当前位置: 仪器信息网 > 行业主题 > >

光子器件

仪器信息网光子器件专题为您整合光子器件相关的最新文章,在光子器件专题,您不仅可以免费浏览光子器件的资讯, 同时您还可以浏览光子器件的相关资料、解决方案,参与社区光子器件话题讨论。

光子器件相关的资讯

  • 陕西先进光子器件工程创新平台全面启用
    今天(30日)上午,陕西光电子先导院先进光子器件创新平台在西安全面启用。先进光子器件工程创新平台由中科院西安光机所、陕西省科技厅和西安高新区联合打造,一期专业设备100余台(套),具备光子芯片制程中的光刻、刻蚀、镀膜等多项核心工艺,将为光子产业项目提供产品研发、中试、检测等全流程技术服务。光子产业包括光传输、能量激光等多个领域,是高端制造业的核心,也是未来信息化、智能化的技术支撑。据介绍,先进光子器件工程创新平台全面启用后,将把最先进的设备开放给领先的创新团队使用,通过20%技术服务模式+80%工程代工模式相结合,为光子产业各类创新主体打通从产品研发到市场化批量供货的完整链条。
  • 西安光机所微纳光子学亚波长器件研究取得重要进展
    微纳光子学亚波长器件研究获进展 或让电子学和光子学在纳米尺度上联姻   微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。   金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。   针对此问题,中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室刘雪明研究员及其课题组成员陆华、宫永康等近期开展了相关研究并取得一定成果。到目前为止,已在Optics Express, Optics Letters, J. Opt. Soc. Am. B, Applied Physics B等国际著名光学期刊上发表论文十余篇。最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。此设计方法还能有效的抑制噪声光的反馈。同时,科研人员利用耦合模方法验证了这种设计方法的可行性。这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。   该研究成果引起了美国光学学会(Optical Society of America, OSA)的注意,并于6月27日被选为“Image of the week”。   论文链接
  • 中国科大研制成功全光控制的非互易多功能光子器件
    p   中国科学院院士、中国科学技术大学教授郭光灿团队在非互易光子器件研究方面取得新进展。该团队的董春华研究组首次利用回音壁模式微腔中腔光力的非互易特性,实现了全光控制的非互易多功能光子器件,并首次实现集成光学定向放大器。该成果于5月4日在线发表在国际期刊《自然-通讯》(Nature Communications)上。 /p p   光在一般介质中具有双向传输的互易性,而打破这种互易性,即实现对光传输方向的非互易性,在经典和量子信息处理中具有重要意义。光环形器、隔离器、定向放大器等是典型的非互易器件。其中光环形器允许光以“环形”的方式传输,可用于光源保护、精密测量,这种功能还可实现经典或量子计算或通讯中信号的双向处理,有利于提高信道容量与降低功耗。定向放大器也已经被证明在基于超导回路的量子计算中具有重要意义。最常见的光学非互易器件主要利用磁光晶体的法拉第效应,但在器件集成化方面却面临着挑战,难点包括磁光材料与传统半导体材料不匹配、需要外加强磁场、在光频范围内磁光材料具有很高的传输损耗等。因此全光控制的片上光环形器、隔离器以及定向放大器一直是研究的热点。 /p p   2016年该研究组实验验证了回音壁模式微腔中腔光力的非互易特性[Nature Photonics 10, 657-661 (2016)]。在此基础上,研究组利用单个光力微腔与双波导耦合的体系,实现了多功能的光子器件,包括窄带滤波器,具有非互易功能的四端口光环形器与定向放大器,并且这些功能模式可以通过改变控制光来实现任意切换。对于环形器而言,从端口1入射的信号光从端口2出射,从端口2入射的信号光从端口3出射,依此类推,构成1-2-3-4-1的环形路径,当只关注端口1和2时,它也是一个高效的光隔离器 对于定向放大器,从端口1入射的信号光被放大后从端口2出射,但从端口2入射的信号光从端口3出射,而不会从端口1出射,因此在1-2的方向上具有定向放大的功能。该器件结构简单,原理具有普适性,甚至可实现单光子水平的光环形器,同时可推广到任一具有行波模式的光力学体系,包括微波超导器件和集成声学器件。 /p p   助理研究员沈镇、博士后张延磊、博士研究生陈元为该论文的共同第一作者,董春华、邹长铃、孙方稳为通讯作者。上述研究得到了科技部重点研发计划、中科院、国家自然科学基金委、量子信息与量子科技前沿协同创新中心的支持。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/noimg/8011d69f-0177-4b3b-9e7f-d914803f5866.jpg" title=" 001.png" / /p p style=" text-align: center " strong 基于腔光力学的环形器与定向放大器示意图 /strong /p p br/ /p
  • 第三届全国信息光学与光子器件学术会议将举办
    光学前沿——第三届全国信息光学与光子器件学术会议(CIOC2010)由中国科学院上海光学精密机械研究所主办,广西师范大学与中国激光杂志社联合承办。第一届(CIOC2008)、第二届(CIOC2009)学术会议分别于2008年8月、2009年8月在南京与青岛举办,并取得了圆满成功。每届会议都有来自全国160多个高校和研究院所的近500名代表参加了会议,出版专题文集两期。应广大代表要求,第三届学术会议(CIOC2010)将于2010年8月6-9日在广西桂林举办。   CIOC2010继续以光信号处理技术、光电子技术、光子器件、新型光功能材料等领域等作为主题,还将增加能源光子学、机器视觉专题。会议面向全国高等院校、研究院所以及高新技术企业征集高水平论文。   本次会议将在会前审稿,全文通过审稿的代表可在会议报到时领取论文录用通知单,每篇文章至少需要一名作者到会参与学术交流。全文通过审稿的文章将刊登在《光学学报》 “信息光学”专刊(Ei收录)、《强激光与粒子束》(Ei收录)、《光子学报》、《应用光学》上,优秀文章可安排到《光学学报》正刊发表。其余文章可推荐到网络期刊《激光与光电子学进展》(中文核心期刊,中国科技核心期刊)出版(出版周期60天)。   广西师范大学是广西壮族自治区重点大学,坐落在世界著名山水旅游名城、历史文化名城桂林市。学校历史悠久,文化底蕴深厚,创办于1932年,有王城、育才、雁山3个校区。广西师范大学竭诚欢迎各位光学专家参会、考察和指导,以推动光学学科的建设与发展。   会议时间:2010年8月6日-9日   会议地点:广西 桂林 广西师范大学   指导单位:中国光学学会   主办单位:中国科学院上海光学精密机械研究所   承办单位:广西师范大学 中国激光杂志社   媒体支持:《光学学报》、《中国激光》、《强激光与粒子束》、《激光与光电子学进展》、《光子学报》、《应用光学》、中国光学期刊网(www.opticsjournal.net)   会议主题/征稿范围:   1、光信号处理技术 2、能源光子学   3、光通信、光网络技术 4、光器件与集成光路   5、光电子技术及其应用 6、先进光功能材料技术及应用   7、机器视觉及应用 8、其他相关技术   征文要求:   论文摘要需中英文对照,中文摘要控制在250~300字,重点包括4个要素,即研究目的、方法、结果和结论。英文摘要要求句型简单、语句顺畅、意义完整。摘要须用第三人称撰写,控制在1000字左右,一个A4页面以内(小四号字排版)。   论文全文不超过8000字,论文应该是具有国内外领先水平或独创意义的学术论文,有一定独立见解的理论论述,有可靠数据的实验报道,有科学依据的技术应用或阶段性科研成果的实验快报。不接受综述和已在国内外正式出版刊物上发表过的论文。来稿需注明论文题目、作者姓名、单位、通讯地址(包括邮编、电话、E-mail等)、标明所属征稿范围的第几类。论文格式请参考模板http://www.opticsjournal.net/post/PT080503000025GdJf.doc   注册、投稿、酒店预订请登陆会议官方网站,使用中国激光杂志社汇同会议系统在线注册和投稿。http://www.opticsjournal.net:8889/CIOC.htm   注意,选择《光子学报》投稿的作者请直接联系《光子学报》编辑部,文章录用后由会务组统一发送参会邀请函。   企业研讨及产品发布:   为促进学界和产业界的融合,本次论坛欢迎光电企业参与赞助,赞助企业可在会议、摘要集、论文集、网站上发布信息,主办单位将提供产品介绍的时间和产品展示场地。   重要日期:   论文全文提交截止时间:2010年6月1日   论文是否接收通知时间:2010年7月6日   预注册交费截止时间: 2010年7月16日   报 到:8月6日9:00-20:00   大 会 报告:8月7日9:00-17:00   分会场报告:8月8日9:00-17:00   考 察:8月9日   注册报到事项:   1.收费:本次会议收取会务费1200元,学生凭学生证1000元(预注册优惠价为一般代表1100元,学生代表900元,需在2010年7月16日之前交费)。   2.食宿:会议期间食宿费自理,无伙食补贴。   3.汇款方式:   (1)银行汇款(需由对公账户汇出):   账户名:《中国激光》杂志社有限公司 开户行:中国工商银行上海市嘉定支行   账 号:1001 7008 0930 0218 071 附言备注项:CIOC会务费   (2)邮局汇款:邮 编:201800 地 址:上海市嘉定区清河路390号   收款人:《中国激光》杂志社有限公司 附言备注项:CIOC会务费   联系方式:   通信地址:上海市嘉定区清河路390号 中国激光杂志社 201800   会务投稿:段家喜 编辑 电话:021-69918426 传真:021-69918705   展览赞助:高福海 主管 电话:021-69918011 传真:021-69918705   电子信箱:conference@siom.ac.cn   会议官方网站:http://www.opticsjournal.net:8889/CIOC.htm   中国科学院上海光学精密机械研究所   广西师范大学   (中国激光杂志社代章)
  • 基于“鲁棒-逆向” 设计的中红外超紧凑硫系光子集成器件的实现
    近日,浙江大学李尔平、林宏焘团队提出了一种新的“鲁棒-逆向”设计方法,并首次实现中红外超紧凑硫系光子器件。新的设计方法避免了传统的中红外光子学器件设计钟一直依赖于基于直觉的缺陷,同时也解决了传统逆向设计方法所面临的对于工作条件和加工误差敏感的低鲁棒性劣势。相关工作以“Compact Mid-Infrared Chalcogenide Glass Photonic Devices Based on Robust-Inverse Design”为题发表于期刊Laser & Photonics Reviews。浙江大学信电学院博士生林晓斌为论文第一作者,李尔平教授和林宏焘研究员为本文的共同通讯作者。中红外集成光学器件在红外成像、化学、生物传感,光通信等方面具有极高的应用价值。而硫族化合物玻璃由于其极宽红外透明度、极高的非线性系数,长期以来一直被视为中红外集成光子学的理想材料。传统的中红外硫系光子器件的设计依赖于规则的几何结构,停留在经验为主导的手工设计上。逆向设计能够使用更复杂的优化算法并自动搜索结构,虽然给器件的设计带来革命性地便利,但是也受限于优化时间过长、局部最优和低鲁棒性的缺点。而随着工作波长的增加和折射率的降低,相比于近红外的光学系统,硫系光子器件的发展受限于过大的器件尺寸和不完善的工艺体系。近年来,逆向设计方法在纳米光子学中得到了广泛的应用。其中,基于梯度的逆向设计方法虽然能够显著降低计算成本,但是由于优化问题往往是高度非凸,器件设计面临着局部最优的困境,设计的结果往往对于加工和工作条件敏感。在本文中,研究团队创新性地将逆向设计和鲁棒设计相融合,将加工误差、工作条件变化以概率密度函数的形式具现。通过在优化过程中引入扰动,在保证与传统逆向设计方法几乎相同优化时间的前提下,将器件设计的鲁棒性提升了十倍。图1. (a)“鲁棒-逆向”设计算法流程图;(b)”鲁棒-逆向”设计算法(红色区域)和逆向设计算法(蓝色区域)的鲁棒性分析对比图;(c)不同加工误差下鲁棒-逆向设计算法和逆向设计算法的器件性能对比。基于上述方法,研究团队展示了四种不同功能的超紧凑的中红外硫系光子器件:偏振分束器、波导偏振器、模式转换器件和波分解复用器。对于偏振分束器,团队实现了262 nm的宽带特性(消光比大于20 dB,插损小于1dB);对于波导偏振器件,团队展示了一个带宽为147 nm,消光比25.86 dB的器件设计;还实现了一种带宽为400nm的超宽度的中红外模式转换器件(插损小于1 dB)和一种连接近红外和中红外光波段的波分解复用器件(消光比大于20 dB;近红外:374nm;中红外:360 nm)。实验结果很好地证实了器件性能,同时也是上述该类型中红外硫系逆向设计器件地首次实现。图2. 中红外硫系光子器件结构示意图:(a)偏振分束器;(b) 波导偏振器;(c) 模式转换器件;(d) 波分解复用器该工作首次提出了一种“鲁棒-逆向”设计方法,并实验展示多种不同功能的中红外硫系光子学器件,不仅实现了极高的器件性能,同时保证了对于加工和材料误差的高鲁棒性,为中红外硫系光子器件的发展提供了一条通用的路径。此外,该方法适用于更多场景,有望在可重构器件、非线性光学、光计算等领域带来新的发展。该工作得到国家重点研发计划、国家自然科学基金、浙江省自然基金等项目的资助。西湖大学李兰研究员、北京大学胡小永教授、宁波大学戴世勋研究员等老师给予了该工作极大的支持。
  • 微波光子器件研究获突破 外媒评“或改变微波通信未来”
