当前位置: 仪器信息网 > 行业主题 > >

光学芯片

仪器信息网光学芯片专题为您整合光学芯片相关的最新文章,在光学芯片专题,您不仅可以免费浏览光学芯片的资讯, 同时您还可以浏览光学芯片的相关资料、解决方案,参与社区光学芯片话题讨论。

光学芯片相关的资讯

  • 小芯片提高光学仪器测量精度
    罗切斯特大学研究人员共同开发的1平方毫米的集成光子芯片将使干涉仪精度更高。图片来源:罗切斯特大学/ J. Adam Fenster从镜子上的微小缺陷,到大气中污染物的扩散,再到宇宙深处的引力波,通过合并两个或多个光源,干涉仪产生的干涉图样可以提供一切事物的详细信息。“想要进行非常精确的测量,光学干涉仪必不可少,因为光可以成为非常精确的‘尺子’。”美国罗切斯特大学光学助理教授Jaime Cardenas说。现在,Cardenas的实验室发明了一种方法,使这种光学机器更加灵敏。罗切斯特大学博士生宋美廷(音译)首次在1平方毫米的集成光子芯片上验证了一种实验方法,可以在不增加无关且不必要的输入或“噪声”的情况下放大干涉信号。近日发表在《自然—通讯》的这一突破,基于该校物理学教授Andrew Jordan和实验室学生开发的波导弱值放大理论。Jordan和团队研究弱值放大已有十多年。他们以一种新颖的方式将模态分析应用于具有弱值放大功能的自由空间干涉仪上,弥补了自由空间与波导弱值放大之间的差距,并由此证明了在光子芯片上集成弱值放大的理论可行性。弱值放大是基于光的量子力学,基本上只涉及包含所需信息的特定光子导向探测器。Cardenas说,这个概念曾被演示过,但“总是要在实验室里放置一张桌子、一堆镜子和激光系统,这些物件排列起来非常耗时和辛苦”。“我们将所有这些物质提炼出来,放入光子芯片中。通过把干涉仪装在芯片上,你可以把它放在火箭、直升机,或者手机上。放在哪里它都不会偏移。”Cardenas说。与传统的干涉仪不同,新装置没有使用一组倾斜的镜子来弯曲光线并产生干涉图样,而是使用了一个设计好的波导来传播光场的波。Cardenas说,这是该研究的新颖之处。在传统干涉仪中,只要简单地提高激光功率,就可以提高信噪比,从而产生更有意义的输入。但Cardenas说,这实际上是有限制的,因为传统的干涉仪探测器只能处理有限的激光功率,在达到饱和前,信号噪声比并不能提高。新装置通过在探测器上以更少的光达到相同的干涉仪信号,消除了这一限制,这为通过继续增加激光功率从而增加信噪比留下了空间。“如果以传统干涉仪相同的功率到达新弱值,新设备总是会有更好的信噪比。”Cardenas说,“这项工作真的很酷,有很多非常棒的物理和工程应用在后台进行。”他表示,下一步将把该设备用于相干通信和使用压缩或纠缠光子的量子应用,使量子陀螺仪等设备成为可能。相关论文信息:https://doi.org/10.1038/s41467-021-26522-2
  • 海谱纳米光学:全球首款微型光谱芯片正式量产
    物理世界的数字化时代正奔涌而来。2D、3D视觉技术将物体的颜色、形状、大小、尺寸、位置等信息转换为AI时代的大数据,但物质成分的数字化进程却停步不前。如今,可解码万物“指纹”的革命性视觉成像技术—高光谱成像正打破这一僵局。高光谱成像突破人眼限制,可实现万物成分检测,为机器视觉提供更真实、更准确的物理世界信息,为人类提供更高维度观察世界的方式。近日,《南方日报》等媒体持续聚焦海谱纳米光学(以下简称“海谱”)微型高光谱成像MEMS芯片及快速增长的高光谱成像市场。从专注研发到高光谱产品的工程化、市场化,海谱跨过创业公司“死亡之谷”的背后,折射的是国产MEMS芯片在全球高端芯片竞技场的突围。从深圳市海谱纳米光学科技有限公司(Hypernano,简称海谱)获悉,2022年初,该公司宣布正式全球率先量产了第一代微型高光谱成像MEMS(微机电系统,Micro-Electro-Mechanical System)芯片,高光谱工业相机及高光谱相机模组即将推向市场。▲海谱纳米光学据悉,基于微型高光谱成像MEMS芯片技术,海谱推出的高光谱成像模组在波长精度、拍摄速度、空间分辨率、半峰宽、视场角等专业技术指标上达到全球领先水平,体积比传统光谱相机缩小了近1000倍,是业界尺寸最小的高光谱相机模组。半导体老兵深圳创业跨越“死亡之谷”海谱创始人兼CEO黄锦标介绍,公司于2019年1月创立,以“光谱芯视觉,感知超极限”为使命,专注于高光谱成像技术的设计与研发。▲黄锦标黄锦标毕业于南开大学微电子专业,有着20多年半导体技术和市场经验,曾担任多家半导体公司高管,有着很强的系统开发和市场开拓的经验。而海谱研发团队在MEMS领域拥有近20年的芯片设计与工艺制造经验,团队核心成员包括多名顶尖MEMS专家及深圳孔雀人才。2022年3月,海谱完成数千万元A轮融资,投资方包括昆仑资本、远方资本、湾信资本。业内人士介绍,MEMS芯片最常用的是承担传感功能,在整个大的信息系统里有点类似于人的感官系统。从行业而言,欧美是MEMS产业、技术与产品的发源地,处于全球领先地位,中国MEMS产业起步较晚,MEMS产业还处于发展的起步阶段,我国不仅在精度和敏感度等性能指标上与国外存在巨大差距,应用范围也多局限于中低端领域。因而有芯片创业难,MEMS芯片创业更难的说法。不过,尽管我国MEMS传感器厂商面临诸多挑战,但从上游设计、中游制造、下游封装等领域国产替代的空间巨大。▲海谱微型高光谱成像MEMS芯片正因为身处MEMS产业这一高精尖行业,海谱从成立初期的3年,经历了高科技创业公司所面临的“死亡之谷”考验,即从技术研发到产品量产的种种挑战。“创业公司的技术再领先,也要把它变成一个工程化且可市场化的产品,这个过程有很多坑,只有迈过去,技术才具有商业价值。”黄锦标称。黄锦标介绍,海谱走到去年年底时,最核心的技术芯片开始量产。同时,将芯片应用于相机的相关模组也已准备完毕,相当于公司在技术工程化产品这个初创公司最大的槛,已经迈了过去。填补国内微型高光谱MEMS芯片领域空白说起海谱的技术,首先还要科普一下光谱技术。光谱学始于英国科学家牛顿,是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为可以辨别物质的成分信息。光谱学的最大特色之一,是研究光与物质产生相互作用的学科,通过物理的方法可以获取物体的成分,在应用上可以非接触和非破坏地进行检测。典型的如天文对象、高温物体、放电气体… … 在分子和原子层次上物质作分析研究,主要是用光谱方法。比如人类用光谱相机拍摄遥远星球的表面物质。▲高光谱原理黄锦标介绍,高光谱成像技术则将成像技术与光谱技术相结合,可获取高光谱分辨率的连续、窄波段的图像数据。其原理是将成像技术与光谱技术相结合,在探测目标二维空间信息的同时,获取其每一个空间位置上的光谱信息,从而实现对物质成分的直接检测。物质光谱信息具有指纹特性,即不同的物质拥有不同的光谱,因此高光谱成像为机器视觉的物质感知、识别和分析提供了新路径,是继2D、3D视觉技术之后的下一代革命性视觉成像技术。2019年,海谱在深圳成立后,开启第一款微型高光谱成像MEMS芯片的研发设计与流片。2020年初,海谱宣布正式量产第一代微型高光谱成像MEMS芯片,填补了国内在微型高光谱成像MEMS芯片领域的空白。传统光谱成像设备一般手工组装,存在体积大、价格昂贵、无法批量生产等问题,海谱微型高光谱成像MEMS芯片具备高空间分辨率、高透光率等性能优势,解决了光谱成像设备体积、成本等问题 芯片化量产还可有效降低高光谱成像设备的台间差,实现芯片至整机全自动组装。由此,海谱突破性地实现了MEMS特殊工艺的突破,解决了高光谱成像工业化、低成本和量产化的业界难题,研发能力覆盖芯片设计、光学模组、产品相机、算法研发、完整应用解决方案等高光谱全链条技术,可为全球多领域客户提供一站式高光谱成像解决方案。“传统的光谱成像设备是一个大仪器 海谱的相机模组才一片指甲大,而且更便宜,不管从体积还是价格、便利性都跨越民用的门槛,也是中国在这个细分芯片赛道上做到了世界领先的位置。”黄锦标这样比较。▲高光谱成像技术可检测物质成分芯片产品覆盖全光谱波段,万物皆可测目前,公司已推出几款芯片,形成全光谱覆盖,实现万物皆可测。黄锦标介绍,高光谱成像MEMS芯片及模组可以应用于工业检测、医疗健康、安防环保、食品检测、IOT等多场景。例如在工业检测领域,高光谱技术可在非接触的情况下实现食品检测分拣、质量等级筛选等功能,以往几分钟或数小时的检测结果如今可实时在线获取。在医疗健康,高光谱设备可赋予普通显微镜高光谱视觉能力,同时还可实现癌症筛查、手术辅助成像等功能。在安防环保领域,高光谱技术可对水质、环境进行实时监测,实现对水质的定性、定量观测,实现云图可视化效果。在食品检测领域,高光谱成像技术可对肉类、果蔬、粮油等进行材质分析,检测果蔬的糖度、水分、硬度、酸度等指标,智能分析肉类的新鲜程度。值得留意的是,海谱不仅有硬件团队,也有AI算法团队,这也保证了芯片获取数据后可以计算建模,得到一致性较高的结果。为何一个默默无名的初创科技公司,可以填补芯片产业空白,实现全球技术领先?黄锦标介绍,高光谱成像MEMS芯片是一个多学科的技术突破,不单单涉及微电子,还有化学、材料、机械、光学等。但是,公司一直聚焦于高光谱成像技术这一细分领域,而且公司核心研发团队此前20年专注于该细分技术的研发,有着世界领先的技术沉淀。“中国芯片暂时落后于国外,实际上差在积累不够,除了资本、政策和市场加持,需要很多科研人员、工程师长年累月地在实验室和芯片产线上辛勤付出,这样才有领先技术突破。”黄锦标称,作为一名90年代从大学毕业后进入半导体行业的老兵,见证了深圳20来年半导体行业的萌生、发展和蓬勃,希望通过自主科技创新,支持国产技术在半导体“无人区”技术实现更多突破。【深创者说@黄锦标】“我们一直强调,一个技术是否具有先进性、突破性,一定要有用,要为市场和消费者提供所认可的解决方案。海谱将微型高光谱成像MEMS芯片与人工智能算法结合,来为消费者转译物体的成分信息。比如我们人眼或者普通相机拍一块肉,就是一张普通照片,但是安装我们芯片的相机拍出的照片,经过算法读取,会转换出一个普通人可理解的结果,告诉你这块肉是否新鲜。我们坚持不会做终端产品。现在国内尤其深圳已经有很多全球知名的硬件终端产品公司,我们的定位是生产芯片以及解决方案,来服务这些硬件终端产品公司。在我们看来,现在中国卡脖子,是卡在缺少上游核心芯片或器件的技术和制造能力。海谱立志于去做这样的一个角色。
  • 麻省理工开发出全新光学芯片可实现高效“深度学习”
    p   美国麻省理工学院(MIT)科学家在6月12日出版的《自然· 光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。 /p p   “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中,需要执行大量重复性“矩阵乘法”类高度复杂的运算,对于依靠电力运行的传统CPU(中央处理器)或GPU(图形处理器)芯片来说,这类运算太过密集,完成起来非常“吃力”。 /p p   通过几年努力,MIT教授马林· 索尔贾希克和同事开发出光学神经网络系统的重要部件——全新可编程纳米光学处理器,这些光学处理器能在几乎零能耗的情况下执行人工智能中的复杂运算。索尔贾希克解释道,普通眼镜片就能通过光波执行“傅里叶变换”这样的复杂运算,可编程纳米光学处理器采用了同样的原理,其包含多个激光束组成的波导矩阵,这些光波能相互作用,形成干涉模式,从而执行特定的目标运算。 /p p   研究小组通过测试证明,与CPU等电子芯片相比,这种光学芯片执行人工智能算法速度更快,且消耗能量不到传统芯片能耗的千分之一。他们还用可编程纳米光学处理器构建了一个神经网络初级系统,该系统能识别出4个元音字母的发音,准确率达到77%。他们的最终目标是,将可编程纳米光学处理器交叉铺成多层结构,构建光学网络神经系统,模拟人脑中神经元执行复杂的“深度学习”运算。 /p p   索尔贾希克表示,新光学处理器还能用于数据传输中的信号处理,更快速实现光学信号与数字信号间的转换。未来,在大数据中心、安全系统、自动驾驶或无人机等所有低能耗应用中,基于新光学处理器的复杂光学神经网络将占据重要席位。 /p
  • 海洋光学纳米海绵状SERS芯片全新上市
    近日,英国豪迈旗下的微型光谱仪的领导者海洋光学发布了一款全新纳米海绵状SERS芯片。该芯片具有更低背景噪音、更高激光功率承受力、更宽泛波长激光选择与更长货架存放期,实属拉曼增强的理想选择。同时,还提供各种不同波段范围的拉曼模块和ID Raman系列(包括638nm的拉曼系列)。  纳米海绵状SERS芯片的优势  更低的背景噪音:这对非常低浓度物质的拉曼分析非常有利   高激光功率承受能力:有别于之前发布的纸质基板的SERS芯片,这款金属/玻璃基底的SERS芯片能承受功率非常高的激光入射(为了提高拉曼信号强度),而样品的性能不会发生改变   适用于不同波长激光:新的SERS芯片包括了金(Au)和银(Ag)基底,532拉曼系统推荐使用Ag基底的,785拉曼系统推荐使用Au基底。而处于这两者中间波长的632nm的拉曼系统对Au和Ag基底响应都很好   更长货架存放期:在长时间存放后,新版SERS芯片的纳米海绵结构相对于纸质基板的会更稳定,而且不会受室温环境的影响,从生产到货架存放6个月以后,还能保证纳米材料结构的稳定,甚至在存放1年或者更久之后,SERS芯片还能在拉曼测试中展示很好的性能。 Sers 芯片Sers芯片细节图  适用于532,638和785拉曼,针对638nm的拉曼响应度最好   更长的存放期,相对于纸质基板的1--3个月的保存期,SP 纳米海绵SERS芯片可以在常温下存储6个月或更久   适用于高能量激光,而且可以确保SERS芯片的整个性能稳定,背景基线也非常低。  典型应用  爆炸物  纳米海绵技术的开发就是为了检测爆炸物和化学武器,与其他生产技术相比,这款SERS芯片的性能明显优于同类产品。  食品安全  基于新版SERS芯片对大多数农残的测试 ,最低检出限能到1ppm,另外比如对违法食品添加剂三聚氰胺的检测,在痕量水平都能被检测到。  反伪造  通过在燃油中添加拉曼标记物,来判定燃油的真伪,便于政府部门监管。  痕量污染物检测  通过痕量污染物拉曼监测,可以对产品生产和化学反应进行反应、过程监控。  该如何选择SERS芯片?  海洋光学使用不同的激发波长和测量样品对三种SERS芯片进行了测试和研究,比如,使用785nm的激光配合SERS-Ag,发现三聚氰胺有最强的拉曼响应,但是SERS-Au和SERS-SP的表现也相当不错。  下表对不同激发波长的拉曼测试情况作了总结,可供大家参考:Laser wavelengthRAM-SERS-AURAM-SERS-AGRAM-SERS-SP532nm-Rhodamine 6G-638nmMalachite green, crystal violetRhodamine BExplosives785nmBPE,E.coli,pesticidesMelamine-
  • 上海微系统所等开发出可批量制造的新型光学“硅”与芯片技术
