当前位置: 仪器信息网 > 行业主题 > >

核子物理

仪器信息网核子物理专题为您整合核子物理相关的最新文章,在核子物理专题,您不仅可以免费浏览核子物理的资讯, 同时您还可以浏览核子物理的相关资料、解决方案,参与社区核子物理话题讨论。

核子物理相关的资讯

  • 探访“粒子物理王国”欧洲核子研究中心(图)
    来宾在瑞士日内瓦参观欧洲核子研究中心多媒体中心。欧洲核子研究中心位于瑞士日内瓦附近,跨瑞士和法国边境,是全球重要的粒子研究机构,重点模拟研究宇宙大爆炸之后的最初状态。   新华网日内瓦2月21日电(记者刘洋 杨京德)从瑞士日内瓦驱车进入法国,沿途宁静的田园风光令人沉醉。这是一片位于阿尔卑斯山与汝拉山雪峰间的平原,镶嵌着一座座牧场、葡萄园、古朴村镇,而就在平原地表之下100多米深处,无数粒子或许正围绕着一个周长27公里的巨大环形设备,以接近光速运行,并剧烈碰撞。   这不是科幻小说的虚构,而是欧洲核子研究中心最重要的设备——大型强子对撞机运转的情景。经过近两个月的技术维护后,按计划,对撞机21日再次开始运行。记者有幸在此之前,由研究中心的中方研究员、粒子物理学家任忠良博士带领,进入研究中心并探访这神秘的地下“粒子物理王国”。   科研“地球村”   欧洲核子研究中心建于1954年,是二战后欧洲合作的产物,但今天的研究中心早已不再局限于欧洲,而更像一个“地球村”,会聚了来自世界上80多个国家和地区、580余所大学与科研机构的近8000名科研人员,其中包括来自中国科学院高能物理研究所和山东大学等中国科研院所的近百名师生。   漫步在研究中心园区里,可以看到宽阔的草坪上和露天咖啡座上,不同肤色、不同装束的学者三五成群地坐在一起,操各种口音的英语或法语讨论问题。   除进行前沿物理试验外,研究中心还承担了为世界各国大学培养物理学人才的任务,许多物理学家的硕士或博士论文都在这里完成。   研究中心洋溢着尊重科学的气氛,就连园区的各条道路都以在科学领域有重大贡献的人士名字命名。从第一个设想物质是由原子组成的古希腊哲学家德谟克利特,到发现镭和钋等放射性元素的居里夫人,他们对人类认知的贡献,以这样的方式被铭记。   地下“粒子物理王国”   大型强子对撞机位于日内瓦附近、瑞士和法国交界地区地下的环形隧道内。为探测质子撞击试验产生的结果,研究中心在大型强子对撞机上安装了4个探测器同时进行试验,其中最大的就是位于瑞士一侧的超环面仪器。   经过两道严格安检后,记者跟随任忠良博士深入地下100多米的超环面仪器试验现场。站在坑道内高耸的钢结构探测器旁,如同站在希腊神话里的擎天巨神脚下,深感一己之渺小。   这个圆柱形庞然大物高25米,长45米,重7000吨,相当于埃菲尔铁塔或100架波音747客机的重量。任忠良博士说,超环面仪器就像一架高精度巨型数字照相机。对撞机发射的粒子束经过这个探测器时发生碰撞,产生的粒子沿着碰撞半径方向向外发散,这些肉眼难以察觉的物理现象都会在这一高性能探测器上留下影像。超环面仪器抓取碰撞影像的速度可达每秒4000万次,从而在粒子级别上记录任何细微的变化。   为处理由此产生的海量数据,3000台计算机会同时运转,从大量无效碰撞数据中选取符合研究需要的少数粒子高能对头碰撞记录并加以分析。即便如此,筛选出的有用数据量仍大得惊人。这一探测器运行一年产生的数据如用DVD光盘刻录,所有光盘铺排起来将长达7公里。   人造宇宙大爆炸   为从微观世界揭开宇宙起源的奥秘,研究宇宙产生初期的环境,物理学家设计了通过粒子对撞,模拟宇宙大爆炸的试验,大型强子对撞机就是进行这一模拟过程的“利器”。   可想而知,实现高能粒子对撞并非易事。据任忠良博士介绍,大型强子对撞机使用了超低温、超导等超越人类现有工业水平的尖端技术。   为产生偏转粒子所需要的强磁场,对撞机采用液态氦将管道温度降至零下271摄氏度的超低温,用低温超导技术产生零电阻以保障磁场强度。此外,为维持低温,减少管道内外热量交换,还使用了真空技术,对撞机周长27公里的环形管道内的真空空间相当于巴黎圣母院的大小。   低温还带来金属等材料热胀冷缩的问题,这就要求在管道连接处使用可滑动的接点,但可滑动连接点同时也带来另一个问题:上万个连接点中,任何一个点如因接触不良出现微小电阻,强大的电流通过时就会瞬时释放大量热能,毁掉超导状态。热量还会气化冷却管道用的液态氦,导致大爆炸。   2008年,对撞机调试过程中就发生了一次类似事故,使整个试验的进度延后一年。研究中心花了整整一年,投入超过5000万瑞士法郎(约合5300万美元)才将设备修复。   寻找“上帝粒子”   大型强子对撞机目前的主要工作就是寻找希格斯玻色子。它是由英国人彼得希格斯等物理学家在上世纪60年代提出的一种基本粒子,被认为是物质的质量之源,因此被称为“上帝粒子”。   这种粒子就像神话中的独角兽一样难觅影踪。在粒子物理学的标准模型中,总共预言了62种基本粒子,其中的61种都已被验证,唯独希格斯玻色子始终游离在物理学家的视野之外。找到这种粒子,就找到建筑粒子物理学经典理论大厦的最后一块基石,如证明它不存在,整座大厦就要被推倒重建。   此前,许多顶级物理研究机构曾试图通过对撞试验寻找希格斯玻色子,但都没有成功。如今,有了世界上能量级别最高的大型强子对撞机,欧洲核子研究中心的科学家对捕获这头“独角兽”充满信心。   研究中心主任、德国粒子物理学家罗尔夫霍伊尔说,对撞机在过去一年表现非常出色,因此大家普遍对试验充满信心。霍伊尔风趣地化用莎士比亚的名言说,希格斯玻色子存在还是不存在,这是一个问题,而这个问题的答案很可能在未来两年内揭晓。
  • 物理所等澄清双色场太赫兹辐射方案推广及物理机制
    p   太赫兹波通常指频率处于0.1THz到10THz的电磁波。由于波段独特,太赫兹波在多各领域具有应用潜力,但如何产生可调谐的强太赫兹辐射源是一个长期存在的难题。近三十年的研究表明,等离子体可以把强激光转化成强太赫兹辐射源。其中,2000年提出的“双色场方案”,由于转换效率高和技术简单等优点,得到最为广泛的关注。在双色场方案中,一束常规的800nm激光穿过一块倍频晶体产生的400nm激光,后者与剩余的800nm激光混合,在大气中就能产生MV/cm的强太赫兹波。该方案自提出以来,其物理机制一直存在着争议,存在等离子体电流模型和非线性光学的多波混频两种不同的理论模型。同时,在所有的实验中,两束模型的激光波长比始终固定在2:1,是否能够将其推广至其它波长比尚不清晰。 /p p   中国科学院物理研究所、北京凝聚态物理国家研究中心光物理重点实验室L05组王伟民、李玉同和上海交通大学盛政明等人针对以上问题进行了理论和实验研究。2013年,他们首次从理论上预测了双色场方案可以推广到4:1、6:1等波长比。2017年,他们后续的理论工作进一步预测双色场方案可以推广到波长比为2n:1、(n+0.5):1系列(n为正整数)。基于上述理论工作,王伟民与首都师范大学张亮亮、张岩实验团队合作,首次在实验上证实了理论预测,演示了双色场方案在波长比为4:1和3:2时,也能够有效地产生太赫兹波。实验上还观察到,太赫兹波的偏振可以通过旋转较长波长激光的偏振进行调节,但是旋转较短波长激光的偏振时,该偏振调节方法失效 取不同的激光波长比时,太赫兹波能量满足相似的定标率。这些现象与多波混频理论模型给出的关于介电张量对称性、不同波长比条件下太赫兹波能量具有不同的定标率等预测相矛盾。相反地,以上两个实验结果与王伟民等人的等离子体电流模型结果一致:太赫兹波椭圆偏振率正比于(λ长/λ短)4 在不同波长比条件下,太赫兹波能量满足相似的定标率,并在激光强度比较低的情况下满足线性定标率。该系列工作进一步证实了其物理机制应主要归结为等离子体电流模型,对基于“双色场方案”的太赫兹辐射产生和调控具有重要指导意义。 /p p   相关研究成果发表在Phys. Rev. Lett.和Phys. Rev. A/E上。该研究得到了国家自然科学基金委、国家重点基础研究计划、中科院战略性先导科技专项、教育部激光聚变科学与应用协同创新中心等的资助。 /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/769c27db-eb3a-41e2-974f-bd8aa56c267c.jpg" / /p p   图1.左图中第一束激光波长为800nm,第二束激光波长在1200nm到1600nm间变化,发现太赫兹波能量峰值出现在1200nm和1600nm附近(波长比为3:2和2:1) 右图中第一束激光波长为400nm,当第二束激光波长为1600nm时,出现太赫兹波能量峰值,对应的波长比为4:1。在两幅图中“x”点为实验结果,实线为KLAPS粒子模拟(PIC)结果 /p p style=" text-align: center " img title=" 002.png" src=" http://img1.17img.cn/17img/images/201712/insimg/c63f7f30-2cd0-46f5-8861-7798530d377e.jpg" / /p p   图2.双色场方案中采用400nm和1600nm激光组合,两束激光初始偏振均在水平方向上,然后分别旋转1600nm激光的偏振(左图)和400nm激光的偏振(右图),让其具有竖直方向的分量。在左图中随着1600nm激光的旋转角从0增加到90度,太赫兹波水平分量逐渐减小,竖直分量先增加再较小 在右图中随着400nm激光的旋转角从0增加到90度,太赫兹波竖直分量始终处于很低的水平。此实验结果与根据等离子体电流模型预测的太赫兹波椭圆偏振率正比于(λ长/λ短)4相符。在两幅图中“o”点为实验结果,实线为KLAPS粒子模拟(PIC)结果 /p p style=" text-align: center " img title=" 003.png" src=" http://img1.17img.cn/17img/images/201712/insimg/cb95bdae-1c43-4290-b1c4-6f88e6171142.jpg" / /p p   图3.太赫兹波能量?THz随激光峰值功率的变化,左图中激光波长比为4:1,右图中波长比为3:2。根据多波混频理论的预测,左图中?THz应该正比于(P1600nm)4,右图中?THz应该正比于(P800nm)2,实验结果不符合这些定标率。当激光功率比较低时(曲线的开始阶段),在不同波长比情形均满足线性定标率,这与根据等离子体电流模型预测一致。在两幅图中“x”点为实验结果,实线为KLAPS粒子模拟(PIC)结果 /p
  • 2004年太赫兹物理及超快过程国际研讨会在上海召开
