当前位置: 仪器信息网 > 行业主题 > >

光学研究

仪器信息网光学研究专题为您整合光学研究相关的最新文章,在光学研究专题,您不仅可以免费浏览光学研究的资讯, 同时您还可以浏览光学研究的相关资料、解决方案,参与社区光学研究话题讨论。

光学研究相关的资讯

  • 校企联合:复享光学与复旦共建光学研究中心
    近日,复享光学和复旦大学合作建立的“光检测与光集成校企联合研究中心”(以下简称“联合研究中心”)正式揭牌运行。复享光学官方消息显示,联合研究中心首期建设为期三年,计划投入一千万元,依托复旦大学微纳电子器件与量子计算机研究院,引入复旦大学相关研究团队,重点围绕微纳制程光学检测技术,将从科学原理出发,探索新型光谱学技术架构,开展多元化光谱、人工智能算法以及先进硬件原型等研究工作。联合研究中心旨在建立企校长期产研合作关系,形成“市场需求+科学技术”双驱动的新型研发模式,构建覆盖“光检测+光集成”两大前沿光子学领域的自主创新平台,为集成电路与光电子产业提供突破性、创新性的产品,最终赋能中国微纳制造快速发展。
  • 上海超精密光学研究中心成立
    近日,上海市科学技术委员会向通过验收的复旦大学上海市超精密光学工程技术研究中心授牌。至此,经过一年的筹备建设,复旦大学上海市超精密光学工程技术研究中心正式成立。   2013年底,上海市科委组织专家对复旦大学上海市超精密光学工程技术研究中心进行了验收。上海市科委领导、业内专家以及复旦大学副校长金力,科技处处长殷南根、副处长胡建华,信息科学与工程学院院长郑立荣、党委书记周立志、副院长刘冉以及中心成员20余人参加验收。   金力副校长表示,学校将对中心的发展给予大力支持,希望中心积极对接国家重大需求、在协同创新,工程化方面加大力度,引领超精密光学制造工程技术领域的发展。   工程中心主任徐敏教授汇报了工程中心目前的研究工作和取得的成绩。通过现场考察,超精密光学工程技术研究中心的建设工作得到了与会专家的一致肯定。之后,工程中心副主任、光科系主任陆明教授参加了上海市科委验收答辩,得到了与会专家的高度评价并通过验收。   据悉,上海超精密光学制造工程技术研究中心由超精密光学制造技术研发室、超精密光学检测与表面评定技术研发室、超精密光学应用技术研发室、超精密光学工艺仿真模拟技术研发室和超精密光学系统设计研发室组成。并设有1个产业化创新研究管理办公室和中心管理办公室。   超精密光学工程技术是关系国家安全和科技发展的关键技术,是衡量一个国家工业发展水平以及自主创新能力的主要标志之一。我国在该领域的科技水平尚不能满足此类零部件的制造要求,严重制约了其尖端技术的发展。研究中心旨在建设我国光学工程技术领域尖端光学制造的技术平台,研究超精密光学制造工程技术关键工艺,满足国家发展科技进步以及产业化的需要。   据工程中心主任徐敏教授介绍,上海超精密光学制造工程技术研究中心将以国家中长期科技发展纲要以及&ldquo 十二五&rdquo 国家战略性新兴产业发展规划为指导,规划该中心的自身科技发展:以精密光学工程、光电集成制造及检测技术的应用基础研究为核心,着力开展前沿技术、关键材料、核心器件、装备集成、特色工艺等方面的研究,提升自主创新能力,解决高端装备制造等领域中的科学问题,搭建有自身特色的科技研发及自主创新平台,同时建立一支富有研究活力的科研创新团队,不断提升该工程中心在本领域的影响力。
  • 西安光机所光学超透镜研究取得进展
    p style=" text-indent: 2em text-align: justify " 近期,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室微纳光子集成课题组利用单层超透镜(metalens)实现了左、右旋圆偏振光在三维空间的分离聚焦,打破了以往自旋相关光束聚焦的对称性,超越了传统几何光学透镜的光场聚焦能力,对光学成像研究具有重要意义。 /p p style=" text-indent: 2em text-align: justify " 传统几何光学透镜仅是通过玻璃厚度的变化来调节入射光相位实现聚焦,无法完成矢量光场(如偏振、自旋等)的操控。超透镜是一种二维平面透镜结构,其体积极小,重量轻,易于集成,可实现对入射光振幅、相位、偏振等参量的灵活调控,在超分辨显微成像、全息光学、消色差透镜等方面有重要应用。该研究利用构成超透镜的纳米天线动力学相位与Pancharatnam-Berry几何相位结合的方法,通过巧妙设计超透镜上纳米天线几何结构与空间取向,在单层超透镜上同时实现了左、右旋圆偏振光相位的独立操控,在横向和径向完成了不同自旋态光束的聚焦,提升了超透镜的光束操控及聚焦能力,具有结构紧凑、灵活性强等优点,能够满足光学系统及器件小型化功能多样化的要求。 /p p style=" text-indent: 2em text-align: justify " 该研究得到中科院战略性先导科技专项(B类)“大规模光子集成芯片”和国家自然科学基金项目的大力资助。相关成果发表在《先进光学材料》(Advanced Optical Materials)上。 /p
  • 超分辨光学显微成像研究取得进展
    p   近日,中国科学院深圳先进技术研究院研究员郑炜与美国国立卫生研究院教授Hari Shroff合作,成功研发出新型双光子激发的超分辨光学显微成像系统,该系统同时具备超分辨光学显微成像功能和大深度三维成像能力,使光学超分辨成像深度推进至破纪录的250微米,相应研究成果Adaptive optics improves multiphoton super-resolution imaging(《自适应光学提升超分辨显微成像》)最近发表在《自然-方法》(Nature Methods)上,郑炜是该文的第一作者兼通讯作者。 br/ /p p   “看得细”和“看得深”是光学显微成像领域面临的两大挑战,经过科研人员几十年来的不懈努力,无论是在“看得细”还是“看得深”方面,都涌现了一批创新技术,取得了巨大成功,但是同时具备“看得细”和“看得深”这两项功能的光学显微成像技术却并不多见。 /p p   在该项研究中,郑炜等人把具备深层生物组织成像能力的双光子显微成像技术(Two-Photon Microscopy, TPM)和具备超分辨成像功能的瞬时结构光照明显微成像技术(InstantStructuredIllumination Microscopy, ISIM) 有机结合起来,实现双光子激发的超分辨显微成像功能。同时,研究人员又利用自适应光学(Adaptive Optics, AO)技术成功克服了由生物组织引起的波前相位畸变问题,最终实现176纳米的横向分辨率、729纳米的纵向分辨率及250微米的探测深度的成像效果。利用该技术,可以对细胞、线虫胚胎及幼虫、果蝇脑片和斑马鱼胚胎开展高清晰三维成像研究,成像效果显著优于传统双光子成像质量。值得一提的是,由于该技术提高了光子利用效率,从而降低了所需激光功率,可以对线虫胚胎的发育过程开展长时间、高清晰的三维动态观测。在长达1个小时的连续三维成像过程中未对线虫胚胎发育造成任何影响,该技术对胚胎发育研究具有重要作用。 /p p   该研究得到了国家自然科学基金、国家重点基础研究发展(“973”)计划和深圳市海外高层次人才创新创业孔雀计划的项目支持。(来源:中国科学院深圳先进技术研究院) /p p    a href=" http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4337.html" target=" _self" title=" " 论文链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/86d620c1-204c-489e-b896-ab006f4ab6e2.jpg" title=" 1.jpg" width=" 462" height=" 282" style=" width: 462px height: 282px " / /p p   左图为果蝇脑片在传统双光子成像(2P WF)、双光子超分辨成像(2P ISIM)和结合有自适应光学的双光子超分辨(2P ISIM AO)显微成像结果对比,右上图为位于胶原凝胶150微米深处细胞三维成像对比,可见无论是横向还是纵向,新技术的分辨率都有显著提升。右下图为线虫胚胎发育过程中连续1小时的三维观测,细胞正常分裂进程证明了该技术可用于胚胎发育动态研究。 /p p br/ /p
  • 反常热膨胀光学晶体研究获进展 有望提升精密光学仪器稳定性
