当前位置: 仪器信息网 > 行业主题 > >

光学检测

仪器信息网光学检测专题为您整合光学检测相关的最新文章,在光学检测专题,您不仅可以免费浏览光学检测的资讯, 同时您还可以浏览光学检测的相关资料、解决方案,参与社区光学检测话题讨论。

光学检测相关的资讯

  • 光学检测领域取得新进展
    p style=" text-indent: 2em text-align: justify " 近期,中国科学院合肥物质科学研究院智能机械研究所先进感知与智能系统研究室在表面等离子共振光学检测领域取得新进展,相关成果发表在光学期刊Optics Express上(Vol.27 Issue.2)。 /p p style=" text-indent: 2em text-align: justify " 表面等离子共振技术(Surface Plasmon Resonance, SPR)由于其实时、无标记的优越检测特性而广泛应用于医学、生物学等微观检测领域。棱镜耦合式SPR具有结构简单、灵敏度高等优势,被广泛使用,但在现场检测时,该系统检测信号存在温度漂移,通常的解决方案是增加参考通道,但是该方法无法测量不同温度水平的生物学动力常数。 /p p style=" text-indent: 2em text-align: justify " 针对以上问题,研究人员提出了一般性解决方案:分别建模分析了角度调试和波长调制模式下的温度对其共振偏移的影响。由于色散效应,两种调制模式下的影响既具有相同的趋势,也有不同之处。基于交叉灵敏度矩阵思想,分别提出了双波长检测(Angular-interrogation)和双角度检测(wavelength-interrogation)方法,实现了折射率和温度变化的同时测量。研究人员首次提出分区间线性修正提高精度的检测思想,且进行了概念性验证实验。相比于构建新型微纳检测结构,该方法在工程领域具有较强的可行性,具有广泛的应用前景,得到审稿专家的充分肯定。 /p p style=" text-indent: 2em text-align: justify " 相关研究工作得到国家自然科学基金面上项目、国家科技重大专项、安徽省重点实验室资金等的资助。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201901/uepic/82de36d8-bda4-4152-b313-14ee1b497e21.jpg" title=" W020190116563312993884.jpg" alt=" W020190116563312993884.jpg" / /p p style=" text-indent: 2em text-align: center " 波长调制模式SPR传感器的温度效应 /p
  • 国内首台自动光学检测设备研制成功
    日前,由中国电子科技集团第45所承担的国际科技合作项目“自动光学检测(AOI)设备技术合作”,通过了国家级验收,技术指标达到了国外同类设备水平,标志着自动光学检测(AOI)设备实现了国产化,填补了国内空白。   据了解,当今电子装备在结构上强调实现小型化、微型化、模块化,以满足高性能、高可靠、大容量、小薄轻的要求。线路板上元器件组装密度提高,其线宽、间距、焊盘越来越细小,已到微米级,复合层数越来越多。传统的人工目测(MVI)和针床在线测试(ICT)检测因“接触受限”(电气接触受限和视觉接触受限)所制,已不能完全适应当今制造技术的发展,自动光学检测系统(AOI)已经成为IC制造业的必然需求,正越来越多地用来代替传统MVI和ICT技术,进行检测,用于监视和保证生产过程的品质。目前,我国自动光学检测系统(AOI)设备主要依赖进口,一直被以色列、美国、日本等国家所垄断。中国电子科技集团第45所,与加拿大开展了卓有成效的国际科技合作,共同研发自动光学检测(AOI)设备,通过引进、消化吸收、再创新,终于研制出了具有国际水平的自动光学检测(AOI)设备,打破了国外的垄断与技术封锁,使进口产品降价30%。   中国电子科技集团第45所通过技术引进和消化吸收,攻克了高速图像采集和硬件处理技术,缺陷识别和处理技术,细微图形采像技术等三项关键技术,并成功应用于AOI设备的研制,目前已获得专利4项,申报并受理发明专利6项,发表学术论文6篇,获省部级科学技术二等奖1项。该项目的完成,标志着我国在自动光学检测设备领域具备与国外主流设备展开竞争的实力,提高了我国电子专用检测设备的制造水平。
  • 中国首台自动光学检测设备研制成功
    河北省廊坊市科技局26日称,中国电子科技集团第45所(燕郊)与加拿大共同合作的“自动光学检测(AOI)设备技术”研制成功,各项技术指标均达到国外同类设备水平。这标志着我国打破了国外在自动光学检测设备领域的垄断与技术封锁,使自动光学检测设备进口产品降价30%。 中国电子科技集团第45所   据廊坊市科技局工作人员介绍,全球电子装备在结构上强调实现小型化、微型化、模块化,以满足高性能、高可靠、大容量、小薄轻的要求。而我国传统的人工目测(MVI)和针床在线测试(ICT)检测因“接触受限”(电气接触受限和视觉接触受限)所制,已不能完全适应当今制造技术的发展。目前,我国自动光学检测系统(AOI)设备还主要依赖进口,一直被以色列、美国、日本等国家所垄断。因此,自动光学检测系统(AOI)已经成为IC制造业的必然需求。   据了解,2007年,中国电子科技集团45所顺利通过科技部、国家外专局的批准,被列为我国“微电子装备国际合作基地”之一,并与加拿大开展国际科技合作。   廊坊市科技局局长杨中秋表示,该项目的完成,不仅提高了我国电子专用检测设备的制造水平,也标志着我国在自动光学检测设备领域具备了与国外主流设备竞争的实力。
  • 将光学检测技术和仪器的产业化推到新的高度
    p   strong  仪器 /strong strong 信息网讯 /strong span style=" font-family: times new roman " 2016年5月10日,由中国光学工程学会、中国高科技产业化研究会、国际光学工程学会(SPIE)、美国光学学会(OSA)主办的2016年国际光电技术与应用系列创新研讨会(OTA 2016)在京开幕。此次研讨会除了大会报告之外,还设有13个分会场,分别为1.国际高功率激光技术与高能激光应用研讨会2.国际激光制造与激光检测技术研讨会、3.国际3D打印技术及其应用研讨会(2.3.合并)、4.国际先进光学系统设计与制造及应用研讨会、5.国际光学检测技术及仪器研讨会、6.国际机器人先进感知与智能控制技术研讨会、7.国际天文望远镜与仪器研讨会、8.国际大数据光存储技术研讨会、9.国际高光谱遥感应用研讨会、10.国际硅基光电子与集成研讨会、11.国际红外技术与应用研讨会、12.国际环境监测与安全检测技术及应用研讨会、13. 纪念光纤发明50周年大会等。