    2004年5月11日,“太赫兹物理及超快过程”国际研讨会在上海召开,来自国内外专家学者汇聚上海。   在上海召开的“太赫兹物理及超快过程”国际研讨会上,中国科学院上海微系统与信息技术研究所所长封松林正在做大会致辞。    中科院上海微系统与信息技术研究所的曹俊诚研究员正在介绍我国太赫兹技术研究的相关情况。   太赫兹(THz)频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的THz产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的THz空隙。近年来由于自由电子激光器和超快技术的发展,为THz脉冲的产生提供了稳定、可靠的激发光源,使THz辐射的物理机理、检测技术和应用技术研究得到蓬勃发展。THz技术之所以引起人们广泛的关注,是由于物质的THz光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,它在物体成像、环境监测、医疗诊断、射电天文、宽带移动通讯、尤其是在卫星通讯和军用雷达等方面具有重大的科学价值和广阔的应用前景。THz技术被认为是改变未来世界的十大技术之一。   由于THz电磁波的重大应用前景,美国等发达国家投入了大量资金和人力开展研究。目前,世界上约有100多个研究机构,陆续开展了本领域的科学研究工作。如:美国Rensselaer理工学院,美国麻省理工学院,加拿大国家研究院等。许多微波及光学的研究所都把研究重心转到THz领域。   我国国家科技部、自然科学基金委、中科院也对THz研究给予了高度的关注,先后在“973”计划、基础研究重大项目前期研究专项、基金委重大项目做了相关项目的安排。中科院上海微系统与信息技术研究所、中科院物理研究所、中科院紫金山天文台、上海交通大学、首都师大、中国电子科大、中科院应用物理所、西安光机所、西安理工大学以及中山大学等是国内较早开展THz研究的单位。中科院上海微系统与信息技术研究所自2001年已把THz研究列为中科院知识创新工程项目。目前在有关THz物理与器件研究方面,他们已获得多项十分有意义的成果。其中曹俊诚研究员等关于THz辐射在低维半导体中吸收方面的研究工作,被认为是THz非线性动力学这个凝聚态物理界被广泛关注的领域取得的重要进展。研究结果发表在2003年12月的《美国物理评论快报》上。
  • 【会议延期】2022全国太赫兹生物物理年会延期举行
    通 知各位老师、同学及注册代表:鉴于国内疫情防控形势严峻,为最大程度避免聚集风险,经讨论,组委会决定将原定于4月22日-24日在陕西西安中国西部科技创新港举办的2022全国太赫兹生物物理年会暂定延期至6月3日-5日,会议地点不变。注册和提交摘要截止日期顺延,详情参见大会网页。由此给大家带来不便,深表歉意,敬请大家理解。期待6月初我们西安相聚。中国生物物理学会太赫兹生物物理分会中国生物物理学会学术交流部2022年4月12日
  • 2023全国太赫兹生物物理年会将于7月28-30日在四川成都举办(第一轮会议通知)
    全国太赫兹生物物理年会已经在广州、天津、西安成功举办三次。为推动国内太赫兹科学技术的发展,促进学术交流,“2023全国太赫兹生物物理年会”将于2023年7月28日-30日在四川成都召开。本次大会将邀请知名院士、专家学者就太赫兹生物物理及相关领域的最新研究进展、前沿理论与技术做大会报告,组织专题分会交流,举办特色论坛等。诚邀全国高校、研究机构的科研工作者和研究生参加!会议时间&地点会议时间:2023年7月28日-30日会议地点:四川成都会议日程:7月28日 全体会议代表报到 7月29日上午 开幕式及大会报告 7月29日下午 分会场报告 7月30日 分会场报告组织机构主办单位中国生物物理学会太赫兹生物物理分会承办单位电子科技大学中国科学院重庆绿色智能技术研究院西安交通大学西安理工大学南京大学天津大学天府创新研究院中国工程物理研究院微太中心四川省人民医院太赫兹生物物理学创新工作站协办单位北京远大恒通科技发展公司上海纳诺巴伯公司中电科思仪哈尔滨工业大学中国电子学会青年科学家太赫兹专委会大会主席刘国治 院士大会共主席王恩哥院士孙昌璞院士杨正林院士马余强院士特邀嘉宾欧阳颀 院士 北京大学罗先刚 院士 中科院光电技术研究所李会红 处长 国家自然科学基金委数理学部大会报告刘国治 院士孙昌璞 院士杨正林 院士马余强 院士罗先刚 院士组织委员会主席宫玉彬组织委员会共主席刘纯亮 金飚兵 施 卫 何明霞王化斌 成彬彬 封建欣 穆华仑组织委员会委员吕军鸿 赵 黎 王化斌 马建国 张存林曹俊诚 常胜江 封建欣 穆华仑 唐雨钊舒友生 祁 峰 朱礼国 景蔚萱 赵国忠卢晓云 彭 滟 吴晓君 朱亦鸣 侯 磊赵红卫 何江弘 丁洪斌 刘丕楠 张锦川吴 强 徐德刚 石艺尉 俞俊生 吴世有李英伟 陈图南 于 川 章文春李文雪 李阳梅 罗治福 彭文毓 王 军田 震 孙怡雯 杜诚然 王与烨 张晓玲张彩虹 谷建强 范 飞 王日德组织委员会秘书长胡 旻 王少萌 易青颖 刘维西 赵仕杲会议主题设立如下8个主题分会太赫兹辐射源(侯磊、刘頔威、王与烨、张亮亮、曹俊诚)太赫兹表征与探测(常胜江、王日德、张彩虹、王军)太赫兹生物物理(刘纯亮、王少萌、李阳梅、吴强、薄文斐)太赫兹生物医学(孙怡雯、彭滟、吕军鸿、陈图南)太赫兹成像技术(胡旻、王化斌、朱礼国、田震、张振伟)太赫兹生物效应(卢晓云、赵黎、彭文毓、舒友生)太赫兹强场与光学(吴晓君、徐德刚、祁峰、赵国忠)太赫兹科学技术发展与应用展望(何明霞、俞俊生、于川、马建国)会议内容安排本次年会学术活动包括大会特别邀请报告、分会邀请报告、口头报告和张贴报告等。为鼓励科技人员参会并发现太赫兹生物物理学优秀人才,大会将进行优秀科技工作者、优秀研究生以及优秀会务工作者评选,由中国生物物理学会太赫兹生物物理分会颁发证书。会议期间将召开第一届理事会第四次会议。会议注册缴费注册费标准7月5日前(含)注册缴费7月6日后(含)注册缴费现场注册缴费正式代表会员价2000元2200元2400元正式代表非会员价2400元2600元2800元学生代表会员价1200元1400元1600元学生代表非会员价1500元1700元1900元注册费包含: (1)会议材料 (2)会议期间午餐、29日晚餐;(3)会间茶歇温馨提示:早到或晚走的代表自理会期以外的用餐。注册费缴纳方式:在线支付(微信、支付宝)、银行汇款。银行汇款信息:中国生物物理学会中国工商银行北京东升路支行0200006209014448518特别说明:1.学生代表:需是全日制在读博士生、研究生或者本科生,其注册时须通过传真或扫描件经电子邮件附件将学生证复印件发至大会秘书处(longjingping@bsc.org.cn)。2.银行汇款时请备注:2023太赫兹+参会代表姓名,请缴费后将汇款凭证、缴费人信息发送邮件至大会秘书处longjingping@bsc.org.cn邮箱,邮件题目为:2023太赫兹大会+单位+参会代表姓名,以便核对查询。3.退费原则:凡已缴费的参会代表因故不能参会者,须在2023年7月13日之前以email形式向大会提出申请,注册费全额退款;2023年7月14-21日前告知,正式代表将扣除500元手续费、学生代表扣除200元手续费后,退还余款;2023年7月22日之后申请,将不再退款。4.发票领取:默认提供电子发票,如有问题,联系邮箱: longjingping@bsc.org.cn论文摘要提交报告摘要采取线上提交形式,具体信息陆续公布会议报告摘要:不超过一页,应包含题目、作者、单位、摘要、参考文献、作者简介等。(摘要模板请至会议网站下载)会议报告摘要提交,优秀科技工作者、优秀研究生以及优秀会务工作者申报,截止日期为2023年6月20日。所提交报告摘要由各分会主席组织评选录用,将在7月1日通知报告本人录用类型。请参评优秀科技工作者、优秀研究生及优秀会务工作者的代表将申请表格(表格附件请至会议网站下载)发送至thzbio@163.com。会议联系人会务承办单位成都景天图库文化传媒有限公司会议日程/大会相关事宜咨询:刘维西电话:15102807137Email:nora.liu@uestc.edu.cn会议网站:岳同岩电话:13501326256E-mail: yuetongyan@bsc.org.cn会议论文提交:赵仕杲电话:19113960723Email:edw@uestc.edu.cn会议注册咨询:龙静萍电话:010-64889894E-mail: longjingping@bsc.org.cn会议参展咨询:岳同岩电话:13501326256E-mail: yuetongyan@bsc.org.cn
  • 爱因斯坦相对论遇挑战 现代物理学或被重写
    欧洲科学家发现中微子超光速现象 违背爱因斯坦相对论 现代物理学或被重写 这回,爱因斯坦错了?   突破光速、超越时空是不少科幻小说的主题,但爱因斯坦的相对论断言光速是任何物质在真空中的最快速度,小说家的幻想没有依据。一些欧洲科学家在实验中发现,中微子速度超过光速。如果实验结果经检验得以确认,爱因斯坦提出的经典理论相对论将受到挑战。科学界认为这项发现是在爱因斯坦的理论上“炸开一个大洞”。   快60纳秒   意大利格兰萨索国家实验室“奥佩拉”项目研究人员使用一套装置,接收730公里外欧洲核子研究中心发射的中微子束,发现中微子比光子提前60纳秒(1纳秒等于十亿分之一秒)到达,即每秒钟多“跑”6公里。“我们感到震惊。”瑞士伯尔尼大学物理学家、“奥佩拉”项目发言人安东尼奥伊拉蒂塔托说。   英国《自然》杂志网站22日报道这一发现。研究人员定于23日向欧洲核子研究中心提交报告。   请同行核查   “奥佩拉”项目发言人伊拉蒂塔托说,项目组充分相信实验结果,继而公开发表结果。“我们对实验结果非常有信心。我们一遍又一遍检查测量中所有可能出错的地方,却什么也没有发现。我们想请同行们独立核查。”   这一项目使用一套复杂的电子和照相装置,位于格兰萨索国家实验室地下1400米深处。   这不是爱因斯坦的光速理论首次遭遇挑战。2007年,美国费米国家实验室研究人员取得类似实验结果,但对实验的精确性存疑。   可能撼动现代物理学基石   这一最新发现可能撼动现代物理学的基石。法国物理学家皮埃尔比内特吕告诉法国媒体,这是“革命性”发现,一旦获得证实,“广义相对论和狭义相对论都将打上问号”。   欧洲核子研究中心物理学家埃利斯对这一结果仍心存疑虑。科学家先前研究1987a超新星发出的中微子脉冲。如果最新观测结果适用于所有中微子,这颗超新星发出的中微子应比它发出的光提前数年到达地球。然而,观测显示,这些中微子仅早到数小时。“这难以符合‘奥佩拉’项目观测结果。”埃利斯说。   美国费米实验室中微子项目专家阿尔方斯韦伯认为,“奥佩拉”可能存在测量误差。就韦伯而言,即使实验结果获得确认,相对论“仍是优秀理论”,只不过“需要做一些扩充或修正”。   意大利研究人员在实验中发现中微子超光速   问:“超光速”如何被发现?   答:“奥佩拉”项目研究人员接收730公里外欧洲核子研究中心发射的中微子束,发现中微子比光子提前60纳秒(1纳秒等于十亿分之一秒)到达,即每秒钟多“跑”6公里。过去两年,他们观测到超过1.6万次“超光速”现象。   问:这项实验是否意味着相对论不再成立了?   答:许多专家认为,即使实验结果获得确认,相对论“仍是优秀理论”,但“需要做一些扩充或修正”。但也有专家认为,如果真的证实这种超光速现象,其意义十分重大,整个物理学理论体系或许会因此重建。   ■新闻词典   爱因斯坦相对论   爱因斯坦相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论讨论的是匀速直线运动的惯性参照系之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论颠覆了人类对宇宙和自然的常识性观念,提出了“时间和空间的相对性”,“四维时空”,“弯曲空间”等全新的概念。   相对论和量子力学是现代物理学的两大基本支柱。经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题 量子力学解决了微观亚原子条件下的问题。   中微子   中微子是一种极为神秘的物质,在科学界有“鬼粒子”之称。虽然中微子在宇宙广泛出现,但是极难探测得到,科学家对它所知不多,1934年才确定它的存在,直至最近才确认中微子有质量。中微子从星体核聚变中产生,太阳便是其中一个产生地点。中微子是一种基本粒子,不带电,质量极小,几乎不与其他物质作用,在自然界广泛存在。太阳内部核反应产生大量中微子,每秒钟通过我们眼睛的中微子数以十亿计。
  • 中国科大在基于原子器件的精密测量物理方面取得进展
