当前位置: 仪器信息网 > 行业主题 > >

核酸药物

仪器信息网核酸药物专题为您整合核酸药物相关的最新文章,在核酸药物专题,您不仅可以免费浏览核酸药物的资讯, 同时您还可以浏览核酸药物的相关资料、解决方案,参与社区核酸药物话题讨论。

核酸药物相关的资讯

  • 微流控纳米药物递送平台助力核酸药物开发
    自辉瑞/BioNTech和Moderna的2款mRNA疫苗上市以来,mRNA行业拥有的巨大前景已经得到了广泛的认可,诸多企业也已纷纷进军。然而,受限于核酸药物的开发难度,不少企业在研发初期都会遇到同样的问题:如何进行有效的核酸包裹? 为了给更多的读者提供可借鉴的参考,小编将重点介绍MicroFlow™ 系列微流控设备,阐述其在核酸药物开发中起到的助力作用!MicroFlow™ 系列设备MicroFlow™ 系列微流控设备由铭汰医药设备(上海)有限公司开发,其开发之初就有着长远的设计考虑:依靠独特的芯片技术,使纳米药物早期开发、临床前放大及未来GMP生产实现工艺的无缝衔接。知识梳理在介绍设备之前,我们先来梳理一下核酸药物制备相关的知识。核酸药物的制备过程包括合成、修饰和递送三个环节。之所以将药物制备为纳米级,是因为在递送环节中纳米级的颗粒更容易透过血管壁和细胞膜等生物屏障;修饰环节则主要依靠配方的调整以及优化;而首个环节—合成环节,则需要借助于专业的设备,铭汰的MicroFlow™ 系列微流控设备可以合成直径为40-500nm的纳米粒子,其合成粒子的主要类型可参考图1。图1.纳米粒子类型图接下来,小编将分别介绍MicroFlow™ 系列微流控设备的四款产品。铭汰 Microflow T产品特点:1.Microflow T合成量为25μL~250μL,用于早期大量配方的筛选,可节省研发初期的成本消耗。2.单次制备可在数秒时间内完成,可缩短处方筛选耗时。3.混合过程高度均一且可重复。4.设备根据大量实验确定了较为通用的反应比,降低了试错成本。铭汰 Microflow S产品特点:1.Microflow S合成量为0.5~60 mL,旨在从实验规模上开发变革性药物,可制备少量样品,应用于小动物实验。2.制备速度快,总流速为0.1~50 mL/min,可节省大量时间。3.产物纳米粒子,粒径高度均一且可调;批次间重复性高。4.操作简单,可通过调整总流速、流速比等参数,来合成不同粒径的纳米粒子。铭汰 Microflow M产品特点:1.Microflow M合成总流速可达120L/h,有效的扩大了实验室合成规模,适用于更大的体内研究,如非啮齿类模型。2.保留核心的芯片技术,产品粒径、PDI与Microflow S设备无差异,实现工艺放大的快速转移。3.所有核心部件均具有高寿命、低故障率等特点;所有相关配件耐用且易更换。4.操作软件终生免费升级,提高适用性。铭汰 Microflow G产品特点:1.合成速率:120L/h(可根据需求定制,提升制备量)。2.承袭 Microflow M 特性的同时,优化设备细节,使其符合 GMP 要求。可进行大规模临床生产。3.使用与Microflow M相同的芯片设计,减少放大过程中的影响因素。4.一次性液体管路,消除清洁负担。读到这里,相必大家对于铭汰的设备已经有了初步的了解。随之可能会产生一个疑问:每一款产品是否都有与之匹配的芯片?答案是肯定的,以Microflow S设备为例,图6即为与之匹配的FlowTech S芯片。其最大特点为:在合成均一纳米粒子的前提下,能进行多次重复使用,大大的减少了研发成本。图6. FlowTech S芯片图微流控设备已经成为核酸药物开发者们的常用设备,其在合成均一纳米粒子方面有着显著的优势,铭汰公司的MicroFlow™ 系列微流控设备更是着眼长远,努力为纳米药物研究各个阶段提供解决方案。
  • 创新通恒首创国内大型核酸药物合成系统
    创新通恒Kilotide500 DNA合成仪是国内首创的大型核酸药物合成系统,它的诞生弥补国内核酸药物生产设备的空白。 2010年,北京创新通恒科技有限公司和国内某著名研究所共同承接国家&ldquo 十一五&rdquo &ldquo 重大新药创制&rdquo 中的《核酸药物规模化制备与靶向修饰关键技术研究》的重大新药项目,并根据国家重大新药项目需求,独立研发,制造出Kilotide500 DNA合成仪。 整套系统由泵系统、反应柱系统、阀系统、检测系统、收集系统及计算机集成控制系统等组成,其制备(合成和纯化)规模高达500mmol(约2kg)以上,纯度达到95%以上,比国际同类产品具有更高的性价比。 查看 Kilotide500 DNA合成仪 详细信息 Kilotide500 DNA合成仪系统研发成功后,主要用于核酸药物的生产使用。Kilotide500 DNA合成仪系统应运而生,为核酸类药物生产厂家提供性价比优良的生产设备,为核酸药物研究开发中的关键技术提供完善的技术支撑,对于加快我国自主知识产权核酸药物的产业化进程,促其早日进入临床和市场起到重要的推动作用。同时为建立核酸药物产业联盟,制订相关行业标准等发挥重要作用,促进核酸产业联盟的发展。 现阶段,北京创新通恒科技有限公司制造的大型核酸药物合成仪系统Kilotide500已经交付客户使用。 欢迎登陆 www.bjcxth.com了解更多信息!
  • 四小名助|快速核酸药物表征全攻略来了
    又到周五啦!四小名助如约而至,给大家带来色谱耗材相关的实用技术小贴士。内容涉及色谱柱及前处理产品选择、使用、维护保养等内容。实用干货,不容错过!FAST mRNA快速核酸药物表征核酸药物不但将药物治疗拓展到了蛋白质之前的基因层面,mRNA 疫苗体液免疫与T 细胞免疫的双重免疫机制,提高了免疫活性。同时放大制备更容易。这些优势使得核酸药物成为继小分子药物,蛋白药物,抗体药物后的新一代创新药物。2018 年后Patisiran 药物的递送技术解决了小核酸药物面临的给药效果差,脱靶造成副作用的难题,更是迎来了核酸药物研发的新高潮。新guan疫情中核酸疫苗的成功更是拓宽了核酸药物的应用潜力。新赛道上如何快速表征核酸药物,话不多说,直接上干货。选对耗材是关键核苷/寡核苷酸分析和制备色谱柱的选择(点击查看大图)核酸分析色谱柱的选择(点击查看大图)滑动查看更多寡核酸药物分析全助攻寡核苷酸药物中,根据作用机理可以分为反义核苷酸,小干扰RNA,微小RNA,小激活RNA,信使RNA,适配体等,这些药物由于容易被核酸酶降解,延长半衰期的考虑,会做一些修饰,如硫代PEG修饰等等。在固相合成过程中也会有些杂质需要监控,针对这些需求,相应的方法开发和方案展示如下:01DNAPac RP分析寡核苷酸药物关键杂质滑动查看更多(点击查看大图)02DNAPac PA系列阴离子交换柱分析寡核苷酸药物关键杂质滑动查看更多(点击查看大图)核酸药物分析全助攻核酸药物特别是mRNA在新guan疫情大流行期间,同样发挥了巨大的作用,在核酸成产过程中,质粒纯度测定, mRNA序列测定,mRNA帽子结构确定,mRNA的PolyA测定,mRNA的降解产物的研究等等这些需求,对于分析技术提出了更高要求,专用DNAPac系列反相色谱柱和离子交换色谱柱可以满足这些检测需求。01mRNA原液检测攻略滑动查看更多(点击查看大图)核酸药物载体的表征核酸药物的成功,离不开药物递送技术的突破,不同基质,不同官能团的色谱柱在纳米脂质体组成的测定,腺相关病毒组成以及聚乙酰亚胺残留的检测中各显神通,点击下面详图获得。01纳米脂质体的表征滑动查看更多(点击查看大图)02腺相关病毒载体的表征滑动查看更多(点击查看大图)工艺监控在寡核苷酸和核酸生产工艺中,会用到一些有机溶剂等其他原料,这些原料如何检测,点击下图查看:滑动查看更多(点击查看大图)一键获得★ 这么多应用是不是有些眼花缭乱了呢,贴心的核酸项目分析选择手卡,扫描以下二维码,即可一键获得如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 回放视频合集|核酸药物研发与质控的技术盛宴
    仪器信息网讯 7月19日,仪器信息网举办的“核酸药物与分析检测技术”网络研讨会成功召开。会议共吸引近600名来自制药企业、CRO/CDMO、生物技术公司、医院、高校和科研院所以及药品检验研究院等单位的从业人员报名参会。会议内容涵盖非天然核酸化学生物学、核酸化学中的苏糖核酸TNA、寡核苷酸药物的质量控制、自复制mRNA疫苗的分子设计与评价等内容。经征得报告嘉宾同意,现将报告回放视频整理发布,供相关从业者观看学习。(点击图片即可进入视频观看页面。)《非天然核酸化学生物学》《基因治疗及疫苗相关的DNA质粒和mRNA的色谱层析技术》《核酸化学中的苏糖核酸TNA》《寡核苷酸药物的质量控制》《新一代色谱质谱技术平台应用于核酸药物的研发和表征分析》《triVac功能性mRNA修饰肿瘤疫苗的临床应用探索》《寡核苷酸药物和mRNA关键质量属性分析》《针对细菌的mRNA疫苗与药物》
  • GE医疗与锐博生物达成核酸药物研发生产战略合作
    p   2017年11月9日,在广州开幕的第五届广州核酸国际论坛上,GE医疗与国内领先的核酸药物研发生产企业广州市锐博生物科技有限公司(简称“锐博生物”)签署核酸药物研发生产战略合作协议,旨在通过建立深度的战略联盟,携手推动国内核酸药物的研发进展,为中国及国际客户打造更先进的整体核酸药物解决方案。 /p p   出席现场的嘉宾除了来自GE医疗生命科学事业部大中华区首席商务总监林澍方女士和锐博生物董事长张必良博士以外,更有多位诺贝尔奖获得者见证,包括英国弗朗西斯· 克里克研究所荣誉小组组长Tomas LINDAHL博士(2015年诺贝尔化学奖得主)、美国国家科学院院士Craig C. MELLO博士(2006年诺贝尔生理学或医学奖获得者)和美国New England Biolabs首席科学官Sir Richard J. ROBERTS博士(1993年诺贝尔生理学或医学奖得主)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/07df6d34-e62b-4528-b738-f7fea8460569.jpg" title=" 1_副本.jpg" / /p p   随着此次战略合作的达成,GE医疗将为锐博生物提供其最先进的高内涵细胞成像分析系统IN Cell Analyzer 6500和OligoProcess(1800 mmol)核酸合成生产系统,帮助后者进一步提升自己的硬件实力,以打造亚洲领先的核酸药物CRO & amp CMO平台。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/d7af7b06-f6a3-4916-96c0-dd66f319e5e3.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " IN Cell Analyzer 6500 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/27acf7cb-e508-4b22-a18c-ce69b283b055.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) "   OligoProcess /span /strong /p p   目前,锐博生物已拥有并建成国内首个先进水平的cGMP寡核酸生产基地,并下设寡核酸药物生产车间和核酸药物分析测试中心,为核酸药物研发提供优质的产品生产和临床药学服务。其生产车间配备了GE医疗旗下包括Oligopilot 100核酸合成仪、Oligopilot 400核酸合成仪、AKTAexplorer 100纯化仪、AKTApilot纯化仪和AKTAprocess纯化仪在内的一系列设备,可单批完成从微克到数百克级的各类核酸产品生产,满足科研开发、新药筛选和临床药物生产等不同阶段的需求。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/be536509-e07d-41d2-92d5-dfb657dc4037.jpg" title=" 4_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 广州市锐博生物科技有限公司 董事长 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) "   张必良 博士 /span /strong /p p   “核酸是继抗体药物之后的下一代创新药物,尤其对于单基因疾病来说优势巨大,因而具有广泛的发展前景。”锐博生物董事长张必良博士表示,“锐博生物拥有世界一流的技术团队和丰富的研发与生产经验,我们致力于成为亚洲第一家为客户提供核酸药物大规模整体解决方案的CRO& amp CMO公司。与GE医疗的深入合作将帮助我们打造更加强大的核酸药物整体平台以及高内涵细胞分析平台,满足国内外核酸药物的临床研究和药物上市需求。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/089129ad-e91f-47f6-8937-b7d9036936cc.jpg" title=" 5_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " GE医疗生命科学事业部大中华区总经理 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) "   李 庆 先生 /span /strong /p p   GE医疗生命科学事业部大中华区总经理李庆先生表示:“任何一种新技术从发现到临床应用的道路都十分漫长,基于核酸技术的药物也是如此。锐博生物在这一领域的不懈努力极大地加快了中国核酸药物的开发进程,对推动精准医学研究意义重大。而GE医疗一直以来都秉承“关爱先行”理念,不断开拓和发展创新的医疗技术和解决方案,助力精准医疗。我们希望通过双方的紧密合作,不断缩小中国生物制药产业与国际领先水平的差距,推动中国向生物药强国的方向发展,造福更多患者。” /p p   核酸药物是通过靶向疾病基因发挥治疗作用的一类药物,为病毒性疾病、肿瘤和遗传疾病的治疗开辟崭新的道路,具有广泛的应用前景。广州核酸国际论坛创办于2013年,堪称国内核酸领域的行业盛事。历届论坛的演讲嘉宾均由诺贝尔奖得主领衔,议题涵盖医疗、科研及工业等领域的研究热点和最新进展。今年的大会聚焦“非编码RNA国际研究前沿”、“核酸药物临床试验” 、“核酸诊断与标志物发现”和“核酸治疗与药物开发”四大议题,除了三位诺贝尔奖获得者外,更有十余位全球核酸领域的顶级专家与学者坐镇,他们一同在论坛期间发表了重要演讲。 /p p br/ /p
  • 核酸药物步入黄金时代? 技术探讨助推行业发展
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 核酸药物又称核苷酸类药物,是生物医药发展的前沿领域,包括反义核酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)、小激活RNA(saRNA)、信使RNA(mRNA)、适配体(aptamer)、核酶(ribozyme)、抗体核酸偶联药物(ARC)等,是基因治疗的一种形式,也是继小分子药物、蛋白药物、抗体药物之后的新一代制药技术,主要在基因水平上发挥作用。核酸类药物可直接作用于引起疾病的分子,并通过调节身体功能缓解疾病的症状,而无需操纵基因组,目前在抗病毒、抗肿瘤、抗代谢紊乱方面显示了独有的作用。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 核酸药物产业方面,欧美等发达国家早已先行一步,多种核酸药物已步入快速商业化。近年来,国内核酸药物产业也有起色,最近一两年发展势头尤其迅猛。但仍存在亟待解决的技术壁垒,如RNA修饰及运载体开发时如何保证小核酸转运过程中RNA的稳定性等问题。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 为加强核酸药物相关研发及分析检测技术和创新方法的交流,从而推动中国核酸药物产业快速发展,仪器信息网将于2020年5月28日举办 a href=" https://www.instrument.com.cn/webinar/meetings/hsyw/" target=" _blank" span style=" color: rgb(192, 0, 0) " strong “核酸药物研发与分析检测技术” /strong /span /a 主题网络研讨会,会议共邀请6位业内专家做精彩报告,为广大从事生物制药研发工作的用户搭建一个即时、高效的交流和学习的平台。(点击 a href=" https://www.instrument.com.cn/webinar/meetings/hsyw/" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " strong 会议日程 /strong /span /a 图片即可进入报名页面) /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em " span style=" color: rgb(192, 0, 0) " strong 会议日程 /strong /span /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/hsyw/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 365px " src=" https://img1.17img.cn/17img/images/202005/uepic/9bf1c967-2bab-4abb-bba5-7356a8fda4db.