    国家973计划项目“面向宽带泛在接入的微波光子器件与集成系统基础研究”重点针对微波光子相互作用下的高带宽转换机理、高精细调控方法、高灵活协同机制等3个科学问题,在微波光子作用机理、关键器件与原型系统方面取得了重要突破,为未来发展提供了相应的理论与技术支撑。  在“高带宽”方面,研究团队揭示了新材料光学响应的增强机理与特性规律,首次实验发现了石墨烯等二维材料具有微波与光波类似的可饱和吸收特性,可用于实现更高带宽的调制器,相关成果被国外媒体报道并被认为是“石墨烯在微波光子学中崛起”、“可能改变微波通信的未来” 发明了倒梯形波导结构,攻克了高带宽、窄线宽、可调谐、高稳频等关键技术,研制成功了国际领先的30GHz模拟直调半导体激光器。在“高精细”方面,研究团队研制了精度2.2MHz、范围 112GHz的微波处理光子集成芯片,性能指标领先 实现了光域微波超宽带精细调控和大动态超宽带稳相微波光传输。在“高灵活”方面,面对宽带泛在接入的共性问题,研究团队首次提出了基于软件定义的微波光波资源统一调度与功能虚拟化的C-RoFlex模型 研制了覆盖L/S/Ku/Ka且子信道带宽 15-120MHz灵活可变的微波光子柔性卫星转发器样机 构建了分布式大动态可协同的智能光载无线(I-ROF)原型系统与研究平台。  该项目所取得的“宽带集成、稳相传输、多频重构”等创新成果在嫦娥三号X波段信标信号采集、北斗导航高轨卫星的轨道监测和微波光子柔性卫星转发器等国家重大工程中得到验证和技术应用。
  • 关注QCL市场发展 研制高精度中红外器件——访滨松光子学商贸(中国)有限公司分析领域销售工程师凌世攀
    p style=" text-indent: 2em " 仪器信息网讯 2019年6月12日-14日,第十七届中国国际环保展览会(CIEPEC 2019)在北京中国国际展览中心(静安庄馆)盛大开幕。本届环保展以“推动环保产业高质量发展 助力打好污染防治攻坚战”为主题,结合环保工作重点及环境热点,集中展示了水污染防治、大气污染防治、固体废物处理处置与资源综合利用等领域的高端环保装备、先进环保技术、系统解决方案与最新环境服务模式。 /p p   滨松光子学商贸(中国)有限公司(以下简称“滨松中国”)受邀参展。借此机会,仪器信息网特别采访了滨松光子分析领域销售工程师凌世攀,就滨松中国在环保领域提供的产品及整体解决方案,红外气体分析及应用等进行了深入交流。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 338px " src=" https://img1.17img.cn/17img/images/201906/uepic/072ad274-bb28-436a-ba6b-df1430f697cf.jpg" title=" DSC06955.JPG" alt=" DSC06955.JPG" width=" 600" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center "   滨松光子学商贸(中国)有限公司分析领域销售工程师 凌世攀 /p p   近年来,得益于环境政策的推动,环境监测的市场表现一枝独秀,持续保持着强劲的发展势头,且环境监测要素从大气扩展到水质,监测领域不断地扩大。滨松公司致力为水质、大气、污染气体等环境监测提供核心的光电探测技术支持,可提供丰富的元器件解决方案。其研发和制造覆盖紫外到中红外波段的高可靠、长寿命的多种光源、探测器及相关配套产品,可为用户的应用需求提供硬件支持和技术服务。 /p p   凌世攀表示,在水质应用方面,滨松公司将发射端和接收端射和接收端作为整体为用户提供相应的闪烁氙灯、氘灯以及耦合窄带滤光片的光电二极管等一系列元器件,应用于总氮,化学需氧量等方面的测定。谈及环境监测涉及的另一大方向,气体监测方面,滨松可提供广大用户较为熟悉的空气站六参数监测元器件,如紫外荧光法二氧化硫检测和化学发光法氮氧化物监测的光电倍增管及光源,臭氧监测用的高精度、低温漂真空光电管探测器,以及用于颗粒物浓度监测的贝塔射线探测器等。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 450px " src=" https://img1.17img.cn/17img/images/201906/uepic/298d9e21-f5a7-4071-9d42-eec789aa8be1.jpg" title=" 22222222222222.jpg" alt=" 22222222222222.jpg" width=" 600" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" width: 600px height: 337px " src=" https://img1.17img.cn/17img/images/201906/uepic/f9b0feb5-7924-47fc-8a57-dd6d2a705512.jpg" title=" 333.jpg" width=" 600" height=" 337" border=" 0" vspace=" 0" alt=" 333.jpg" / /p p   “从客户角度来讲,这两种核心元器件都来自同一个厂家是很有益的。举个反例,从不同厂家分别购买这两个模块,如果开发出来的设备没有达到预期的性能时,由于器件来自不同的地方,就很难知道配合使用过程中的问题所在,能把发射和接收端作为一个整体去服务客户,能更好地解决这些问题。”凌世攀说到。 /p p   此外,滨松公司拥有全面、综合的产品线,能为客户提供高性能、可定制的硬件支持,以此满足客户多元化的需求,为产品增加附加值。提及滨松本地化的服务策略,凌世攀还介绍了由北京滨松研制出的水质毒性分析仪,针对国内环境监测的需求,该仪器可基于敏感淡水发光细菌在不同水环境发光强度变化的原理,检测水质的综合指标。 /p p   随着我国工业生产的迅猛发展,大气环境污染事故不断增加,威胁着人类健康、破坏生态环境,严重制约着生态平衡以及经济、社会的发展。国家对环境监测数据的准确性也是采取“零容忍”的态度,随着“气十条”政策的推进,对监测仪器性能要求更高,一定程度上可理解为对核心器件的要求。凌世攀提到,2018年《打赢蓝天保卫战三年行动计划2018-2020》的出台以及政策的不断推进,对烟气、汽车尾气等污染气体中所含有的氨气、氮氧化物、硫氧化物等成分检测提出了新的要求。因中红外气体分析在污染气体监控中的应用十分广泛,所以遥测污染气体含量异常变化,中红外波段光显现出了大用处。 /p p   此外,作为半导体激光技术发展的里程碑,量子级联激光器(QCL)使中远红外波段高可靠、高功率和高特征温度半导体激光器的实现成为可能,为气体分析等中红外应用提供了新型光源选择,因此QCL日益受到关注。尤其是近10年,越来越多的科研人员开始研究QCL在气体检测方面的应用,使得它的优势和潜力被更多的认识和挖掘。因为很多分子在中远红外都有特征吸收谱带,且属于分子的最强基本振转谱线(Fundamental ro-vibrational transitions),用QCL对这种分子的“指纹”谱扫描解析,就可以对这种气体进行高精度定量分析。 /p p   本届环保展滨松中国带来了激光器新产品——外腔调谐量子级联激光器(External-Cavity Quantum Cascade Laser, EC-QCL)和低热功耗的Tall-Butterfly(蝶形封装)量子级联激光器。波长可调量子级联激光器在原有量子级联激光器的基础上结合了MEMS衍射光栅,可在中红外波段的7.84到11.4微米快速地改变波长,峰值出光功率高达600mw,往返频扫(全范围调谐)频率达1.8KHz。 将该产品组装到便携式尺寸分析仪中,可实现现场即时完成分析,适合多种组分气体的高精度遥测应用。 /p p   另外一款蝶形封装量子级联激光器,采用Tall-Butterfly 封装,相比较于传统的HHL封装,该款产品QCL芯片经过重新设计,在阈值电流、最大电流、芯片功耗及总功耗方面均有大幅度优化。且更加紧凑,重量只有16g,非常适合于集成到气体分析设备内。芯片工作温度10~65摄氏度,甚至某些高温芯片无需外部风冷,完全可以满足日常环境要求。探测器方面,滨松公司提供不同规格的高灵敏度中红外InAsSb/InAs光伏探测器,值得一提的是这些探测器不含铅/汞等非环境友好元素,能很好地满足Rosh指令要求。 /p p   关于QCL未来的发展趋势及市场前景,凌世攀指出,QCLAS(量子级联激光调谐吸收光谱)技术具有低检出限、高精度、远距离、抗干扰、多组分等优势。但目前成本较高,因此市场销量也相对较少。随着市场逐渐发展起来,产品的成本自然会有所下降。滨松公司高度重视该领域市场,日本制造部一直保持研发与迭代,为了应对将来日益增长的市场需求,滨松集团专门建立了化合物半导体中心,用于生产红外发射与接收半导体材料。“对于光谱分析技术,中红外技术仍处在发展阶段,在这个过程中,滨松是走在前沿的,更希望通过和更多的用户合作,共同发展QCL激光分析技术以及其应用。”凌世攀说到。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 337px " src=" https://img1.17img.cn/17img/images/201906/uepic/b4711cdc-170b-4a4d-a26d-62f39f451fcd.jpg" title=" 44444.jpg" alt=" 44444.jpg" width=" 600" height=" 337" border=" 0" vspace=" 0" / /p p style=" text-align: center " 滨松中国展位 /p p style=" text-align: right " 采访编辑:李学雷 /p p style=" text-align: justify " br/ /p
  • 赵玲娟:光子集成是光子技术的发展趋势
    p style=" text-align: justify text-indent: 2em " 10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。会议期间,中国科学院半导体研究所研究员赵玲娟研究员做了题为《InP基光子集成材料与器件及标准代工平台》的报告。 /p p style=" text-align: center text-indent: 0em " script src=" https://p.bokecc.com/player?vid=D8139CACC0C50CC69C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-align: justify text-indent: 2em " 电子和光子有很多不同,最典型的特征是电子由电场控制,电电相互作用强,可以存储,而光子是波导控制,光光相互作用弱,难存储,因此在集成方式大不相同。相比于电子集成,光子集成不仅需要改变材料和结构,还需要改变电子和光子相互作用,因此光子集成面临着两大挑战:一是高效的光电转换有源器件;二是低损耗的无源连接波导。而光子集成技术一般是通过半导体材料、微纳加工技术将不同功能的光子器件集成在单个衬底上,器件之间通过光波导连接,构成单片集成电路-片上光子系统。目前来讲,集成技术平台有硅基光子集成和InP基光子集成。赵玲娟认为,光子集成是光电紧密结合的产物,其终极目标是电子集成和光子集成融合实现片上系统。 /p p style=" text-align: justify text-indent: 2em " 赵玲娟在报告中谈到,硅基光子和InP基光子集成技术各有不同的特点。硅基光子集成集成度高、规模大、生态成熟、有大企业支持,但缺乏有效发光和放大,且探测、调制带宽低于InP。而InP基光子集成功能全、器件性能优异,但集成难度大、生态不完善。此外,InP基光子集成有源无源耦合损耗低、能效高,而硅基光子集成需要外激光器,耦合损耗大、能效低,只能通过混合封装及异质外延解决。 /p p style=" text-align: justify text-indent: 2em " 目前微电子集成主要以代工模式为主,在光子集成方面,硅光也是以代工(Fabless)为主,少数垂直整合制造(IDM)。硅光集成的部件包含有源器件,如激光器、调制器、探测器、放大器等,因此需要设计者与Foundry更紧密的融合。InP光子集成则呈现IDM和Fabless共存的局面,Fabless的主要代表是欧盟InP标准化代工平台JePPIX,而IDM的代表为Lumentum和Infinera。 /p p style=" text-align: justify text-indent: 2em " 在应用领域方面,光子集成芯片不仅仅用于光通讯,在生物医疗、传感、激光雷达、光收发器等也有很好的应用,在5G、数据中心、光接入网中的应用也越来越多。在市场趋势方面,硅基光子集成芯片发展迅速,InP分立器件维持市场主导,InP集成器件增长潜力巨大。 /p p style=" text-align: justify text-indent: 2em " 赵玲娟在报告中还详细介绍了光子集成技术研究组的发展方向、核心技术和应用领域,代表性光子集成芯片有多波长光发射芯片、多波长锁模激光器和新型光发射芯片。 /p p style=" text-align: justify text-indent: 2em " 报告中总结到:光子集成是光子技术的发展趋势;InP基和硅基光子集成将在不同的领域发挥不同的作用;标准化光子集成技术平台是光子集成的发展方式;光子集成芯片的产业化主要是IDM或者与标准化平台紧密结合的方式。 /p
  • 客户成就| Nanoscribe双光子微纳3D技术应用于光子引线键合技术