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_20160511_080631_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/0242fdc0-4ff5-4fd0-a565-8a281012ced0.jpg" / /span /p p span style=" font-family: times new roman "   5月10日下午至5月11日是大会的分会场研讨时间。分会之一国际光学检测技术及仪器研讨会作为国际光电技术与应用系列创新研讨会的重要组成,每年都吸引来国内外光学检测技术研发专家们到会参加讨论。据主办方中国光学工程学会介绍,往届的光学检测技术及仪器研讨会更注重技术的研发探讨,今年的会议是首次明确将光学检测技术和仪器的产业化作为研讨的主题,这也是响应国家支持科研成果转化的号召。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0179_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/9abb0d7b-0511-43d3-8897-864a65628744.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 会议现场 /strong /span /p p span style=" font-family: times new roman "   本届国际光学检测技术及仪器研讨会共包括来自国内外工程化院校、研究所以及商业化仪器企业的25个报告,吸引了百余位相关研究实验室和企业的参会者。以下是部分报告介绍: /span /p p span style=" font-family: times new roman "   哈工业大学精密仪器工程研究院谭久彬教授报告的题目是《高端超精密仪器产业化探索》。据介绍,我国工业化进入中后期,高端装备发展走到了必须发展的道路。超精密仪器技术已经是大国必争的战略高地,而目前我国面临发达国家和新兴国家的双重挑战。我国超精密仪器产业化发展存在很多问题,如理念陈旧、企业自主创新能力较低等。充分发挥大学研究所自主创新能力强的优势,让工科大学研发平台与企业的产业化平台一体化对高端精密仪器产业化将产生巨大的推动作用。谭久彬教授还介绍了团队根据产业化需求研制的用于微纳结构表征的共聚焦扫描测量仪、面向生物医学的立体层析共聚焦显微镜、快速超精密双频激光干涉仪等精密仪器测量设备。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0155_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/ec2a365f-9cf0-4d63-9b60-9abcb0547974.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    /span span style=" font-family: times new roman " strong 谭久彬 /strong /span /p p span style=" font-family: times new roman "   中国工程物理研究院激光核聚变研究中心袁晓东报告的题目是《Research on the Precision Assembly System for SG-III Laser Facility 》。据介绍激光诱导惯性约束核聚变是实验室最常用的实现核聚变的方法。大型高能激光装置对于方法的实现非常重要,目前在美国、法国和中国(SG-III)共有三个大型高能激光装置。袁晓东在报告中介绍了SG-III的设计和一体化装配过程,LRU模型的离线精密装配与在线准确重置能够满足大型激光装置的安装与调试。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0190_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/e4fb6b6d-5a3c-43f7-b245-395995ff5fba.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    /span span style=" font-family: times new roman " strong 袁晓东 /strong /span /p p span style=" font-family: times new roman "   北京交通大学冯其波教授报告的题目是《System for simultaneously measuring 6DOF geometric motion errors using fiber-coupled laser》。据介绍,提高受控机床的精度,可以从改善硬件设施或是误差补偿的方法入手。冯其波教授表示:做精密仪器“方向决定成败、细节决定高低。”还介绍了团队研制的单轴6自由度误差测量系统。光纤的使用使系统热稳定性得到了提高,可稳定的通过补偿降低误差。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0217_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/9a23d7ae-7e5f-4052-b201-ff4466fde9c6.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 冯其波 /strong /span /p p span style=" font-family: times new roman "    /span span style=" font-family: times new roman " 中国科学院光电研究院周维虎教授报告的题目是《飞秒激光频率梳精密测量技术研究》。飞秒光梳是频率和相位完全受控的飞秒锁模脉冲激光。主要用于绝对距离测量、频率测量等测量和低噪声微波源和任意光脉冲合成。周继虎教授介绍了飞秒光梳的实用化研制,基于该原理该团队还研发了飞秒激光跟踪仪可用于台阶测量、自由曲面测量、时频测量等方面。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0259_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/ab834326-5079-4588-a625-7c6693835b4b.