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 365" border=" 0" vspace=" 0" / /a /p p style=" text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(192, 0, 0) " strong 嘉宾简介 /strong /span br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em " span style=" color: rgb(192, 0, 0) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/967af696-393c-4072-98bf-8e9bdbae5131.jpg" title=" 图片2.png" alt=" 图片2.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 北京大学医学部药学院教授、天然药物及仿生药物国家重点实验室课题组长。1987年获北京医科大学药学专业学士学位,1998年获该校药物化学专业理学博士学位,2000-2002年在美国佐治亚大学药学院从事博士后研究。研究方向:核酸药物及核酸化学生物学研究。发表研究论文150多篇,授权专利18项。负责科技部新药重大专项和973项目课题、自然基金委重点课题子课题等多项科研项目。获得过全国百篇优秀博士学位论文奖、国家自然科学二等奖一项、教育部自然科学一等奖一项和二等奖两项。曾任国家自然科学基金委员会化学部化学生物学流动项目主任,现任中国化学会化学生物学和化学教育两个专业委员会委员。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/0d8b18a3-198d-40c6-8722-a178be24642a.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 刘观赛博士2010年毕业于中国科学技术大学与中科院上海有机化学研究所联合培养项目,师从姚祝军教授,获有机化学博士学位。2010年-2013年于佐治亚州立大学进行博士后研究,主要研究方向为天然产物全合成及相关有机合成方法的开发。刘观赛博士2013年加入成都先导药物开发股份有限公司,从事DNA编码化合物库的设计、合成与应用工作,尤其擅长于DNA编码化合物中新颖化学反应的开发,并在该领域发表了数篇原创性的高水平研究论文,扩展了DNA编码化合物的合成方法,并进一步提升了DNA编码化合物库分子的化学结构多样性和类药性。目前,刘观赛博士任职成都先导药物开发股份有限公司,任化学高级总监。刘观赛博士先后获得“四川省级专家”、“成都市级专家”、“高新区创新创业人才”等称号。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b16c88f0-ed06-4099-b3ce-e36b6ccd91b9.jpg" title=" 图片4.png" alt=" 图片4.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 主要从事寡核苷酸药物(包括siRNA, microRNA, ASO, Aptamer等)的合成与质量研究工作。在寡核苷酸药物合成工艺开发、分析方法开发与验证、质量研究等方面有深入的研究,参与完成了国内第一个siRNA药物的临床申报和多个相关国家科技重大专项。2017年创立了苏州贝信生物技术有限公司,公司秉承“追求高质量,把握新技术”的理念,为中国寡核苷酸药物科研和产业提供合成与质量研究服务。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/40d74b4c-520d-44c7-8ef2-53c98ffd9503.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 副教授,1989年4月出生,2011年本科毕业于浙江大学,2016年在浙江大学获得分析化学博士学位。2016-2019年在湖南大学谭蔚泓院士团队从事博士后研究工作。2019年加入湖南大学化学化工学院工作。主要从事核酸修饰及其在生物医学领域的应用研究。相关研究以第一/通讯作者在Angew Chem. Int. Ed., Chem, Chem. Commun., Adv. Healthcare. Mater.等杂志上发表论文7篇。2014年获博士研究生国家奖学金,2016年获得浙江省优秀毕业生等荣誉,2019年获得自然科学基金委青年基金资助。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/8224b851-0384-4eee-a08a-e743e96421d3.jpg" title=" 图片6.png" alt=" 图片6.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " “徐永威,沃特世公司首席科学家,2011年加入Waters,主要负责分析、分离及质谱应用的相关应用支持工作,为制药、食品等领域的客户提供应用支持工作,工作期间同客户合作,累计在国内外分析期(JCA、JPBA、JSS、Food Chem等)刊发表10余篇文章。” span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/2a91dd17-5774-432a-8676-e1e8c9e47c86.jpg" title=" 图片7.png" alt=" 图片7.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " Cytiva 中国下游工艺产品专家,毕业于上海交通大学药学院。目前负责层析,超滤,核酸合成等多个项目。 /p p style=" text-indent: 2em " 点击链接进入报名页面: a href=" https://www.instrument.com.cn/webinar/meetings/hsyw/" target=" _blank" style=" color: rgb(192, 0, 0) text-decoration: underline " span style=" color: rgb(192, 0, 0) " strong https://www.instrument.com.cn/webinar/meetings/hsyw/ /strong /span /a /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " 加入“核酸药物技术交流群”随时关注会议动向及核酸药物开发与发展相关内容交流! /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 260px height: 329px " src=" https://img1.17img.cn/17img/images/202005/uepic/11f3c4a1-b848-4722-9c07-905d3cb130c5.jpg" title=" 二维码.png" alt=" 二维码.png" width=" 260" height=" 329" / /p p style=" text-align: center " 扫码入群 /p
  • 2022国家生物药技术创新中心核酸药物重大项目“揭榜挂帅”
    近日,国家生物药技术创新中心发布了2022年国家生物药技术创新中心核酸药物“揭榜挂帅”技术攻关拟立项目公示清单。核酸药物“揭榜挂帅”项目是国家生物药技术创新中心发布的首个技术攻关方向,该项目由谭蔚泓院士组织开展专家论证,凝练形成了新型高效递送系统,新靶点、新机制核酸药物发现研究,以及核酸药物原液生产主要原材料、仪器设备开发三大技术攻关方向。为解决制约我国核酸药物产业发展的关键核心技术问题,2022年3月,国家生物药技术创新中心发布了《核酸药物“揭榜挂帅”技术攻关项目指南》。经组织申报、专家评审、主管部门审议等立项程序,现将拟立项目共39项予以公示(见附件)。公示时间自2022年9月14日至9月21日,公示期间如对项目有异议,请向我中心书面反映。凡以单位名义反映情况的材料要加盖单位公章,以个人名义反映情况的材料需具实名并附联系方式。受理电话:0512-62956666转6019分机受理邮箱:macp@biobay.com.cn受理地址:苏州工业园区星湖街218号A1楼北座5楼国家生物药技术创新中心2022年9月14日2022年国家生物药技术创新中心核酸药物“揭榜挂帅”技术攻关拟立项目公示清单序号项目名称承担单位负责人一、重大项目(3 项)1CALNP 核酸递送载体的成药性评价和临床前研究北京多纳医药科技有限公司佟淑文2基于 AI+核酸药物设计及递送平台开发急慢性肝病的 mRNA 疗法杭州剂泰医药科技有限责任公司赖才达3新型 mRNA 加帽类似物的设计及规模化绿色制备工艺开发江苏申基生物科技有限公司黄磊二、重点项目(5 项)4基于 lncRNA 的新型核酸药物递送系统的研发成都凌泰氪生物技术有限公司宋旭5新一代核酸递送载体开发及应用研究达冕疫苗(广州)有限公司沈栋(Dong Shen)6靶向中枢神经系统的核酸药物自组装外泌体递送技术平台艾码申华生物科技(上海)有限公司孟夏 7新型可吸入核酸纳米递送系统及其在抗特发性肺纤维化新药研发的应用荣灿生物医药技术(上海)有限公司 章雪晴8AKT-1 反义寡核酸靶向药物 HC- 0301 的抗肿瘤 研究与临床开发浙江海昶生物医药技术有限公司赵孝斌三、引领项目(11 项)9新型 LNP 递送系统应用于mRNA 疫苗研发南方科技大学王鹏10基于工程化牛奶外泌体的高效核酸药物递送系统构建与研究中国科学院上海药物研究所甘勇 11开发转铁蛋白受体特异性的小分子配体用于核酸药物靶向性递送成都先导药物开发股份有限公司周洁华(JIEHUAZHOU)12可静脉给药的 PEG 化白蛋白溶瘤病毒产业化研究及成药性评价上海锦斯生物技术有限公司梁旻13高效基因递送工具开发以及在遗传性疾病中的应用上海玮美基因科技有限责任公司钟桂生 14AGT SamRNA/LPP 蛋白替换疗法治疗早期 I 型原发性高草酸尿症的临床研究上海交通大学医学院附属仁济医院 夏强15冻干型新冠变异株 mRNA 疫苗研发深圳市瑞吉生物科技有限公司胡勇16数千种罕见病的通用 tRNA 治疗技术杭州嵌化合生医药科技有限公司林世贤 17融合理性设计与定向进化方案开发可降低核酸药物免疫原性的耐热 T7 RNA 聚合酶苏州晶睿生物科技有限公司 胡振新18核酸药物中非天然核苷的规模化生产及性能评价苏州艾博生物科技有限公司郜鹏19mRNA 药物原液生产原料制备关键技术创新及产业化浙江恒康药业股份有限公司薛亚平四、创新项目(20 项) 20抗体核酸偶联物(AOC)新型靶向递送系统研究及创新 AOC 药物开发启德医药科技(苏州)有限公司 秦刚21新型透黏膜 mRNA 递送载体与滴鼻疫苗技术苏州百迈生物医药有限公司刘庄22面向临床转化的 CLAN 纳米载体及其递送核酸药物的研究华南理工大学杨显珠23器官靶向的 LNP 核酸药物递送系统的开发及应用浙江大学平渊24小粒径脂质纳米颗粒的制备及在CAR-T 细胞构建中的应用中国药科大学张灿 25“多级屏障渗透”策略的口服脂质纳米疫苗在核酸药物递送中的应用 中国药科大学 尹莉芳26非肝靶向纳米酶载体的核酸递送协同催化抗癌研究北京化工大学刘惠玉27“锍盐关环”稳定多肽运载系统用于核酸药物递送深圳湾实验室坪山生物医药研发转化中心李子刚 28表面功能化外泌体核酸药物递送系统在杜兴肌肉萎缩症靶向治疗中的研究 天津医科大学 尹海芳29靶向降解 PD-L1 的 BioPROTAC核酸药物开发浙江大学吕志民30mRNA 肿瘤疫苗的抗原发现新策略及其相关技术研究中南大学湘雅医院孙仑泉31广谱抗病毒口服核酸药物研发南京大学张辰宇 32RAG-01:一款首创作用机制的saRNA 抗肿瘤药中美瑞康核酸技术(南通)研究院有限公司Long-Cheng Li (李龙承)33新型 RNA 适配体及相关药物的智能化设计与应用浙江大学周如鸿34杜氏肌营养不良症的核酸-细胞联合治疗研究北京体育大学宋亚锋35环状 mRNA 编码的细胞因子组合抗肿瘤免疫治疗药物研发苏州科锐迈德生物医药科技有限公司左炽健36适配体修饰外泌体包载 MR34X3靶向治疗结直肠癌的药学研究苏州大学汪维鹏37小核酸药物固相合成专用载体树脂的研究开发天津南开和成科技有限公司马玉新38基于适配体实时荧光激活液滴分选的 T7 RNA 聚合酶的定向进化上海交通大学杨广宇39mRNA 疫苗关键技术及核心原料研发中国医学科学院医学生物学研究所廖国阳附件:国家生物药技术创新中心核酸药物“揭榜挂帅”技术攻关拟立项目公示清单.pdf
  • “亿元”大单不断!核酸药物迎来爆发性发展期
    经过几十年发展,核酸(RNA)药物终于迎来了“高光时刻”——2023年诺贝尔生理学或医学奖再次肯定了核酸作为药物的可行性;2024年,投资市场普遍遇冷,核酸药物却逆势而上,开出多个以“亿元”“亿美元”为单位的大单……“新冠mRNA疫苗的异军突起,让籍籍无名的核酸药物为人熟知。”药物化学家、中国科学院院士张礼和表示,核酸药物2016年以来得到快速发展,正在开启创新药物新时代。一家投资机构曾这样描述核酸药物的优势:“它打破传统药物三大困境——难以成药、不可成药、效力不足”。无论是学界、产业界还是投资界,都对核酸药物很是看好。核酸药物是什么,为何能开启一个“新时代”?当前已有十几种核酸药物在国际上获批使用,我国的研发进展如何?它离公众还有多远?带着这些问题,科技日报记者近日采访了多位业内人士。1由“小众”变“大众”核酸药物刷新用药认知在核酸药物领域,一项专利卖出十亿美元的故事并不鲜见。去年7月,国际医药巨头诺华宣布收购一家生物技术公司,旨在利用公司独特的专利技术开发针对神经系统疾病的核酸药物。诺华支付5亿美元预付款,并会在公司取得里程碑成果后再支付5亿美元。什么是核酸药物?医药巨头为何不惜重金买断它?核酸药物的基本单元是核苷酸,把核苷酸像串珠子一样串起来构成了核酸,将其做成药物就是核酸药物。很多人因为新冠mRNA疫苗认识核酸药物,这种新型疫苗巧妙利用部分病毒基因序列使接种者产生抗体,阻断了新冠大流行。资料图。图片来源:视觉中国在业内,核酸药物的发展要远远早于为人熟知的疫苗。北京大学分子医学研究所教授、瑞博生物科技董事长梁子才告诉记者,疫苗中的核酸分子链长,可以理解为“大核酸药物”。大核酸药物的研制于2010年兴起。当前习惯于将十几到几十个核苷酸长度的核酸药物称为“小核酸药物”。小核酸药物分子链短,其研制始于1987年,当前已迈入成熟阶段。小核酸药物的研发和上市在新冠疫情前已经呈现井喷式增长。“随着科技的发展,核酸药物展现了更多可能。”张礼和表示,过去核酸药物被认为是基因治疗的一种,只能治疗罕见病、遗传病等,使用范围受限。但现在,它还能治疗代谢疾病、神经系统疾病等,治疗范围正快速扩大。从“小众”药华丽转身为“大众”药,意味着核酸药物的市场潜力巨大,这也是资本青睐它的原因之一。2019年,诺华以近百亿美元的价格将一款在三期临床试验中表现良好的药物连同它的开发企业一同买下。资本与原创技术的结合成就了首个覆盖慢性病的小核酸药物。2021年,这款拥有原创靶点的英克司兰钠注射液(商品名为“乐可为”)获得美国食品药品监督管理局(FDA)批准上市。在临床使用中,动脉粥样硬化相关的心血管疾病患者只需半年注射一次“乐可为”,就可以有效降低低密度脂蛋白胆固醇,避免高血脂的发生。去年8月,这款药物获批在我国上市。相较于传统药物每日一次或几次的用药频率,核酸药物刷新了用药模式。一年只需打两针,就可以降低血脂水平,让慢性病患者与健康人几乎无异。“现在,科研人员正在研制治疗高血压的核酸药物,治疗老年痴呆的药物研究也进展顺利。如果核酸药物的应用范围能够快速拓展,核酸药物将给人们用药带来革命性变化。”张礼和表示,相较于以蛋白为靶点的传统药物,核酸药物直接作用于核酸靶点,药效更持久、有效性更强、靶点也更丰富。2迈过“快递”门槛应用领域将不断扩大核酸药物优势明显,为什么仍处于大力研发阶段,仅有十几种药物用于临床?北京大学药学院化学生物学系教授张力勤告诉记者,核酸药物“珠子”的多少决定着用什么方法生产。如果只有几十个“珠子”,那么可以用化学合成法将其一个个拼接起来。如果有几百个“珠子”,就需要在“细菌工厂”里用菌株扩增复制模板,通过生物酶法合成。化学合成串“珠子”受限于合成产率,即便每串一个“珠子”产率达到99%,串起100个“珠子”的产率则会降至36.6%。因此,序列太长的核酸药物需要生物合成而非化学合成。除了长短的差别,张力勤说,核酸药物还根据作用机理进行分类。以2006年获得诺贝尔奖的RNA干扰机制为例,一小段干扰RNA如果能锁定目标“信使”RNA,“干扰”生命活动的“信使”,就能利用细胞内天然存在的机制“截停”造成疾病的错误蛋白的产生,比传统药物直接作用于错误蛋白,更能“治本”。核酸药物研发虚拟图。2006年后,RNA干扰核酸药物研发热潮兴起,但仍面临重重困难。“在天然状态下,RNA进入体内血液循环系统会很快被酶降解,因此无法直接通过口服或注射方式使用。”张力勤告诉记者,将RNA保护好并精准递送到体内位点是开发核酸药物的难点之一。递送系统一直是各大国际药企研发的热点。“递送系统是核酸药物能够成药的关键。”张力勤解释,一个好的递送技术能带动多个药物诞生。例如,当前居于主流地位的N-乙酰半乳糖胺(GalNAc)技术利用肝脏对糖的招募特性,通过在RNA上装饰糖基团,将药物精准投送到肝脏,设计巧妙、便捷高效。而在新冠大流行遏制过程中大放异彩的mRNA疫苗,使用脂质材料包裹mRNA形成纳米颗粒,促进大分子mRNA进入细胞发挥功能。“目前,更加前沿的RNA药物被持续开发出来,比如环状RNA目前还没有成药,但也是很热的前沿研究领域。”张力勤表示,一旦精准向体内“快递”的限制性条件被攻破,核酸药物将有更多应用和可能。3经历大起大落中国逐步实现同水平竞逐2017年,第一个RNA干扰核酸药物在临床试验中发生了严重的毒性事故,从而使人们对核酸药物的质疑达到顶峰。不曾想,不到一年,第一个RNA干扰核酸药物就凭借优秀的临床数据获得FDA认可,于2018年获批上市,用于治疗由甲状腺素蛋白淀粉样变性(hATTR)引起的罕见遗传疾病。和很多前沿技术的产业化一样,核酸药物的落地经历过资本离场的“至暗时刻”,整个发展过程犹如“过山车”般大起大落。