    光子引线键合技术实现多光子芯片混合组装近日,由Nanoscribe公司的Matthias Blaicher博士携手Muhammed Rodlin Billah博士组成了一个德国光子学,量子电子学和微结构技术研究团队,利用光子引线键合技术,实现了硅光子调制器阵列与激光器和单模光纤之间的键合,制造出光通信引擎。此项研究成果发表在《自然-光:科学与应用》国际学术期刊上。(Light: Science & Applications)研究人员利用Nanoscribe公司先进的3D光刻技术将光学引线键合到芯片上,从而有效地将各种光子集成平台连接起来。此外,研究人员还简化了先进的光学多阶模块的组装过程,从而实现了从高速通信到超快速信号处理、光传感和量子信息处理等多种应用的转换。什么是光子引线键合技术自由光波导三维(3D)纳米打印技术,即光子引线键合技术。该技术可以有效地耦合在光子芯片之间,从而大大简化了光学系统的组装。光子丝键合的形状和轨迹具有关键优势,可替代依赖于技术复杂且昂贵的高精度对准的常规光学装配技术。 光子引线键合技术的重要性光子集成是实现各种量子技术的关键方法。该领域的大多数商业产品都依赖于需要耦合元件的光子芯片的独立组装,如片上适配器和体微透镜或重定向镜等。组装这些系统需要复杂的主动对准技术,在器件开发过程中持续监控耦合效率,成本高且产量低,使得光子集成电路(PIC)晶圆量产困难重重。 研究人员使用Nanoscribe的增材纳米加工技术,结合了常规系统的性能和灵活性,实现整体集成的紧凑性和可扩展性。为了在光子器件上设计自由形式的聚合物波导,该团队依靠光子引线键合技术,实现全自动化高效光学耦合。光子引线键合技术的可微缩性和稳定性在实验室中,研究人员设计了100个间隔紧密的光学引线键(PWB)。实验结果为简化先进光子多芯片系统组装奠定了基础。实验模块包含多个基于不同材料体系的光子芯片,包括磷化铟(InP)和绝缘体上硅(SOI)。实验中的组装步骤不需要高精度对准,研究人员利用三维自由曲面光子引线键合技术实现了芯片到芯片和光纤到芯片的连接。 在制造PWB之前,研究人员使用三维成像和计算机视觉技术对芯片上的对准标记进行了检测。然后,使用Nanoscribe双光子光刻技术制造光学引线键,其分辨率达到了亚微米级。研究团队将光学夹并排放置在设备中,以防止高效热连接中的热瓶颈。混合多芯片组件(MCM)依赖于硅光子(SiP)芯片与磷化铟光源和输出传输光纤的有效连接。研究团队还将磷化铟光源作为水平腔面发射激光器(HCSEL),当他们将光学引线键与微透镜结合在一起时,可以方便地将光学平面外连接到芯片表面。验证实验1在第一个实验中,研究团队通过使用深紫外光刻技术制造了测试芯片,结果表明光学引线键能够提供低损耗的光学连接。每个测试芯片包含100个待测试的键合结构,以从光纤芯片耦合损耗中分离出光学引线键损耗。光学引线键的实验室制造可实现完全自动化,每个键的连接时间仅为30秒左右,实验表明该时间可进一步缩短。研究团队还在其他测试芯片上进行了重复实验,验证了该工艺优秀的可重复性。随后,研究人员还进行了-40℃至85℃的多温度循环实验,以证明该结构在技术相关环境条件下的可靠性。实验过程中,光学引线键没有发生性能降低或是结构改变的情况。为了解光学引线键结构的高功率处理能力,研究人员还对样品进行了1550纳米波长的连续激光照射,且光功率不断增加。研究结果显示,在工业相关环境及实际功率水平中,光学引线键可以保证高性能。验证实验2在第二个实验中,研究团队制造了一个用于相干通信的四通道多阶发射机模组。在该模组中,研究人员将包含光学引线键的混合多芯片集成系统与电光调制器的混合片上集成系统相结合,并将硅光子芯片纳米线波导与高效电光材料相结合。实验结果表明,该模组具有低功耗、效率高的优点。更多双光子微纳3D打印技术和产品请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备可应用于微光学,微型机械,生物医学工程,力学超材料,MEMS,微流体等不同领域。参考文献:Hybrid multi-chip assembly of optical communication engines via 3-D nanolithographyby Thamarasee Jeewandara , Phys.orghttps://phys.org/news/2020-05-hybrid-multi-chip-optical-d-nanolithography.html
  • 光子改变世界,滨松助力未来——2018滨松光子展隆重举行
    p    strong 仪器信息网讯 /strong 2018年11月1日,由日本滨松光子学株式会社(Hamamatsu Photonics K.K.,以下简称滨松集团或滨松)举办的Photon Fair 2018(以下简称滨松光子展)于日本静冈县滨松市ACT CITY展览馆拉开帷幕。滨松光子展是由滨松集团主办的每5年1届的光子技术综合性展览会,旨在将滨松集团现阶段的科学研究成果及最新技术应用展示给光产业领域从业人员与广大群众,向社会传达滨松集团对光子技术的开发应用理念和利用光子技术改善生活、服务社会的美好愿景。仪器信息网作为国内专业媒体带来展会的全程报道。 /p p style=" text-align: center " img width=" 400" height=" 267" title=" PHOTON FAIR 2018 滨松光子技术综合展览会.jpg" style=" width: 400px height: 267px " alt=" PHOTON FAIR 2018 滨松光子技术综合展览会.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/5ccfb8c3-e7e6-46b3-ad88-d936b949da2f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " PHOTON FAIR 2018 滨松光子技术综合展览会 /p p   本届展会展览区共分为科学研究(Science & amp Research)、汽车(Automotive)、生活(Life)、医疗与生命科学(Medical & amp Life Science)、制造(Manufacturing)、环境(Environment)六大板块。共吸引超过5000名专业观众的注册,活动累计超过10000人次参加,规模较上届展会显著提升。 /p p   会展同期亦开设了多个主题演讲及技术研讨会。滨松集团董事长昼马明、加州大学欧文分校教授布鲁斯· 特洛伯格、丰田汽车株式会社先进技术开发公司常务理事鲤渕健、斯坦福大学医学部循环器科主任研究员池野文昭分别作大会报告,畅谈了他们对光子技术在精准医疗、汽车自动驾驶等领域将深刻改变人们生活方式的预期及信念。分会场上,来自滨松集团中央研究所及四大事业部—电子管、固体、系统、激光的近40名技术专家向与会嘉宾介绍了滨松在光电技术领域所做出的最新进展。 /p p   从展馆入口进入序幕厅,庄严肃穆的氛围萦绕四周,墙幕上依次浮现出对滨松集团创立和发展有着深远影响的三位前人的成就与事迹。滨松创始人名为堀内平八郎,通过从师 “日本电视机之父”高柳健次郎,意识到了光电转换技术的巨大可能性,以此建立起了滨松公司。后来,在第二代社长昼马辉夫的带领下,滨松成功开发出性能超越世界标准的光电倍增管产品,开启了滨松迈向领先光子技术企业的发展进程。依托自光电倍增管开发生产时期积累的先进光子技术,滨松的应用领域迅速扩展,并渗透至人们生活的方方面面。21世纪常被称作“光的时代”,滨松在未知未涉领域的探索和挑战也未曾停歇。 /p p style=" text-align: center " img width=" 291" height=" 400" title=" 展览厅典籍.jpg" style=" width: 291px height: 400px " alt=" 展览厅典籍.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/0fba8af3-a2a8-4ae8-b833-a0d08a4b462f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 展览厅典籍 /strong /p p style=" text-align: center " strong img width=" 400" height=" 300" title=" 宣传影片.png" style=" width: 400px height: 300px " alt=" 宣传影片.png" src=" https://img1.17img.cn/17img/images/201811/uepic/8cb61183-f4e1-437d-8d22-e4e2cbc5b57b.jpg" border=" 0" vspace=" 0" / /strong /p p   序幕厅后方的大荧幕上循环放映宣传影片,由滨松现任社长昼马明为参观者介绍滨松数年来在光子技术领域所取得的杰出成就,以及未来的发展方向。 /p p   绕过荧幕跨入主展览厅,新产品和新技术应用随之映入眼帘,流光溢彩的现场布置令人仿佛置身充满科技感的未来世界一般。那么本次展会又有哪些精彩的内容呢?请随仪器信息网编辑一同跨越通往未来之旅的大门。 /p p style=" text-align: center " img width=" 400" height=" 267" title=" 展会现场.jpg" style=" width: 400px height: 267px " alt=" 展会现场.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/d3009afd-44b6-4cfc-aa71-20c145afdf82.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 展会现场 /strong /p p strong ENVIRONMENT 环境展区 /strong /p p style=" text-align: center " img width=" 400" height=" 267" title=" ENVIRONMENT 环境展位.jpg" style=" width: 400px height: 267px " alt=" ENVIRONMENT 环境展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/b26200a3-5b93-4b91-a052-92ce35e24e88.jpg" border=" 0" vspace=" 0" / /p p   随着社会经济的不断发展,近年来环境问题也日趋凸显,人们在物质需求不断增长的同时,对环境质量提出了高的要求。在能源开发和勘探,灾害预防,以及水、土壤、大气的环保监测等领域,也有着滨松产品与技术的身影。 /p p   展区的内容十分丰富,新品齐放。在土壤检测区域的质量分析中,展现了滨松在2018年推出的一系列应用于质谱仪电离和探测中的器件 烟气监测中,除了最新推出的波长可调谐中红外量子级联激光器(QCL)模块首次面世外,最新在研的QCL产品也首次以DEMO的形式披露。能源方面,还看到了滨松产品在激光核聚变中的应用。 /p p style=" text-align: center " img width=" 400" height=" 309" title=" 滨松质谱用探测器件新品.png" style=" width: 400px height: 309px " alt=" 滨松质谱用探测器件新品.png" src=" https://img1.17img.cn/17img/images/201811/uepic/b7a25d31-b1a8-4b1d-8bd9-ec7ba9394781.jpg" border=" 0" vspace=" 0" / /p p   滨松质谱用探测器件新品,包括高气压下(达1Pa)仍可高增益正常工作的栅网阳极结构第三代MCP、大幅简化和缩短MALDI-TOF-MS前处理时间的辅助离子化基板、MCP+AD、通道式电子倍增器 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 滨松最新发布的波长可调谐中红外QCL模块.jpg" style=" width: 400px height: 300px " alt=" 滨松最新发布的波长可调谐中红外QCL模块.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/d069f817-5d51-4539-a31d-ac9fc2e2c25f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 滨松最新发布的波长可调谐中红外QCL模块 /strong /p p   其具备小型且高速波长调谐的特点,搭载输出8~10μm中红外激光双上层组合结构的QCL,形成低反射涂层、实现稳定的波长扫描。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 用于石油勘探的滨松高温光电倍增管.jpg" style=" width: 400px height: 300px " alt=" 用于石油勘探的滨松高温光电倍增管.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/dcc5f242-03a4-406b-93da-a0484de5a095.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 用于石油勘探的滨松高温光电倍增管 /strong /p p strong MEDICAL& amp LIFE SCIENCE 医疗与生命科学展区 /strong /p p style=" text-align: center " img width=" 400" height=" 267" title=" MEDICAL& amp LIFE SCIENCE 医疗与生命科学展位.jpg" style=" width: 400px height: 267px " alt=" MEDICAL& amp LIFE SCIENCE 医疗与生命科学展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/52052d3f-056e-4b78-a68f-b9a0dd088d0e.jpg" border=" 0" vspace=" 0" / /p p   光子技术同样可对人们的健康保驾护航。医疗是滨松光子技术应用中非常重要的部分,其应用覆盖PET、全身及牙科X射线成像、体外诊断、POCT、病理诊断、血氧测量等。 /p p   在光子展中,一台脑部PET(Positron Emission Computed Tomography,正电子发射型计算机断层显像)探测端的拆解引人注目,其中展示了PET下一代探测器——硅光电倍增管(MPPC)技术。滨松首次将PET用MPPC模块化,降低了成本,提高了空间分辨率,且可帮助设备制造商加速研发周期。另外,亦展示了基于MPPC技术的X射线光子计数模块,其可大幅提高探测灵敏度,降低了X射线量的要求,更加安全,且可促成整机成本的降低。而其也被认为是颠覆CT技术的新一代产品。