电极学术交流会(后被认定为第二届全国化学传感器学术会议),代表人数达到140,取得圆满成功。1985年5月,在上海师范大学举办了离子选择性电极国际学术讨论会,会议的组织者就是化学传感器专业委员会的老主任委员、名誉主任委员、我们今天第十一届全国化学传感器学术会议开幕式的主持人章宗穰先生。   化学传感器专业委员会于1985年成立后,在各位委员的共同努力下,首先于1986年11月在四川成都召开了第三届全国化学传感器学术会议。高小霞先生到会并作大会报告。会议征集内容已包括化学传感器研制,理论研究,测量仪器研制和配用微机技术,数字模拟、数学方法及软件方法,以及在工业、农业、环境科学、生理医学、卫生防疫、水文地质、海洋气象、国防、基础科学研究等领域中的应用研究,还有生产技术经验和改进等。会议取得圆满成功。1988年9月,第四届全国化学传感器学术会议在湖南省大庸市即现在的张家界市举行,此会由湖南大学具体承办。当时出席会议的有来自全国92个单位的160名代表。中国仪器仪表学会分析仪器学会副理事长史久泰高级工程师和分析仪器学会化学传感器专业委员会名誉主任汪厚基教授出席了会议。会议录用论文187篇,其内容涉及化学传感器和离子选择电极各分支领域的发展趋势,各种新的化学传感器的研制,化学传感器的基础理论研究和在热力学研究等方面的应用,生物敏传感器和药物电极的研究,化学传感器在国民经济各个领域中的应用;微型计算机在研究与应用中的开发以及新型智能化测量仪器的研制等。可见,当时我国化学传感器研究已达到相当高的水平。   此后,我们化学传感器专业委员会先后在 1991年的武汉(5)、1994年的太原(6)、1997年的上海(7),2000年的长沙(8)、2005年的扬州(9)以及2008年的重庆(10),召开了第五届到第十届全国化学传感器学术会议,均取得圆满成功。我们的系列学术会议几乎与起源于1983年在日本福冈召开的国际化学传感器系列会议同步,可谓反映见证了我国化学传感器研究领域的发展历程。回忆过去,我们今天更加深切怀念我国著名分析化学家高小霞先生、深切缅怀我国化学传感器领域先驱者汪厚基先生和殷晋尧先生、深切缅怀为我国化学传感器发展做出突出贡献的苏渝生先生等各位。   2005年的扬州会议,成立了以中青年科技人员为主体的新一届化学传感器专业委员会,在2008年的重庆会议期间,对化学传感器专业委员会领导成员进行了个别调整。本届专业委员会先后组织了于重庆举行的第十届和此次于长沙举行的第十一届全国化学传感器会议。今天召开的第十一届全国化学传感器学术会议,收到了来自海内外的近200多位专家、学者及青年才俊的稿件,涉及化学生物传感技术各个领域的发展趋势和前沿动向,可谓盛况空前。此次会议的会务工作由湖南大学化学生物传感与计量学国家重点实验室承担。我们衷心感谢各位的大力支持。   本次大会共征集论文215篇,参会人员将超过350人(最后统计与会人数超420人)。非常值得一提的是本届大会参会人员老中青三代齐聚一堂,包括曾为我国化学传感器发展做出突出贡献的张国雄先生、丰达明先生、吴国梁先生、陆君涛先生、余瑞宝先生等,他们专程与会,我们表示热烈欢迎。同时大会还有江苏江分电分析仪器有限公司、天津兰力科化学电子高技术有限公司、天津德尚科技有限公司、深圳市凯特生物医疗电子科技有限公司、台湾Zensor R & D Co,Ltd 、岛津公司等多家分析仪器厂家和Springer公司、中国科学杂志社、仪器信息网等相关出版公司和媒体企业代表参加。他们不仅为会议提供了经费支持,更显示了企业界对传感技术研究开发的浓厚兴趣和积极参与的热情。本次大会可谓我国化学传感器领域的一次空前盛会,充分显示了多学科、多技术交叉的特色和向产业化推进的美好前景。   这次大会学术气氛会非常浓厚。共安排11个大会报告、42个分会邀请报告、58个口头报告,还有100多篇论文以墙报形式进行交流。本次会议还将对以青年学者和研究生为主的优秀墙报论文作者进行奖励。评选工作将由专业委员会聘任的评选小组负责进行,也希望各位与会代表提出建议。   依据学会章程,任期已满五年的本届化学传感器专业委员会和《化学传感器》刊物编委会成员都将换届。章宗穰、张国雄、金利通等多位专业委员会及编委会中的年长成员在会前多次提出了不再担任专业委员会和编委会工作的动议。希望由中青年同事承担起学会的全部工作。这一动议将在专业委员会和编委会委员的联席会议上进行讨论。与此同时,也将适当补充热心于学会工作的新成员。可以预期,经过调整和补充后的新一届学会和刊物领导成员的努力和全国同行的支持下,一定会将学会和刊物工作推向新的阶段。在此,我们也向离开学会及刊物工作的年长委员表示由衷的谢意和敬意,恭祝各位前辈健康长寿。   会议期间,还将在单位申请的基础上,确定下一届学术会议的承办单位。欢迎有意承办的单位提出申请。   10月的长沙,天气虽有些凉意,但山水洲城的美丽景色,一定会给各位与会代表留下深刻印象。我衷心希望各位,在这人文、自然和谐的氛围中,将大会开成一个交流学术思想、促进学术创新,增进学术友谊的会议。   最后,预祝第十一届全国化学传感器学术会议圆满成功!谨祝各位在长沙身体健康、万事如意!   谢谢大家!
  • 第十二届全国化学传感器学术会议盛大开幕
    仪器信息网讯 2014年11月8日,成都都江堰,第十二届全国化学传感器学术会议盛大开幕。本届会议由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,四川大学、西南大学承办,湖南大学化学生物传感与计量学国家重点实验室、江苏江分电分析仪器有限公司协办。中国科学院俞汝勤院士、中国仪器仪表学会分析仪器分会理事长关亚风教授、化学传感器执行主编沈国励教授等出席开幕式。开幕式由会议组织委员会主席、四川大学化学学院院长余孝其教授主持,四川大学校长助理郭勇教授致欢迎辞,化学传感器专业委员会主任委员吴海龙教授和中国仪器仪表学会分析仪器分会副理事长兼秘书长刘长宽先生分别讲话。此次会议盛况空前,相比上一届规模扩大3成,学术报告及参会人员都超过预期。   第十二届化学传感器学术会议开幕   四川大学化学学院院长 余孝其 主持开幕式   四川大学校长助理 郭勇 致欢迎辞   郭勇代表承办方,向与会专家和代表致以最热烈的欢迎!对本次会议的顺利召开予以支持的专家、教授和积极参与服务的同学们表示衷心的感谢!28年前的11月,首届化学传感器暨第三届离子选择性电极学术交流会在成都召开 今天,化学传感器学术会议再次在成都召开,感谢大家对四川大学的信任!希望会议给同学们的学习生涯留下深刻的印象,促进同学们在崇尚学术、追求卓越的道路上,坚持奋斗!期待专家们报告精彩、与会代表深入探讨,让参会各方更好地了解、合作,促进我国化学传感器科技领域的发展。   化学传感器专业委员会主任委员 吴海龙 讲话   吴海龙就近年化学传感器专业学术委员会的工作情况作详细介绍。回顾了 “化学传感器专业委员会” 成立30周年来的发展历程,反映了我国化学传感器领域后继有人和欣欣向荣的新面貌。特别介绍了近些年专业委员会所取得的突出成绩,2014年被中国仪器仪表学会分析仪器分会授予“先进单位”称号 2012年,《化学传感器》刊物被得到新闻出版总署认可的“中国学术期刊国际引证报告(2012)”列为“2012中国国际影响力优秀学术期刊”。   中国仪器仪表学会分析仪器分会副理事长兼秘书长 刘长宽 致辞   刘长宽在致辞中表示,本次学术大会共收到390多篇论文,创下历史之最!