其间,有的参与者“割肉”离场,有的默默坚持,有的另辟蹊径……资料显示,2010年到2016年,罗氏、默沙东等大药企纷纷削减了对核酸药物的支持。2007年,即核酸药物研发热潮兴起的第二年,瑞博生物落户昆山小核酸及生物医药产业园(以下简称昆山园)。彼时,昆山选定核酸药物作为其发展医药产业的细分领域进行布局谋划。“进入全球尚未完全成熟的领域探索,不如‘跟踪’成熟领域进行仿制来得快。伴随着药物研发过程的起起伏伏,布局核酸药物的企业也遭受了很多质疑,顶住了很多压力。”运营管理昆山园的昆山创源科技园管理有限公司负责人张亮感慨说,“至暗时刻”仍有人坚持不懈寻求突破,才会有核酸药物发展的“峰回路转”。瑞博生物实验人员正在开展核酸药物研究。2024年开年,长久坚持迎来了丰厚回报。1月3日,国际药企勃林格殷格翰宣布与瑞博生物共同开发小核酸创新疗法,主要治疗非酒精性或代谢功能障碍相关脂肪性肝炎。瑞博生物除了将收到一笔预付款外,有权获得里程碑付款及上市产品的阶梯式销售提成,总金额或将超过20亿美元。“20亿美元的合作金额证明了企业的技术实力。”张亮介绍,在核酸药物领域,中国的起步并不算晚。作为最早谋划核酸药物产业的园区,昆山园通过设立产业研究所,配套各种孵化平台和机制,举办多届小核酸学术应用研讨会,营造产业化生态,促进上下游衔接。瑞博生物、圣诺医药、中美瑞康等迅速发展起来的小核酸创新技术公司,纷纷搭建技术平台,在瓶颈技术突破、靶点锁定等方面形成新方案,助力核酸药物走向临床。“特别是早期,瑞博生物获得了重大新药创制国家科技重大专项及地方各种机制的多轮支持,之后又获得了创投基金的多轮支持。”梁子才表示,各类支持共同培育了我国小核酸制药的科研实力,推动产业始终紧跟世界水平。“梁子才2007年来昆山时的目标,就是让中国医药产业及早进入核酸分赛道,不能再像传统化学药物、抗体药物那样落后一个时代。”张亮说,目前看来这个目标正在变成现实。如今,中国大制药企业对小核酸领域的参与度越来越高。2023年底,瑞博生物与齐鲁制药签订了技术许可协议,将瑞博生物研发的国内唯一进入临床一期的靶向PCSK9小核酸药物的相关权利以7亿元的价格转让给齐鲁制药。不止齐鲁制药,石药集团也部署了核酸药物的研发和递送平台……核酸药物“朋友圈”正在不断扩大。4构建高效工具药物研发周期有望更短价格不菲的商业大单为人津津乐道。采访中,记者多次听人提及中国核酸药物企业舶望制药与诺华今年1月7日成交的潜在总价值高达41.65亿美元的大单。成立不足3年的舶望制药,每隔两三个月就能完成一批针对不同靶点的小核酸干扰药物的筛选。目前,正在推进20多个产品的研发,有些已经进入临床试验阶段。“如果构建了高效的工具、成熟的平台,核酸药物研发周期将比传统小分子药物更短。”张礼和表示,锁定靶点等基础性工作完成之后,核酸药物相对容易设计。例如,莫德纳公司生产新冠mRNA疫苗的平台,现在也用于研发黑色素瘤疫苗、狂犬病疫苗等。如果说成熟研发平台是核酸药物研发快速进展的“引擎”,那么核酸药物新靶点的发现就是竞速的“方向盘”。“相较于传统药物,核酸药物靶点有‘巧妙’的作用机理。新靶点发现和相应核酸药物开发有赖于基础医学研究的进展和新的靶点筛选技术。”张力勤说,为了更快找到靶点,需要设计出高效筛选的工具性体系,在海量的基因库中快准稳地“钓”到靶点。工具的发展对于生物技术企业竞速至关重要。无论是布局人工智能筛选,还是在化学试验中设计巧妙的工具,筛选靶点的方式正在从“手工作坊”阶段逐步向自动化晋级。同步晋级的还有核酸药物的生产品质和效率。“相比传统小分子药物,小核酸药物的生产过程中可能出现难以检测到的杂质。”小核酸合成设备生产企业、北京擎科生物副总裁杜军向记者详细讲解了核酸药物串“珠子”的过程:串“珠子”不是凭空让珠子一个一个“牵手”,需要一个载体为“珠子”的串联做依托。“合成效率和有效性是核酸药物产业化的重要环节。”杜军说,同样的原材料,试验室能够合成10克就足够做试验了,开展生产则要合成数百克甚至数公斤。因此,高效的生产线是小核酸药物产业蓬勃发展的必要条件。“小核酸药物的生产环节一直受包括合成设备仪器、原材料等方面的限制。”张亮表示,但这两年国内企业在合成、分析等仪器设备方面持续开展研发,取得新进展。以高载量合成仪为例,该设备目前主要由国外公司生产。“一台进口设备的价格达到数千万元以上,交货周期需要好几年。”杜军介绍,为了避免在生产设备上受限,北京擎科生物通过自主研发突破了合成过程的关键合成载体“孔径可控纳米多孔玻璃”的制作工艺,并摸索出整套的高效均质化生产流程。我国自主研发的高载量合成仪擎核TsiKer Syn HL-12。“凭借自主研发,我们的设备价格较进口降低一半,质量也更有保障。”杜军说。5营建良好发展生态抓住战略发展机遇期当前,中国核酸药物的发展蓝图正在形成:关键技术取得突破,重磅品种开始出现,若干技术已达到世界先进水平,一批小核酸药处在各期临床和临床前阶段中,核酸产业即将进入爆发性发展期。业内认为,小核酸药物最可能成为中国在创新药物领域形成局部优势的突破口。“小核酸药物的研发链条秉承了创新药的发展路径,经历合成、筛选、临床前研究、临床试验、获批上市等关键环节。”张亮说,研发链条长、资金投入大是药物研发的共同特点,培育核酸药物研发的良好生态环境需要政策的支持和引导。与其他创新药物不同的是,核酸药物正值战略机遇期,在技术储备上抢抓战略制高点正当其时。梁子才解释,以递送系统为例,肝脏递送系统已经成熟,肝外递送系统成为整个行业竞速研发的领域,谁能最先突破肿瘤、心血管、中枢神经等系统的递送瓶颈问题,并得到产业验证,谁就能“攻下一城”。“核酸药物串‘珠子’的载体是一种特殊材料,对药物合成的长度、效率起关键作用。”杜军说,新型介质材料的研发需要化学、机械、电子、自动化控制等多学科的协同创新。瑞博生物实验人员正在开展核酸药物研究。从全球创新产业发展规律看,资本市场融资是支持技术创新蓬勃生长的“源头活水”。梁子才说:“支持创新是资本市场的重要使命。‘从0到1’的过程,既是技术突破的关键阶段,也是产业发展最需要支持的阶段,更是投资者最可能得到高额回报的阶段。因此,在创新企业最需要支持的阶段为其提供资本支持,才能实现产业发展、企业发展和投资者利益三者的统一。”“具有巨大的成长性的小核酸制药有望带来现代制药产业‘第三次浪潮’。”梁子才认为,用好政策指挥棒,进一步加强资本市场的创新支持功能,是我国核酸药物形成全球竞争力的关键之一。“大单”扎堆让核酸药物产业发展模式日渐清晰。“生物医药企业开展核心技术创新,进入临床一期前后通过技术转移、合作开发等方式引入大企业的资源进一步开发,实现了优势互补。”张亮表示,成熟的医药创新环境正在形成,各方在药物创制长链条中承担起擅长的部分,这一创新药物模式在国外已非常成熟。目前,我国生物医药企业与大药企合作还不多,仍需进一步加强此类研发模式的引导和支持。“面对核酸药物崛起这个不可多得的战略性发展机遇,建议像推动新能源汽车发展那样,通过加强国家战略规划顶层设计和支持引导,让各方拧成‘一股绳’,加快推进形成新动能新优势。”梁子才信心满满地说,中国创新药产业迎来了新的发展契机,小核酸制药完全可以作为中国创新药进一步走向世界的“试验田”,增进人类健康的共同福祉。
  • 上海首个核酸产业园7月正式开工,一起来聊聊寡核苷酸药物解链温度
    导 读近年来,以核酸药物为首的功能性核酸备受关注,2021年底治疗罕见病脊髓性肌肉萎缩的反义寡核苷酸药物诺西那生钠进入中国医保,几乎同一时间,诺华降血脂的小干扰RNA药物Leqvio获FDA批准上市,据悉一年只需用药两次。寡核苷酸药物已经从罕见病过渡到了常见慢性病,并可大大降低患者用药频率。随着寡核苷酸类药物的陆续上市,核酸药物已成为当前生命科学和药物研究的热点之一。为了更好促进核酸药物的快速发展,上海首个核酸产业园于7月中旬在上海杭州湾经济技术开发区正式开工,该产业园是以生物医药产业为发展方向,基于核酸开发各种疫苗及药物。今天,我们就一起来聊聊核酸药物以及解链温度等话题。01核酸药物小科普核酸类药物核酸类药物是各种具有不同功能的寡聚核糖核苷酸(RNA)或寡聚脱氧核糖核苷酸(DNA),能够直接作用于致病靶基因或者靶mRNA,在基因水平上发挥治疗疾病的作用。常见的寡核苷酸药物主要包括反义寡核苷酸(ASO)、小干扰RNA(siRNA)、微小RNA(microRNA)、小激活RNA(saRNA)、适配体(Aptamaer)、信使RNA(mRNA)。解链温度在这些核酸药物中,对于具有双链结构的药物,需要对其解链温度进行分析。解链温度是衡量双链结构核酸类物质热稳定性的重要指标,它是控制结构和功能的关键因素。例如小干扰RNA(siRNA)药物等具有双链结构,当温度升高时,氢键断裂,双链逐渐解体,形成单链结构。这种现象称为核酸的“溶解”,将双链和单链所占比例相等的温度定义为解链温度(Tm)。因为核酸类物质在260 nm附近有一个紫外吸收峰,吸收值在解链过程中增加,通过测试该吸光度变化,以确定Tm值。因此在进行核酸药物Tm值分析时,可以利用紫外分光光度计加上控温附件和对应的数据分析软件来完成。02分析利器对于核酸解链温度Tm测试,岛津拥有成熟的方法和分析设备,该设备一般为UV-1900i配Tm分析系统(TMSPC-8)。Tm分析系统由8列控温支架、专用8列微量比色池、温度控制器和Tm分析软件构成,最多可同时测定8个样品。UV-1900i和Tm分析系统专用8列微量比色池(光程10 mm)03案例分享接着小编带您看看具体的寡核苷酸分析案例,操作步骤简单快捷,结果直观。测试样品为M13-25mer核酸,测试前先进行样品溶液脱气的预处理,通过UV-1900i和Tm分析系统可以轻松获得Tm 曲线(绘制260nm处的吸光度对温度曲线,如下图所示),该曲线可以显示升温时和降温时的结果。样品的Tm曲线测试完成后,可以通过中线法和微分法两种方法计算Tm值,最终得到的Tm值结果基本一致。Tm计算结果结 语核酸分子的解链温度对核酸药物的稳定性、有效性等研究有重大意义,在核酸药物研发生产过程是一个重要的参数指标。岛津紫外配合Tm分析系统,可以满足轻松获取Tm曲线,通过中线法或者微分法均可计算Tm温度,满足测试要求,为核酸药物质量控制提供了可靠数据。更多寡核苷酸药物分析,敬请持续关注。撰稿人:王娟娟本文内容非商业广告,仅供专业人士参考。
  • 寒冬中核酸药物缘何迎来爆发期?进直播间与行业大咖在线交流
    经过几十年发展,核酸(RNA)药物终于迎来了“高光时刻”——2023年诺贝尔生理学或医学奖再次肯定了核酸作为药物的可行性;2024年,投资市场普遍遇冷,核酸药物却逆势而上,开出多个以“亿元”“亿美元”为单位的大单……“新冠mRNA疫苗的异军突起,让籍籍无名的核酸药物为人熟知。”药物化学家、中国科学院院士张礼和表示,核酸药物2016年以来得到快速发展,正在开启创新药物新时代。一家投资机构曾这样描述核酸药物的优势:“它打破传统药物三大困境——难以成药、不可成药、效力不足”。核酸药物是什么,我国的研发进展如何?当前核酸药开发有怎样的挑战?核酸药物研发、生产过程中的技术支撑平台有哪些?为帮助我国核酸药物领域从业人员了解相关研究技术与方法,仪器信息网在第五届生物制药研发及质量控制网络大会上特别设置了“核酸药物”专题会场,会议时间为3月29日13:30-17:00,邀请到8位业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。进入直播间核酸药物专题会场日程报告嘉宾1、周新华 佰诺达集团CSO 个人简介:博士毕业于英国Belfast 著名的女王大学药学院,英国伯明翰大学生物化学学院博士后,美国OKLAHOMA 大学化学系博士后,曾在美国EntreMed 公司和HGS(Human Genome Sciences, Inc.)公司领导生物技术药物和单克隆抗体工艺开发。曾任全球最大生物制药公司Amgen 工艺开发科学总监。由Amgen任命担任北京大学IPEM项目10年客座教授。 2008年与惠生集团联合创始嘉和生物药业有限公司,任第一任首席执行官(2009-2019),2020年10月成功带领嘉和生物于在香港主板上市后,曾任首席科学官/总裁/执行董事。2022年正式离开公司,与行业专家共同创始以人工智能助力的小核酸药物开发平台IntelBio Technology 后加入佰诺达集团任首席科学官,佰诺因泰首席执行官。任2010年国家中组部专家,获2020年上海白玉兰奖。2、杨宪斌 圣诺医药 大中华区CSO/苏州总经理 个人简介:杨博士从事核酸创新药物研发工作30多年。在加入圣诺医药前,他参与创建两家开发核酸药品的美国生物科技公司。他曾经担任过多家国际科技公司的顾问,是美国国立卫生研究院项目组的评审专家,八家国际期刊的审稿人, 2008-2018年被美国和国内双一流大学聘为兼职教授。杨博士作为新药项目研发总负责人(PI),在过去15多年期间作为PI承担着多项国家核酸药研发项目。杨博士在核酸药物开发领域的创新研究成果得到了同行的一致认同。杨博士于2003年获得美国德克萨斯大学医学院James W. McLaughlin 奖,以表彰他发现抗西尼罗病毒核酸药;杨博士于2005 和2006 连续两年获得纽约科学院奖学金;2012年获得国际核酸药物学会设立的首届青年科学家奖;2017被选为北京大学医学部优秀校友。2021年被选为国家人才,2022年被选为苏州双创人才和工业园区创新领军人才。在过去10年间,杨博士100多次应邀出席各种大学、研究所、医药公司和国际生物医药举办的各类会议,并做报告。杨博士先后在国际生物科技领域权威期刊发表了70多篇学术论文和100多篇学术会议论文摘要。杨博士已获得三项美国专利和一项澳大利亚专利,还有多项专利正在审批中。杨博士早年获得北京医科大学学士和医学硕士、欧洲博士、 美国工商管理硕士学位。3、熊长云 宁波君健生物科技有限公司 CEO/教授个人简介:熊长云,中国科学院上海生物化学研究所生物化学博士,美国国家卫生研究院(NIH)肿瘤研究所(NCI)博士。国家级人才。现任宁波君健生物科技有限公司CEO, 浙江大学/杭州医学院/宁波大学医学院/合肥工业大学兼职教授,浙江省新型疫苗工程研究中心学术委员会委员。原艾美疫苗副总裁兼mRNA疫苗生产负责人,从事生物药研发和上市工作近20年,拥有8项美国和世界专利,参与开发了多种抗病毒蛋白药物如,也开发和生产了多款上市抗体药物和疫苗,生产康希诺委托的腺病毒新冠疫苗原液,发表同行评议论文20余篇;先后任职于BD(碧迪),Novartis(诺华),Amgen(安进)和澳斯康,工作领域涵盖蛋白质药物的研发、细胞发酵的上游工艺、下游蛋白纯化路线、蛋白质药物配方和分析、配套医疗器械的适配性研究、新药申报和生产、佐剂的开发/生产、mRNA疫苗等。4、王海盛 思合基因 CEO个人简介:王海盛,思合基因创始人兼CEO,致力于反义寡核酸新药的研发,为难治性疾病提供创新解决方案。曾担任上市公司哈药股份(股票代码:600664) 副总裁,扬子江药业集团北京海燕有限公司副总经理 百济神州(股票代码:BGNE,6160, 688235)运营总监及资深主任研究员 保诺科技有限公司药物化学总监等职。兰州大学化学学士,北京大学药物化学博士,美国密苏里大学圣路易斯分校及奥本大学博士后,中欧国际工商学院EMBA。曾兼任中国医药质量管理协会仿制药分会副主任委员,AAPS(美国药学科学家协会)中国讨论组主席 中国生物医药学会生物信息学分会委员,北京大学药学院 兼职教授/专硕导师,哈尔滨工业大学兼职教授。5、李晨 布鲁克(北京)科技有限公司 市场拓展经理个人简介:李晨,博士毕业于北京大学药学院。曾参与完成国家自然科学基金、国家十一五科技支撑计划、国家973、重大新药创制等多个项目。在多家著名跨国科学仪器公司历任应用经理、产品经理、垂直市场经理等职位,开发了包括制药、多组学、食品环境、临床法医等多领域的解决方案,推动前沿分析技术在各研究及应用市场的发展,并与客户合作完成多篇高水平文章及标准。现任布鲁克(北京)科技有限公司质谱中国区市场拓展经理。6、杨菁喆 安捷伦科技(中国)有限公司 安捷伦细胞分析事业部产品应用专家个人简介:安捷伦细胞分析部门BioTek产品应用专家,毕业于南京大学生命科学院,有丰富的细胞生物学及药理学相关科研背景,有近十年的微孔板相关设备技术支持服务经验,曾为诸多高校、科研和企业单位客户开发及优化微孔板相关检测技术及解决方案。7、曹亚南 岛津企业管理(中国)有限公司光谱产品专员个人简介:曹亚南,岛津企业管理(中国)有限公司 分析计测事业部 光谱产品专员,硕士毕业于北京化工大学,目前主要负责岛津紫外-可见-近红外分光光度计、荧光分光光度计等光谱产品的市场工作,拥有多年光谱分析技术和仪器测试方面的工作经验。8、郑嘉 岛津企业管理(中国)有限公司 应用工程师个人简介:2017年加入岛津企业管理(中国)有限公司,担任LC/LCMS应用工程师一职,专注于岛津生物药行业相关应用开拓工作,涉及药物种类有抗体药物、多肽、寡核苷酸、mRNA、基因治疗药物等,积累了丰富的生物药方法开发经验。点击进入直播间:https://www.instrument.com.cn/webinar/meetings/biopharma2024/
  • 直播倒计时!核酸药物研发与分析检测技术会议全日程公布