    5月8日,中国科学院上海微系统与信息技术研究所研究员欧欣团队在钽酸锂异质集成晶圆及高性能光子芯片制备领域取得突破性进展。相关研究成果以《可批量制造的钽酸锂集成光子芯片》(Lithium tantalate photonic integrated circuits for volume manufacturing)为题,发表在《自然》(Nature)上。随着全球集成电路产业发展进入“后摩尔时代”,集成电路芯片性能提升的难度和成本越来越高,人们迫切寻找新的技术方案。以硅光技术和薄膜铌酸锂光子技术为代表的集成光电技术可以应对这一问题。其中,铌酸锂有“光学硅”之称,近年来备受关注。与铌酸锂类似,欧欣团队与合作者证明单晶钽酸锂薄膜同样具有优异的电光转换特性,在双折射、透明窗口范围、抗光折变、频率梳产生等方面比铌酸锂更具优势。此外,硅基钽酸锂异质晶圆的制备工艺与绝缘体上的硅更接近,因此钽酸锂薄膜可实现低成本和规模化制造,具有应用价值。欧欣团队采用基于“万能离子刀”的异质集成技术,通过氢离子注入结合晶圆键合的方法,制备了高质量硅基钽酸锂单晶薄膜异质晶圆。进一步,合作团队开发了超低损耗钽酸锂光子器件微纳加工方法,使对应器件的光学损耗降低至5.6 dB m-1,这低于其他团队报道的晶圆级铌酸锂波导的最低损耗值。该研究结合晶圆级流片工艺,探讨了钽酸锂材料内低双折射对于模式交叉的有效抑制,并验证了可以应用于整个通信波段的钽酸锂光子微腔谐振器。钽酸锂光子芯片展现出与铌酸锂薄膜相当的电光调制效率;同时,基于钽酸锂光子芯片,该研究首次在X切型电光平台中产生了孤子光学频率梳,结合电光可调谐性质,有望在激光雷达和精密测量等方面实现应用。当前,该研究已攻关8英寸晶圆制备技术,为更大规模的国产光电集成芯片和移动终端射频滤波器芯片的发展奠定了材料基础。欧欣介绍:“相较于薄膜铌酸锂,薄膜钽酸锂更易制备,且制备效率更高。同时,钽酸锂薄膜具有更宽的透明窗口、强电光调制、弱双折射、更强的抗光折变特性,这种先天的材料优势扩展了钽酸锂平台的光学设计自由度。”上述成果的第一完成单位为上海微系统所。该工作由上海微系统所和瑞士洛桑联邦理工学院合作完成。(论文链接 )钽酸锂异质集成晶圆制备及高性能光子芯片示意图(a)硅基钽酸锂异质晶圆(b)薄膜钽酸锂光学波导制备工艺及波导的扫描透镜显微镜(a)钽酸锂弯曲波导、(b)铌酸锂弯曲波导的色散曲线设计(实线)与实际色散曲线(散点),可观察到铌酸锂波导色散曲线中明显的模式交叉效应(a)薄膜钽酸锂电光调制器;(b)首次实现X切型钽酸锂上的克尔孤子光频梳8英寸硅基薄膜钽酸锂晶圆制备
  • Nature|另辟蹊径 清华团队研制元成像芯片突破光学像差难题
    完美光学成像是人类感知世界的终极目标之一,却从根本上受制于镜面加工误差与复杂环境扰动所引起的光学像差。《科学》杂志也将“能否制造完美的光学透镜”列为21世纪125个科学前沿问题之一。近日,清华大学成像与智能技术实验室,提出了一种集成化的元成像芯片架构(Meta-imaging sensor),为解决这一百年难题开辟了一条新路径。区别于构建完美透镜,研究团队另辟蹊径,研制了一种超级传感器,记录成像过程而非图像本身,通过实现对非相干复杂光场的超精细感知与融合,即使经过不完美的光学透镜与复杂的成像环境,依然能够实现完美的三维光学成像。团队攻克了超精细光场感知与超精细光场融合两大核心技术,以分布式感知突破空间带宽积瓶颈,以自组织融合实现多维多尺度高分辨重建,借此能够用对光线的数字调制来替代传统光学系统中的物理模拟调制,并将其精度提升至光学衍射极限。这一技术解决了长期以来的光学像差瓶颈,有望成为下一代通用像感器架构,而无需改变现有的光学成像系统,带来颠覆性的变化,将应用于天文观测,生物成像,医疗诊断,移动终端,工业检测,安防监控等领域。图1 元成像芯片成像原理与大范围像差矫正效果(来源:Nature)传统光学系统主要为人眼所设计,保持着“所见即所得”的设计理念,聚焦于在光学端实现完美成像。近百年来,光学科学家与工程师不断提出新的光学设计方法,为不同成像系统定制复杂的多级镜面、非球面与自由曲面镜头,来减小像差提升成像性能。但由于加工工艺的限制与复杂环境的扰动,难以制造出完美的成像系统。例如由于大范围面形平整度的加工误差,难以制造超大口径的镜片实现超远距离高分辨率成像;地基天文望远镜,受到动态变化的大气湍流扰动,实际成像分辨率远低于光学衍射极限,限制了人类探索宇宙的能力,往往需要花费昂贵的代价发射太空望远镜绕过大气层。为了解决这一难题,自适应光学技术应运而生,人们通过波前传感器实时感知环境像差扰动,并反馈给一面可变形的反射镜阵列,动态矫正对应的光学像差,以此保持完美的成像过程,基于此人们发现了星系中心的巨大黑洞并获得了诺奖,广泛应用于天文学与生命科学领域。然而由于像差在空间分布非均一的特性,该技术仅能实现极小视场的高分辨成像,而难以实现大视场多区域的同时矫正,并且由于需要非常精细的复杂系统往往成本十分高昂。早在2021年,自动化系戴琼海院士领导的成像与智能实验技术实验室研究团队发表于《细胞》杂志上的工作,首次提出了数字自适应光学的概念,为解决空间非一致的光学像差提供了新思路。在最新的研究成果中,研究团队将所有技术集成在单个成像芯片上,使之能广泛应用于几乎所有的成像场景,而不需要对现有成像系统做额外的改造,并建立了波动光学范畴下的数字自适应光学架构。通过对复杂光场的高维超精细感知与融合,在具备极大的灵活性的同时,又能保持前所未有的成像精度。这一优势使得在数字端对复杂光场的操控能够完全媲美物理世界的模拟调制,就好像人们真正能够在数字世界搬移每一条光线一样,将感知与矫正的过程完全解耦开来,从而能够同时实现不同区域的高性能像差矫正。图2 元成像芯片——单透镜高性能成像(来源:Nature)传统相机镜头的成本和尺寸都会随着有效像素数的增加而迅速增长,这也是为什么高分辨率手机成像镜头即使使用了非常复杂的工艺也很难变薄,高端单反镜头特别昂贵的原因。因为它们通常需要多个精密设计与加工的多级镜片来校正空间不一致的光学像差,而如果想进一步推进到有效的十亿像素成像对传统光学设计来说几乎是一场灾难。元成像芯片从底层传感器端为这些问题提供了可扩展的分布式解决方案,使得我们能够使用非常简易的光学系统实现高性能成像。在普通的单透镜系统上即可通过数字自适应光学实现了十亿像素高分辨率成像,将光学系统的成本与尺寸降低了三个数量级以上。除了成像系统存在的系统像差以外,成像环境中的扰动也会导致空间折射率的非均匀分布,从而引起复杂多变的环境像差。其中最为典型的是大气湍流对地基天文望远镜的影响,从根本上限制了人类地基的光学观测分辨率,迫使人们不得不花费高昂的代价发射太空望远镜,比如价值百亿美元的韦伯望远镜。硬件自适应光学技术虽然可以缓解这一问题并已经被广泛使用,但它设计复杂,成本高昂,并且有效视野直径通常都小于40角秒。数字自适应光学技术仅仅需要将传统成像传感器替换为元成像芯片,就能为大口径地基天文望远镜提供了全视场动态像差矫正的能力。研究团队在中国国家天文台兴隆观测站上的清华-NAOC 80厘米口径望远镜上进行了测试,元成像芯片显著提升了天文成像的分辨率与信噪比,将自适应光学矫正视场直径从40角秒提升至了1000角秒。图3 清华-NAOC 80cm口径望远镜40万公里地月观测实验(来源:Nature)元成像芯片还可以同时获取深度信息,比传统光场成像方法在横向和轴向都具有更高的定位精度,为自动驾驶与工业检测提供了一种低成本的解决方案。而在未来,课题组将进一步深入研究元成像架构,充分发挥元成像在不同领域的优越性,建立新一代通用像感器架构,从而带来三维感知性能的颠覆性提升,或可广泛用于天文观测、工业检测、移动终端、安防监控、医疗诊断等领域。上述成果于2022年10月19日以“集成化成像芯片实现像差矫正的三维摄影”(An integrated imaging sensor for aberration-corrected 3D photography)为题以长文(Article)的形式发表在《自然》(Nature)杂志上。清华大学自动化系戴琼海院士、电子系方璐副教授为该论文共同通讯作者;自动化系吴嘉敏助理教授、清华-伯克利博士研究生郭钰铎、自动化系博士后邓超担任共同一作;自动化系乔晖助理教授、以及清华-伯克利生张安科、清华大学自动化系卢志、清华大学自动化系谢佳辰三位博士研究生共同参与了该工作。该工作受到了国家自然科学基金委与国家科技部的资助。论文链接:https://www.nature.com/articles/s41586-022-05306-8
  • 香港大学开发全新光学芯片生物显微传感系统 可用于细胞分析和药物研发
    细胞功能与结构解析一直是生命科学研究的关键,而其中活细胞无标记检测技术开发一直是生物分析科学发展的核心热点。然而,现今的技术经常需要耗时的准备步骤、高度依赖复杂的检测仪器且与其他设备很难兼容集成,从而限制了其在生物监测领域的功能拓展和广泛应用。由香港大学(港大)电机电子工程系褚智勤博士与机械工程系林原博士、南方科技大学李携曦博士领导的研究团队针对上述问题,开发了一种基于GaN光学芯片的高度集成、低成本微型光学显微传感系统,实现了在空间受限的情况下,高湿度细胞培养箱内无标记细胞活动的监测与分析。团队并成功将新技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这款装置将为细胞生物学和药物研发的基础研究提供新的见解,并有助于新一代生物传感器的开发。团队已为发明申请美国临时专利。相比于传统的以荧光分子、核素等标记分子为基础的有源标记检测技术,无标记检测技术可以最大程度地减少对靶分子、细胞或者组织的功能和结构产生影响,从而揭示检测样本本征状态下的信息。目前,主流商业化的无标记活细胞检测技术包括以电阻抗测量为基础的微电子传感技术,该技术利用活细胞与检测板孔中微电极相互作用,产生电阻抗的改变来定量活细胞状态。然而,这种微电场可能会给一些电信号敏感的样品(神经,心肌)带来潜在的环境干扰。近些年以倏逝波为基础的生物友好、无标记光学传感技术(表面等离子谐振SPR,共振波导光栅RWG等)引起了人们极大的兴趣,并被广泛应用于生物分子相互作用和活细胞活动检测。然而,这种高精密的光学测量手段对设备搭建、场地尺寸及测试环境的要求很高,极大地限制了它在多场景、复杂环境下的推广应用。团队合作开发的光学芯片,是高度集成及低成本的微型光学显微传感系统,能够实时定量芯片表面细胞活动引起的折射率变化并对细胞形貌进行在线成像,实现了对细胞培养箱中无标记细胞活动的监测与分析。该系统核心是一种单片绿光“发光二极管 - 光电探测器(LED-PD)”光电集成器件。其采用的垂直堆栈的分布式布拉格反射镜设计,能够有效提高芯片的发光收集效率。该芯片具有片上光电探测能力,能够实时读取芯片表面集群细胞活动引起的折射率变化。同时通过集成一个微型微分干涉显微镜,实现对细胞形貌和运动的在线追踪。该系统结合对此类细胞的实时折射率和细胞形态的分析,能够定量识别分析细胞的沉降、黏附、伸展、收缩等行为,并成功将此技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这个研究拓展了GaN光学芯片在生物测量领域的发展,特别是这种基于芯片传感和光学成像结合的策略形成的光芯片显微传感系统(chipscope),将为生物传感器的设计和发展提供新的思路。研究结果经已在Advanced Science 刊登 “A Versatile, Incubator-Compatible, Monolithic GaN Photonic Chipscope for Label-Free Monitoring of Live Cell Activities”论文连结: https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202200910
  • 清华大学成功研制元成像芯片
    门捷列夫曾经说过:“科学是从测量开始的。”光学成像拓展了人类的认知边界,推动了科学的进步,同时也广泛应用于生活的方方面面。然而受到不可避免的镜面加工误差、系统设计缺陷与环境扰动的限制,实际成像分辨率与信噪比往往显著低于完美成像系统。如何实现无像差的完美光学成像,一直是光学中最重要且悬而未决的难题之一。记者从清华大学获悉,近日,该校成像与智能技术实验室提出了一种集成化的元成像芯片架构,为解决这一百年难题开辟了一条新路径。区别于构建完美透镜,研究团队另辟蹊径,研制了一种超级传感器,记录成像过程而非图像本身,通过实现对非相干复杂光场的超精细感知与融合,即使经过不完美的光学透镜与复杂的成像环境,依然能够实现完美的三维光学成像。该成果近日以“集成化成像芯片实现像差矫正的三维摄影”为题以长文形式发表在《自然》期刊上。减小光学像差是百年光学难题光线经光学系统各表面传输会形成多种像差,使成像产生模糊、变形等缺陷。光学系统设计的一项重要工作就是校正这些像差,使成像质量达到技术要求。传统光学系统主要为人眼所设计,秉持“所见即所得”的设计理念,聚焦在光学端实现完美成像。近百年来,光学科学家与工程师不断提出新的光学设计方法,为不同成像系统定制复杂的多级镜面、非球面与自由曲面镜头,来减小像差、提升成像性能。但由于加工工艺的限制与复杂环境的扰动,难以制造出完美的成像系统。“例如,由于大范围面形平整度的加工误差,难以制造超大口径的镜片实现超远距离高分辨率成像;地基天文望远镜,受到动态变化的大气湍流扰动,实际成像分辨率远低于光学衍射极限,限制了人类探索宇宙的能力,往往需要花费昂贵的代价发射太空望远镜绕过大气层。”研究团队负责人、中国工程院院士、清华大学自动化系教授戴琼海介绍。为解决这一难题,自适应光学技术应运而生,人们通过波前传感器实时感知环境像差扰动,并反馈给一面可变形的反射镜阵列,动态矫正对应的光学像差,以此保持完美的成像过程。基于此,人们发现了星系中心的巨大黑洞。然而,由于像差在空间分布非均一的特性,该技术仅能实现极小视场的高分辨成像,难以实现大视场多区域的同时矫正,并且由于需要非常精细的复杂系统,往往成本十分高昂。将所有技术集成在单个成像芯片上近年来,数字化的高速发展催生了计算光学这一交叉学科,为先进成像系统设计提供了新的思路。记者从清华大学获悉,早在2021年,该校自动化系戴琼海院士领导的成像与智能实验技术实验室研究团队发表于《细胞》期刊上的成果,就首次提出了数字自适应光学的概念,为解决空间非一致的光学像差提供了新思路。在此次最新的研究成果中,研究团队将所有技术集成在单个成像芯片上,使之能广泛应用于几乎所有的成像场景,而不需要对现有成像系统做额外改造,并建立了波动光学范畴下的数字自适应光学架构,通过对复杂光场的高维超精细感知与融合,在具备极大的灵活性的同时,又能保持前所未有的成像精度。“这一优势使得在数字端对复杂光场的操控能够媲美物理世界的模拟调制,就好像人们真正能够在数字世界搬移每一条光线一样,将感知与矫正的过程完全解耦开来,从而同时实现不同区域的高性能像差矫正。”戴琼海说。有望带来成像系统的颠覆性改变研究人员进一步介绍,上述元芯片的数字自适应光学能力有望带来成像系统的根本性改变。传统相机镜头的成本和尺寸都会随着有效像素数的增加而迅速增长,这也是高分辨率手机成像镜头即使使用了非常复杂的工艺也很难变薄、高端单反镜头特别昂贵的原因。戴琼海介绍,元成像芯片从底层传感器端为这些问题提供了可扩展的分布式解决方案,使得我们能够使用非常简易的光学系统实现高性能成像。除了成像系统存在的系统像差以外,成像环境中的扰动也会导致空间折射率的非均匀分布,从而引起复杂多变的环境像差。其中最为典型的是大气湍流对地基天文望远镜的影响,从根本上限制了人类地基的光学观测分辨率。数字自适应光学技术仅仅需要将传统成像传感器替换为元成像芯片,就能为大口径地基天文望远镜提供全视场动态像差矫正的能力。此外,元成像芯片还可以同时获取深度信息,相比传统光场成像方法,其在横向和轴向都具有更高的定位精度,为自动驾驶与工业检测提供了一种低成本的解决方案。戴琼海介绍,未来,课题组将进一步深入研究元成像架构,建立新一代通用像感器架构,或可广泛用于天文观测、工业检测、移动终端、安防监控、医疗诊断等领域。