这代表了中国化学传感器行业的欣欣向荣的景象。   本次会议将安排13个大会报告 共设3个分会场,安排42个分会邀请报告、60个口头报告,还有逾260篇论文以墙报形式进行交流,并将开展青年优秀论文和优秀报展评奖活动。   分析仪器分会理事长 关亚风 主持学术报告大会   湖南大学院士俞汝勤   报告题目:《化学传感器早期学术活动回眸及对分析化学学科发展思考》   俞汝勤从早期组织离子选择性电极读书会的那一刻开始,到今天第十二届化学传感器学术会议的举办,让与会代表沉浸在中国化学传感器的学术交流史话中,中间虽有很多的困难但更有不懈的追求 抒写了化学传感器领域学术交流的精彩篇章,留下了中外学术交流史上的一段段佳话。俞汝勤院士精彩的报告,和与会代表一起分享与殷晋尧先生访问欧洲的往事,告诫青年学子要学好中文。也带着与会代表一起走进剑桥牛顿故地,去深刻理解分析化学发展未来,要重视分析化学基础理论建设。   上午,大会还安排了中国科学院长春应用化学研究所研究员牛利作《移动设备上的传感分析》报告,以犀利的言语点评国内外不同类型传感器在移动APP、移动检测产品(大部分指手机或PAD)中的应用情况,如,比较靠谱的皮肤含水量测量,也有奇葩的鬼魂电磁场探测器……中国科学院长春应用化学研究所研究员逯乐慧作《纳米探针的设计及应用》报告,介绍了新型纳米造影剂探针和黑色素为载体的成像探针 香港理工大学教授黄国贤作《Biosensing with Novel Fluorescent Agents-Construction of Biosensors for Antibiotics》报告 中国科学院上海应用物理研究所研究员樊春海作《纳米探针的设计及应用》报告 西南大学材料能源学部教授李长明作《纳米生物传感》报告。   分会场   下午,大会将组织3个分会场,共安排22个特邀报告和27个口头报告。如,《生物分子界面行为与生物传感》(南京大学夏兴华)、《生物样miRNAs定量检测》(华东理工大学 叶邦策)、《光电化学生物传感》(南京大学 朱俊杰)、《激光诱导荧光新型生物传感器》(四川大学段忆翔)、《双电位电致化学发光生物分析》(南京大学 徐静娟)、《高阶化学传感与多维校正》(湖南大学 吴海龙)、《纳米材料制备及生物传感应用》(武汉大学 何治柯)等。   9日的学术报告同样让人充满期待!南京大学陈洪渊院士、大连化学物理研究所关亚风研究员、湖南大学化学生物传感与计量学国家重点实验室主任谭蔚泓教授、南京大学生命分析化学国家重点实验室主任鞠幌先教授、武汉大学庞代文教授,国家纳米科学中心蒋兴宇教授、中南大学周飞艨教授等将继续进行大会邀请报告。还有3个分会场的20个特邀报告和33个口头报告。  与会代表合影留念
  • 第十二届全国化学传感器学术会议暨闭幕式
    仪器信息网讯 11月9日,第十二届全国化学传感器学术会议进入后半段。会议由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,四川大学、西南大学承办。本届会议吸引全国520多位行业人士到会。9日的学术报告同样精彩纷呈!南京大学陈洪渊院士、大连化学物理研究所关亚风研究员等7个特邀报告。此外,还有3个分会场的20个特邀报告和33个口头报告。下午五点半,举行了简短的闭幕式,并颁发第十二届全国化学传感器学术会议“青年优秀论文奖”、“优秀报展奖”(详见:全国化学传感器学术会议颁发青年优秀论文奖等奖项)。   中国科学院院士 陈洪渊   报告题目:回眸审视 放眼未来——分析化学面临的机遇与挑战   陈洪渊以19/20世纪之交物理学的两朵乌云作例,21世纪化学天空上的“乌云”就是:人类面临的环境和气候越来越糟,资源越来越少,资源/石油/污染/温室气体都是分子,而化学是研究分子的科学,这就是化学天空的乌云。如何拨开化学天空的“乌云”?分析化学学科的发展经历了三次巨大变革,21世纪科学发展呈现两大趋势:学科高度分化、理论高度统一,分析学科界要对化学重新定义、重视学科交叉发展。   大连化学物理研究所研究员 关亚风   报告题目:表面热电离/场发射离子化检测器/传感器——超痕量有机胺检测   超痕量有机胺检测能满足三大需求:神经毒剂预警、非接触检测含胺基毒品、非接触测量海鲜和肉食品鲜度,关亚风介绍了新设计的SID结构和原理。关亚风和大家分享了将用于2018年发射空间站上使用的舱内有害气体分析仪。依靠20多年的研究积累,他在2012年接受的2个模块(采样/控制和色谱模块)研制任务取得阶段性重要成功,工程样机一次性通过鉴定级力学试验!关亚风说:“工程样机经受住了17.8G三维正弦震动和1200G冲击震动考验”。与美国同类产品相比,工程样机性能相同,工作方式更加合理,同时工程样机在重量、功耗、体积方面大大领先!   湖南大学化学生物传感与计量学国家重点实验室主任谭蔚泓教授作《双光子含氟分子信标用于细胞内mRNA成像》报告 南京大学生命分析化学国家重点实验室主任鞠幌先教授作《生物分析中的信号放大与传感策略》报告 武汉大学庞代文教授作《基于量子点标记的纳米生物检测与成像新方法》报告 国家纳米科学中心蒋兴宇教授作《基于金纳米颗粒和微流控的生化传感器》报告 中南大学周飞艨教授作《生物传感与表面分析》报告。   随着最后一个大会报告的结束,在下午五点半,举行了简短的闭幕式。闭幕式由会议组委会主席余孝其教授主持。中国科学院院士、湖南大学俞汝勤教授、中国科学院院士、南京大学陈洪渊教授、中国仪器仪表学会分析仪器分会理事长关亚风教授、化学传感器专业委员会主任委员吴海龙教授、化学传感器专业委员会副主任委员、武汉大学庞代文教授、化学传感器专业委员会秘书长吴霞琴教授、四川大学校长助理郭勇教授出席闭幕式。闭幕式上颁发了第十二届全国化学传感器学术会议“青年优秀论文奖”、“优秀报展奖”。化学传感器专业委员会主任委员吴海龙教授作会议总结。   会议组委会主席 余孝其 主持闭幕式   化学传感器专业委员会主任委员 吴海龙 作会议总结   吴海龙在会议总结中说到,本次会议共注册代表逾410人。实际与会人数超520人,为历届会议与会人数之最。围绕8个主题进行了深入和自由的交流:(1)化学与生物传感器研究进展 (2)化学传感技术理论研究 (3)纳米技术与化学传感器 (4)新型化学传感器研究 (5)化学传感器的微型化、系统集成及产业化 (6)生物芯片和微流控芯片 (7)传感器的信号处理及远端传输 (8)化学传感器在生命、环境、食品、医学、药学等领域的新应用。全面地展示并交流了化学生物传感技术及其相关领域的各种原理、应用、最新进展以及成果,充分显示了多学科、多技术交叉的特色和向产业化推进的美好前景,有力促进了我国化学生物传感技术工作的发展,为我国化学生物传感技术设备和仪器的研发指明了方向。本次会议得到了多家企业单位和网络媒体的支持和帮助,显示了企业界和媒体对化学生物传感技术研究开发的浓厚兴趣和积极参与的热情 也构筑了企业界与学术界协同努力的有效桥梁 仪器信息网也对会议情况进行了详尽的实时报道。   最后,余孝其代表会议承办单位,对出席本次会议的全体代表表示衷心的感谢,对于会议共同承办单位西南大学袁若院长他们付出的努力及大力支持表示衷心的感谢,对于为此次大会圆满召开做出突出贡献各支持单位表示衷心的感谢!最后,余孝其宣布第12届全国化学传感器学术会议闭幕!