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 周维虎 /strong /span /p p span style=" font-family: times new roman "   中国科学院上海光学精密机械研究所邵建达报告的题目是《Large optics metrology for SG-series laser facility》。组成大型SG激光系统的大口径光学元件种类多、数量大,他们的特性参数与激光装置的性能相关,对大口径光学元件检测的装置要求很高。该团队建立的检测技术满足高精度光学元件的检测需求,部分光学元件已经优于之前NIF光学元件水平。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0303_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/1f3cb9e7-c856-4776-a2ce-cc18d4e969ff.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 邵建达 /strong /span /p p span style=" font-family: times new roman "   来自华中科技大学的刘世元教授报告的题目为《Mueller Matrix Ellipsometry for Nanostructured Surface Metrology》。 /span span style=" font-family: times new roman " 据介绍,Mueller矩阵椭偏计(MME)非常适合无损纳米结构测量,对光的偏振、散射和其它特性的深入研究对于表面测量非常重要。为了将MME商品化,团队还创建了武汉颐光科技有限公司,目前已经具备椭偏仪批量生产能力实现了MME的产品销售。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0338_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/8409671a-de3d-4d73-8387-a6e2b2ca791a.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 刘世元 /strong /span /p p span style=" font-family: times new roman "   哈尔滨工业大学 Yi Zhou报告的题目是《Experiments on Terahertz 3D Scanning Microscopic & nbsp Imaging》。Yi & nbsp Zhou介绍了团队研制的2.52太赫兹双轴反射共聚焦显微镜,其纵向和横线分辨率分别超过了0.314mm和0.353mm。该仪器在2D和3D成像方面非常稳定,可被用于生物学、制药等领域。 /span /p p style=" text-align: center " img title=" IMG_0241_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/dcd0cda8-7b59-43b2-b263-3b2335882257.jpg" / /p p style=" text-align: center " span style=" font-family: times new roman "    strong Yi Zhou /strong /span /p p span style=" font-family: times new roman "   哈尔滨工业大学ChangKun Fan报告的题目是《Controlling Software Development of CW Terahertz Target Scattering Properties Measurements Based on LabVIEW(IPTA05-066)》。据介绍,该团队开发了太赫兹目标散射特性测量的控制软件。该软件可手动或自动移动坐标平台,可设置间断频率、测量时间等参数实现自动测量。目前该软件已经申请得到国家专利。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0383_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/a2dd8a4f-6640-4796-a821-95f65295dbbc.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong ChangKun Fan /strong /span /p
  • 10nm及以下技术节点晶圆缺陷光学检测
    作者朱金龙*、刘佳敏、徐田来、袁帅、张泽旭、江浩、谷洪刚、周仁杰、刘世元*单位华中科技大学哈尔滨工业大学香港中文大学原文链接:10 nm 及以下技术节点晶圆缺陷光学检测 - IOPscience文章导读伴随智能终端、无线通信与网络基础设施、智能驾驶、云计算、智慧医疗等产业的蓬勃发展,先进集成电路的关键尺寸进一步微缩至亚10nm尺度,图形化晶圆上制造缺陷(包括随机缺陷与系统缺陷)的识别、定位和分类变得越来越具有挑战性。传统明场检测方法虽然是当前晶圆缺陷检测的主流技术,但该方法受制于光学成像分辨率极限和弱散射信号捕获能力极限而变得难以为继,因此亟需探索具有更高成像分辨率和更强缺陷散射信号捕获性能的缺陷检测新方法。近年来,越来越多的研究工作尝试将传统光学缺陷检测技术与纳米光子学、光学涡旋、计算成像、定量相位成像和深度学习等新兴技术相结合,以实现更高的缺陷检测灵敏度,这已为该领域提供了新的可能性。近期,华中科技大学机械科学与工程学院、数字制造装备与技术国家重点实验室的刘世元教授、朱金龙研究员、刘佳敏博士后、江浩教授、谷洪刚讲师,哈尔滨工业大学张泽旭教授、徐田来副教授、袁帅副教授,和香港中文大学周仁杰助理教授在SCIE期刊《极端制造》(International Journal of Extreme Manufacturing, IJEM)上共同发表了《10nm及以下技术节点晶圆缺陷光学检测》的综述,对过去十年中与光学晶圆缺陷检测技术有关的新兴研究内容进行了全面回顾,并重点评述了三个关键方面:(1)缺陷可检测性评估,(2)多样化的光学检测系统,以及(3)后处理算法。图1展示了该综述研究所总结的代表性晶圆缺陷检测新方法,包括明/暗场成像、暗场成像与椭偏协同检测、离焦扫描成像、外延衍射相位显微成像、X射线叠层衍射成像、太赫兹波成像缺陷检测、轨道角动量光学显微成像。通过对上述研究工作进行透彻评述,从而阐明晶圆缺陷检测技术的可能发展趋势,并为该领域的新进入者和寻求在跨学科研究中使用该技术的研究者提供有益参考。