  • 我国生物芯片行业发展应“巧借东风”
    将几滴血液滴在指甲大小的生物芯片上,6个小时就能检测出重度先天性耳聋、药物性耳聋等与聋病相关的9个基因位点。聋人在检测后可以了解致聋原因,亦可通过卡片比对大大降低生育耳聋后代的风险。近日,中关村2011年十大技术创新成果揭晓。其中,“九项遗传性耳聋基因检测试剂盒”获得了不少关注。   这项惠民利民的创新成果所依靠的关键产品是生物芯片,依靠这一自主研发的国际先进水平的生物芯片,制造该基因检测试剂盒的博奥生物有限公司已经实现了年收入2亿元。近期,国家知识产权局专利局光电技术发明审查部关注生物芯片产业,制成了《生物芯片专利分析报告》(下称《报告》)。专家在报告中建议,国内企业要在生物芯片的核心技术上占据优势,必须借助本国的行业优势,加强跨领域合作,集中力量进行技术突破。   全球背景   各擅胜场,无人“十项全能”   生物芯片技术是一项新兴的多学科交叉的技术,已经广泛应用于基因表达研究、功能基因组研究、蛋白质组研究、临床疾病诊断、药物筛选等前沿领域,可以产生巨大的经济效益。但是,生物芯片产业的技术复杂、投资巨大、研究周期极长,美、英、德、日等国家的实验室和公司在争相进入该领域进行研发之后,也加大了在专利方面的保护和投入力度。   “中国生物芯片公司应认清和把握国际生物芯片研究和产业化进程中的技术阶段,了解世界生物芯片领域内的技术热点,特别是主要公司的发展方向、研发状况、专利申请状况等。”课题组负责人告诉中国知识产权报记者,“这对中国的生物芯片公司选取合适的研发方向、合理的研发应用策略和技术合作策略,避免低水平的重复研发有着重要意义。”   《报告》指出,生物芯片技术通常可分为芯片制作技术、样品处理技术、生物分子反应技术、反应信号检测技术、数据处理技术和生物芯片应用六大部分。在全球申请人中,日本精工爱普生、美国基因公司、日本尼康公司、日本佳能公司、美国安捷伦公司、美国昂飞公司等企业占据了申请量排行榜前列。   由于生物芯片包含各种各样的分支技术,所以申请量排名靠前的企业也并非“十项全能选手”,而是各擅胜场。在光导合成制备生物芯片技术方面,尼康公司和昂飞公司的专利申请量突出——后者是世界第一家专门生产生物芯片的公司 微流控芯片制作方法与设备中,美国加州大学、加州理工学院和哈佛大学均位于前十,说明研究机构就该领域的研发仍起着一定先导作用。此外,卡钳生命科学公司在微通道技术和电泳芯片技术、昂飞公司在样品处理和生物芯片测序应用技术、三星公司在微阀技术和系统集成技术、基因公司在生物芯片的诊断应用方面、皇家飞利浦公司在样品处理和系统集成技术上均有不俗的专利实力。   国内现状   群雄逐鹿,机遇挑战并存   《报告》课题组经检索与筛选,被选入生物芯片样本的中国专利申请共有3439件,来自中国申请人的专利申请占总量的66%,日本、美国其次,各占12%与10%。在所有的生物芯片中国专利申请中,芯片制作技术占67%、信号检测技术占13%、生物分子反应技术占12%,其余技术包括样品处理、数据处理和外围设备。   生物芯片中国专利的主要申请人中,精工爱普生总申请量最多,其次是皇家飞利浦公司、三星公司、佳能公司、昂飞公司。排名前20位的中国申请人有16位,其中12家为大学和研究机构,仅有的4家企业是:博奥生物有限公司、天津生物芯片技术有限责任公司、上海生物芯片有限公司、上海裕隆生物科技有限公司。   课题组负责人告诉中国知识产权报记者:“来自其他国家和地区的申请人中,很多公司并非专门做生物芯片研究,如排名前列的还有日立公司、索尼公司等。他们大都是知名公司,利用了自身的财力和已有的技术优势,结合生物芯片技术,从而涉足生物芯片领域。”   “我们选取了8个技术分支作为分析对象。”课题组负责人向记者介绍,“发现在华申请中主要以芯片制作技术的申请为主,而近年来微流控芯片得到广泛应用,包含电泳芯片在内的生物芯片反应用途技术也有一定的申请量。此外,样品处理技术由于直接影响生物芯片检测的灵敏性和特异性而得到了较多的关注。”   报告提供的数据显示,在微阵列制备方法和设备上,东南大学、清华大学、上海交通大学和博奥生物占有一定优势。在国外申请人中,皇家飞利浦公司、三星公司的专利申请都涉及多个技术分支。   中国申请人向国外提交的专利申请则集中在生物芯片产业的上游和中游技术,其中芯片制作与样品处理相关的申请量总共占据66%。“探针”、“样品的提取与纯化”是申请量最多的二级技术分支。   专家建议   结合优势,进行技术突破   《报告》指出,生物芯片的应用是生物芯片发展的目的所在,在《报告》所分析的诊断应用和测序应用中,来自美国申请人的专利占据绝对地位,说明美国企业在生物芯片领域的产业化道路上已走在各国之前。   “在生物芯片领域,无论国内国外,合作申请均占有比较重要的地位。这与生物芯片技术本身就是生物学、微电子学和化学等多学科交叉的技术密切相关。”课题组负责人向记者介绍,世界主要申请人中,美国的昂飞公司、卡钳生命科学公司都专注于生物芯片领域,前者掌握着光导原位合成制备技术中的大部分关键技术,后者在微流控芯片领域占据绝对优势。日本许多著名的光学仪器公司利用其自身技术优势,在2000年之后纷纷进入生物芯片研究领域。   “到目前为止,没有哪个国家或公司能够在生物芯片的所有环节上占据绝对优势,因此这对于我国生物芯片行业来说是一个机会。”课题组负责人表示,“从国际上的经验来看,要想在生物芯片核心技术上占据一定优势,必须借助本国行业的优势。最典型的例子就是日本,美国昂飞公司已经垄断了光导合成技术,而日本一些著名企业利用了其在精密仪器和光学检测方面拥有的强大技术优势,如尼康公司对光原位引导合成方面进行了很好的改进,就在生物芯片领域占据了一席之地。”   该负责人说:“我国可以将技术上占优势的产业和技术与生物芯片行业结合起来。例如清华大学在机电技术和光学检测技术,东南大学在微电子技术方面具有较强的实力,企业可以利用这些优势,‘借’来‘东风’,集中在生物芯片加大研发力度,力争在关键技术中有所建树,改善现有的部分生物芯片企业自主研发滞后、主要依靠简单技术引进的局面。”   《报告》还发现了一些有趣的现象:尽管昂飞公司等申请人拥有了较多的基础专利,但后来不断涌现的申请人中,很多公司采取外围专利战略,也达到了很好的效果。“各技术分支的发展程度并不一致,垄断程度有高有低,例如在样品处理领域,没有哪一方占据绝对优势,而分析发现我国在这一领域具有一定技术能力,若能集中资金和研发资源,还是有可能突破核心专利的。”课题组负责人表示。
  • 国内高端光通信芯片如何突出“重围”?
    p   光信息与光网络已经成为国家重要的信息基础设施,奠定了智慧城市的发展基础,也支撑着下一代互联网、移动互联网、物联网、云计算和大数据等战略性新兴产业的发展,同时,在智慧安防、智慧医疗、智慧交通,智慧物业、智慧家居、信息消费等众多领域,都有光信息技术的重要应用。 /p p   光通信芯片作为整个光信息与光网络的核心环节,将成为人们更加关注的焦点。作为专注国内外产学研的优质服务平台,由中国光学工程学会联合国内相关机构组织的第十一届光电子· 中国博览会暨“2019第三届光信息与光网络大会”将于8月5日-7日在北京国家会议中心盛大召开,为国内光芯片制造商搭建解决方案与产品市场拓展的一站式服务平台。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/31ce84d0-d27e-4054-8f60-6bff275ed882.jpg" title=" viewfile.jpg" alt=" viewfile.jpg" / /p p br/ /p p strong 巨头企业进军布局光芯片市场 /strong /p p   光通信芯片是一种高度集成的元器件,是实现电信号和光信号之间的相互转换的关键。5G给光通信芯片市场带来了巨大机遇,随着行业景气度的上升,国内的通讯企业也在加大布局芯片研发,纷纷出台战略计划开展产业布局,逐步上游芯片和核心器件布局和延伸,抢占战略制高点。 /p p   2013年,华为就已进军光通信芯片市场,在光通信领域积淀深厚。当年,华为通过收购比利时硅光子公司Caliopa,宣告加入芯片战场,后来又收购了英国光子集成公司CIP,奠定了自身在光芯片行业的地位。 /p p   2017年1月,光迅科技也在谋划布局,并斥巨资6000万元建设光谷信息光电子创新中心。据统计,光迅科技目前的出货能力为8000万芯片/年,芯片的自给率达到95%左右。 /p p   2018年5月,华工科技亦紧锣密鼓研发核心芯片技术,以期赶上5G建设市场大潮。公司投资6000万设立了光芯片合资公司,专研高速光芯片,产品将在2019年进行量产。 /p p   2018年9月,江苏亨通光电也正朝光器件光芯片领域延伸,其公告了与英国洛克利硅光子公司合作的100G硅光子模块项目,完成了100Gbps硅光芯片的首件试制和可靠性测试,完成了硅光子芯片测试平台的搭建。 /p p   这些巨头企业究竟是如何布局国内光芯片市场的?或许您可以从“2019第三届光信息与光网络大会”得到答案。本届大会亮点纷呈,武汉邮电研究院赵梓森院士、中国工程院邬贺铨院士、华中科技大学刘德明、中国联通刘韵洁等多位国内外院士、专家亲临现场做精彩报告,共同探讨光信息网络的前沿技术及最新产业应用, 展望全产业链发展趋势,为盛会的召开“添砖加瓦”。 /p p   此外,中国光学工程学会将特邀国内三大运营商齐聚一堂,华为、中兴、烽火、长飞等龙头企业悉数到会,他们将覆盖全产业链最新研究热点,重点围绕5G、新型光纤光缆、城域网与光模块、光接入、云数据中心、光电子器件与集成等热点话题展开深入交流,分享最新技术成果,共同深入探讨前沿技术、发展战略、促进产学研各方交流合作。 /p p br/ /p p strong 高端芯片成突围“瓶颈 ” /strong /p p   中国整体的光通信芯片企业整体实力较弱,产品主要集中在中低端领域,高速光芯片国产化率较低。一旦发生外国企业并购现象,收紧芯片自主知识产权,中国高端光通信芯片国产化进程或将迎来巨大挑战。 /p p   中国电子元件行业协会发布的《中国光电子器件产业技术发展路线图(2018-2022年)》显示,国内企业目前只掌握了10Gb/s速率及以下的激光器、探测器、调制器芯片,高端芯片能力比美日发达国家落后1-2代以上。 /p p   纵观行业发展情况,未来光芯片市场发展进程有望提速,但机遇之下危机四伏,产品成本高企将成为最大的“拦路虎”。目前低速率光模块/光器件光芯片的成本占比约为30%,高速率芯片的成本占比约为60%。由于高端的光芯片处于光通信产业链的核心位置,因此未来谁抢占了高技术壁垒,将有利于占据产业链的价值制高点。 /p p   由于芯片行业更新迭代快,所以未来各大厂商必须通过深耕高端芯片细分化市场、研发差异化产品,才能更顺利地突出重围。期待未来国内的企业能够积极参与开发高端光通信芯片,形成差异化的高端产品,顺利占据行业制高点。 /p p   本届光博会展商参展/参观登记/参会注册均已全面上线,欢迎登陆展会官网或官方微信预约登记。 /p p   展会报名地址:http://www.cipeasia.com/ /p p    strong 联系方式 /strong /p p   光电子· 中国博览会组委会 /p p   服务热线:022-58168878、010-83739883 /p p   展会网址:http://www.cipeasia.com/ /p p   宣传合作:许晓洁 010-83739885 /p p   联系邮箱:zhanjiahe@csoe.org.cn /p
  • 基因芯片及其最新进展
    注:最新的测序技术会实现全自动化、实时化、微型化,虽然与传统的芯片技术并不相同,但其理念有共通之处,所以也将其纳入&ldquo 芯片&rdquo 范畴。&mdash &mdash 彭雷   80年代中期,俄罗斯科学院恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。当时用的是多聚寡核酸探针。几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际专利。   基因芯片利用微电子、微机械、生物化学、分子生物学、新型材料、计算机和统计学等多学科的先进技术,实现了在生命科学研究中样品处理、检测和分析过程的连续化、集成化和微型化。   1997年世界上第一张全基因组芯片&mdash &mdash 含有6166个基因的酵母全基因组芯片在斯坦福大学Brown实验室完成,从而使基因芯片技术在世界上迅速得到应用。   基因芯片技术主要包括四个基本要点:芯片方阵的构建、样品的制备、核酸分子反应和信号的检测。1、芯片制备,先将玻璃片或硅片进行表面处理,然后使核酸片段按顺序排列在芯片上。2、样品制备,可将样品进行生物处理,获取其中的DNA、RNA,并且加以标记,以提高检测的灵敏度。3、生物分子反应,芯片上的生物分子之间的反应是芯片检测的关键一步。通过选择合适的反应条件使样品中的核酸分子与芯片上的核酸分子反应处于最佳状况中,减少错配比率。4、芯片信号检测,常用的芯片信号检测方法是将芯片置入芯片扫描仪中,通过扫描以获得有关生物信息。   基因芯片技术发展的最终目标是将从样品制备、杂交反应到信号检测的整个分析过程集成化以获得微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。使用缩微芯片实验室,就可以在一个封闭的系统内以很短的时间完成从原始样品到获取所需分析结果的全套操作。   近年,基因芯片技术在疾病易感基因发现、疾病分子水平诊断、基因功能确认、多靶位同步超高通量药物筛选以及病原体检测等医学与生物学领域得到广泛应用。   一、第一代基因芯片   第一代基因芯片基片可用材料有玻片、硅片、瓷片、聚丙烯膜、硝酸纤维素膜和尼龙膜,其中以玻片最为常用。为保证探针稳定固定于载体表面,需要对载体表面进行多聚赖氨酸修饰、醛基修饰、氨基修饰、巯基修饰、琼脂糖包被或丙烯酰胺硅烷化,使载体形成具有生物特异性的亲和表面。最后将制备好的探针固定到活化基片上,目前有两种方法:原位合成和合成后微点样。根据芯片所使用的标记物不同,相应信号检测方法有放射性核素法、生物素法和荧光染料法,在以玻片为载体的芯片上目前普遍采用荧光法。   相应荧光检测装置有激光共聚焦显微镜、电荷偶合器( charge coup led devices, CCD)、激光扫描荧光显微镜和激光共聚焦扫描仪等。其中的激光共聚焦扫描仪已发展为基因芯片的配套检测系统。