  • 第十一届全国化学传感器学术会议成功召开
    仪器信息网讯 2011年10月23日,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议在湖南长沙市芙蓉华天大酒店成功召开;来自各界的350余位代表参加了此次会议,整个会场座无虚席。 会议现场   上午八点三十分,在芙蓉华天大酒店—华天全厅举行了简短而隆重的开幕式,大会由化学传感器专业委员会老主任委员、名誉主任委员、上海师范大学章宗穰教授主持。 湖南大学副校长曹一家教授致辞   湖南大学副校长曹一家教授致欢迎辞。曹校长在致辞中代表湖南大学对各位的到来表示热烈的欢迎,对长期以来关心和支持湖南大学的朋友们表示衷心的感谢,祝愿各位工作愉快,身体健康! 化学传感器专业委员会主任委员、湖南大学吴海龙教授做工作汇报   化学传感器专业委员会主任委员、湖南大学吴海龙教授向大会作了化学传感器专业委员会的近期工作汇报。吴教授回顾了化学传感器专业委员会的发展历史,介绍了专业委员会的主要工作。同时,也介绍了本次会议的主要目的和重要意义。 中国仪器仪表学会分析仪器分会副理事长兼秘书长刘长宽先生致辞   中国仪器仪表学会分析仪器分会副理事长兼秘书长刘长宽先生在讲话中肯定了化学传感器专业委员会的工作。并建议让专家和企业沟通,使科研成果产业化、工程化,将我们自己研发出来的技术推向市场。另外刘先生还介绍了仪器仪表学会最近的工作:针对食品安全及检测问题给工信部和国务院建议在全国建立3-5个食品质量安全检测示范中心,为食品生产企业的实验室建设做以示范,帮助他们培训人员。此建议得到国务院和工信部的重视,目前正准备立项。 湖南大学化学生物传感与计量学国家重点实验室副主任蒋健晖教授致辞   湖南大学化学生物传感与计量学国家重点实验室副主任蒋健晖教授介绍了化学生物传感与计量学国家重点实验室的基本情况、发展历程及科研成果,并希望各界人士就中国分析化学发展,特别是化学传感前沿进行交流和讨论,共同推动重点实验室的发展。 上海师范大学章宗穰教授主持开幕式   最后,上海师范大学章宗穰教授也回忆了化学传感器专业委员会发展的几个重要时间节点和取得的一些成绩。目前化学传感器专业委员会已经组织或参与组织了三次国际会议,并建成包括湖南大学化学生物传感与计量学国家重点实验室在内的4个与化学传感器研究有密切联系的国家重点实验室。   开幕式之后,进入大会报告阶段。本次会议共包括11个大会报告,42个分会邀请报告,58个口头报告以及100多篇论文报展。 姚守拙院士(湖南大学) 报告题目:New Functional Materials for Chembiosensing   姚守拙院士在报告中介绍了21世纪以来化学和生物传感技术特别是电化学生物传感技术的发展现状,并介绍了课题组在新功能材料的研发及应用方面的工作,主要包括:DNA和相关生物分子功能化的金纳米粒子之间的相互作用、功能化的TiO2纳米管、生物相容性聚合物、金属纳米粒子和碳纳米管的组装等各方面的研究和应用。 杨秀荣教授(中科院长春应用化学所) 报告题目:双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子   杨秀荣教授介绍了生物分子之间相互作用的研究方法及相关问题。主要介绍了课题组相关工作:利用双偏振干涉测量(DPI)技术研究了DNA与溴化乙胺、精胺的相互作用,DNA-药物相互作用,抗癌药物柯喃因与多腺嘌呤DNA的相互作用及柯喃因的检测等相关问题。此外还介绍了汞离子(Hg2+)与多胸腺嘧啶DNA的相互作用及Hg2+的检测,并预期这种基于功能化脱氧核酸为特异性识别元素的传感策略能推广到其它各种分析物的检测,并且能同时研究其相互作用,更深入地了解其结构特征。 庄乾坤先生(国家自然科学基金委员会) 报告题目:国家自然基金委分析化学学科发展战略与项目资助情况   庄乾坤先生首先介绍了国家自然科学基金的定位,即引导源头创新和基础研究,并且强调了源头创新、科技人才和创新环境三大策略。然后详细介绍了基金资助的研究项目、人才培养和科研环境等三大系列。其中特别指出在人才培养系列中国家将添加“优秀青年科学基金”,以鼓励和推动青年工作人员的科研创新。庄先生在报告中还分析了分析化学近年来的财政投入增长情况,并指出社会越发展,分析化学就越重要。最后,庄先生鼓励大家申请国家项目,但是同时也提醒大家要正确对待项目申请过程和结果,要清楚“为什么做,如何做,能不能做”。 周飞艨教授(加利福尼亚州州立大学洛杉矶分校,中南大学) 报告题目:Electrochemical and Surface Plasmon Resonance Techniques for Disease Biomarker Detection and Studies of Oxidative Stress in Neurodegenerative   周飞艨教授主要介绍了电化学及表面等离子共振技术(SPR)在生物标志物检测等方面的情况,并重点介绍了SPR在神经变性紊乱及癌症标志物方面的研究和应用及电化学技术在金属诱导氧化还原应激等方面的研究。 俞汝勤院士(湖南大学) 报告题目:化学生物传感研究与探索浅议   俞汝勤院士在报告中围绕影响化学生物传感研究进程中学术界的一些重要事情,包括近期动态,指出了提升相关研究创新水平等若干问题。俞院士强调科研当中的“仿制”很大程度上限制了创新思维,我们在做科研的过程中要坚持“以需求为导向”,不要一味的模仿。此外俞院士还结合中国科研成果介绍了2011年诺贝尔化学奖的故事,指出“错过但不要遗憾”,我们虽然错过拿奖,但是没有错过前沿的科技。 会议代表合影
  • 化学传感材料与分析仪器化集成研究获新成果
    中科院长春应化所研究员牛利课题组经过5年研究,在“基于纳米结构复合材料的化学传感器件及其分析仪器化集成设计”研究上取得了系列创新性成果,为我国科学仪器创新作出了积极贡献。   据介绍,化学传感器是集电子科学、化学科学和材料科学于一体的高技术器件,它可将物理量、化学量转变成便于利用的电信号,并提供给集成的仪器进行信息分析和处理。因此,它不仅可广泛应用于环保、医疗、公共安全、工业过程控制、临床等领域,在基础研究中也占有独特的地位。   有关专家认为,新型化学传感器及微型化、集成化方面的研究将是未来5~10年应重点关注的科学研究领域之一。特别是新型纳米复合材料及微加工、微芯片技术的使用,将对新型化学传感器的开发起主导作用。   牛利课题组于2004年开始了该项目的研究。他们以为新型化学传感器提供新材料为目标,以纳米结构复合材料为突破口,系统研究了纳米结构复合材料设计、合成、性能、微结构等特征,深入探索了基于导电聚合物、碳纳米、金属纳米、离子液体等新型纳米结构复合物材料的化学及电化学制备方法,并成功合成制备了多种新型纳米结构材料。这些新型的纳米结构复合材料显示了复杂、特殊的新性能,如高导电性、高生物兼容性、表面增强活性、荧光增强/淬灭特性、电催化活性等,从而为新型化学传感器的研发与制备提供了有力的材料支撑。以此为基础,他们通过纳米加工与组装,如分子印迹等技术手段,系统深入地研究了纳米结构复合材料及其组装后的宏观纳米复合体的化学传感特性,着力解决了高通量分析、高灵敏度、高选择性检测分析、实时在线监测分析、快速时间反应等复杂组分分析传感中的重要科学问题,成功制备出多种新型化学敏感材料,并与分析仪器化集成设计相结合,研发出了多种新型电化学检测/监测仪器设备,不仅为我国科学仪器创新作出了积极贡献,也为纳米结构复合材料的合成制备、衍生与掺杂、化学传感芯片的制备及筛选等研究工作的深入开展提供了有力支撑。
  • 十余位院士领衔,两百位学者共话“化学生物传感新时代”
    2021年11月13日,第十五届全国化学传感器学术会议(15th SCCS)于线上开幕。本次会议以“化学生物传感新时代”为主题,安排了16位大会邀请报告、176位分会场邀请报告和44位口头报告,内容涵盖化学与生物传感器、生物分析化学、纳米技术与化学生物学、环境分析化学、传感阵列、生物芯片和微流控芯片、化学生物传感器的微型化、系统集成及产业化、分析仪器研发等热点领域。会议首日,国家自然科学基金委化学部王春霞、中科院长春应化所汪尔康、中科院长春应化所董绍俊、湖南大学谭蔚泓、南京大学陈洪渊、中科院生态环境研究中心江桂斌、清华大学李景虹、中科院上海硅酸盐研究所施剑林、中科院精密测量科学与技术创新研究院刘买利、中科院大化所张玉奎、中科院长春应化所杨秀荣、香港中文大学(深圳)唐本忠、国家纳米科学中心赵宇亮、大连理工大学彭孝军、上海交通大学樊春海、东南大学顾宁等分别带来了精彩报告,吸引超千人实时在线观听,仪器信息网视频号约三千人次点播。 国家自然科学基金委化学科学部化学测量学项目主任 王春霞研究员报告题目:《化学测量学 学科发展与NSFC改革》王春霞研究员在报告中分析了化学测量学2018年-2020年面上项目申请代码分布,2018年-2021年面上项目各代码申请与资助分布,人才项目领域分布情况等,并对化学测量学领域的特征与前沿问题进行了讨论。她讲到,当前我国化学测量学的发展注重方法与原理创新,以生命分析为研究重点,与尖端分析仪器装置的研发紧密结合,已初步建成一支高素质的研究队伍。 中科院院士、发展中国家科学院院士、中国科学院长春应用化学研究所研究员 汪尔康报告题目:《极谱学发展促进现代电分析化学》汪尔康院士在报告中回顾了极谱学与现代电分析化学发展历史,并对电分析化学的发展趋势做出了展望。