    核酸类药物又称为核苷酸类药物,是各种具有不同功能的寡聚核糖核酸与寡聚脱氧核糖核酸。能够直接作用于靶基点或者靶基因,能够在基因治疗发挥较好疗效的药物。核苷酸类药物种类比较多,包括抗病毒类、抗肿瘤类、干扰素诱导剂类、免疫增强类、功能剂类。近年来,核酸药物因其独特技术优势以及治疗领域广泛已成为各种疾病最有前景的治疗手段之一。为加强相关领域技术交流,仪器信息网将于2023年7月19日举办“核酸药物研发与分析检测技术”主题网络研讨会,会议为期1天,为广大用户搭建一个即时、高效的学习和交流平台。点击报名会议日程09:30--10:00非天然核酸化学生物学于涵洋南京大学 教授10:00--10:30基因治疗及疫苗相关的DNA质粒和mRNA的色谱层析技术张琳东曹生物 技术中心应用开发部部长10:30--11:00核酸化学中的苏糖核酸TNA陈锦森药物开发股份有限公司 核酸化学高级总监/高级工程师11:00--11:30寡核苷酸药物的质量控制孔素东苏州贝信生物技术有限公司 执行总监12:00--14:00午休中午休息全体参会人员14:00--14:30自复制mRNA疫苗的分子设计与评价王友如宁波君健生物科技有限公司 首席科学家14:30--15:00新一代色谱质谱技术平台应用于核酸药物的研发和表征分析罗宇文沃特世科技(上海)有限公司 市场开发经理15:00--15:30triVac功能性mRNA修饰肿瘤疫苗的临床应用探索蒋俊启辰生生物科技有限公司 核酸平台首席科学家15:30--16:00寡核苷酸药物和mRNA关键质量属性分析李思明岛津企业管理(中国)有限公司 应用工程师16:00--16:30针对细菌的mRNA疫苗与药物王鹏南方科技大学 讲席教授/教授会议嘉宾于涵洋,南京大学现代工程与应用科学学院教授,实验室从事核酸化学生物学的研究,主要关注非天然核酸。先后在北京大学和美国亚利桑那州立大学获得学士和博士学位,在耶鲁大学完成博士后训练后,2015年加入南京大学开展独立研究工作。入选国家级高层次人才和江苏省双创人才计划。主持和参与基金委和科技部多个项目。研究成果在Nature Chemistry和Journal of the American Chemical Society等学术期刊上发表。陈锦森,理学博士,高级工程师。成都先导药物开发股份有限公司核酸化学高级总监,四川先东制药有限公司董事,总经理。目前主要负责成都先导集团的核酸化学业务,包含修饰核苷类小分子,核酸递送相关小分子合成,及从高通量微克、毫克到百克级寡核苷酸合成,涵盖从核酸药早期发现,到IND临床申报的寡核苷酸的生产。在此之前2018-2021年,陈锦森博士就职于南京金斯瑞生物科技有限公司从事寡核苷酸合成生产与研发工作。孔素东,主要从事寡核苷酸药物(包括siRNA, ASO, Aptamer等)的合成与质量研究工作。在寡核苷酸及其偶联物合成工艺开发、分析方法开发与验证、质量研究等方面有深入的研究,参与完成了国内第一个siRNA药物的临床申报和多个相关国家科技重大专项。2017年创立了苏州贝信生物技术有限公司,公司秉承“追求高质量,把握新技术”的理念,提供核酸药物设计与合成、筛选与修饰、验证与评价、CMC研究等一站式服务。王友如,宁波君健生物科技有限公司mRNA疫苗首席科学家,中科院武汉病毒研究所博士,教授。长期从事病毒疫苗研究,以人源化表达系统为载体,开展疫苗的分子设计、人源化表达、纯化、有效性与安全性评价研究,擅长mRNA疫苗的分子设计、有效性与安全性评价。蒋俊,具有15年药物研发工作经,自2016年起担任启辰生生物科技有限公司核酸平台负责人,主要负责公司树突细胞疫苗优化、核酸序列设计优化、核酸平台建设等工作,参与三个DC疫苗免疫治疗临床项目。2018年至今担任启辰生生物科技(珠海)有限公司研发负责人,带领团队开展核酸工艺开发、IND申报和工业化生产等工作,已经申请相关专利19项。王鹏,南方科技大学医学院讲席教授,博士生导师,中国生物物理学会糖生物学分会会长,南方科技大学坪山生物医药研究院中国肝素研究中心主任,深圳市小分子药物发现与合成重点实验室学术委员会副主任。1984年获南开大学化学理学学士学位,1990年获美国加州大学伯克利分校化学博士学位。国家首批千人计划特聘专家,教育部长江学者特聘教授,深圳市国家级领军人才。获美国科学促进会(AAAS)会士,俄亥俄州杰出学者,佐治亚州研究联盟杰出学者荣誉称号。2021年美国糖化学界最高奖Claude S. Hudson奖获得者,是第一位获此奖的在中国大陆出生的学者;2021年第四届张树政糖科学奖杰出成就奖获得者;2002年美国化学会糖化学部Horace S. Isbell奖获得者(美国化学学会每年只颁发给一位在糖化学/糖生物学领域有杰出贡献且不超过41岁的科学家);2000年与C.-H. Wong 教授共同获得美国总统绿色化学奖。历任美国迈阿密大学化学系助理教授,美国韦恩州立大学化学系正教授、终生教授,美国俄亥俄州立大学生物化学与化学系讲席教授,美国佐治亚州立大学化学系讲席教授、系主任。曾兼任南开大学药学院院长(半职),建立山东大学国家糖工程技术研究中心并担任中心主任。主持美国NIH、NSF和EPA等20余项研究项目,国自然面上项目8项,国家科技部重点研发计划1项,国家重大新药创制专项1项,国家重大培育计划1项,中国科学技术部973重点项目2项、重点研发计划1项,深圳市海外高层次人才孔雀团队计划项目1项。研究领域包含:1.搭建mRNA药物生产和递送平台,主要包括mRNA序列设计,mRNA原料生产,mRNA体外转录制备、纯化、质控,mRNA工艺放大,mRNA-LNP递送系统开发,涉及癌症免疫治疗,个体化癌症疫苗、感染性疾病疫苗、过敏耐受疗法/疫苗、蛋白质替代疗法、遗传性疾病、基因组工程和基因编辑、细胞重编程和组织工程;2.搭建siRNA药物生产平台和GalNAc肝靶向递送平台;3.糖科学,基于糖芯片探索疾病潜在生物标记物以及建立临床评价体系。带领团队在糖化学、糖生物学、糖蛋白质组学等基础科学研究上取得了多项令人瞩目的成果,在Nat. Commun J. Am. Chem. Soc. Angew. Chem.等国际学术刊物上发表学术论著450余篇,专利19篇,参与7部学术专著的编写,H-index 57 (Google Scholar) and 47 (Web of Science)。东曹(上海)生物科技有限公司技术中心应用开发部部长罗宇文,沃特世科技(上海)有限公司大中华区生物制药市场开发经理,负责沃特世生物大分子制药领域解决方案整合及市场推广,具有多年抗体药物及CGT市场开发及技术支持经验。硕士毕业于复旦大学生命科学学院,曾于多家跨国生物科技企业从事应用技术及市场工作。李思明,医学博士,2015年加入岛津企业管理(中国)有限公司,担任LC/LCMS应用工程师,具有多年LCMS应用开发经验,主要侧重生物样品分析等DMPK研究领域,在生物医药行业具有较为丰富的应用经验。点击报名链接:https://www.instrument.com.cn/webinar/meetings/hsyw230719/
  • 核酸药物技术研讨会成功召开 6位专家精彩报告获赞(附视频)
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 5月28日,仪器信息网直播间首次邀请到6位核酸药物领域的专家,包括高校科研专家、专注于核酸药物研发的药企高管以及核酸药物分析检测技术专家,就当前核酸药物的发展现状、关键研发及质控技术等内容作了深入交流,本次会议共吸引近500位来自制药企业、科研院所 、高校、CRO企业、投资公司的科研及从业人员报名参与,会议现场交流氛围十分活跃。 br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 为了让更多未能参加直播的用户学习,小编特将会议报告视频整理成集锦,供网友观看。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " script src=" https://p.bokecc.com/player?vid=8655A3B150137F9F9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告嘉宾:杨振军(北京大学)& nbsp br/ /strong /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告主题:《基于脂质材料与功能(寡)核苷酸间氢键/-作用包载的靶向性药物研究》 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 利用通行修饰策略并结合课题组的突破性核酸递送系统,研发反义核酸、siRNA、核酸适配体和环二核苷酸类药物,为病毒感染性疾病和耐药肿瘤的治疗提供更有效的手段,阐述基于中性胞苷脂质材料与功能(寡)核苷酸间氢键/p-p作用包载的靶向性药物研究、其入胞及作用机制,介绍提高制剂靶组织蓄积的策略及体内分布和安全性情况。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " script src=" https://p.bokecc.com/player?vid=45256D40A9C45E4F9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告嘉宾:刘观赛(成都先导药物开发股份有限公司) /strong /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告主题:《LC-MS在DNA编码化合物库技术中的应用》 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " DNA编码化合物库技术(DEL)是近年来新兴的极具应用前景的新型药物发现技术之一。该技术能够在较短的时间内设计、合成出数以亿计的DNA编码化合物分子,并得到快速、高效的筛选。本报告将重点介绍:(1)DNA编码化合物库技术;(2)LC-MS技术在DNA编码化合物库中应用,包括对DNA相容的化学反应的表征、DNA编码化合物库合成中的过程检测以及 span style=" text-indent: 2em " 质谱分析技术用于DEL筛选后的化合物确认。 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " script src=" https://p.bokecc.com/player?vid=24F24928D51B97E99C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告嘉宾:孔素东(苏州贝信生物技术有限公司) /strong /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告主题:《寡核苷酸药物的质量控制与杂质分析》 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 寡核苷酸药物被认为是继抗体药物及细胞免疫疗法之后的下一代药物。寡核苷酸药物包括& nbsp siRNA、miRNA、ASO、CpG和Aptamer等,理论上可以达到传统药物无法替代的效果,尤其是对遗传疾病、肿瘤、代谢类疾病及罕见病等非常有优势,同时在精准医疗大时代下寡核苷酸药物可以进行个性化开发。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 目前全球已有8个寡核苷酸药物上市,上百个处于临床研究或临床前研究阶段,在中国有1个寡核苷酸药物上市,7个寡核苷酸药物获批进行临床研究,其中有3个是近两个月内批准的。面对如此快速发展的势头,寡核苷酸药物的生产与质量研究至关重要,尤其是建立科学可靠的质量控制和杂质研究方法更为紧迫。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " script src=" https://p.bokecc.com/player?vid=7B5FE8E6ACE899D69C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告嘉宾:谈洁(湖南大学) /strong /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告主题:《基于脂质材料与功能(寡)核苷酸间氢键/-作用包载的靶向性药物研究》 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 核酸适体在生物分析领域具有广阔的应用前景,通过化学修饰构建功能核酸适体在阐明生物过程的分子基础和新药设计领域具有十分重要的作用。针对该问题,我们设计将化学修饰引入核酸适体中,获得了一系列具有功能性的核酸适体,并成功将其应用于蛋白活性调控、药物设计等工作中。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " script src=" https://p.bokecc.com/player?vid=45A97300801AD2C59C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告嘉宾:徐永威(沃特世) /strong /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告主题:《最新基于亲水作用色谱(HILIC)的质谱引导核酸制备解决方案》 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 近年来随着基于核酸的治疗药物和新型诊断试剂原料、新型疫苗、DNA编码化合物库技术等的兴起和市场需求,核酸合成市场大幅增长。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 作为一种合成化合物,高效快速地获取高纯度的核酸以进行后续的表征与杂质分析、先导化合物与高通量平台建设、药学评价与工艺设计和优化、规模化生产的质量控制等都至关重要。合成的核酸产物包含复杂的副产物、加成物、截断序列等,使用之前需要分离纯化,传统的反相色谱分离空间小且需要用到或有毒性或昂贵的缓冲剂和修饰剂、需要满足苛刻高温要求、后期处理繁琐等,而且其串联UV检测器的分析方法特异性和灵敏度不高。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 本次报告结合亲水作用色谱(HILIC)技术在核酸样品纯化中的应用,介绍一种新颖的质谱引导的纯化设备在该领域的应用,可以大大提高分析效率,通过质谱对质量数的直接测定,引导快速实现高质量纯化产物的获取。沃特世通过全面而灵活的产品组合提供多种规模和通量的解决方案,助力核酸药物、引物探针、核酸疫苗等研发和生产的加速推进。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " script src=" https://p.bokecc.com/player?vid=2F7099FC06673C929C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告嘉宾 /strong strong :郝帅(Cytiva(原GE医疗生命科学事业部)) /strong /p p style=" text-indent: 0em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 报告主题:《Cytiva核酸合成整体解决方案》 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 介绍目前核酸研究和开发进展,市场发展趋势,以及核酸合成原理及工艺流程。同时,提供Cytiva核酸合成整体解决方案。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(192, 0, 0) " strong 附:《核酸药物研发与分析检测技术》网络会议视频合辑 /strong /span /p p style=" text-indent: 2em text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10555" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 304px " src=" https://img1.17img.cn/17img/images/202005/uepic/fd2985f8-7680-4e9d-b3ba-ba7b83d72a11.jpg" title=" 6903500421.jpg" alt=" 6903500421.jpg" width=" 600" height=" 304" border=" 0" vspace=" 0" / /a /p
  • 核酸药物/mRNA疫苗分会场预告:靶向递送/单链寡核酸作用机制/关键质量属性分析