    中国科学技术大学工程科学学院教授盛东与物理学院教授卢征天联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。6月10日,相关研究成果以Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer为题,发表在《物理评论快报》上。   原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,因而共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用由诺奖得主维尔切克(Franck Wilczek)提出,它可由一种至今尚未被探测到的“轴子”粒子来传播。  为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法【Phys. Rev. A 102, 043109 (2020)】;同时,发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11-0.55 mm的作用程范围里(对应的传播子质量范围为0.36-1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm附近,本工作的实验精度比前人结果提高了30倍。  研究工作得到国家自然科学基金和中科院战略性先导科技专项的支持。  论文链接 核子(左)与极化氙原子(右)的单极-偶极相互作用示意图
  • W玻色子质量:新物理隐藏在精确测量中
    费米实验室的对撞机探测器记录了1985年至2011年间由Tevatron对撞机产生的高能粒子碰撞情况。来自23个国家54个机构的约400名科学家仍在研究该实验收集的大量数据。图片来源:费米实验室4月7日,《科学》以封面文章的形式刊发一项重要成果:美国费米实验室对撞机探测器(CDF)合作组的389位科学家,共同完成了迄今为止对W玻色子质量的最精确测量,其精度达到了前所未有的0.01%。这一令全球实验与理论物理学家们振奋和激动的结果,可能将挑战粒子物理学的“标准模型”。在中国科学院理论物理研究所研究员于江浩看来,比结果更重要的是,这是“实验物理学家坚持在旧的金矿中挖掘、‘十年磨一剑’终于淘得的金子”。“旧的实验设备仍有获得新发现的能力和优势,只要坚持在正确的方向上,依然可以做出领先世界的成果。”于江浩告诉《中国科学报》。标准模型之上的追求基本粒子之间存在4种基本的相互作用:引力、电磁力、强力和弱力,每种相互作用都是由某一种媒介粒子传递的,它们被称为玻色子。在标准模型里,W玻色子就是一种传递弱力的媒介粒子。这里的W就是weak(弱)的缩写。2012年,著名的“上帝粒子”希格斯粒子的发现,标志着标准模型取得了极大的成功。标准模型也被称为粒子物理学的基本理论模型。“但是,标准模型不能解释什么是暗物质、什么是暗能量,也不能解释宇宙中物质与反物质的不对称。因此,它只是一定能量标度下的有效理论,也就是说必定存在更加普适的理论,这是粒子物理学所要追求的目标。”北京大学物理学院技术物理系研究员李强告诉《中国科学报》。也因此,寻找超出标准模型预言的“新”物理现象成为众多物理学家毕生追求的目标。李强进一步解释,寻找新物理通常有“直接”和“间接”两种途径,测量W玻色子的质量属于后者。通过精确测量W玻色子质量,科学家可以以之检验标准模型的自洽性,提供揭示可能的新物理迹象的重要途径。于江浩介绍,W玻色子质量是标准模型的重要基本参数,W玻色子质量的精确测量本身十分有意义。W玻色子质量经常被选为标准模型理论计算的输入参数,很多物理过程的预言敏感依赖于W玻色子质量的输入值。基于粒子物理标准模型的高度可预言性,W玻色子质量的改变牵一发而动全身,会影响到已有物理测量的自洽性。“W玻色子质量的精确测量是间接探测新粒子的一种手段,如果对其质量测量十分精确,就可能检测到某些新粒子、新物理产生的影响。”于江浩说。“最精确的测量”“我们知道,W玻色子的质量十分重要,因为其直接影响了原子核弱衰变,以及太阳中轻核聚变的速率。如果其质量远轻于80倍的质子质量,那么太阳的寿命就会比现在短很多,甚至可能已燃烧殆尽。”于江浩表示。W玻色子的质量精度是如何一步步提高的?1983年,研究人员在欧洲核子中心的SPS质子反质子对撞机上发现了W玻色子,第一次测量显示其质量为80.4GeV(10亿电子伏特)左右,误差为0.8。美国费米实验室的Tevatron质子反质子对撞机基于部分结果数据,在2012年公布结果,误差为0.016。从上世纪90年代开始,欧洲核子中心的大型正负电子对撞机持续改进W玻色子的质量测量精度,在2013年将误差缩至0.033。2010年以来,欧洲核子中心的大型强子对撞机实验持续开展W玻色子的质量测量工作,但精度提高得并不多。“W玻色子的质量精确测量是所有对撞机实验上的旗舰式课题, 需要对探测器、物理对象重建、软件计算、理论预言等有很深刻的理解和掌控。”李强表示。直到近日,美国费米实验室CDF合作组分析了对撞机在2002年至2011年间第二轮运行时的所有数据,得到了W玻色子质量目前最精确的测量(80.4335 +- 0.0094 GeV),其精度达到了前所未有的0.01%。“这是非常精确的结果。”于江浩介绍,需要对实验误差(比如丢失能量等的测量精度)进行进一步控制,同时大大降低部分子分布函数的误差等——这直接影响横向动量的分布——计算到很高的精度,这些CDF都做到了。于江浩进一步表示,虽然此次测量结果与2012年的测量结果相比偏离不大,但是由于误差的极大压低,测量的结果比标准模型的预期结果(80.357 +- 0.006 GeV)偏离高了7个标准偏差。“在粒子物理领域,通常高于5个标准偏差就意味着确信和现有理论不符合,这是这个实验结果让很多人激动的原因。”于江浩说。偏差是如何产生的?于江浩说,这一偏差有可能是超出标准模型的新物理引起的,但是由于这一偏差体现在W玻色子质量的高阶修正上,新物理的效应只是间接体现,因此无法直接敲定是何种新物理。此外,实验的系统误差、部分子分布函数因子化误差、非微扰的理论输入的模型依赖依然存在;标准模型的预期主要是来自于电弱整体拟合,这一理论拟合也许存在偏差。“所以虽然偏离达到7个标准偏差,对其是否是新物理的贡献仍需持谨慎态度,需要通过减小实验和理论误差以及其他实验比如LHC来进一步验证,以确定是否是由新物理导致的,并且从相关新物理的直接寻找来排除一部分可能的新物理。”于江浩表示。“旧矿”淘得真“金子”这是在一台已经拆除的仪器上作出的成果。事实上,2011年,Tevatron实验装置在关闭后逐渐被拆除,很多实验物理学家投入到了新仪器LHC的怀抱,希望在新的金矿中淘金。于江浩曾于2012年访问费米实验室,参观了即将拆解的实验装置。他问道,“CDF实验组成员还剩多少?”“很大一部分都去做LHC物理的分析了,只有少量实验物理学家还在整理目前的数据。”费米实验室科研人员有些“悲壮”地告诉他。而10年之后,CDF的研究结果“一鸣惊人”。这也让于江浩意识到,还是有一部分物理学家选择继续在旧的金矿中挖掘,终于淘得金子,真的是“十年磨一剑”。这种坚持,连同实验和理论物理学家紧密无私合作的科学精神,都非常值得学习。目前,我国也有一些科学家在LHC和未来对撞机的多玻色子物理研究上作出了一系列重要的原创性贡献。李强介绍,2012年,我国科学家首先提出高能环形正负电子对撞机方案(CEPC)。环形对撞机造价较低,却能在240GeV能区达到更高的亮度,并能产生大量W、Z粒子来精确检验标准模型。因此,环形对撞机对于研究希格斯粒子与精确检验标准模型更具优势。未来,CEPC与欧洲核子中心未来环形对撞机的项目,均计划在91GeV的对撞能量(Z pole)以及W玻色子对的质量阈值附近取数,用于电弱物理的精确测量,将大大改进W玻色子质量测量精度。“我希望自己能坚持在一个领域做到极致。”于江浩一直记得著名W玻色子理论研究工作者、美国密歇根州立大学教授袁简鹏告诉他的话——“一个理论家等到退休的时候,一定要能留下比较坚实的工作,而不应该一直盲目追逐热点。”相关论文信息:https://doi.org/10.1126/science.abk1781
  • 我国太赫兹研究领域的实验室概览(图)
    太赫兹波是指频率在0.1~10THz之间的电磁波,在电磁波谱上位于微波和红外线之间。是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间,是人类目前尚未完全开发的电磁波谱“空白”区。由于太赫兹波所处的特殊电磁波谱的位置,它有很多优越的特性,在材料分子的特殊光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。   太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予极大的关注,美国、欧州和日本尤为重视。我国近年来对于太赫兹技术的研究也日益关注。在近日陆续公布的“2011年国家重大科学仪器开发专项”与“2011年国家重大科研仪器研制专项”中,其中由中科院紫金山天文台史生才研究员作为负责人主持申报的国家重大科研仪器设备研制专项——“太赫兹超导阵列成像系统”项目成功获批立项,资助总经费6000万元,研究期限5年。此外中国工程物理研究院申报的国家重大科学仪器开发专项——“相干强太赫兹源科学仪器设备开发项目”也成功获批立项。   仪器信息网编辑整理了目前国内从事太赫兹技术研究的实验室和研究中心,供读者对我国太赫兹技术的研究情况做一基本了解。   太赫兹光电子学省部共建教育部重点实验室   首都师范大学物理系太赫兹实验室于2001年正式成立。2006年正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。该实验室是目前国内最好的太赫兹研究基地之一。2009年起始,太赫兹实验室正式获批中关村开放实验室,依托实验室现有条件和中关村地区科技资源的优势和作用,深化产学研之间的合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。   目前,实验室具有科研用房1500平方米,其中千级超净实验室2间,面积170平方米。科研仪器设备总值超过千万元。在过去的三年中,实验室共承担包括国家973计划、国家863、国家自然科学基金重大项目等各类项目23项,总科研经费1328余万元。   本实验室主要研究方向:1.太赫兹波谱研究 2.太赫兹成像研究 3.太赫兹与红外无损检测研究 4.太赫兹与物质相互作用。   山东科技大学太赫兹技术研究中心   山东科技大学太赫兹技术研究中心成立于2003年,由我国著名太赫兹专家刘盛纲院士担任中心主任,是山东省唯一的太赫兹科学与技术研究机构。   目前实验室拥有太赫兹源研究室、太赫兹时域光谱技术应用研究室和太赫兹器件开发研究室共三个研究室,实验室面积约500平方米,设备价值约300万元。拥有60m2的千级超净实验室,奥地利产半导体泵浦飞秒激光器,德国产808nm、30W半导体激光器,相干公司激光光束质量分析仪,Gentec公司激光功率计,泰克公司200MHz示波器,光学平台等研究设备,锁相放大器, Golay探测器,精密电移台等专用研究设备。   主要研究方向包括:基于光子学太赫兹辐射源的研究、太赫兹应用技术研究、太赫兹器件的研究。   超快光电子与太赫兹技术实验室   超快光电子与太赫兹技术实验室是一个集合光学,半导体物理学,微电子学,生物学等多学科交叉的实验室。主要涉及微电子制造、半导体工艺、生物医学检测、太阳能光伏、红外传感、超高频电磁波应用等领域。实验室依托于上海理工大学。主要研究人员有庄松林院士、朱亦鸣、许健等。   实验室目前已有1000级超净室180平方米,美国相干公司飞秒激光器一台,时域太赫兹波谱测试系统一套,AFM原子力显微镜一台, SEM扫描电子显微镜一台,半导体参量测试仪一台,积分球光谱测试系统一套,磁共溅射/离子束溅射镀膜机一台等大型设备。   