    近日,中国科学院理化技术研究所研究员林哲帅、副研究员姜兴兴等提出实现晶体热膨胀的超各向异性,为光学晶体反常热膨胀性质的调控提供了全新的方法,对于光学晶体中轴向反常热膨胀性质的功能化具有重要意义。   在外界温度变化时,常规光学晶体因“热胀冷缩”效应,无法保持光信号传输的稳定性(如光程稳定性等),限制了其在复杂/极端环境中精密光学仪器的应用。探索晶体的反常热膨胀性质如零热膨胀,“对冲”外界温场对晶体结构的影响是解决这一问题的有效途径。   然而,通过晶格在温度场作用下的精巧平衡来实现零热膨胀颇为困难,一方面,热膨胀率严格等于零的晶体在自然界中不存在;另一方面,目前化学组分调控晶体热膨胀性质的方法,例如多相复合、元素掺杂、客体分子引入和缺陷生成等,影响晶体的透光性能,不利于光学应用。如何在严格化学配比的晶体材料中,利用其本征的热膨胀性能来实现大温度涨落下的光学稳定性,具有重要的科技意义。   该研究团队提出实现晶体热膨胀的超各向异性,即沿晶体结构的三个主轴方向分别具有零、正、负热膨胀性,来调控光学晶体反常热膨胀性质的新方法。研究通过数学推导严格证明了当沿着三个主轴方向分别具有零、正、负热膨胀时,晶体具有最大的热膨胀可调性,可实现热膨胀效应和热光效应的精巧“对冲”,获得完全不随温度变化的光程超级稳定性。   研究在具有高光学透过的硼酸盐材料中探索,系统分析了晶格动力学特征。在此基础上,研究在AEB2O4 (AE=Ca或Sr)中发现了首个沿着三个主轴方向零、正、负热膨胀共存的特性。原位变温X射线衍射实验证明AEB2O4晶体具有宽的零、正、负热膨胀共存的温区(13 K ~ 280 K)。   在相同温度区间内,光程的变化量比常规光学晶体(石英、金刚石、蓝宝石、氟化钙)低三个数量级以上。第一性原理结合变温拉曼光学揭示了AEB2O4这种新奇的热膨胀性质源自离子(AEO8)基团拉伸振动和共价(BO3)基团扭转振动之间热激发的“共振”效应。相关研究成果发表在Materials Horizons上。   近年来,该团队致力于光电功能晶体反常热学和反常力学性能的研究,发现了系列具有负热膨胀、零热膨胀、负压缩以及零压缩性能的光电功能晶体,有望为复杂/极端环境下光学器件的稳定性和灵敏度问题提供解决方案。
  • 西安光机所计算光学显微成像研究获进展
    使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影、重影、失败问题等也降低了成像质量。2013年,科研人员发明傅里叶叠层显微术(Fourier ptychographic microscopy,FPM)。该技术使用低倍物镜获得天然的大视场,通过多角度扫描方式采集一组低分辨率图像,在频域中迭代重构高分辨率的结果,无需机械扫描就能获得高分辨率、大视场图像,有效地解决了传统扫描成像的质量问题,突破了传统显微成像中分辨率与视场之间的矛盾关系,使得在数字病理学中实现高通量成像成为可能。   全彩色FPM成像对于分析标记的组织切片至关重要。传统扫描拼接依托彩色相机速度很快,尽管FPM技术在单通道下有高通量优势,但彩色化下使用传统的RGB序列照明合成则会缩小3倍通量,因此如何在保持精度的同时提高彩色化效率、保持高通量的优势、突破精度与效率的矛盾关系是主要的科学问题。2021年,中国科学院西安光学精密机械研究所潘安、马彩文、姚保利团队提出了颜色迁移傅里叶叠层显微术(CFPM)的方法,以几乎无精度损失的情况下将效率提高了3倍(Science China Physics, Mechanics & Astronomy,封面文章)。由于缺乏对颜色传递过程中空域信息约束,该方法无法恢复多色染料染色的复杂样品,且依赖GPU的并行计算。鉴于此,科研团队提出了改进的FPM全彩色成像算法,称为颜色迁移滤波傅里叶叠层显微术(CFFPM)。该方法将交叠分块、三边滤波与全彩色FPM迁移学习模型相结合。前者降低了解空间的搜寻范围,后者引入了空域的先验信息,有效地匹配了最合适的颜色传递像素和滤除了杂色,进一步通过迭代在两个色彩空间的颜色精炼,从而克服了CFPM的重要缺陷。实验对比26个样本统计结果显示:在精度方面,CFPM、CFFPM与RGB序列照明方法相比均方误差分别高4.76%和1.26%;在视觉效果方面,CFFPM可有效分辨多色染料染色的复杂样本,与RGB序列照明方法难以分出差别;在时间效率方面,与RGB序列照明方法相比,CFPM和CFFPM均具有更高的效率/与在CPU上运行的CFPM相比,CFFPM方法的运行时间从几小时减少到几分钟;在临床应用方面,颜色精度对于病理判断至关重要,而简单地加快成像速度导致彩色成像的精度损失。CFFPM在两者之间做到了较好的取舍,在快速成像的同时保持了高精度彩色成像的优势,使得结果能够被病理学家可用可接受,特别是对时间敏感的术中病理颇具应用前景。此外,CFFPM无需GPU加速,由于其低成本硬件要求,可广泛推广到实际应用中,为计算光学成像在数字病理学中的临床应用提供了新思路。   该工作将先验的空域信息和颜色空间迭代精炼思想引入到快速全彩色FPM研究中,对于促进FPM在数字病理学中的发展具有重要意义。9月30日,相关研究成果以Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer为题,在线发表在Photonics Research上。研究工作得到国家自然科学基金等的支持。
  • 西安光机所光学超分辨成像研究取得重要进展
    提要:超分辨光学成像技术是目前国际上光学领域的一个重要研究方向,在此领域的取得的研究成果使西安光机所在超分辨光学显微成像技术方面跻身于世界前列。该技术的成果转化将改变我国在超分辨光学显微镜市场没有自主知识产权高端科学仪器的局面。该技术通过与生物医学、材料化学等学科的交叉合作,将大大提高我国在该领域的研究水平。   众所周知,光学成像技术在人类探索和发现未知世界奥秘的活动中扮演着重要的角色。大到宇宙,小到分子,看得更远、更细、更清楚是人们不断追求的目标。但受限于光的衍射特性,传统光学系统的空间分辨率不可能无限小,存在着瑞利-阿贝物理极限。能否突破这个极限,继续提高光学系统的成像分辨率?成为当今光学领域公认的一个重大研究课题。   虽然电子显微镜、原子力显微镜等技术可以获得更高的分辨率,但由于各种原因和限制(如不能活体实时成像,样品制备复杂),光学显微镜仍然是当前生物医学、材料化学等学科研究中的主要观测设备。但普通光学显微镜的横向分辨率极限约为200nm,这对亚细胞结构和分子生物学研究还不够精细。为了突破衍射极限,近年来涌现出了不少光学超分辨方法,如光激活定位法(PLAM),随机光学重构法(STORM)、受激发射损耗法(STED)等。但受限于单分子定位算法或点扫描成像方式,这几种超分辨技术成像速度较慢,而且需要一些特殊染料标记样品。另外一种方式就是使用结构光照明的显微技术(SIM),它使用特殊调制的光场照明样品,通过空间频谱处理的方式获得超分辨图像。由于它属于宽场成像方式,因此成像速度很快。SIM技术目前只有美国、德国、英国、瑞士、日本等几个国家掌握,我国在这方面的研究相对滞后。   中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组长期从事光学微操纵技术和光学超分辨成像等生物光子技术的研究工作(其中光镊技术已产品化)。自2010年开始SIM成像技术以来,在科技部重大科学研究计划项目和国家自然科学基金项目支持下,开展了深入细致的理论和实验研究工作,掌握了其中的关键技术,并创新性地提出了与现有激光干涉照明SIM技术不同的方案(已申请国家发明专利),首次提出并实现了基于数字微镜器件(DMD)和LED照明的SIM技术。该技术与激光干涉照明SIM技术相比,具有更高的空间分辨率,更快的成像速度和更好的图像质量,而且大大降低了装置的复杂性和成本。经标定,系统的横向分辨率达到了90nm,这也是目前国际上同类技术的最好水平。   为了验证该技术和样机装置在生物医学上的实际应用效果,研究组与国内第四军医大学和德国康斯坦茨大学进行了联合实验研究,利用该系统成功获得了牛肺动脉内皮细胞(BPAE)线粒体和小鼠脑神经元细胞的超分辨图像,并且还实现了小鼠脑神经元细胞和植物花粉的三维光切片成像,其成像深度和成像速度比当前同类切片显微技术均提高了约十倍,这对深层生物样品的大面积快速三维成像提供了一种新的技术手段。该研究成果发表在1月23日出版的Nature子刊Scientific Reports上,论文题为DMD-based LED-illumination Super-resolution and optical sectioning microscopy。   超分辨光学成像技术是目前国际上光学领域的一个重要研究方向,本研究取得的成果使西安光机所在超分辨光学显微成像技术方面跻身于世界前列。该技术通过与生物医学、材料化学等学科的交叉合作,将大大提高我国在该领域的研究水平。同时该技术的成果转化将改变我国在超分辨光学显微镜市场没有自主知识产权高端科学仪器的局面。
  • 深紫外非线性光学晶体材料研究获进展