此外,还重点介绍了在本领域取得的主要研究进展和重要成果。汪院士于20世纪70年代研制成功我国第一台大型脉冲极谱仪,80年代后又首创多功能新极谱仪。先后研制成功经典极谱仪、各类示波极谱仪、方波极谱仪和示波方波极谱仪以及循环伏安仪和油/水界面循环伏安仪等多种电分析仪器等。20世纪末,研制出国际首创、具有我国自主知识产权的“毛细管电泳/电化学发光检测仪”。汪院士重视水质监测仪的研制,首创生化需氧(BOD)原位在线监测方法和装置,并与吉林光大企业合作,研制出全套水质参数监测仪,成功在全国范围多个站点推广应用。 发展中国家科学院院士、中国科学院长春应用化学研究所研究员 董绍俊报告题目:《生物燃料电池与自供能生物传感器的研究发展》董绍俊院士围绕电化学界面微结构与宏观间的相应关系,早在80年代初就率先在国内开展了化学修饰电极的研究至今。面向国际科学发展前沿,董院士开展了分子自组装有序膜修饰电极研究,在电极界面修饰、自组装、表征、界面电化学理论和应用等方面开拓发展,取得了系列创新成果。近期,董院士发展了多类生物燃料电池(BFC)及自供能生物传感器,将生物计算与生物燃料电池相结合,不仅发展了能够模拟布尔逻辑的生物计算体系,还设计了以医疗检测为目的的自供电逻辑适配体传感器等。报告中,董院士重点介绍了团队在生物燃料电池与自供能生物传感器方向的研究进展。 中科院院士、发展中国家科学院院士、湖南大学教授 谭蔚泓报告题目:《人脸识别式的诊断》谭蔚泓院士在报告中提出,人脸识别式的诊断是疾病诊断的未来。人脸识别是最有效的多参数表征方法,而多参数特征测定最能有效提高识别和诊断的精确性。开发分子识别工具(蛋白、核酸多组学信息)和发展新型数据算法(提高多参数分析性能),帮助获取疾病多靶标表征和对获取的多靶标参数进行有效解析,进行疾病分析分型,可实现疾病的精准治疗。此外,疾病精准诊断还需要多参数、多维度、新靶标、产生大量数据,人工智能利用高效计算模式,模拟人类思维,自动分析与判别,大大推动了疾病诊断+治疗的新范式。 中科院院士、南京大学教授 陈洪渊报告题目:《智能传感技术的今天与明天》陈洪渊院士在报告中强调了智能传感器在智能制造中的重要性,全面分析了传感器的发展现状与未来趋势,并重点介绍了纳米孔道单分子智能传感器的发展。疾病的发生往往是从单个分子、单个细胞的异常变化开始的,单个体异质性与生命活动密切相关,因此亟需发展针对单分子的化学测量技术,纳米孔道单分子智能传感器应势发展。报告中,陈院士分享了团队面向全民健康和精精准诊疗对生命分析化学提出的新挑战,在纳米孔道电化学传感器、纳米孔道测序传感器和纳米孔道荧光传感器等方面的研究成果。此外,陈院士讲到,未来智能传感技术将在实时动态表征核酸适配体或核酸酶的结构和构效关系中取得重要应用。 中科院院士、发展中国家科学院院士,中科院生态环境研究中心研究员 江桂斌报告题目:《成组毒理学与细胞测试技术》江桂斌院士在报告中介绍了环境和食品中有毒化学污染物研究面临的科学难题以及本领域的发展态势,讲述了高通量多功能成组毒理分析系统总体设计思路,并分享了团队取得的系列重要成果,如ITA小型机的研制和市场推广。此外,江院士提到,在生命科学飞速发展的今天,如何在低剂量下促使细胞反应发生,通过什么手段缩短细胞培养时间,如何找到和发现更多毒性靶点,能否找到替代细胞反应的传感器,计算毒理和机器学习如何发挥作用等问题,还需要大家来思考,以实现分子毒理学的跨越进步。 中科院院士、清华大学教授 李景虹报告题目:《单细胞分析化学》李景虹院士讲到,当前生物学研究已进入“单细胞生物学”研究阶段,而单细胞具有组分多、含量小、结构复杂、其生命活动涉及微观层次的动态分子过程等特点,现有的生命分析化学手段已经无法满足单细胞复杂体系的分析需求,因此需要分析化学家提供高时空分辨、多组分、高通量、实时动态的新方法和新工具,来迎接单细胞生物学时代的到来。在此背景下,李院士团队在RNA高通量成像、单分散纳米金颗粒的线粒体氧化应激放大器等方面做了一系列工作并取得了重要进展。李院士讲到,单细胞分析技术将助力精准医学,如单细胞水平疾病早期预警以及单细胞水平个性化药物筛选。 中科院院士、中科院上海硅酸盐研究所研究员 施剑林报告题目:《纳米催化医学与纳米生物检测》“纳米催化医学”是由施剑林院士团队提出的一个新的研究方向,旨在通过响应肿瘤部位的特异内场微环境或外源性激光、超声作用场,利用无毒/低毒纳米材料所引发的瘤内原位催化反应,高效实现肿瘤细胞的氧化损伤及细胞死亡。该催化肿瘤治疗方法不使用高毒性化疗药物,具有高效、特异性强、安全性高的特点。施剑林院士在报告中分享了团队在该方向取得的多项重要研究进展。 中国科学院院士、中科院大化所研究员 张玉奎报告题目:《薄膜基光化学传感技术及其应用》张玉奎院士在报告中讲述了光化学传感的研究进展,提到现有食品安全快速检测技术的关键问题、中低毒农药快速检测的关键问题、叠层技术实现病毒快检的科学问题等,并分享了团队基于以上问题在光化学传感、农药残留快速检测和病毒快速检测方面的研究成果。 中科院院士、中科院长春应化所研究员 杨秀荣报告题目:《基于双偏振干涉方法的生物分子相互作用研究》双偏振干涉方法是21世纪发展起来的研究生物分子相互作用的分析方法,是基于生物分子在相互作用过程中质量、厚度、密度的变化而探讨生物分子相互作用的定量关系、分析构象变化,以及动力学的分析方法。杨秀荣院士在报告中分享了本团队基于双偏振干涉方法在DNA/抗癌药物的相互作用、适配体/金属离子Cd2+的相互作用、Aβ蛋白/Lilrb2受体之间的相互作用、以及Aβ蛋白/Apo E蛋白亚型的相互作用等方面取得的系列研究成果。杨院士认为,双偏振干涉是实时、在线免标记研究生物分子相互作用的有力工具,对于深入认识生命现象、设计和开发新药具有重要意义,此外,双偏振干涉方法还可应用于生物纳米、表面科学、药物发现、脂质研究等不同领域。 中科院院士、发展中国家科学院院士 香港中文大学(深圳)教授 唐本忠报告题目:《Sensing by AIEgens》唐本忠院士在2001年首次提出AIE概念,它与传统发光材料相反,AIEgens在稀溶液中只能微弱发射或无荧光发射,但在聚集体或固态中荧光发射增强。在报告中,唐本忠院士介绍了聚集诱导发光(AIE)的工作机制,并分享了团队在AIE发光剂(AIEgens)的研究和应用方向取得的一系列重要成果。 中科院院士、发展中国家科学院院士、国家纳米科学中心主任 赵宇亮报告题目:《生物表界面化学信息测量方法与应用》赵宇亮院士在报告中讲到,由于纳米生物分析方法学面临着诸多挑战,基于此,当前已发展出不同的纳米生物创新分析方法,如融合大科学装置的生命分析方法,利用X射线成像分析技术,建立体内ADME/Tox特征分析方法,可实现AuNPs在组织器官之间转运的2D成像分析等。此外,赵院士认为,新的分析测量方法,才能支撑科学创新研究,如纳米探针法,靶向识别细胞受体的高分辨成像。在报告的最后,赵院士提到国家药监局纳米药物重点实验室,该实验室定位于纳米技术应用和医药产品的研究与评价,建立纳米技术的医药产品研究评价体系,探索纳米技术-产品性能-生物功效内在规律,将促进我国纳米医药产业创新发展。 中科院院士、大连理工大学教授 彭孝军报告题目:《智能染料分子:从靶标识别到肿瘤诊疗》彭孝军院士提出了通过分子智能设计,提升分子识别、肿瘤早期诊断、手术引导与光/声动治疗等应用功能的科学理念,并带领团队,通过染料分子创新设计和性能调控研究,开发出荧光识别和传感性能优异的多种染料探针,攻克了相关染料的耐受性和清洁制造工艺等工程难题,形成了信息打印染料和血液细胞分析用染料等系列专利技术,且部分已得到产业化应用。彭院士在报告不仅分享了本团队在智能染料分子方向的研究进展,也对智能响应医学诊疗染料未来作出了展望。 中科院院士、上海交通大学教授 樊春海报告题目:《框架核酸:从分子创造到智能制造》樊春海院士在报告中介绍了基于框架核酸开展纳米构筑、单分子分析和纳米机器人方面的最新研究进展。框架核酸不仅制备简单、结构可控,而且易于实现精确的生物功能化,尤其是将框架核酸与无机纳米粒子结合起来,可以进一步拓宽分子机器的功能多样性。 本次会议为期3天,第二日和第三日分别有6、5个分会场同时进行,两百多位学者继续共话“化学生物传感新时代”,欢迎大家持续关注。
  • 第十二届全国化学传感器学术会议召开在即
    由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,四川大学、西南大学联合承办,江苏江分电分析仪器有限公司、湖南大学化学生物传感与计量学国家重点实验室协办的第十二届全国化学传感器学术会议将于2014年11月7-10日在四川省成都市如期举行。本届学术会议旨在促进化学传感器的学术交流与发展。 据会议组委会相关人士介绍,本次会议录用论文约300篇。会议将邀请13位专家作大会邀请报告,具体名单如下: 会议期间将举行化学生物传感技术领域重大、前沿领域的专题研讨会。与会科技人员将交流展示化学生物传感技术研究工作中的新成果、新进展、新技术、新经验。会议期间将颁发大会优秀论文奖及学生优秀墙报奖。 会议指南下载
  • 浅析电化学型气体传感器的工作原理和检测方法
