当前位置: 仪器信息网 > 行业主题 > >

光学研究

仪器信息网光学研究专题为您整合光学研究相关的最新文章,在光学研究专题,您不仅可以免费浏览光学研究的资讯, 同时您还可以浏览光学研究的相关资料、解决方案,参与社区光学研究话题讨论。

光学研究相关的论坛

  • 光学仪器的研究内容是哪些

    代光学检测技术和仪器的集成化、自动化、智能化为目标的光机电算一体化的现代光学仪器[url=http://www.gxoptics.com/]滤光片[/url]技术。主要研究内容有:以光学MEMS技术为基础的微光学、微机构以及二元光学技术的研究;混合光学系统的设计与制备技术的研究;围绕关键光纤传感元件技术,开展光机电算集成系统技术的研究,开拓现代光学仪器系统的信号获取、传感、检测与处理的集成化、自动化的新途径;开展光机电集成成像工程技术以及以微纳米技术为基础的纳米测试计量技术、纳米操作技术的研究;探索纳米尺寸光电精密检测与计量的新方法。还有要补充的吗?http://www.gxoptics.com/2384.html

  • 尾流的光学特性研究与测量

    【题名】: 尾流的光学特性研究与测量【期刊】:【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-80142-2001008678.htm

  • 光学显微成像技术在神经科学研究中的应用

    [align=left][font=宋体][color=#374151]摘要:光学显微成像技术在神经科学研究中发挥着不可或缺的作用。文章将深入探讨两种主要的光学显微成像技术,即荧光显微镜和多光子显微镜,在神经科学领域的应用案例。我们首先介绍了这些技术的基本原理和发展历程,然后详细描述了它们在神经细胞成像、突触可塑性研究和脑功能成像中的应用。通过这些案例,我们展示了光学显微成像技术在神经科学研究中的重要性,以及它们对我们深入理解神经系统的贡献。[/color][/font][/align][font=宋体][color=#374151]关键词:神经科学、荧光显微镜、多光子显微镜、神经细胞成像[/color][/font][font=宋体][color=#374151]光学显微成像技术自17世纪以来一直在科学研究中扮演着重要的角色。随着技术的不断发展,光学显微镜已经成为许多科学领域的核心工具之一,尤其在生命科学和神经科学领域。文章将深入探讨光学显微成像技术在神经科学研究中的应用案例,重点介绍荧光显微镜和多光子显微镜这两种主要技术的原理和应用。[/color][/font][font=宋体][color=#374151]一、光学显微成像技术应用[/color][/font][font=宋体][color=#374151]1.荧光显微镜的应用[/color][/font][font=宋体][color=#374151]荧光显微镜是一种广泛应用于神经科学研究的工具,它使用荧光染料或标记物来可视化和研究神经系统的结构和功能。以下是荧光显微镜在神经科学研究中的应用案例,包括神经细胞成像、突触可塑性研究、脑疾病研究等方面。[/color][/font][font=宋体][color=#374151](1)神经细胞成像[/color][/font][font=宋体][color=#374151]荧光显微镜在观察和研究神经细胞的结构和功能方面发挥了关键作用。通过使用荧光标记的抗体或分子探针,研究人员可以可视化神经元的不同结构,包括轴突、树突、细胞核等。这有助于研究神经细胞的形态特征以及它们在不同生理条件下的变化。[/color][/font][font=宋体][color=#374151](2)突触可塑性研究[/color][/font][font=宋体][color=#374151]荧光显微镜在突触可塑性研究中也具有重要应用。突触可塑性是指突触的结构和功能如何受到刺激和学习的影响。通过标记突触相关的蛋白质或分子,研究人员可以实时观察突触的变化,如突触增强或突触抑制,以深入理解学习和记忆的神经机制。[/color][/font][font=宋体][color=#374151](3)脑功能成像[/color][/font][font=宋体][color=#374151]荧光显微镜在脑功能成像方面也具有潜力。通过将钙指示剂或光遗传学标记物引入神经元,研究人员可以实时监测神经元的活动。这种技术使我们能够理解大脑不同区域的活动模式,以及不同刺激下神经元的响应。这对于研究认知过程、行为和神经疾病有着重要意义。[/color][/font][font=宋体][color=#374151](4)神经干细胞研究[/color][/font][font=宋体][color=#374151]荧光显微镜也被广泛用于研究神经干细胞。通过标记和追踪神经干细胞的命运和分化过程,研究人员可以理解神经系统的发育和再生机制。这对于神经系统修复和治疗神经系统疾病具有潜在应用。[/color][/font][font=宋体][color=#374151](5)荧光标记的蛋白表达[/color][/font][font=宋体][color=#374151]荧光显微镜也可用于研究不同蛋白质在神经系统中的表达和定位。