经过芯片扫描提取杂交信号之后,在数据分析之前,首先要扣除背景信号,进行数据检查、标化和校正,消除不同实验系统的误差。   对于简单的检测或科学实验,因所需分析基因数量少,故直接观察即可得出结论。若涉及大量基因尤其是进行表达谱分析时,就需要借助专门的分析软件,运用统计学和生物信息学知识进行深入、系统的分析,如主成分分析、分层聚类分析、判别分析和调控网络分析等。   芯片数据分析结束并不表示芯片实验的完成,由于基因芯片获取的信息量大,要对呈数量级增长的实验数据进行有效管理,需要建立起通行的数据储存和交流平台,将各实验室获得的实验结果集中起来形成共享的基因芯片数据库,以便于数据的交流及结果的评估。   典型如SuperArray公司的功能分类基因芯片:   1、引物设计   SYBR Green可与所有的双链DNA反应(包括引物二聚体),为了使扩增反应集中于目的基因,避免非特异性扩增,引物设计成为关键因素。为得到单一特异的扩增产物,避免扩增出序列相似的非特异性产物,采用BLAST或者其他比对方法,检测引物在相应物种(如人,小鼠或大鼠)全基因组中的特异性。为了保证在相同的PCR条件下(特别是统一的退火温度),不同基因均能扩增出相应的特异性产物,对引物的CG值,解链温度(Tm),以及其他化学和物理的特性都进行了优化调整。为了获得高扩增效率,对扩增片段的长度也进行了优化,一般为100到200bp,确保在统一的循环反应的时间范围内,不同基因均能扩增出完整片段。   2、反应体系   为避免非特异性扩增,使用化学修饰的热启动Taq酶,只有经过热激步骤,Taq酶才能发挥扩增活性。同时,反应体系经过优化,可最大限度减少引物二聚体形成,并且保证较难扩增的片段都得到极高的扩增效率。   3、定量结果可靠   在标准的96孔PCR反应仪中进行实时定量PCR实验,为了获得高通量,无法为每个样品单独制备标准曲线。在完全相同的PCR反应条件下,希望表达量不同的多个基因均获得可靠的结果,需要确保每个基因都有较高的扩增效率,从而可采用简单的△△Ct方法计算基因表达量。   其灵敏度高,样品的使用量低,每张芯片使用的总RNA最少可为0.5ng 可观察到的动态线性范围超过105,可以同时检测表达量差异较大的基因 Ct值的平均差异只有0.25个循环,可检测超过两倍的基因表达量变化。因此,第二代功能分类基因芯片是研究特定信号通路或者一组功能相关基因表达量的理想方法。   二、第二代基因芯片   尽管基因芯片技术已经取得了长足的发展,但仍然存在着许多难题和不足。目标分子的标记是重要的限速步骤,如何绕过这一步是人们一直期望解决的问题。其次是检测灵敏度不高,重复性差,无法检测单碱基错配的基因样品。再者,待检测的基因样品必须经过PCR扩增技术的处理以获得足够量的待检测样品,使检测过程相对复杂。我们称具备以上特征的基因芯片技术为第一代基因芯片技术,这些特征充分说明基因芯片技术本身存在着较大的发展空间。   第二代基因芯片包括如下几种:   1. 电极阵列型基因芯片:将微电极在衬底上排成阵列,通过对氧化还原指示剂的电流信号的检测实现基因序列的识别   2. 非标记荧光指示基因芯片:利用荧光分子作为杂交指示剂,在不需对靶基因进行荧光标记的前提下,通过对荧光分子的检测实现基因序列的识别   3. 量子点指示基因芯片:利用量子点作为杂交指示剂,在不需对靶基因进行荧光标记的前提下,通过对量子点的扫描实现基因序列的识别   4. 分子灯塔型基因芯片:利用探针DNA片断的发夹结构,获得单碱基突变检测的能力。   三、第三代基因芯片   目前,众多的第三代基因芯片现在也推向了市场。第三代基因芯片代表了测序的最高水平和未来走向。   1、Illumina微珠基因芯片技术   这是Illumina公司核心技术之一,博奥生物基于Illumina微珠芯片平台,推出SNP分型检测服务以及定制SNP分型检测服务。   它首先用微机电技术在光纤末端或硅片基质上蚀刻出微孔(深度约为3毫米的相同凹槽),将&ldquo 微珠池&ldquo 内的微珠&ldquo 倒&rdquo 入光纤束微孔,每个微孔恰可容纳一个微珠,在范德华力和与微孔壁间流体静力学相互作用下,微珠以&ldquo 无序自组装&rdquo 的方式在微孔内组装成芯片。每种类型的微珠平均有 30 倍左右的重复。   每一个微珠上都偶联有80万左右拷贝数的探针。每一个探针由特异的地址序列(对每种微珠进行解码,29mer)和特异序列(代表不同的检测信息,如SNP 位点序列、基因序列等)组成。用专利的解码技术对芯片上的微珠进行解码,完成对芯片微珠定位信息的收集和确认,也实现芯片生产过程中100%质控。   以四种荧光标记进行16种微珠解码为例,解码过程使用与地址序列互补的且分别标记4种荧光染料的探针进行。把标记4种荧光的不同地址序列探针进行组合,每次杂交后探针清洗下来进行下一轮杂交,通过多轮杂交达到指数型区分能力。   2、Ion Torrent半导体基因芯片   Ion Torrent半导体基因芯片是最新一代的测序技术,它的问世给测序技术的应用带来了激动人心的进展。它采用了半导体技术和简单的化学试剂进行DNA测序,而不是使用光作为媒介。在半导体芯片的微孔中固定DNA链,随后依次掺入ATCG。随着每个碱基的掺入,释放出氢离子,在它们穿过每个孔底部时能被检测到,通过对H+的检测,实时判读碱基。   Ion Torrent个人化操作基因组测序仪(PGMTM)是第一台基于半导体技术的测序仪。与其他测序技术相比,使用该项技术的测序系统更简单、更快速、及更易升级。该测序仪与其他高通量测序仪特征互补,可以迅速完成应急服务项目,缩短服务周期,增加服务效率。   3、实时单分子测序基因芯片   太平洋生物科学公司(PacBio)实时单分子测序基因芯片是直接测由DNA聚合酶将荧光标记的核苷酸掺入互补测序模板。该技术的核心是一个零点启动模式的波导(Zero-mode Wavelength,ZMW)纳米结构的密集排列, 这一排列阵可以进行单个荧光分子的光学审视。   在过去,零点启动模式波导结构被用于从大量高密度的分子中分辨出单一的荧光分子,还没有被用于大量平行分析的操作。为使之用于大量平行分析和数据输出通量(测序数据生成能力),太平洋生物科学公司开发出一种方法,能有效地将零点启动模式波导结构排到表面上,他们采用了电子束光刻技术(Electron beam Lithography)和紫外光电子束光刻技术(Ultraviolet Photo lithography) 以及高度平行的共焦成像系统, 这样可以对零点启动模式纳米结构中的荧光标记分子进行高灵敏度和高分辨率的探测,并采用了一个沉重的稳定平台来确保良好的光学聚焦效果。   4、纳米球基因芯片   全基因组学公司(Complete Genomics)的纳米球基因芯片是以杂交和连接反应为核心的。当通过杂交和连接进行测序的方法出现以后,全基因组学公司推出了新的样品处理方法和纳米阵列平台。基因组DNA首先经过超声处理,再加上一些接头,然后模板环化,酶切。最后产生大约400个碱基的环化的测序片段,每个片段内含有4个明确的接头位点。环化片段用&Phi 29聚合酶扩增2个数量级。一个环化片段所产生的扩增产物称为DNA纳米球(DAN nanoball, DNB)。纳米球被选择性地连接到六甲基二硅氮烷处理的硅芯片上。   5、纳米孔基因芯片技术   另外,还在发展中的纳米孔基因芯片技术是很有潜力的第四代技术。因为这种方法不再需要光学检测和同步的试剂洗脱过程了。   这是一种基于纳米孔(纳米洞)结构的完全不同的测序技术,单个碱基的读取可以靠测定经由纳米级别的孔洞而跨越或透过薄膜的电导率来进行。纳米孔技术可以广泛地归纳为两类:生物类和固态类。   &alpha 溶血素是一种能天然性地连接到细胞膜中继而导致细胞溶解的蛋白质,它第一个被用来做成生物纳米孔模型。第二类纳米孔是以硅及其衍生物进行机械制造而成。 使用这些合成的纳米孔可以降低在膜稳定性和蛋白定位等方面的麻烦,而这些正是牛津纳米孔公司所创立的生物纳米孔系统一直遇到的问题。   例如,Nabsys就发明了一套系统,他们以汇聚的离子束将硅片薄膜打成纳米孔,用于检测与特异性引物进行了杂交的单链DNA穿过纳米孔时的阻断电流变化。 IBM创建了一个更为复杂的系统,能有效地使DNA位移暂停,并在暂停的时候通过隧道电流检测识别每个碱基。   四、基因芯片市场分析   1、国外市场美国illumina公司一家独大   在SNP芯片研究领域,美国illumina公司毫无疑问是霸主,illumina公司凭借自己开发的GoldenGate技术和infinium专利技术一直在SNP芯片领域处于垄断地位。   illumina的全基因组表达谱芯片是目前唯一一种可以达到探针30倍重复的表达谱芯片,其他的芯片都只能达到1-8倍技术重复。因此illumina的全基因组表达谱芯片的重复性是所有芯片中最高的,其重复性R20.996,并且基于第三代基因芯片独特的微珠芯片生产工艺,芯片生产成本较低,信噪比和灵敏度都非常高,其灵敏度&le 1:250,000,芯片检测结果和qPCR相关系数R2=0.97。   因为illumina所占的市场份额越来越多,2012年6月另一基因芯片大厂家Nimblegen公司,正式宣布退出基因芯片市场。   2、国内市场刚刚起步   国内基因芯片制造水平低,相关的企业规模小、投入也少,远达不到国外的水平。所以国内的相关公司均以引进国外基因芯片,提供检测服务为主。不过,随着基因芯片的应用推广,一些公司也开始涉足基因芯片制造。   上市公司达安基因,业务以体外诊断为主,产品主要是试剂盒,但也开始涉足基因芯片制造。达安基因2013年申报的三个专利:一种用于基因检测的电路板 ZL201320244125.X 一种电化学基因芯片 ZL201320244116.0 一种基于基因芯片的检测装置 ZL201320244734.5。   而另一以基因检测服务著称的大企业华大基因,则通过收购国外公司进入基因芯片制造领域。美国上市公司Complete Genomics 公司有自己基因芯片和芯片检测设备。但该公司2011年的业绩只有2000多万美元,其基因测序服务成长大大低于预期,股票跌破发行价,最后被中国华大基因收购。   联川生物在microRNA芯片领域也小有名气,也是唯一一家国产的microRNA芯片,该芯片最大的特点就是更新速度极快,一般新的数据库发表后,第一个将芯片更新到最新版本的就是联川生物。illumina公司于2010年退出了microRNA芯片市场,因illumina公司2006年收购了高通量测序领域NO.1的Solexa公司,成为唯一一家即拥有芯片平台又拥有高通量测序平台的供应商,illumina认为在microRNA领域,高通量测序有不可比拟的技术优势,必然会取代芯片,所以于2010年停产了microRNA芯片。
  • 二维材料成功集成到硅微芯片内
    沙特阿卜杜拉国王科技大学科学家在27日出版的《自然》杂志上发表论文指出,他们成功将二维材料集成在硅微芯片上,并实现了优异的集成密度、电子性能和良品率。研究成果将帮助半导体公司降低制造成本,及人工智能公司减少数据处理时间和能耗。微芯片内的设备和电路的光学显微镜图像。图片来源:《自然》杂志网站二维材料有望彻底改变半导体行业,但尽管科学家们研制出了多款类似设备,但技术制备水平较低,因为大部分技术使用与目前的半导体工业不兼容的合成和加工方法,在无功能的基板上制造出大型器件,且成品率较差。例如,IBM曾试图将石墨烯集成到用于射频应用的晶体管中,但这些器件无法存储或处理信息。最新研究将名为多层六方氮化硼的二维绝缘材料(约6纳米厚),集成到包含由互补金属—氧化物半导体技术制成的硅晶体管的微芯片内,实现了优异的集成密度、电子性能和良品率。研究人员表示,研制出的器件宽度仅260纳米,能用于高级数据存储和计算。未来大多数微芯片将会利用这些二维材料优异的电子和热属性。最新制造出的微芯片显示出了高耐久性和特殊的电子性能,使制备出功耗极低的人工神经网络成为可能。人工神经网络是人工智能系统的关键组成部分,但现有大多数设备都不适合实现这种类型的神经网络,最新研究为此开辟了一条新途径。此外,最新研究有望帮助微芯片制造商和人工智能公司开发新硬件,以减少数据处理时间并降低能耗。研究人员强调,最新研究对纳米电子和半导体领域来说具有重要意义,因为所生产的器件和电路性能优异,且具有深远的工业应用潜力。
  • 可批量制造!我国高性能光子芯片领域取得突破
    随着集成电路产业发展进入“后摩尔时代”,集成电路芯片性能提升的难度和成本越来越高,人们迫切需要寻找新的技术方案。近日,中国科学院上海微系统与信息技术研究所科研团队在钽酸锂异质集成晶圆及高性能光子芯片领域取得突破性进展,成功开发出可批量制造的新型“光学硅”芯片。相关研究成果8日在线发表于《自然》杂志。 当前,以硅光技术和薄膜铌酸锂光子技术为代表的集成光电技术是应对集成电路芯片性能提升瓶颈问题的颠覆性技术。其中,铌酸锂有“光学硅”之称,近年间受到广泛关注,哈佛大学等国外研究机构甚至提出了仿照“硅谷”模式来建设新一代“铌酸锂谷”的方案。“与铌酸锂类似,钽酸锂也可以被称为‘光学硅’, 我们与合作者研究证明,单晶钽酸锂薄膜同样具有优异的电光转换特性,甚至在某些方面比铌酸锂更具优势。”论文共同通讯作者、中国科学院上海微系统所研究员欧欣说,更重要的是,硅基钽酸锂异质晶圆的制备工艺与绝缘体上硅晶圆制备工艺更加接近,因此钽酸锂薄膜可实现低成本和规模化制造,具有极高的应用价值。此次,科研团队采用基于“万能离子刀”的异质集成技术,通过离子注入结合晶圆键合的方法,制备了高质量硅基钽酸锂单晶薄膜异质晶圆;同时,与合作团队联合开发了超低损耗钽酸锂光子器件微纳加工方法,成功制备出钽酸锂光子芯片。  欧欣表示,钽酸锂光子芯片展现出极低光学损耗、高效电光转换等特性,有望为突破通信领域速度、功耗、频率和带宽四大瓶颈问题提供解决方案,并在低温量子、光计算、光通信等领域催生革命性技术。
  • MIT发明基于芯片的微型光谱仪
    p   近日,MIT由Juejun Hu教授,博士生Derek Kita,研究助理Brando Miranda等8人的研究团队研究开发出一种基于芯片制造的微型光谱仪。这种光谱仪采用了不同于传统光谱仪的光学开关技术,这种技术可以将不同种类及长度的光路瞬间翻转。这种全电子化的光学开关系统光谱仪采用标准化的芯片,取消了现在光谱仪中广泛使用的移动透镜等。相比传统光谱仪,新发明的光谱仪在稳健性,性能,尺寸,重量和功耗方面都有着明显的优势。 /p p   除此以外,团队还运用机器学习技术在有限通道中重建了详细的光谱,使其可以更好地检测宽谱峰和窄谱峰。 /p p   研究人员表示,这种光谱仪可以应用于传感设备、材料分析系统等广泛行业,参与研究的Kita表示,现在已经有一些公司联系了他们,这些公司相信这种光谱仪有着广泛的市场前景。 /p p br/ /p
  • 首个集成在铌酸锂芯片上的激光器面世