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 头部PET探测端的内部展示.jpg" style=" width: 400px height: 300px " alt=" 头部PET探测端的内部展示.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/f7df04ed-fe1d-477e-9580-331ac6e37888.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 头部PET探测端的内部展示 /strong /p p   此外,结合近年来医疗中的热点“POCT”,光子展中也集中展示了各类微型化的器件,并首次披露了下一代微型PMT及超小型电源的开发品。 /p p style=" text-align: center " img width=" 400" height=" 325" title=" 可用于POCT应用的小型化2W闪烁氙灯及高度集成化的光学模块.png" style=" width: 400px height: 325px " alt=" 可用于POCT应用的小型化2W闪烁氙灯及高度集成化的光学模块.png" src=" https://img1.17img.cn/17img/images/201811/uepic/78a8fe64-64ad-4df1-bf9d-c8b72035ab6f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 可用于POCT应用的小型化2W闪烁氙灯及高度集成化的光学模块 /strong /p p style=" text-align: center " img width=" 400" height=" 300" title=" 可在基因测序中发挥重要作用的滨松科研级相机产品.jpg" style=" width: 400px height: 300px " alt=" 可在基因测序中发挥重要作用的滨松科研级相机产品.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/93926dc3-7454-491a-b8ee-66a8b2525651.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 可在基因测序中发挥重要作用的滨松科研级相机产品 /strong /p p strong LIFE 生活展区 /strong /p p style=" text-align: center " img width=" 400" height=" 267" title=" LIFE 生活展位.jpg" style=" width: 400px height: 267px " alt=" LIFE 生活展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/fec6f21f-cb63-47c8-86a9-a43b9d6dc0dc.jpg" border=" 0" vspace=" 0" / /p p   光电技术与人们的生活也是息息相关,“生活”展位上展示了一系列可应用于测距、食品检测、纺织品检测、可穿戴设备(脂肪、皮肤水分等检测)、物联网等应用的光传感技术。其中融合了MOEMS技术的一系列微型化产品十分抢眼,其中就包括刚刚与10月推出的SMD系列超微型光谱仪。 /p p   该款光谱仪产品波长响应范围在640~1050nm,结构极其紧凑,与同样对近红外光有响应的前代产品相比,SMD系列体积约为其1/14,重量为其1/30,灵敏度却是其50 倍。它能够满足现场食品的实时测定、农作物的质量检查、无人机环境分析等用途的要求。未来有望整合入移动终端,做到随用随测。现场的演示DEMO也展示了其优秀的光谱测量能力。 /p p style=" text-align: center " img width=" 400" height=" 267" title=" SMD型微型光谱仪.jpg" style=" width: 400px height: 267px " alt=" SMD型微型光谱仪.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/72221512-88cb-42bd-a3b1-1014f73092c7.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong SMD型微型光谱仪 /strong /p p strong SCIENCE& amp RESEARCH 科学研究展区 /strong /p p style=" text-align: center " strong img width=" 400" height=" 267" title=" SCIENCE& amp RESEARCH 科学研究展位.jpg" style=" width: 400px height: 267px " alt=" SCIENCE& amp RESEARCH 科学研究展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/b97580ac-70ae-45f4-8d76-b1e42e8d8975.jpg" border=" 0" vspace=" 0" / /strong /p p   科学研究是人类社会发展进步的基础,技术与应用的创新也是依托在其成果之上。科学研究展区上展示了光子技术在生物、物理、化学领域科研中的应用。年代展中,让我们看到了从1960年开始到现在,滨松助力的世界大型科研实验,其中所用到的光电探测器许多也同台亮相,如两度助力诺贝尔物理学奖的中微子探测器20英寸光电倍增管、用于希格斯玻色子探测并助力2013年诺贝尔物理学奖诞生的硅APD等。 /p p   另外,通过从分光到探测和分析光谱,这次也展示了应用于化学科研,覆盖广泛光谱波段范围的光子探测技术。生物方面,则以“看见光”、“制造光”、“操纵光”来进行多面的展示,其中许多前沿的科研课题引人注目,如当下颇受热议的“光镊”的研究。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 用于超级神冈实验中微子探测的20英寸光电倍增管.jpg" style=" width: 400px height: 300px " alt=" 用于超级神冈实验中微子探测的20英寸光电倍增管.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/e3637ff2-3949-4577-b464-04e0f20a179d.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 用于超级神冈实验中微子探测的20英寸光电倍增管 /strong /p p style=" text-align: center " strong 上面的签名为2015年诺贝尔物理学奖得主梶田隆章 /strong /p p style=" text-align: center " img width=" 400" height=" 297" title=" 从γ射线_X射线到太赫兹波段探测滨松所覆盖的产品及技术.png" style=" width: 400px height: 297px " alt=" 从γ射线_X射线到太赫兹波段探测滨松所覆盖的产品及技术.png" src=" https://img1.17img.cn/17img/images/201811/uepic/c82d0ece-e6aa-475f-b642-4a8249a9b153.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 从γ射线/X射线到太赫兹波段探测滨松所覆盖的产品及技术 /strong /p p strong AUTOMOTIVE 汽车展区 /strong /p p style=" text-align: center " strong img width=" 400" height=" 267" title=" AUTOMOTIVE 汽车展位.jpg" style=" width: 400px height: 267px " alt=" AUTOMOTIVE 汽车展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/508a9168-8d10-47b9-b878-bb9ca490e65c.jpg" border=" 0" vspace=" 0" / /strong /p p   汽车产业发展已历百年,近年来汽车在逐渐向智能化、电动化、网联化发展。滨松以提高汽车舒适性、安全性为中心,进行了一系列发光和受光器件的研发,在汽车领域已耕耘了40余年。本次展示了其在自动驾驶激光雷达、抬头显示、汽车MOST网络、自动防眩后视镜等应用中的光电传感方案。 /p p style=" text-align: center " img width=" 400" height=" 298" title=" 测距应用DEMO演示.png" style=" width: 400px height: 298px " alt=" 测距应用DEMO演示.png" src=" https://img1.17img.cn/17img/images/201811/uepic/24fec317-030b-49d0-bc45-13aafaa5aab8.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 测距应用DEMO演示 /strong /p p strong MANUFACTURING 制造展区 /strong /p p style=" text-align: center " strong img width=" 400" height=" 267" title=" MANUFACTURING 制造展位.jpg" style=" width: 400px height: 267px " alt=" MANUFACTURING 制造展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/18ca0868-0b79-4c22-b9e3-f3e8c7be6b65.jpg" border=" 0" vspace=" 0" / /strong /p p   制造业的发达程度代表了社会生产力水平的高低,工业制造也离不开光电器件、系统的辅助,可以说,光子技术开启了更先进制造业的通路。展区从X射线无损检测、激光加工、UV· EB加工、工业监控四个方面,展示了滨松光电技术对半导体制造的支持,以及一系列相关的产业应用。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 滨松光子技术对半导体制造的支持.jpg" style=" width: 400px height: 300px " alt=" 滨松光子技术对半导体制造的支持.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/e3ff67c1-f8c3-4c1c-9a3b-f19dc065f661.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 滨松光子技术对半导体制造的支持 /strong /p p style=" text-align: center " img width=" 400" height=" 300" title=" 可用于X射线行李检测的新型PDA(光电二极管阵列).jpg" style=" width: 400px height: 300px " alt=" 可用于X射线行李检测的新型PDA(光电二极管阵列).jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/2b41794c-f948-46c0-a939-a8d89043636b.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 可用于X射线行李检测的新型PDA(光电二极管阵列) /strong /p p style=" text-align: center " img width=" 400" height=" 300" title=" 在激光加工中所需的光调制技术(空间光调制器).jpg" style=" width: 400px height: 300px " alt=" 在激光加工中所需的光调制技术(空间光调制器).jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/842adb26-f034-428c-b871-0591e8106a30.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 在激光加工中所需的光调制技术(空间光调制器) /strong /p p   光可以做什么?2018滨松光子展以实际产品和应用的形式,令与会者感受到了光为人类带来的无限可能,不禁让人惊叹光子技术的强大“使能”。未来,以科研、汽车、制造、环境、生命科学为代表的多个领域,乃至更多应用场景都将出现光子技术的新成果、新方向。正如滨松不断探索人类未知未涉的企业理念所述,只有基础技术走在应用、产业、市场的前方,才有可能推动社会的不断进步。光子技术将如何影响人们生活的各方各面?又将为人类社会发展带来怎样的贡献?还让我们拭目以待! /p p /p p strong /strong /p
  • 近红外双模式单光子探测器----单光子探测主力量子通讯