    p   要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 /p p strong 1.电化学型气体传感器的结构 /strong /p p   电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 /p p   电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。 /p p strong 2.电传感器工作原理 /strong /p p   电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。 /p p strong 表1 各种电化学式气体传感器的比较 /strong /p table cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 种类 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 现象 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 传感器材料 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 特点 /span /strong /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 恒电位电解式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 气体扩散电极,电解质水溶液 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 通过改变气体电极,电解质水溶液,电极电位等可测量CO、H sub 2 /sub S、HO sub 2 /sub 、SO sub 2 /sub 、HCl等 /span /p /td /tr tr td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子电极式 /span /strong /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电极电位变化 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子选择电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量NH sub 3 /sub 、HCN、H sub 2 /sub S、SO sub 2 /sub 、CO sub 2 /sub 等气体 /span /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电量式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量Cl sub 2 /sub 、NH sub 3 /sub 、H sub 2 /sub S等 /span /p /td /tr tr td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质式 /span /strong /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 测定电解质浓度差产生的电势 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 适合低浓度测量,需要基准气体,耗电,可测量CO sub 2 /sub sub 、 /sub NO sub 2 /sub 、H sub 2 /sub S等 /span /p /td /tr /tbody /table p 表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。 /p p 2.1 恒电位电解式气体传感器 /p p   恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示: /p p     I=(nfADC)/ σ /p p   式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。 /p p   在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。 /p p   自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、N sub x /sub O sub Y /sub (氮氧化物)、H sub 2 /sub S检测仪器等产品。这些气体传感器灵敏度是不同的,一般是H sub 2 /sub S& gt NO& gt NO sub b /sub & gt Sq& gt CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。 /p p   以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如H sub 2 /sub S、NO、NO sub b /sub 、Sq、HCl、Cl sub 2 /sub 、PH sub 3 /sub 等,还能检测血液中的氧浓度。 /p p 2.2离子电极式气体传感器 /p p   离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。 /p p   现以检测NH sub 3 /sub 传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NH sub 4 /sub sup + /sup ,同时水也微弱离解,生成氢离子H sup + /sup ,而NH4 sup + /sup 与H sup + /sup 保持平衡。将传感器侵入NH sub 3 /sub 中,NH sub 3 /sub 将通过隔膜向内部渗透,NH sub 3 /sub 增加,而H sup + /sup 减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NH sub 3 /sub 浓度。除NH sub 3 /sub 外,这种传感器海能检测HCN(氰化氢)、H sub 2 /sub S、Sq、C0 sub 2 /sub 等气体。 /p p   离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。 /p p 2.3电量式气体传感器 /p p   电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。 /p p   现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成H sup + /sup ,在两铂电极间加上适当电压,电流开始流动,后因H sup + /sup 反应产生了H sub 2 /sub ,电极间发生极化,发生反应,其结果,电极部分的H sub 2 /sub 被极化解除,从而产生电流。该电流与H sub 2 /sub 浓度成正比,所以检测该电流就能检测Cl sub 2 /sub 浓度。除Cl sub 2 /sub 外,这种方式的传感器还可以检测NH sub 2 /sub 、H sub 2 /sub S等气体。 /p p strong 3.传感器的检测 /strong /p p   电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NO sub 2 /sub 、O sub 2 /sub 、SO sub 2 /sub 等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。 /p p   综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。 /p
  • 上海应物所电化学生物传感器研究取得系列进展
    生物传感器为基因分析、传染病检测和食品安全等领域提供了一种廉价、便携检测生物分子的新工具。中国科学院上海应用物理研究所物理生物学研究室樊春海课题组长期致力于电化学生物传感器的研究,取得了系列研究进展。近日,应化学综述杂志Accounts of Chemical Research邀请,裴昊、左小磊等撰写了相关综述论文,并发表于Acc. Chem. Res.,2014, 47, 550&ndash 559。   生物分子探针在传感界面上的组装过程很大程度上决定了生物传感检测的性能。如何调控生物分子在界面上的密度和取向,减少生物分子与界面的非特异 性吸附并避免界面分子间的侧向作用力则已成为该领域的挑战性问题之一。针对这一问题,樊春海课题组对DNA分子在宏观和纳米界面上的组装过程进行了系统研 究。由于DNA是一种软物质,常规使用的一维单链探针容易产生链间纠缠而聚集。2003年发展出了具有一定刚性的二维结构DNA探针,在一定程度上解决了 这一问题(Fan et al. PNAS 2003, 100, 9134) ,并在DNA和核酸适配体检测方面展现出明显的优越性。近年来,通过引入DNA纳米技术发展出刚性的三维结构DNA探针,实现了DNA探针之间距离的精确 调控。这为构筑有序的生物分子界面提供了新的途径,提高了界面生物识别能力,进而显著提升了生物传感器的检测能力。在这一新型生物传感平台上深入研究了界 面识别和电子传递等物理化学机制,并实现了核酸、抗原和小分子的超高灵敏检测,相关结果相继在JACS, Angew. Chem.,Adv. Mater., Sci. Rep.等杂志发表。