通过使用荧光标记的蛋白表达技术,研究人员可以观察不同蛋白质的分布和相互作用,从而深入理解神经系统中的信号传导和调控。[/color][/font][font=宋体][color=#374151](6)脑疾病研究[/color][/font][font=宋体][color=#374151]荧光显微镜在研究脑疾病方面也发挥着关键作用。研究人员可以使用荧光显微镜来研究神经系统疾病的病理机制,如帕金森病、阿尔茨海默病和精神分裂症。这有助于发现潜在的治疗方法和药物筛选。[/color][/font][font=宋体][color=#374151]荧光显微镜在神经科学研究中的应用是多方面的,涵盖了神经细胞成像、突触可塑性研究、脑功能成像、神经干细胞研究、蛋白质表达和脑疾病研究等多个领域。这一技术为神经科学家提供了非常强大的工具,帮助他们深入理解神经系统的结构和功能,以及与神经相关的疾病的机制。未来,随着技术的不断发展,荧光显微镜将继续在神经科学领域中发挥关键作用,为我们揭示神经系统的奥秘提供更多的洞察力。[/color][/font][font=宋体][color=#374151]2.多光子显微镜的应用[/color][/font][font=宋体][color=#374151]多光子显微镜(Multi-Photon Microscopy)是一种先进的成像技术,它利用非线性光学效应,如多光子吸收,为神经科学家提供了强大的工具,用于研究神经系统的结构和功能。相比传统的荧光显微镜,多光子显微镜具有许多显著的优势,包括更深的成像深度、较少的光损伤、更少的荧光标记物和更高的空间分辨率。以下是多光子显微镜在神经科学研究中的应用领域:[/color][/font][font=宋体][color=#374151](1)脑功能成像[/color][/font][font=宋体][color=#374151]脑功能成像是多光子显微镜的一个主要应用领域。这种技术允许研究人员实时观察活体动物的脑活动,包括神经元的兴奋与抑制、突触传递和脑区之间的相互作用。多光子显微镜能够提供高分辨率的三维图像,而无需使用荧光标记物。这对于研究大脑的基本功能、学习和记忆等过程至关重要。[/color][/font][font=宋体][color=#374151](2)钙离子成像[/color][/font][font=宋体][color=#374151]钙离子在神经元内起着关键的信号传导作用。多光子显微镜可以用于监测神经元内的钙离子浓度变化,这对于理解神经元的兴奋性和突触传递至关重要。通过使用荧光钙染料,研究人员可以实时观察神经元内钙离子浓度的动态变化,以及不同神经元之间的协同作用。[/color][/font][font=宋体][color=#374151](3)神经元形态学研究[/color][/font][font=宋体][color=#374151]多光子显微镜在研究神经元的形态学和结构上也具有独特的优势。它可以提供高分辨率的三维成像,允许研究人员详细观察神经元的分支结构、突触连接和细胞器的分布。这对于理解神经元的连接方式、发展和退行性疾病的机制至关重要。[/color][/font][font=宋体][color=#374151](4)活体动物模型研究[/color][/font][font=宋体][color=#374151]多光子显微镜也在活体动物模型研究中发挥着关键作用。研究人员可以使用这种技术观察小鼠、果蝇等模型动物的脑活动,从而研究不同物种的神经系统功能和行为。这对于神经药理学、疾病建模和药物筛选具有重要意义。[/color][/font][font=宋体][color=#374151](5)细胞内成像[/color][/font][font=宋体][color=#374151]多光子显微镜也可用于单个神经元或突触的细胞内成像。这允许研究人员观察细胞内的亚细胞结构、蛋白质运输和突触形成等过程。这对于研究神经元的分子机制和突触可塑性非常有帮助。[/color][/font][font=宋体][color=#374151]多光子显微镜的应用领域不仅局限于神经科学,还扩展到其他生命科学领域,如细胞生物学、免疫学和生物医学研究。其高分辨率和深层成像能力使其成为许多领域中不可或缺的工具。[/color][/font][font=宋体][color=#374151]尽管多光子显微镜在神经科学研究中具有巨大的潜力,但它也面临着一些挑战。其中之一是成像速度,尤其在观察大脑活动时,需要高速成像以捕捉快速的神经事件。另一个挑战是数据处理和分析,因为高分辨率、三维和四维成像产生了大量的数据,需要强大的计算资源和分析工具。[/color][/font][font=宋体][color=#374151]未来,我们可以期待多光子显微镜技术的不断改进和发展,以应对这些挑战。新的激光技术、荧光标记物和成像算法将继续推动这一领域的进展,为我们深入理解神经系统的复杂性提供更多的洞察力。多光子显微镜将继续在神经科学领域中发挥关键作用,有望帮助我们解决一些最具挑战性的神经科学问题。