    深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两者之间达到一个微妙的平衡。目前,已知的深紫外非线性光学晶体几乎都是硼酸盐,基于磷酸盐的深紫外材料极为少见且非线性光学效应较弱。   在国家基金委优秀青年基金及科技部&ldquo 973&rdquo 重大研究计划等项目的支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室罗军华课题组引入较大尺寸的碱土金属和碱金属阳离子到磷酸盐中,成功构建了两个不含对称中心的新型磷酸盐化合物RbBa2(PO3)5和Rb2Ba3(P2O7)2。其中,RbBa2(PO3)5兼具深紫外磷酸盐中最短的紫外吸收边(163 nm)和最大的粉末倍频效应(1.4倍KDP),从而在这两者之间实现了很好的平衡。同时,RbBa2(PO3)5在1064 nm处相位匹配,同成分熔融,易于晶体生长,这使得RbBa2(PO3)5作为深紫外非线性光学材料具有潜在应用前景。此外,该课题组与中科院理化技术研究所林哲帅研究员合作对相关磷酸盐的光学性质作了理论计算,发现随着磷氧结构基元中[PO4]3-单元聚合程度的提高,相应磷氧结构基元的微观非线性光学系数增大 在RbBa2(PO3)5晶体结构中,[PO4]3-单元共顶点连接形成无限的一维[PO3]&infin 链,从而使RbBa2(PO3)5显示出较大的非线性光学活性,这一工作为设计具有高非线性光学活性的深紫外磷酸盐材料提供了新思路。相关研究成果发表在了《美国化学会志》(J. Am. Chem. Soc.,2014, DOI: 10.1021/ja504319x)上。   最近,该课题组在非线性光学材料探索及其倍频机制研究方面取得了一系列进展,相关成果见Nat. Comm., 2014, 5:4019DOI: 10.1038/ncomms5019 Inorg. Chem., 2014, 53, 2521 J. Mater. Chem. C, 2013, 1, 2906 RSC Adv., 2013, 3, 14000等。此前,该课题组在相关极性分子光电功能晶体材料研究方面取得了重要进展,相关成果见Adv. Mater.,2013, 25, 4159 Angew. Chem. Int. Ed., 2012, 51, 3871 Adv. Funct.Mater.,2012, 22, 4855等。   福建物构所深紫外非线性光学晶体材料研究获进展
  • 新疆理化所在红外非线性光学材料研究方面取得进展
    红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2(AGS), AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异的新型红外非线性光学材料。为了获得大的倍频效应,有利于朝向一致排列的四面体是最常用的结构基元。相比于上述经典材料中规则排列的四面体基团,八面体是另一类有利于规则排列的基团,有望用于硫属化合物光学性能的调控。但由于MQ6(M = 主族金属元素,Q = S/Se)八面体基团较低的形成几率,相关的研究是十分匮乏的。中科院新疆理化所晶体材料研究中心科研团队通过利用碱土金属八面体调控非线性活性四面体基团的排列,首次在AIBII3CIII3QVI8家族合成出9例新的硫属化合物。这些化合物均结晶于P-6空间群,表明结构中碱土金属八面体及非线性活性四面体构成的风车状框架具有高的结构稳定性,有利于原子的替代。NaMg3Ga3Se8展示出平衡的光学性能,如大的倍频效应(~ 1 ×AGS),较大的带隙(2.77 eV),适中的双折射率(0.079@546 nm),高的激光损伤阈值(~ 2.3 ×AGS)。实验及计算的结果表明,相较于AgGaQ2,碱土金属八面体的引入降低了非线性活性四面体基团([MQ4])所构成结构的维度,但不影响四面体基团的朝向排列。同时,碱土金属的引入增大了材料的带隙。这些结果为后续设计带隙与倍频性能平衡的红外非线性光学材料提供了新的思路,将激励科研人员探索更多性能优异的八面体与四面体复合的红外非线性光学材料。该研究成果发表在《美国化学会志》上(J. Am. Chem. Soc., 2022, 144, 21916-21925.)。论文第一作者为硕士研究生罗琳、博士研究生王霖安及硕士研究生陈建邦,李俊杰研究员与潘世烈研究员为该论文的共同通讯作者。该研究工作得到了国家青年人才计划、中国科学院人才计划、国家自然科学基金及新疆自然科学基金等项目的支持。图1(a)AgMg3Ga3S8中Ag, Mg, Ga的配位环境;(b)四面体基团连接形成的Ga-S链结构;(c,e)[MgS6]与[GaS4]构成的[Mg3Ga3S24]基团;(d)AgMg3Ga3S8的三维结构 (f) AGS中形成的 [Ga6S18]基团 (g) AGS的三维结构图2(a)NaMg3Ga3Se8和AGS在2.09 μm激光下不同颗粒度的倍频效应;(b)实验的带隙值;(c)计算和实验的双折射值;(d)与典型硒化物光学性能的对比
  • 上海光机所等集成多种光学与光谱学技术对文物进行多维研究
    6月3日至26日,在河南省文物考古研究院的大力支持下,中国科学院上海光学精密机械研究所科技考古中心联合深圳易尚展示股份有限公司、基恩士国际贸易(上海)有限公司、北京嘉元文博科技有限公司组成联合课题组,集成可移动式三维扫描仪、超景深3D显微镜、光学相干层析仪(COT)、可移动共聚焦激光Raman光谱、便携式minRaman光谱和便携式XRF(pXRF和HXRF)等多种光学和光谱学技术手段对河南新郑、平顶山、淮阳、巩县、登封、安阳出土的周代玉器、唐青花、陶瓷器、墨书兽骨以及曹操墓出土的700余件珍贵文物进行光学、光谱学、材料学和制作工艺等方面的综合研究。   本次研究分两个阶段进行。6月3日至8日,课题组选取一些小型的新郑出土的东周玉器,在上海光机所先进行方法体系上的优化及合理组合,及时发现和解决了测试过程中遇到的具体问题,从而保证了现场原位无损分析的顺利进行。通过初步的方法分析测试:(1)快速完成了对新郑出土的这批东周玉器玉材主要种属的判定,主要有透闪石、方解石、滑石、白云母、石英(含水晶、玛瑙和玉髓)等 (2)对不同玉器玉材的透明程度、纤维粗细程度及包裹体在玉料中的包裹体分布状况进行了细致的分析 (3)发现了这批玉器中透闪石玉器的玉料来源具有多源性,玉材的纤维结构粗细程度、颜色以及包裹体存在明显差异。不少透闪石玉器中含有石墨包裹体,这对古代玉器的产地溯源具有重要的参考价值 (4)通过三维扫描和超景深3D显微观察与测量,获取了反映典型玉器精细的雕刻技法、纹饰特征加工工艺信息的彩色3D图片及多角度彩色拓片等。   在第一阶段的基础上,联合课题组于6月19日至26日,赴河南省文物考古研究院新郑工作站和河南省文物考古研究院郑州本部,对库房中不宜出库的多种更珍贵的文物进行综合原位无损分析研究,所分析的文物时代自西周至唐代,包括有大尺寸画像石砖、青铜礼器组合、仿青铜的陶器礼器组合、玉器、漆陶器、唐青花、墨书甲骨以及曹操墓出土的珍贵玉器等文物。   本次研究获取了不同材质、不同时代的文物材料学和光学综合信息,实现了对不同几何尺寸、不同质地文物的三维扫描,获取了经历了漫长埋藏和清洗后肉眼几乎无法识别到的东周时期兽骨上的文字信息。研究为应用、改进和发展原位无损分析方法提供了丰富的实践经验,也为针对可移动文物的三维扫描设备的开发与应用以及多光谱的发展和应用提供了宝贵经验,同时,也实现了针对不同的研究需要,采用不同的光学和光谱学技术的优化组合。   该研究受上海市研发平台专项项目、国家科技部支撑项目及&ldquo 973&rdquo 项目等课题支持。      上海光机所等集成多种光学与光谱学技术对珍贵文物进行多维研究      分析结果
  • 四川组建光学仪器技术研究中心
    p   23日,由上海理工大学、绵阳科创区管委会和四川绽放科技有限公司联合组建的“光学仪器与系统教育部工程技术研究中心西南中心”落成典礼在科技城创新中心二期举行,为进一步推动四川光电子信息产业和绵阳科技城高新技术经济产业的发展,更好地服务于企业发挥积极作用。上海理工大学校长胡寿根,市委常委、科技城党工委副书记、管委会常务副主任颜超出席落成典礼。副市长元方致辞。 /p p   据了解,该中心以绵阳科创区为基地,依托上海理工大学的技术力量,主要开展新型光学防伪产品及光电子应用技术的研发,研究制订光电产业技术标准、促进光学工程学科研成果应用,构建长效的产学研合作机制,提高我国光电学产业自主创新能力和核心竞争力。中心拥有教授、副教授和博士、硕士20人。“国家千人计划”人才韩森教授、上海曙光学者张大伟教授担任中心技术带头人,指导开展技术开发的应用研究、科研成果的转化对接等工作。 /p p   胡寿根表示,绵阳与上海理工大学的深入合作,为学校科研成果转化搭建了平台,将进一步推动产学研结合,成为促进绵阳科技城创新能力提升的一个重要举措。 /p p   元方在致辞中说,绵阳与上海理工大学的合作,是校市双方深入贯彻落实国家创新驱动发展战略,推进创新体系建设、推动产学研结合、成果转化的重要举措。在双方的紧密合作下,将积极发挥上海理工大学科技优势,充分利用绵阳科技城的政策平台、科技创新平台和产业承载能力,推动绵阳光电子信息产业上一个台阶,成为校地合作的又一成功典范。 /p p   仪式上,上海理工大学和绽放科技还分别与科创区管委会、绵阳工业技术研究院签订了《科技创新战略合作框架协议》、《上海理工大学绵阳技术转移工作站共建合作协议》。 /p
  • 姚保利团队光学成像研究获新进展