    一. 近红外双模式单光子探测器介绍SPD_NIR为900nm至1700 nm的近红外范围内的单光子检测带来了重大突破。 SPD_NIR建立在冷却的InGaAs / InP盖革模式单光子雪崩光电二极管技术上,是NIR单光子检测器的第一代产品,可同时执行同步“门控”(GM)和异步“自由运行”(FR )检测模式。 用户通过提供的软件界面选择检测模式。冠jun级别的器件具有低至800 cps的超低噪声,高达30%的高校准量子效率,100 ns最小死区,100 MHz外部触发,150 ps的快速成帧分辨率和极低的脉冲 。 当需要光子耦合时,标准等级可提供非常有价值且经济高效的解决方案。基于工业设计,该设备齐全的探测器不需要任何额外的笨重的冷却系统和控制单元。 经过精心设计的紧凑性及其现代接口使SPD_NIR非常易于集成到最苛刻的分析仪器和Quantum系统中。OEM紧凑型 多通道控制器软件界面二. 近红外双模式单光子探测器原理TPS_1550_type_II是基于远程波长自发下变频的双光子源。TPS_1550_type_II采用波导周期性极化铌酸锂(WG-ppln)晶体,用于产生光子对。波导- ppln的转换效率比任何块状晶体都高2到3个数量级,并确保与单模光纤的高效耦合。0型和II型双光子的产生三. 近红外双模式单光子探测器应用特点特点: ▪ 自由模式 & 门模式▪ 集成电子计数▪ 校准后 QE可达 30%▪ TTL和NIM信号兼容▪ 暗记数 ▪ 盖革模式激光雷达▪ 量子密钥分发▪ 高分辨率OTDR▪ 光子源特性▪ FLIM 成像▪ 符合测试▪ 光纤传感四. 近红外双模式单光子探测器技术规格五. Aura 介绍AUREA Technology是法国一家知名的探测器供应商,公司致力于尖端技术的研发,基于先进的单光子雪崩光电二极管,超快激光二极管和快速定时电子设备,设计和制造了新一代高性能,功能齐全的近红外探测器。作为全球技术领导者之一,AUREA技术提供盖革模式单光子计数,皮秒激光源,快速时间关联和光纤传感仪器。此外,AUREA Technology直接或通过其在北美,欧洲和亚洲的专业分销渠道为200多个全球客户提供一流的专业支持。并与客户紧密合作,以应对当今和未来在量子安全,生命科学,纳米技术,汽车,医疗和国防领域的挑战。昊量光电作为法国AUREA公司在中国区域的独家代理商,全权负责法国Aurea公司在中国的销售、售后与技术支持工作。AUREA技术提供了新一代的光学仪器,使科学家和工程师实现卓越的测量结果。奥瑞亚科技与全球的客户和合作伙伴紧密合作,共同应对量子光学、生命科学、纳米技术、化学、生物医学、航空和半导体等行业的当前和未来挑战双光子是展示量子物理原理的关键元素,并实现新的量子应用。例如,双光子使量子密钥分发技术得以发展,以确保数百公里范围内的数据网络安全。在生物成像应用中,双光子光源产生原始的无色散测量。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 揭秘:微型光谱仪之光子历程
    在微型光纤光谱仪中,光子会经历一个曲折而漫长的过程,从光子的产生、传输,光电转换,模拟信号到数字信号,再到通过电脑将光谱展示出来。过程是曲折的,但结局是美好的。那么光子在微型光纤光谱仪中都发生了些什么?  光子历程将从光的激发开始。光子可以来自于大自然中的太阳、星辰,日常生活中的光源、LED或者激光,也可以来自于荧光物质或者由拉曼散射产生。无论光子源于哪里,不同光子都能产生特定的光谱谱线,而光谱的形成伴随着光子的一生,从产生到消亡。   光子在到达狭缝前,会经历一个崎岖的旅程。光子在自由空间中传播时,会被传输过程中其他物质反射、透射或者吸收。不同的物质会在不同波长情况下相互作用的时候过滤、更改或者消除不同波长的光子。光纤作为最基本最简单的耦合工具,可以将光从一个单点耦合至另一器件中,并且能防止其他杂散光的进入。光子在到达狭缝前,通过光纤可以更顺利的到达光谱仪,减小损耗,降低噪音影响。  狭缝是光子进入光谱仪狭长细小的入口,它能保证光子尽可能有效地耦合到光谱仪内部。狭缝越大,通光量越大,但是光学分辨率越差,所以狭缝在选择大小尺寸时,需要权衡通光量和光学分辨率的大小。  光子通过狭缝进入光谱仪内部,仍在一个自由空间内传播,到达第一个元器件为准直透镜。由于准直镜可以保证所有光子都以平行路径到达下一个元器件,确保所需测量的光束不发散或者散射,所以可以使光束最大利用率的得到使用。  准直镜将光反射至衍射光栅上,光栅将不同波长的光进行分光。分光作为一个重要的阶段,将光束分为不同波长段,使光谱仪有效地检测不同波长的光信息。  衍射光栅发射出来的光再通过聚焦镜进行聚焦,保证每个波长的光都尽可能地投射到检测器上。一维线性排列的CCD或CMOS检测器,每个像元能够接收窄范围波长的光子。  每个像元以量子阱的形式工作,收集特定范围的光子。当积分时间开始时,量子阱开始接收满电压电荷。当一个光子撞击量子阱时,同一时间量子阱内电荷就得到释放。积分时间越长,每个像元就会接收到更多的光子。一旦电荷释放完成,单个像元阱就会饱和,那新的光子信号就不会被采集。当光子撞击检测器的同时,即转换成了电信号,这时光子能量完成释放,光信号转换为电信号的过程也随之结束。  之后进入到数字模拟阶段,积分时间完成时可以通过检测像元读出电荷水平值。读出的模拟信号通过AD(模拟-数字)转换器,可以将每个像元的电压值读出成特征的“counts”强度值。通过数字处理,由光子信号而来的电信号就转换成数字信号,即光子转换成数据。当光子在光谱仪中的旅程结束也就意味着另一个旅程的开始——电信号的转换,软件的输出。  当从光谱仪读出相关光谱后,希望读出的光谱数据是非常平滑且不失真的数据,这时候就需要利用光谱处理技术对原始光谱进行平滑和过滤:电子暗噪声扣除,由“光学暗像素”获得的平均电子暗噪声,可以校准读出噪音和温度躁动偏移 非线性校准,使用出厂校准7阶函数对光谱仪进行校准,确保每个像素点的响应成线性关系 平滑度,通过设置平滑次数,可以对每个像素和与之相邻像素的测量值进行平均 平均次数,通过增加平均次数提高信噪比。  处理后的光谱数据可通过USB从micro的转接口与电脑连接进行数据传输。在未来产品中,除了USB通讯连接,光谱仪还提供其他的通信方式,如蓝牙、太网、WiFi等。  从光子的产生、光谱仪中的传输、到达检测器像元,数据的处理及传输,光子经历了一段崎岖的旅程。微处理器,检测器和光纤光学的不断发展,使得光谱技术不仅仅局限于实验室中,微型光纤光谱仪将把光谱技术带到人们的日常工作中,改善人们的生活方式。(来源:海洋光学)
  • 光电倍增管才是单光子探测的yyds
    随着科技的突飞猛进,我们逐渐揭开了光子的神秘面纱。由于光子的微弱特性,直接观测和探测它是一项巨大的挑战。因此,研发出能够探测单个光子的探测器成为了科学家们追求的重要目标。市面上已经有多种单光子探测器,比如光电倍增管、光子计数探头、MPPC和SPAD等。它们各有千秋,但要说到单光子探测的顶尖高手,那非光电倍增管莫属。那么,这些单光子探测器是如何工作的呢?接下来,让我们一一揭开它们的神秘面纱!01 光电倍增管光电倍增管的工作原理如下图所示:当单个光子到达阴极面的时候,由于光电效应会产生光电子,产生的光电子在聚焦电场的作用下进入倍增级实现连续的倍增,从而实现电信号的连续放大,最后通过阳极输出,这个过程就实现了单光子信号的探测。图1 端窗型光电倍增管结构02 光子计数探头除了光电倍增管裸管,也有光电倍增管模块能做到单光子探测,也被称之为光子计数探头。光子计数探头是在能够做单光子探测的光电倍增管的基础上增加了如下的信号处理电路,可以将单光子的输出信号转换为TTL 信号输出,通过对TTL信号进行计数,就可以得到光子数量,方便实际测试。图2 光子信号处理电路03 多像素光子计数器(MPPC)除了上面的真空电子管类型的光子计数探测器之外,目前半导体器件也能够进行光子计数,常见的就是多像素光子计数器,滨松也称之为MPPC,硅光电倍增管。其中,MPPC是一种由多个工作在盖革模式的APD组成的光子计数型器件,其中APD(雪崩光电二极管)是一种具有高速度、高灵敏度的光电二极管,当加有一定的反向偏压后,它就能够对光电流进行雪崩放大。而当APD的反向偏压高于击穿电压时,内部电场就会变强,光电流则会获得105~106的增益,这种工作模式就叫APD的“盖革模式”。在盖革模式下,光生载流子通过倍增就会产生一个大的光脉冲,而通过对这个脉冲的检测,就可以检测到单光子,实现单光子探测!图3 MPPC输出示意图04 单光子雪崩光电二极管(SPAD)除了MPPC之外,半导体探测器中单光子雪崩光电二极管也能进行单光子探测,我们称之为SPAD。SPAD可以理解为它是由单个MPPC像素形成的探测器,它只有一个像素点,也就是只有一个能工作在盖革模式下的APD,所以它无法反映光强度的变化,只能是对光的有无做出反应。而MPPC由于是多个像素的阵列,我们可以根据输出信号的幅度来判断光信号的强度。但是SPAD也能做到单光子的探测。05 光电倍增管单光子探测优势通过以上介绍我们可以看到,目前单光子探测器主要分为真空电子管和半导体探测器两个类型,他们都能实现单光子的探测,那么光电倍增管的优势在哪呢?光敏面积光敏面积是单光子探测中比较关键的一点。相对来说,面积越大,能够探测到的光子数也就越多,同时前端的光路也会相对比较简单,不需要复杂的聚焦系统。由于光电倍增管是真空电子管,我们是可以通过控制阴极面积的大小来决定探测器的光敏区域。目前滨松最大的光电倍增管阴极面直径能做到20英寸,光子计数探头模块阴极面积最大的直径在25毫米,能够满足不同光斑大小的探测需求。但是对于MPPC来讲,由于面积大小与其性能有直接联系,比如,暗计数率同光敏面积成正比,面积的增加会导致暗计数率的增加。由于半导体的固有热噪声较大,暗计数会随着面积的增加进一步导致波形堆叠,难以对单光子信号进行分析。此外,面积越大,寄生电容越大,影响MPPC的响应速度。暗计数暗计数是指探测器在没有光子进入的时候,探测器本身的信号输出。其中光电倍增管是真空电子管器件,噪声的主要来源是阴极面的热电子发射,暗计数的值大概在百个级别,常见的光子计数探测器H10682-110,典型的暗计数在50 cps,最大值在100 cps。而MPPC和SPAD是半导体探测器,不仅光子可以产生载流子,热电子也会产生载流子,热电子生成的载流子也具有单光子水平的信号电平,并且暗计数的水平明显高于光电倍增管的暗计数,暗计数的值大概上千,常见的MPPC光子计数模块C13366-1350GD,典型的暗计数在2.5 kcps,最大值在7 kcps。弱光信噪比不管是真空电子管还是半导体探测器,他们都能实现单光子探测,但是由于噪声的存在,相同信号的输入,会导致不同的信噪比。相对来说,信噪比越大,说明其中的噪声比较小,能够有效地反映信号的情况。通过对比目前滨松常见的光子计数探头和半导体光子探测器型号在同样光强环境下的信噪比,可以看到,在弱光环境中,光电倍增管具有一个很好的信噪比。图4 不同类型探测器弱光信噪比对比(光子计数探头&MPPC&SPAD)通过以上对比我们可以看到,光电倍增管在单光子探测中,具有面积大、噪声小、信噪比高的特点,所以在弱光探测环境中,我们还是推荐使用光电倍增管!以上就是本期的讲解,如果还有其他问题,欢迎评论区留言或者直接联系相关工程师获取技术支持。相关阅读喏,你要的光电倍增管全解析在这里~想了解光电倍增管原理及应用,这一场报告就够了关于光电倍增管(PMT)模块的选型与使用光电倍增管:光照灵敏度&辐射灵敏度“差别”在哪?光电倍增管动态范围的定义不是?而是?光电倍增管(PMT)分压器设计原理
  • 有机纳米光子路由器研制成功
    低维有机纳米光子路由器   纳米光子学主要研究如何在微纳米尺度上对光子运动进行操纵、调节和控制,在未来信号传播和信息处理方面具有广泛的应用前景。中科院化学所光化学重点实验室的科研人员成功研制出低维有机纳米光子路由器,可实现单点激发、多通道不同的光信号输出。相关结果近日发表于《美国化学会志》,英国皇家化学会《化学世界》杂志也对该成果作了报道。   据了解,该实验室近年来在低维有机材料光子学方面进行了系统的研究。在前期对一维有机光波导材料的研究中,研究人员发现了有机材料中的弗伦克尔激子与光子的强耦合作用所形成的激子极化激元(EP)在有机光子学中的作用机制 进而利用三重态敏化,通过EP传播过程中的双向能量转移作用,实现了稳定白光输出的光波导器件 进一步利用有机晶体材料中的激子极化激元的超高折射率,实现了双光子泵浦有机纳米线激光器。相关工作证实了有机低维材料在纳米光子学中的巨大潜力,为实现基于低维有机材料的光子学功能元件奠定了基础。   在此前研究的基础上,该实验室科研人员联合美国西北大学,从有机纳米线异质结的可控制备入手,利用有机小分子特定的组装与生长特性,通过液相和气相两步法,实现了客体分子在主体分子的一维主干结构上的可控外延生长,从而得到了一维有机分枝型异质结构。将有机异质结构中的荧光共振能量转移(FRET)和光波导性质结合起来,实现了信号可调制的纳米光子路由器。   这些成果为深入研究有机功能分子体系的组装行为,控制合成功能化有机复杂微纳结构,研究复杂结构中光子学的内在机制,以及探索光子通讯与运算中需要的各类元器件提供了重要的借鉴。
  • 新皮米光子波能在硅半导体内传播
    美国研究人员发现了新的皮米尺度波,这种波可以在硅等半导体中传播。研究人员指出,在半导体材料中使用皮米光子波有望催生新的功能性光学器件,应用于量子技术领域,相关研究发表于最新一期《物理评论应用》杂志。最新研究由普渡大学电气和计算机工程副教授祖宾雅各布博士领导,他说:“微观这个词源于微米,1微米仅为一米的百万分之一。我们的最新研究是在比微米小得多的皮米范围内,1皮米相当于1米的一万亿分之一,在这样的尺度内,原子晶格的离散排列以惊人的方式改变了光的性质。”从激光器到探测器,材料中的光—物质相互作用是许多光子器件的核心。在过去十年中,研究在光子晶体和超材料等工程结构内光如何在纳米尺度上流动的纳米光子学,已经取得重要进展,而最新发现利用了物质内原子反应量子理论的重大进展,有望催生皮米光子学。但该领域长期存在的难题是原子晶格、其对称性及其在皮米尺度光场中所起作用之间缺少联系。为解决这个难题,理论团队开发了一个物质的麦克斯韦哈密顿框架,并与物质内光致响应的量子理论相结合。他们发现,原子晶格内出现了新的异常波,隐藏于传统的电磁波内,而且,这些光波即使在硅晶体的基本结构块(亚纳米长度尺度)内都是高度振荡的。雅各布说:“最新研究与应用于纳米光子学的经典光流处理法迥然不同,光在材料中行为的量子性质是皮米光子学现象出现的关键。”
  • 潘建伟等国际首次实现综合性能最优单光子源