实验室主要研究方向:1.应用全新的超快光学方法-时域太赫兹波谱法,进行半导体材料和器件内超快电子的检测 同时设计开发新型的半导体超快电子器件。2.利用太赫兹波对物质进行研究 如通过太赫兹波和生物分子的作用,来鉴别区分不同类型的中草药,毒品等 通过太赫兹波和液晶材料、半导体材料的相互作用,来研究材料本身的一些物理特性。3.超高频电磁通信和传输及其器件的开发。4.微纳结构硅基光伏材料(黑硅)的制备、检测 基于黑硅的光伏电池的优化组装 5.微纳结构金属材料的制备、检测 基于此类微纳结构金属材料的应用 6.表面等离子波导中电磁场微小频率变化的探测7.表面等离子波导中电磁场的古斯汉欣位移增强效应的研究。   中国计量学院太赫兹技术与应用研究所   中国计量学院太赫兹技术与应用研究所成立于2006年7月,属于校级研究所,研究所所长:为洪治博士。研究所获得了浙江省“重中之重”学科“仪器科学与技术”的资助。   现有实验室面积1000余平方米。拥有基于BWO(返波振荡器)的连续THz实验平台 锁模钛宝石激光器及相关测试设备 太赫兹波TDS系统等实验设备。   主要研究方向1.太赫兹波器件、传输与系统 2.太赫兹波成像、传感技术及应用 3.太赫兹波与生物分子相互作用机理及应用 4.太赫兹波谱材料特性测试及应用。   中科院太赫兹固态技术重点实验室   2011年3月28日,中科院太赫兹固态技术重点实验室揭牌仪式举行,该重点实验室的成立,加强了中科院太赫兹研究基地建设。实验室依托于中国科学院上海微系统与信息技术研究所。曹俊诚研究员担任实验室主任,田彤研究员担任实验室副主任,封松林研究员担任实验室学术委员会主任。   实验室主要围绕半导体固态太赫兹源、探测器及其在通信与成像等领域的应用,开展基于光子学和电子学的固态太赫兹器件物理与工艺、太赫兹器件与模块、太赫兹检测与成像以及太赫兹信息传输与通信等方面的基础和应用研究工作。   中物院太赫兹科学技术研究中心   2011年12月12日,中物院太赫兹科学技术研究中心正式成立,中心主任由电子工程研究所所长姚军代理。   中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。   此外目前国内高校中电子科技大学,天津大学,南京大学,中山大学,国防科大,上海交通大学,西安理工大学,深圳大学,南开大学,清华大学 北京航空航天大学 北京理工大学等都有太赫兹研究计划。   研究所方面:中国科学院物理所,紫金山天文台,西安光机所,中科院上海应用物理所,半导体所也有研究项目。
  • 中物院成立太赫兹科学技术研究中心
    12月12日,中物院太赫兹科学技术研究中心正式成立。国家科技部高新司、条财司,国家基金委数理学部,四川省科技厅和绵阳市政府领导,院领导及相关部门领导和专家参加了会议。   会议宣读了《关于组建中物院太赫兹科学技术研究中心的通知》、《关于成立中物院太赫兹科学技术研究中心管理委员会的通知》和《关于成立中物院太赫兹科学技术研究中心学术委员会的通知》,并向中心授牌。   太赫兹科学技术研究中心代理主任、电子工程研究所所长姚军代表中心在发言中,向给予中心成立和今后发展高度关心、支持和帮助的国家机关领导、院所各级领导和专家表示深深的感谢,并表示电子工程研究所作为中心挂靠单位,一定会为中心提供优质的保障与服务,确保中心的高效运行和健康发展。   国家科技部高新司胡世辉副司长在讲话中指出,中心的成立要以国家的重大需求为牵引,围绕国家目标加强顶层设计,加强重大科学问题和重大应用问题研究 希望中心创新管理体制和运行机制,能够以更加开放合作的姿态来开展研究,特别要加强产学研的合作,加强国际合作和交流,为国内太赫兹研究搭建良好的创新平台。   国家基金委数理学部物理一处张守著处长在讲话中表示,中心的成立对推动我国太赫兹研究将发挥重大的作用,基金委也将积极支持这方面的研究工作。   院长赵宪庚在总结讲话中指出,中心的成立对我院“三元”发展战略具有重要意义,同时就中心在研究重点和发展方向、创新管理体制机制、加强人才队伍建设和太赫兹实验室建设等方面提出建议。并表示在上级机关的正确领导下,中心要不断突破关键技术,为我国太赫兹科学技术的发展与应用做出应有的贡献。   中心副主任张健研究员在会上作了《中物院太赫兹研究进展和发展设想》的报告,向与会者介绍了院太赫兹发展定位与总体目标、研究进展和发展设想。   会后,国家科技部和国家基金委等领导和来宾参观了太赫兹通信和雷达系统、太赫兹半导体器件和微纳电真空器件,太赫兹自由电子激光器和电真空器件,太赫兹量子级联激光器,太赫兹时域光谱系统等研制情况。   【中国工程物理研究院太赫兹科学技术研究中心简介】   为推动太赫兹科学技术研究,中国工程物理研究院2011年成立了太赫兹科学技术研究中心,简称“中物院太赫兹研究中心”(TerahertzResearchCenter,THZRC)。中心实行院管委会领导下的首席科学家负责制,管委会主任由院主管副院长担任,中心主任由首席科学家兼任。中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。2011年经中国科协批准成立的中国兵工学会太赫兹应用技术专委会挂靠中物院电子工程研究所和该中心。中心依托中物院无线电物理、光学、通信与信息系统、物理电子学等研究生学位点招收博士、硕士研究生以及接收博士后进站研究。   中物院在太赫兹通信、雷达、固态电子学器件、RF-MEMS器件、微纳电真空器件、大功率电真空器件、自由电子激光器、量子级联激光器、超宽谱太赫兹源、光谱成像与检测等方面开展了研究,并取得一系列重要成果。2005年,研制出我国第一个2.6THz可调谐相干自由电子激光太赫兹源,被评为2005年度中国基础研究十大新闻 2010年,基于固态电子学研制出我国第一个0.14THz/10Gbps无线通信传输样机系统(软件解调)并完成0.5km无线传输试验,2011年进一步研究了0.14THz/2Gbps的16QAM无线通信实时硬件解调器并完成1.5km无线传输试验 2011年,研制出我国第一个0.14THz高分辨率ISAR雷达成像演示系统,实现了分辨率优于5cm的二维实时成像 同时,在0.3THz以上的太赫兹固态电子器件与电真空器件、量子级联激光器、太赫兹科学仪器等方面也取得重要进展。   中物院太赫兹研究中心将以国家和社会需求为牵引,以推动太赫兹科学技术发展为目标,扩大开放融合,加强体制创新,主动融入国家科技创新体系,与国内外同行紧密合作,把中心建成科研实验设施先进、特色鲜明、机制灵活、国际一流的开放型太赫兹科学技术研究中心。
  • 太赫兹器件研究取得系列进展
    p   中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关 同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》。 /p p   太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。 /p p   通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线。 /p p   另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线。 /p p   此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。 /p p   上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中科院和教育部等关键项目的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/2420c70a-1699-4d09-9881-605198df6544.jpg" title=" 1.png" / /p p style=" text-align: center " 硅介质超表面器件示意图以及其对太赫兹波超快调控的实验结果 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/c2bbe902-a857-47af-9110-dac15eec004e.jpg" title=" 2.png" / /p p style=" text-align: center " 金属-VO2复合超表面器件示意图及其电开关、光存储功能的实验结果 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/d4a3ee1d-337a-4aa6-812d-3a05c3fe2e87.jpg" title=" 3.png" / /p p style=" text-align: center " La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫兹波段的介电常数和激发光功率关系 /p p br/ /p p br/ /p
  • 2006年太赫兹科学国际研讨会在深举行
    国际前沿学科太赫兹技术未来有何重要发展?太赫兹技术能为深圳的自主创新提供何种机遇?2006年9月23日,来自美国、英国、德国、俄罗斯以及我国的多位知名物理科学家,齐聚深圳大学研讨太赫兹技术未来的科学研究方向,以及在经济社会发展中的应用前景。市委常委、常务副市长刘应力出席了会议开幕仪式。   会议开幕式上,刘应力用流利的英文欢迎参会的各国科学家们,介绍了深圳26年来经济社会的快速发展历程,并用详细的数据说明了深圳高新技术产业、物流产业、金融产业等支柱产业的发展过程。   刘应力说,深圳是座非常年轻的城市,年轻意味着希望和未来。近年来,深圳的高新技术发展很快,不少本土企业已经在国际上享有很高的声誉。未来深圳的高新技术产业亟须得到提升,城市产业机构优化和升级,需要更多的基础性研究支撑。长期以来,深圳与中国科学院等国内知名的研究机构建立了紧密联系,并正在合作进行很多项目,清华大学、北京大学等一流院校也在深圳设立了研究生院。   刘应力表示,深圳市委市政府将为科学技术的研究和发展,尽可能地创造良好的环境。太赫兹是一项非常重要而有待开发的交叉前沿科学技术,很多发达国家都将太赫兹技术研究列入科技战略研究重点,太赫兹很可能成为未来高新技术发展的焦点。深圳热情欢迎与会的知名物理学家们,希望科学家们在深圳能够多走走、多看看,通过切身体会更全面、直观地了解深圳的企业和社会。同时,期待双方能在未来寻找到更多的合作机会,为全人类的科学技术发展做出贡献。   美国能源部核聚变项目研究负责人、物理科学家乔治博士代表与会嘉宾发言。他说,年轻的深圳充满了朝气,深圳人民通过勤劳和快节奏的工作和生活方式,正在描绘着深圳未来美好的发展前景和梦想。深圳市政府在经济社会快速发展的过程中,能够多方面听取专家和学者意见,这种做法令人钦佩。在这次短暂的相聚中,我们将根据所有的专业知识,对深圳未来的发展机遇、发展前景提供力所能及的帮助,为深圳这座城市未来的美好梦想做出贡献。   此次深圳太赫兹科学与技术发展国际研讨会,由中国科学院院士工作局和深圳市政府共同举办,深圳大学和深圳中国科学院院士工作基地承办。   什么是太赫兹?   太赫兹、红外线、毫米波是电磁波谱的一部分,太赫兹是指频率在0.1-10THz范围内的电磁波。它在长波段与毫米波重合,而在短波段与红外线重合。国际上对太赫兹的研究仅仅只有20多年的历史,人们对该波段电磁辐射性质的了解非常有限,以至于该波段被称为电磁波谱中的太赫兹空隙。科学家们普遍认为,太赫兹是一种新的、有很多独特优点的辐射源。虽然目前利用太赫兹开发的产品非常有限,但可以预计的是太赫兹将对航空、航天、天文、核聚变等多个领域带来革命性变化。   深圳大学于2005年10月成立了“深圳大学太赫兹技术研究中心”。