  • 第十六届全国化学传感器学术会议第四轮通知
    一、大会介绍由中国仪器仪表学会分析仪器分会化学传感器专业学组(专业委员会)主办,济南大学承办,化学生物传感与计量学国家重点实验室(湖南大学)、上海师范大学、上海仪电科学仪器股份有限公司(雷磁)、临沂大学、济南国科医工科技发展有限公司、江苏江分电分析仪器有限公司、仪器信息网共同协办的第十六届全国化学传感器学术会议(SCCS2023)定于2023年09月22~24日在美丽的泉城济南召开。本次大会的主题是“化学传感赋能新时代”,旨在促进化学与生物传感领域的学术交流与发展。会议将邀请在化学与生物传感领域取得重大进展的国内外科学家做大会报告和特邀报告,并举行相关前沿领域的专题研讨会。与会科技人员将交流展示化学与生物传感研究工作中的新成果、新进展、新技术、新经验和新仪器。济南大学诚挚欢迎全国各高等院校、科研院所以及企事业单位的同仁与研究生踊跃参加。同时热忱欢迎有关企业对大会进行赞助或进行产品展示,会议期间将为赞助商和参展单位提供展位,开展相关仪器、设备、技术及产品展示和宣传活动。本次大会将隆重颁发第三届中国化学传感器雷磁终身成就奖和中国化学传感器雷磁杰出成就奖,会议同时还将设置优秀口头报告奖及优秀墙报奖。济南大学热忱欢迎全国各地的专家学者莅临大会!二、学术及组织委员会1.会议主席主 席:谭蔚泓院士、刘买利院士、吴海龙教授副主席:魏 琴、颜 梅、张晓兵、袁 若、鞠熀先、蒋健晖、张书圣2.学术委员会顾 问:汪尔康院士、姚守拙院士、俞汝勤院士、陈洪渊院士、谭蔚泓院士、张玉奎院士、董绍俊院士、江桂斌院士、唐本忠院士、杨秀荣院士、赵宇亮院士、李景虹院士、樊春海院士、刘买利院士、顾 宁院士委 员 (以拼音为序):曹 忠、柴雅琴、陈焕文、陈 义、崔 华、楚 霞、戴志晖、邓春晖、邓安平、邓兆祥、 董 川、段忆翔、方 群、方晓红、冯 锋、郭玉晶、韩 达、何品刚、何 彦、何晓晓、何 耀、何治柯、胡效亚、宦双燕、黄承志、黄卫华、黄岩谊、蒋健晖、蒋兴宇、江云宝、晋卫军、金建余、鞠熀先、孔继烈、匡 华、李根喜、李攻科、李剑锋、李建平、李 娟、李长明、李正平、练鸿振、梁高林、林金明、刘宝红、刘国东、刘 倩、刘志洪、龙亿涛、卢小泉、陆祖宏、逯乐慧、马 铭、毛兰群、缪煜清、聂宗秀、聂 舟、牛 利、庞代文、裴仁军、秦 伟、邱建丁、渠凤丽、任 斌、任吉存、邵元华、申大忠、双少敏、孙佳姝、孙立贤、孙育杰、唐 波、田 阳、王春霞、王 景、汪海林、王宏达、王 桦、王建华、王家海、王建秀、王柯敏、汪乐余、王 荣、王树涛、汪夏燕、王 伟、王宗花、魏 琴、吴朝阳、吴海龙、吴旭明、吴再生、夏 帆、夏兴华、夏之宁、肖 丹、谢青季、刑婉丽、徐静娟、许丹科、许国旺、严秀平、颜晓梅、羊小海、阳明辉、杨朝勇、杨海峰、杨黄浩、杨荣华、杨云慧、叶邦策、叶明亮、殷传新、由天艳、袁 荃、袁 若、张春阳、张 凡、张丽华、张书圣、张先恩、张晓兵、张新荣、张学记、张 艳、张忠平、张 文、赵书林、朱俊杰、周翠松、周飞艨、周 欣、周一歌、庄乾坤、卓 颖、左小磊3.组织委员会主 席:刘宗明(济南大学校长)副主席:黄加栋(济南大学副校长)、魏 琴、颜 梅、刘 宏、贺 铭、陈国柱、李雪梅委 员:李村成、李辉、于京华、孙国新、罗川南、吴丹、周伟家、孙德辉、王 斌、逯一中秘书长:马洪敏秘 书:任 祥、李玉阳、高中锋、高超民、张 彦、王 欢、张 晶、王雪莹、范大伟、孙晓君、胡丽华、张 诺、匡 轩、孙 旭、朱沛华、冯瑞卿、冯 锐、赵珮妮、余 珍、孙元玲、贾洪英、刘 蕾、刘雪静、杨红梅三、日程安排四、会议日程安排会议日程安排五、墙报展墙报展览须知1.墙报展出时间:初步定为9月23日下午和9月24日上午两个场次,具体展位安排以参会时领取会议手册为准。2.地点:鲁能希尔顿酒店及公寓B1层电梯门口导厅3.墙报的建议尺寸是:90cm(宽)×120cm(高),墙报需提前打印,自行带至现场,排版设计格式风格自定。4.在墙报时段结束时,需要自行取下墙报,请注意维护场地和设施的安全和整洁。墙报展六、报道须知1.报到时间:2023年09月22日14:00-22:00;09月23日08:00-12:00。2. 报到地点:鲁能希尔顿酒店及公寓B2层酒店大堂入口处。地址:山东省济南市市中区二环南路2888号。3.交通及接站:会务组将在济南遥墙机场、济南西站、济南东站、济南站安排接站人员,集中接站时间09月22日12:00-22:00,09月23日不再安排集中接站。请留意现场指示牌,行程确定后请及时扫描下方二维码反馈行程信息。自行前往人员,遥墙国际机场打车至酒店约50分钟,费用约180 元;济南西站打车约 25 分钟,费用约70 元;济南东站打车约40 分钟,费用约110 元;济南站打车约20分钟,费用约30元。4. 注册缴费:现场缴费可以刷卡和扫码支付,请提供发票抬头和税号。前期已缴费并发回执人员会将电子发票发送联系人邮箱,现场缴费和未发回执人员的发票报到现场领取。5. 住宿:参会代表报到后至各预订酒店前台缴纳住宿费用办理入住,住宿发票由各酒店开具。已发回执人员如参会人员发生变化,请及时通知会务组。6. 用餐:参会代表凭会务组统一发放的餐券在指定时间和地点用餐。餐券遗失不补,结余不退。提前到达的代表如需安排用餐,请联系会务组进行协调。七、联系方式八、赞助单位1 上海仪电科学仪器股份有限公司(雷磁)2 海能未来技术集团股份有限公司3 郑州世瑞思仪器科技有限公司4 北京众信恒通科技有限公司5 兰力科(天津)科技集团有限公司6 江苏东华分析仪器有限公司7 北京普析通用仪器有限责任公司8 赛默飞世尔科技(中国)有限公司9 广州彤泰科技有限公司10 环球分析测试仪器有限公司11 武汉高仕睿联科技有限公司12 山东国晨生物科技有限公司13 深圳市灏阳科技有限公司14 北京欧倍尔软件技术开发有限公司15 大龙兴创实验仪器(北京)股份公司16 山东宝森思实验仪器有限公司
  • 第十一届全国化学传感器学术会议论文墙报展
    仪器信息网讯 2011年10月23日,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议在湖南长沙市芙蓉华天大酒店成功召开。此次会议盛况超前,学术报告及参会人员都超过预期。本次会议最后统计共安排了11个大会报告,42个分会特邀报告,58个口头报告,以及100多篇论文报展。   2011年10月24日上午,在芙蓉华天大酒店华天全厅举行了以青年学者和研究生为主的论文墙报展。本次优秀墙报论文作者的评选工作由专业委员会聘任的评选小组负责进行。   本次会议的论文报展主要以各高校的研究生为主,包括基础研究和应用研究等多个领域,内容紧跟科技前沿及社会食品安全问题等,充分体现了年轻一代科研工作者的创新精神和工作热情,令老一辈专家学者倍感欣慰! 报展现场   各位领导和专家非常重视此次报展活动,中科院院士、湖南大学姚守拙教授,化学传感器专业委员会主任委员、湖南大学吴海龙教授及湖南检验检疫局王利兵副局长到报展现场参观指导。 从左到右依次为:湖南检验检疫局王利兵副局长,中科院院士、湖南大学姚守拙教授,化学传感器专业委员会主任委员、湖南大学吴海龙教授   来自各地的专家和代表,特别是各高校的研究生们对这次报展非常感兴趣,处处可见咨询、讨论及认真记录的场景,学术氛围浓厚。 湖南大学 焦安丽等 北京工业大学 熊岳等 认真记录 仔细讲解
  • 智能气体传感器探测化学药品灵敏度更高
    据美国媒体报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体(气相)色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。 该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管(仪器信息网注:这里可能是指色谱微柱),第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。 研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。 在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当&ldquo 接线员&rdquo ,当一个试管正&ldquo 忙&rdquo 时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。 二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子&ldquo 热线&rdquo ,可以探测某些特殊分子。范旭东说:&ldquo 如果怀疑某地有化学武器泄露,我们就送一批这种专用分子&lsquo 热线&rsquo 过去,能极灵敏地识别出这些成分。&rdquo 目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。 无论是探查爆炸物、化学武器,还是监测矿井安全,对于化学气体检测仪器而言,最重要的一条就是灵敏度。如果不能迅速准确地检查出目标物,即使是再尖端的技术也可以说意义不大。本文介绍的这套仪器一方面能使不同分子尽可能分开并分别聚集,另一方面通过轮换试管和定做试管的方式使检测过程更加高效和具有针对性,这些都是强化灵敏度的关键因素。与此同时,这种仪器似乎并不复杂,也大大提高了它作为实用技术进行推广的可能性。