光学缺陷检测方法;显微成像;纳米光子学;集成电路;深度学习亮点:● 透彻梳理了有望实现10nm及以下节点晶圆缺陷检测的各类光学新方法。● 建立了晶圆缺陷可检测性的评价方法,总结了缺陷可检测性的影响因素。● 简要评述了传统后处理算法、基于深度学习的后处理算法及其对缺陷检测性能的积极影响。▲图1能够应对图形化晶圆缺陷检测挑战的各类光学检测系统示意图。(a)明/暗场成像;(b)暗场成像与椭偏协同检测;(c)离焦扫描成像;(d)外延衍射相位显微成像;(e)包含逻辑芯片与存储芯片的图形化晶圆;(f)X射线叠层衍射成像;(g)太赫兹成像;(h)轨道角动量光学显微成像。研究背景伴随智能手机、平板电脑、数字电视、无线通信基础设施、网络硬件、计算机、电子医疗设备、物联网、智慧城市等行业的蓬勃发展,不断刺激全球对半导体芯片的需求。这些迫切需求,以及对降低每片晶圆成本与能耗的不懈追求,构成了持续微缩集成电路关键尺寸和增加集成电路复杂性的驱动力。目前,IC制造工艺技术已突破5nm,正朝向3nm节点发展,这将对工艺监控尤其是晶圆缺陷检测造成更严峻的考验:上述晶圆图案特征尺寸的微缩,将极大地限制当前晶圆缺陷检测方案在平衡灵敏度、适应性、效率、捕获率等方面的能力。随着双重图案化、三重图案化以及四重图案化紫外光刻技术的广泛使用,检测步骤的数量随着图案化步骤的增加而显著增加,这可能会降低产率并增加器件故障的风险,因为缺陷漏检事故的影响会被传递至最终的芯片制造流程中。更糟糕的是,当前业界采用极其复杂的鳍式场效应晶体管 (FinFET) 和环栅 (GAA) 纳米线 (NW) 器件来降低漏电流和提高器件的稳定性,这将使得三维 (3D) 架构中的关键缺陷通常是亚表面(尤其是空隙)缺陷、深埋缺陷或高纵横比结构中的残留物。总体上而言,伴随工业界开始大规模的10 纳米及以下节点工艺芯片规模化制造,制造缺陷对芯片产量和成本的影响变得越来越显著,晶圆缺陷检测所带来的挑战无疑会制约半导体制造产业的发展。鉴于此,IC芯片制造厂商对晶圆缺陷检测技术与设备的重视程度日渐加深。在本文中,朱金龙研究员等人对图形化晶圆缺陷光学检测方法的最新进展进行了详细介绍。最新进展晶圆缺陷光学检测方法面的最新进展包含三个方面:缺陷可检测性评估、光学缺陷检测方法、后处理算法。缺陷可检测性评估包含两个方面:材料对缺陷可检测性的影响、晶圆缺陷拓扑形貌对缺陷可检测性的影响。图2展示了集成电路器件与芯片中所广泛采纳的典型体材料的复折射率N、法向反射率R和趋肤深度δ。针对被尺寸远小于光波长的背景图案所包围的晶圆缺陷,缺陷与背景图案在图像对比度差异主要是由材料光学特性的差异所主导的,也就是复折射率与法向反射率。具体而言,图2(c)所示的缺陷材料与图案材料的法向反射率曲线差异是优化缺陷检测光束光谱的基础之一。因此,寻找图像对比度和灵敏度足够高的最佳光束光谱范围比纯粹提高光学分辨率更重要一些,并且此规律在先进工艺节点下的晶圆缺陷检测应用中更具指导意义。▲图2集成电路中典型体材料的光学特性。(a)折射率n;(b)消光系数k;(c)法向反射率R;(d)趋肤深度δ。晶圆缺陷拓扑形貌对缺陷可检测性的影响也尤为重要。在图形化晶圆缺陷检测中,缺陷散射信号信噪比和图像对比度主要是受缺陷尺寸与缺陷类型影响的。图3展示了存储器件中常规周期线/空间纳米结构中的典型缺陷,依次为断线、边缘水平桥接和通孔、凹陷、之字形桥接、中心水平桥接、颗粒、突起、竖直桥接等缺陷。目前,拓扑形貌对缺陷可检测性的影响已被广泛研究,这通常与缺陷检测条件配置优化高度相关。例如,水平桥接与竖直桥接均对照明光束的偏振态相当敏感;在相同的缺陷检测条件配置下,桥接、断线、颗粒物等不同类型的缺陷会展现出不同的缺陷可检测性;同时,缺陷与背景图案的尺寸亦直接影响缺陷的可检测性,尺寸越小的缺陷越难以被检测。▲图3图形化晶圆上周期线/空间纳米结构中的典型缺陷(a)断线;(b)边缘水平桥接和通孔;(c)凹陷;(d)之字形桥接缺陷;(e)中心水平桥接;(f)颗粒物;(g)突起;(h)竖直桥接。丰富多彩的新兴光学检测方法。光是人眼或人造探测器所能感知的电磁波谱范围内的电磁辐射。任意光电场可采用四个基本物理量进行完整描述,即频率、振幅、相位和偏振态。晶圆缺陷光学检测通常是在线性光学系统中实施的,从而仅有频率不会伴随光与物质相互作用发生改变,振幅、相位、偏振态均会发生改变。那么,晶圆缺陷光学检测系统可根据实际使用的光学检测量进行分类,具体可划分为明/暗场成像、暗场成像与椭偏协同检测、离焦扫描成像、外延衍射相位显微成像、X射线叠层衍射成像、太赫兹波成像缺陷检测、轨道角动量光学显微成像。图4展示了基于相位重构的光学缺陷检测系统,具体包括外延相位衍射显微成像系统、光学伪电动力学显微成像系统。在这两种显微镜成像系统中,缺陷引起的扰动波前信号展现了良好的信噪比,并且能够被精准地捕获。后处理算法。从最简单的图像差分算子到复杂的图像合成算法,后处理算法因其能显著改善缺陷散射信号的信噪比和缺陷-背景图案图像对比度而在光学缺陷检测系统中发挥关键作用。伴随着深度学习算法成为普遍使用的常规策略,后处理算法在缺陷检测图像分析场景中的价值更加明显。典型后处理算法如Die-to-Die检测方法是通过将无缺陷芯片的图像与有缺陷芯片的图像进行比较以识别逻辑芯片中的缺陷,其也被称为随机检测。Cell-to-Cell检测方法是通过比较将同一芯片中无缺陷单元的图像与有缺陷单元的图像进行比较以识别存储芯片中的缺陷,其也被称为阵列检测。至于Die-to-Database检测方法,其本质是通过将芯片的图像与基于芯片设计布局的模型图像进行比较以识别芯片的系统缺陷。而根据原始检测图像来识别和定位各类缺陷,关键在于确保后处理图像(例如差分图像)中含缺陷区域的信号强度应明显大于预定义的阈值。基于深度学习的缺陷检测方法的实施流程非常简单:首先,捕获足够的电子束检测图像或晶圆光学检测图像(模拟图像或实验图像均可);其次,训练特定的神经网络模型,从而实现从检测图像中提取有用特征信息的功能;最后,用小样本集测试训练后的神经网络模型,并根据表征神经网络置信水平的预定义成本函数决定是否应该重复训练。然而,深度学习算法在实际IC生产线中没有被广泛地接收,尤其是在光学缺陷检测方面。其原因不仅包括“黑箱性质”和缺乏可解释性,还包括未经实证的根据纯光学图像来定位和分类深亚波长缺陷的能力。而要在IC制造产线上光学缺陷检测场景中推广深度学习技术的应用,还需开展更多研究工作,尤其是深度学习在光学缺陷检测场景中的灰色区域研究、深度学习与光学物理之间边界的探索等。▲图4代表性新兴晶圆缺陷光学检测系统。(a)外延相位衍射显微成像系统;(b)光学伪电动力学显微成像系统。(a)经许可转载。版权所有(2013)美国化学会。(b)经许可转载。版权所有(2019)美国化学会。未来展望伴随集成电路(IC)制造工艺继续向10nm及以下节点延拓,针对IC制造过程中的关键工序开展晶圆缺陷检测,从而实现IC制造的工艺质量监控与良率管理,这已成为半导体领域普遍达成的共识。尽管图形化晶圆缺陷光学检测一直是一个长期伴随IC制造发展的工程问题,但通过与纳米光子学、结构光照明、计算成像、定量相位成像和深度学习等新兴技术的融合,其再次焕发活力。其前景主要包含以下方面:为了提高缺陷检测灵敏度,需要从检测系统硬件与软件方面协同创新;为了拓展缺陷检测适应性,需要更严谨地研究缺陷与探测光束散射机理;为了改善缺陷检测效率,需要更高效地求解缺陷散射成像问题。除了IC制造之外,上述光学检测方法对光子传感、生物感知、混沌光子等领域都有广阔的应用前景。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 华测检测(CTI)采购蓝菲光学光谱测量系统