[/color][/font][font=宋体][color=#374151]二、光学显微成像技术在神经科学研究中的应用存在问题[/color][/font][font=宋体][color=#374151]光学显微成像技术在神经科学研究中的应用虽然具有众多优势,但也存在一些问题和挑战,这些问题需要科研人员不断努力来解决。以下是一些存在问题:[/color][/font][font=宋体][color=#374151]1.有限的成像深度[/color][/font][font=宋体][color=#374151]传统的光学显微成像技术受到光的折射和吸收的限制,导致成像深度受到限制。这在研究深层脑区时成为问题,因为光无法有效透过多层组织,导致深层神经元无法清晰成像。多光子显微镜已经在这一方面取得了进展,但仍然存在深度限制。[/color][/font][font=宋体][color=#374151]2.光损伤和毒性[/color][/font][font=宋体][color=#374151]荧光标记物和强光源在成像过程中可能对生物样本产生光损伤和毒性作用。这对于活体成像和长时间观察是一个挑战,因为它可能导致样本的退化和死亡。科研人员需要努力寻找更温和的成像方法和标记物,以减轻这些问题。[/color][/font][font=宋体][color=#374151]3.数据量庞大[/color][/font][font=宋体][color=#374151]高分辨率和多维成像技术产生大量的数据,需要强大的计算资源和复杂的数据分析工具。处理和管理这些数据可能是一个挑战,尤其是在长期实验和大规模成像项目中。[/color][/font][font=宋体][color=#374151]4.标记物的选择[/color][/font][font=宋体][color=#374151]合适的荧光标记物对于获得高质量的成像数据至关重要。然而,选择适当的标记物可能会受到限制,因为一些标记物可能会干扰样本的正常生理活动,或者不适合特定的实验条件。因此,需要不断开发新的标记物和成像方法。[/color][/font][font=宋体][color=#374151]5.解析度限制[/color][/font][font=宋体][color=#374151]光学显微成像的分辨率受到光的波长限制,通常受到绕射极限的限制。虽然一些超分辨率成像技术已经出现,但它们仍然无法突破光学分辨率极限。这可能会限制对神经系统微观结构的精确观察。[/color][/font][font=宋体][color=#374151]6.活体成像的挑战[/color][/font][font=宋体][color=#374151]对于活体成像,尤其是在大脑中,样本的运动和呼吸等因素可能导致成像失真。稳定和精确定位样本是一个技术挑战。[/color][/font][font=宋体][color=#374151]尽管存在这些问题,光学显微成像技术仍然是神经科学研究的不可或缺的工具,因为它们提供了独特的实时、高分辨率和非侵入性的成像能力。科研人员不断努力解决这些问题,通过技术创新和改进,光学显微成像技术有望继续为神经科学领域的研究提供更多洞察力。[/color][/font][font=宋体][color=#374151]三、下一步研究方向[/color][/font][font=宋体][color=#374151]基于上述问题,光学显微成像技术在神经科学研究中的应用仍然需要不断改进和发展。下面是可能的下一步研究方向,以解决这些问题:[/color][/font][font=宋体][color=#374151]1.改进成像深度[/color][/font][font=宋体][color=#374151]研究人员可以探索新的成像方法,如双光子显微镜和光学波前调制成像,以增加成像深度。此外,开发新的光学透明样本制备技术,如透明大脑样本技术,可以帮助克服深度限制问题。[/color][/font][font=宋体][color=#374151]2.减少光损伤和毒性[/color][/font][font=宋体][color=#374151]研究人员可以寻找更温和的成像条件,减少光损伤和荧光标记物的毒性。此外,使用先进的成像系统,如自适应光学成像,可以减小激光功率,同时保持高分辨率。[/color][/font][font=宋体][color=#374151]3.数据管理和分析工具[/color][/font][font=宋体][color=#374151]开发更强大的数据管理和分析工具,以处理庞大的成像数据。机器学习和深度学习方法可以帮助提高数据分析的效率,并自动检测和量化细胞和结构。[/color][/font][font=宋体][color=#374151]4.标记物的改进:寻找更多、更具选择性的标记物,以减少对样本的干扰。这可以包括荧光标记物的改进、发展新的基因表达标记和探测技术。[/color][/font][font=宋体][color=#374151]5.突破分辨率极限[/color][/font][font=宋体][color=#374151]进一步发展超分辨率成像技术,以突破传统光学分辨率极限,获得更高的细节分辨率。例如,结构光显微镜和单分子成像技术可以帮助提高分辨率。