    美国哈佛大学科学家在最新一期《光学》杂志上撰文称,他们研制出了首个集成在铌酸锂芯片上的激光器,为高功率通信系统、全集成光谱仪、光学遥感,以及量子网络的高效变频等应用铺平了道路。研究人员解释称,长距离通信网络、数据中心光互连和微波光子系统都依赖激光来产生光载波以用于数据传输。但大多数情况下,激光器是独立设备,位于调制器外部,这会使整个系统更昂贵,且稳定性和可扩展性也较差。在最新研究中,哈佛大学工程与应用科学学院(SEAS)的研究人员与行业合作伙伴携手,在铌酸锂芯片上开发了第一台全集成高功率激光器。他们将小型但功能强大的分布式反馈激光器集成在芯片上。这些激光器位于蚀刻在铌酸锂芯片内的小井或沟槽中,且与铌酸锂内的50千兆赫兹电光调制器相结合,构建了一个高功率发射器。最新研究资深作者马科隆卡尔说:“集成铌酸锂是开发高性能芯片级光学系统的重要平台,但将激光器安装到铌酸锂芯片上已被证明是一个极大的挑战。在这项研究中,我们借助纳米制造技巧和技术,克服了这些挑战,实现了在薄膜铌酸锂平台上集成高功率激光器的目标。”最新研究第一作者、SEAS研究生阿米拉桑沙姆斯安萨里说:“集成高性能即插即用激光器将显著降低未来通信系统的成本、复杂性和功耗。我们最新研制出来的这款集成激光器可以集成到更大的光学系统中,用于传感、激光雷达和数据通信等一系列应用。”研究团队强调说,将薄膜铌酸锂器件与高功率激光器相结合,是朝着大规模、低成本、高性能发射阵列和光网络方向迈出的关键一步。他们计划继续提高激光器的功率和可扩展性,以使其能应用于更多领域。
  • 科学家在集成光子芯片上实现人工合成非线性效应
    中国科学技术大学郭光灿院士团队在集成光子芯片量子器件的研究中取得新进展。该团队邹长铃、李明研究组提出人工合成光学非线性过程的通用方法,在集成芯片微腔中实验观测到高效率的合成高阶非线性过程,并展示了其在跨波段量子纠缠光源中的应用潜力。相关成果10月20日在线发表于《自然—通讯》。  自激光问世以来,非线性光学效应已经被广泛应用于光学成像、光学传感、频率转换和精密光谱等领域中。对于新兴的量子信息处理来说,它也是实现量子纠缠光源以及量子逻辑门操作的核心元素。然而受限于材料非线性极化率随阶数呈指数衰减这一本征属性,人们对光学非线性的应用主要局限于二阶和三阶过程,多个光子同时参与的高阶过程很少被研究。一方面,低阶过程限制了传统非线性与光量子器件的性能,比如量子光源的可扩展性;另一方面,人们也好奇高阶非线性过程所蕴含的新颖非线性与量子物理现象。  利用集成光子芯片上的微纳光学结构可以增强光子间的非线性相互作用,这已经成为目前国际上集成光学与非线性光学方向的研究热点。邹长铃研究组李明等人长期致力于集成光子芯片量子器件的研究,开拓微腔增强的非线性光子学,提出并证实了微腔内多种非线性过程的协同效应,开辟了室温下少光子、甚至单光子级的量子器件的新途径。现阶段,该研究组已经能够将非线性相互作用强度随阶次的衰减速率从10-10提升到10-5。即使如此,在集成光子芯片上实验观测到阶次大于三的高效率非线性效应依然极具挑战。  针对该难题,李明等人另辟蹊径,提出一种新颖的非线性过程人工合成理论,即利用材料固有的较强的二阶、三阶等低阶效应,通过人工调控多个低阶过程级联形成的非线性光学网络来实现任意形式、任意阶次的光子非线性相互作用。这种方法避免了在原子尺度去修饰材料的非线性响应,而仅需要控制微纳器件的几何结构就可实现高效率、可重构的高阶非线性过程。  利用集成的氮化铝光学微腔,该团队在实验上同时操控二阶的和频过程和三阶的四波混频过程,合成了更高阶的四阶非线性过程。实验证明,该人工合成的过程比材料固有的四阶非线性效应强500倍以上。如果进一步提升微腔的品质因子,该增强倍数可达1000万以上。  该团队将人工合成的四阶非线性应用于产生跨可见-通信波段的量子纠缠光源。通过测量跨波段光子间的时间-能量纠缠验证了人工合成过程的相干性。相比于传统跨波段量子纠缠光源的产生方法,该工作极大降低了相位匹配的困难,并且仅需要通信波段单一泵浦激光,展现了人工合成非线性过程的优势和应用潜力。审稿人高度肯定了该工作的创新性。  中科院量子信息重点实验室博士研究生王家齐、杨元昊为论文共同第一作者,李明副研究员、邹长铃教授为论文通讯作者。
  • 闲聊半导体行业和芯片人的“黑话”(下)
    中篇讲到了Fab里用到的曝光技术,“黑话“不少;其实这次还好,接触式光刻技术Contact photolithography其实属于早期的光刻手段Method,这种方法中图形光罩Mask与晶圆Wafer尺寸一样大,还要紧密地贴在一起;不难想象,这种方式很容易造成wafer表面的损坏,并且mask也好不到哪里去,很难重复利用;为了解决能不用贴在一起就能光刻的问题,就出现了接近式光刻技术Proximity photolithography;也就是把mask的位置提升,脱离芯片表面一定距离保持接近,但避免接触;虽然解决了损伤和重复利用的问题,没变的是此时的mask仍然要与wafer保持一样大的尺寸;在这种早期的接触和接近式光刻技术帮助下,人类有了第一代光源为436nm g-line,特征尺寸节点到0.8um~0.25um、和第二代光源提升为365nm i-line,由于Mask和Wafer还是1:1的比例,所以特征尺寸节点仍然保持在0.8um~0.25um;在接触接近式光刻技术之后,以DUV Deep Ultraviolet为代表的投影式光刻技术Projection photolithography成为主流:这里我们就有了第三代扫描投影式光刻机DUV Scan,光源开始采用DUV深紫外波长248nm KrF激光,曝光方式改为扫描投影式,工艺节点提升为180nm ~ 130nm范围;还有步进投影式光刻DUV step-and-repeat,曝光方式变为步进式,工艺节点进步到了110nm左右;同样,由于光源波长保持一样,步进投影式光刻DUV step-and-repeat和扫描投影式光刻DUV Scan,同属于第三代光刻机;实现这项技术的关键模组是驱动光源在mask上做步进运动Stepper,或是扫描运动Scanner的组件,“黑话”叫它对准器mask aligner,投影式光刻技术的对准器就叫projection mask aligner了;第四代的光刻机,DUV光源进一步缩短波长,采用193nm ArF激光,曝光方式也同时改进为步进扫描,这就是步进扫描式光刻DUV Step-and-Scan,此时工艺节点已经达到65nm级别;随着将曝光镜头浸没在水中,增加了数值孔径NA,进一步提高了分辨率,就是国内目前Fab厂最高制程的第四代浸没扫描式光刻机DUV Immersion Scan了,工艺节点到了22nm。除了ASML,尼康在上世纪末是当之无愧的光刻机巨头,从 80 年代后期至本世纪初,尼康光刻机市场占有率超50%,代表着当时光刻机的最高水平。这点从尼康官网半导体光刻系统历史发展也可以看出,1980年Launch的NSR-1010G,工艺节点在1.0 µm;从1984年开始,几乎每年都会Launch至少1款光刻机;到了1999年,除了推出世界第一台干式ArF扫描光刻机NSR-S302A,节点≦180 nm之外,尼康还推出了节点≦400nm的NSR-SF100、节点≦150nm的 NSR-S204B、节点≦350nm的 NSR-2205i14E2、节点≦110nm的 NSR-S305B四款设备,卖出的光刻系统数量达到 6,000 台;也和佳能一样,在本世纪初,那场干湿路线之争成为了尼康的转折点,一路跌出了高端光刻机市场,直到2018年,尼康断言,“ArF液浸作为尖端曝光装置使用的电路尺寸是主战场”,推出了专为5nm工艺制程量产而开发的NSR-S635E ArF 浸没式扫描光刻机;尼康的这次出击确保了机台出色的聚焦稳定性并最大限度地减少了缺陷以提高产量,以每小时高达 275 个晶圆的超高通量,完成了回归。摩尔定律一路袭来,繁华之下仔细看过,光刻工艺节点Technology node,“黑话”又叫“制程”的提升,其实是和寸土寸金的Fab外的,我们“正常”实验室里的光学显微术Light microscopy进化历程不约而同,殊途同归的,不是吗?为了提升白光光镜的分辨能力,我们尝试了从汞灯,卤素,LED,一直到激光Laser的历程;在高倍100X的物镜和样品盖玻片之间,我们不也用折射率n为1.58的浸没油Immersion Oil来排挤空气,改善光线折射的数值孔径NA,进而提高分辨率吗?我想说的是,半导体行业的光鲜,跟它有多高的技术没有直接关系;让它披上靓丽的光环的,是在同等级别技术下的能够独步“武林”的应用-芯片制造,更是在这些应用背后成为推手的更加辉煌的民用和国防基建进展;疫情下“缺芯潮”持续,各行业对芯片的需求,转化为对芯片人才的需求,形了成一股芯片行业的涨薪潮。芯片行业资深猎头机构“Match Offer”说:“别家都在裁员,芯片企业却在涨薪;芯片行业整体都很缺人,尤其是芯片设计,我们经手的很多芯片设计工程师和验证工程师年薪在60万~120万元,属于团队中坚力量;中坚中的“战斗机”-MCU架构设计师起薪已经飙到200万!薪资普涨背后,除芯片设计公司吸纳更多人才,不少科技企业也开始自研芯片,也推高了芯片人才的需求;深度科技研究院表示:“从设计制造到封测,芯片产业各环节都有人才缺口,其中最缺的是接触过先进设备、从事过先进芯片设计和生产的高端人才。以往半导体公司薪资待遇长期偏低,核心人才容易流失,高校芯片专业偏冷门,多重因素导致人才供应不足。如今电动车、3C产品对芯片的需求扩大,导致芯片产能和人才需求增加”。我们不得不说,半导体行业和芯片人,真乃生人逢时也!说回光刻机,在22nm节点之后,DUV已经没法再优化了,只能重新开发新的13.5nm 的EUV极紫外光源;现阶段的EUV,确实是ASML的垄断状态,实现的工艺节点可以到14nm、7nm、5nm;EUV技术的关键难点在于材料吸收,因为波长太短光子能量很高,基本上大部分材料都会很容易的吸收EUV光源,导致光源到达工作面时光强很弱,所以设计时材料的选取是非常关键,光刻环境也要要求严格的真空环境;EUV作为一种新光源的第五代光刻机的出现,还会影响一整条产业链的格局,因为不同光源对Mask材料,光刻胶材料,光学镜头等都有独特的要求,最新的0.55NA的造价已经标至几十亿美元一台。ASML总部2017年曾说过:“如果我们交不出EUV,摩尔定律就会从此停止。”;ASML日本也说过:“摩尔定律预计未来10年后还会持续下去,以此为中心支撑的是最先进的EUV光刻机”;近期的ASML公众号也在咬着后槽牙讲话:“只要我们还有想法,摩尔定律就会继续生效!”。可是,面对高昂的代价和无限长的货期,理性说:“还是让我们回过头来,重新盘点了下上面我们提到的那些光刻技术吧;是时候要回归Maskless光刻了,更是时候抛弃传统的只有用“光”才能“刻”的技术了!“不用光罩的Maskless电子束曝光系统 electron beam exposure技术EBL,虽然由于通量有限曾被EUV打败,但是电子先天短波长的优势,势必会重回“光刻”舞台;全球六家EBL厂家,欧洲有两家,日本四家;前身是Leica Microsystem芯片分支的Vistec公司,以其“有趣“的历程,惹人关注;国产EBL厂家”Goldenscope”立志追赶,投资1.7亿开发的电子束光刻设备,已经有三台样机在深圳福田,北航,及国防大学处安装完成,并投入使用;第四台即将安装在怀柔科学城;不用“光”的纳米压痕NIL技术,更以相比EUV只有四成的成本和一成的功耗,重回芯片产业视野;这里我们要谈到另一家光刻机巨头佳能:跟尼康一样,佳能在上世纪还是很猛的,1970年发售了日本首台半导体光刻机PPC-1;1975年发售的FPA-141F光刻机,在世界上首次实现了1微米以下的光刻;1984年推出了FPA-1500FA,节点在1.0 μm;1994 年发布第一款FPA-3000 系列,配备了分辨率为 0.35 μm 的i-line 镜头,是当时世界上分辨能力最高的镜头之一;也和尼康一样,本世纪初的那场干湿路线之争也成为了佳能的“滑铁卢”。这里我们要说的是,佳能早在2004 年就开始研发NIL技术,2014年美国分子压印公司(现佳能纳米技术)加入佳能集团的消息公开,明确表示将使用纳米压印法进行开发;2021 年,大日本印刷在根据设备的规格进行了NIL内部模拟,发现在电路形成过程中每个晶片的功耗可以降低到使用EUV曝光时的大约1/10;根据大日本印刷的说法,NIL量产技术制程可达5nm的节点;2017年,佳能NIL纳米压印芯片制造设备“FPA-1200NZ2C”,正式交付给东芝存储器工厂;从目前透露的消息来看,和佳能共同开发的NIL技术的铠侠KIOXIA已掌握NIL 15nm的制程量产技术,目前正在进行15nm以下技术研发,预计2025年进一步达成量产。聊完“D”沉积镀膜,“L”光刻,我们到了“E” Etching蚀刻设备了;在IC集成电路的制程中,常常需要将整个电路图案定义出来,其制造程序是先长出或盖上一层所需要的薄膜Deposition,再利用微显影技术Development在这层薄膜上,以光阻PR定义出所欲制造的电路图案,再利用化学或物理方式将不需要的部份去除Etch;此种去除步骤,便称为蚀刻;蚀刻可分为湿法蚀刻Wet Etching,及干法蚀刻Dry Etching两种:所谓湿蚀刻就是利用化学品,如酸液,与所欲蚀刻的薄膜起化学反应,产生气体或可溶性生成物,达到图案定义的目的;而所谓干蚀刻,则是利用机台产生电浆将所欲蚀刻的薄膜反应,产生气体,由真空泵PUMP抽走,达到图案定义的目的。这里讲话“蚀刻”,或“刻蚀”不定,关键字是“蚀”,就是“挖走”、“去除”之意;这里的“黑话”群包括反应离子刻蚀 reactive ion etching, RIE、各向同性刻蚀 isotropic etching、各向异性刻蚀 anisotropic etching、反应溅射刻蚀 reactive sputter etching、等离子体刻蚀 plasma etching。上面提到,Chip的Etching过程中,常需要用酸碱溶液;这些蚀刻步骤之后,必须利用水把芯片表面残留的酸碱清除,而且水的用量是相当大;然而IC工业用水,并不是一般的自来水,而是自来水或地下水经过一系列的纯化而成;因为自来水或地下水中,含有大量的细菌,金属离子及各类Particle,将之杀菌过滤和纯化后,即可把杂质去除,所得的水即称为"去离子水"Deionized Water,就是DI water,专供IC制造之用。这里想到的是,“正常”实验室里作为电镜冷却液的“水”,不少会用到这个“去离子水”,这是有害无益的;因为铜质冷却管道会“损失”铜离子到DI water中,长此以往会害上“骨质疏松”症,越来越薄,直到泄露;“正常人”知道,电镜散热要求较易满足,冷却液里主要怕长“水藻”,一种类似汽车防冻液,叫“Hexid40”的冷却液就足够了。从Fab和Foundry出来的Chip,就完成了芯片制造的“前道”程序,该进入“后道”的“封测”了;封装“黑话”叫Packaging,这里的“黑话群”有金属封装 metallic packaging、陶瓷封装 ceramic packaging、扁平封装 flat packaging、塑封 plastic package、玻璃封装 glass packaging,都属于微封装 micropackaging,又称“微组装”;更大的印刷线路板PCB封装中,常见Surface Mounted Technology SMT,比起“传统”的Pin Through Hole PTH“板上插针”方式就是“鸟枪换炮”。“市场对芯片是刚性需求,相应对芯片人才也会保持较大需求。未来,要等待企业成长、逐渐培养人才,也要等待高校输出高质量毕业生。”笔者说;要满足半导体行业对“芯片人”的用人需求,不仅需要企业提高薪资吸引人才,还需等待行业逐渐成熟,有能力培养并稳定人才。笔者表示,解决芯片行业缺人问题,还是需要市场发挥作用,逐渐调整,就从学会“说黑话,对暗号”开始吧。