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 中国科学技术大学潘建伟、陆朝阳等近日在国际上首次实现基于半导体量子点的高效率和高全同性的单光子源,综合性能达到国际最优,为实现基于固态体系的大规模光子纠缠和量子信息技术奠定了基础。相关成果近日以编辑推荐形式发表于《物理评论快报》。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 量子点是通过分子束外延方法制备的半导体量子器件,又被称为“人造原子”,原理上可以为量子信息技术提供理想的单光子源。为了能够用于可扩展、实用化的量子信息技术,单光子器件必须同时满足三个核心性能指标:单光子性、高全同性和高提取效率。尽管从2000年开始,许多国际研究机构对量子点光学调控进行了深入探索,然而这三个核心指标一直无法同时满足,因而成为固态量子光学领域15年来悬而未决的重大挑战。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 2013年,潘建伟、陆朝阳等首创量子点脉冲共振激发,实现了当时国际上全同性最好的单光子源,但之前的实验中荧光收集效率较低。为大幅提高荧光提取效率,他们通过高精度分子束外延生长与纳米刻蚀工艺结合,获得了低温下与量子点单光子频率共振的高品质因子光学谐振腔。结果显示,实验产生的单光子源提取效率达到66%,单光子性优于99.1%,全同性优于98.6%,在国际上首次同时解决了单光子源的三个关键问题,成为目前国际上综合性能最优秀的单光子源。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 该实验实现的量子点单光子源亮度比国际上最好的基于参量下转换的触发式单光子提高了10倍,同时具有接近完美的全同性,而且所需激光泵浦功耗降低1千万倍(纳瓦量级),这样的量子点单光子源可在将来应用于大规模光子纠缠。 /p p br/ /p
  • 全球首枚集成光子陀螺仪成功面世
    由中国科协“科创中国”平台指导,北京市科学技术协会创新服务中心、“科创中国”投资联合体主办的“光领智造 芯引未来”——“光纤陀螺仪行业中国智造的突破与挑战”研讨会26日在中国科技会堂举行。会上,由深圳市同昇光电有限公司(以下简称“同昇光电”)自主研发的集成光子陀螺仪在全球首次亮相,标志着我国在该领域取得重大突破。同昇光电是专研光子晶体光纤、光传感技术的创新企业,也是国内较早研发光子晶体光纤和集成光器件产品的企业之一。经过近10年的技术积累,同昇光电最终突破了光子晶体光纤拉制关键工艺、高性能小型化光纤环绕制技术、集成光器件设计和加工技术、光纤陀螺仪噪声分析及抑制技术,成功研发全球首个集成光子陀螺仪。作为下一代高性能微结构光纤,光子晶体光纤属于我国贸易保护类的技术及产品。与传统熊猫光纤相比,光子晶体光纤抗弯性能更强、温度稳定性更好,低温应力、地磁应力影响大幅降低。同昇光电攻克了光子晶体光纤拉制工艺诸多难题,如设计、损耗、强度、尺寸、熔接等等,彻底解决了采用光子晶体光纤绕制光纤化的小型化问题,已经实现小于直径20mm的光纤环环径。与同昇光电集成光子陀螺仪的技术相比,美国Emcore公司光纤陀螺(2014年研发)虽亦实现低成本和小型化的目标,但其仍采用多次焊接和粘接方式,闭环陀螺需另外增加调制器,集成度不高;美国KVH公司集成芯片陀螺仪(2020年研发)和俄罗斯Fizoptika 公司微小型光纤陀螺VG221(2022年研发)的传感头为开环陀螺,精度、温度稳定性、标度因数均与闭环陀螺差距较大。此外,上述三种技术光纤陀螺均未集成Y分支电光调制器,与同昇光电的集成光子陀螺仪相比,集成度较低,同昇光电的产品具有明显优势。与会专家认为,同昇光电在研发集成光子陀螺仪的过程中,突破了多个技术难关,为我国在光纤陀螺仪相关领域的领先地位做出了贡献。国家重大技术装备委员会专家、机械工业经济管理研究院院长徐东华,中国科协“科创中国”投资联合体副理事长赵京城,中船航海光学惯导部刘俊成主任,惯性MEMS传感器专家、北京大学微电子学研究院闫桂珍教授,浙江大学先进技术研究院杨功流教授,南开大学现代光学研究所刘艳格教授,中国航天九院光纤惯性研究室李超研究员等业内资深专家出席会议。
  • 3D打印新技术精细“雕刻”光子晶体
    五彩缤纷的蝴蝶翅膀、光鲜靓丽的孔雀羽毛、闪耀着金属光泽的昆虫甲壳……点缀着这些大自然奇妙杰作的并非普通色素,而是光与光子晶体结构发生散射、干涉、衍射等作用后形成的结构色。光子晶体是由不同折射率介质周期性排列而形成的光学超材料,也被称为光学半导体。通过设计和制造光子晶体材料及相关器件来控制光子运动,并在此基础上进一步实现光子晶体材料的各种应用,是人们长久以来的梦想。近日,中国科学院化学研究所绿色印刷院重点实验室研究员宋延林、副研究员吴磊等研究人员组成的研究团队利用连续数字光处理(DLP)3D打印技术,实现了具有明亮结构色的三维光子晶体结构制备,为创新结构色制备方法及扩展3D打印的应用开创了新的途径。创新方法,让光子晶体精准“生长”光子晶体作为未来光子产业发展的基础性材料,其独特的三维光学控制能力使其在集成光学元件、光子晶体光纤及高密度光学数据储存等领域都有广阔的应用前景。3D打印技术近年来的成熟发展,也使其成为最好的光子晶体制备手段之一。宋延林向记者介绍,虽然近年来有一些将3D打印技术应用于多种图案化光子晶体制备的案例,但普通的3D打印技术因为墨水中树脂的光固化速度和纳米粒子组装速度的差异,存在结构色效果较差、打印精度较低、难以实现复杂三维结构等问题。上述方法制备的多种图案化光子晶体具有表面形貌粗糙和保真度较差等缺陷,难以被广泛应用于光学器件中。要实现高精度、高保真的光子晶体结构3D打印,就必须要开拓出新的方法。此次研究中,研究团队使用了连续数字光处理3D打印技术。与常见的将原材料层层挤出、堆叠而成的3D打印技术不同,连续数字光处理3D打印技术基于光敏树脂材料在紫外线照射下会快速固化的特性,利用紫外线光束在光敏树脂溶液中雕刻形成3D结构。此次研究团队所采用的连续数字光处理3D打印方法主要的打印步骤如下:首先,在透明基板上滴上墨水,将墨水上方的成型平面缓缓下降,与墨水进行接触;接下来,通过基板下方的光束将打印图案照射在墨水上;之后,受到紫外线照射的墨水会凝固成预先设计好的形状。一滴滴小小的墨水被“雕刻”为一个3D光子晶体结构,其整个产生的过程仿佛是从基板上“生长”出来。宋延林表示,研究团队所采用的连续数字光处理3D打印技术主要在两方面上取得了重要改进。在打印模式上,市面上的光固化连续数字光处理3D打印技术大都是层层打印,打印速度较慢。研究团队研发出的低黏附光固化界面,让液滴与基底之间的粘附力极低,打印过程没有任何“拖泥带水”,能够实现迅速连续打印成型,极大地提升了打印的速度。在成型方式上,市面上的光固化连续数字光处理3D打印技术通常要采用液槽来盛装大量液态树脂。采用液槽来盛装大量液态树脂的方式导致在连续打印过程中,不该固化的区域因为受到照射而固化,不仅造成原材料的大量浪费,也降低了连续打印过程中的稳定性及分辨率。研究团队摒弃了液槽,而是以单墨滴为成型单元,通过控制固化过程中气、固、液三相接触线,显著减少了液体树脂在固化结构表面的残留。同时,以单墨滴为成型单元还降低了界面粘附,增加了液体内部树脂的流动,显著提高了3D打印的精度和稳定性。克服困难,逐个击破墨水难题除了创新打印方式,此次研究中,研究团队对打印所需的墨水也进行了大胆革新。“我们这次研究中最困难的环节就是打印墨水的开发。”宋延林表示。针对上述问题,研究团队创造性地研发出了利用氢键辅助的胶体颗粒墨水,赋予了打印结构高质量的结构色与光子晶体特性。研究团队研发的墨水由三部分组成:实现三维结构构建的光固化单体和光引发剂、保证结构色的纳米颗粒、减少光散射的添加剂。在单体的选择和引发剂合成上,考虑到环保要求,研究团队合成的墨水为水性体系。但由于目前广泛使用的引发剂大多为油溶性,少数水溶性的引发剂又与3D打印所采用的光波波长不匹配,光引发效率较低。为了能够得到较高光引发效率的水溶性引发剂,团队查阅了大量文献并进行了反复的摸索实验,最终成功合成出了水溶性的光引发剂。除了引发剂,光固化单体的选择更加至关重要。宋延林表示,合格的光固化单体必须满足既能实现三维结构化,又不能在打印过程中引起聚合物和纳米颗粒的相分离的条件。论文第一作者张虞表示,“最终我们找到了丙烯酰胺这种适合的单体。”选定单体后,还需确定光固化单体与纳米颗粒的比例。如果光固化单体较少,就会无法打印。反之,如果光固化单体太多,则会影响纳米颗粒的运动和分散,进而影响结构色的质量。团队经过大量实验,对多种不同的比例组合反复尝试,最终确定了最佳比例。最后,为了减少光的散射对打印过程的影响,尽可能地提高打印结构的色彩饱和度,在添加剂的选择上,团队尝试了包括碳纳米管、碳纳米纤维以及黑色墨水等多种材料。但上述材料均存在种种缺陷,研究团队最终将经过特殊处理的炭黑作为添加剂。前景广阔,让结构色“五彩斑斓”在此次研究中,研究团队发现,视角、胶体颗粒粒径以及打印速度等因素都会影响3D结构色的呈现。当胶体颗粒粒径和打印速度不变时,随着视角增加,结构色蓝移,即从橙色转变为黄绿色,最后转变为蓝紫色。这种视角依赖的特性,使得连续数字光处理3D打印技术在个性化珠宝配饰及装饰、艺术创作等领域有着比较广阔的应用前景。除了视角变化会影响结构色的呈现外,当打印速度固定时,控制固定胶体颗粒粒径、调节打印速度,都可以得到覆盖可见光范围的系列结构色。采用顺序切片、依次投影、分段打印的方式,还可使同一物体结构上呈现出多种结构色。除了实现“信手拈来”般地制备结构色,研究团队利用此种连续数字光处理3D打印技术制备出的多种具有光滑内外表面、低光学损耗及颜色选择性的线性光传输和非线性光传输3D结构,也验证了该方法在制造高效光学传输器件方面的独特优势。宋延林表示,未来研究团队会在光子晶体功能器件的制备方面继续进行新的探索。
  • 瞬态光学与光子技术国家重点实验室开放基金开始申请
    于中国科学院西安光学精密机械研究所的瞬态光学与光子技术国家重点实验室,4月23日在国家重点实验室网站发布了2009年度开放基金课题申请指南。 该开放基金每年设立8-10项开放课题,每项资助经费5-10万元人民币,资助期限一般为2年。 2009年度开放基金申请基本要求: 重点资助助理研究员、讲师、硕士及其以上有独立开展研究课题能力的国内、外科技工作者; 资助金额一次核准,分年度下达,资金仅限于在本实验室使用,资助金额的使用与管理按财务制度和实验室的管理条例执行; 课题负责人在研究期间,须来实验室累计做三个月以上的客座; 课题负责人在研究期间,每年需提交“开放基金年度进展报告”; 2009年度开放课题基金申请受理截至日期为2009年8月31日,研究期限为两年,起止时间为2009年10月1日至2011年9月31日。 基金资助方式分以下三类: 研究课题经费全部由实验室开放基金资助; 研究课题经费部分由实验室开放基金资助; 申请者利用实验室设备及条件,自带课题及经费来实验室开展研究工作。 2009年度开放基金课题重点支持研究内容: 1.光子学前沿理论研究 微纳光纤非线性现象及其器件研究 光学捕获与特殊光束理论研究 2.超快光子技术 超短超强光纤激光产生、放大、压缩与合成技术研究 高功率全光纤激光器关键器件研究 高信噪比超宽带超快激光技术 飞秒激光微加工技术 超快生物光子成像和微操纵技术 3.极端物理条件多维信息获取技术 超高时间分辨率分幅/扫描成像理论与技术 极弱/瞬时目标探测与成像技术 超快光电成像器件 4.信息光子技术 光子网络系统与信息交换 超高速/超大容量光通信 5.光功能材料与集成光子器件 新型高能激光技术及其材料 新型高速光通讯有源/无源器件 微结构/大模场光纤材料及制备 6.光子工程技术 超大功率/超高亮度半导体激光器 三维激光成像与主动探测 新型光谱/成像技术及应用 高速光电信息获取与新型光学成像方法 详情请见:瞬态光学与光子技术国家重点实验室2009年度开放基金课题申请指南
  • 南开大学在拓扑光子学领域取得新进展
    从数学到化学、生物学,再到凝聚态物理、光学,与拓扑相关的现象俯拾皆是。拓扑的概念拓展到光学,形成了拓扑光子学这一新兴研究领域,近几年不断开拓,蓬勃发展。最近,高阶拓扑绝缘体(HOTI)由于其打破了传统的体边对应关系,在光学和光子学领域也引发了研究热潮,有望为开发新一代半导体激光等光学器件带来新思路。然而,目前所有关于高阶拓扑的实验研究都局限在低轨道(s轨道)能带的体系中。轨道自由度在研究凝聚态体系的基本性质以及新奇物态(包括轨道超流和拓扑半金属)等方面都发挥关键作用,引入轨道自由度可以引发和揭示许多新颖的物理现象。由于真实材料中电子的轨道自由度难以操控,很多研究都基于人工材料体系,比如光子晶体和超冷原子。那么,是否能利用人工合成的光学平台来实现源于高轨道能带的高阶拓扑绝缘体呢?近日,南开大学物理学院、泰达应用物理研究院陈志刚、许京军教授领导的课题组与克罗地亚萨格勒布大学教授Hrvoje Buljan课题组合作, 在我国科技期刊卓越行动计划高起点新刊《光:快讯》(eLight)上发表了在拓扑光子学领域实现新型高阶光子拓扑绝缘体的最新科研成果。基于光子晶格平台,在具有特殊对称性的笼目(Kagome)晶格中,研究人员首次在实验上观测到p轨道高阶拓扑角态以及非线性诱导的角态旋转,并且在理论上提出了利用广义缠绕数来刻画体系的拓扑非平庸性质,创新发现了p轨道拓扑角态的鲁棒性除了需要传统的广义手性对称性保护,还需要p轨道系统中独有的轨道耦合对称性。该工作展示了高阶拓扑与轨道物理的有机结合,以及非线性对高阶轨道角态的动态调控,为探索具有轨道自由度的拓扑体系提供了新的研究平台,同时也为研发拓扑涡旋波导和拓扑激光器等光学器件铺垫了基础。研究成果以“Realization of photonic p?orbital higher?order topological insulators”为题在线发表。本工作以南开大学为第一完成单位,共同第一作者包括南开大学硕士研究生张亚辉、外籍博士后Domenico Bongiovanni,博士生王孜腾和王向东,后两位曾获国家级创新训练项目资助,在南开大学本科期间就参与该课题组研究。合作者还包括物理学院博士后夏士齐、博士生胡志婵、教授宋道红,以及加拿大国立科学研究院教授Roberto Morandotti等。相关工作得到了南开大学牵头的科技部重点研发计划项目和国家自然科学基金委重点项目的资助。据悉,《光:快讯》(eLight)是国际顶尖光学期刊,我国科技期刊卓越计划领军期刊《Light: Science & Applications》(IF=20.257)的姐妹刊,由《Light》原班编辑团队打造,仅发表光学交叉领域最顶尖、最具重磅影响力的科研工作。此前,南开大学讲席教授陈志刚和以色列理工学院Segev教授为该期刊创刊号撰写的展望综述“Highlighting Photonics: Looking into the next decade”自2021年6月发表以来,已被下载1.4万次,引用130多次, 曾获《光:快讯》(eLight)2022年度最佳下载/引用论文奖。
  • 科学家在集成光子芯片上实现人工合成非线性效应