[/color][/font][font=宋体][color=#374151]6.活体成像技术改进:研究人员可以探索新的样本固定和稳定技术,以减小样本运动对成像的影响。另外,开发新的活体成像方法,如头部悬置成像和小型显微成像技术,可以帮助在动态活体条件下进行成像。[/color][/font][font=宋体][color=#374151]7.多模态成像[/color][/font][font=宋体][color=#374151]结合不同的成像技术,如光学显微镜与电生理记录、光学显微镜与功能磁共振成像(fMRI)等,以获得更全面的神经科学数据。[/color][/font][font=宋体][color=#374151]8.多尺度成像[/color][/font][font=宋体][color=#374151]开发多尺度成像方法,能够在微观和宏观水平上同时观察神经系统的活动,从神经元到整个脑区。[/color][/font][font=宋体][color=#374151]这些研究方向代表了改进和扩展光学显微成像技术在神经科学研究中的应用的可能途径。通过不断的技术创新和跨学科合作,神经科学家和工程师有望克服这些问题,提高光学显微成像技术的效能和应用广度,以更深入地理解神经系统的复杂性。[/color][/font][font=宋体][color=#374151]四、结论[/color][/font][font=宋体][color=#374151]光学显微成像技术在神经科学研究中的应用案例清楚地表明,这些技术在揭示神经系统的复杂性和功能中起到了关键作用。然而,这仅仅是一个开始,未来仍有许多挑战和机遇等待我们探索。例如,新的成像技术和荧光标记方法的不断发展将进一步扩展我们的研究领域。此外,将光学显微成像技术与其他分子生物学和生物化学技术相结合,可以更全面地理解神经系统的功能。[/color][/font][font=宋体][color=#374151]在未来,我们可以期待更高分辨率、更深层次的成像以及更多三维和四维成像的发展。这将有助于解决神经科学中的一些最具挑战性的问题,如神经网络的复杂性和神经退行性疾病的机制。光学显微成像技术将继续为神经科学研究提供有力的工具,推动我们对大脑和神经系统的理解不断深入。[/color][/font][font=宋体][color=#374151]参考文献:[/color][/font][font=宋体][color=#374151][1]高宇婷,潘安,姚保利等.二维高通量光学显微成像技术研究进展[J].液晶与显示,2023,38(06):691-711.[/color][/font][font=宋体][color=#374151][2]王义强,林方睿,胡睿等.大视场光学显微成像技术[J].中国光学(中英文),2022,15(06):1194-1210.[/color][/font][font=宋体][color=#374151][3]章辰,高玉峰,叶世蔚等.自适应光学在双光子显微成像技术中的应用[J].中国激光,2023,50(03):37-54.[/color][/font][font=宋体][color=#374151][4]曹怡涛,王雪,路鑫超等.无标记光学显微成像技术及其在生物医学的应用[J].激光与光电子学进展,2022,59(06):197-212.[/color][/font][font=宋体][color=#374151][5]关苑君,马显才.光学显微成像技术在液-[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分离研究中的应用[J].中山大学学报(医学科学版),2022,43(03):504-510.DOI:10.13471/j.cnki.j.sun.yat-sen.Univ (med.sci).2022.0319.[/color][/font][font=宋体][color=#374151][6]陈廷爱,陈龙超,李慧等.结构光照明超分辨光学显微成像技术与展望[J].中国光学,2018,11(03):307-328.[/color][/font][font=宋体][color=#374151][7]安莎. 轴平面光学显微成像技术及其应用研究[D].中国科学院大学(中国科学院西安光学精密机械研究所),2021.DOI:10.27605/d.cnki.gkxgs.2021.000055.[/color][/font][font=宋体][color=#374151][8]杜艳丽,马凤英,弓巧侠等.基于空间光调制器的光学显微成像技术[J].激光与光电子学进展,2014,51(02):13-22.[/color][/font][font=宋体][color=#374151][9]莫驰,陈诗源,翟慕岳等.脑神经活动光学显微成像技术[J].科学通报,2018,63(36):3945-3960.[/color][/font][font=宋体][color=#374151][10]张财华,赵志伟,陈良怡等.自适应光学在生物荧光显微成像技术中的应用[J].中国科学:物理学 力学 天文学,2017,47(08):26-39.[/color][/font]