  • 英国尝试用太赫兹射线“剿灭”癌症
    2006年11月,英国物理学家如今正在研制一种杀伤力最强的太赫兹射线,并尝试用它破坏生长在培养器中的皮肤癌细胞。利物浦大学的这一试验将帮助科学家进一步了解太赫兹技术在治疗人类疾病上的运用。据英国广播公司报道,这是科学家首次进行利用太赫兹技术杀伤癌细胞的试验,这一技术还将运用于遗传物质的识别。   太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。   太赫兹射线不仅可以检测出脱氧核糖核酸(DNA)物质的转变,而且能够帮助医生根据个体患者的遗传信息实施相应的药物治疗。此外,由于太赫兹波具备穿透衣服、纸张、木头、墙体、塑胶和陶瓷等物体的能力,因而还被运用于探测隐秘武器、识别爆炸物和毒品。太赫兹波还能“感受”到分子的振动和旋转,因而可以用来对物质的内部进行深入研究。利物浦大学的研究人员如今正在开发这一“杀伤力”最为强大的技术,使其广泛运用于各个领域。   研究人员指出,细胞死亡的形式分成两大类:一是凋亡——细胞招致损伤而导致胀大和破裂 二是细胞的计划性死亡——细胞的自然老化。前者是在液体环境下迅速变化完成的,而后者则不是。这两种形式的不同之处在于细胞保持水分程度的差异。   利用太赫兹射线治疗皮肤癌正是建立在这样的理论基础之上——癌细胞与其他组织水分中的细胞差别甚微,通常癌细胞相对来说更大、更活跃。因而,含水量较多的癌细胞才能被组织水分中大量吸收的太赫兹射线杀死。   研究人员认为,现在迫切需要的就是从第四代光源中制造高能量太赫兹射线。太赫兹成像和太赫兹光谱能够破译出在低能量太赫兹射线下所得到的肿瘤影像的结构和成分 能量高的太赫兹射线有利于近场成像。而高清晰度的太赫兹成像和太赫兹光谱对识别癌细胞非常重要。   据介绍,基底细胞癌(BCC)是最常见的皮肤恶性肿瘤。这种皮肤癌细胞会对皮肤、组织甚至骨头造成损害,并且能导致死亡。40%的患者会转化为多发性病变。脸和脖子是最为常见的局部病变部位,常常需要实施大规模的整形外科手术。英国每年有3万多起BCC案例,65岁以上的人中有1/5的人可能罹患该病。   参与此项研究的利物浦大学物理学教授Peter Weightman说:“第四代光源的产生与直线加速器原型密不可分。而破坏组织培养器中癌细胞的太赫兹射线的部分能量来源就是加速器周围高速运转的电子。”“培养器是用来繁殖皮肤癌细胞的,而太赫兹射线是用来轰击这些癌细胞的。当太赫兹射线照射到培养器的时候,射线波被浸泡癌细胞的液体吸收,吸收放射性物质后的液体进入到癌细胞内部,从而将癌细胞彻底杀灭。”他补充道。   据悉,开发太赫兹射线项目是由英国西北地区发展署资助的,该项目的开发将用到由达斯伯里实验室开发的第四代光源的原型。
  • 中科大盛东教授与卢征天教授团队在基于原子器件的精密测量物理上取得进展
    中国科学技术大学工程科学学院盛东教授与物理学院卢征天教授联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。相关成果以“Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer”为题于6月10日发表在《物理评论快报》[Phys. Rev. Lett. 128, 231803 (2022)]上。原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,所以共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用是由诺奖得主维尔切克(Franck Wilczek)提出的,它可由一种至今尚未被探测到的“轴子”粒子来传播。为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法[Phys. Rev. A 102, 043109 (2020)];同时也发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11 - 0.55 mm 的作用程范围里(对应的传播子质量范围为0.36 -1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm 附近,本项工作的实验精度比前人结果提高了30 倍。图1核子(左)与极化氙原子(右)的单极-偶极相互作用示意图。物理学院博士生丰宇焜为论文第一作者,盛东和卢征天是共同通讯作者。该研究工作得到了国家自然科学基金委和中科院先导项目的资助。论文链接:https://link.aps.org/doi/10.1103/PhysRevLett.128.231803
  • 太赫兹光谱或成为评价地质演化过程的新方法
    流体包裹体是研究矿物演化的重要手段之一。最近,中国石油大学(北京)油气光学探测技术北京市重点实验室的宝日玛副教授利用太赫兹时域光谱技术对石盐体系进行了检测,根据石盐矿物的太赫兹波吸收系数随温度的变化关系,总结出石盐矿物的早成岩期、晚成岩期和近似变质阶段的成岩演化过程,实现了地质成岩成矿的太赫兹光谱表征与评价(如图1所示)。相关成果以“地质成岩成矿演化过程的太赫兹光谱研究”为题发表在近期出版的2015年第8期《中国科学: 物理学 力学 天文学》。  研究表明,盐?水体系中的流体包裹体包含了在自然界中保留的主要流体包裹体类型,能够提供古流体组成的物理化学信息。温度是成岩环境的重要因素之一,通过测试包裹体在成岩过程中的温度影响,能够为矿物演化评价提供详细的信息。  该项研究基于太赫兹光谱能够灵敏反映化合物结构与环境的指纹特性以及快速无损检测的特征,首次应用太赫兹时域光谱技术研究了不同温度生长的石盐晶体的光学性质,得到了石盐晶体的太赫兹吸收谱,建立了石盐矿物在温度环境下的演化模型,总结出石盐矿物的成岩过程,并通过理论模拟进一步验证了演化模型的正确性。  这一研究结果表明太赫兹技术可以成为地质成岩成矿演化过程评价的新方法,有望为环境演化、岩盐矿产成矿规律研究和含盐盆地地质成岩成矿演化过程的评价提供新的参考信息。
  • 香山科学会议呼吁加快太赫兹技术生物医学研究
    很多患者在医院检查病情时,需要做X光、CT、核磁共振等一系列检查。太赫兹(THz)波,一个尚未充分开发的电磁波段,或许将会改变这种状况。   4月8日&mdash 9日,在以&ldquo 太赫兹波在生物医学应用中的科学问题与前沿技术&rdquo 为主题的第488 次香山科学会议上,与会专家指出,由于太赫兹波具有反应物质结构与性质的指纹特性,并且光子能量低,远远小于X射线能量,不会对生物大分子、生物细胞和组织产生有害电离,特别适合于对生物组织进行活体检查。因此,相较于现有医学成像技术,太赫兹波光谱成像技术具有更独特、更适用的物理特征。   太赫兹波是频率在0.1&mdash 10THz的电磁波,处于宏观电子学向微观光子学过渡的波段。国际上,太赫兹生物医学研究随着欧盟2000年设立的国际联合项目&ldquo THz-Bridge&rdquo 正式启动。美国政府将太赫兹技术评为&ldquo 改变未来世界的十大技术&rdquo 之一,日本将其列为&ldquo 国家支柱十大重点战略目标&rdquo 之首,并将生物医学应用列为主要方向之一,欧洲也连续10年将生物医学应用作为首要研究方向。   本次会议的执行主席之一姚建铨院士介绍说,围绕太赫兹技术生物医学应用研究,国际上已经开展了很多大型国际合作项目。目前,国内外在太赫兹技术生物大分子、细胞、组织、器官等生物监测及生物效应研究方面,已取得部分代表性成果。   本次会议的执行主席之一杜祥琬院士指出,在所有物理技术中,电磁波技术对医学的促进作用尤其突出。从1901年X线获得第一届诺贝尔物理学奖开始,已有5项与生物医学相关的诺贝尔奖授予了X光谱技术领域。&ldquo 这次会议就是研讨太赫兹技术和生物医学前沿的交叉,推动这个领域的深入研究与合作。&rdquo   针对太赫兹技术在生物医学方面的应用,吉林大学教授崔洪亮介绍,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论和新技术,为当前重大疾病诊断、有效干预提供先进的技术手段。   太赫兹技术最终应用到生物医学领域,还需要落实到具体的医疗设备上,在产业化上形成一定规模。   &ldquo 我国检验医学现有的核心技术和临床设备主要都被国外垄断,国产品牌市场占有率极低。&rdquo 第三军医大学西南医院府伟灵教授对此忧心忡忡。他指出:&ldquo 目前,太赫兹波侦检分子与细胞的检测理论和关键技术是我国第一个与全球同步开展的研究,将从新的视角为检验医学领域提供分子和细胞侦检的革命性科学手段,有望阐明和提供全新的检验医学理论与技术体系,形成太赫兹波&mdash 检验医学优势新学科和产业基础。&rdquo   中国工程物理研究院流体物理研究所李泽仁研究员也表示,目前通过国家对太赫兹源、探测器及成像系统等关键技术与仪器设备的大力支持,我国已基本具备开展太赫兹生物医学研究的基础。   &ldquo 可以说,太赫兹技术在生物医学微观领域,将为揭示生物大分子之间、细胞之间的相互作用物质规律,呈现这些作用和活动的物性特征,最终解释各种生命现象提供革命性科学方法 在生物医学宏观层面,将为疾病的诊断、治疗、评估、监测和预警及后续药物设计、研发、生产和评价带来革命性改变。&rdquo 对太赫兹技术的未来,天津大学教授姚建铨院士充满信心。   然而,国内太赫兹波生物医学研究刚刚起步,缺乏学科间深入有效的交叉融合,缺乏全国性的学术战略发展规划,还不具备国际竞争力。在相关科研支持方面,目前我国只有6项与太赫兹波生物医学相关的国家自然科学基金项目。   &ldquo 国内目前有多个团队正在开展太赫兹波生物医学研究,但还缺乏交叉融合、联合攻关、体系研究的平台、团队和技术支撑,实现实质性突破任重道远。&rdquo 会议执行主席之一、中国工程物理研究院刘仓理研究员呼吁,这不仅需要研究人员奋起直追,也需要在国家层面上给予规划、支持和协调。
  • 中国天眼FAST探测到纳赫兹引力波存在证据