  • 等离子体“彩虹”芯片级智能光谱仪,可实现“光谱+偏振”双功能传感
    近年来,研究人员和业内主要厂商已将研发重心转向微型化、便携式且低成本的光谱仪系统,使之可以在日常生活中实现现场、实时和原位光谱分析的许多新兴应用。然而,受到过度简化的光学设计和紧凑型架构的机械限制,微型光谱仪系统的实际光谱识别性能通常远低于台式光谱仪系统。如今,克服这些限制的一种策略便是在光子方法学中引入深度学习(DL)进行数据处理。据麦姆斯咨询报道,近日,美国纽约州立大学布法罗分校(University at Buffalo,the State University of New York)与沙特阿卜杜拉国王科技大学(King Abdullah University of Science & Technology)的联合科研团队在Nature Communications期刊上发表了以“Imaging-based intelligent spectrometer on a plasmonic rainbow chip”为主题的论文。该论文第一作者为Dylan Tua,通讯作者为甘巧强(Qiaoqiang Gan)教授。在这项研究工作中,研究人员开发了一种紧凑型等离子体“彩虹(rainbow)”芯片,能够实现快速、准确的双功能传感,其性能可在特定条件下超越传统的便携式光谱仪。其中的分光纳米结构由一维或二维的梯度金属光栅构成。该紧凑型等离子体光谱仪利用普通相机拍摄的单幅图像,即可精确地获得照明光源光谱的光谱信息和偏振信息。在经过适当训练的深度学习算法的辅助下,研究人员仅用单幅图像就能表征葡萄糖溶液在可见光光谱范围内的双峰和三峰窄带照明下的旋光色散(ORD)特性。该微型光谱仪具有与智能手机和芯片实验室(lab-on-a-chip)系统集成的潜力,为原位分析应用提供新的可能。研究人员利用彩虹捕获效应(rainbow trapping effect)来开发片上光谱仪系统。图1展示了该研究工作所提出的片上光谱仪和一维彩虹芯片的设计原理。如图1a所示,该光谱仪利用等离子体啁啾光栅实现分光功能。这种表面光栅几何形状的逐渐变化,导致了局部等离子体共振的空间调谐(即为光捕获“彩虹”存储)。如图1b所示,研究人员采用聚焦离子束铣削技术,在300 nm的银(Ag)薄膜上制备了啁啾光栅。当白光垂直入射时,通过简单的反射显微镜系统(如图1c),就可以观察到明显的“彩虹”色图像,如图1d的顶部所示,该现象源于光栅引发的等离子体共振。图1 片上光谱仪的等离子体啁啾光栅根据这些空间模式图像,可以建立共振模式与入射波长一一对应的关系,这是片上光谱仪的基础。因此,研究人员探讨了该光谱仪对任意光谱特征的空间分辨能力。通过深度学习辅助的数据处理和重建方法,研究人员利用这种分光功能可以构建用于光学集成的智能化、微型化光谱仪平台。具体而言,研究人员提出了基于深度学习的智能彩虹等离子体光谱仪概念,并构建了带有等离子体啁啾光栅的光谱仪示例,如图2所示。该光谱仪利用深度神经网络预测了所测量的共振模式图像中的未知入射光光谱,而无需使用传统的线性响应函数模型。实验中的光谱仪架构如图2a所示。智能光谱仪主要由三部分构成:空间模式、预训练神经网络以及对应的波长。图2 基于深度学习的数据重建光谱分辨率是评价传统光谱仪性能的重要参数之一。因此,研究人员对该光谱仪的分辨率做了详细测试,测试结果如图3所示。图3 智能等离子体光谱仪的分辨率以上初步测试数据表明,智能彩虹芯片光谱仪具有实现高分辨率光谱分析的潜力,其性能可与传统台式光谱仪相媲美。随后,研究人员将一维光栅扩展到二维,以利用紧凑型智能等离子体光谱仪实现偏振光谱的测定,其性能超越了传统的光学光谱仪系统。同时,研究人员展示了等离子体彩虹芯片光谱仪可以引入简化、紧凑且智能的光谱偏振系统,具有准确且快速的光谱分析能力。图4a为具有梯度几何参数的二维光栅。图4 用于测定偏振光谱的二维啁啾光栅接着,研究人员利用该二维偏振光谱仪芯片对旋光色散进行了简单而智能的表征。图5a为传统的旋光色散系统测量由物质引起的旋光度随入射波长的函数变化。最后,研究人员展示了将二维光栅作为光谱偏振系统,并介绍了用于葡萄糖传感应用的示例。图5 更简单、准确且智能的光谱偏振分析综上所述,本研究中提出了一种集成了片上彩虹捕获效应与紧凑型光学成像系统的智能芯片级光谱仪。研究结果表明,该等离子体芯片可以在可见光光谱(470 nm - 740 nm)范围内区分不同的照明峰值。该芯片充分利用其波长敏感结构,能够根据照明光谱峰值显示不同的等离子体共振模式。随后将芯片扩展到二维结构,共振模式的复杂性增加,从而在入射光偏振方面提供更多信息。通过使用片上共振模式的空间和强度分布图像来训练深度学习算法,研究人员在同一系统内分别实现了光谱分析和偏振分析。随后,研究人员利用一种将旋光引入透射光的手性物质(即葡萄糖),证明了所提出光谱仪在旋光色散传感方面的可行性,旋光色散是一种有助于手性物质检测和定量的偏振特异性特征。深度学习模型的分析表明,该算法能够基于等离子体芯片的共振模式准确预测葡萄糖引入的旋光。即使在分析多峰照明下的共振模式时,这种性能也得到了保留。这种由深度学习支持的基于图像的光谱仪能够通过利用纳米光子平台的单幅图像同时进行光谱分析和偏振分析。因此,该光谱仪标志着在单一紧凑型且轻量化设计中实现了高性能的光谱偏振分析,为深度光学和光子学在医疗保健监测、食品安全传感、环境污染检测、药物滥用传感以及法医分析等领域的应用赋能。这项研究获得了沙特阿卜杜拉国王科技大学物理科学与工程部的科研基金(BAS/1/1415-01-01)和NTGC-AI项目(REI/1/5232-01-01)的资助和支持。
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • ASML:芯片供应链脱钩几乎不可能
    据日经亚洲报道,ASML执行副总裁兼首席商务官Christophe Fouquet表示,全球半导体供应链脱钩即使可能,也将极其困难且昂贵,任何一个国家都很难建立自己完全自力更生的芯片产业。Fouquet称,“我们ASML不相信脱钩是有可能的,这将非常困难且非常昂贵。人们会意识到在半导体领域取得成功的唯一途径是合作,这只是时间问题。”当前,美国、日本、欧盟、印度和中国等主要经济体为实现芯片自主生产,纷纷推动本土半导体生产。Fouquet表示,ASML成功的秘诀在于与蔡司(Zeiss)、西盟(Cymer)等全球重要供应商的长期合作,以及其顶级芯片制造客户台积电和英特尔的支持。ASML是全球唯一的尖端芯片设备制造商,即极紫外(EUV)光刻机,该设备能够生产7纳米以下的先进半导体。德国蔡司是ASML唯一的精密反射镜系统供应商,精密反射镜系统是EUV机器最关键的光学部件之一,而ASML于2013年收购的总部位于圣地亚哥的Cymer是EUV光源的唯一供应商。尽管它对跨境合作持开放态度,但ASML认为,对于一些最复杂的组件,最好只有一家供应商。Fouquet说,“为获得EUV光学器件而对蔡司进行的投资是巨大的。如果你在两到三个地方进行生产,成本就不再划算了。当谈到高端的技术时,我们会与供应商建立合作伙伴关系。当涉及到不太先进的技术时,我们会考虑多家供应商。”目前,ASML的大部分生产都在总部完成,Fouquet表示,至少到2026年,它可能会将大部分(大约80%到90%)的生产保留在那里。但ASML为就近服务客户,在韩国与美国等地区已经设有维修中心。
  • 科学家首次开发出芯片远程供电实验室设备
    美国加州大学圣地亚哥分校的研究人员开发出一种微流体芯片,可利用无线电频率发射器(RFID)来为电泳实验供电。这是科学家首次开发出芯片远程供电实验室设备。   电泳是利用电场来操纵带电粒子的一种技术。为了提高通量,科学家已经开发出一些微型芯片,不过这些芯片往往需要配以庞大笨重的电气设备。   加州大学圣地亚哥分校的研究人员将芯片电路印刷在一块塑料板上,电路板的空腔中含有大量微孔,并充入带负电的纳米粒子。负电粒子最初呈随机运动状态,研究人员引入可识别RFID的电场,此时负电粒子被困在带正电荷的微孔中。利用RFID识别卡发送无线电频率脉冲后,将产生电流为芯片供电。   该设备的特点是生产成本低,简单易用,如果将RFID发射器安装在显微镜上,可利用显微镜和摄像机来捕获粒子移动的图像。研究人员表示,该芯片对于习惯使用光学显微镜进行疾病诊断的病理学家和临床医生来说是一个福音,它可以简化复杂精密的电子设备的操作,进而提高医生的疾病诊断能力。相关论文发表于《芯片实验室》(Lab on a Chip)。
  • “未来科技”照进现实—芯片上的实验室
    说到芯片,大家第一个可能会想到计算机和人工智能。在很多科幻电影中,“芯片”出现在电子设备、衣服、厨房等多个地方,甚至还可能会被嵌到人体中进行定位。现实中,芯片的发展也是突飞猛进,“未来科技”逐一出现在了我们的现实生活中。 预计在“未来化”的过程中,芯片将会扮演起极为关键的角色,在不同的领域发挥重要作用,成为第四次科技革命的重要基础。正如计算机芯片使计算微型化,而芯片实验室也能使实验室微型化,实现从试样处理到检测的整体微型化、自动化、集成化与便携化这一目标。Transparency Market Research (TMR)报告预计,2024年的全球芯片实验室市场规模将从2016年的38.8亿美元达到87亿美元。那么,什么是“芯片实验室”? “芯片实验室”包含哪些部分?“芯片实验室”用来做什么?下面让我们一起来看看吧。什么是“芯片实验室”?芯片实验室(Lab-on-a-Chip)是由瑞士Ciba-Geigy公司的Manz与Widmer在1990年提出。他们最初的想法是发展一种可能作为一个化学分析所需的全部部件和操作集成在一起的微型器件,强调“微”与“全”。我们可以把这个概念理解成将一个实验室微缩到一张小小的芯片上,也就是说在这样的指甲盖大小级别的地方实现实验室那样的功能。其定义是将生物和化学领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术,它还有一个更常用的名字叫做微流控芯片。国家科技部《“十三五”生物技术创新专项规划》明确将“芯片上的实验室”列为应重点发展的颠覆性技术之一。“芯片实验室”包含哪些部分?芯片实验室大体包括三个部分:芯片、分析仪(包括驱动源和信号检测装置)、试剂盒。芯片内设置了不同的可供流体通行的通道,用以完成不同的生物或化学反应过程,当需要检测的物质流过某一区域时,受到光的照射,这些物质可以自发或者与其它特定物质结合发出荧光,这些荧光可以通过光学相机等传感器进行读取,从而得知流体通道中需要检测的物质种类与含量。“芯片实验室”用来做什么?芯片实验室由于集成度非常高、所需的测试样品和反应试剂非常少、反应速度快、便于高通量测试等优点,被应用到了不同的领域。主要芯片材料有PDMS,PMMA,PC等,制备方法有注射成型,模塑法等1.疾病基因筛查2012,英国公司Oxford Nanopore从计算机产业中得到了启示,通过一群快速个体节点进行运算的模式,开发出一款名为MinION的可便携使用的基因序列检测机,这款基因序列检测机由一个传感器芯片、专用集成电路和一个完整的单分子感应测试所需的流控系统构成。MiniON 6小时内可快速测序1.5亿对碱基对。它与其他实验室测试类似,都是利用血液、血浆、血清进行样本分析,并且不需要聚合酶链反应来进行增幅。由于其体积很小便于携带,即使在门诊或缺乏医疗设施的偏僻地方也能做测试,甚至在病人家里也行,只要把芯片插入平板电脑或类似设备,就能得到结果。更重要的是,芯片实验室通过更换不同的芯片可以检测不同的遗传疾病基因,如Ⅱ型糖尿病、心脏病、药物过敏等。2.食品安全检测2016年,霆科公司推出YoungChip-PR12农残速测系统,是全球首台基于微流控芯片技术的农残速测产品。该系统基于国际酶抑制原理,采用便携式分析仪与一次性微流控芯片的组合形式,“1张芯片一次检测12个样本,10分钟出结果”,可对水果、蔬菜、水质等样品中农药残留开展现场、快速、准确的分析测定,特别适合于农贸市场、农产品批发市场、大型种植基地、学校机关食堂、检验检疫机构等大批量样品筛查需求的客户。3.水质检测2020年,美国罗格斯大学的研究人员开发了一种便携式“芯片实验室”,可以在几分钟内测量港口、河道以及其他水体底部沉积物里的痕量毒铅(trace levels of toxic lead),比目前基于实验室的的测量要快得多——该设备从沉积物样品中富集铅,并使用氧化石墨烯薄膜作为铅检测器。该设备价格实惠,可满足政府、水司、学校以及居民的日常使用,轻松而迅速地检测饮用水中铅的含量。罗格斯大学的Mehdi Javanmard教授还表示,除了可以用在水体检测外,该设备还可以用于检测鱼中的铅含量。为克服电化学传感器对重金属的测量缺陷,研究人员在该芯片实验室中运用了一种集成系统,由多孔基体组成,可将Pb2+提纯至用作活性传感材料的氧化石墨烯(graphene oxide, GO)薄膜上。该设备的紧凑传感系统主要由两个组件组成:带有氧化石墨烯的改进型电化学传感器、由人造海绵(cellulose sponge)组成的预处理柱。该集成传感器可原位检测复杂沉积物样品中的铅含量,线性范围内的检测浓度极限为 4 ppb(μg/L)。该微型装置可以用最少的预处理剂和最少的时间,直接检测沉积物样品中痕量铅,有望成为现场监测环境样品中重金属的有效解决方案。4.新冠检测2021年,博奥联合清华大学成功研发了由新型冠状病毒2019-nCoV核酸检测试剂盒(全集成碟式芯片法)(国械注准:20213400101)和全自动核酸分析仪(国械注准:20213220102)组成的全集成芯片实验室。系统通过巢式恒温扩增来提高核酸检测的灵敏度,使其在不开盖的情况下检测灵敏度可达150拷贝/毫升,在截至目前获批的同类产品中灵敏度最高,45分钟内一步完成全程实验,35分钟报告阳性结果,实现对新型冠状病毒核酸的快速检测。与现有检测技术相比,用于新型冠状病毒现场快速检测的全集成芯片实验室具有更自动、更安全、更快速、更准确的特点,在保证生物安全性的同时大大降低了样本间的交叉污染风险和对操作人员、实验室条件等专业性的要求,可适用于多种场景(如医疗机构发热门诊、疫情防控前沿哨点、海关入境检疫、车载移动实验室、重大会议安保等)对新型冠状病毒进行安全、快速、精准的检测与筛查。
  • 半导体工艺监测中的光谱应用,助力提升芯片质量和产量