  • 光学镜头偏心误差的自动化测量技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px]张强[/size][/b][font=&]【题名】:[b][b]光学镜头偏心误差的自动化测量技术研究[/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [b]光学镜头偏心误差的自动化测量技术研究[/b][/color][/b]

  • Mie散射及水中气泡光学性质的研究

    【题名】: Mie散射及水中气泡光学性质的研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10702-2010190437.htm

  • 光学后散射光浊度仪简介及应用研究

    【作者】: 【题名】: 光学后散射光浊度仪简介及应用研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC200102015.htm

  • 基于散射、衍射的光学表面疵病检测的研究

    [sup]?[b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font][font=宋体][color=black]【作者】:[b][b][b]陈涨敏[/b][/b][/b][/color][/font][/b][font=&]【题名】:[/font][b][font=宋体][b]基于散射、衍射的光学表面疵病检测的研究[/b][/font][/b][font='微软雅黑',sans-serif]【期刊】: cnki,浙江大学[/font][font='微软雅黑',sans-serif][/font][b][color=#545454]【链接]: [url=https://x.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD2014&filename=1014036222.nh][b]基于散射、衍射的光学表面疵病检测的研究 - 中国知网 (cnki.net)[/b][/url][/color][/b][/sup]

  • 散射扫描法光学元件表面疵病检测技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px][b]张彬[/b][/size][/b][font=&]【题名】:[b][b][b]散射扫描法光学元件表面疵病检测技术研究[/b][/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201601&filename=1016025795.nh&uniplatform=NZKPT&v=1F6G829sgZAFA4MYvRETNbgdZd9BzVfLcxERQ6aplrCK1Co8JxayeBFNIXRM1blG]散射扫描法光学元件表面疵病检测技术研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 基于线阵扫描的自动光学检测系统关键技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[b][b][b][font=&][size=24px][color=#333333]陈镇龙[/color][/size][/font][/b][/b][/b][/b][font=&]【题名】:[b]基于线阵扫描的自动光学检测系统关键技术研究[/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2016&filename=1015712320.nh&uniplatform=NZKPT&v=g8fPyqfSNBIZFLi6JV5IjwK9gKCSBCEvUuN3dTxvKpYlXKEQlXfSHL3OoehSZY07]基于线阵扫描的自动光学检测系统关键技术研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 光学元件亚表面缺陷检测自动调平与对焦研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px][b]王悦[/b][/size][/b][font=&]【题名】:[b][b][b]光学元件亚表面缺陷检测自动调平与对焦研究[/b][/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202101&filename=1021001205.nh&uniplatform=NZKPT&v=xYGHSdLttNdKdrQ4eSEtVhLFx0cYpkq8yjYDo-JSapNdufFHtF5fAnmFys_fHVpk]光学元件亚表面缺陷检测自动调平与对焦研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 多源光谱特征组合的COD光学检测方法研究

    【作者】:【题名】:多源光谱特征组合的COD光学检测方法研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?filename=GUAN201411045&dbcode=CJFQ&dbname=CJFD2014&v=t4rSBhLh-EjJsJCYC0yhbJ9cJoPGs6jh5kKtp2k6Vj0vhzuLeqNMWh4WvTTAZvDS

  • 共聚焦激光扫描光学显微成像关键技术研究

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=12px][color=#1c1d1e][b][b]魏通达[/b][/b][/color][/size][/font][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[/font][b][b][color=#333333][b][font=&][color=#032d2c][b]共聚焦激光扫描光学显微成像关键技术研究[/b][/color][/font][/b][/color][/b][/b][font=&]【期刊】:[/font][font=Arial][font=&][size=12px]CNKI[/size][/font][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://link.springer.com/book/10.1007/978-0-387-45524-2]共聚焦激光扫描光学显微成像关键技术研究 - 中国知网 (cnki.net)[/url][/b][/color][/font]

  • 帮忙下载一篇 “熔石英光学元件亚表面缺陷的探测与表征技术研究”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=15px][font=&][/font][b]刘红婕蒋晓东黄进孙来喜王凤蕊叶鑫郑万国[/b][font=&][/font][size=12px][/size][/size][/font][b][/b][font=&]【题名】】:[b][b][b]熔石英光学元件亚表面缺陷的探测与表征技术研究[/b][/b][/b][/font][font=&]【出版社】:CNKI[/font][font=&][color=#333333][b][/b][/color][/font][font=Arial][size=12px][/size][/font][b]【链接】:[url=https://ieeexplore.ieee.org/document/9075661]熔石英光学元件亚表面缺陷的探测与表征技术研究 - 中国知网 (cnki.net)[/url][/b]

  • 光学表面亚表层损伤检测技术研究

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=sans-serif][/font][font=Arial][font=Archivo, &][size=16px][b][b]王春慧[/b][/b][/size][/font][/font][font=sans-serif][/font][/b][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[b][b][b][font=&][size=30px][b][b][b]光学表面亚表层损伤检测技术研究[/b][/b][/b][/size][/font][/b][/b][/b][/font][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://kns-cnki-net-443.webvpn.xnai.edu.cn/kcms/detail/detail.aspx?filename=2010190599.nh&dbcode=CMFD&dbname=CMFD2011&v=55gtsYyqhvRutFzmr2XW686Gwn9O3c6FiTgY0tQX75_FOaNLDvVaGQc9pMHO4g54]光学表面亚表层损伤检测技术研究 - 中国知网 (xnai.edu.cn)[/url][/b][/color][/font]

  • 帮忙下载一篇“光学定心加工及装配技术研究”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][size=15px][back=#e5e6e7][font=&]董时[/font][/back][/size][b][/b][font=&]【书名】:[b][font=Helvetica, Arial, sans-serif][size=22px]Fundamentals Of Establishing An Optical Tolerance Budget[/size][/font][/b][/font][font=&]【出版社】:CNKI[/font][font=&][color=#333333][b][/b][/color][/font][font=Arial][size=12px][/size][/font][b]【链接】:[font=&][size=13px][color=#0066cc]董时[/color][/size][/font][url=https://xueshu.baidu.com/usercenter/paper/show?paperid=bfc651684c2a036e38ebdad469544537&site=xueshu_se&hitarticle=1]光学定心加工及装配技术研究 - 百度学术 (baidu.com)[/url][/b][font=&][size=13px][color=#0066cc]董时[/color][/size][/font]