    近日,由中国科学院国家天文台等单位科研人员组成的中国脉冲星测时阵列研究团队,利用中国天眼FAST,探测到纳赫兹引力波存在的关键性证据,表明我国纳赫兹引力波研究与国际同步达到领先水平。相关研究成果于北京时间6月29日在我国天文学术期刊《天文与天体物理研究》在线发表。  纳赫兹引力波是引力波的一种,是宇宙中一种极低频扰动,其频率为10的负9次方赫兹。纳赫兹引力波由于频率极低、周期长达数年,其波长可达数光年,对它的探测十分具有挑战性。  中国科学院院士、中国科学院国家天文台台长常进指出,纳赫兹引力波主要是为人类打开了观测宇宙的一个重要“窗口”,肯定会有许多物理上的重大发现。用纳赫兹引力波,科研人员可以研究宇宙的超大质量天体,像黑洞、超大质量黑洞,星系的形成、演化、合并,还有宇宙早期的结构等。这些都是天体物理的重大科学问题。  利用类似于我国的500米口径球面射电望远镜FAST这种大型射电望远镜对一批自转极其规律的毫秒脉冲星进行长期测时观测,是纳赫兹引力波目前已知的唯一探测手段。  中国科学院国家天文台研究员、北京大学研究员李柯伽介绍,实际上真正的引力波探测器是那些脉冲星,科研人员用大型的望远镜就是去读这些脉冲星的信号,把这些脉冲星作为一个非常标准的“钟”在用,读这些“钟”的信号,来获取时间,来判断空间怎么样受到了引力波的影响。  在此次研究工作中,中国脉冲星测时阵列研究团队利用FAST对银河系中的57颗毫秒脉冲星进行了长期系统性监测,将这些毫秒脉冲星组成了一个银河系尺度大小的探测器来搜寻纳赫兹引力波。该团队充分利用FAST灵敏度高、可监测脉冲星数量多、测量精度更高的优势,基于自主开发的软件,对FAST收集的时间跨度为3年5个月的数据进行了分析研究。在误报率小于五十万分之一的前提下,发现了纳赫兹引力波存在的证据。中国科学院院士、中国科学院国家天文台台长常进介绍,证据就是脉冲星到达的时间,由于纳赫兹引力波产生的时空涟漪,产生的这个晃动。脉冲星角度的一个变化,这是纳赫兹引力波存在的一个重要的依据。他们看到了这种变化。  研究纳赫兹引力波对人类探索宇宙意义深远  引力波是由加速运动的有质量物体扰动周围的时空而产生的时空涟漪,其信号极其微弱,却是探测宇宙中不发光物质的直接手段,探测引力波并且开辟引力波观测宇宙的新窗口是天文学家长期以来追求的目标,并且对人类探索宇宙意义深远。  1916年,爱因斯坦基于广义相对论预言了引力波的存在。2016年,美国激光干涉引力波天文台宣布在百赫兹频段探测到恒星级质量双黑洞并合产生的引力波,并因此获得了2017年诺贝尔物理学奖。更大质量的天体产生的引力波频率更低。例如,宇宙中质量最大的天体,星系中心的超大质量双黑洞系统绕转产生的引力波主要集中在纳赫兹频段。在这个频段内,甚至还有宇宙早期原初引力波残存至今的部分和宇宙弦产生的引力波。  几十年来,各国天文学家一直在为探测神秘的引力波而努力。发现纳赫兹引力波更是国际物理和天文领域竞赛的焦点之一。美国、欧洲、澳大利亚,利用各自的大型射电望远镜,已分别开展了长达20年的纳赫兹引力波搜寻。近年来,中国、印度、南非等国也逐渐开展纳赫兹引力波的探测研究。中国科学院于2016年6月部署了“多波段引力波宇宙研究”战略性先导科技专项,2019年9月,中国天眼FAST还处于调试阶段,中国脉冲星测时阵列研究团队就联合FAST调试工作组开始试观测,尽可能早地为探测纳赫兹引力波积累观测数据。  中国科学院院士、中国科学院国家天文台台长常进说,他们将进一步围绕纳赫兹引力波,开辟纳赫兹引力波天文学这个新的科学方向,并继续保持我国在低频射电天文学方面的国际领先地位。
  • 上海微系统所与加拿大合作研究太赫兹技术
    2004年5月11日记者从在上海召开的“太赫兹物理及超快过程”国际研讨会上获悉,中国较早开展太赫兹技术研究的中科院上海微系统与信息技术研究所,正在与加拿大国家研究所合作开展能够产生太赫兹电磁波的源发生器的研究与制作。   太赫兹频段,是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹产生与检测方法,人们对该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的太赫兹空隙。目前国际上对太赫兹的研究仅仅只有20多年的历史,中国则不到10年。   据介绍,在医学治疗过程中照射的X光的光子能量高,对人体造成的伤害非常大。而应用目前国际上电磁波研究领域的新宠——太赫兹技术(1太赫兹=1012赫兹)制成的用于医疗诊断的成像设备,则能将这种照射对人体的伤害降低100万倍。   中科院微系统所曹俊诚研究员介绍说,加拿大在太赫兹研究的实验水平方面比较发达,而中科院上海微系统所则在揭示太赫兹现象的理论研究方面比较成功,双方的合作将有利于将理论与实践相结合,促进太赫兹领域技术的研发进程。   据介绍,太赫兹电磁波由于频带宽,是微波的1000倍,因此在通信方面有很大的应用前景。
  • 我国首台可调谐相干太赫兹光源建成出光
    2005年4月11日,中国工程物理研究院在国家863计划强辐射重点实验室学术年会上宣布,该院基于射频直线加速器技术的远红外自由电子激光实验日前取得突破性进展,我国首台可调谐相干太赫兹(THz)光源建成出光,填补了国内空白。   该成果是中国工程物理研究院基于射频直线加速器技术的远红外自由电子激光实验所取得的突破性进展。此次发光中心波长115μm,谱宽1H。太赫兹辐射通常指频率在1—10太赫兹区间的电磁辐射,其波段位于微波和红外光之间,是人类尚未完全认识和利用的最后一个波(光)谱区间。   中物院有关专家介绍说,中物院下一步将进行结果优化和稳定性改进,并将实验装置做成研究和应用平台,力争使我国太赫兹光源技术及应用研究在国际上占有一席之地。
  • 太赫兹波识别邮件炸弹
    2011年12月12电 不断发生的邮件和包裹炸弹事件令人神经紧绷,因此对邮递物加强检查迫在眉睫。德国弗劳恩霍夫物理测量技术研究所12日推出一款太赫兹信件扫描仪,人们可以借助这台机器在不侵犯通信隐私的前提下,及时发现信中所含危险物品。   与通常使用的X射线检查仪不同,太赫兹信件扫描仪借助太赫兹波“窥探”信件“内容”。太赫兹波为一种波长介于微波与红外线之间的电磁波,可轻易穿透衣物、塑料和皮肤。与X射线相比,太赫兹波光子能量较低,一般不会对生物组织造成损害。   研究人员介绍说,如果在邮件递送环节推广使用这种太赫兹信件扫描仪,就可提早发现邮件或包裹炸弹,避免惨剧发生。这种太赫兹信件扫描仪几乎可以“服役”于任何地方,邮局、监狱、私人住宅……与耗资较高、辐射较大、无法识别具体爆炸物的X射线扫描仪相比,太赫兹扫描仪具有独特优势。
  • 太赫兹光谱有望解释水的异常性质
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/ce83a30b-4cc7-4eaf-8986-3042bceab55b.jpg" title=" 微信图片_20180709110801.jpg" / /p p br/ /p p   液态水维持着地球上的生命,但其物理性质对于研究人员来说仍是个谜。最近,一个瑞士研究团队利用已有的太赫兹光谱技术测量了液态水的氢键。利用这种技术开展的工作,未来或许能帮助解释水的特殊性质。该团队在美国物理联合会(AIP)出版集团所属《化学物理学报》上报告了他们的发现。 /p p   研究人员利用超短可见激光脉冲激发了溶解在水中的染料分子,从而改变了它们的电荷分布。随后,太赫兹脉冲测量了周围水分子的反应。频率相对较低的太赫兹光谱使研究人员得以分析水分子之间存在的力。观察这些分子间的力或能帮助研究人员理解水的异常现象,因为液态水分子中的氢键构成了水的很多意想不到的性质,比如水在4℃时密度最大。 /p p   “我们在太赫兹频率范围内看到的反应极其缓慢。水通常被视为非常快的溶剂,能在亚皮秒量级内作出反应。但我们在太赫兹波段发现了10皮秒左右的时间尺度。”论文作者之一Peter Hamm介绍说。 /p p   但Hamm警告不要对此过分乐观。“结果经常有点令人失望,因为像水一样的液体的太赫兹光谱非常宽,并且极其模糊。这导致从里面提取信息很困难。”最新研究采用的时间分辨技术,或能克服这一限制。下一步,研究人员计划利用该方法探寻水仍处于液态但低于冰点时的结构和动力学机制 。 /p p br/ /p
  • 太赫兹自旋解耦的高效双功能全介质超构表面
    近日,复旦大学物理系周磊\孙树林课题组利用由高深宽比(20:1)的硅基人工原子构建的超构表面,在太赫兹波段实现了绝对效率高达88%的透射式自旋解耦双功能器件,例如在不同手性太赫兹光照射下实现聚焦\偏折或双全息成像等等不同功能。相关研究成果以“Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces”为题,于2022年12月在线发表在Advanced Science上。太赫兹(Terahertz,THz)波因其在信息通讯、生物医疗和国防安全等领域具有重大应用需求而备受相关科研人员的关注。然而,传统太赫兹器件由于自然材料在该波段的电磁响应很弱,而普遍存在体积庞大、效率低和功能单一等问题。近年来,具有强大电磁波调控能力和超薄结构特性的超构表面的出现为光学器件的小型化和功能多样化方面带来了新的契机。太赫兹超构表面器件研究在成为太赫兹领域研究热点的同时,也面临着诸多困难与挑战:金属欧姆损耗极大限制超构器件的绝对工作效率,现有全介质超构表面器件存在功能相对单一和效率低等问题。针对这些问题,研究团队提出了利用具有高深比的全介质柱人工原子(例如:纯硅)构建透射式太赫兹高效自旋解耦超构表面功能器件的新思路,并实验验证了不同圆偏振太赫兹光激励下的多功能光场调控(见图1)。图1.高效双功能全介质超构表面的示意图复旦大学周磊教授团队在太赫兹波段基于高深宽比(20:1)全介质人工原子构建了多功能超构器件,实验实现了对左右旋圆偏振入射光的高效(绝对效率88%)且完全不同的波前调控(即自旋解耦)。光学器件的效率和多功能操控一直以来都是一个瓶颈问题,对于透射式器件尤为明显。究其本质是构建超构表面的人工原子既要满足全相位覆盖要求,还要具备高的透射效率。团队发现具有高深宽比的全介质人工原子可同时满足上述条件,同时利用散射相消原理在器件反面引入减反结构可进一步提升器件的绝对效率。团队通过将套刻技术与深硅刻蚀Bosch Process工艺相结合,调节刻蚀(etch)和钝化(passivation)工艺平衡,成功制备出了具有100%偏振转化效率的高深宽比双面介质人工原子(如图2所示)。 图2. 器件加工中的Bosch平衡,器件SEM图以及太赫兹光谱图基于上述高效透射型全介质人工原子,团队充分利用与自旋无关的传输相位和与自旋相关的几何相位这两个独立调控自由度,设计和实现了手性完全解锁的高效双功能波前调控器件。图3 展示了高效双功能波前调控器件所对应的透射相位分布及其对应的人工原子的几何参数和旋转角度分布。团队的太赫兹实验远场实验完美验证了该超构器件对左右旋圆偏振光实现的聚焦和偏折效应,其绝对工作效率高达88%。为了进一步验证该设计方法的普适性,团队进一步设计并实验表征了功能更加复杂的高效全息成像双功能器件。在图4中展示了该太赫兹双功能全息超构器件的实验和模拟结果:该器件在不同圆偏振太赫兹光的激励下,可在器件透射端焦平面的左右两侧呈现不同的全息图像(字母“F”和“D”)。 图3.双功能器件的相位分布与SEM图以及实验测试架构和结果 图4. 全息成像器件SEM图、相位分布图以及近场扫描的实验结果与模拟结果周磊教授团队在此项工作中系统地阐述了利用全介质超构表面实现太赫兹高效自旋解耦多功能波前调控的设计方法,并基于成功制备的高深宽比高达20:1的全硅基超构表面样品,实验验证了具有自旋解锁的聚焦/偏折双功能器件和双功能全息超构器件。此项工作可为实现高效、小型化且多功能的透射式太赫兹器件研究提供新思路和新方法,并为未来的片上光子学研究发展提供更多的可能。复旦大学物理学系博士后王卓与博士研究生姚尧为论文的共同第一作者。复旦大学物理学系周磊教授和复旦大学光科学与工程系孙树林研究员为该论文共同通讯作者。该工作还得到上海大学通信学院肖诗逸教授和复旦大学物理学系何琼教授的大力支持与帮助。该研究工作获得了国家重点研发计划、国家自然科学基金和上海市科委的项目的支持。
  • 振动试验中必要的数学和物理基础知识2