    为促进我国生物医药产业持续快速发展,仪器信息网将于2023年3月29日-2023年3月31日举办第四届“生物制药研发及质量控制” 网络大会,内容覆盖抗体/蛋白药物、细胞与基因治疗、多肽药物、核酸药物/mRNA疫苗,涉及生物药开发、质量控制、制剂的分析表征以及自动化等创新技术在生物制药领域的应用。核酸药物主要在基因水平上发挥作用,如mRNA新冠疫苗,直接作用于引起疾病的分子,并通过调节身体功能缓解疾病的症状,而无需操纵基因组,目前在抗病毒、抗肿瘤、抗代谢紊乱方面显示了独有的作用。目前,核酸药物产业仍存在亟待解决的技术壁垒。本次生物制药大会特别设置核酸药物/mRNA疫苗会场,7位嘉宾将从新药研发、靶向递送、关键质量属性分析等角度进行讲解。点击图片免费报名报告嘉宾详情如下:王友如 首席科学家 宁波君健生物科技有限公司报告:mRNA疫苗的前景与挑战 报名占位宁波君健生物科技有限公司mRNA疫苗首席科学家,中科院武汉病毒研究所博士,教授。长期从事病毒疫苗研究,以人源化表达系统为载体,开展疫苗的分子设计、人源化表达、纯化、有效性与安全性评价研究,擅长mRNA疫苗的分子设计、有效性与安全性评价。王海盛 CEO 思合基因报告:单链寡核酸的作用机制与新药研发 报名占位王海盛博士是思合基因生物科技有限公司(SicaGene Bioscience)的创始人和CEO。基于利用生物技术解决未满足临床医学需求的目标,王博士和创业团队创立了思合基因,致力于建立寡核酸新药研发技术平台。王博士具有丰富的新药研发及管理经验,拥有15年以上的药品研发和管理的经验。在创立思合基因前,王博士任职上市公司哈药集团研发副总裁,并先后在Bioduro,BeiGene和扬子江药业担任高管负责药物研发工作。王海盛博士1995年毕业于兰州大学化学系,在北京大学药学院获得博士学位后,赴美国UMSL及Auburn University接受博士后训练,2008年回国后进入工业界并致力于新药研发工作。王博士是教授级高级工程师,并拥有中欧国际工商学院EMBA学位。杨振军 教授 北京大学报告:新型核酸药物制剂体内靶向递送研究 报名占位北京大学医学部药学院教授、天然药物及仿生药物国家重点实验室课题组长。1987年获北京医科大学药学专业学士学位,1998年获该校药物化学专业理学博士学位,2000-2002年在美国佐治亚大学药学院从事博士后研究。研究方向:核酸药物及核酸化学生物学研究。发表研究论文150多篇,授权专利18项。负责科技部新药重大专项和973项目课题、自然基金委重点课题子课题等多项科研项目。获得过全国百篇优秀博士学位论文奖、国家自然科学二等奖一项、教育部自然科学一等奖一项和二等奖两项。曾任国家自然科学基金委员会化学部化学生物学流动项目主任,现任中国化学会化学生物学和化学教育两个专业委员会委员。陈进进 研究员 中山大学孙逸仙纪念医院报告:器官靶向性的mRNA递送与应用 报名占位陈进进,中山大学孙逸仙纪念医院研究员,博士生导师。获得国家级海外高层次人才青年项目资助。2018年博士毕业于中科院长春应用化学研究所,导师陈学思院士。2018-2021年在美国塔夫茨大学从事博士后研究,合作导师许巧兵教授。现在主要研究方向为:一:脂质分子与功能性高分子材料的合成以及药物/基因载体构建。二:基于生物材料的肿瘤免疫治疗。三:mRNA递送及应用(mRNA疫苗、基因编辑、蛋白替代疗法等)。目前已在Science Advances, Advanced Materials, PNAS, Nano Letters, Angew. Chem. Int. Ed., Nano Today 等学术期刊发表论文30余篇,3篇论文分别入选ESI热点与高被引论文。以共同发明人授权/申请专利9项。应邀担任Chinese Chemical Letters青年编委。张拓 资深应用工程师 沃特世科技(北京)有限公司报告:沃特世核酸分析整体解决方案 报名占位沃特世科技(北京)有限公司资深应用工程师,毕业于中国药科大学,从事生物药表征工作15年,在多肽、蛋白药物,核酸和病毒等大分子相关的表征及定量方面有丰富的经验。唐雪 高级应用工程师 岛津企业管理(中国)有限公司报告:寡核苷酸药物和mRNA关键质量属性分析 报名占位就职于岛津全球应用技术开发支持中心,有10年以上药物分析领域工作经验。目前在岛津主要负责液相与液质相关仪器的应用开拓与技术支持工作,涉及药物种类有寡核苷酸、mRNA、抗体药物、基因治疗药物、小分子化药等。点击报名:https://www.instrument.com.cn/webinar/meetings/biopharma2023/扫码进入会议交流群
  • NMPA批准三类注册证:首个核酸质谱药物基因组多基因检测试剂盒
    2024年7月,迪谱诊断自主研发的“先蕊谱® 人CYP2C19、ALDH2、ApoE和 SLCO1B1 基因检测试剂盒(PCR-飞行时间质谱法)”,成功获批三类医疗器械注册证(国械注准20243401289)。先蕊谱® C8基因检测试剂盒示意图先蕊谱® C8试剂盒(Cardiovascular Diseases 4基因8位点),是以冠心病患者为代表的药物基因检测试剂,是国内首个基于飞行时间核酸质谱技术进行合并用药多基因多位点检测的试剂盒,搭载DP-TOF飞行时间质谱检测系统,合并用药-联合检测,缩短了检测技术人员多管多次PCR操作时间,减少了临床医生的选药困扰,降低了患者病程药物不良反应事件,减轻了患者经济负担,无荧光标记干扰,质谱检测提升了检测准确度,打造了更准、更全、更灵敏的心血管疾病药物基因组多联检解决方案。作为国内首个基于飞行时间核酸质谱技术进行药物基因组(PGx)“合并用药-联合检测”的多基因多位点获证试剂盒,该产品通过体外定性检测人体外周血样本中的CYP2C19、ALDH2、ApoE和SLCO1B1基因多态性,检测结果可辅助氯吡格雷、硝酸甘油和他汀类药物的个体化用药指导,助力心血管疾病精准治疗。据《中国心血管健康与疾病报告2022》数据显示,我国心血管疾病(CVD)现患者达3.3亿,每5例死亡中就有2例死于心血管疾病,每年心血管疾病死亡387万,占我国疾病总死亡的44.74%,高居疾病死亡构成的首位。合并用药:由于心血管疾病患者往往多种症状并存,因此临床治疗上经常需要合并用药。以冠心病为例,《冠心病合理用药指南(第2版)》中明确指出,改善缺血、减轻症状的药物(含硝酸甘油)应与预防心肌梗死的药物(含氯吡格雷、他汀类)联合使用。《稳定性冠心病诊断与治疗指南》中建议,最佳药物治疗方案应包括至少1种抗心绞痛/缓解心肌缺血药物(含硝酸甘油)与改善预后(含氯吡格雷、他汀类)的药物联用。《急性冠脉综合征急诊快速诊治指南》指出,ACS抗血小板(含氯吡格雷)、抗缺血治疗(含硝酸甘油)是基本治疗,无他汀类药物禁忌症的患者入院后尽早开始他汀类药物治疗,长期维持。精准治疗:心血管疾病患者大多数需要长期服药,同类疾病的患者服用同一种药物的疗效和安全性往往存在较大个体差异。除了年龄、性别、种族/民族、疾病状态、器官功能等其他因素,遗传因素基因多态性是引起药物不良反应及其疗效个体差异的首要原因。心血管药物基因学的卫生经济学研究备受关注。根据CPIC指南、PharmGKB数据库、FDA公布的相关遗传信息与用药建议、国内《药物代谢酶和药物作用靶点基因检测技术指南(试行)》等,CYP2C19基因可指导抗血小板药物种类和剂量的选择(1A证据);SLCO1B1基因指导选择更合理的他汀药物剂量,避免肌病风险(1A证据);ApoE基因评估他汀疗效,助力选择更合适的他汀(2级证据);ALDH2基因评估硝酸甘油疗效,指导心绞痛发作的预防(2级证据)。迪谱诊断DP-TOF核酸质谱检测特点多基因多位点检测检测周期短,高效率高准确度,高灵敏度操作简便,成本低样本量与类型灵活样本类型人体外周血样本,需要采集受检者静脉血不小于1ml,注入含EDTA抗凝剂的采血管。适用人群需要服用氯吡格雷、他汀、硝酸甘油相关药物的冠心病患者/心肌梗塞或其他外周动脉疾病的患者/进行PCI手术预后治疗的患者以及高脂血症治疗。用于脑卒中、癫痫、抑郁症、焦虑症、消化道出血、肾移植等患者的用药指导;载脂蛋白E(ApoE)基因多态性可作为阿尔兹海默症风险筛查指标。
  • 利用等比例扩大管道尺寸实现用于核酸药物递送的脂质纳米颗粒的可扩展化合成
    基于脂质纳米粒子(LNPs)的核酸药物递送系统已经被证明在基因编辑、癌症治疗、传染病预防、慢性病治疗等领域具有巨大潜力。微流控技术作为一种高效的可调合成平台,可以在LNPs的合成过程中精确控制流动参数,包括流量比、总流量以及脂质浓度等,从而实现不同尺寸的粒子合成。这对于实现不同器官的精准靶向具有重要意义,是当前科学研究的一个关键焦点。然而,将LNPs从实验室研发成功转化为临床应用仍然面临一个严峻的挑战:如何稳健地实现制备规模的放大。目前,规模化合成LNPs的方法主要分为并行化合成策略和通道尺寸扩大策略两种。虽然并行化合成策略原理简单,但需要建立复杂的系统以确保流量分配的稳定性,因此尚未在LNPs的工业制造中广泛应用。通道尺寸扩大策略则采用更大尺寸的单一芯片,提高了最大容许流量,并通过高流速下的湍流混合来确保极限尺寸纳米粒子的合成,例如受限撞击射流混合器和T型混合器。然而,尽管后者能够实现稳定的大规模生产,但在不同流速下难以维持一致的粒径和尺寸分布。因此,我们迫切需要一种创新性的方法,既能保证可扩展的合成,又能维持LNPs的一致性和稳定性。为此,中科大工程学院褚家如教授团队的李保庆副教授与生命科学与医学部田长麟教授团队深入研究后,提出了一种创新的脂质纳米粒子合成策略,即“等比例缩放通道尺寸实现LNPs的可扩展合成”。这一策略通过在三个维度上等比例缩放惯性微流体混合器,并且通过控制混合时间保持一致来确保一致粒径分布的LNPs的合成。这一策略为LNPs的大规模生产提供了实际可行的途径。相关研究成果已发表在Nano Research上。中国科学技术大学在读博士生马泽森和童海洋为共同第一作者。合作团队首先研制了一种高效的惯性流混合器,该混合器充分利用了流体的惯性效应,包括迪恩涡、分离涡以及分离重组效应,以显著提高混合效率。与其他惯性流混合器相比,这种混合器在更低的雷诺数下也能实现充分混合。利用这一混合器,合作团队研究了两种LNPs配方在不同混合时间下的粒径分布,发现混合时间和粒径之间存在良好的线性关系。因此,合作团队推测,通过在不同混合器中控制混合时间的一致性,可以实现具有相同粒径分布的LNPs的合成。基于这一构想,合作团队等比例缩放了该惯性流体微混合器,并使用高精度3D打印和激光加工制备了具有不同通道尺寸的芯片。这些芯片用于实现不同通量条件下的LNP筛选和规模化制备的一致性。对于管道尺寸小于100μm的芯片,选择了摩方精密nanoArch S130设备进行打印和加工,以确保尺寸得到精确控制,从而实现了小于1mL/min流量下均匀的LNPs的合成。此外,合作团队还基于流体力学的相似性理论进行了研究,通过量纲分析和实验标定,总结出了不同管道尺寸混合器实现相同混合时间的流量关系。经过实验验证,在相同的混合时间下合成的LNPs具有一致的粒径、分散性以及包封率。此外,合作团队还验证了具有相同粒径的LNPs在核酸递送方面的能力,成功合成了包封siRNA的LNPs,并证明了它们具有相同的基因沉默效力。总体而言,合作团队提出的“等比例缩放通道尺寸实现可扩展化合成”的策略为核酸药物的大规模生产提供了一种简单、可靠且稳定的途径。这一方法有望极大地加速LNPs药物从早期开发阶段迈向临床应用,推动核酸药物研发进入崭新的领域,为人类健康做出重要贡献。利用摩方精密nanoArch S130设备打印加工的管道尺寸分别为50μm和100μm的微流控芯片模具。其中XY方向上的精度为2μm,Z方向上的精度为5μm,样件尺寸为30mm×40mm。图1 惯性流混合器的结构以及原理示意图。(a)混合器的结构示意图。(b)利用混合器合成脂质纳米粒子的原理示意图。(c)混合器混合机理示意图。三种惯性流效应共同促进了混合,包括迪恩涡、分离涡以及分离重组效应。图2 利用计算流体力学仿真不同管道尺寸混合器的流型相似性。(a)前两个混合单元混合流型的顶部视图。(b)三种管道尺寸混合器在不同雷诺数下的流型相似性。图3 通道尺寸为100、250和500μm的混合器的前两个混合元件的流态俯视图。流动状态包括层流(Re=25和132)、瞬态流(Re=264)和湍流(Re=396)。图像经过数字处理以增强对比度。将溶解有黑色染料(0.025g/mL)作为示踪剂的去离子水和乙醇以3:1的FRR泵入混合器中。流动方向是从左到右。其中100μm的芯片是通过摩方精密nanoArch S130设备打印进行加工。图4 在相同混合时间下,不同通道尺寸的混合器合成具有一致粒径和尺寸分布的LNPs。(a)等比例缩放微混合器用于可扩展化合成LNPs。(b-c)在相同的混合时间下测量了两种LNPs配方的粒径分布。图5 一步对相同粒径LNPs核酸药物递送的性能评估。合成了包封因子VII siRNA后进行静脉注射,两天后测定因子VII活性。结果表明不同组别之间呈现一致的体内沉默效率。原文链接https://doi.org/10.1007/s12274-023-6031-1
  • 宁波新芝携药物溶出取样、全自动核酸提取仪等新品亮相慕尼黑上海生化展
    p   2020年11月16-18日,慕尼黑上海生化展在上海新国际博览中心举行。作为亚洲分析和生化技术领域的国际性博览会,analytica China 2020 吸引了来自国内外1,121家参展企业及合作单位共襄盛举。超60,000平米总展出面积、2,000平米实景Live Lab沉浸式体验区、千余款仪器设备新品、十余场重磅高峰论坛及同期会议等精彩内容,就用户最为关心的实验室前沿发展、生命科学新技术、临床诊断、食品安全、环境监测与检测、化学化工、生物医药等众多专题进行深入探讨。 strong 宁波新芝生物科技股份有限公司本次携多款新品亮相展会。 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/baf2ac66-64a9-49ab-acf1-c8dd8b0e2914.jpg" title=" 宁波新芝.JPG" alt=" 宁波新芝.JPG" / /p p style=" text-align: center " strong 宁波新芝展位 /strong /p p   宁波新芝生物科技股份有限公司(股票代码:430685)始创于1989年,公司总部位于宁波市国家高新区,是全球知名的生物样品处理设备提供商,也是国内超声波技术应用探索的先行者。新芝生物是一家为科研、教育、生物医药、农林、环保、石油、新材料等领域提供相关科学仪器的国家高新技术企业。依托强大的科研技术实力,公司在超声波细胞粉碎,萃取,分散,除垢、高压均质及超低温、冷冻干燥、基因细胞重组等技术领域积累了丰厚的经验,并先后研究开发了包括生物样品前处理仪器、分子生物学仪器、实验室洁净设备、冷冻干燥设备、工业防垢除垢设备、淡水资源除藻防控设备等多款产品。 /p p   宁波新芝生物科技股份有限公司此次展会带来了药物溶出取样系统、全自动核酸提取仪、高速冷冻离心机等新品。生物和制药是目前其业务关注的两大核心,全自动核酸提取仪能够满足生物实验室的需要(如PCR实验室),可以用于新冠实验室中咽拭子的核酸提取 高速冷冻离心机也是生物实验室比较常见仪器,在功能和性能上做了一些创新,升降温速度很快,得益于压缩机选型和管路设计,室温降温到4℃只要3分钟左右,相较于市面上一般降温需要8分钟左右的离心机是一个较大的优势,转速能在14秒内从0到15000转;药物溶出取样系统主要是用于药物溶出度的分析。 /p p br/ /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/476628ff-b598-434a-a6b0-ddb043b629dd.jpg" title=" MDS-2008药物溶出取样系统.JPG" alt=" MDS-2008药物溶出取样系统.JPG" / /strong /p p style=" text-align: center " strong MDS-2008药物溶出取样系统 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/20f8c374-bc35-43ba-96bb-6ef04afe67a5.jpg" title=" NP-2032全自动核酸提取仪.JPG" alt=" NP-2032全自动核酸提取仪.JPG" / /strong /p p style=" text-align: center " strong NP-2032全自动核酸提取仪 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/22b2fa9a-40d2-4a33-83cf-18e644ec752a.jpg" title=" HSC-2015L高速冷冻离心机.JPG" alt=" HSC-2015L高速冷冻离心机.JPG" / /strong /p p style=" text-align: center " strong HSC-2015L高速冷冻离心机 /strong /p p     /p
  • 中科大新成果:用于核酸药物递送的LNP规模化制备放大的微流控新策略、新芯片、新技术
    脂质纳米粒(LNP)是一种具有均匀脂质核心的脂质囊泡,广泛用于核酸药物的递送,近年来由于作为新冠病毒mRNA疫苗递送平台的巨大成功而备受关注。近期,围绕LNP从实验室筛选到工业化制备参数不一致和质量控制困难这一行业难题,中科大微纳米工程团队和化学生物学团队提出了LNP规模化制备放大的微流控新策略,发展了新芯片和新技术,并在siRNA递送和动物实验中实现了功能验证。相关研究工作近期已经被Nano Research接收并online发布。LNP制备方法很多,包括脂质体挤出法、薄膜水化法、纳米沉淀法以及微流控法等。近年来,通过微流控技术合成的mRNA 脂质纳米颗粒比传统的合成工艺更具优势,具有批次一致性良好、粒径可控、超低的PDI值、并且包封效果可达90%以上等优点。但是,基于微流控技术合成的LNPs在临床应用上面临着一个严峻的挑战:如何实现从早期开发到临床应用的稳健的制备规模放大。目前,制备放大的合成LNPs方法主要分为并行化策略和通道尺寸扩大策略。并行化策略需要复杂系统搭建,并在大规模生产时难以保持LNPs稳定性;通道尺寸扩大策略尽管能够实现稳定的大规模生产,但很难在不同流速下保持一致的粒径和尺寸分布。中科大工程学院褚家如教授团队的李保庆副教授与生命科学与医学部田长麟教授团队经过深入研究,提出了一种“等比例缩放通道尺寸”的可扩展化脂质纳米粒子合成策略。该策略通过在三个维度上等比例缩放惯性微流体混合器,实现了LNPs的可扩展合成。合作团队设计并构建了高效的惯性流体微混合器,通过结合三种惯性流体效应,实现了溶液的在更低流速下的快速混合。接着,将该惯性流体微混合器等比例缩放,通过高精度3D打印以及激光加工制备出不同通道尺寸的芯片,以实现不同通量条件下的LNP筛选与规模化制备的一致性。合作团队基于流体力学的相似性理论并利用无量纲分析开发了一种理论预测方法,通过控制混合时间在不同芯片上保持一致,确保合成的LNPs具有一致的粒径和尺寸分布。实验结果表明,利用等比缩放的芯片在相同的混合时间下合成的LNPs,具有一致的物理特性,平均粒径偏差不超过5%。合作团队成功合成了包载siRNA的LNPs,并在小鼠模型中验证了这些LNPs的相同的基因沉默能力。这一创新性方法为LNPs的大规模生产提供了实际可行的途径,将极大加速核酸药物研发向临床应用的转化。该工作7月23日被Nano Research杂志接收,中科大生医部、安徽省多肽药物工程实验室主任田长麟教授和中科大工程学院精密仪器系李保庆副教授为该文章的共同通讯作者,中科大工程学院博士研究生马泽森与中科院强磁场科学中心博士研究生童海洋为共同第一作者。相关芯片制备及算法均已申请专利保护。笔者了解到,mRNA在给药过程中非常依赖载体,也不可以通过交联和深层修饰来解决给药问题。确保mRNA本身的稳定性具有挑战性,而且由于其化学修饰的空间有限,所以通常必须使用脂质纳米粒 (LNP)作为载体给药系统。一直以来多数LNP产品研发生产仍以国际大药企为主,目前国内众多科研单位也在纷纷开展相关研究。微流控设备在LNP制备方面具有一定的优势,期待看到此次新芯片、新技术的带来LNPs产能的提高。相关阅读:回放视频合集|核酸药物研发与质控的技术盛宴
  • 强强联合丨迈安纳与马尔文帕纳科达成战略合作,助力核酸药物产业化发展!