    根据检测工艺所处的环节,IC集成电路检测被分为设计验证、前道量检测和后道检测。前道量测、检测均会用到光学技术和电子束技术,其中光学量测通过分析光的反射、衍射光谱间接进行测量,其优点是速度快、分辨率高、非破坏性。后道检测工艺是芯片生产线的“质检员”,根据工艺在封装环节的前后顺序,后道检测可以分为CP测试和FT测试。在以上测试中,光谱仪可以用于膜厚测量、蚀刻终点监控等工艺中。(1)膜厚测量半导体集成电路的生产以数十次至数百次的镀膜、光刻、蚀刻、去膜、平坦等为主要工序,膜层的厚度、均匀性等直接影响芯片的质量和产量,在加工中必须不断地检测及控制膜层的厚度。光学薄膜测厚仪是半导体生产流程中必不可少的设备之一,用于对芯片晶圆及相关半导体材料的镀膜厚度等进行检测。半导体光学薄膜测厚仪技术主要有光谱反射仪和椭偏仪两种。椭偏仪考虑了光的极化,采用P波和S偏振反射光之间的相位差异,适用于非常薄的薄膜,并可直接测试N,K值。光谱反射仪虽然没有椭偏仪的这些性能,但也能测量数纳米以下的薄膜厚度,测量精度高,而且测量速度较快。基于光波的干涉现象,光束照射在薄膜表面,由于入射介质、薄膜材料和基底材料具有不同的折射率值和消光系数值,使得光束在透明/半透明薄膜的上下表面发生反射,反射光波相互干涉,从而形成干涉光,这些干涉光在不同相位处的强度将随着薄膜的厚度发生变化。通过对干涉光的检测,结合适当的光学模型即可计算得到薄膜的厚度。海洋光学(OceanInsight)膜厚仪检测系统,配置有采样平台、UV-VIS反射探头,配置如下。图1:薄膜厚度测量系统配置(2)终点监控在基于等离子体的蚀刻工艺中,等离子体监测对工艺控制很重要。晶圆是用光刻技术制造和操作的,蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如海洋光学的HR或Maya2000Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。图2:模块化的光谱仪设置可以配置为真空室中的等离子体测量。图3:通过真空室窗口测量氩气等离子体的发射。紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。Maya2000Pro在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。在半导体领域中的光谱应用是海洋光学的未来业务侧重点之一。从OceanOptics更名为OceanInsight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTechnology)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。本文资料来源-海洋光学/编辑整理-爱蛙科技关于海洋光学海洋光学(OceanInsight)作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTechnology)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 拜安半导体MEMS芯片研发小试线首台设备入厂
    4月11日,上海拜安半导体有限公司举行了MEMS芯片研发小试线首台设备入厂仪式。拜安科技官方消息显示,拜安半导体由拜安科技和嘉定综保区公司共同投资,于2022年2月成立公司,3月取得项目准入,9月开工建设,今年6月即将进入试生产。图片来源:拜安科技据悉,拜安半导体致力于MEMS光纤传感器芯片的制造和研发。产线建成投产后,拜安半导体除了满足拜安科技对MEMS光纤传感器芯片的需求,还将对外开放MEMS光纤传感器芯片研发生产,每年研发生产芯片晶圆10000-15000片。拜安科技主要从事高性能MEMS光纤传感器和全光谱传感分析仪智能硬件的研发和制造,具备MEMS芯片设计和工艺流片、光学芯片封装、传感器和宽光谱波长可调谐激光器制造、专用集成电路和嵌入式软硬件设计、光谱图像智能识别、行业大数据平台开发、光机电设备微小型化集成等技术能力。下周开播!传感器/MEMS研究与检测技术讲座通知一、主办单位仪器信息网 & 电子工业出版社二、举办时间2023年4月11-26日,每周一期三、会议日程4月26日:传感器/MEMS研究与检测技术报告时间报告题目报告嘉宾单位职称14:00-14:40MEMS无线智能温振传感器及应用王建国苏州捷研芯电子科技有限公司副总经理14:40-15:20面向呼气标志物检测的气体传感器研究刘凤敏吉林大学教授四、参会指南1、点击会议页面链接报名;会议页面:https://insevent.instrument.com.cn/t/RUs 2、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接;3、本次会议不收取任何注册或报名费用;4、会议联系人:3i讲堂—材料小周( 邮箱:zhouhh@instrument.com.cn;微信二维码如下,可加入会议交流群)会议联系人微信二维码
  • 清华大学超光谱成像芯片成果发表在Optica
    近日,清华大学电子工程系黄翊东教授课题组的副教授崔开宇、博士生熊健、博士后蔡旭升等人的论文《基于可重构超表面的实时超光谱成像芯片及动态脑光谱获取》(Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces)于美国光学学会旗舰期刊Optica上发表。光谱是物质的指纹,实时光谱成像可获取成像视场内各像素点的动态光谱,将为人工智能及感知技术开拓一个新的信息维度,在诸多领域有着巨大的应用需求。本工作研制成功了国际首款实时超光谱成像芯片:提出基于图像自适应的可重构超表面超晶胞,通过超表面单元结构的空分复用,解决了计算光谱难以兼顾频谱分辨率和空间分辨率的局限;在实验上成功制备出的国际首款实时超光谱成像芯片,将单点光谱仪的尺寸缩小到百微米以下,空间分辨率超过15万像素,即在0.5 cm2芯片上集成了15万个微型光谱仪,可快速获得每个像素点的光谱,工作谱宽450-750nm,分辨率高达0.8nm;使用实时超光谱成像芯片首次测量了活体大鼠脑部血红蛋白及其衍生物的特征光谱的动态变化,时间分辨率可达30Hz,可进一步利用神经血氧耦合的机制得出脑部神经元的活跃状态。作为一种非侵入式的检测手段,展示出光谱成像芯片在实时传感领域的巨大潜力。相关工作已创立成果转化企业“北京与光科技有限公司”。Jian Xiong†, Xusheng Cai†, Kaiyu Cui†*, Yidong Huang, Jiawei Yang, Hongbo Zhu, Wenzheng Li,Bo Hong, Shijie Rao,Zekun Zheng, Sheng Xu, Yuhan He, Fang Liu, Xue Feng, and Wei Zhang, "Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces," Optica 9,461-468 (2022)
  • 国产生物芯片新突破 引领桌面式高通量NanoSPR分子互作系统
    近年来,生物药的市场需求逐年扩容,其中抗体药物因其靶向性好,治疗效果显著,在生物药中占据着举足轻重的地位,目前已经进入了抗体药物发展的黄金时代。随着抗体药的需求越来越大,抗体筛选技术的发展也是日新月异。分子互作系统作为研究分子间相互作用的重要工具,在药物筛选及相关药物动力学检测等研究中发挥了重要作用,分析生物分子之间的相互作用可深入理解动力学信息,并为早期治疗提供宝贵的建议。目前,分子相互作用分析方法包括生物层干涉法(BLI),表面等离子体共振(SPR)和局域表面等离子体共振(LSPR)等,尽管它们都可以实现无标记、实时和高通量分子互作分析,这些方法仍具有局限性,例如样本需要纯化、仪器成本高、设备体积大等。这些限制了它们在个人、小型制药公司和其他资源有限的环境的广泛使用。因此,开发出一种快速、高通量、低成本的实时检测分子间相互作用的方法对药物筛选或临床早期诊断是非常有必要的。2022年9月1日,华中科技大学刘钢教授团队在Advanced Functional Materials杂志以“An Nanoplasmonic Portable Molecular Interaction Platform for High-Throughput Drug Screening”为题发表最新研究成果,开发了一种便携式的桌面 NanoSPR 分子相互作用分析平台,该研究成果目前已成功完成多种药筛产品转化。纳米等离子共振(NanoSPR)技术是无需荧光或染料标记生物分子、病毒和细胞的一种光学分析测试技术。NanoSPR芯片表面对电介质的折射率变化非常灵敏,无需标记,就可以实现快速、实时、原位、无损、动态检测分子的相互作用或溶液中目标物浓度的测定。刘钢教授团队利用其拥有的国际最新NanoSPR光学芯片专利技术,首次将NanoSPR传感芯片与标准微孔板(NanoSPR CP)和便携式八联微孔柱(NanoSPR CEP)集成并用于高通量实时检测分子之间结合与解离过程的互作平台,同时也构建了多种类型的即用型生物芯片筛选技术已成功用于抗体定量、抗体亚型鉴定、亲和力检测、抗体人源化改造、抗原表位分析,靶点筛选、抗体对筛选等,可助力基因治疗、基因疫苗研究、抗原表位研究、药物筛选与设计、细胞信号传导研究等领域的研发生产效率。纳米杯阵列增强表面等离子体共振(NanoSPR)芯片传感器用于实时监测分子间相互作用示意图。该研究首先通过纳米压印光刻、电子束蒸发和接合技术设计并制造了晶圆级纳米杯状阵列增强的NanoSPR传感芯片,并将NanoSPR芯片集成至标准的96孔板或简单的八联微孔柱装置形成分子互作平台,开发设计的两种便携式NanoSPR分子互作分析平台,由于其独特的光学特性,采用自制便携式透射光强度检测系统,就能进行高灵敏度、快速、高通量、无标记实时动态分析分子间的结合与解离过程。便携式NanoSPR分子互作分析平台(点击查看 )NanoSPR分子互作分析平台可对各种不同的分子相互作用提供深入的无标记的结合动力学检测和分析。选择包括新冠病毒蛋白与抗体系列在内的各种分子对分别与行业标准Biacore或Octet系统进行数据比较分析,在不同的比对数据中均获得了NanoSPR分子互作平台与Biacore仪器和Octet仪器对同一组分子对相似的动力学和亲和力值,有力的支持了具有100%自主知识产权的NanoSPR分子互作平台可准确高效且经济地进行分子间结合相互作用的检测和研究。研究表明NanoSPR技术有望成为一种革命性新技术用于高灵敏度、快速、高通量、无标记、低成本和实时检测分子相互作用的分析,应用于药物筛选、临床早期诊断和表位鉴定等领域,给研究人员提供可在自己的实验室中完成深入的无标记结合动力学分析检测技术。(a) SARS-CoV-2 Nucleocapsid Protein (Np)检测示意图。(b)固定SARS-CoV-2 Np抗体的传感器检测104 nM SARS-CoV-2 Np的结合与解离实时曲线图。SARS-CoV-2 Np抗体与不同浓度SARS-CoV-2Np(0-208nM)之间的结合动态拟合曲线(c),解离动态拟合曲线(d)和结合解离动力学曲线(e)。华中科技大学 刘钢教授刘钢教授团队近年来致力于超灵敏度微纳米新型生物传感器以及移动传感技术在医学、生物学等方面的广泛应用,并在基于NanoSPR生物传感芯片在生物检测,药物筛选等领域进行了系统深入的研究,主要研究成果发表在Biosensors&Bioelectronics(2018, 2021, 2022)、Sensors and Actuators B: Chemical(2021)、Advanced Functional Materials (2022)、 Materials Today Bio(2022)、Chemical Engineering Journal(2022)等期刊,部分研究成果已完成转化。量准公司在上海,杭州和武汉均有研发和生产基地。量准专注于利用其独特传感器芯片设计和制造专利技术开发创新型生物检测芯片及相应的检测设备产品,并将其作为生命科学工具仪器应用于生物医药研发以及作为检测试剂和设备应用于临床医学体外诊断中。量准自主研发生产的晶圆级高性能纳米等离子共振NanoSPR芯片产品实现了对传统药物筛选芯片及分子互作检测设备的技术路线突破和超越,并且借助其产品在性价比上的明显优势打破进口检测产品垄断并涵盖到更加广泛的生物医药研发应用领域, 助力生物医药科技产业的自主创新发展。论文链接:https://doi.org/10.1002/adfm.202203635
  • 兰伯艾克斯|类器官与微流控芯片的“医工结合”
    器官芯片是由光学透明的塑料、玻璃或柔性聚合物等构成的微流控细胞培养设备,包括由活细胞组成的灌注空心微通道,通过体外重建组织器官水平的结构功能,再重现体内器官的生理和病理特征。器官芯片在类器官的基础上,更加有效的模拟药物代谢、器官之间的相互作用。器官芯片完美诠释FDA微生理系统概念 如下图中的肺器官芯片,是目前模拟肺部体外生理功能的最优模型,其上下两层被生物膜所分开。上层为肺细胞,流通的是空气;下层为肺毛细血管细胞,流通的是培养液。两边为真空侧室,通过循环吸力来使得两侧的真空通道进行伸缩,从而带动膜上细胞的收缩,实现传统培养皿不可能实现的呼吸功能。开发新药的研发成本模型 器官芯片的核心技术之一微流控,是指精确控制微量流体,甚至创建浓度梯度,利用微流体技术使营养物质和其它化学信号以可控的方式运动和传递,可构建和模拟人体组织微环境。美国NIH、FDA和国防部曾在2011年牵头推出 “微生理系统” 计划,把器官芯片技术的开发和应用上升到国家战略层面。来源:Vunjak-Novakovic, et al., (2021). Organs-on-a-chip models for biological research. Cell 微流控芯片的常用材料包括PDMS(聚二甲基硅氧烷)、玻璃、硅、PMMA等。PDMS材料无毒透明、成本低廉,但存在非特异性地吸收小分子的问题。玻璃和硅材料可达纳米级加工精度,但成本较高。目前学界已围绕各种热塑性塑料展开相关探索,如聚氨酯、环烯烃聚合物和共聚物等。来源:Organs-on-Chips Market and Technology Landscape 2019✦ 类器官的培养✦ 类器官培养是一种模拟人体器官结构和功能的培养技术,具有广阔的应用前景。然而,类器官培养的过程比较漫长且试剂昂贵,需要借助专业的设备才能实现。 兰伯艾克斯的LAB-MI二氧化碳摇床式培养箱是一种适用于类器官培养的设备,具有独特的优势。该设备采用先进的摇床技术,能够更好地适应类器官3D生长的特性,促进细胞增殖和分化。此外,该设备还具有稳定的二氧化碳环境控制功能,能够为细胞提供更加真实的生长环境。 兰伯艾克斯作为一家研发制造能力强的公司,可以配合微流控、器官芯片、组织工程等应用定制开发,为类器官培养提供更加专业的解决方案。
  • 化学所印刷微生物可视化检测芯片方面取得进展