    国内领先的第三方测试机构华测检测技术股份有限公司(CTI)于近期购买了一套蓝菲光学(Labsphere)的CSLMS 2米和50厘米直径积分球光谱测量系统用于LED灯具和模组的检测。   蓝菲光学(Labsphere)的CSLMS(大型光源光通量检测系统)系统具有极高的精度和稳定性,受到美国能源之星(Energy Star)的认可并符合最新CIE测量标准。在美国能源部认可的7个授权进行能源之星检测的实验室中,有5个实验室采用Labsphere的积分球检测设备。   华测检测将使用Labsphere的CSLMS系统对LED灯具和模组进行发光效率、光通量、局部流明强度、流明维持、颜色维持、显色指数、品色坐标、波长、相关色温等参数的检测。通过使用Labsphere的设备,华测检测的检测能力将更受国际认可,并且对于其通过能源之星检测的审核有很大帮助。   华测检测技术股份有限公司是中国第三方测试、检验与验证服务的开拓者和领先者,为众多行业和产品提供一站式的全面质量解决方案。华测检测的实验室负责人张经理表示,蓝菲光学的产品在国际上得到了广泛认可,值得信任。   关于豪迈 (HALMA) 以及蓝菲光学 (Labsphere):   蓝菲光学 (Labsphere) 有限公司 ( http://www.labsphere.com) 是世界光测试、测量以及光学涂层领域的领军企业。公司产品包括 LED、激光器及传统光源光测量系统 成像设备校准用的均匀光源 光谱学附属设备 高漫反射材料及背光显示屏覆层、计算机X线成像以及系统校准。公司的专家在诸多领域取得了多项专利技术,比如晶片和紫外线传输中的 LED 测试方法。蓝菲光学 (Labsphere) 的工程人员也常常协助客户,开发定制光采集管和导光管。蓝菲光学 (Labsphere) 是英国豪迈集团(HALMA p.l.c. - http://www.halma.cn)的子公司。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
  • 光学无创技术在临床检测中面临的挑战与未来
    本周六(5月9日)上午10:00,我司王成铭博士将在仪器信息网网络讲堂做题为“光学无创技术在临床检测中面临的挑战与未来”的主题报告,探讨该技术的未来发展趋势和临床应用前景。 会议简介 在临床医学实践中,影像学(MRI、超声、CT)和病理学的互相印证对疾病的诊断至关重要,但在许多临床应用中还存在一些制约因素,给一些疾病的准确诊断带来困难,而基于拉曼、DCT和光声成像等技术的光学无创方法很有希望成为沟通影像学和病理学之间的重要桥梁。本次会议报告将从皮肤疾病诊断、消化道早癌检测和牙科根管治疗术中检测等临床实际应用切入,对光学无创方法进行概述,着重阐述其在实际临床应用中面临的困难和挑战,并从发展的角度探讨技术的未来发展趋势和临床应用前景。 欢迎各界朋友报名参与,共同讨论、交流、进步!点击本链接快速报名~ 讲师简介 王成铭,物理学博士,毕业于清华大学物理系低维量子物理国家重点实验室,现任北京鉴知技术有限公司光学工程师,清华大学物理系联合培养博士后。多年从事光学相干层析成像(OCT)临床应用方向,有临床医学合作经验,咨询和培训经验丰富。 【延伸阅读】酒精消毒防新冠?做不好这一点就没用!“鉴知”首次亮相——访北京鉴知技术有限公司总经理王红球从威视到鉴知 150余项专利技术铺就拉曼发展之路
  • 复旦大学推动研发重大疾病早期检测光学新技术
    4月30日,国际著名科学期刊《自然-通讯》(Nature Communications)发布了一种新型的光微流激光酶联免疫吸附剂测定(Enzyme-linked immunosorbent assay,简称ELISA)技术。该技术由密歇根大学安娜堡分校生物医学工程系范旭东教授课题组与复旦大学信息学院光科学与工程系吴翔副教授共同开发。据悉,该项新技术将有望应用于重大疾病(如癌症、艾滋病等)的早期检测与诊断以及单个酶分子催化机制研究。   一般来讲,传统的ELISA技术利用被酶催化生成的荧光产物所发出的荧光强度作为探测信号,然而在实际检测过程中,生物分子的非特异性结合、材料自荧光以及激发光的泄漏等因素造成的强荧光背景会干扰目标分子荧光强度的探测,从而限制了ELISA的探测极限以及动态测量范围。   而吴翔及其合作者开发的新型光微流激光ELISA技术的创新之处在于,以荧光产物为激光增益介质,利用高品质因子的光学微腔产生激光输出 在固定的泵浦功率下,产生激光的阈值时间和被测目标分子的浓度呈反比,不同的浓度对应不同的阈值时间,由此,将阈值时间作为该技术中的探测信号。   实验表明,该项技术的探测极限可达1fg/ml(38aM)(1飞克每毫升),动态测量范围为6个数量级。这种新型的光微流激光ELISA技术,通过对激光阈值时间的探测,可以从较强的荧光背景中精确地分辨低浓度的目标分子,从而实现超高灵敏度的生物分子探测。该技术的应用,将对重大疾病(癌症、艾滋病等)的早期检测与诊断技术带来重要提升,同时对单个酶分子催化机制研究领域产生积极影响。   目前,吴翔正从事有源和无源光学微腔生物传感器以及微腔光镊的研究,希望能结合光微流激光技术的优点,进一步拓展光学微腔技术在生物传感领域的应用,实现高灵敏度和高通量的集成光学生物传感芯片。
  • 专注精密光学检测,立仪科技获数千万A轮融资
    近日,3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波告诉36氪:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。可应用领域据刘杰波介绍,线共焦传感器进口产品占 99%以上市场,售价昂贵,立仪科技可以做到同时解决漫反射和曲面镜面材质检测的技术,具备性能优势。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。公司的光谱共焦产品有着7、8年的积累,服务了半导体、新能源与3C、先进制造设备、精密仪器、科研院校等领域,面向京东方、天马等客户都有着数百套的出货量。经过长期打磨,立仪科技对市场需求和行业认知理解深刻。据刘杰波介绍,目前公司在国产品牌中市场占有率排名第一。在营收上,公司2022年预计完成数千万营收,较2021年有两、三倍的增长。在创始团队上,公司创始人兼CEO刘杰波有着十几年的精密光学测量研发经验,曾任数家世界500强公司高管,在光机电软件上融会贯通。公司首席科学家张巍博士曾就职于中科院物理研究院,有着丰富的光谱、激光等研究经验。目前,公司共有60多名员工,在深圳、苏州、成都、长沙都设有办事处,研发占比50%以上。