    近日,全球材料及生物物理领域微观分析领导者,英国思百吉集团全资子公司----马尔文帕纳科(以下简称“马尔文帕纳科”)和核酸纳米药物递送整体解决方案的领军企业迈安纳(上海)仪器科技有限公司(以下简称“迈安纳”)在迈安纳上海总部签署了双方的战略合作协议。双方将在解决方案开发、人才培训、学术交流及市场开拓等方面持续深入合作,共同助力核酸药物产业化发展!迈安纳&马尔文帕纳科 战略合作签约仪式马尔文帕纳科作为粒度分析仪器的开创者,多年来深耕于颗粒表征领域,在脂质药物载体等纳米药物方面拥有成熟的生物物理表征仪器和解决方案,迈安纳作为核酸纳米药物递送技术平台的领跑者,专注于解决RNA纳米药物递送行业痛点的整体解决方案,双方将合力为核酸药物领域提供更精准权威的检测设备,提供更完善的解决方案,助力核酸药物的研发以及商业化进程!马尔文帕纳科中国区医药与食品行业销售总监叶飞先生就签署与迈安纳的战略合作表示:“迈安纳作为核酸药物包封以及工艺的整体解决方案的领导者,为国内外众多核酸药物企业和科研院所提供了专业的设备和解决方案,我们很高兴能够与迈安纳签署此次战略合作协议!马尔文帕纳科与迈安纳多年来凭借在纳米药物递送领域专业的仪器和专业服务,已有多次合作和深入的技术交流,双方都深谙用户需求。通过本次战略合作,相信双方能针对未来行业发展需求,在产品和服务上不忘初心,持续研发,推出解决行业痛点的一系列解决方案,为核酸药物行业的蓬勃发展做出努力。”迈安纳总经理吴刚先生就签署与马尔文帕纳科的战略合作表示:“马尔文帕纳科是一家拥有悠久深厚技术底蕴和全球战略胸怀的国际化企业,在受到全球疫情严重影响下,马尔文帕纳科积极调动资源,尽量缩短货期,这一切都体现了马尔文帕纳科对于中国市场的重视和支持,今日迈安纳与马尔文帕纳科达成战略合作,我们深感荣幸!在推动核酸纳米药物递送行业技术发展的道路上一路走来,我们始终与马尔文帕纳科相互交流,深入技术沟通,持续为核酸药物行业用户提供更好的整体解决方案和服务。今日迈安纳与马尔文帕纳科的战略合作,展现了双方对核酸药物行业,特别是mRNA领域未来产业化发展的信心,更坚定了迈安纳加速国际化脚步的决心。”马尔文帕纳科中国区医药与食品行业销售总监叶飞(左)、迈安纳总经理吴刚(右)及双方企业代表出席此次签约仪式。关于迈安纳迈安纳(上海)仪器科技有限公司开始于2018年,正式成立于2020年初。是一家拥有多项发明专利技术,专注于解决RNA纳米药物递送行业痛点的整体解决方案本土提供商。公司不仅可提供从实验室到产业化的核酸(包括mRNA, siRNA, CRISPR/Cas9, SAM RNA, CircRNA等)-LNP全系列封装设备!更可提供整体解决方案中的技术支持。作为上海市闵行区重点引进的项目,迈安纳已在上海莘庄工业区投资数千万元,建成了国内首家集核酸药物装备研发制造和核酸递送工艺开发为一体的创新中心。该中心具备GMP级递送工艺开发实验室和十万级无尘核心组件装配区。迈安纳自主研发生产的INano™ 全系列产品已获得欧盟CE认证和美国FCC认证。目前迈安纳已服务于国内数百家顶尖生物制药公司以及科研学术机构,并已成功助力多个客户相继获得中国,美国,巴西,澳大利亚等mRNA类药物IND临床批件,进入临床和商业化生产。 关于马尔文帕纳科马尔文帕纳科的技术被各个行业和组织的科学家和工程师用来解决一系列难题,如最大程度地提高生产率、开发更高质量的产品及帮助产品更快速地上市。凭借广泛的行业知识和技术及应用专业技术,马尔文帕纳科仪器旨在帮助用户更好地了解各种各样的材料,从蛋白质和聚合物、颗粒和纳米颗粒悬浮液和乳状液,再到喷雾剂和气雾剂、工业散装粉末、矿物和高浓度浆类样品及固体,例如金属和建筑材料、塑料和聚合物。 英国马尔文仪器公司和荷兰帕纳科公司宣布合并,新公司名为马尔文帕纳科,总部位于阿尔默洛(荷兰)和马尔文(英国),全球拥有 2,000 多名员工。 合并后的公司将成为材料表征市场上强有力的竞争者和创新者,并且将充分利用两家公司各自在建筑材料、制药、金属、矿业及纳米材料等终端市场中的优势。 遍布全球的应用实验室以及受强大分销商网络支持的全球销售和服务网络将确保提供良好的客户支持水平。马尔文帕纳科隶属于制造提高生产率的仪器和控制设备的英国思百吉集团。
  • 上海药物研究所启动抗“超级细菌”药物研究
    8月18日从中国科学院上海药物研究所了解到,该研究所相关科研人员已经启动抗“超级细菌”药物研究。 中科院上海药物研究所启动抗“超级细菌”药物研究   最近,一种对几乎所有的抗生素都有耐药性的新型“超级细菌”NDM-1(新德里金属β内酰胺酶-1)已使全球170人被感染,其中在英国至少造成5人死亡,这种新型细菌变种基因有可能在全球蔓延。   为此,中国科学院上海药物研究所成立了“抗NDM-1药物研究联合攻关小组”,并召开了由相关学科科研骨干参加的“抗超级细菌(NDM-1)药物研究工作布置会”。据研究所工作人员介绍,上海药物研究所将集中力量投入抗“超级细菌”药物研究联合攻关,重点开展“超级细菌靶标确证及感染机制研究”“抗超级细菌药物筛选模型的建立”“抗超级细菌化合物的设计与筛选”和“大规模化合物样品的合成”的研究。   NDM-1是一种超级抗药性基因,这种基因的脱氧核糖核酸结构可以在同种甚至异种细菌之间“轻松”复制。研究人员现阶段多在大肠杆菌和肺炎克雷伯氏菌等细菌内发现NDM-1基因,含这种基因的细菌对几乎所有抗生素具有抵抗力,就连“杀伤性较强的”碳青霉烯类抗生素也拿这类细菌束手无策。国外专家表示这类细菌难以对付,目前还“没有任何药物可以对付它”。
  • “70万一针”寡核苷酸药物进医保,此类药物的分析与表征您知道吗?
    导读2021年12月3日,国家医疗保障局召开新闻发布会公布2021年国家医保药品目录调整结果,于2022年1月1日正式执行。治疗罕见病脊髓性肌萎缩症(SMA)的药物诺西那生钠注射液被纳入医保,价格从曾经的70万一针降至3.3万,为患者及其家庭带来福音。SMA是一种罕见的遗传性神经肌肉疾病,是由于SMN1基因突变或缺失,造成与运动神经元密切相关的SMN蛋白缺乏,导致肌肉萎缩,大部分患者因为呼吸衰竭而死亡。诺西那生钠的有效成分是一种反义寡核苷酸,可以改变SMN2前mRNA的剪接,增加完整长度SMN蛋白的产生,达到治病的目的。什么是寡核苷酸药物?寡核苷酸药物通常指由人工合成的长度50个以内核苷酸组成的一类药物,包含单链或双链DNA或RNA。目前研究较多的是反义寡核苷酸药物(ASO)和小干扰RNA药物(siRNA)。与小分子药物和单抗药物靶向蛋白质不同,寡核苷酸药物通常靶向mRNA,从转录后水平进行治疗,具有特异性好、有效性高和长效性突出的优势。寡核苷酸药物分析和表征为了保证产品的安全性和有效性,寡核苷酸药物通常需要从分子量、碱基序列、解链温度Tm、产品纯度、有关物质等方面进行分析,需要使用质谱、生物惰性液相色谱、紫外分光光度计等仪器,岛津公司开发了一系列的解决方案,供您参考。分子量表征寡核苷酸药物通常使用固相亚磷酰胺化学法进行合成,亚磷酰胺单体是合成的关键原料。寡核苷酸药物的分子量则是其重要的产品属性。因此,检测寡核苷酸药物及其合成用原料亚磷酰胺单体的分子量是常用的质量控制手段。常用的分子量检测方法是质谱法。岛津质谱产品四极杆飞行时间质谱仪(LCMS-9030)、单四极杆质谱仪(LCMS-2050)和基质辅助激光解吸电离飞行时间质谱(MALDI-8030)都是寡核苷酸药物及其原料分子量表征的常用仪器。下面就为大家带来QTOF LCMS-9030测定寡核苷酸药物精确分子量和MALDI-8030测定亚磷酰胺单体分子量的精彩案例。• LCMS-9030分析寡核苷酸药物分子量岛津四极杆飞行时间质谱 LCMS-9030具有高分辨率、高质量数准确度和媲美三重四极杆灵敏度的特点,可以准确测定寡核苷酸分子量。寡核苷酸分子带负电,通常使用ESI负离子模式检测,在质谱图上常观测到一系列的多电荷离子,需要进行解卷积处理,得到寡核苷酸分子量。LCMS-9030结合Insight Explore CSD分析结果寡核苷酸药物序列: 5' -mG-mC*-mC*-mU*-mC*-dA-dG-dT-dC*-dT-dG-dC*-dT-dT-dC*-mG-mC*-mA-mC*-mC*-3' 理论单同位素分子量:6431.7239采用QTOF LCMS-9030采集一个长度为20 mer的寡核苷酸药物的高分辨质谱图,使用Insight Explore CSD进行解卷积处理,得到实测单同位素分子量为6431.7236,质量数偏差为0.05 ppm。• MALDI-8030分析亚磷酰胺单体的分子量采用MALDI-8030测定了四种亚磷酰胺单体的分子量,在线性正离子模式下,均检测到显著质谱峰,质荷比大小与钾离子加合峰相符。MALDI-8030体积紧凑、分析速度快、维护方便,是寡核苷酸样品分析的有力工具。序列确认寡核苷酸的序列同设计序列一致,是保证药物有效性的重要方面。采用MALDI-8030测定了长度为20 mer的一种寡核苷酸的分子量和碱基序列。寡核苷酸的MADLI-TOF质谱图主要以单电荷和双电荷形式存在,可直接读出分子量,操作简单,结果直观。利用源内裂解技术(ISD),寡核苷酸更倾向于形成w型碎裂离子,碎裂离子谱图更简单。通过比对这些碎片离子信息,可以较容易地读出核酸序列。寡核苷酸MALDI-ISD-TOF质谱图和碎裂离子解链温度(Tm)随着温度升高,双链核酸分子的双链结构开始打开,最终变成两条单链的结构。Tm是双链核酸分子双链结构解开一半时的温度,是双链核酸分子结构稳定性的重要指标。使用岛津UV Tm分析系统可以非常方便地测定双链核酸分子的Tm。该系统由紫外分光光度计、电热温度控制单元和Tm分析软件组成。Tm分析软件可以控制温度控制单元准确控温,升温速率12档可调,可满足双链核酸分子解链曲线的连续测定。Tm分析软件还可以自动分析解链曲线,给出准确的Tm数值。UVTm分析系统组成(左)和核酸样品Tm分析结果(右)纯度分析使用生物惰性液相Nexera XS Inert结合Shim-pack Scepter C18色谱柱进行了寡核苷酸样品的快速纯度分析,寡核苷酸和其杂质分离良好。即使在50℃高温、0.1M TEAA的盐浓度条件下分析,也表现出良好的稳定性。基于有机杂化颗粒硅胶技术的Shim-pack Scepter C18,适合用于寡核苷酸纯度以及杂质分析。12 mer寡核苷酸样品纯度分析UHPLC色谱图递送介质分析递送介质是将核酸药物递送至靶组织,穿透细胞膜,进入细胞内部发挥药效的关键。脂质纳米粒(LNP)和聚乙烯亚胺(PEI)都是核酸药物的常用递送介质。LNP通常包含阳离子脂质、胆固醇、PEG修饰脂质和辅助性中性脂质,四种成分协同作用,将寡核苷酸包裹并递送到细胞内发挥作用。PEI是一种水溶性高分子聚合物,携带大量正电荷,可通过静电作用结合核酸药物,将其递送至细胞内,并保护其免受核酸酶降解。递送介质的含量检测对寡核苷酸药物给药方式、药学研究等具有重要意义。利用岛津生物惰性液相系统结合蒸发光散射检测器ELSD-LT III建立了定量分析LNP中四种成分含量,以及PEI含量的分析方法。结语天价寡核苷酸药物首进医保,使得这类药物在近期迅速刷屏,备受关注。对寡核苷酸药物进行分析和表征,可以更好地保证产品的药效和安全性。基于岛津丰富的分析仪器产品线,我们利用QTOF LCMS-9030、单四极杆质谱LCMS-2050、MALDI TOF质谱、UHPLC、UV Tm分析系统等技术平台,开发了分子量表征、核苷酸序列确认、Tm测定、纯度分析和递送介质分析的方法,助力寡核苷酸药物研发和质控,希望未来开发出更多更好的药物,造福患者。本文内容非商业广告,仅供专业人士参考。
  • 创新药物研发新热点之糖类药物研究——访北京大学药学院李中军教授
    糖,是组成生物体的基本物质之一,与蛋白质、核酸并称为三大生物大分子。然而,由于糖结构的高度复杂性和多样性,糖类物质的研究进展相对缓慢,从基础研究到功能解析,甚至包括糖类药物的开发和应用方面,都远远滞后于蛋白质和核酸。近年来随着糖科学的发展,尤其是寡糖合成手段的进步和各类探针分子的应用,使得糖类的功能逐步得到解析,糖化学与糖类药物的开发也逐渐成为生命科学与制药领域的研究热点之一。日前,笔者有幸采访到了日本东京理化的一位重要客户——北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授,并与李教授聊起了糖化学及糖类药物的相关研究,以及李教授课题组在教学研究中经常用到的一些仪器设备等,陪同采访的还有东京理化中国贸易公司,埃朗科技售后服务部技术总监张京明先生。北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授糖化学相关研究的意义与挑战李中军教授可以说是一位地地道道的“北医人”,从1982年开始就读于北京医科大学(后并入北京大学)药学院化学专业,本、硕、博都是在北医完成,后留校任教从事教学和科研工作,长期以来从事糖化学、糖化学生物学及相关创新药物的研究。对于糖在生物医药中的重要作用,李教授引用了两个重要的例子,一个是人类ABO血型真正的区别其实就是血红蛋白外面糖链结构的差别;另一个是肿瘤细胞的糖链结构会发生异常改变,是进行早期肿瘤诊断的生物标记物,同时也是抗肿瘤药物疗效及预后的重要指标。而要进行糖的功能研究,首先要解决糖的来源问题,就是寡糖的获得性。制备纯度高、结构清楚的寡糖可以说是影响糖类学科发展的瓶颈,近年来受到越来越多的关注。寡糖的制备方式主要有三种,一种是从天然产物中分离,另一种是酶促法,还有一种就是化学合成法。由于天然产物中的多糖分布不均匀且结构复杂,因此分离难度非常大。而酶促法虽然可行性高,但酶来源受限,价格昂贵。所以寡糖制备大多数采用的是化学合成法。传统的寡糖合成步骤特别长、成本非常高,譬如法国制药巨头赛诺菲获得专利的一个抗凝血肝素类药物——磺达肝素,可有效用于临床手术中防治血栓形成或栓塞性疾病,光合成步骤就有60步,每公斤合成成本高达600万元以上,这种步骤繁琐且高成本的制备方式严重制约了糖类药物的发展。李中军教授团队长期关注寡糖合成新方法及快速组装新策略的研究。譬如,人体内的凝血包括外源性和内源性,外源性凝血可阻止伤口不断出血,而内源性凝血则容易引起血栓等,肝素类药物虽然具有出色的抗凝血活性,每年全球销售额高达数十亿美元,但由于其口服无活性,且同时作用于内、外源性凝血,存在潜在出血风险,因此被局限于医院等专业医疗机构用于临床手术方面。近年来科学家从天然海参中提取到肝素的结构类似物——岩藻糖基化硫酸软骨素(FuCS),研究表明FuCS九糖片段具有市售低分子量肝素相当的抗凝血活性,且由于其独特的化学结构,使其具有口服抗凝活性,且药理活性机制表明其可选择性激活内源性凝血通路,因此在出血倾向方面比肝素具有更高的安全性,通过优化改造之后有望发展成为新一代肝素抗凝药物。李中军教授研究团队通过采用降解加修饰的半合成策略,开发了一种可以简便合成FuCS九糖的化学合成工艺。这一工艺的实现可以提高FuCS的可获得性,降低目标药物的获取难度,合成步骤和成本大大减少,实现了高效、简洁的寡糖合成,为后期药物筛选与中式放大提供了最优合成路线,应用前景非常好,目前已实现技术转让。除此之外,李中军教授研究团队还致力于各种生物活性寡糖的合成及活性评价,基于糖类的天然产物合成及不对称合成研究以及创新药物研究等。糖化学研究的主力——小型仪器近年来,糖类药物的研究越来越热,由于我国具有丰富的生物资源,糖类药物来源广泛,因此在糖类药物研究方面也取得了一系列的重要进展,相关研究团队的数量也在逐渐增多。正如李中军教授所说,20年前国内做糖的没有一个组织,而现在各类相关学会下面已经有4个糖药物专委会,由此可见糖药物在国内的发展速度。而由于糖链结构的复杂性,目前获得糖链的主要方法还是提取或化学合成,没用通用性的合成方法,难以像核酸和蛋白质那样进行高效、准确的自动化化学合成,也不能像核酸PCR扩增或蛋白质表达那样大量制备。虽然从2000年左右开始陆续有科学家发明糖的合成仪,但基本上都是一些模型机或验证设备,还没有通用的商品化糖合成仪。在糖类药物合成的实验室研究中,目前用到的基本上都是一些小型的仪器设备,主要包含搅拌器、旋转蒸发仪、冻干机、真空泵等,而李教授实验室中有大半的这些仪器设备来自于东京理化。据李教授介绍,他与东京理化仪器的渊源要追溯到上世纪90年代中期,那时候他还在北医做学生,就开始使用东京理化的旋转蒸发仪了,而东京理化那时也还没有正式进入到中国,是通过代理商进行合作的。左:埃朗科技售后服务部技术总监张京明 右:北京大学药学院李中军教授寄语东京理化对于东京理化的产品,李教授认为最重要的一点就是性价比高,譬如,同样性能的旋转蒸发仪,东京理化产品的价格要比欧洲同类产品便宜不少,而且后期的售后服务和维修成本也相当值得称道。李教授提到,有些国外的大品牌,将仪器售后委托给代理公司,由于代理公司的频繁变动和工作人员的更换,培训工作难以到位,有时候售后价格昂贵不说,售后人员的专业性还大打折扣。譬如,隔膜泵有时候真空上不去,明明不一定是膜片的问题,可能只是单向阀需要调整一下,但售后人员一来就要换膜片,且每次报出来的价格都不一样,四百、五百、六百都有可能。因此长期使用下来,用户对于这些品牌的后期印象非常差。而在这一点上,东京理化由于在国内设立了多个分支机构(包括生产工厂),在售后方面有稳定的人员保障,能够提供相对较好的用户培训和售后服务。此外,东京理化的产品也非常耐用,据介绍,北医最久的一台东京理化的旋转蒸发仪,目前已经使用了20余年,虽然中间也换过配件,但现在仍然还在实验中为老师和学生们服务。在谈到对于当下产品的改进建议上,李教授认为,像旋转蒸发仪、冻干机等这类仪器,从技术水平上来说,并不是什么高精尖的仪器设备,在功能开发方面其实已经做得非常好了,目前更需要做的其实是用户培训。因为很多时候你会发现,其实用户对于仪器已有功能的了解还是很不够的。譬如像冻干机的使用,当样品冻干到一定程度时,冻干速度会越来越慢,而为了保持冻干速率,其实厂商在每个托盘底上都加了一个加热装置,通过适当加热可以提高升华速度,而这个功能很多学生并不知道。因此很多时候学生从外面看产品好像已经干了,结果拿出样品才发现底部还是有一些冰块。当然,这个问题目前已经通过歧管瓶的方式解决了。但这个例子充分说明了用户对于仪器功能的不了解。后记在采访即将结束的时候,李教授向笔者表示,在提高仪器耐用性方面,特别是对于那些实验常用的仪器设备,仪器使用者和仪器制造商,双方都有提升的空间。对于使用者而言,尤其是年轻的科研人员,要掌握正确的仪器设备使用方法。而对于厂商而言,则要不断提高一些易损件(例如:隔膜泵的膜片、旋蒸仪的密封件等)的耐用性。同时,在仪器功能的开发方面,则应尽可能向简便、实用方向发展。