  • 发表《自然通讯》|研究成员提出一种近场光学成像技术

    来自中国科学院物理研究所、国家纳米科学中心等单位的科研人员,通过研究三层石墨烯的菱形堆垛结构发现,在菱形堆垛三层石墨烯中,电子和红外声子之间具有强相互作用,这有望应用于光电调制器和光电芯片等领域。相关研究成果在线发表于《自然通讯》杂志。近年来,三层石墨烯引发了研究人员的广泛关注。通常,三层石墨烯可呈现出两种不同的堆叠几何构型,分别是菱形堆垛和Bernal堆垛。“这两种堆垛的三层石墨烯具有完全不一样的对称性和电子特性,比如中心对称的菱形堆垛的三层石墨烯具有位移电场可调的能隙,并可展现出一系列Bernal堆垛三层石墨烯不具有的关联物理效应:莫特绝缘态、超导和铁磁等。”论文共同通讯作者、中国科学院物理研究所研究员张广宇说。[align=center][img=,573,323]https://img1.17img.cn/17img/images/202403/uepic/75ae2619-5736-4ee9-bf61-925d0d6d44bd.jpg.2[/img][/align][align=center] 三层石墨烯中堆垛相关的电声耦合示意图。受访者供图[/align]如何理解三层石墨烯菱形堆垛中的这些独特关联物理效应,已成为当前重要研究前沿之一。此次,科研人员通过[b]栅电压可调的拉曼光谱和激发频率依赖的近场红外光谱[/b],[b]发现了菱形堆垛三层石墨烯中电子和红外声子之间具有强相互作用。[/b]“[b]我们提出了一种简单、无损、高空间分辨的近场光学成像技术,不仅可以鉴别石墨烯的堆垛次序,还可以探索电子—声子强相互作用,这为将来多层石墨烯以及转角石墨烯的研究提供坚实基础[/b]。”论文共同通讯作者、国家纳米科学中心研究员戴庆说。据悉,这项研究为理解菱形堆垛的三层石墨烯中的超导和铁磁等物理效应提供了新的视角。同时,它也为新一代光电调制器和光电芯片的设计提供了相关材料研究的基础。[来源:科技日报][align=right][/align]

  • 大口径光学透镜表面疵病机器视觉检测技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px][b][b][b]王雪 谢志江[/b][/b][/b][/size][/b][font=&]【题名】:[/font][b][b]大口径光学透镜表面疵病机器视觉检测技术研究[/b][/b][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202101&filename=1021001205.nh&uniplatform=NZKPT&v=xYGHSdLttNdKdrQ4eSEtVhLFx0cYpkq8yjYDo-JSapNdufFHtF5fAnmFys_fHVpk]大口径光学透镜表面疵病机器视觉检测技术研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 帮忙下载一篇“光学镜片外观瑕疵视觉检测技术研究及实现”文献

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[b][b][font=&][size=13px][color=#0066cc][/color][/size][/font][font=&][size=13px][color=#0066cc]朱宇栋[/color][/size][/font][font=&][size=13px][color=#0066cc][/color][/size][/font][/b][/b][/b][font=&]【题名】:[/font][b][b][b][b][b][url=http://www.eope.net/EN/abstract/abstract17664.shtml][b]光学镜片外观瑕疵视觉检测技术研究及实现[/b][/url][/b][/b][/b][/b][/b]【期刊】:[font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://xueshu.baidu.com/usercenter/paper/show?paperid=1m780cd0ac7h0v30sd5u00n0hx324059&site=xueshu_se][font=&][size=13px][color=#0066cc]朱宇栋[/color][/size][/font]光学镜片外观瑕疵视觉检测技术研究及实现 - 百度学术 (baidu.com)[/url][/b][font=&][size=13px][color=#0066cc]朱宇栋[/color][/size][/font]

  • 大口径光学元件表面划痕缺陷检测技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px][b][b]黄梦辉[/b][/b][/size][/b]【题名】:[b][b][b][b][b][b]大口径光学元件表面划痕缺陷检测技术研究[/b][/b][/b][/b][/b][/b][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202101&filename=1021001205.nh&uniplatform=NZKPT&v=xYGHSdLttNdKdrQ4eSEtVhLFx0cYpkq8yjYDo-JSapNdufFHtF5fAnmFys_fHVpk]大口径光学元件表面划痕缺陷检测技术研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 中国科学院大连化学物理研究所今日正在招聘,光学仪器研制-特别研究助理,坐标大连市,高薪寻找不一样的你!

    [b]职位名称:[/b]光学仪器研制-特别研究助理[b]职位描述/要求:[/b]光学仪器研制岗:1. 岗位职责:负责光学/光谱仪器和传感器研制与调试,负责光学光谱仪器和传感器研制工作,负责仪器原理和流程设计,对研制过程中的技术负责,负责总装、调试、评价测试等工作;按要求开展相应的质量文档工作。2. 岗位要求:博士学位,仪器、物理或光学相关专业,具有扎实的专业知识;有光学仪器和传感器设计及研制经历者、懂分析仪器者、熟悉光谱仪器者优先。3. 待遇:博士聘为特别研究助理,税前年薪13-20万,每年按照绩效考核结果定下一年工资,表现优秀者优先考虑入职研究所事业编制。特别优秀者可依托研究组申请大连化物所优秀博士(30周岁以下),研究所将为其提供一次性50万元住房补贴和100万科研启动经费,并直接聘为副研究员。[b]公司介绍:[/b] 三十年来,凭借着中科院大连化学物理研究所雄厚的科研力量和坚实的技术积累,一直致力于色谱分析领域的研究和开发的《科分》人不断创新,先后完成了国家九五攻关项目、国家自然科学基金、中科院重点课题等数十项科研项目,并获得中科院的自然科学、科技发明和科技进步奖。在国家科委和中科院的九.五科技攻关课题支持下,科分人研制开发出“微型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]”并开始商品化,无疑是《科分》人的又一伟大奇迹。   科分目...[url=https://www.instrument.com.cn/job/user/job/position/67199]查看全部[/url]