    p   2月18日出版的美国光学学会旗下期刊Optics Express& nbsp 同时刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组的三篇研究论文。& nbsp /p p   在第一篇题为Large-scale 3D imaging of insects with natural color& nbsp 的文章中,研究人员实现了大尺寸昆虫自然色三维高分辨率定量成像。经过亿万年的进化,生物结构非常复杂与精巧,并承载了多样的功能和迷人的景象。生物结构在不同尺度、不同维度和不同部位的观察与形态分析,为科学研究结果提供最直接的证据,在众多学科领域扮演着不可或缺的角色。目前高分辨率三维成像技术已经在生物学领域有了广泛的应用,并推动着生物学研究不断取得新的进展。但是已有的技术与研究工具还存在一些不足,比如对大样品进行三维成像时数据量大且耗时,高分辨率与大成像视场难以同时满足,样品自然色彩难以获取等。因此,寻找一种能够对昆虫进行快速三维成像,并获得其高分辨形貌信息和色彩信息的设备,就成了昆虫分类学家和相关研究领域的迫切需要。 /p p   为了解决这些问题,课题组在前期工作的基础上,与中科院动物研究所合作,通过对彩色结构照明光学成像系统和相关算法进行改造升级,克服了已有三维成像方法的缺陷,大大提升了系统的光能利用率和照明均匀性,使得成像系统在高分辨率、大尺寸、三维、快速、全彩色和定量分析等六大成像要素上均得到有效提升。该研究对大尺寸昆虫的高分辨三维定量分析具有重要的参考意义,同时为昆虫结构色的研究提供了新的技术手段,在进化生物学、仿生学、分类学、功能形态学、古生物学和工程学等领域具有广泛的应用前景。 /p p   在第二篇题为Real-time optical manipulation of particles through turbid media& nbsp 的文章中,研究人员主要实现了透过散射介质后对微粒的实时光学微操纵。2018年诺贝尔物理学奖的一半授予了光镊的发明人Arthur Ashkin,在那里激光捕获和操纵微粒是在透明和无散射介质中进行的。而当光学系统中有散射介质存在时,成像目标难以在像面清晰呈现,激光也难以聚焦成为一个焦点。目前有多种方法来克服散射的影响,其中最常用的方法是利用光场调控器件和相应的优化算法对经过散射介质后的光场进行调控。遗传算法具有收敛速度快、抗噪声能力强的优势已经被广泛应用于散射介质后的光场聚焦和成像,然而遗传算法在实际应用中依然存在一些问题,比如随着优化的进行,其收敛速度逐渐变慢,噪声对最终聚焦结果影响较大,优化结果受探测器动态范围限制等。近年来,随着相关技术的成熟,已有研究者将波前矫正技术和光学捕获结合,实现利用散射光场对微粒的捕获,但是此类技术在散射介质后产生的聚焦光场质量不高,而且无法实现在散射介质后特定目标点对微粒的捕获,也无法在散射介质后沿特定路径对粒子进行操控,灵活性以及应用场合受到限制。 /p p   为了实现对经过散射介质后光束的高质量聚焦并将其应用于实际,该文提出了一种相间分区域波前校正方法,实现了入射光经过散射介质后单点和多点的重新聚焦。将该方法和光镊技术结合,可以对散射介质后单一粒子和多个粒子的同时捕获,并且可以实现在散射介质后某一平面内沿特定轨迹对微粒的操纵。与传统遗传算法相比,该方法具有收敛速度快、聚焦强度高、对探测器动态范围需求小的优点,大大提高了光经过散射介质后的聚焦效果,不仅可以应用于光学微操纵,而且可以应用于其它相关领域,为散射介质后的物体成像、深层样品荧光显微成像以及散射介质后的光场调控提供了有效手段。 /p p   在第三篇题为Three-dimensional space optimization for near-field ptychography& nbsp 的文章中,研究人员实现了近场叠层成像术的三维空间优化。叠层成像术(Ptychography)是一种无透镜的相干衍射成像技术,拥有大视场、高分辨和定量相位的优势。通过记录多幅交叠的衍射图像,利用交叠区域的数据冗余和先进的相位恢复算法,能恢复出物体的透射率函数分布、分解相干态以及校准系统误差。这一无透镜的成像方法已经成功应用于可见光、电子波段和X射线波段。然而,叠层成像术在实际应用过程中依然存在一些限制,比如在针对三维厚样品成像时,其厚度是未知的,传统成像方法是尽可能减小对样品每一层的成像厚度,这就增加了成像的层数,而且该方法只适用于连续样品,对于离散的有着非均匀空间分布的样品则可能会出现伪影,额外的空白层也会降低图像质量。 /p p   该文提出一种基于遗传算法的三维叠层成像算法(GA-3ePIE),可同时优化层数与层距,并且适用于近场三维叠层成像术。相比于远场,它可以使用更少的图像重构相同大小的视场,而且对光源相干性以及探测器动态范围要求更低。通过分析发现,随着交叠率和采样率的提升,可恢复层数变多。该算法也能被推广到X射线及电子波段领域,同时也可以用于其它计算成像技术,如傅里叶叠层显微成像术。 /p p   姚保利团队多年来一直致力于新型光学成像及光学微操纵新方法、新技术和新仪器的研究和开发,已在PRL、PRA、OL、OE& nbsp 等国际期刊上发表200多篇研究论文,授权多项国家发明专利。2013年在国际上首次提出并实现了基于数字微镜器件(DMD)和LED照明的结构光照明显微成像技术,分辨率达到90nm,该成像设备已成功应用于多项生命科学研究之中。研究团队先后为国内外多所大学研制了多套激光光镊微操纵仪,设备性能稳定可靠,获得用户的普遍好评。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/a6b3f109-b9e5-42b8-acb9-e595133d2c9a.jpg" title=" W020190220588050271958.png" alt=" W020190220588050271958.png" / & nbsp /p p style=" text-align: center "   图1.& nbsp 两种中华虎甲的三维成像结果。(a)& nbsp 虎甲1的最大值投影图(4X, NA0.2),其三维成像体积约为18.7 x 9.4 x 7.0 mm3。(b)& nbsp 利用20X, NA0.45物镜对图(a)中红色方框内区域进行成像的最大值投影结果。(c)& nbsp 图(b)的三维形貌信息。(d)& nbsp 图(c)中蓝色曲线所经过的复眼的三维轮廓曲线。(e)& nbsp 虎甲2的最大值投影(4X, NA0.2),其三维成像体积约为19.5 x 8.3 x 6.6 mm3。(f)& nbsp 利用20X, NA0.45物镜对图(e)& nbsp 中红色方框内区域进行成像的最大值投影结果。(g)& nbsp 图(f)的三维形貌信息。(h)& nbsp 图(g)中蓝色曲线所经过的复眼的三维轮廓曲线。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/a3470cf2-4f00-434b-8fc3-7f813add3756.jpg" title=" W020190220588050370079.jpg" alt=" W020190220588050370079.jpg" / /p p style=" text-align: center "   图2.& nbsp 激光透过散射介质后对微粒的捕获和操纵实验结果。(a)-(e)散射介质后操纵微粒沿矩形轨迹运动;(f)-(j)散射介质后操纵微粒沿圆形轨迹运动(标尺:10μm) /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/b6b6794c-fd26-414a-bcda-beba9a7f0645.jpg" title=" W020190220588050432825.jpg" alt=" W020190220588050432825.jpg" / /p p style=" text-align: center "   图3.& nbsp 不同参数下USAF分辨率板的强度恢复结果。(a)单层重构结果。(b1-b2)和(c1-c2)不同层距下两层重构结果。(d1-d3)三层重构结果,包含一层空白层。(e1-e2)和(f1-f2)使用GA-3ePIE算法下的重构结果及放大图。(g)一张典型的衍射图。 /p p br/ /p
  • 我国随机光纤激光研究成果入选2014年全球光学重要进展