  • 中国特色药物分析科学成绩斐然——第六届全国药物分析大会
    仪器信息网讯 第六届全国药物分析大会于2016年12月1-3日在北京西郊宾馆隆重召开。12月2日下午,大会由马双成教授、梁琼麟教授、曾苏教授和顾景凯教授共同主持,邀请了十位来自全国的药物分析领域专家和企业工程师作大会报告。  清华大学罗国安教授作了题名为“精准医学与药物分析科学”的报告,“精准医学是集合现代科技手段与传统医学方法,科学认识人体机能和疾病本质,以最有效、最安全、最经济的医疗服务获取个体和社会健康效益最大化的新型医学范畴”。罗教授指出,我国应发展具有中国特色、符合中国国情的精准医学,而药物分析不能沦为一种技术手段,而应以解决科学问题为目标。并以糖肾方治疗糖尿病肾病为例介绍了“方-病-证”整合的“系统对系统”的研究模式、取得成果和临床应用。清华大学 罗国安教授  国家药物及代谢产物分析研究中心吕扬研究员报告的题目是“晶型药物分析技术发展与应用”。报告详细介绍了十种主要晶型分析技术和它们在晶型研究和晶型质量控制中的地位与作用。固体药物的晶型状态是决定药物品质的重要因素,晶型不一致也是原研药和国产仿制药药品质量差异的重要原因。我国的晶型专利正在逐年增加,晶型专利可以保护药用晶型状态、制备方法、药物制剂等,也会影响药物的市场占有周期。国家药物及代谢产物分析研究中心 吕扬研究员  西安交通大学贺浪冲教授,结合药物分析学学科评估,介绍了该学科面临的问题、发展机遇和药分领域科学家所作的努力。药物分析不仅要做药品质量控制,而更应该面向药物源头发现、开发、评价及用药等领域。药分学者通过举办药物分析学术会议、创办药学学报、中国化学快报等学术期刊,增强了中国药物分析学科的国际影响力。贺教授还讲解了其团队研制的细胞膜色谱CMC分析仪和2D/CMC过敏物分析仪,以及两种仪器的工作原理和应用。西安交通大学 贺浪冲教授  浙江大学曾苏教授的报告题目是“Evaluation of TCMs ADME Using Humanized Transgenic Models”。药物的ADMET可以决定药物疗效和毒性,是成药性评价的共性通用指标。由于药物代谢酶和转运体蛋白及调控因子存在种属差异,中草药的成药性研究中,根据动物实验结果预测人类疗效有时行不通。利用人源化的模型开展研究尤为重要,曾教授建立了人源化特色的ADME评价技术体系,并证明人源化模型具有许多优点。浙江大学 曾苏教授  岛津企业管理(中国)有限公司的董静博士为大家介绍了显微质谱成像技术。利用质谱技术对药物代谢行为和毒性进行评价时,无法获取药物在组织中的分布信息。显微成像技术可以标识物质的位置,但无法分析确认原药及其相关代谢物。为满足药物分析检测对仪器的新要求,岛津开发了质谱显微镜——IMscope,在空间分辨率、基质喷涂方法、定性分析、高速分析和数据处理等方面具有出色性能。岛津企业管理(中国)有限公司 董静博士  第二军医大学药学院的洪战英教授的报告是“基于组分-靶标相互作用的中药活性分析方法研究”。目前中药多组分-多靶点相互作用研究中的方法学需要突破,洪教授从单靶点-多组分、虚拟多靶点-多组分和整体多靶点-多组分三个相互作用层面,介绍了三种分析方法,并举例验证了这些方法是中药活性分析和机制研究的有效途径。第二军医大学药学院 洪战英教授  赛默飞世尔科技公司的刘晓达博士和马书荣工程师分别作了题名为“赛默飞色谱质谱整体解决方案助力药物分析领域”和“赛默飞化学分析解决方案”的报告。刘博士介绍了赛默飞提供的色谱质谱制药和生物制药行业从样品制备、分析检测到系统控制及数据管理全流程的解决方案。马工程师介绍了基于分子光谱分析、紫外可见光谱分析技术等五大核心技术的赛默飞系列仪器产品,及其在化学药研制中的特点和应用优势。赛默飞世尔 刘晓达博士赛默飞世尔 马书荣工程师  南京总医院周国华教授报告了核酸结构识别酶FEN1介导的基因检测与基因编辑新方法。精准用药也就是根据靶标差异和实时动态差异精准给药。为了解决“大海捞针”般的基因标志物检测,周教授建立了以“核酸侵入信号放大反应”为核心的基因检测技术CESA,经过改良该技术放大倍数达到106数量级,成功用于检测肿瘤组织中微量基因突变。CESA偶联胶体金法后成功实现试管内(TubeLab)液态活检。并在FEN1酶基础上,研究出结构介导的核酸编辑新方法(SGN)。南京总医院 周国华教授  沈阳药科大学郭兴杰教授的报告题目是“β -CD/纳米金修饰的OT-CEC手性柱的制备及应用研究”。药物中大约40%为手性化合物,手性药物的质控和体内过程研究都需要建立对映体分析方法。郭教授研发了一种β -环糊精纳米金修饰的开管毛细管电泳色谱柱(OT-CEC),发现纳米金和手性选择剂修饰后OT-CEC可以对手性药物对映体进行区分,且多层纳米金修饰OT-CEC的对映体识别能力更好。沈阳药科大学 郭兴杰教授  报告结束后,岛津公司设晚宴招待各位参会人员,庆祝第六届全国药物分析大会召开。宴会上古泽宏二社长和罗国安教授分别致辞。岛津公司 古泽宏二社长致辞
  • 新软件发布 | Mass-MetaSite:可以做多肽/核酸药物的代谢产物鉴定软件
    在药物发现早期阶段,代谢产物鉴定是确保药物安全性和有效性的关键步骤,但传统方法费时费力,面临诸多挑战: 难点一:耗时的手动分析 — 传统方法需要数小时甚至数天来分析药物的代谢产物。 难点二:数据解读复杂 — 由于基质背景和代谢过程复杂,如果缺乏经验难以快速准确识别代谢产物。 Mass-MetaSite — 一款专为小分子和肽类药物代谢产物鉴定而设计的专业软件,能有效解决上述难点。Mass-MetaSite工作流程Mass-MetaSite软件特点 效率提升 软件利用液相色谱-质谱(LC-MS)、紫外(UV)等数据,将分析时间从数小时缩短至几分钟,而且支持高通量批量处理,加速药物研发流程。 自定义方法 根据代谢体系,选择合适代谢反应途径,实现个性化分析。智能结构预测 自动为色谱峰分配化学结构,利用先进的算法(Site of Metabolism, SoM)提供同分异构体代谢位点预测,并打分,简化结构鉴定流程。 碎片预测 对母药和代谢产物的二级碎片进行结构归属,提升鉴定准确性。 自动生成结果 一键生成详尽报告,省去繁琐手动整理。 大分子处理能力 特别提升对寡核苷酸、大环肽(MCP)等大分子的处理,分子量覆盖高达50,000 amu。 了解更多内容 Mass-MetaSite: High-Throughput MetID (moldiscovery.com) Using Mass-MetaSite and WebMetabase to Process HDMSE Data Acquired on the Vion IMS QTof Mass Spectrometer | Waters Ion Mobility-Enabled Metabolite Identification of Tienilic Acid and Tienilic Acid Isomer Using Mass-MetaSite and WebMetabase | Waters
  • 全国生命分析化学研讨会:药物分析论坛
    仪器信息网讯 2010年8月20日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。研讨会同期召开了“食品分析、药物分析、仪器装置”等多场专题论坛,“药物分析”专题论坛共吸引了300余位业内人士的参加。   会议由南昌大学倪永年教授、陕西师范大学张成孝教授联合主持,中国科学院大连化学物理研究所梁鑫淼研究员、北京理工大学屈锋教授、中国科学院大连化学物理研究所秦建华研究员等专家为与会者作了精彩的报告。 倪永年教授 张成孝教授   报告人:中国科学院大连化学物理研究所梁鑫淼研究员   报告题目:中药复杂体系分离分析新策略与方法   梁鑫淼研究员表示,其课题组将高通量制备、高通量SPE浓缩和正交分离三种方法相结合,发展了一种新的分离策略。该策略的应用有利于制备效率的提高、微量化合物和高纯度化合物的制备,对于中药物质基础研究具有重要意义。   高通量制备技术能够在短时间内将复杂中药分为大量组成相对简单的小组分,使得后续分离较为容易,分离效率有了明显提高。该课题组以中等极性组分为例,发展了中药小组分的高效高通量制备方法。该方法利用HPLC的高效性,快速将复杂样品切割为组成相对简单的小组分,简化了进一步的纯化分离,有利于制备效率的提高 四通道平行制备色谱的采用,将制备通量提高四倍,在短时间内制备出大量馏分,实现了中药小组分的高通量制备。   高通量浓缩技术是高通量制备技术的重要组成部分。由于反相液相色谱流动相中水的比例较大,使得这些小组分浓缩十分困难,成为制约整个制备过程的瓶颈问题。该课题组针对大量中药小组分的浓缩问题,通过SPE填料的选择、高通量SPE浓缩仪的设计、回收率的考察发展了基于SPE的高通量浓缩方法。该方法浓缩效率高,可一次实现48个馏分的浓缩,实现了中药小组分的高通量浓缩。   通过高通量制备获得大量的中药小组分,其中一些较为简单的组分可以在不同类型的C18或C8柱上通过二次制备获得纯化合物,但对于较为复杂或含有难分离化合物的组分,这种简单的二次制备很难获得高纯度的化合物。因此,梁鑫淼课题组发展了中药小组分的正交分离方法,选择与C18正交性好的色谱模式或色谱柱,一方面能够对中药小组分进行深入分析,更好地揭示中药的复杂程度 另一方面有利于高纯度化合物的分离制备。   报告人:北京理工大学屈锋教授   报告题目:毛细管电泳在生物分析检测中的新应用   毛细管电泳作为高效、快速、简单、低成本的微量分子技术在生物体(细胞、微生物)和生物大分子(蛋白质、核酸)研究中具有着广泛的应用空间和潜力。   屈锋课题组近年来进行了以下研究: 1)针对动物细胞的活性分析,建立了单细胞连续流毛细管电泳双波长检测分析方法和基于特异性染料的毛细管区带电泳细胞活性分析法 2)利用毛细管区带电泳分析大肠杆菌基因突变菌株,探索毛细管电泳在基因突变菌株研究中的新应用 研究了大肠杆菌与核酸适配体库的相互作用,以及毛细管电泳测定微生物表面电荷特征的方法 3)蛋白质与核酸适配体文库的相互作用评价方法,以及多种蛋白质适配体的毛细管电泳筛选方法对比研究 4)离子液与天然核酸和合成核酸的相互作用的毛细管电泳表征研究。   报告人:中国科学院大连化学物理研究所秦建华研究员   报告题目:微流控芯片生物化学实验室   微流控芯片又称“芯片实验室”(Lab-on-a-Chip),具有将化学、生物实验室的基本操作功能单元缩微到一个几平方厘米芯片上的能力,被认为是本世纪的重要科学技术之一,具有重大应用前景。   多年来,秦建华研究员所领导研究组围绕微流控芯片技术、方法以及在生物医学和化学领域中的应用等方面开展了一系列研究工作,建成了具有自主知识产权和核心竞争力的微流控芯片及其应用系统。   该研究组在已有的玻璃、石英、PDMS 和PMMA 等不同材料芯片制备方法的基础上,建立了富有特色的基于水凝胶的液塑PDMS 芯片制备技术,和以蜡疏水隔离及硝酸纤维素膜为特征的纸芯片制备技术,构建了一系列功能化微流控芯片平台。   据介绍,在发展平台技术的同时,该研究组开展了一系列基于分子、细胞甚至动物水平的生物医学应用研究,并逐渐形成系统和特色:1)构建了集成化芯片核酸分析系统 2)构建了规模集成化芯片免疫分析系统 3)构建了微流控芯片细胞学研究平台,包括细胞水平高内涵药物筛选平台,集成有肝微粒体生物反应器和电泳分离功能的药物代谢研究平台,以及肿瘤细胞与微环境相互作用研究平台(图1)。4)以经典模式生物线虫为对象,建立了基于液滴和微泵阀控制的芯片模式生物药物筛选平台,用于神经退行性变疾病(帕金森病)研究。   报告人:广西师范大学赵书林教授   报告题目:微流控芯片电泳在线衍生化学发光检测巯基类药物   赵书林教授在报告中介绍到,其课题组采用集成柱前和柱后反应器的微流控芯片,以N-(4-氨基丁基)-N-乙基-异鲁米诺(ABEI)和邻苯二甲醛(OPA)为衍生试剂,建立了微流控芯片电泳在线衍生化学发光测定巯基类药物的新方法。其详细考察了影响在线衍生反应、电泳分离和化学发光检测的各种因素。在优化的实验条件下,化学发光检测四种巯基类药物(硫普罗宁、卡托普利、硫鸟嘌呤、6-巯基嘌呤)的检测限为8.9~13.5 nmol/L。该方法用于人血浆中巯基类药物,相对标准偏差小于4.9%,回收率为93.4%~101.6%。   报告人:桂林理工大学李建平教授   报告题目:基于酶放大效应的分子印迹传感器检测超微量土霉素   目前,分子印迹传感器由于检测原理限制,灵敏度一直较低,李建平教授将酶放大效应引入其中,制备了一种基于酶放大效应的新型分子印迹传感器,大大提高了检测的灵敏度。   该实验以土霉素(OTC)作为目标模板分子。分子印迹膜修饰在电极的表面,把土霉素分子通过与孔穴中功能位点的作用连接在分子印迹膜上。由于葡萄糖氧化酶和辣根过氧化物酶标记的土霉素(OTC-GOD 和OTC-HRP)存在空间位阻效应,部分孔穴只能识别OTC,而不能识别酶标记的OTC,因此李建平教授在检测之前引入了“掩蔽”这一步骤,以使所有的印迹孔穴全部被占据。然后将传感器在高浓度的酶标记的土霉素溶液中进行孵化,使得OTC-GOD(HRP)将OTC从置换出来。随着标记酶减少,分子印迹传感器在检测体系中的电化学信号将会明显降低。样品中土霉素的浓度与酶对溶液中底物催化反应导致浓度变化产生的电化学信号有直接关系,这就达到了利用酶放大效应提高分子印迹传感器灵敏度的目的。   报告人:兰州大学张海霞教授   报告题目:新型键合型聚赖氨酸固定相的制备与评价   张海霞教授通过表面键合的方式将NCA-赖氨酸单体聚合到氨丙基功能化的硅胶上,合成新型聚赖氨酸固定相,并对其进行元素分析,红外光谱等表征。通过与C18商业柱的色谱行为进行对比,评价了其在高效液相色谱中,对苯系物,酸性物质,碱性物质,以及强极性和亲水性小分子物质的色谱保留行为。并且该实验研究了流动相中水含量,缓冲溶液PH值,离子强度的不同对色谱保留行为的影响。结果表明聚赖氨酸固定相是反相和亲水混合作用色谱模式。具有很好的应用前景。   此外,来自大同大学的冯锋教授、西南大学的袁若教授分别为大家作了“荧光法研究哮喘病人淋巴细胞膜上钠钙交换的异常表现”、“基于合金功能化的硅纳米纤维和凝集素-糖蛋白为复合固载基质的拟双酶葡萄糖生物传感器的研究”的专题报告。
  • 上海药物所等开发新型复合荧光探针
    p   过氧亚硝酸盐(Peroxynitrite,ONOO-)是由超氧阴离子自由基和一氧化氮自由基形成的具有高活性的活性氮物种,是许多体内循环途径的信号传导分子。同时,该分子具有强氧化性,可引起自由基介导的硝化反应,从而会影响生物体内多种生物过程,对脂质、蛋白、DNA等造成不可逆转的损伤。研究表明,过氧亚硝酸盐被认为是包括炎症、癌症和神经退行性疾病等许多疾病的关键致病因子与生物标志物。所以,灵敏、特异性地检测过氧亚硝酸盐对疾病的早期诊断与治疗预后具有重要意义。 /p p   荧光探针有荧光素类探针、无机离子荧光探针、荧光量子点、分子信标等。荧光探针除应用于核酸和蛋白质的定量分析外,在核酸染色、DNA电泳、核酸分子杂交、定量PCR技术以及DNA测序上都有着广泛的应用。荧光探针最常用于荧光免疫法中标记抗原或抗体,亦可用于微环境,如表面活性剂胶束、双分子膜、蛋白质活性位点等处微观特性的探测。通常要求探针的摩尔吸光系数大,荧光量子产率高 荧光发射波长处于长波且有较大的斯托克斯位移 用于免疫分析时,与抗原或抗体的结合不应影响它们的活性。也可用于标记待定的核苷酸片断,用与特异性地、定量地检测核酸的量。 /p p   小分子荧光探针具有高灵敏度、高选择性和良好的时空分辨率等优势,在胞内生物分析物成像等领域备受化学生物学家的青睐。但开发的小分子荧光检测探针依然存在着一些缺陷,如溶解性大大限制了其在体内环境中的应用。 /p p   近日,英国皇家化学会综合期刊《化学科学》(Chemical Science)在线报道了中国科学院上海药物研究所李佳、臧奕团队与华东理工大学贺晓鹏团队的最新相关研究成果。研究人员利用蛋白质杂交策略,开发了一种新型复合荧光探针HSA/Pinkment-OAc。首先,通过多种表征手段(荧光光谱、SAXS、ITC、分子对接等)验证了复合探针的成功构建,随后,在体外溶液以及细胞实验中验证了该体系对过氧亚硝酸盐的快速、灵敏检测。值得一提的是,该探针进一步被应用于小鼠急性炎症模型中过氧亚硝酸盐异常表达时的检测,与单独荧光探针相比,复合探针的检测性能得到大大提升。研究人员希望该方法可作为一种通用策略,用于改善疾病相关不溶性小分子试剂的溶解性问题。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/3fe3a9b5-05cf-45ea-9c7c-c8aa5065b7ce.jpg" title=" W020200326393492078327.png" alt=" W020200326393492078327.png" / strong HSA/Pinkment-OAc的构建策略、表征手段(SAXS、Molecular Docking)以及体内成像 /strong /p p   该研究工作主要在双方导师的指导下,由上海药物所联合培养博士研究生韩海浩与合作单位Adam C. Sedgwick博士、博士研究生尚莹等协作完成,并得到中科院院士、华东理工大学教授田禾、美国德克萨斯大学奥斯汀分校教授Jonathan Sessler以及英国巴斯大学教授Tony D. James的指导与支持。相关同步辐射测试与分子对接测试分别得到上海光源BL19U2线站博士李娜与上海药物所研究员于坤千的大力支持。 /p