    中国科学技术大学郭光灿院士团队在集成光子芯片量子器件的研究中取得新进展。该团队邹长铃、李明研究组提出人工合成光学非线性过程的通用方法,在集成芯片微腔中实验观测到高效率的合成高阶非线性过程,并展示了其在跨波段量子纠缠光源中的应用潜力。相关成果10月20日在线发表于《自然—通讯》。  自激光问世以来,非线性光学效应已经被广泛应用于光学成像、光学传感、频率转换和精密光谱等领域中。对于新兴的量子信息处理来说,它也是实现量子纠缠光源以及量子逻辑门操作的核心元素。然而受限于材料非线性极化率随阶数呈指数衰减这一本征属性,人们对光学非线性的应用主要局限于二阶和三阶过程,多个光子同时参与的高阶过程很少被研究。一方面,低阶过程限制了传统非线性与光量子器件的性能,比如量子光源的可扩展性;另一方面,人们也好奇高阶非线性过程所蕴含的新颖非线性与量子物理现象。  利用集成光子芯片上的微纳光学结构可以增强光子间的非线性相互作用,这已经成为目前国际上集成光学与非线性光学方向的研究热点。邹长铃研究组李明等人长期致力于集成光子芯片量子器件的研究,开拓微腔增强的非线性光子学,提出并证实了微腔内多种非线性过程的协同效应,开辟了室温下少光子、甚至单光子级的量子器件的新途径。现阶段,该研究组已经能够将非线性相互作用强度随阶次的衰减速率从10-10提升到10-5。即使如此,在集成光子芯片上实验观测到阶次大于三的高效率非线性效应依然极具挑战。  针对该难题,李明等人另辟蹊径,提出一种新颖的非线性过程人工合成理论,即利用材料固有的较强的二阶、三阶等低阶效应,通过人工调控多个低阶过程级联形成的非线性光学网络来实现任意形式、任意阶次的光子非线性相互作用。这种方法避免了在原子尺度去修饰材料的非线性响应,而仅需要控制微纳器件的几何结构就可实现高效率、可重构的高阶非线性过程。  利用集成的氮化铝光学微腔,该团队在实验上同时操控二阶的和频过程和三阶的四波混频过程,合成了更高阶的四阶非线性过程。实验证明,该人工合成的过程比材料固有的四阶非线性效应强500倍以上。如果进一步提升微腔的品质因子,该增强倍数可达1000万以上。  该团队将人工合成的四阶非线性应用于产生跨可见-通信波段的量子纠缠光源。通过测量跨波段光子间的时间-能量纠缠验证了人工合成过程的相干性。相比于传统跨波段量子纠缠光源的产生方法,该工作极大降低了相位匹配的困难,并且仅需要通信波段单一泵浦激光,展现了人工合成非线性过程的优势和应用潜力。审稿人高度肯定了该工作的创新性。  中科院量子信息重点实验室博士研究生王家齐、杨元昊为论文共同第一作者,李明副研究员、邹长铃教授为论文通讯作者。
  • 世界首个超导单光子探测器国际标准正式发布
    2022年8月19日,经国际电工委员会(IEC)批准,由中科院上海微系统所超导电子实验室尤立星研究员牵头制定的国际标准IEC 61788-22-3:2022 ED1 Superconductivity - Part 22-3: Superconducting strip photon detector - Dark count rate正式发布。该标准项目制定工作于2018年7月正式获批启动,经过四年的努力最终完成。这是全球首个单光子探测器的国际标准,也是在超导电子学领域我国牵头制定的首个国际标准。尤立星研究员团队在超导条带光子探测器研究方面具有广泛的国内外影响力,特别是在探测效率和暗计数研究方面,取得多项原创性成果;并成立高新技术企业赋同量子科技(浙江)有限公司,开展超导单光子探测技术产业化运作。尤立星研究员是IEC TC90 第十四工作组(WG14:超导电子器件)成员,一直代表中国积极参与超导电子器件领域的国际标准化工作,并因其在国际标准化方面的贡献获2018年度IEC 1906奖。IEC 61788-22-3作为首个超导条带光子探测器(SSPD)的国际标准,没有过去的相关经验可以借鉴。尤立星和同事杨晓燕博士围绕该国际标准开展了大量的技术标准文档写作、循环比对试验以及沟通协调工作,工作也得到了南京大学、天津大学等国内同行的大力支持。特别是这两年的全球新冠疫情和复杂的国际关系变化给相关国际交流、特别是国际循环比对试验带来了巨大的挑战。最终项目团队克服重重困难,完成了标准制定的所有工作。相关工作得到了全国超导标准化技术委员会(SAC/TC265)和IEC TC90第十四工作组的大力支持。备注:在学术界该类器件通常称为超导纳米线单光子探测器件(Superconducting Nanowire Single Photon Detector)。在IEC标准IEC61788-22-1中,该器件被命名为超导条带光子探测器Superconducting (Nano)Strip Photon Detector, 简称:SSPD或SNSPD。
  • 单分子单光子发射及其源阵列首次清晰展示
    p   记者从中国科学技术大学获悉,该校单分子科学团队的董振超研究小组,通过发展与扫描隧道显微镜(STM)相结合的单光子检测技术和分子光电特性调控手段,首次清晰地展示了空间位置和形貌确定的单个分子在电激励下的单光子发射行为及其单光子源阵列。国际学术期刊《自然· 通讯》9月18日发表了这项成果。 /p p   单光子源的研究一直是量子信息领域的核心内容之一,清晰可控的高密度单光子源阵列更是构建量子芯片器件和量子网络的关键。在众多的单量子发光体,包括半导体量子点、原子、分子、色心等,单分子体系由于其发光频率易于调控、谱线较窄、且发光行为具有高度的均一性而受到广泛的关注。此外,电泵单光子源还在纳米光电集成和相关量子器件方面具有潜在的应用前景。 /p p   但是,在迄今为止的单分子体系的电泵单光子源研究中,由于受到实验技术和荧光淬灭效应的制约,一直难以实现从空间位置和形貌确定的单个分子产生强而稳定的单分子电致发光信号,因此,基于单个孤立分子的电泵单光子发射行为一直未能得到清晰明确的展示。 /p p   中国科学技术大学单分子科学团队通过巧妙调控隧道结纳腔等离激元的宽频、局域与增强特性,拓展了测量极限,为在单分子水平上观测和调控分子的光电行为提供了有力手段。他们通过研究发现,所有分子均表现出近乎全同的单光子发射特性,实现了高密度单光子源阵列的构造和展示。 /p p   这些研究结果不仅为在纳米尺度研究金属附近分子的光物理现象提供了新的手段,也为研发面向光电集成量子技术的电泵单分子单光子源提供了新的思路。《自然· 通讯》杂志的审稿人评价说,“这个结果无疑开创了该领域的最新水平,为纳米光子源的研究和发展提供了新的机会”。 /p
  • 滨松光子学商贸(中国)有限公司在京成立
    仪器信息网讯 2011年10月8日,国际知名的光电元器件供应商——日本滨松光子学株式会社(以下简称“日本滨松”)在京成立滨松光子学商贸(中国)有限公司(以下简称“滨松中国”)。日本滨松在新公司所在地北京嘉铭中心举行了简短而隆重的开业揭牌仪式。   揭牌仪式现场   日本滨松光子学株式会社代表取缔役社长(董事长兼总经理)昼马明先生出席揭牌仪式,金国藩院士、姚骏恩院士、周立伟院士、中国原子能工业公司总经理刘春胜先生、清华同方威视技术股份有限公司总裁陈志强先生、中科院高能物理研究所副所长魏龙研究员、北京博奥生物有限公司执行副总裁周玉祥先生等30余名业内专家参加了此次开业仪式。仪器信息网作为特邀媒体亦参加了此次活动。   日本滨松代表取缔役社长昼马明先生(第一排中)与到场嘉宾合影   揭牌仪式后,日本滨松代表取缔役社长昼马明先生接受了仪器信息网等媒体的采访。昼马明先生在采访中表示,“23年前也就是1988年,日本滨松在中国建立了技术型的合资企业——北京滨松光子技术股份有限公司(以下简称“北京滨松”),开始生产光电倍增管等产品,借此希望能促进中国光子产业的发展。这23年来,中国光子产业市场的发展非常迅速,未来这个市场会越来越大,会有高速的增长。”   “自两年前我接任日本滨松总经理以来,我非常看重中国市场。北京滨松原先的营业部只是一个生产企业内部的销售部门,对应中国这样巨大的市场,我们觉得需要加大销售部门的权限与自由度,所以就整合国内营业资源,把北京滨松营业部和日本滨松北京、上海事务所合并,成立了滨松中国,在中国销售日本滨松及北京滨松的产品,同时把北京滨松的产品推向亚洲其他地区。”   “这个专业的销售公司一方面为中国客户提供足够的支持与服务,另一方面更重要的是,我们要与中国客户建立一对一的关系,建立更紧密的沟通,借此了解中国市场的信息,了解中国用户到底需要什么样的产品,以促使日本滨松对自己的产品进行适当的改进。中国市场是非常特殊的,日本滨松要根据中国客户的需求,为中国市场定制其所需要的产品。”   报告会现场   日本滨松光子学株式会社代表取缔役社长昼马明先生(左)作报告,北京滨松光子股份有限公司总经理席与霖先生(右)为其翻译   揭牌仪式后,日本滨松在北京友谊宾馆贵宾楼举行了“21世纪光子技术及光产业的现在和未来暨滨松光子学商贸(中国)有限公司成立庆典报告会”,200余名滨松产品用户参加了此次报告会。昼马明先生在报告会上介绍了日本滨松近年来在光子晶体、近场光等纳米光子学领域的研究进展以及该公司的新产业创业梦想,在场听众反应热烈。   当晚,为感谢广大用户对滨松多年来的支持,日本滨松还举行了盛大的答谢晚宴。   答谢晚宴现场   附录:   日本滨松光子学株式会社   http://www.hamamatsu.com/   滨松光子学商贸(中国)有限公司   http://www.hamamatsu.com.cn   北京滨松光子技术股份有限公司   http://www.bhphoton.com/   http://www.instrument.com.cn/netshow/SH102193/
  • 滨松人物:我们以发展光子技术为己任
    转载实验与分析网报道: 滨松:以发展光子技术为己任 [访滨松光子学商贸(中国)有限公司市场及产品负责人王斯] 和其他中日合资公司不太一样的是,北京滨松的最高决策者都由中国人担任,从公司成立初期就坚持沿用日本的管理体系、传承日本滨松的企业文化,也许正因为如此,公司内部员工离职率低,十年左右资历的员工数不胜数,这在北京滨松根本不算新鲜。在analytica China2014展会现场,笔者采访了滨松光子学商贸(中国)营业部王斯先生,关于滨松日本进入中国26年来市场发展状况,以及滨松在中国市场的战略目标等进行交流,与读者一起分享! LP《实验与分析》:请简单介绍下日本滨松和北京滨松的情况?王斯:日本滨松是拥有60年以上历史的上市公司,以做真空电子管类产品起家。公司内部分为3个事业部:以生产光电倍增管和光源产品为主的电子管事业部 生产以硅材料、铟加砷材料为基础的半导体类产品的固体事业部 基于前两个事业部的元器件制成系统化产品,以图像处理装置为主的系统性事业部 还有一个做大功率激光器的事业化组,和一个主要是专注于对未来10年、20年的前沿技术方向进行研究的中央研究所。1988年,滨松与北京核仪器厂共同投资兴建了北京滨松公司。当时的北京核仪器厂原本就有自己的光电倍增管生产线,但是生产规范化和量产能力不足。为此,日本公司决定向国内转移一部分技术,并规范生产管理,委托北京分公司生产一些面向全球销售的产品,现在的北京滨松已经发展成年产40万支光电倍增管的工厂,生产能力可以满足世界光电倍增管需求的1/3,可以说是全球最大的光电倍增管生产基地,年销售额约1.3亿元。约85%的产品都返回日本市场销售,其它的供应中国市场。 LP《实验与分析》:请问您怎么看待本土化战略和产品定制化趋势?王斯:过去,滨松的产品都是以欧美和日本的客户需求为主而研制,对于中国的客户只提供现有的样本供其选择。随着中国国内开始出现一些在国内外都有影响力的厂商客户,比如分析仪器领域的普析通用,医疗仪器领域的上海联影、深圳迈瑞等 加上原子吸收、原子荧光仪高度国产化,对于光电倍增管的寿命、灵敏度有了更高的需求,现有的样本选择已经满足不了客户的需求。公司开始考虑实施本土化战略,在推出自己的产品以外,也会根据客户的需求推出定制化产品。主要由一线销售收集客户诉求,将研发导向传递回日本滨松和北京滨松,再由相关部门按照中国客户的需求进行定制化产品开发。 LP《实验与分析》:本次展会,滨松展台有哪些亮点产品?王斯:本次展会上,滨松的亮点产品是自产的一款便携式光谱仪,使用微加工技术,将其尺寸控制在拇指肚大小。可以和手机连接检测光环境的亮度、色度,通过激发反射光,进行元素分析,这款光谱仪在日本已经被用于化妆品检测,此外,还可在日常生活中,用于食品检测是否含有有毒有害物,糖、盐成分是否超标,是否富含矿物质。目前的价格大约在3000元左右,希望未来能走入民用,如果量产的话,成本会大幅度降低。 LP《实验与分析》:未来5~10年,滨松产品研发的趋势有哪些?王斯:滨松的中央研究所始终坚持围绕三个主题:粮食、能源、人类健康进行产品的研究开发。能源:我们希望通过自己研发的大功率激光器引发核聚变发电,解决能源问题,社长曾经表示想利用核聚变发电把日本的电价降为现在的1/3。而且核聚变能源是清洁能源,且取之不尽用之不竭,我们目前正在致力于降低核聚变点火成本,以便推进民用市场。粮食:滨松致力于在摆脱自然力的条件下,解决植物生长问题。我们的植物工厂可以实现立体种植,利用激光器照射植物,一年收获7次,且不会因外界条件减产,生产出来的水稻可以和自然力条件下水稻口感、成分上达成一致。此外,在特殊地区,比如新疆的沙漠等,我们可以提供像货柜一样的集装箱,利用当地的风、太阳能发电,驱动里面的激光器照射,生产绿色蔬菜,满足科考、部队等长期派驻人员的需求。人类健康:除了探测器,滨松公司开发的NDP数字化切片系统、PDE(光子眼)在远程医疗的应用也前景广泛,还有核医学检查的伽马相机、SPECT、PMT产品等。现在很多医院的检查设备基本都能发现滨松公司的身影。 LP《实验与分析》:未来的3~5年,滨松对中国市场的战略目标如何规划?王斯:北京滨松以成为国内著名的光子探测器件、部件及模块化产品为主的供应商为战略目标,希望在2017年能够做到年产值7.8个亿。为了达到此目标,首先,滨松中国会陆续开辟新的办事处,主要应对除上海、西安、广州等办事处外的销售、应用开发、市场调研等业务 其次,我们会积极与中国的科研机构进行项目合作,为中国的科研事业奉献一份力,比如和中国高能物理研究所一起进行宇宙暗物质探测、中微子探测,中国大亚湾二期项目等。总之,我们所做的一切都是基于滨松一直坚持的理念:光子是我们的事业,不追求公司做的多么大,更多的是追求一种社会责任。 滨松在中国:滨松公司——日本滨松光子学株式会社北京滨松——北京滨松光子技术股份有限公司滨松中国——滨松光子学商贸(中国)有限公司。1953年,滨松公司成立,如今已是一个跨国性光电企业,目前已在中国、美国、德国等地设有分公司或办事处。1988年,滨松公司与中国核工业总公司北京核仪器厂共同投资,成立北京滨松,滨松公司转移部分技术,在北京滨松生产一些面向全球销售的光电产品。2012年,滨松中国成立,由滨松公司直资,全面负责滨松公司在中国所有产品的销售业务,包括北京滨松生产的产品,与其联系紧密。 王斯先生介绍:滨松光子学商贸(中国)有限公司营业部 市场及产品部负责10年滨松公司工作经验,目前担任滨松中国营业部市场及产品部门负责人。在其工作期间,从零构建起市场部架构,加强了滨松中国从市场调查到市场推广等系列市场手段。构建了微焦点射线源(MFX)的销售体系,把销售额从2012年的124万提高到今年的2400万。市场占有率从40%以下提高到80%以上。搭建起滨松中国的信息化框架,主导了CRM系统和滨松中国中文网站的开发。加强了滨松中国的品牌推广力度,使滨松的品牌知名度大幅上升。 报道原址:http://lab.vogel.com.cn/news_view.php?id=457443