    电子科技大学饶云江教授(杰出青年基金获得者、OSA/SPIE Fellow)团队、国防科技大学周朴研究员(优秀青年基金获得者)团队在国家自然科学基金重大项目课题(61290312)与青年基金项目(61205048)支持下,在随机光纤激光器领域取得突破性研究进展,相关成果入选由美国光学学会(OSA:Optical Society of America)组织评选的2014年全球光学重要进展。近日,该学会旗舰杂志《Optics & Photonics News》(OPN)2014年12月专刊《Optics in 2014》以&ldquo Random Fiber Laser: Simpler and Brighter&rdquo 为题对该成果进行了亮点报道。   OPN每年年末会出版一期专刊,以亮点形式报导由OSA评选出的该年度全球光学领域最突出的30项研究成果。今年参与竞争的成果数量达到了创纪录的200项(包括为数众多的发表在Nature及其子刊上的成果),竞争十分激烈。随机光纤激光器是今年中国大陆作为第一单位入选的两个成果之一,也是OPN历史上中国大陆第二次入选(上一次在2008年),这次成果入选显著提升了我国在光学和光子学领域的国际影响力,标志着我国光纤随机激光器的研究已经步入国际一流行列。   该研究成果主要来自上述两个科研团队2014年发表在《IEEE Journal of Selected Topics in Quantum Electronics(JSTQE)》和《Laser Physics Letters(LPL)》发表的学术论文。两篇论文的第一作者分别为王子南副教授、博士生张汉伟。JSTQE论文首次提出了实现高功率光纤激光器的新思路,实现了结构更简单、性能更稳定、光转换效率更高的连续随机光纤激光器 LPL论文实验展示了基于标准通信光纤的高功率光纤随机激光器,创造了随机光纤激光器输出功率的世界纪录。   上述工作为实现新一代高功率光纤激光器开辟了一个新的研究方向。   光纤随机激光器相比传统光纤激光器最大的不同之处在于无需腔镜,具有波长可调、结构简单、转换效率高、可靠性高、功率可定标放大等突出优点,有望形成新一代的无纵模高功率光纤激光器,在光纤传感、光纤通信、3D打印、激光手术、激光成像、高能激光等多个领域具有重大应用价值。   注:   Optics in 2014专刊链接:http://www.osa-opn.org/home/articles/volume_25/december_2014/features/optics_in_2014/#.VH6iKHExiV8   IEEE JSTQE论文链接:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6868231&tag=1   IOP LPL论文链接:http://iopscience.iop.org/1612-202X/11/7/075104
  • 我国随机光纤激光研究成果入选2014年全球光学重要进展
    电子科技大学饶云江教授(杰出青年基金获得者、OSA/SPIE Fellow)团队、国防科技大学周朴研究员(优秀青年基金获得者)团队在国家自然科学基金重大项目课题(61290312)与青年基金项目(61205048)支持下,在随机光纤激光器领域取得突破性研究进展,相关成果入选由美国光学学会(OSA:Optical Society of America)组织评选的2014年全球光学重要进展。近日,该学会旗舰杂志《Optics & Photonics News》(OPN)2014年12月专刊《Optics in 2014》以&ldquo Random Fiber Laser: Simpler and Brighter&rdquo 为题对该成果进行了亮点报道。   OPN每年年末会出版一期专刊,以亮点形式报导由OSA评选出的该年度全球光学领域最突出的30项研究成果。今年参与竞争的成果数量达到了创纪录的200项(包括为数众多的发表在Nature及其子刊上的成果),竞争十分激烈。随机光纤激光器是今年中国大陆作为第一单位入选的两个成果之一,也是OPN历史上中国大陆第二次入选(上一次在2008年),这次成果入选显著提升了我国在光学和光子学领域的国际影响力,标志着我国光纤随机激光器的研究已经步入国际一流行列。   该研究成果主要来自上述两个科研团队2014年发表在《IEEE Journal of Selected Topics in Quantum Electronics(JSTQE)》和《Laser Physics Letters(LPL)》发表的学术论文。两篇论文的第一作者分别为王子南副教授、博士生张汉伟。JSTQE论文首次提出了实现高功率光纤激光器的新思路,实现了结构更简单、性能更稳定、光转换效率更高的连续随机光纤激光器 LPL论文实验展示了基于标准通信光纤的高功率光纤随机激光器,创造了随机光纤激光器输出功率的世界纪录。   上述工作为实现新一代高功率光纤激光器开辟了一个新的研究方向。   光纤随机激光器相比传统光纤激光器最大的不同之处在于无需腔镜,具有波长可调、结构简单、转换效率高、可靠性高、功率可定标放大等突出优点,有望形成新一代的无纵模高功率光纤激光器,在光纤传感、光纤通信、3D打印、激光手术、激光成像、高能激光等多个领域具有重大应用价值。   注:   Optics in 2014专刊链接:http://www.osa-opn.org/home/articles/volume_25/december_2014/features/optics_in_2014/#.VH6iKHExiV8   IEEE JSTQE论文链接:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6868231&tag=1   IOP LPL论文链接:http://iopscience.iop.org/1612-202X/11/7/075104
  • 二维磁性材料非线性光学研究取得重要进展
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。 /span /p p style=" text-align: center text-indent: 2em " span style=" font-family: & quot times new roman& quot " img style=" max-width: 100% max-height: 100% width: 400px height: 273px " src=" https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width=" 400" height=" 273" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: & quot times new roman& quot font-size: 14px " 双层三碘化铬 图片来自复旦大学物理系网站 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 将经典方法引入新领域 开辟广阔研究空间 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " “意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 创新研发实验系统 实现基础研究突破 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。 /span /p p br/ /p
  • 计算光学显微成像研究技术取得进展
    近日,中国科学院西安光学精密机械研究所副研究员潘安、研究员姚保利、研究员马彩文团队在Science China-Physics Mechanics & Astronomy上,在线发表题为High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer的封面文章(Cover Story)。 傅里叶叠层显微成像术(FPM)是一种高通量计算成像技术,其在组织切片显微数字病理学中可以避免传统的扫描拼接伪影,提高成像通量和效率。然而,传统FPM彩色化要对三波长进行重复操作,故其效率偏低。受到颜色匹配思路的启发,研究人员提出了一种基于彩色传递的全彩色化方法,命名为CFPM。研究人员在实验中比较了30组不同样本CFPM的成像情况,相比于传统方法,CFPM以平均0.4%的精度牺牲代价换得了数据采集和重构时间2/3的缩减,使彩色成像的效率有了较大提升。CFPM易于操作与推广,该方法不需要如交叠率、采样率、训练数据集等的其他要求。此外,CFPM可看作是基于物理模型的“无监督迁移学习”,但是相比于传统迁移学习,它无须迭代优化过程,这可能给未来的相关工作提供新的启示。 CFPM成像结果对比。(a,a1)4×/0.1NA物镜下低分辨率的彩色图像及其局部放大图;(b,b1)4×/0.1NA物镜绿光下高分辨率FPM重构的全视场及其局部放大图结果;(c)10×/0.3NA高倍率物镜下的真实情况;(d)将(a1)的彩色纹理信息传递给(b1)的结果
  • 光学非辐射态领域研究获重要进展