  • 【原创】出一台IOR高倍双筒光学显微镜(自带光源),研究级

    【原创】出一台IOR高倍双筒光学显微镜(自带光源),研究级

    出一台欧洲的高级双筒光学显微镜(自带光源),最大倍数1600倍.研究级.并可作为高档陈列装饰品,全合金材料,是收藏品中的精品,大专院校教学用(绝非医用),三对目镜,四个物镜(全部原装),成色很好(九成新),观察图象清晰,是科技.生物化学.医疗.农业.大专院校.及个人的首选商品.更是收藏爱好者的最佳藏品,各部位可以任意拆卸,便于保养。   双目镜筒带瞳距/屈光度调节,1.6X调中 聚光镜带可变光栏.原配的电源,15W/6V可调卤素光源.这台显微镜光学性能优秀 .大视场目镜5X 7× 10× 各一对(所有镜头均度膜)。平场复消色差物镜:6×0.1,20×0.4,10×0.3,1090X1.25(油)   这台显微镜机械工艺十分精细,它不同于其他镜子有二个可变光栏,这样可以更加方便观看标本.因看中了大毒物,不得已出让收藏.这台IOR的显微镜原价左右要9800左右.现1150元,有意可来电( 0716--8900707)本人对所售显微镜终身提供技术支持。诚信为本,愿成为您的朋友.照片地址---http://photo.163.com/photos/cocokernut/

  • 另解海洋光学

    海洋光学是光学与海洋学之间的边缘科学。它主要研究海洋的光学性质、光辐射与海洋水体的相互作用、光在海洋中的传播规律,以及和海洋激光探测、光学海洋遥感、海洋中光的信息传递等应用技术有关的基础研究。海洋光学的发展简史 早在19世纪初,就有人用透明度盘目测自然光在海中的铅直衰减。不过直到19世纪末,海洋学家才开始注意研究海洋的光学性质,并结合海洋初级生产力的研究,用光电方法测量海洋的辐照度。到了20世纪30年代,瑞典等国的科学家设计制造了测定海水的线性衰减系数、体积散射系数和光辐射场分布的海洋光学仪器,进行了一系列现场测量。 从第二次世界大战后到20世纪60年代中期,是海洋光学的形成时期,人们研制了各种测定海洋水体光学性质的海洋光学仪器,对各大洋光学性质进行了现场测量和调查。

  • 三维光学分子成像技术及其应用研究

    光学分子成像技术由于其具有灵敏度高,响应速度快,操作方便且能实时直观等优异性能引起广泛关注。穿透性荧光三维成像技术(FLIT)凭借其特有的底部透射荧光成像模式能够精确获取体内荧光标记靶点的深度、体积、细胞

  • 中国科学院大连化学物理研究所诚聘高灵敏光学检测器与传感器博士后,坐标大连市,你准备好了吗?

    [b]职位名称:[/b]高灵敏光学检测器与传感器博士后[b]职位描述/要求:[/b]光学博士后岗:1. 研究方向:高灵敏光学检测器与传感器。2. 招聘要求:熟悉光学检测器与传感器,有仪器研究背景;近期即将获得博士学位或已获得博士学位,拥有良好的研究背景和英文写作能力;工作踏实,具有独立工作能力,有责任感,易沟通。3. 福利待遇:工资和福利待遇按照中科院大连化学物理研究所相关规定执行,年薪26~36万元;符合条件者可申请“博新计划”和“大连化物所优秀博士后奖励基金”等基金,平均年薪涨为36万+(50%概率)。[b]公司介绍:[/b] 三十年来,凭借着中科院大连化学物理研究所雄厚的科研力量和坚实的技术积累,一直致力于色谱分析领域的研究和开发的《科分》人不断创新,先后完成了国家九五攻关项目、国家自然科学基金、中科院重点课题等数十项科研项目,并获得中科院的自然科学、科技发明和科技进步奖。在国家科委和中科院的九.五科技攻关课题支持下,科分人研制开发出“微型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]”并开始商品化,无疑是《科分》人的又一伟大奇迹。   科分目...[url=https://www.instrument.com.cn/job/user/job/position/67207]查看全部[/url]

  • 分光测色仪的光学设计

    光学系统是分光测色仪的核心部分,有人以光谱仪基本原理和光学设计理论为基础,以便携化、低成本、且满足设计要求的光谱范围和分辨率为具体设计目标,用光学软件对该系统进行模拟和优化,得出研究结:设计的系统光谱范围为360nm~740nm,光谱分辨率为10nm、F数为5.25、光谱展开为44.1mm、系统体积约80mm×69mm×62mm,满足精度高、体积小及成本低等设计要求。光学系统结构是便携式测色仪中的核心部分,它设计的好坏直接影响[url=http://www.xrite.cn/categories/][color=#000000]测色仪[/color][/url]的整体性能,其中光谱分辨率是衡量该系统质量好坏最重要的评价标准。