  • 3607万 安徽华东光学检测仪器专项获批
    日前科技部下达了2013年国家重大科学仪器设备开发项目立项通知,经过层层筛选,安徽华东光电技术研究所牵头申报的&ldquo 平板显示屏自动光学检测仪器开发和应用&rdquo 项目成功立项,获得国家专项经费资助3607万元。   据悉,这是芜湖市企业首获此类开发专项支持,该项目的实施,对于改变同类高端仪器设备依赖进口,提高仪器设备自主创新能力和自我装备水平具有重大的推动作用。   为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,支持重大科学仪器设备开发,中央财政设立国家重大科学仪器设备开发专项资金。为规范专项资金管理,财政部会同科技部制定了《国家重大科学仪器设备开发专项资金管理办法(试行)》,支持科学仪器设备研发和应用。   安徽华东光电技术研究所(原芜湖电真空研究所)组建于1987年,是国家唯一定点承担军用特种显示技术的专业研究所。该所共承担了国家重点科研攻关任务、国家火炬计划任务、国家重大工业试验任务及国家重大装备国产化任务等一百多项,为歼十飞机、神舟七号、天宫一号等一百多项国家重点工程配套各种高技术产品。产品已经大面积应用到我国海、陆、空、天各领域。满足了国家重点工程急需,打破了国外封锁和禁运,填补了我国数百项空白。
  • 国家环境光学监测技术重点实验室通过验收
    9月22日,环境保护部科技标准司组织专家对国家环境保护环境光学监测技术重点实验室进行验收评审。验收专家组委员会一致认为,该实验室完成了建设计划任务书预期建设目标,达到了环境保护部重点实验室验收条件和要求,同意通过验收。   安徽省环境保护厅副厅长殷福才,中科院合肥物质科学研究院院长王英俭,中国科学院安徽光学精密机械研究所所长、重点实验室主任刘文清等出席了验收会。中国工程院院士潘德炉,环境保护部卫星环境应用中心、北京市环境保护监测中心、解放军电子工程学院等相关单位的专家参加了验收会。   国家环境保护环境光学监测技术重点实验室是国家环境保护总部与依托合肥研究院联合建立的环境光学监测理论和技术研究的基地。实验室于2007年10月开始筹建,主要承担环境光学应用基础研究,定量监测新方法研究和环境监测高新技术系统集成研究,先进环境监测技术规程和标准的编制任务,并对完善我国环境监测系统以及国家环境管理与决策提供理论与技术支持。   以潘德炉院士为主任委员的专家组听取了关于实验室建设情况的总结报告,现场考察了实验室,审阅了有关实验室验收材料,实地考察了该实验室,并与实验室领导和科研骨干进行了座谈。专家组一致认为,实验室完成了组织机构建设,形成了一支专业结构合理的环境光学近侧技术创新团队 实验室基本建设完成,自主研制建立了基于多种光谱学技术的地基、移动、机载和星载环境监测技术的研究平台,具备了环境光学监测技术创新研发的能力 实验室在环境光学应用基础、定量监测新方法、环境监测高新技术系统集成和先进环境监测技术规程和标准等四个研究方向取得了一批有代表性的成果 实验室研发的环境监测技术已推广应用到全国环境监测领域,为环境管理提供了有力的技术支撑。   为促进重点实验室更好地建设和发展,验收委员会专家组建议,在现有国家环境保护环境光学监测技术重点实验室的基础上,申请建设国家重点实验室。 验收会场 专家组考察实验室 专家组审查资料
  • 奥林巴斯多种光学元件检测设备参展ILOPE 2012
    奥林巴斯参加了2012北京国际光电产业博览会暨第十七届北京国际激光、光电子及光显示产品展览会(ILOPE 2012),并在此次展会上着重展出了用于光学元件检测的设备。 奥林巴斯的近红外显微分光测定仪USPM-RU-W可以高速高精细地进行可视光区域至近红外区域的大范围波长的分光测定。由于其可以很容易地测定通常的分光光度计所不能测定的细微区域、曲面的反射率,适用于光学元件与微小的电子部件等产品。 USPM-RU III反射仪可精确测量当前分光仪无法测量的微小、超薄样本的光谱反射率,不会与样本背面的反射光产生干涉。是非常适合测量曲面反射率、镀膜评价、微小部品的反射率测定系统。 KIF-20-UW激光干涉仪有着良好的环境适应性,适用于快速质量检查和批量生产透镜现场管控。
  • 华中科大刘世元教授团队发表光学晶圆缺陷检测领域系统综述
    作者:荆淮侨 来源:中国科学报受SCIE期刊《极端制造》极端制造编辑部邀请,华中科技大学教授刘世元团队近日在该刊上发表了《10nm及以下技术节点晶圆缺陷光学检测》的综述文章,对过去十年中与光学晶圆缺陷检测技术有关的新兴研究内容进行了全面回顾。随着智能终端、无线通信与网络基础设施、智能驾驶、云计算、智慧医疗等产业的蓬勃发展,先进集成电路的关键尺寸进一步微缩至亚10nm尺度,图形化晶圆上制造缺陷的识别、定位和分类变得越来越具有挑战性。传统明场检测方法虽然是当前晶圆缺陷检测的主流技术,但该方法受制于光学成像分辨率极限和弱散射信号捕获能力极限而变得难以为继,因此亟需探索具有更高成像分辨率和更强缺陷散射信号捕获性能的缺陷检测新方法。据了解,晶圆缺陷光学检测方法的最新进展包含了缺陷可检测性评估、光学缺陷检测方法、后处理算法等三个方面。其中,缺陷可检测性评估,包含了材料对缺陷可检测性的影响、晶圆缺陷拓扑形貌对缺陷可检测性的影响两个方面。在多样化的光学缺陷检测方法上,目前,晶圆缺陷光学检测系统可根据实际使用的光学检测量进行分类。在后处理算法方面,根据原始检测图像来识别和定位各类缺陷,关键在于确保后处理图像中含缺陷区域的信号强度应明显大于预定义的阈值。在该综述研究中,也总结了代表性晶圆缺陷检测新方法。具体可划分为明/暗场成像、暗场成像与椭偏协同检测、离焦扫描成像、外延衍射相位显微成像、X射线叠层衍射成像、太赫兹波成像缺陷检测、轨道角动量光学显微成像。研究人员认为,基于深度学习的缺陷检测方法的实施流程非常简单。首先,捕获足够的电子束检测图像或晶圆光学检测图像。其次,训练特定的神经网络模型,从而实现从检测图像中提取有用特征信息的功能。最后,用小样本集测试训练后的神经网络模型,并根据表征神经网络置信水平的预定义成本函数决定是否应该重复训练。据介绍,尽管图形化晶圆缺陷光学检测一直是一个长期伴随IC制造发展的工程问题,但通过与纳米光子学、结构光照明、计算成像、定量相位成像和深度学习等新兴技术的融合,其再次焕发活力。该团队介绍,这一研究领域的前景主要包含以下方面:首先,为了提高缺陷检测灵敏度,需要从检测系统硬件与软件方面协同创新。同时,为了拓展缺陷检测适应性,需要更严谨地研究缺陷与探测光束散射机理。此外,为了改善缺陷检测效率,需要更高效地求解缺陷散射成像问题。除了IC制造之外,上述光学检测方法对光子传感、生物感知、混沌光子等领域都有广阔的应用前景。相关研究人员表示,通过对上述研究工作进行评述,从而阐明晶圆缺陷检测技术的可能发展趋势,将为该领域的新进入者和寻求在跨学科研究中使用该技术的研究者提供有益参考。华中科大机械学院研究员朱金龙、博士后刘佳敏为该文共同第一作者,华中科大教授刘世元以及朱金龙为共同通讯作者。相关论文信息:https://doi.org/10.1088/2631-7990/ac64d7