    在国家自然科学基金等项目资助下,暨南大学陈凯研究员团队在光学非辐射态(Anapole态)领域研究取得重要进展。相关研究发表于Small,并被选为内封底论文。马楚荣讲师为该论文第一作者,陈凯研究员为通讯作者,该工作还得到了李向平研究员和关柏鸥教授的大力支持。在过去的十年中,低损耗的全介质纳米结构已经成为纳米尺度光操控的重要平台。其中,高折射率全介质纳米盘可以激发出光学Anapole态,展现出独一无二的近场分布以及零远场散射特性。作为一种非辐射态,它可以显著增强非线性光学效应和光热效应等,提供了新颖的调控光-物质相互作用的手段。然而,这种分布在结构内部的Anapole态的局域场增强较弱,且它的产生并不能通过激发偏振加以控制,因此限制了它的应用。研究人员在全介质纳米盘低聚体中发现了一种具有偏振激发特性的新型Anapole态,而且它的局域场增强不仅仅局限在结构内部。他们利用聚苯乙烯微球自组装技术与物理气相沉积镀膜工艺相互结合的方法,制备得到了大量的Si纳米盘单体及低聚体结构。在单个纳米盘中,电偶极子和环形偶极子的相消干涉导致了在特定波长处的本征Anapole态(AE1)。由于盘的圆对称性,它的产生不依赖于激发偏振,近场增强也局域在纳米盘内部。而在纳米盘二聚体中,当入射光电场方向沿垂直于长轴方向激发时,其散射光谱长波处还存在一种新型的非辐射态(AE0),即非本征态。理论研究表明,两个纳米盘耦合后的环形偶极子在光谱上得到充分的展宽,与耦合后的电偶极子在长波处发生部分重叠。此外,它们的相位相差π,因此,这两者之间的相消干涉导致了非本征Anapole态的形成。与本征态不同的是,非本征态的增强电场遍布整个二聚体及其周围。当入射光电场方向沿二聚体长轴方向激发时,散射光谱中只能观察到本征态。有趣的是,随着第三个盘的加入,非本征Anapole态的偏振激发特性消失。尽管不同偏振激发下的Si纳米盘三聚体的散射光谱几乎没有区别,它们的局域场分布却有很大的差异。新型Anapole态的产生可以显著增强Si纳米盘低聚体宽光谱光致发光效率,通过匹配飞秒激光激发波长与非本征Anapole态,Si纳米盘二聚体及三聚体由于双光子吸收诱导的白光发射强度远超单个纳米盘,这主要源于光吸收的增强以及载流子注入的提升。
  • 我国光学研究达世界先进水平 差距主要在民用领域
    周炳琨透露,我国的光学研究与国外先进水平的差距主要体现在某些民用应用领域,比如照相技术、CCD等。今后我国的光学研究将继续以应用驱动创新发展,继续提高自主创新能力,让光学为国防和经济建设服务。   来自全国高校、科研院所、企事业单位从事光学及光学工程领域教学、科研、生产等的10余位院士、近千名专家学者齐聚湘江之畔,围绕光学薄膜技术新进展、瞬态光子学、全息与光学信息处理等19个专题探讨新思想、交流新技术,着眼推动我国光学、光电子学和光学工程领域科技进步,为产业发展献计献策。   据了解,这19个专题涵盖了光学及光学工程领域近100个子专题研究方向。其中第19个专题为中国光学学会和美国光学学会共同举办的光学教育课程专题,这也是全国光学大会首次设置国际合作专题分会场。   开幕式上,还举行了&ldquo 王大珩光学奖&rdquo 颁奖仪式,中国科技大学教授李传锋和中科院西安光学精密机械研究所研究员刘雪明获得中青年科技人员光学奖,国防科技大学马阎星等20人获得高校学生光学奖。(
  • 海洋光学宣布2015年青年研究者奖获得者
    海洋光学宣布2015年青年研究者奖获得者 于2015年SPIE(国际光学与光电协会)举办的BIOS展会/西部光电展期间颁发奖金并授予奖项上图摄于2015年2月9日,海洋光学2015年青年研究者奖颁奖现场,图中,从左到右人物依次为:“胶体粒子在生物医学中的应用”会议联合主席,来自国家纳米科学与技术中心的Xing-Jie Liang博士、德国马尔堡大学的Wolfgang Parak 博士、来自新墨西哥大学的Marek Osinski博士、奖项获得者——来自南安普顿大学的Amelie Heuer-Jungemann 、以及海洋光学销售和市场部副总裁David Creasey 博士。2015年2月20日,美国佛罗里达州Dunedin市,海洋光学作为模块化光谱应用产品工业领域的领导者,宣布了2015年海洋光学青年研究者奖获得者——来自英国南安普顿大学的Amelie Heuer-Jungemann。青年研究者奖的受众人群是那些在读研究生学者或是那些在过去五年里完成研究生学业并且作为第一作者,其论文被评为最佳论文的人选。论文在2015年BIOS/西部光电研讨会上举办的“第九届胶体量子点在生物医学中的应用”会议上发表。获奖者将会得到1000美元的研究奖励,此外,实验研究所在的公司授权实验室将会获得2000美元的奖金。Heuer-Jungemann由于与英国南安普顿大学的Antonios G. Kanaras一起研究并发表论文“Programming nanoparticle assembly”而获奖。他们的工作可简述为利用各种化学方法及工具来完成纳米粒子的自组装过程。这一奖项由海洋光学销售市场部的副总裁David Creasey 博士、“胶体粒子在生物医学中的应用”会议主席Wolfgang Parak 博士(来自德国马尔堡大学)、来自新墨西哥大学的Marek Osinski博士以及来自国家纳米科学与技术中心的Xing-Jie Liang博士亲自颁发。海洋光学自2005年起就一直是青年研究者奖的赞助商,长期以来通过奖金、项目资助和牢固的伙伴关系支持年轻科学家的研究事业。据Osinski所说,今年共有80人获得了奖金,超过了往年的记录。“今年这些奖项的数量和水准的提升主要源自于我们年轻一代研究者们对于此类研究的强烈兴趣与热情,正是源于此,他们才想到要利用光谱的力量为全人类提供安全保护并提升他们的生活质量,” Creasey 说。“在海洋光学,我们深知自己仅仅掌握了光谱应用领域的皮毛”。
  • 新疆理化所在新型紫外非线性光学晶体研究中取得进展
    固体紫外激光器广泛应用于商业和科学领域。非线性光学材料能够对激光器输出的特定波长的激光进行激光频率的转换和拓展,颇具应用价值。例如,利用非线性光学材料进行的Nd:YAG激光辐射的四次谐波产生是输出266 nm紫外激光的有效方式。合成紫外非线性光学材料需要满足苛刻的性能要求,因而在材料设计中存在挑战。 既往研究提出了氟导向材料设计策略,以在硼酸盐体系中探索具有优异性能的双折射和非线性光学材料。向硼酸盐中引入氟可以有效地丰富结构化学和调控光学性能。LiB3O5(LBO)晶体是重要的非线性光学材料,并得到广泛应用,但遗憾的是其小的双折射导致LBO晶体无法实现1064 nm激光的直接四倍频输出。是否可以通过调整晶体结构来增大LBO的双折射,从而达到更短的相位匹配波长?   近期,中国科学院新疆理化技术研究所晶体材料研究中心通过化学合成制备得到氟硼酸盐晶体LiNaB6O9F2。LiNaB6O9F2具有由[B6O11F2]基本构建模块组成的二互穿3[B6O9F2]∞三维网络,这是首次在氟硼酸盐体系中观察到。LiNaB6O9F2在深紫外截止边,大的倍频响应(1.1 × KDP),合适的双折射(0.067@1064 nm)之间实现了更好的平衡。随着氟的引入,LiNaB6O9F2展示出氟导向性能优化,包括比LBO更大的双折射(0.067@1064 nm之于LBO的0.040@1064 nm),比LBO更短的相位匹配波长(210 nm之于LBO的277 nm)。该工作丰富了氟硼酸盐的结构化学,证明了氟导向策略是探索具有优良光学性能的非线性光学晶体的可行方法。   相关研究成果以全文Research Article形式,发表在Advanced Optical Materials上。研究工作得到国家自然科学基金和中科院等的支持。
  • 973计划光学自由曲面制造的基础研究项目启动
    12月25日,国家973计划“光学自由曲面制造的基础研究”项目启动会在天津举行。天津大学校长龚克、科技部基础司副司长彭以祺、教育部科技司基础处处长明炬、天津市科委副主任陈养发出席启动会并讲话。项目跟踪专家、南京航空航天大学朱剑英教授结合973计划评审标准对该项目提出要求。项目特邀嘉宾专家上海理工大学庄松林院士、天津大学叶声华院士、天津大学张以谟教授、华中科技大学丁汉教授,项目专家哈尔滨工业大学董申教授、大连理工大学郭东明教授、哈尔滨工业大学张飞虎教授、电子科技大学付永启教授,项目组成员天津大学房丰洲教授、清华大学金国藩院士、吉林大学赵继教授等项目组20余位主要研究人员及科技处、精仪学院负责人参加。启动会由天津大学科技处处长元英进主持。      该项目以天津大学为依托单位,由天津大学、清华大学、大连理工大学、吉林大学、中国科学院长春光学精密机械与物理研究所等单位共同承担。项目结合国家发展的重大需求和光学领域的发展趋势,以探索光学自由曲面空间构建与物理再构理论、再构过程的多态量耦合影响机制、纳米尺度多物理场材料成形机理、面形原位测量评价及面形可控工艺等关键共性技术为主旨,大力开展光学自由曲面制造的基础研究,增强我国光学自由曲面关键器件自主创新能力。   天津大学校长龚克代表天津大学对该项目的启动表示祝贺,对科技部、教育部、院士专家及天津市相关部门的大力支持表示感谢。他强调,“973计划”是我国加强基础研究、提升自主创新能力的重大战略举措,是高校培养人才、提升科研水平、服务国家经济建设的重要平台。“光学自由曲面制造的基础研究”项目是天津大学在“973计划”先进制造与工程科学领域承担的第一个项目,希望能够通过各课题组的紧密合作,为光学自由曲面制造乃至精密制造领域的发展奠定基础。他建议在项目实施中,要进一步拓展应用背景,与生产制造中关键实际问题紧密关联 要深究科学原理,在重大科学问题上有所突破 各课题、各单位之间密切合作,并按照973计划的管理要求开展研究。他表示,在相关部门的指导和帮助下,天津大学作为牵头单位,一定充分关注项目的实施,为项目的顺利完成提供相关的条件支持,积极承担并做好项目的组织协调和服务支撑工作,使项目实现预期目标。   项目首席科学家房丰洲教授从项目的科学意义、拟解决的关键问题、研究内容与预期目标、实施计划及研究队伍等方面介绍了项目整体情况。金国藩、赵继、金洙吉等六位课题负责人分别汇报了本课题的研究任务和目标、总体方案和技术路线、与其他课题之间的关系等。与会领导、专家对项目及各课题进行了点评,提出了指导意见。