  • 智能气体传感器探测化学药品更灵敏
    据美国科学促进会网站5月2日(北京时间)报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。   该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管,第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。   研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。   在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当“接线员”,当一个试管正“忙”时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。   二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子“热线”,可以探测某些特殊分子。范旭东说:“如果怀疑某地有化学武器泄露,我们就送一批这种专用分子‘热线’过去,能极灵敏地识别出这些成分。”   目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。
  • 传感器制成“化学鼻子” 可以嗅出癌症细胞
    科学家打造“化学鼻子”可以嗅出癌细胞。 据国外媒体报道,目前科学家正在打造一种“化学鼻子”,这种鼻子可以嗅出不同类型癌症细胞,发现任何不正常的细胞。下一代的癌症诊断技术可能可以依赖这种新发明。 6月23日美国国家科学学会(National Academy of Science)的一份公报上介绍了这种具有癌症检测功能的电动鼻子。它可以对细胞样本进行处理,并嗅出对人体有害的细胞,就像人的鼻子用气味感受器来检测某些气味一样。 目前,这种“化学鼻子”包括三个这样的传感器,研究人员准备添加数百种传感器到这款鼻子中,使它的功能越来越大。 这项技术之所以强大,就在于它具有很强的适应能力,当人类的鼻子检测到新的气味时,大脑会记录下这种新的气味,并对以前记录下的气味进行回忆。“化学鼻子”也有这种功能,它可以对癌症细胞进行标记,必要时还可以创造新的模式,储存在记忆库中,在实践中再检测出来。因此,它具有适应性强且精确的特点,可以检测出不同类型的癌症。
  • 导电性调节的双极电化学发光传感平台解决方案
    一、实验目的该方案旨在开发一种基于导电性调节的双极电化学发光(The bipolar electrode based ECL,BPE-ECL)传感平台,用于无指示剂的均相生物分析。该平台通过导电性生物传感技术与ECL报告系统的结合,实现了在无需外源电活性指示剂的情况下进行目标检测。研究以miRNA-21的检测为示范,探索该方案的可行性和应用前景。二、实验使用的仪器设备和耗材试剂1. 仪器设备超微弱发光分析仪:BPCL-2,结合光电倍增管(PMT)操作电压为-800V,用于测量ECL发光强度。电化学工作站:用于施加电位。电导率仪:用于测量溶液的电导率。电泳仪:用于聚丙烯酰胺凝胶电泳(PAGE),验证核酸杂交链式反应(HCR)。生物分子成像仪:用于电泳结果成像。2. 耗材试剂聚二甲基硅氧烷(PDMS):用于制作传感和报告池。Ru(bpy)32+和TPrA:作为ECL检测体系的核心试剂。氯金酸(HAuCl4):用于电极金属化处理。合成核酸:由Sangon Biotech提供,包括探针DNA、H1、H2及目标miRNA-21等。人乳腺癌细胞:用于miRNA-21的实际应用检测。超纯水:18.2 MΩcm,作为所有实验的溶剂。三、实验过程1. BPE传感器的制作(1). ITO玻璃板的准备:从供应商处采购电阻小于6Ω/平方的ITO玻璃板,并在其上制作导电BPE,确保传感池包含BPE的阴极和驱动电位的阳极,而报告池包含BPE的阳极和驱动电位的阴极。(2). 电沉积金:为了提高导电性,分别在BPE的阴极和驱动电位的阴极上进行金电沉积。2. 杂交链式反应(HCR)的进行(1). 反应混合:在超纯水中混合探针DNA、H1和H2,浓度分别为0.5 μM、5 μM和5 μM。(2). 目标miRNA-21的添加:将不同浓度的miRNA-21加入混合物中,37°C孵育2小时以进行HCR反应。3. 聚丙烯酰胺凝胶电泳(PAGE)验证:(1). 电泳条件:在TBE缓冲液(1×)中,恒定电压80V,室温下进行2小时电泳。(2). 成像分析:使用生物分子成像仪拍摄凝胶,以验证探针DNA、H1和H2的杂交情况。4. BPE-ECL传感检测(1). 准备工作溶液:在报告池中加入200μL含有5mM Ru(bpy)32+和5mM TPrA的PBS缓冲液(0.1 M,pH 7.0),在传感池中加入HCR孵育后的样品。(2). ECL测量:使用循环伏安法,电位范围为1.0-4.5V,扫描速率为100 mV/s,进行ECL测量。每个样品测量三次,计算标准偏差。四、实验结果与讨论1. HCR反应和导电性变化的验证(1). PAGE分析(图1A):短核酸(探针、H1、H2)在低分子量位置显示荧光带,而miRNA-21诱导的核酸聚合物在高分子量位置显示。这验证了目标miRNA-21触发了探针、H1和H2的杂交反应。(2). 导电性测量(图1B):混合短核酸后溶液的导电性显著增加,而加入miRNA-21后,导电性显著下降。这表明生成的长核酸聚合物导电性较差。(3). ECL测量(图1C):ECL强度在短核酸(22 bp)溶液中显著高于长核酸(1250 bp),进一步验证了导电性对BPE-ECL系统的重要影响。(4). ECL响应的验证(图1D):相较于无miRNA-21存在的情况(曲线g),miRNA-21存在时ECL响应显著降低(曲线h),因为miRNA-21诱导的HCR生成了导电性较差的核酸聚合物。图1. (A) PAGE分析: (a-c通道) 探针、H1、H2;(d通道) H1 + H2;(e通道) 探针 + H1 + H2;(f通道) 探针 + H1 + H2 + miRNA-21。(B) 对应PAGE相同条件下的导电性比较。(C) 5 μM短链(22 bp)和长链(1250 bp)核酸溶液的ECL响应比较。(D) BPE-ECL生物测定在无miRNA-21 (g) 和有1 pM miRNA-21 (h) 情况下的ECL响应。2. 分析条件的优化(1). 探针浓度(图2A):ECL强度差值(ΔECL)随着探针浓度的增加而增加,在浓度超过0.5 μM后达到平台期。因此,选用0.5 μM作为最佳探针浓度。(2). H1/H2浓度(图2B):随着H1/H2浓度的增加,ΔECL响应持续增强,在5 μM时达到饱和,表明5 μM为最佳H1/H2浓度。(3). 温度(图2C):ΔECL响应随着温度升高至37°C后增加,随后略有下降,表明最佳反应温度为37°C。(4). 反应时间(图2D):ΔECL响应随HCR反应时间的延长而增加,在120分钟后达到最大,选择120分钟作为最佳反应时间。图2. (A) 探针浓度,(B) H1/H2浓度([H1]:[H2] = 1:1),(C) 温度,和 (D)反应时间对ΔECL响应的影响。所有实验中的miRNA-21浓度均为1 pM。3. 传感系统的性能评估(1). 检测限与线性范围(图3):不同浓度miRNA-21的ECL响应如图3A所示。ECL强度与miRNA-21浓度的对数呈良好线性关系(图3B),线性范围为1 fM至10 nM,检测限为0.33 fM。图3. (A) 不同浓度miRNA-21的ECL响应: (a&minus i) 空白, 1 fM, 10 fM, 100 fM, 1 pM, 10 pM, 100 pM, 1 nM, 10 nM。(B) ECL强度与miRNA-21对数浓度之间的线性关系。(2). 选择性(图4A):高结构类似物(miRNA-122、miRNA-141、miRNA-155)的检测结果表明,BPE-ECL传感系统对miRNA-21具有良好的特异性。(3). 稳定性和重复性(图4B, 4C):ECL信号在八次重复测量中稳定,RSD为2.56%,三种不同浓度miRNA-21的RSD分别为3.2%、2.4%和1.4%,表明系统具有良好的稳定性和重复性。(4). 实际应用(图4D):检测不同数量MCF-7细胞裂解液中的miRNA-21,ECL信号随细胞数量增加而下降,验证了该传感平台在临床样品检测中的应用潜力。图4. (A) 不同miRNA类似物的ECL响应,miRNA-122、miRNA-141和miRNA-155浓度为10 pM,miRNA-21浓度为1 pM。 (B) BPE-ECL生物传感平台的稳定性。 (C) BPE-ECL传感器对不同浓度miRNA-21响应的重现性。 (D) 不同数量MCF-7细胞裂解液的ECL响应。五、结论本方案提出了一种基于导电性调节的BPE-ECL生物传感平台,该平台利用目标miRNA-21诱导的HCR反应生成长链核酸聚合物,导致传感池导电性降低,进而减少报告池的ECL信号输出。该平台具备传统BPE-ECL传感器的优点,通过物理分离传感和报告反应有效避免了干扰,且无需外源电活性指示剂。该方案简单、灵敏、快速,并在实际样品检测中表现出良好的应用前景。未来,该方案有望进一步应用于包括DNA、小分子、蛋白质、细胞和细菌等多种目标的定量和定性检测。*因学识有限,难免有所疏漏和谬误,恳请批评指正*资料出处:免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • 睿科仪器应邀参加第十二届全国化学传感器学术会议