  • 振镜扫描和光子反聚束的结合-帮你命中想要的色心
    随着量子科学及技术的快速发展,单光子源已成为光量子信息研究中的关键器件,对量子计算起着至关重要的作用。NANOBASE将反聚束实验与快速拉曼和光致发光成像技术联用,该项技术将给科研工作者更便捷的手段进行与量子计算机等新兴技术密切相关的单光子源研究。单光子源具有独特的量子力学特性,其在量子技术和信息科学中得到了广泛的应用,包括量子计算机开发和密码学技术研究等等。常见的单光子源有金刚石中的氮空位(NV)色心、单个荧光分子、碳纳米管和量子点等。反聚束实验则是鉴别单光子源的重要表征方法。知识拓展”NV(Nitrogen-Vacancy)色心是金刚石中的一种点缺陷。金刚石晶格中一个碳原子缺失形成空位,近邻的位置有一个氮原子,这样就形成了一个NV色心。反聚束效应是一种量子力学效应,它揭示了光的类粒子行为。它是由于单光子源一次只能发射一个光子而产生的现象。由于两次光子发射之间必须完成一个激发和弛豫循环,两次光子发射之间的最小间隔主要取决于单光子源的激发态寿命。当将发光信号分成两束,采用两个检测器同时探测,每个光子只能被其中一个检测器探测到。即在同一时刻仅有一个检测器可以探测到光子。反聚束效应会导致两个探测器的信号在很短的延迟时间内呈现反相关(HBT实验)。“光子反聚束测试功能和常见的利用机械位移平台的mapping方式相比,采用扫描振镜的mapping方式无需样品发生任何位移,通过光斑在视场内的nm级位移来实现样品的成像。这种方式可以方便的和磁场,低温,CVD等其他设备结合在一起,实现“绝对”的原位测试,避免位移平台本身重复精度累积带来的成像扭曲和定位偏差。而全新推出的光子反聚束测量模块,在原本拉曼光谱、荧光寿命、光电流成像的基础上新增光子反聚束功能,在方便快捷的进行零声子线的测试的同时,还可以完成光子反聚束的测量,极大的简化色心的搜寻流程,迅速判断制备工艺水平。该模块有助于研究者用拉曼光谱和光致发光(PL)成像来表征样品,快速确定目标区域(可能有单光子源的区域),随后在同一仪器来进行反聚束实验。典型案例:对已经进行过氮离子注入处理过的纳米级金刚颗粒进行光谱分析,从而精准定位符合要求的潜在色心:上图1为在5X物镜下进行快速粗扫后得到的针对零声子线峰位强度成像,图2为40X物镜下粗扫获得的强度图像,可以看到十字标志处单独存在的一个潜在优质色心,图3为该点的PL光谱图,可以清晰看到637nm处的较窄的零声子线。利用扫描振镜直接将光斑移动至感兴趣的点位进行HBT测试,上图为测得的单个NV-所体现的光子反聚束现象。常见的处理金刚石样品的方法有很多,比如以浓硫酸和双氧水配备的食人鱼溶液浸泡和清洗,或者将金刚石样品放入空气中进行高温加热,经过处理后的金刚石样品表面氧化层被去除后,再通过飞秒激光辐射等方法进行N离子的注入,从而生成单个NV色心、多个NV色心发光点,以及高密度NV色心团簇。与显微共聚焦荧光系统联用的光子反聚束实验具有众多优势。不仅可以快速筛选NV色心的可能区域,还能实现空间分辨及对其单光子发光源特性的研究,这一技术可以有效地协助单光子源的前沿研究,助力新型量子技术的快速筛选和实验。 昊量光电作为NANOBASE公司在中国区域的du家代理商,全权负责其在中国的销售、售后与技术支持工作。如想进一步了解光子反聚束测试,或者有任何问题及反馈建议,欢迎与我们来联系
  • 硅单光子探测器取得重要进展
    p style=" text-align: justify text-indent: 2em " & nbsp 由无锡中微晶园电子有限公司牵头承担的国家重点研发计划“重大科学仪器设备开发”重点专项“高灵敏硅基雪崩探测器研发及其产业化技术研究”项目经过近两年的努力,突破了低抖动、大光敏面硅单光子探测芯片设计、界面电场调控的离子注入和氧化层制备、低噪声芯片封装等关键技术,开发出硅单光子探测器样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。 /p p style=" text-align: justify text-indent: 2em " 硅单光子探测器具有超高灵敏度,是300-1100nm波段超高灵敏探测不可替代的关键芯片,且器件性能稳定可靠、易形成面阵,是实现远距离精密测量、激光雷达等重大科学仪器的关键核心部件之一。目前国内硅单光子探测芯片主要依赖进口,且阵列芯片禁运。开展硅单光子探测器的自主化研究,对独立自主研制精密测量、激光雷达等装备具有重要意义。项目提出了雪崩过程随机性电场抑制方法,基于国产硅片和研发平台,研制出大光敏面、低时间抖动的硅雪崩探测器芯片,开发了一系列可工程化应用的制备关键技术,并在“北斗系统”开展了激光测距示范应用;同时还面向智能交通的市场需求,研制出线性模式硅雪崩探测器。 /p p style=" text-align: justify text-indent: 2em " 该项目下一步将加快产品化开发,提高产品技术成熟度,加快产品应用示范及推广。& nbsp /p
  • 华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像
    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像技术,获得了单光子成像灵敏度与飞秒光学门控精度,可为芯片无损检测、远程红外遥感和生物医学诊断等重要应用提供有力支撑,相关成果以“Mid-infrared single-photon 3D imaging”为题于2023年6月9日在线发表于Light: Science & Applications。华东师大为论文的第一完成单位,博士研究生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。激光三维成像技术具有成像分辨率高、测量距离远、探测信息丰富等优点而被广泛应用于自动驾驶、卫星遥感、工业生产检测等众多领域。特别是,中红外波段位于分子指纹光谱区,涵盖多种官能团吸收峰,能够对三维目标进行化学特异性识别,在无损伤物质材料鉴定、无标记生物组织成像,以及非入侵医学病理诊断等领域备受关注。此外,该波段包含多个大气透射窗口,且相较于近红外光有更好穿透烟尘、雾霾的能力,在形貌测绘与遥感识别等方面具有独特优势。长期以来,如何实现趋近单光子水平的探测灵敏度都是中红外三维成像领域的国际研究热点,对于促进其在低光通量、光子稀疏的微光探测场景下的应用具有积极意义。然而,单光子水平的激光三维成像长期以来仅局限在可见光/近红外波段,主要制约因素在于中红外波段缺乏高探测灵敏度与高时间分辨率的光子探测与成像器件。近年来,随着红外器件工艺精进与新材料涌现,中红外探测器性能得到了长足发展,但依然面临着增强灵敏度、提升响应带宽、扩大像素规模、提高工作温度等亟待解决的难题。中红外三维测量可以采用光学相干层析、光热成像、光声成像等技术方案来实现,但往往需要逐点扫描,无法单次获取高性噪比的大面阵成像。因此,实现大视场、高分辨的中红外单光子三维成像仍颇具挑战。图3:中红外单光子三维成像装置图为此,华东师大研究团队发展了基于高精度非线性光学取样的中红外上转换测控技术,实现了超灵敏、高分辨、大视场的中红外三维成像,展示了单光子探测灵敏度、飞秒门控时间精度以及百万像素宽画幅。具体而言,研究人员采用非线性光学和频过程将信号波长高效转换至可见光波段,利用高性能硅基相机即可实现红外成像,从而规避了现有红外焦平面阵列灵敏度不足的技术瓶颈。同时,该上转换成像系统采用同步脉冲泵浦方案,可将背景噪声限制在极窄时间窗口内,结合精密频谱滤波可以有效提升探测信噪比,进而实现单光子水平的成像灵敏度。此外,研究人员沿用课题组此前发展的非线性广角成像技术[Nature Commun. 13, 1077 (2022)],通过单次曝光即可获得大视场成像,免除了逐点机械扫描过程,大幅提升了成像速度。图4:中红外三维立体成像,被测信号强度约为1光子/像素/秒进一步,研究人员采用超快光学符合门控技术,精确测量中红外信号的相对飞行时间,从而得到被测物体表面的形貌信息。该时间飞行成像系统的时间分辨能力取决于光学脉冲宽度,可以达到飞秒水平的时间标记精度,通过高速延时扫描与宽场全幅采集,对被测场景进行快速时域切片,进而反演出目标界面的反射率、透射率以及材料的吸收率、折射率、色散量等丰富信息。图4展示了多角度中红外照明下三维数据信息融合重构出的被测目标立体形貌,其中被测信号强度约为1光子/像素/秒。图5:时空关联去噪算法,信号和噪声水平分别约为0.05和1000光子/像素/秒 在稀疏光子场景中,有效信号往往被淹没在严重的背景噪声中,仅从强度信息通常难以识别被测目标。为此,如何有效地区分信号和噪声光成为单光子成像的关键难点。为模拟极低照度、高噪声场景,该研究团队将红外信号衰减至0.05光子/像素/秒,对应的信噪比低至1:20000。如图5a-c所示,传统强度峰值识别算法并不能有效甄别信号。在主动成像中,成像系统接收的信号光子在时-空域上具有一定的连续性,而背景噪声光子则会随机分布在整个时间轴与空间像素点上。 基于该特性,研究人员发展了精确、高效和鲁棒的点云去噪算法,通过关联增强空间相邻像素与相邻时间帧的强度,有效提取与甄别信号光子,进而实现高背景噪声下的中红外单光子三维成像(图5d-i)。 所发展的中红外三维成像技术具备高灵敏与高分辨的独特优势,结合该波段优越的抗散射干扰能力,对于复杂环境下的红外场景恢复具有重要意义,可以发展出中红外散射成像与中红外非视域成像。此外,通过调谐中红外信号波长,可以实现四维高光谱成像,可为材料检测、无损探伤、生物成像等创新应用提供有力支撑。 近年来,曾和平教授与黄坤研究员课题组在红外单光子测控方面开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Commun. 13, 1077 (2022)],中红外单光子单像素成像[Nature Commun. 14, 1073 (2023)],以及高帧频中红外单光子光谱 [Laser Photonics Rev. 2300149 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。
  • 我国光辐射功率计量量程扩展到了光子水平
    日前从中国计量科学研究院获悉,由该院承担的国家“十一五”科技支撑项目“利用相关光子测量技术建立光电探测器量子效率测量装置的研究”近日通过专家验收。该项目自主研制的纠缠光子法探测器量子效率绝对定标装置,成功将我国光辐射功率计量的量程能力扩展到了光子水平,为用光子数重新定义国际基本单位之一的坎德拉(cd)量值复现研究奠定了重要基础。   该课题的研制成功,缩短了我国与发达国家之间在实现基于量子物理复现光辐射功率基准研究方面的差距 同时为研究量子信息、生物医学、天空探测器、天文物理、环境科学等领域中涉及的光子探测技术提供了光子水平的计量技术保障。   据该课题负责人、中国计量院光学所吕亮介绍,课题历时4年,在理论计算的基础上,确定了非线性晶体相位匹配参数,通过相位匹配条件推导出了纠缠光子对的波长及空间分布计算方法 解决了光路设计、光子探测、符合测量系统设计、符合宽度设定、偶然符合测量方法、暗计数测量方法等核心技术问题,在实际装置中实现了Type-I相位匹配相关光子场,并建立了基于相关光子的光电探测器量子效率测量装置,该装置的光电倍增管器件量子效率测量不确定度为0.7%,达到国际领先水平。   吕亮介绍,基于自发参量下转换相关光子方法标定光电探测器的方法,除了作为一种崭新的光辐射计量手段外,其本身更具有特殊的技术优势。一是传统上测量探测器量子效率乃至响应度的方法都是依靠标准灯或激光的准确量值来实现。而相关光子法不依赖于任何基标准器,其量值的传递过程,完全实现了无溯源定标。二是该装置可直接应用于生物发光、医疗仪器、激光远距离探测等领域的校准服务,为新技术领域研究提供高准确度的量子计量技术保障。三是研制该装置的相关光子法与量子密钥、可调谐激光等技术直接相关,是单光子源制备的技术基础。
  • 中国全光器件设计取得重要进展
    p   全光器件在传统的光通讯、量子信息等领域非常重要,其设计是基于光子在真实空间中的传播和干涉,需要精确控制大量的光学元件,精密而复杂的全光器件很难实现。 /p p   在量子调控与量子信息重点专项的支持下,中国科学技术大学周正威、许金时研究团队在国际上首次提出利用光学人工维度上的调控实现全光器件的设计。他们在理论上提出通过调控简并光腔中的轨道角动量光子设计全光量子存储器和滤波器,将光子的轨道角动量自由度映射为人造维度上的一个个空间格点,通过巧妙地设计人造维度中格点的跃迁,等效光子在真实空间维度上的传播,通过调控光子在人工维度上行为,最终实现全光器件的功能。研究团队提出了基于此系统实现全光量子存储器和光学滤波器的方法,简化全光器件设计难度,为光学人工维度的应用开创了一条新的道路,制备成功包含这些简并的光学轨道角动量模式的光腔。 /p p   相关成果在《Nature Communication》[6, Article Number 7704 (2015)]、《Physical Review Letter》[118, 083603 (2017)]和《Optical Letter》[42, 2042 (2017)]上发表。 /p p style=" text-align: center " img title=" ncomms8704-f1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/cd1c02da-aa28-4dc5-a650-83f8fa1ec9cf.jpg" / /p p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制