  • 中国科大在大量程纳米位移光学感测研究方面取得新进展
    近日,中国科学技术大学微纳光学与技术课题组王沛教授和鲁拥华副教授在大量程纳米位移光学感测研究方面取得重要进展。课题组利用光学超表面(metasurface)设计了一种简捷的光场偏振态空间编码,结合精巧的光学系统设计,发展了一种大量程(百微米量级)、高灵敏(亚纳米)、简捷实用的位移感测技术。该研究成果10月12日以“Ultrasensitive and long-range transverse displacement metrology with polarization-encoded metasurface”为题发表在《科学进展》上。   纳米精度的高灵敏位移测量对于半导体制造、精密加工和先进成像等领域都具有关键性作用。以半导体制造为例,不同层光刻图案的叠对误差对提升产品良率具有重要的作用。一般要求叠对误差测量技术(overlay metrology)的精度优于光刻线条宽度的五分之一。因此,对于10纳米以下节点的半导体制造工艺必须发展纳米及亚纳米的位移感测技术。   以往的研究表明,利用纳米光学天线的定向散射光场可以实现亚纳米位移感测的技术指标。课题组在先前的研究中也分别提出了硅纳米天线对(OE, 26 : 1000-1011, 2018)、表面等离激元天线对(PRL, 124, 243901, 2020)的技术方案。但是基于光学天线散射的感测方法通常只有百纳米的量程,且存在信噪比低的问题,给叠对误差测量等位移感测的实际应用带来较为苛刻的限制。   在这项研究工作中,课题组利用光学超表面独特的位相和偏振调控能力,将空间位置信息编码在光场的偏振取向上,并通过精巧的光学系统设计让光场两次经过超表面结构,从而将超表面相对于光束的横向位移信息转化为读出光强信息。由于超表面结构可以在亚波长精度上调控光场的偏振和位相分布,从而可以极大提高偏振空间编码的梯度,进而提高位移感测的灵敏度。   实验测试证明,这一偏振编码超表面系统的位移感测精度可以达到100皮米(图1)。进一步,课题组通过移相方法实现了测量范围的周期性延拓,并消除了感测灵敏度的“死区”,偏振编码超表面系统的感测量程可以拓展到200微米以上。   与基于光学天线散射的纳米位移感测技术不同,这项研究工作在保持亚纳米的位移感测精度的同时,极大地拓展了感测的量程,而且,通过光强读出位移信息,具有可工程化、简单可靠且精度高的特点,为其在叠对误差测量等位移感测领域的实际应用带来便捷。 图1 偏振编码超表面位移感测系统示意图和实验测试结果   光电子科学与技术安徽省重点实验室的臧昊峰、席铮特任教授和张植宇为该论文的共同第一作者,鲁拥华副教授和王沛教授为共同通讯作者。该工作得到了科技部重点研发项目、国家自然科学基金区域创新发展联合基金和先进激光技术安徽省实验室主任基金的经费资助。
  • 《中国光学显微镜市场研究报告(2021版)》正式发布
    光学显微镜,早期也叫复合式显微镜,利用目镜和物镜两组透镜系统来放大成像,由机械装置和光学系统两大部分组成,机械装置包括镜座、支架、载物台、调焦螺旋等部件,是显微镜的基本组成单位,主要是保证光学系统的准确配制和灵活调控,而光学系统由物镜、目镜、聚光器等组成,是显微镜的核心,直接影响显微镜的性能。历经三百多年发展,光学显微镜在光源、分辨率、成像倍数和成像软件等许方面取得了长足进步,并衍生出众多种类显微镜来满足不同观察需求,在科研、医疗、工业和教育等领域有着广泛而重要的应用。长期以来,我国光学显微镜生产制造主要集中中低端市场,而高端显微镜则被蔡司、徕卡、奥林巴斯和尼康等传统光学企业所垄断。近年来,我国在高端光学显微镜领域也取得了许多令人瞩目的成绩。为了系统地了解我国光学显微镜市场情况,仪器信息网特进行2021年光学显微镜市场调研,并形成《中国光学显微镜市场研究报告(2021版)》。本次研究主要通过光学显微镜中标信息整理、与主流厂商、主要科研单位人员交流、文献调研等方式获取数据及信息。本报告主要内容包括光学显微镜概述、光学显微镜市场分析(中国市场规模、主流品牌、竞争格局)、高中低端显微镜市场分布、近一年中标数据分析、相关政策、趋势及展望等。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=244如对本报告感兴趣,可通过以下邮箱survey@instrument.com.cn联系我司相关人员,咨询报告相关细节。目录:第一章 概 述1.1 光学显微镜概述1.2 光学显微镜历史1.3 光学显微镜分类第二章 光学显微镜市场分析2.1 概述2.2 主流光学显微镜品牌分析2.2.1 进口主流品牌2.2.2 国产主流品牌2.3 高端光学显微镜市场2.3.1 进口高端光学显微镜2.3.2 国产高端光学显微镜第三章 光学显微镜近一年中标数据分析3.1中标显微镜品牌3.2 中标显微镜价格区间3.3 招标采购单位性质3.4 采购单位地域第四章 总结和展望
  • 长春光机所在光学系统偏振像差理论研究中取得进展
    p   中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室的黄玮课题组在光学系统偏振像差理论的研究中取得新进展:首次提出了一种能同时表征偏振像差在光学系统的光瞳与视场上分布规律的正交多项式,该多项式在偏振像差的测量与补偿方面有很大潜在应用价值。相关结果发表于近期的Optics Express(Opt. Express 23,21, 27911-27919, 2015, doi:10.1364/OE.23.027911)。 /p p   对于高数值孔径的光学系统,如光刻物镜和显微物镜,偏振照明成为一种提高分辨率的方法。但偏振照明光束经光学系统后,受偏振像差影响,其偏振状态会发生改变,进而影响分辨率。已有的研究多集中于偏振像差在光学系统的光瞳处的分布规律,很少关注视场。但对偏振像差的测量和补偿,需要在整个视场上进行。一般的方法是选择多个离散视场点来近似整个视场,精度由视场点个数决定。因此,揭示偏振像差在光学系统视场上的分布规律,对偏振像差的测量和补偿研究具有重要价值。 /p p   该研究将方向泽尼克多项式与条纹泽尼克多项式相结合,依据光学系统的旋转对称性,推导出一系列正交多项式,并将其命名为视场-方向泽尼克多项式(Field-orientation Zernike polynomials,FOZP)。FOZP将偏振像差的分布规律从光瞳扩展到了视场,更完整地表述了光学系统的偏振像差。 /p p   该工作得到了国家重大专项子课题基金的支持。 /p p img src=" http://img1.17img.cn/17img/images/201512/insimg/636c3cea-ce6b-40d7-8aab-5c3a5b476b93.jpg" style=" width: 600px height: 429px " title=" W020151217536871222917.jpg" width=" 600" height=" 429" border=" 0" hspace=" 0" vspace=" 0" / /p p img src=" http://img1.17img.cn/17img/images/201512/insimg/7db4bd1d-c6c6-4517-9b33-346fa05251e2.jpg" style=" width: 600px height: 465px " title=" W020151217536871237159.jpg" width=" 600" height=" 465" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-size: 16px " 视场-方向泽尼克多项式的视场分布图 /span br/ /p p br/ /p
  • 贵州省光学测量工程技术研究中心正式挂牌