    2014年11月8日-9日,第十二届全国化学传感器学术会议在成都都江堰盛大召开。本届会议由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,四川大学、西南大学承办。中国科学院院士陈洪渊、湖南大学院士俞汝勤、四川大学化学学院院长余孝其教授、中国仪器仪表学会分析仪器分会理事长关亚风教授、化学传感器专业委员会主任委员吴海龙教授等出席了此次会议。此次会议盛况空前,相比上一届规模扩大3成,实际与会人数超520人,为历届会议与会人数之最。睿科仪器一直关注化学传感器领域的研究发展,应邀参加了此次会议,并展示了与化学传感器行业应用息息相关的KIN-TEK标准气体动态稀释仪。 本次学术大会共收到390多篇论文,创下历史之最,这代表了中国化学传感器行业的欣欣向荣的景象。本次会议安排13个大会报告,共设3个分会场,安排42个分会邀请报告、60个口头报告,还有逾260篇论文以墙报形式进行交流。众多院士及专家围绕8个主题进行了深入和自由的交流:(1)化学与生物传感器研究进展;(2)化学传感技术理论研究;(3)纳米技术与化学传感器;(4)新型化学传感器研究;(5)化学传感器的微型化、系统集成及产业化;(6)生物芯片和微流控芯片;(7)传感器的信号处理及远端传输;(8)化学传感器在生命、环境、食品、医学、药学等领域的新应用。全面地展示并交流了化学生物传感技术及其相关领域的各种原理、应用、最新进展以及成果,充分显示了多学科、多技术交叉的特色和向产业化推进的美好前景,有力促进了我国化学生物传感技术工作的发展,为我国化学生物传感技术设备和仪器的研发指明了方向。第十二届化学传感器学术会议盛大开幕睿科仪器赞助此次学术会议
  • 第十五届全国化学传感器学术会议线上开幕,两重磅奖项颁发
    2021年11月13日,第十五届全国化学传感器学术会议(15th SCCS)于线上隆重开幕。本次会议由中国仪器仪表学会分析仪器分会化学传感器工作组(或称专业委员会,以下简称“化学传感器专业委员会”)主办,化学生物传感与计量学国家重点实验室(湖南大学)、湖南大学化学化工学院承办,上海师范大学、江苏江分电分析仪器有限公司、上海仪电科学仪器股份有限公司(雷磁)、仪器信息网、长沙崇胜仪器仪表有限公司协办。会议以“化学生物传感新时代”为主题,作为领域内科技人员交流、学习化学生物传感、生物分析化学研究工作中的新成果、新进展、新技术、新经验和新仪器的重要平台,开幕即吸引超千人在线观看。会议开幕开幕式由化学传感器专业委员会主任委员、湖南大学吴海龙教授主持,湖南大学副校长蒋健晖教授、中国仪器仪表学会分析仪器分会秘书长吴爱华、第十五届全国化学传感器学术会议主席俞汝勤院士分别致辞。化学传感器专业委员会主任委员吴海龙教授主持开幕式中国仪器仪表学会分析仪器分会秘书长吴爱华致辞湖南大学副校长蒋健晖教授致辞第十五届全国化学传感器学术会议主席俞汝勤院士致辞鉴于近期疫情反弹,多个省市相继出现本土确诊病例和无症状感染者的情况,为保障各位参会代表的健康和安全,本次会议采用线上形式举行。然而,会议的规模和影响力却没有因此而降低。会议为期3天,首日安排了大会报告,第二日、第三日分别有6个和5个分会场同时进行,将有236位专家学者进行学术报告,包括16位大会邀请报告、176位分会场邀请报告和44位口头报告,内容涉及化学与生物传感器、生物分析化学、纳米技术与化学生物学、环境分析化学、传感阵列、生物芯片和微流控芯片、化学生物传感器的微型化、系统集成及产业化、分析仪器研发等热点领域。根据中国化学传感器成就奖奖励条例(2019年06月),2019年中国化学传感器专业委员会已进行首届中国化学传感器▪雷磁 终身成就奖和杰出贡献奖的颁发。2021年中国化学传感器专业委员会开展了第二届奖项的推荐评选工作,发展中国家科学院院士/中国科学院长春应用化学研究所研究员董绍俊、中科院院士/发展中国家科学院院士/中国科学院长春应用化学研究所研究员汪尔康同获“中国化学传感器▪雷磁 终身成就奖”,杰青/南京大学教授朱俊杰、杰青/中科院长春应用化学研究所副所长逯乐慧、美国医学与生物工程院院士/俄罗斯工程院外籍院士/国家特聘教授/ 深圳大学党委常委副校长张学记分别获得“中国化学传感器▪雷磁 杰出贡献奖”。中国化学传感器▪雷磁 终身成就奖中国化学传感器▪雷磁 杰出贡献奖开幕式及颁奖仪式后,大会报告活动拉开帷幕,国家自然科学基金委化学部王春霞、中科院长春应化所汪尔康、中科院长春应化所董绍俊、湖南大学谭蔚泓、南京大学陈洪渊、中科院生态环境研究中心江桂斌、清华大学李景虹、中科院上海硅酸盐研究所施剑林、中科院精密测量科学与技术创新研究院刘买利等分别带来了精彩的报告。大会报告进行中会议精彩报告内容,欢迎关注仪器信息网后续报道。
  • 我国研发成功新型电化学发光纳米生物传感器
    随着科技的进步,传感器和光学元件都将趋于小型化和集成化。有机低维纳米材料由于其独特的结构和新颖的物理、化学性质,在生物传感、纳米光子学领域中展现出广阔的应用前景。近日,据国际知名期刊《Advanced Materials》报道,中国科学院化学研究所光化学院重点实验室利用高比表面积的一维纳米材料,制备出一种更加灵敏的电化学发光纳米生物传感器。该项研究也为低维纳米材料制备生物传感器提供了重要的理论和实验依据。   从细菌到人,所有生物都在使用&ldquo 生物分子开关&rdquo 来监测环境。此类&ldquo 开关&rdquo ,即由RNA或蛋白制成、可改变形状的分子。这些&ldquo 分子开关&rdquo 的诱人之处在于:它们很小,足以在细胞内&ldquo 办公&rdquo ,而且非常有针对性,足以应付非常复杂的环境。受到这些天然&ldquo 开关&rdquo 的启发,纳米生物传感器应运而生。   据中科院相关人员介绍,生物传感器是用固定化的生物体成分,如酶、抗原、抗体、激素等,或者是生物体本身的细胞、细胞器、组织等作为传感元件制成的传感器。按所用分子识别元件的不同,生物传感器可分为酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等 按信号转换元件的不同可分为电化学生物传感器、半导体生物传感器、测热型生物传感器、测光型生物传感器、测声型生物传感器等。其中,电化学生物传感器由于具有体积小、分辨率高、响应时间短、所需样品少、对活细胞损伤小等特点,广泛应用于医药工业、食品检测和环境保护等领域。   如今,纳米技术的介入更是为电化学生物传感器的发展提供了新的活力。纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等,使得其表现出奇异的化学、物理性质。例如常见的碳纳米材料,特别是碳纳米管、石墨烯等,就表现出优良的力学性能、导电性能、表面性能及独特的电化学性质。此前,研究人员就曾用琼脂糖将葡萄糖氧化酶和连接了二茂铁的单壁碳纳米管固定在玻碳电极表面,实现了对葡萄糖的快速灵敏检测。碳纳米管的引入还能够显著提高电化学敏感膜中电活性物质的氧化还原可逆性,同时消除了溶解氧对测定的干扰。纳米材料应用于电化学生物传感器领域后,不仅提高了传感器的检测性能,而且提升了传感器的化学和物理性质以及它对生物分子或细胞的检测灵敏度,检测时间也得以缩短,与此同时还实现了高通量的实时分析检测。   随着纳米技术和生物传感器交叉融合的发展,越来越多的新型纳米生物传感器涌现出来,如量子点、DNA、寡核苷配体等纳米生物传感器。未来纳米生物传感器的发展方向应该是集成多功能、便携式、一次性的快速检测分析机器,它可以广泛用于食品、环境、战场、人体疾病等领域的快速检测。例如,食品和饮料中病原体或者农药残留成分的快速灵敏检测 环境中污染气体或者污染金属离子等远程检测和控制 人体血液成分和病原体的快速实时检测,以及战场生化武器和爆炸物的快速检测。   但是与此同时,新一代纳米生物传感器同样面临诸多挑战,如更高灵敏度、特异性、生物相容性、集成多种技术、检测方法简化、制备工艺、批量化生产、成本效益等。对此,这一生物传感器的研发课题组专家表示,分子自组装加工工艺简单可控,可以实现快速复制,而且成本较低,对生物传感器的发展有很重要的促进作用,有利于高灵敏度、低成本、一次性纳米生物传感器的发展。而生物分子自组装技术更值得关注,它具有天然的生物兼容性、优异的结合性能,或将成为生物传感器发展的另一个全新领域。

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制