  • 海洋光学与四川大学设立联合实验室

    海洋光学与四川大学设立联合实验室

    上海2012-12-26(中国商业电讯)-- 海洋光学与四川大学分析仪器研究中心近日正式成立联合实验室。根据双方达成的协议,海洋光学将向这一联合实验室提供各种世界领先的光学仪器,用于科学研究与教学,双方将联手开展课题研究,合作开发光学分析技术及设备,推进高技术科研成果的产业化。http://ng1.17img.cn/bbsfiles/images/2012/12/201212261305_415596_2475975_3.jpg 图片说明:四川大学段忆翔博士(左)与海洋光学亚太区域副总裁孙玲博士(右)为联合实验室揭幕 这是海洋光学在中国大陆成立的第12个联合实验室,之前已经与广西科技大学、长春理工大学、哈尔滨工业大学(2个)、哈尔滨工程大学、吉林大学、上海理工大学(2个)、中南大学、中山大学和华中科技大学建立了联合实验室。 四川大学分析仪器研究中心由国家“千人计划”特聘教授段忆翔博士于2010年组建创立,该研究中心主要从事基于激光技术的光谱分析,质谱技术的元素痕量分析,新型便携式分析仪器的设计,各种传感器的研发,非侵入式医疗诊断技术,生化武器的探测,闪烁体光纤的研制,环境监测与保护,等离子体源的设计与等离子体光谱分析,等离子体燃烧增强效应和等离子体材料表面处理与灭菌等。 海洋光学亚太区域副总裁孙玲博士说:“海洋光学不仅是世界领先的光传感和光谱技术解决方案提供商,还一直致力于推动世界光学科技研发。我们希望通过与四川大学这样的中国一流高校合作,推动中国光学科技发展,结出丰硕成果。” 四川大学的段忆翔博士与海洋光学的孙玲博士共同出席了12月13日举行的联合实验室揭幕仪式并分别致辞。来自全国的50多位从事光谱研究的专家和研究人员与共同见证了这一时刻。在随后举行的光谱新技术及其应用研讨会上,各位专家积极发言。 段忆翔教授做了题目为“我所知道的海洋光学及研究经历”精彩报告。四川大学的许涛与林庆宇、吉林大学的杨光分别做了“便携式仪器在地质勘探现场快速分析中的应用”、“海洋微型光谱仪在LIBS技术中的应用”、“微型光谱仪的系统控制及接口技术”的报告。在场的各位专家学者也就报告中的内容展开了热烈的讨论并提出了自己的宝贵意见。

  • 计算自适应光学技术可实现高清医学成像

    科技日报 2012年04月25日 星期三 本报讯 实时3D微观组织成像技术的出现不啻为癌症诊断、微创手术和眼科等医疗领域的一场革命。据物理学家组织网4月23日报道,美国伊利诺伊大学的研究人员开发出用计算自适应光学系统校正光学层析成像的畸变技术,给未来医疗的“高清”成像带来前景。相关技术成果刊登在最新一期美国《国家科学院学报》在线版上。 美国贝克曼研究所高级科学和技术博士后研究员史蒂芬说:“该技术能够超越现在的光学系统,最终获得最佳品质的图像和三维数据。这将是非常有用的实时成像技术。” 畸变如散光或扭曲困扰着高分辨率成像。其会使对象细点的地方看上去如斑点或条纹。分辨率越高,问题会变得更糟糕。这是在组织成像中特别棘手的问题,而精度对于正确诊断至关重要。 自适应光学可以校正成像的畸变,被广泛应用于天文学来校正当星光过滤器通过大气层的变形。医学科学家已经开始将这种自适应光学系统的硬件应用于显微镜,希望能改善细胞和组织成像。 但伊利诺伊大学生物工程内科医学的电子和计算机工程教授斯蒂芬指出,这同样富有挑战,将其应用于组织、细胞成像,而不是通过大气对星星成像,存在很多光学上的问题。基于硬件的自适应光学系统复杂而昂贵,调整繁琐,故不太适用于医疗扫描。 由此,该团队采用计算机软件来发现并纠正图像畸变,替代硬件的自适应光学,称为计算自适应光学技术。研究人员用此技术演示了大鼠肺组织含有微观粒子凝胶的幻影。用光学成像设备干涉显微镜的两束光扫描组织样本,计算机收集所有数据后,纠正所有的深度图像,使模糊的条纹变成尖锐的点而特征显现,用户可用鼠标点击改变参数。研究人员说:“我们能够纠正整个研究体积的畸变,在其任何地方呈现高清晰度图像。由此,现在可以看到以前不是很清楚的所有组织结构。” 该技术可以应用于许多医院和诊所的台式电脑,可对任何类型进行干涉成像,如光学相干断层扫描。(华凌)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制