    接上文:振动试验中必要的数学和物理基础知识1。5 周期、频率、角速度※周期T完成一次全振动所需要的时间(单位:秒sec)。※频率f单位时间内完成全振动的次数(单位:赫兹Hz)。※角速度ω表示物体或质点回转速度的量,角度除以时间(单位:rad/s 或 °/s)。360° = 2π (rad)三者之间的计算关系,ω = 2πf,f = 1/T,T * f = 1。※习题6 分贝振动参数(加速度、频率等)大小的比较,通常我们使用倍数来表示,比如频率是原来的10倍,位移是原来的0.5倍。在振动中由于涉及的量级范围比较大,比如频率几赫兹到几万赫兹,加速度几m/s2到几百m/s2,所以基本上采用分贝(dB)的表示方式,比如报警上限+3dB,报警下限-3dB。其实是倍数的另外一种对数表达形式而已,是量度两个相同单位之数量比例的计量单位。※定义1 功率类(功率、能量、加速度平方、PSD等)的分贝定义LdB = 10log(P/P0)P0:基准值 P:现在值2 电压类(电压、电流、加速度、速度、位移等)的分贝定义LdB = 20log(A/A0)A0:基准值 A:现在值※常用分贝和倍数比较表(电压类分贝)分贝倍数分贝倍数0dB10dB10.5dB1.059-0.5dB0.9441dB1.12-1dB0.8922dB1.26-2dB0.7953dB1.41-3dB0.7086dB2-6dB0.510dB3.16-10dB0.31620dB10-20dB0.140dB100-40dB0.01※习题1 加速度增加到3倍,对应的分贝是多少?(9.54dB)2 速度增加到4dB,也就是增加到几倍?速度减少到-4dB,也就是减少到几倍?(1.585倍,0.631倍)7 倍频程、十倍频程在振动试验中,对于两个频率比的表示方式还有倍频程(octave)和十倍频程(decade)的方法。这是两个必须理解的概念,十倍频程相对来说用的比较少。7.1 倍频程(octave)※定义指使用频率f与基准频率f0之比等于2的n次方,即f/f0=2n,则称f为f0的n次倍频程。计算式如下:n = log(f/f0)/lg2或n = log2(f/f0)比如,下限频率100Hz,上限频率2000Hz,通过上面的计算式可以得到100~2000Hz之间约有4.3个倍频程(可以简写成4.3oct)。7.2 十倍频程(decade)※定义指使用频率f与基准频率f0之比等于10的m次方,即f/f0=10m,则称f为f0的m次十倍频程。计算式如下:m = log(f/f0)比如,下限频率100Hz,上限频率2000Hz,通过上面的计算式可以得到100~2000Hz之间约有1.301个十倍频程(可以简写成1.301dec)。※习题1 频率范围10~2000Hz之间有几个倍频程?(7.645oct)2 频率范围10~2000Hz之间有几个十倍频程?(2.301dec)3 推导倍频程(oct)和十倍频程(dec)之间的关系。(1oct=3.322dec)总结:本文只罗列了一些振动试验涉及的最基本的经常出现的数学和物理知识,如果不能理解和应用,在技术交流中会比较困难,需要加倍努力才行。当然,振动试验所涉及的数学和物理知识还是很难很复杂的,比如傅立叶变化、PSD计算等。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 集成太赫兹收发器在美问世
    据美国物理学家组织网2010年6月30日(北京时间)报道,美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然光子学》杂志上。   太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。   新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。   量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。   研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。
  • 微电子所成功研制太赫兹倍频器核心元件
    近日,中国科学院微电子研究所微波器件与集成电路研究室(四室)太赫兹器件研究组研制出截止频率达到3.37THz的太赫兹肖特基二极管和应用于太赫兹频段的石英电路。该器件作为太赫兹倍频器核心元件,经中电集团41所验证,性能与国际同类产品相当。   太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一 此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。   由四室主任金智研究员领导的太赫兹器件与电路研究组针对太赫兹电路的关键技术开展研究,对器件外延材料生长的进行了设计与优化,突破了低电阻欧姆接触合金、肖特基微孔刻蚀和空气桥腐蚀技术等关键制作工艺,有效地降低了器件的串联电阻和寄生电容,实现了可在太赫兹频段应用的肖特基二极管,并开发了多种肖特基二极管的集成方式(见图1),太赫兹肖特基二极管(见图2)器件的最高截止频率达到3.37THz,可广泛应用于太赫兹波的检测、倍频和混频。   为了解决太赫兹频段下外围电路损耗高的问题,研究人员开发出器件与电路衬底背面减薄技术,并采用低介电常数石英材料实现了太赫兹电路,研制出厚度小于50um,可应用于太赫兹频段核心电路(见图3),极大地减小了在太赫兹频段的损耗,提高了电路模块的效率。   课题组与中电集团第41研究所联合开展了太赫兹倍频器的验证工作,采用自主研制的太赫兹肖特基二极管器件实现了倍频器在太赫兹频段的工作,在170~220 GHz的倍频效率为3.6%,220~325 GHz的倍频效率达到1.0%(见图4),可实现宽频带倍频,其输出功率和倍频效率与国外VDI同类产品相当,该倍频器可用于构建宽频带太赫兹源,在太赫兹成像、太赫兹通信和卫星遥感方面有着广阔的应用前景。对于太赫兹系统的核心器件(主要是肖特基二极管)的国产化具有重要意义,为国内的太赫兹技术的发展提供良好的器件和工艺支撑。
  • 德国太赫兹信件安检设备即将投放市场
    据德国弗劳恩霍夫应用技术研究联合会消息,由弗劳恩霍夫物理测试技术研究所(IPM)与Hü bner公司应用太赫兹成像技术联合研制的代号为&ldquo T-COGNITION&rdquo 的太赫兹信件安检设备即将投放市场。太赫兹是一种介于红外与微波之间的辐射,因此具有两者的优点,可以如微波一样穿透纸张、木材、织物、塑料和陶瓷材料,通过分析透过物体的太赫兹辐射的频谱,可以确定物体的性质,同时太赫兹辐射透过物体时不会如X-射线那样使物体发生离子化,因此对人体无危害。这款信件安检设备的核心是太赫兹扫描仪,通过分析透过信件的太赫兹信号,几秒钟内可确定其太赫兹&ldquo 手印&rdquo ,经过与数据库的比对,确定信件内是否存在危险品如爆炸物、细菌、毒品等。该设备能检查的信件最大尺寸为C4标准信封(22.9× 32.4厘米),最大厚度2厘米,可应用于司法、海关、政府机构、驻外机构等。
  • 我国自主研制的太赫兹探测设备在南极成功运行
    中国第39次南极科学考察期间,中国科学院紫金山天文台牵头完成了南极内陆太赫兹天文试观测和通信收发等实验。紫金山天文台科考队员已乘坐极地考察船离开南极中山站,返航回国。中国南极昆仑站所在的冰穹A是独一无二的地面太赫兹天文观测优良台址,也是具有重要战略意义的科学考察地。中国第39次南极科学考察队于2022年10月先后随“雪龙2”号和“雪龙”号极地考察船从上海出发赴南极,并在时隔三年后再次派遣内陆队赴昆仑站、泰山站考察。紫金山天文台科研人员参加了此次南极内陆科学考察,携带一套我国自主研发的南极太赫兹探测实验系统,包括太赫兹超导接收机、太赫兹信号源、低温制冷机和小型高精度天线等自主研制的关键核心设备。科研人员分别在昆仑站和泰山站开展了太赫兹天文试观测和通信收发演示实验,首次实现我国自主研制太赫兹探测设备在南极内陆极端环境下的成功运行,并精确测定冰穹A地区0.5THz观测窗口大气透过率,进一步完善了前期太赫兹天文台址测量结果,对未来南极内陆太赫兹天文观测具有指导意义。本次实验还首次实现南极内陆地区公里级0.5THz频段太赫兹信号收发实验,为今后在南极深入开展下一代通信技术研究和实验验证奠定了基础。本次实验由紫金山天文台和中国极地研究中心联合组织实施。实验设备由紫金山天文台牵头,中国科学院理化所、中国电科集团54所、中国工程物理研究院和上海师范大学“史生才院士工作站”联合研制。相关工作得到国家自然科学基金委和中国科学院的支持,以及中国第39次南极科学考察内陆队的通力协作。2022年10月31日,紫金山天文台科考队员乘坐极地考察船启航科考队员紫金山天文台任远研究员在昆仑站工作
  • 太赫兹应用:无标记识别脑胶质瘤细胞
    近日,由上海交通大学朱卫仁教授与重庆西南医院神经外科冯华教授/陈图南副教授团队、爱德万测试(中国)管理有限公司三方合作在国际高水平期刊《Biosensors and Bioelectronics》上发表题为“Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency”的研究结果,首次展示了一种针对不同胶质瘤分子分型细胞进行无标记识别的太赫兹超材料检测方法,该研究也得到了天津大学姚建铨院士团队的指导和支持。胶质瘤是颅内最常见的、造成最多死残病例的中枢神经系统肿瘤,目前临床主张进行整合诊断,将胶质瘤分为多个特定的分子亚类,其中IDH是与肿瘤进展、治疗反应和预后密切相关的经典分子分型标记。快速早期无标记区分IDH1野生/突变两种胶质瘤对于术中和术后早期精准诊疗具有重要价值。研究团队提出了一种无标记的脑胶质瘤细胞“分子分型(IDH1野生/突变)”生物传感超材料,通过在生物传感器表面加载人原代胶质瘤细胞进行太赫兹波谱探测,其频率偏移和峰幅变化与不同类型细胞及其浓度呈现相关性;通过观察超材料传感器共振频率的变化,可以区分不同分子分型的胶质瘤细胞,这种识别是在没有引入抗体等生化标记方法的情况下,在多个不同细胞浓度下实现的。基于该项研究结果,太赫兹超材料生物传感器在识别胶质瘤细胞类型中显示出了巨大的潜力,基于肿瘤分子分型的太赫兹波谱识别策略也拓展了新的太赫兹波生物传感技术发展方向。太赫兹技术在生命科学领域有广阔的应用前景,第十届光谱网络会议(iCS2021)邀请了四位来自国内外高校的专家学者们,届时,专家将介绍太赫兹技术的更多应用,点击下方链接立即报名哦。5月25-28日 光谱网络会议相约十年(iCS2021)专家报告推荐之光谱在生命科学领域的应用1、《太赫兹生物医学与生物物理发展概况》(中国生物物理学会-太赫兹生物物理分会 何明霞副会长/秘书长)2、《纳米-生物界面作用的定量分析》(中国科学院高能物理研究所 王黎明研究员)3、《面向生物医学检测的LIBS/Raman联用装置与方法研发》(四川大学 林庆宇副教授)4、《新型冠状病毒核酸检测技术研究进展》(阿尔伯塔大学 庞博博士)立即报名(免费哦):https://www.instrument.com.cn/webinar/meetings/iCS2021/
  • 中国参加国际太赫兹功率比对 响应度超过美德