    细菌、病毒、真菌等与生命健康相关。临床常用的细菌检测方法是平板计数法,需要将菌液培养1-2天,操作繁琐,费时费力,亟待发展快速灵敏的细菌检测新方法,这是纳米生物检测领域的重要目标之一。中国科学院化学研究所绿色印刷院重点实验室宋延林课题组在纳米光子结构的印刷制备、光学性质调控、机理研究和生物检测应用等方面取得了系列进展(Angew. Chem. Int. Ed., 2021, 60, 24234;Chem. Rev., 2022, 122, 5, 5144–5164;Matter, 2022, 5, 1865-1876;Adv. Mater. Interfaces, 2022, 9, 2102164;Sci. Bull., 2022, 67 , 1191–1193;ACS Nano, 2022, 16, 10, 16563–16573)。科研人员利用绿色印刷技术精确地控制纳米光子结构的组装过程,通过周期性地排列结构单元实现了显著的光子共振增强效应,为超灵敏可视化检测生物标志物提供了新途径。近日,该课题组将一维纳米结构的光学信号放大作用与蒸发过程中毛细力驱动的颗粒预富集相结合,设计出快速超灵敏的微生物检测芯片。研究以聚苯乙烯微球悬浮液为墨水,在基底上印刷制备了大面积的一维纳米光子结构,并利用聚苯乙烯微球表面大量的羧基高效偶联抗体,特异性地识别待检测样本中的致病菌。研究发现,将毛细力诱导的咖啡环效应引入微生物检测,可在基底上对目标病原体进行预富集,提高检测效率。除了捕获细菌,纳米光子结构还具有强的光场局域能力,可显著增强细菌的散射光信号,提高检测灵敏度,能够在单细胞水平上对其物理特征如生理环境、活性、繁殖状态进行可视化分析。进一步,研究实现了连续监测水、血清、尿液以及蔬菜等样本中的细菌情况。这种生物检测芯片制备简单、成本低,能够结合普通的商业显微镜或者手机直接获取检测结果,在医疗诊断、食品安全、环境监测和农业等领域具有广阔的应用前景。相关研究成果发表在Advanced Materials上。研究工作得到国家自然科学基金、科技部、中科院和北京市的支持。基于一维纳米光子结构生物芯片快速、超灵敏检测细菌感染
  • 创新液相芯片平台|中翰生物携新品参展美国AACC
    2022年7月26日至28日,第74届美国临床化学年会暨临床实验医学博览会(74th AACC Annual Scientific Meeting & Clinical Lab Expo)在美国芝加哥迈考密克展览中心隆重举行。作为世界上临床检验领域内最高质量和最大规模的年度盛会,本次AACC吸引了来自全球100多个国家的近900家企业参展。中翰生物携具有自主知识产权的液相芯片平台、单通道及多通道的快速检测平台、新冠肺炎一体化解决方案精彩亮相,吸引了来自世界各地的国际客户和医疗从业者驻足深入交流。01打破国际垄断的液相芯片平台中翰生物自主研发的iMatrix100流式点阵发光分析仪及配套的3款细胞因子检测试剂盒是本次展会关注度最高的产品系列,众多客户及医疗从业者对“主-客体结构的新型光学编码微球新策略”产生了浓厚的兴趣,甚至有客户提出联合开发适用于当地医疗机构的多指标检测试剂盒的愿景。02拥有国际专利的肝素结合蛋白测定试剂盒肝素结合蛋白(Heparin Binding Protein,HBP)是国际新型的感染标志物,在急诊、重症及新冠肺炎等领域具有重要的临床应用价值。中翰生物开发的基于免疫荧光干式定量法的HBP测定试剂盒可实现18分钟极速检测,成为本次展会的另一大亮点,众多客户索要详细资料并提出展会后进一步沟通合作的需求。同时,部分专业人士对HBP在脓毒症和器官功能障碍方面的应用表示认可,发表了探索临床应用新方向的观点。03新型冠状病毒抗原检测试剂盒中翰生物手持式免疫荧光分析仪及配套新冠抗原检测试剂盒受到了众多观展人士的青睐。其小巧便携、操作简便、数据互联、搭配手机APP+云端数据管理平台,便于自检和家庭医生上门检测。在新冠肺炎的大背景下,该产品适用于新冠肺炎的快速筛查,助力全球抗疫。04猴痘病毒检测试剂盒2022年7月23日,世界卫生组织(WHO)宣布,正在70多个国家和地区蔓延的猴痘疫情构成“国际关注的突发公共卫生事件”。 展馆内前来咨询中翰生物自主研发的猴痘病毒检测试剂盒的来访者络绎不绝,交流检测技术并洽谈进一步的合作意向。中翰生物将继续坚持“逐鹿者不顾兔,决千金之货者,不争铢两之价”的企业精神,以“专注医疗诊断,服务人类健康”为使命,不断提升研发创新能力,持续丰富产品线,积极开拓国内外市场,从而更好地服务国内外客户。中翰生物简介中翰盛泰生物技术股份有限公司成立于2010年12月,是一家聚焦医疗体外诊断产品的全产业链生物医药国家高新技术企业,第一批国家级重点“小巨人”企业、浙江省隐形冠军、浙江省科技进步二等奖获得者。公司聚焦“i-211”高质量可持续发展战略,建立自主可控的“快速诊断、液相芯片”两大核心技术平台,围绕新产品、新技术、新市场、新应用等方面持续创新驱动,服务于国内、国际医疗机构及健康管理领域。
  • 彭练矛:20年专注碳基芯片,让中国芯“换道超车”
    彭练矛,电子和材料物理学家,目前主要从事碳基电子学领域研究。1982年毕业于北京大学无线电电子学系并获学士学位,1988年于美国亚利桑那州立大学获博士学位,后赴英国牛津大学,1994年底回国。2019年当选为中国科学院院士。现任北京大学电子学院院长、北京碳基集成电路研究院院长。 受访者供图从2000年至今,北京大学电子学院教授彭练矛坚守在国产碳基芯片研究一线。在他看来,目前中国芯片产业链面临着被“卡脖子”的状况,关键因素是中国在芯片技术领域没有核心技术和自主研发能力,从材料、设计到生产制备的全套技术中任何一个环节都没能发挥主导作用。 2022年3月23日,中国科学院院士彭练矛在谈自己的科研经历。从2000年至今,北京大学电子学院教授彭练矛坚守在国产碳基芯片研究一线。在他看来,目前中国芯片产业链面临着被“卡脖子”的状况,关键因素是中国在芯片技术领域没有核心技术和自主研发能力,从材料、设计到生产制备的全套技术中任何一个环节都没能发挥主导作用。而碳基电子将有望打破这种局面,实现由中国主导芯片技术的“换道超车”。20年来,他带领团队研发出了整套碳基芯片技术,首次制备出性能接近理论极限,栅长仅5纳米的碳纳米管晶体管,实现了“从0到1”的突破,为中国芯片突破西方封锁、开启自主创新时代开辟了一条崭新的道路。“启用新材料是解决芯片性能问题的根本出路”作为电子产品的“心脏”,全球每年对芯片的需求已达万亿颗。“大家都希望电子设备的芯片速度更快、续航时间更长。”彭练矛告诉记者,碳基芯片技术的发展对于大众生活有着广泛而深远的影响,5G技术的来临将使城市变成“智慧城市”,健康医疗、可穿戴电子设备、物联网和生物兼容性器件… … 这些都离不开海量的数据运算,需要有强大处理能力的芯片做支撑。在传统工艺下,这些芯片有着统一的核心材料,那就是硅。当前,硅基芯片已经进入5纳米时代,甚至在向2纳米、1纳米探索,这意味着,硅基芯片性能逼近物理极限。步入21世纪以来,寻找能够替代硅的芯片材料,成为热门话题。“当时整个学界都感觉到,硅基微电子实际上在走下坡路。学界会提前考虑,未来取代硅的材料会是什么?”彭练矛表示,传统硅基芯片材料的潜力基本已被挖掘殆尽,无法满足行业未来进一步发展的需要,启用新材料是从根本上解决芯片性能问题的出路。时值上世纪末,纳米科技正在兴起,碳纳米管晶体管引起了不少科学家的关注。碳纳米管是1991年由日本科学家饭岛澄男(S.Iijima)发现的。“碳原子按照六角排布,形成一个单原子层,这就是石墨烯。而一个矩形的石墨烯条带,长边对接卷成一个卷,就变成碳纳米管,直径一般是一纳米左右。碳纳米管具有一些奇特的量子效应,使其电子学性能变得非常好,速度快、功耗低。”彭练矛这样描述这种新材料。饭岛澄男在上世纪70年代初师从考利(J.M.Cowley)进行博士后研究工作,从师门来讲是彭练矛的大师兄,彭练矛就这样认识了碳纳米管。在这之前,彭练矛在电子显微学研究方面已经积累了大量经验。1978年,高考恢复的第二年,年仅16岁的彭练矛走进燕园,成为“文革”后北大无线电电子学系招收的首届学生。在恩师西门纪业教授的带领下,他与电子显微学结下了不解之缘。1982年,彭练矛考取了北大电子物理硕士研究生,1983年,在西门纪业教授的鼓励下,彭练矛前往亚利桑那州立大学美国国家高分辨电子显微学中心攻读博士学位,师从考利(J.M.Cowley)教授。随后,彭练矛又先后前往挪威奥斯陆大学和英国牛津大学继续从事电子衍射相关研究工作,在电子显微学领域崭露头角。1994年,彭练矛回到祖国。2000年,北京大学“组队”,着手研究面向未来的电子学。当时彭练矛还不到40岁,他觉得自己“还有精力再做一件新的事情”。于是彭练矛带领研究团队,从零开始,探究用碳纳米管材料制备集成电路的方法。最初几年是在不断摸索中度过的。他们发现,碳纳米管是做芯片最好的材料,“它的物理性能和化学性能、机械性能都非常适合做电子元器件。虽然没有现成工艺可以遵循,但理论预测碳纳米管芯片性能可以比现在硅基集成电路的综合性能成百上千倍地提高。”在摸索中,彭练矛团队提出了用碳纳米管来做集成电路的完整方案,“碳纳米管拥有完美的结构、超薄的导电通道、极高的载流子迁移率和稳定性。基于碳纳米管的电子技术有望成为后硅时代主流的集成电路技术。”“已研发出目前世界上最好的芯片材料”用碳纳米管制备的碳基芯片的综合性能可以比硅基集成电路提高成百上千倍,这已成学界的共识。但这只是理想状态,如何让它变为现实?对团队来说,这个过程中碰到的大部分问题都是新的,“只能自己一一想办法来解决。”彭练矛坦言。首先是突破材料瓶颈,掌握碳纳米管制备技术。经过十年的技术攻坚,课题组放弃了传统掺杂工艺,研发了一整套高性能碳纳米管晶体管的无掺杂制备方法。碳纳米管材料非常微小,肉眼不可见。彭练矛形容,人的一根头发丝直径差不多是几十微米或几万纳米,而这种材料的直径是头发丝的几万分之一。光学显微镜看不到,只能用电子显微镜来看,同时,还要操纵它,让它按照一定秩序排列。怎么办?还好,彭练矛之前做过大量电子显微镜相关研究,对于观察和操纵“小东西”有一定经验。2017年,团队首次制备出栅长5纳米的碳纳米管晶体管,这一世界上迄今最小的高性能晶体管,在本征性能和功耗综合指标上相较最先进的硅基器件具有约10倍的综合优势,性能接近由量子力学测不准原理决定的理论极限。2018年,团队再次取得重要突破,发展出新原理的超低功耗狄拉克源晶体管,为超低功耗纳米电子学的发展奠定了基础。同年,团队用高性能的晶体管制备出小规模集成电路,最高速度达到5千兆赫兹。2020年,该团队首次制备出达到大规模碳基集成电路所需的高纯、高密碳纳米管阵列材料,并采用这种材料首先实现了性能超越硅基集成电路的碳纳米管集成电路,电路频率超过8千兆赫兹,跻身国际领跑行列。事实证明,团队20年来的坚持是对的。“目前我们基本掌握了碳纳米管集成电路制备技术,能够在实验室把碳纳米管集成电路加工出来,性能是目前为止世界上最好的,电路频率比美国研发的高了几十倍。”今年3月,彭练矛坐在办公室里向记者谈起研究的最新进展,底气十足。在彭练矛看来,碳基芯片无疑将成为支撑基于这些技术运行数字经济的最佳选择。“我们的最终目标是要让碳基芯片在10-15年内成为主流芯片,广泛应用在大型计算机、数据中心、手机等主流电子设备上。”“拥有自主技术才不会被西方卡住”彭练矛告诉记者,目前学校实验室已可以采用碳纳米管材料制备出一些中等规模甚至大规模的集成电路,“做个计算器之类没问题。”“但是,要用它做超大规模集成电路还不行。”彭练矛说,目前研发出的碳基芯片的集成度仍和当前世界上普遍使用的硅基芯片相比还差很远。差在哪?彭练矛解释称,要实现超大规模高性能集成电路,首先就需要在大面积的基底上制备出超高半导体纯度、顺排、高密度和大面积均匀的单壁碳纳米管阵列。此外更困难的就是需要有专用的工业级研发线,而这样一条研发线是北大团队所不具备的。在学校现有的实验条件下,能够制作出的最复杂的碳纳米管芯片的集成度只有几千、最多几十万个晶体管,尺寸还是微米级的;而当下全球最先进的硅基芯片中有五百亿个晶体管,每个晶体管的面积大小只有100纳米左右。“差太远了。”“尖端碳基芯片的专用设计工具我们同样缺乏。”彭练矛认为,目前,基于碳纳米管的无掺杂CMOS技术已经不存在原理上不可克服的障碍,但仅在实验室完成存在性验证和可能性研究和演示,并不意味着碳基芯片技术就可以自行完成技术落地,具备商业竞争力。把学校的技术变成一个可规模生产的工业化技术,中间还要做很多工作。目前,碳基芯片的工程化和产业化还有许多问题亟待解决,还需要很长的时间和大量的投入。“精密生产是很难的。”彭练矛称,虽然我国是制造大国,但离制造强国还有距离。实际情况是,如果要实现碳基集成电路规模扩大,哪怕在实验室里也需要大量资金,更不用说建设工厂、添置先进设备、每一步的精加工。彭练矛指出:“相比之下,我们的投入还是太少。因此,社会各界的支持对于碳基芯片的发展至关重要。”谈及未来,彭练矛表示,在国家重视且科研经费充足的情况下,预计3-5年后碳基技术能够在一些特殊领域得到小规模应用;预计10年之后碳基芯片有望随着产品更迭逐渐成为主流芯片技术。过去几十年,我国在芯片产业发展上还处于相对落后的状态。在“中兴事件”、“华为事件”之后,中国“芯”问题引起重视。“整个硅基芯片的研发上,我们落后很多,硅基芯片在美国已经发展了60多年的时间,我们国家在其中没有重要贡献,材料、设备、计算机软件、制造工艺等都是购买别人的。实际上这不光是‘卡脖子’,而是完完全全受制于人。”在彭练矛看来,目前想在硅基的路上“弯道超车”不太现实,“我们需要换道开车,换到碳基的道路上。这对全球来说都是一条新的道路,目前我们还处于相对领先的位置。”“我们要发展自己的集成电路技术,拥有自主技术才不会被西方卡住。”彭练矛称,我国应抓住历史机遇,在现有优势下扬长避短,从材料开始,全面突破现有的主流半导体技术,研制出中国人完全自主可控的芯片技术,通过发展碳基芯片,实现中国芯的“换道超车”。同时,彭练矛也很清醒:“距离实现在芯片技术上超越欧美还有很长的路要走。”他已做好继续长期奋战的准备。匠心解读如何理解匠心精神?匠心精神如何坚守,如何传承?彭练矛:匠心精神一般指常年专注一件事情,能够把事情做到极致,成为某一专业的专家、冠军。这无疑是需要的,但目前我们所面临的许多问题,特别是芯片问题,光发挥匠心精神是不够的。芯片问题不仅需要相关行业的人努力工作,发挥匠心精神,更需要有前瞻视野的大师来把控和平衡各行业协同进步,不断将全产业链稳步推进。匠 人 心 声在你的生活和工作中,哪些东西是你一直坚守的?彭练矛:将事情做到最好,不分大小,养成一个习惯,以最高标准要求自己。就像学校学生考试一样,拿到90分达到优秀并不难,但坚持要拿100分,始终都要求自己拿出全力去拼100分就不一样。可能需要拿出200%或更多的努力才能多拿3-5分,但坚持下来,必能受益。什么时候是你认为最艰难的时候?能够坚持下去的原因是什么?彭练矛:大概是2017年,开始认识到光在学校做芯片相关的研究已经不够,不足以推动相关领域继续向前走,需要走出学校,争取更多资源,开展碳基电子的工程化和未来的产业化研究。这些需要去接触更大的世界,去求之前不熟悉的人,都是我之前不太擅长且极力避免的,当时觉得非常困难。但想起了一句名言,大意是失败并非末日,失去向前的勇气才是最可怕的。国家需要有自己的芯片技术,现在这个历史机遇出现了,不论多么困难,都得坚持下去。你希望未来还取得怎样的成就,对于未来有怎样的期待?彭练矛:希望最终将我们研发的碳基芯片技术推至主流,大家的生活因我们的努力而变得更美好。你感觉你获得的最大的快乐是什么?彭练矛:没有虚度时光,为国家和人类进步做出了应有的贡献。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制