  • 美国ALN-VSP新型药物有望“包治百病”
    核磁共振扫描显示,使用ALN-VSP疗法后肝脏肿瘤中的血流量明显减少   据美国媒体8月24日报道,美国阿尔尼拉姆生物技术公司日前宣布他们找到了一种能够治愈所有癌症的新型药物,首批接受临床试验的19名晚期肝癌患者病情都有较大好转。不仅如此,该公司称,假以时日,这种药物甚至有可能治愈一切疾病。   首批患者反应良好   2010年4月,19名接受化疗但没有好转的肝癌病人开始服用这种名为ALN-VSP的新型药物。服用第一剂后的数周内,药物就已经很明显地开始阻止肿瘤产生自身生长需要的蛋白质。   到2010年6月,阿尔尼拉姆公司称,通过“唤醒”人体自身的一种很少使用的免疫防御系统,ALN-VSP成功切断肝癌患者体内肿瘤62%的血流量。在治疗肝癌时,传统药物一般使用消除致病蛋白质的方法,而ALN-VSP则通过核糖核酸干扰(RNAi)疗法直接阻止细胞生成致病蛋白质。   唤醒人体自身防御机制   科学家在研究中还发现核糖核酸(RNA)和脱氧核糖核酸(DNA)之间一个奇妙的联系―――如果说DNA对蛋白质来说是一张图纸,那么RNA就是能够下达指令的建筑商。RNA把DNA上的基因复制成单链的信使RNA,再由它向细胞传递信息继而产生蛋白质。   1998年,科学家发现了核糖核酸干扰(RNAi)机制,原始生物就利用这个系统来甄别和摧毁病毒双链RNA和病毒信使RNA。研究人员发现,将一小段双链RNA引入细胞即能触发这一埋藏在人体内的古老机制,使RNAi再次发挥停止生产特定蛋白质的功效。   从这一角度看,可以说RNAi具有治愈包括癌症在内的许多疾病的能力,这些疾病的特点一般都是由病变细胞产生过量的常见蛋白质所致。从理论上说,操控RNAi来杀死蛋白质并不难。比方说,ALN-VSP内就含有合成的双链RNA,它与肝脏肿瘤用于编码两种蛋白质的信使RNA相匹配,那两种蛋白质分别是促进肿瘤血管生长的血管内皮生长因子(VEGF)和加速肿瘤细胞快速分裂的纺锤体驱动蛋白(KSP)。   合成的双链RNA进入肝细胞后,人体内的RNAi机制便会摧毁合成的RNA和任何与之匹配的、与肿瘤生长相关的信使RNA,阻止蛋白质的继续产生,从而使肿瘤停止生长。   有望“包治百病”   除了在癌症领域的应用,这项能攻击单个基因的技术还在其它医学领域掀起一阵RNAi疗法旋风。目前,阿尔尼拉姆公司已经将这种疗法用于亨廷顿氏舞蹈症、视网膜黄斑变性、肌肉萎缩和艾滋病等疾病的研究。   加利福尼亚州知名分子遗传学家约翰・ 罗西称,RNAi疗法有望在两年内成熟。由于首批试验效果相当好,ALN-VSP有望成为首批基于RNAi理论而推向市场的药物。罗西表示:“我认为RNAi疗法对所有的病都有效。”
  • TOSOH在沪成功举办了生物药物技术研讨会
    2011年2月28日,上海市生物工程学会、东曹(上海)生物科技有限公司、上海大有色谱技术服务有限公司在中国科学院上海分院共同举办了生物药物HPLC分离分析与层析工艺开发的技术及应用研讨会。   本次技术交流会共有80多家企事业单位、120多位生物药物科研人员到会参加。本次研讨会中,TOSOH美国公司的K.Donnell博士就核酸药物的层析制备工艺、复旦大学的张祥民教授就蛋白质多维色谱高效分离新技术新方法、上海交通大学的李秀荣教授就生物技术药物规模化纯化工艺的考虑要点等做了精彩的报告。除此以外,TOSOH公司的HPLC专家富泽洋先生就生物大分子的HPLC分离分析技术及应用、日本旭硝子株式会社的胜村泰彦先生就生物药物纯化工艺的开发应用、TOSOH公司的山崎洋介先生就下游生物工艺层析技术等进行了详细的介绍。                    与会人员充分了解了生物药物目前的一些前沿研究内容,以及TOSOH 公司的产品在生物药物的HPLC分析和层析工艺开发中的一些成功案例。在整个会议过程中,大家积极地与各位专家讨论在实际研发中遇到的问题和相应的解决方案。最后会议在友好的氛围中圆满落下了帷幕。   关于TOSOH CORPORATION   东曹公司(TOSOH CORPORATION)成立于1935年,原名东洋曹达工业株式会社(TOYO SODA),现已发展成为涉足石油化工、基础化学、精细化工、医疗诊断、生命科学等多项事业的全球性跨国企业。在全球拥有11000名员工,138家关联企业。整个公司2008年度的销售额已超过80亿美金。其他公司信息,请访问http://www.separations.asia.tosohbioscience.com
  • 新药无止境,创新不落幕 | 新品助力基因治疗药物的表征
    新药无止境,创新不落幕 | 新品助力基因治疗药物的表征史俊霞★ 2020年12月11日,治疗高血脂的inclisiran在欧洲获批上市,不同于罕见病的治疗,而是用于治疗高血脂这类大众疾病的rna药物就格外耀眼了,新冠疫情的肆虐也使得mrna一举成名,未来基因治疗药物开发的潜力是无限的!“基因治疗药物关键考虑因素有哪些?寡核苷酸药物和以mrna为代表的核酸药物研发和生产过程中,如何快速高效表征?辅料的质控如何去做?自动化的smart digest rna酶如何助力质谱完成mrna序列测定?快快参与直播跟专家面对面交流吧!报名参会更有惊喜礼品相送! 扫描二维码免费报名学习 惊喜礼品 旅行茶具电热水杯塑料储存盒 报告详细介绍 automated workflow for mrnasequencing by high resolution lcms2021.10.21 下午4:00-下午5:00 mrna序列测定的挑战 得到正确的mrna序列的tips smart digest rnase t1 mag bulk 酶切mrna实例分享ken cook,ph.d.thermo fisher scientificeu biopharma expert dr. ken cook has 30 years of experience supporting liquid chromatography and mass .previously dr. cook was a lecturer in biochemistry at the university of newcastle-upon-tyne, uk where he focused on protein biochemistry液相色谱耗材技术在基因治疗和预防药物中的表征2021.10.21 下午5:00-下午6:00 基因治疗药物的概况和药物生产考虑的关键因素 核苷和寡核苷酸药物生产中色谱分析案例分享 核酸药物生产中色谱分析案例分享 药物载体的表征史俊霞赛默飞世尔科技中国有限公司高级产品专家 生物制药领域从业12年,擅长蛋白,抗体,多肽,核酸,疫苗等治疗性药物的表征。主要负责生物色谱柱,微升色谱柱以及纳升色谱柱的应用方案开发.
  • 药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)
    药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)病毒变异vs抗病毒药物病毒是一种以DNA或RNA为遗传物质,无独立营养代谢系统,需寄生于宿主内,进行复制和生存的类生物体。病毒在自然界内与宿主共生的过程中,一些病毒可逃脱宿主免疫防御系统,导致宿主发病致死。病毒遗传物质突变几率非常高,可帮助病毒逃脱不断升级的宿主免疫系统。根据病毒进化论学说,病毒发展史要远超过人类进化史,相比之下,人类对病毒知之甚少。随着分子细胞生物学的发展,目前发现病毒种类7000多种,其中可感染人类的病毒有300多种。病毒感染类疾病占传染类疾病的3/4,严重威胁人类健康。从上个世纪60年代开始,已有广谱类的抗病毒药物出现,但由于病毒突变速度非常快,随后陆续产生病毒耐药性和副作用,导致对病毒类感染疾病无特异性有效药物进行临床治疗。瑞德西韦——人民的希望?2020年伊始,COVID-2019肆虐,开发特异性抗新冠病毒药物迫在眉睫。2月1日《新英格兰杂志》发表论文中,报道美国第一例新冠肺炎患者病情恶化后,经瑞德西韦(Remdesivir/GS-5734)静脉注射同情用药后病情好转[1]。2月6日,瑞德西韦“双盲临床实验”在武汉市金银潭医院、市肺科医院和协和医院等入组761例患者进行临床评价[2]。“人民的希望”——瑞德西韦抗新冠肺炎临床疗效,需等至4月底揭晓谜底。瑞德西韦是由一直致力于抗病毒领域的吉利德科学公司研发(抗流感药物奥司他韦,商品名达菲,最早也由吉利德研发,后卖给罗氏进行全球销售)。2013-2016年(西非)和2018-2019年(刚果)埃博拉病毒肆虐期间,全球各大制药公司掷重金进行抗埃博拉病毒药物研发。由美国陆军传染病医学研究所,吉利德科学公司,美国CDC和波士顿大学医学院四家业内顶级实验室联合进行的瑞德西韦抗埃博拉病毒临床前药效学研究,于2016年发表在《自然》杂志[3]。瑞德西韦分子机制——前药(Prodrug)三磷酸代谢物有效制止RdRp酶活性RNA依赖型RNA聚合酶(RNA-dependent RNA-polymerases, RdRp)为广谱的抗病毒药物开发靶点,目前以RdRp为靶点的抗冠状病毒药物多为核苷类似物或RNA干扰类[4]。瑞德西韦以前药(Prodrug)形式进入细胞后,通过三步转化为三磷酸代谢物NTP,NTP和天然ATP竞争结合病毒RdRp,插入RNA合成链中,引起病毒RNA合成终止,并抑制RdRp酶活性(下图a)[3]。瑞德西韦结构上的1‘-氰基,一方面针对RdRp酶提供更好的针对ATP竞争的结合活性,另一方面针对病毒RdRp酶提供了比人源RNA聚合酶II和人源线粒体RNA聚合酶(h-mtRNAP)更好的选择性抑制。在Hela细胞水平,瑞德西韦对两种埃博拉病毒和另外三种病毒都有显著浓度依赖型抑制(下图c);且在分子水平,瑞德西韦活性分子NTP能选择性抑制病毒RdRp酶活性(下图e蓝色),而对人源RNA聚合酶II(下图e黑色)和线粒体RNA聚合酶(下图e红色)无明显抑制作用[3]。瑞德西韦细胞活性——高效选择性抑制病毒在细胞内复制研究人员又通过进一步的细胞学实验,分别在不同的细胞模型上评价了瑞德西韦(GS-5734)对埃博拉病毒和其他RNA病毒的抗病毒活性。数据显示,瑞德西韦可在五种细胞模型,包括原代巨噬细胞上有效抑制埃博拉活性;并对呼吸道感染病毒,如RSV和MERS,以及出血热感染病毒,如JUNV和LASV病毒有一定抑制作用;但对其他病毒如CHIV,VEEV和HIV-1,无明显抑制(下表)[3]。2019年,在《柳叶刀传染病》杂志报道,美国CDC科研人员建立的Zoanthus绿色荧光蛋白(ZsG)标记的埃博拉病毒体外细胞表型快速评价方法(下图左),再次验证了瑞德西韦可在低浓度抑制两个品系(Ituri/Makona)的埃博拉病毒复制,并对细胞活性无明显影响(下图右)。对Ituri品系埃博拉病毒,EC50为12nm,SI(selectivity index,SI)为303倍;对Makona品系埃博拉病毒,EC50为13nm,SI为279倍[5]。 瑞德西韦体内药效——快速扩散至病灶区,提高模式动物存活率在恒河猴(rhesus monkeys)动物模型上,按10mg/kg计量静脉注射给药后,检测健康恒河猴体内瑞德西韦(下图a黑色) 及其代谢物,丙氨酸代谢物(下图a红色), 单磷酸代谢物Nuc(下图a蓝色)和三磷酸代谢物NTP(下图a绿色),在不同时间点的血药浓度。数据显示瑞德西韦前药在体内两个小时内达到峰值,随后很快被清除;而其三磷酸活性代谢物NTP在体内,特别是外周血单核细胞(PBMCs)内,可在更长的时间内维持高血药浓度。通过同位素14C标记瑞德西韦药物后,进一步研究药物在体内分部发现,药物可快速到达睾丸、附睾、眼睛和脑部(下图b)[3]。通过病毒暴露动物模型实验,瑞德西韦通过静脉注射给药后,可显著提高恒河猴实验动物的存活率,特别是在病毒暴露3天后按10mg/kg计量的给药组,其28天后存活率和空白对照组同样可达100%(下图d),且通过核酸定量方法进一步验证,给药组体内的病毒RNA拷贝数与空白对照组相比得到明显抑制(下图e)[3]。瑞德西韦抗病毒药物机制总结瑞德西韦以RdRp酶为药物靶点,在广谱抗病毒核苷类似物抑制剂中脱颖而出,主要归因于以下三点:1) 对其药物靶点RdRp酶,比其天然底物ATP有更高的竞争亲和性;2)在体外细胞水平,可高效选择性的抑制RNA病毒在细胞内复制,并无明显细胞毒性。3)在体内动物水平,有良好的药代学基础,其活性代谢物NTP可快速扩散至病灶,抑制体内RNA复制,提高病毒暴露后模式动物存活率。试验方法珀金埃尔默仪器&试剂方案RNA聚合酶活性检测[a-32P]-GTP 同位素标记细胞内病毒感染评价高内涵细胞成像表型分析平台Opera/Operetta细胞成像专用微孔板抗病毒药物细胞毒性评价多模式读板仪 EnVision药物组织分布[14C]GS-5734 同位素标记同位素液闪计数仪病毒基因组测序分析自动化NGS文库制备工作站 Sciclone G3抗病毒药物实验设计及仪器&试剂摘录列表[3,5]“工欲善其事,必先利其器”。在以上瑞德西韦抗病毒药物研发实验设计及检测过程中,珀金埃尔默在每一个环节都给一线的科学家们提供了高效的“实验武器”:经典的同位素标记技术,准确分析RdRp活性和药物组织分布;业内金标准EnVision多模式读板仪和高内涵成像表型分析平台Opera/Operetta,快速进行细胞内病毒感染和药物毒性评价;自动化NGS文库制备工作站Sciclone G3,加速病毒基因组快速分析。扫描下方二维码,即可查看珀金埃尔默病毒感染疾病研究整体解决方案。参考文献1.First Case of 2019 Novel Coronavirus in the United States. NEJM Jan 2020.2.http://www.wuhan.gov.cn/2019_web/whyw/202002/t20200207_304511.html3.Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.NatureMarch 2016.4.Coronaviruses — drug discovery and therapeutic options. NATURE REVIEWS DRUG DISCOVERY May 20165.Characterisation of infectious Ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: a phylogenetic and in vitro analysis. The Lancet Infectious Diseases July 2019
  • 第八届化学和药物结构分析上海年会
    p   第八届化学和药物结构分析上海年会(CPSA Shanghai 2017)将于2017年4月12-14日在上海淳大万丽酒店举行。本届会议主题是“从发现到监管批准的临床和药物成功:生物标记、建模和分析技术”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2016年已经在美国连续举办十八年。 /p p   CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。 /p p   CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。 /p p   CPSA上海2017年会大会主席是来自匹兹堡大学 (University of Pittsburgh)的Nathan Yates博士。本届会议上,国际知名科学家将再一次就制药、临床、分析相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。 /p p   其中,备受行业专家和学者关注的以下议题也将在本次会议上得到讨论:药物代谢 蛋白质生物分析 药物活性 SM Bioanalysis 定量技术与应用 生物标志物的挑战 生物/生物仿制药 In vitro ADME Combined DMPK/BA 生物分子和核酸分析 蛋白质组学与新技术 药物研发最新进展 Regulated Bioanalysis等等。 /p p   此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。 /p p   会议日程概览: /p p   2017年4月12日 会前研讨会Workshops和欢迎晚宴 /p p   2017年4月13-14日 正式会议、晚宴、午餐会、海报评选、企业展示、颁奖晚宴等 /p p   有关会议注册、赞助、参赛和评奖的细节,欢迎访问会议官网: a href=" http://www.cpsa-shanghai.com" target=" _self" title=" " http://www.cpsa-shanghai.com。 /a /p p   期待您的支持和参与。 /p p   如有疑问,请发邮件给我们:邮箱:Info@mice-partners.com /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制