    世界上第一个太赫兹波段的行波光管放大器。   日前,国际首次太赫兹功率比对在德国柏林举行,参加比对的德、美、中3国的国家计量院采用不同的技术路线,取得的测量结果都能相互吻合。其中,中国计量院参加比对的太赫兹辐射计测量不确定度最小、响应度最高,标志着我国太赫兹辐射功率计量能力步入国际领先行列。   太赫兹介于红外和微波频段之间,是连接电子学和光子学的桥梁,在信息科学、材料科学、生物化学等许多领域具有重要应用价值和重大应用潜力。由于缺乏有效的测量方法和测量仪器,人们对于该频段的辐射特性了解甚少。随着太赫兹技术的发展和广泛应用,太赫兹辐射源、太赫兹探测器、太赫兹测量系统大量涌入市场。在高速宽带通信、功能材料研制、生物医学成像、机场港口安检、地沟油检测、危险化学品监测预警等许多领域的应用日益广泛。然而国际上缺少太赫兹相关参数测量标准,导致太赫兹产品的特性难以客观准确评估,无法科学评估并保障太赫兹研究和应用的有效性。   为解决这一问题,先进国家的计量院相继开展此方面的研究。如德国联邦物理技术研究院(PTB)利用低温辐射计率先实现了太赫兹功率溯源至国际单位制 美国标准技术研究院(NIST)利用碳纳米管作为吸收体实现了太赫兹辐射功率的测量 中国计量院利用自主研制发明的一种太赫兹超强吸收材料实现了太赫兹辐射功率的绝对测量和量值溯源。   为保障太赫兹计量量值准确可靠,2013年,德、美、中3国的国家计量院共同商定了比对方案和进程,对参比国家实验室提出了资格要求。以国际正式论文作为证明,经筛查后有4国的国家计量院符合参加条件,最终有能力参加比对的实验室仅有美国NIST、中国NIM和德国PTB3家,其中PTB为主导实验室。   中国计量院参比负责人、激光室副主任邓玉强博士介绍说,此次比对规定在2.52THz和0.762THz两个频率点下进行,3国参比实验室分别采用互不相同的技术路线复现量值,在同一地点一起进行现场实验测量。最终比对结果表明,3国的现场测量结果都能相互吻合,等效一致。中国计量院在比对的两个频率点均以最小的测量不确定度取得国际等效。   中国计量院参加此次国际比对所采用的太赫兹辐射计及其关键部件均由邓玉强和孙青2位副研究员自主研制发明,其中,太赫兹辐射计吸收材料的吸收带宽和吸收率均为目前国际最高水平,可实现100GHz到可见光波段辐射功率的高准确度测量,且响应光谱平坦。在PTB实验室的现场测量中,该太赫兹辐射计表现出卓越的性能,具有良好的重复性、稳定性和信噪比,非线性仅为0.4%,被德国国家计量院太赫兹辐射度实验室主任AndreasSteiger博士誉为&ldquo 具有德国产品的质量&rdquo 。   据了解,此次为国际首次太赫兹功率比对,被国际光度辐射度咨询委员会(CCPR)关键量比对工作组主席YoshiOhno博士认为是&ldquo 太赫兹计量领域的重大里程碑&rdquo ,将对今后的太赫兹科学研究和太赫兹技术推广应用起到积极的推进作用。 配备太赫兹量子级联激光器的纳米线探测器。   太赫兹量子级联激光器的研制难度大,对结构设计、材料生长和器件工艺均有很高的要求。   近日科学家们研发的一种能够检测光波的最新设备或能帮助打开电磁光谱的最后边界&mdash &mdash 太赫兹(Terahertz)光谱。
  • 青源峰达 | 太赫兹三大硬核产品正式亮相
    p style=" text-align: center " 5月29日 上午9:00 /p p style=" text-align: center " THz系列新品发布 /p p style=" text-align: center " 用智慧之眼感知万物,点亮智能世界 /p p style=" text-align: center " 跟我们一起开启智能世界之眼吧! /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/noimg/229f68a4-512c-4b30-867e-0c5339057627.gif" title=" 640.gif" alt=" 640.gif" / /p p   太赫兹时域光谱与三维层析成像系统-新产品发布会在青岛高层次人才创新创业基地隆重举行。中国科技部、中国工程物理研究院流体物理研究所、中国石化青岛安全工程研究院、北京卫星制造厂、山东省协同创新中心、山东省计量科学研究院、青岛大学等科研院所与高校领导专家莅临现场参加此次盛会。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/05def660-3fcc-4849-8120-d866421d7a57.jpg" title=" 2020.06.01_15.04.00.jpg" alt=" 2020.06.01_15.04.00.jpg" / /p p   青岛大学党委常委、副校长于红波先生出席发布会并首先发表致辞,他简要介绍了青岛大学的办学历史和发展状况。他指出,高校办学和发展要放眼未来,把握机遇,注重创新,多方联动,开创校企合作新局面。他希望,青岛大学能充分发挥人才、科技、平台等优势,在产学研合作和协同创新中心共建方面,与青源峰达深化交流、加强合作 同时,学校将以最大的诚意、尽最大努力,为双方合作提供一流的服务和环境,致力形成长期、紧密、共赢的合作关系。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/732c4de2-f9fc-46b0-b47a-d36b74f6ee14.jpg" title=" 2020.06.01_15.04.55.jpg" alt=" 2020.06.01_15.04.55.jpg" / /p p   新光智源集团董事长、青源峰达太赫兹创始人朱新勇先生在接下来的致辞中,回顾了从最初在以色列与太赫兹的结缘到中物院一所与太赫兹的再次邂逅,朱总坚定表达了以高端精品战略深耕太赫兹产业的决心,立志做国际一流的太赫兹科技与服务企业。朱总表示,青源峰达与青岛大学签订产学研合作框架协议和参与协同创新中心建设,恰逢其时,为青源峰达实现创新发展注入了新动力,增添了新希望。青源峰达将致力于与青岛大学的战略合作,充分利用青岛大学的物理科学学科优势和高水平人才聚集的优势,积极开展学术交流创新,充分发挥高水平人才潜能,在太赫兹科技创新、服务海洋产业发展、人才培养等领域,着力开展优势互补的合作与交流,争取多出高水平成果,多出高水平人才,推进学术成果转化,促进科技与产业的融合发展,实现经济效益和社会效益双丰收。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7748b2d7-cbae-44a4-ae43-9f7eb0b5d322.jpg" title=" 2020.06.01_15.05.27.jpg" alt=" 2020.06.01_15.05.27.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/6084071d-1976-42b4-bc54-71e9a1400fb5.jpg" title=" 2020.06.01_15.05.34.jpg" alt=" 2020.06.01_15.05.34.jpg" / /p p   青岛大学、青源峰达、山东省计量院领导为“协同创新中心共建”分别签署合作协议并揭牌。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/92b5373e-f7ea-4da9-b146-c9ca3a2d9dd4.jpg" title=" 2020.06.01_15.06.13.jpg" alt=" 2020.06.01_15.06.13.jpg" / /p p   青岛大学党委常委、副校长于红波先生与中国石化青岛安全工程研究院高级工程师魏新明先生为太赫兹系列新品揭幕! /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/652279c4-407e-4a55-98ed-95e9ad032776.jpg" title=" 2020.06.01_15.06.21.jpg" alt=" 2020.06.01_15.06.21.jpg" / /p p   青源峰达太赫兹研发中心总监刘永利先生针对此次发布的太赫兹光谱和成像产品及核心优势做精彩分享。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f1685337-ce22-499b-8cbd-e6e29fbbcfda.jpg" title=" 2020.06.01_15.06.30.jpg" alt=" 2020.06.01_15.06.30.jpg" / /p p style=" text-align: center " 青岛大学& amp 青源峰达-产学研合作签约 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/81422c7c-7a16-436f-9eda-6d4e5564a8f5.jpg" title=" 2020.06.01_15.06.40.jpg" alt=" 2020.06.01_15.06.40.jpg" / /p p style=" text-align: center " 青岛大学& amp 青源峰达-产学研合作揭牌 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/2caab864-3cca-4eed-95d7-c82989076479.jpg" title=" 6ec7cd7774139dd6b8e27a2b5024a100.png" alt=" 6ec7cd7774139dd6b8e27a2b5024a100.png" / /p p   青岛大学物理科学学院院长滕冰女士,分享了产学研合作的重要意义,这是青岛大学着力推进产学研合作、服务地方经济发展的重要举措,也充分体现了青源峰达对未来发展的长远规划和高度的社会责任感。希望在共建协同创新中心的基础上,集中双发优势,共同合作申报相关国家级重大科技攻关项目和研发平台,力争出人才、出成果、出效益,共同开创事业发展的新局面。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/dd550edd-bbb2-46f8-895d-a0ddafaf5c15.jpg" title=" 2020.06.01_15.07.14.jpg" alt=" 2020.06.01_15.07.14.jpg" / /p p   此次发布会的召开,将为青源峰达与高校、科研院所深化合作、共谋发展、构建合作发展共同体开启新篇章。 /p p   此次发布会分别通过现场和网络直播的形式呈现,青源峰达通过抖音官方账号(THZ.2020)与集团兄弟公司盛瀚色谱(SHINE_since2002)、盛达利机电(qdsdl_since1997)的抖音账号组成抖音直播矩阵,对发布会进行全程直播。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/775f1e6d-795f-4186-ad1d-faae62cf6576.jpg" title=" 2020.06.01_15.07.26.jpg" alt=" 2020.06.01_15.07.26.jpg" / /p p   青源峰达太赫兹、盛瀚色谱、盛达利机电的各位集团伙伴及来自中国工程物理研究院流体物理研究所的专家,现场参与和观看直播的形式,共同见证了太赫兹系列产品(QT-TS1000高精度太赫兹时域光谱系统 / QT-TS2000快速太赫兹时域光谱系统 / QT-TO1000太赫兹三维层析成像系统)的隆重发布。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " 下面请出今天的三位主角 /span /p p style=" text-align: center " QT-TS1000高精度太赫兹时域光谱系统 /p p style=" text-align: center " QT-TS2000快速太赫兹时域光谱系统 /p p style=" text-align: center " QT-TO1000太赫兹三维层析成像系统 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/noimg/07381977-9cda-425f-be9f-e2288b950851.gif" title=" 640 (1).gif" alt=" 640 (1).gif" / /p p style=" text-align: center " br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制