    7月1日,由贵阳新天光电科技有限公司承担的“贵州省光学测量工程技术研究中心”建设项目顺利通过了省科技厅、省发改委、省财政厅联合组织的专家验收,并正式挂牌。   贵州省光学测量工程技术研究中心主要针对精密光学测量仪器领域共性关键、前沿性技术难题开展创新研究,以期实现测量仪器高精度、智能化和数字化,为全省整体提升全省装备制造业水平提供先进加工辅具支撑。   项目建设期内,中心先后完成了“高精度测长机开发生产”、“全自动视频测量显微镜”、“JT35(¢1500mm)大型投影仪”等三个新产品研发,负责起草和参与编制国家标准各1项,参与起草行业标准10项,承担了国家项目3项,省级项目3项,申报专利17件(其中3件发明专利,1件已授权)。为机床、航天航空、工具、模具等行业提供解决方案200余项,中心实现直接经济收入1560万元,支撑企业实现销售收入7000余万元,取得了明显的创新绩效。在创新基础环境建设方面,中心依托贵阳新天光电科技有限公司建设了测量技术、光学和软件测试等3个实验室和产业化工程室、新天北工大研发中心、光栅传感器等6个研究室,成立相关专门的技术发展部和技术委员会,形成了固定人员和流动人员相结合的创新团队(其中专职研发人员50人、合作研究人员20多人)。建立了按贡献分配的人事制度和薪酬激励机制等规章制度。与贵州大学、北京工业大学、复旦大学、西安交通大学、天津大学、贵州省机电装备工程中心、成都工业研究所、珠海荣信科技有限公司等单位建立了紧密的产学研合作关系。   验收会上,省科技厅组织省内外专家围绕光学测量产业发展和新天光电科技有限公司的发展进行了研讨,初步确定了高精度光栅设计制造,在线检测系统,高精度多用途检测仪作为今后的重点产业发展方向和技术攻关方向,要求企业尽快根据研讨意见,结合企业发展需求,确定攻关目标和技术路线,整合科研团队抓紧申报科技重大项目并推进实施。科技厅将继续做好协调服务工作。
  • 贵州省光学测量工程技术研究中心正式挂牌
    7月1日,由贵阳新天光电科技有限公司承担的“贵州省光学测量工程技术研究中心”建设项目顺利通过了贵州省科技厅、贵州省发改委、贵州省财政厅联合组织的专家验收,并正式挂牌。   贵州省光学测量工程技术研究中心主要针对精密光学测量仪器领域共性关键、前沿性技术难题开展创新研究,以期实现测量仪器高精度、智能化和数字化,为整体提升贵州省装备制造业水平提供先进加工辅具支撑。   项目建设期内,中心先后完成了“高精度测长机开发生产”、“全自动视频测量显微镜”、“JT35(¢1500mm)大型投影仪”等三个新产品研发,负责起草和参与编制国家标准各1项,参与起草行业标准10项,承担了国家项目3项,省级项目3项,申报专利17件(其中3件发明专利,1件已授权)。为机床、航天航空、工具、模具等行业提供解决方案200余项,中心实现直接经济收入1560万元,支撑企业实现销售收入7000余万元,取得了明显的创新绩效。在创新基础环境建设方面,中心依托贵阳新天光电科技有限公司建设了测量技术、光学和软件测试等3个实验室和产业化工程室、新天北工大研发中心、光栅传感器等6个研究室,成立相关专门的技术发展部和技术委员会,形成了固定人员和流动人员相结合的创新团队(其中专职研发人员50人、合作研究人员20多人)。建立了按贡献分配的人事制度和薪酬激励机制等规章制度。与贵州大学、北京工业大学、复旦大学、西安交通大学、天津大学、贵州省机电装备工程中心、成都工业研究所、珠海荣信科技有限公司等单位建立了紧密的产学研合作关系。   验收会上,贵州省科技厅组织省内外专家围绕光学测量产业发展和新天光电科技有限公司的发展进行了研讨,初步确定了高精度光栅设计制造,在线检测系统,高精度多用途检测仪作为今后的重点产业发展方向和技术攻关方向,要求企业尽快根据研讨意见,结合企业发展需求,确定攻关目标和技术路线,整合科研团队抓紧申报科技重大项目并推进实施。科技厅将继续做好协调服务工作。
  • 我国前沿光学计量领域研究成果达国际先进水平
    在光的世界里驰骋   中国计量院前沿光学计量领域研究成果达到国际先进水平   □ 本报记者 杨 蕾   “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。   激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。   在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。   飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。   谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。   太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。   邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。
  • 参观与交流:南开现代光学研究所师生与滨松的一次对话
    2019年7月2日,南开现代光学研究所师生一行20余人应邀到访北京滨松,与滨松中国、北京滨松接待代表进行了座谈交流,并对北京滨松工厂进行了参观。座谈中,滨松中国市场部经理王斯首先对此次带队老师南开现代光学研究所光电子技术科学系副主任范飞副教授表示了感谢,认为此次交流活动是企业与高校之间进行深入对话的一个契机,是双方谋求更多合作的关键,希望未来可以有更多这样的机会。随后,王斯向师生们介绍了滨松公司60余年的发展历史,期间也回忆起滨松与南开的渊源。南开大学现代光学研究所创始人母国光教授曾多次到访滨松,并十分赞赏滨松一直以来秉持的匠人精神。范飞副教授表示,南开现代光学研究所于1984年由国家教委批准成立,致力于为现代光学工程的高素质人才培养前沿性科研创新基地。历经30余年的发展,已成为了积极服务于环境、能源、通信和生命等领域重大应用需求的关键所在。光学所十分愿意加强与滨松之间的交流合作,滨松作为光电行业的领导者,具有非常丰厚的产品技术应用经验,这是现如今高校的同学们无法在书本上获得的。加强与企业之间的互动,非常有利于同学们扎实自己的专业知识,提升自己的实践能力,为今后走上社会、服务国家发展,做更好得知识与经验储备,这也是光学所所希望看到的。此外,通过滨松展厅以及北京滨松光电倍增管、探测器、闪烁体等部门的产线参观。师生们对滨松丰富的产品和广泛的应用,以及北京滨松的制造技术有了更直接、深入的了解。参过过程中,同学们对北京滨松的研发生产能力表示赞叹,认为其在环境保护方面做出的努力值得每一家企业学习,干净整洁的生产环境、中水处理系统、闪烁体生产的循环回收以及生产车间里的新风系统,无不体现出滨松高度的社会责任感。最后,就光电产品技术、招聘及就业等问题,南开师生们也与滨松中国产品技术负责人、北京滨松人力资源负责人进行了热烈的现场交流。“可以近距离了解和感受光电行业未来发展和就业的真实样子,对于自己未来的人生以及职业生涯规划是十分有意义的” ,一位同学在活动结束后说到。其他同学们也表示,此次交流对他们的印象非常深刻,通过现场的实际参观学习以及与滨松企业代表的座谈交流,开拓了视野,增长了见识,非常有利于今后提升自己的知识水平与动手操作的能力。滨松也十分乐于继续举办此类活动,加强与高校之间的联系和合作,为推进光子技术相关教育的发展,做出自己的贡献。滨松中国:滨松光子学(商贸)中国有限公司,日本滨松光子学株式会社在华的全资子公司,于2011年在北京成立,全面负责日本滨松公司以及大部分北京滨松公司产品在中国的销售、市场和产品技术支持。现设上海、深圳分公司。北京滨松:北京滨松光子技术股份有限公司,是日本滨松光子学株式会社与北京核仪器厂于1988年共同投资兴建的,为国内知名的以光电探测为核心的高新技术企业。
  • 我国自主研发的光学分子成像研究平台科学仪器通过验收
    日前,山西医科大学承担的山西省科技基础条件平台建设项目“光学分子成像研究平台科学仪器的自主研发”顺利通过专家组验收。  该项目是在山西医科大学现有实验室和科研团队的基础上,建设光学分子影像工程技术研究平台,同时依托该平台研制出了多光谱分光融合外科手术引导系统(光学分子影像技术设备)。  该系统能够激发体内靶向标记的荧光报告基团产生荧光,同时摄取荧光信号,将光信号转换为电信号,以数字化解剖性图像、光学分子功能性图像和两者的融合图像显示在计算机上,并结合图像处理技术精确定量、定性、定时、定位和示踪活体体内细胞和生物大分子的生物学特征,可实时识别活体肿瘤组织、淋巴结、淋巴管和血管。  据悉,该系统拥有我国自主知识产权,有助于解决生命科学研究中的一些重大科学和技术问题,提升我国在本领域的原始创新能力,并产生一定的经济和社会效益。
  • 南理工与南京天文光学技术研究所共建联合实验室
    中新江苏网南京7月11日电 南理工与中国科学院南京天文光学技术研究所共建“天文光学超分辨探测联合实验室”合作协议签字仪式举行。   会议伊始,南京理工大学副校长尹群宣读了学校关于聘任中国科学院崔向群院士为“双聘院士”,聘任南京天文光学技术研究所研究员朱永田、研究员袁吕军、研究员李新南为兼职教授的决定。随后,南京理工大学校长王晓锋为崔向群双聘院士,为朱永田、袁吕军、李新南等兼职教授颁发聘书并佩戴校徽。   双方希望,借助南理工和天光所合作的平台,集中更强的人力和研究资源,把各项合作真正落到实处。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制