  • 复享光学在SEMICON/FPD China 2024展会上展示先进光谱检测技术
    2024年3月20-22日,全球规格最大、最具影响力的半导体盛会 SEMICON/FPD China 2024 在上海新国际博览中心圆满落幕。本届 SEMICON CHINA 2024 以“跨界全球、心芯相联”为主题,为全球半导体行业人员贡献了一场覆盖芯片设计、制造、封测、设备、材料、光伏、显示等全产业链携手合作、最新技术热点的饕餮盛宴。作为中国深度光谱技术的领军企业,上海复享光学股份有限公司(以下简称“复享光学”)受邀参加了本次盛会。本次展会,复享光学携半导体前道制造工艺中最新的先进光谱检测方案参展,吸引了众多业界人士的关注。与会者齐聚展台,分享创新技术、交流行业经验、探讨产业发展,对复享光学的产品及功能赞不绝口。随着芯片逐渐往微缩化和3D化发展,刻蚀设备的重要性不断提高。终点检测设备是刻蚀机的“眼睛”,需要其检测刻蚀何时停止,是刻蚀工艺控制的核心模块,关键技术一直以来被国外厂商所掌握。此次,我们向公众展示了面向先进刻蚀工艺控制的终点检测解决方案——InView-OES和InView-IEP。凭借在深度光谱技术领域十余年的扎实积累,复享光学自主研发了基于等离子体发射光谱的刻蚀终点检测解决方案——InView-OES,不仅填补了国内市场空白,更打破了国外技术垄断,解决国外断供危机。特别值得一提的是,针对目前国内先进制程工艺的技术发展方向所带来的极弱 OES信号的终点检测难题,复享光学攻克技术瓶颈,产品实现了极低检出限、极高信噪比和极高灵敏度,结合基于神经网络的人工智能终点判断算法,为先进制程提供了高效、精准的刻蚀终点检测。目前,InView-OES 已在 FAB端实现数百万片 wafer 量产检验,获得客户高度好评。此外,随着目前新材料&新器件的发展,出现了传统的 OES 方式所不能监控的无截止层刻蚀终点检测问题,复享光学针对此行业痛点,自主发展了基于白光干涉的终点检测解决方案 InView-IEP。产品具备可定制 model-based算法、复享光学不仅在产品上突破,在技术研究方面也在积极探索。作为国家级专精特新“小巨人”企业和上海市科委集成电路支撑项目的承担单位,公司大力聚焦先进终点检测技术,并积极将深度光谱检测技术应用于其他半导体制造工艺中。在量测领域,复享光学承担了上海市2022年度“科技创新行动计划”科学仪器领域项目——《堆叠环栅晶体管(GAA-FET)制程量测拉曼光谱仪》。该技术致力于探究多层纳米薄膜在 GAA-FET 制备中的核心参数,如厚度、应力、界面状况及沟道载流子迁移率等,为未来的半导体量测设备领域提供创新解决方案。综上所述,复享光学不仅致力于当前半导体零部件的国产替代,也为未来国产半导体零部件设备的超越寻求突破之道。当下,半导体行业正经历蓬勃发展阶段,凡是目光所及,从人工智能、万物互联、汽车电子、各类消费品,其底层都是半导体芯片;同时,在国内半导体设备持续的国产替代和新晶圆厂产能扩张的双重浪潮推动下,针对先进制程、新结构和新材料芯片制造过程中光谱检测的紧迫需求,复享光学今年将充分利用省部级“上海微纳制程智能检测工程技术研究中心”以及“复旦大学光检测与光集成校企联合研究中心”双平台优势,将加速技术成果转化进程,缩短半导体产品研发周期,为中国高端芯片的生产贡献我们的光谱检测力量。
  • 应用材料推出Enlight®2光学检测系统,吞吐量提高50%
    长期以来,良率一直被认为是半导体制造中最关键的指标之一。对于芯片制造商来说,减少将工艺提升到生产级良率所需的时间可能价值数十亿美元。因此,制造商在晶圆检测技术上投入巨资,以帮助快速发现和纠正影响良率的缺陷,最好是在它们影响晶圆厂产量之前。缺陷检测工具箱中有两个互补的工具:检测和复查。在最常见的策略中,芯片制造商使用基于光学的检测技术来检测晶圆上的潜在缺陷,然后进行电子束复查,电子束复查具有按类型查看和表征缺陷所需的更高分辨率,以帮助工程师发现和解决其根本原因。光学缺陷检测和电子束缺陷审查是相辅相成的——前者以牺牲分辨率为代价在更短的时间内扫描晶圆,而后者提供高分辨率,但扫描晶圆需要更长的时间。最佳策略是将这两种工具的优点结合起来。然而,随着半导体设计变得越来越复杂,光学检测正面临挑战。随着线宽的缩小,细小的有害颗粒成为杀手级缺陷。随着设备架构向 3D 过渡,颗粒变得越来越难以检测和观察。随着多图案化和 3D 架构增加了相邻工艺步骤的图案化相互依赖性,需要更多的检测点来追溯缺陷的根本原因。芯片制造商越来越面临成本困境:要么增加检测量而增加制造成本,要么节省成本并降低制造良率。2021 年,应用材料公司推出了一款创新的光学检测系统,旨在帮助芯片制造商驾驭这个复杂的新时代。Enlight® 明场光学晶圆检测系统将行业领先的速度与高分辨率光学器件相结合,可从每次晶圆扫描中捕获更多对良率至关重要的数据。它是唯一同时具有明场和暗场检测通道的系统,使其能够同时收集反射光和高角度散射光,以检测最小的缺陷。Enlight 系统架构改变了光学检测的经济性,将捕获关键缺陷的成本优势提高了 3 倍。成本优势使Enlight系统客户能够减少检测预算或插入更多检测点,以在相同的预算下检测更多的颗粒和图案错误。因此,Enlight 系统已成为应用材料公司历史上速度最快的检测系统,并被其所有领先的晶圆代工客户用于大批量生产。今年,应用材料推出了 Enlight® 2 系统,它将吞吐量和灵敏度提升到新的水平。区分妨害和缺陷Enlight 2 系统旨在检测数量最多的良率扼杀缺陷,同时保持较低的误报率。Enlight 2 具有两项升级,可提高对相关缺陷的敏感度:图像处理能力的阶跃函数和成像动态范围的增加,每次扫描都能检测到 100 倍以上的潜在缺陷。新的 SideView™ 模块可实现晶圆的倾斜照明,从而将检测 3D 缺陷的灵敏度提高近一倍。该系统还提供了新的干扰抑制功能:一种名为SELFI的新型深度学习引擎™检测和分类超过十亿个缺陷图像,使工程师能够捕获3倍以上的目标缺陷。一种名为GF Polaris™的新型光偏振模块扩展了360度可调偏振,以控制灰场检测通道,并减少50%的滋扰。提高限速Enlight 2 包括多项增强功能,可进一步提高系统的吞吐量:新的混合计算架构利用图形加速器和专用图像处理器将 CPU 性能提高 4 倍,数据存储速度提高 5 倍,网络吞吐量提高 2.5 倍。一台新的望远镜将系统的晶圆扫描吞吐量扩大了40%以上。降低拥有成本这些速度和灵敏度的改进使芯片制造商能够在整个制造流程中插入更多的检测点,同时为每个配方提供更多的扫描集,同时保持相同的总体拥有成本。同时,检测阶段可操作信息数量的增加增强了在良率偏移发生之前预测良率偏移的能力,立即检测偏移,以便可以停止晶圆加工以保护良率,并实现根本原因追溯,以加快纠正措施和恢复大批量生产。芯片制造商倾向于降低检测工具的灵敏度,以尽量减少干扰检测,这增加了遗漏关键缺陷的风险。为了缓解这一挑战,应用材料公司的 ExtractAI™ 技术使用大数据帮助客户在在线监测期间快速创建完全分类、无噪声的地图。Enlight 2 系统的预测功能与 ExtractAI 相结合,在明场光学晶圆检测和我们行业领先的电子束审查系统 SEMVision® 之间提供了实时、智能的链接。ExtractAI 技术使用人工智能 (AI) 来表征晶圆上的所有潜在缺陷,为 SEMVision eBeam 系统提供可操作的分类缺陷图。电子束系统反过来训练 ExtractAI 技术对杀良率缺陷进行分类,从而能够快速准确地将杀良率缺陷与高端光学扫描仪产生的数百万个干扰信号区分开来。通过结合应用材料一流的光学检测和电子束审查技术,创建了业界唯一的智能解决方案,不仅可以检测和分类良率关键缺陷,还可以实时学习和适应工艺变化。在发布该系统前,应用材料已经向客户交付了两位数数量的系统,用于大批量生产,结果显示可以在不牺牲灵敏度的情况下将吞吐量提高 50%。应用材料的目标是在未来几年内创造超过10亿美元的收入,并帮助客户在芯片制造的新时代增加晶圆厂的产量和产量,从而创造数十亿美元的收入。
  • 美国蓝菲光学与国内四家检测机构签订合作协议
    美国 Labsphere 公司(蓝菲光学)和国内照明电器行业的首个专业国际CB 实验室,国家电光源质量监督检验中心(上海)、国家灯具质量监督检验中心、上海时代之光照明电器检测有限公司于2011年4月8日在上海签订了合作框架协议。 签约仪式现场   签字双方决定发挥各自优势,围绕半导体照明检测的立项与研发,以半导体照明评估技术为重点开展合作。国家电光源质量监督检验中心同意将其拥有的专利(《LED 正向电压降和结温曲线的测量装置》专利号:ZL2009 2 0212653.0)用于美国 Labsphere 公司的“LED 光、色、电及热特性的检测(TOCS)”系统中。双方还将在人才培养和人员交流方面积极开展合作并建立技术与学术交流机制,积极互通国内外信息和发展动态,为双方技术研发人员开展学术交流与活动提供便利。   美国 Labsphere 公司参加签字仪式的有总裁 Peter Weitzman 先生、前总裁 Kevin Chittim 先生、运营副总裁 David McManus 先生、上海蓝菲光学仪器有限公司总经理肖冬先生、技术总监于立民博士等。上海市质量监督检验技术研究院副院长谢亦群先生、上海时代之光照明电器检测有限公司总经理陈超中先生、副总经理俞安琪先生、标准技术部主任施晓红女士、杨樾女士参加签字仪式。上海时代之光照明电器检测有限公司总经理陈超中先生与美国 Labsphere 公司总裁 Peter Weitzman 先生分别代表双方在联合开发检测仪器合作协议上签字。   美国 Labsphere 公司 LED 光、色、电及热特性的检测”系统 TOCS 是为了更容易地符合新的国际测试报告规范,该系统仅使用及成软件不仅能测量光学特性,而且同时能测量温度和工作电流。TOCS 遵守IESNA LM-79标准,生成精确且可反复使用的 LED 测量结果。TOCS 系统提供从50cm-193cm各种大小的积分球,可以用于2和4的测量。其基本系统由如下部分组成:光源测量积分球,高分辨率 CCD 阵列光谱仪,带有温度调节器的专用夹具,辅助光源,校准光源和配套电源,以及蓝菲光学强大的 TOCS-SS软件。此套系统已经被国内外著名厂商和检测机构所接纳。国家半导体照明产品质检中心(常州)已经率先定购了此套系统 台湾的台积电、韩国科学技术院(RIST)也于先期采购了此系统。国家电光源质量监督检验中心和 Labsphere 公司将根据国际、国内 LED 检测标准的变化不断完善和更新以满足用户需要。   关于豪迈(HALMA)以及蓝菲光学(Labsphere):   蓝菲光学(Labsphere)有限公司 (www.labsphere.com) 是世界光测试、测量以及光学涂层领域的领军企业。公司产品包括 LED、激光器及传统光源光测量系统 成像设备校准用的均匀光源 光谱学附属设备 高漫反射材料及背光显示屏覆层、计算机X线成像以及系统校准。公司的专家在诸多领域取得了多项专利技术,比如晶片和紫外线传输中的 LED 测试方法。蓝菲光学(Labsphere)的工程人员也常常协助客户,开发定制光采集管和导光管。蓝菲光学(Labsphere)是英国豪迈集团(HALMA p.l.c. )的子公司。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,36家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
  • 安东帕多款光学检测仪器亮相国际淀粉展
    2013年5月22-24日,第八届上海国际淀粉及淀粉衍生物展览会于上海光大会展中心举办,本届展会为业内淀粉生产及深加工企业,商贸机构以及相关淀粉检测仪器厂商提供了良好的交流合作平台。作为在开发研制光学检测仪器方面拥有长达四十多年经验的生产厂商,安东帕本次展出的数字式密度计,高精度智能旋光仪,高性能折光仪及全自动密度折光联用仪等产品受到与会观众的广泛关注和咨询。 MCP系列旋光仪&mdash &mdash 用于高质量分析的智能旋光仪。MCP旋光仪可用于淀粉及由淀粉加工的成品的质量控制和纯度测定。这对于控制这类物质的质量至关重要。除此之外,此系列产品还可用于药品、食用香精、软物质样品、蜂蜜及香水等检测。 DMA 500 &mdash &mdash 小块头,大智慧。DMA 500是一款轻便小巧的数字式密度计,具有无与伦比的易用性。用户界面简单明了,用户只需稍作了解即可独立操作仪器。此仪器具有诸多功能,可以确保正确进样,还可确保测量结果完全可追溯,需要时可立即调用。配备充电电池,方便携带,让您可以走出传统实验室,离线操作仪器。 Abbemat自动折光仪&mdash &mdash 准确度的标杆。高性能系列折光仪设计用于原材料入库检验到半成品和成品检验的日常质量分析和控制。内置的各行业特点的标准测量方法,功能强大。具有操作简单,测量周期短,适用范围广,持续使用时间长等独特优势。 请登录 http://www.anton-paar.com/%E4%BA%A7%E5%93%81/2_China_zh 了解等多安东帕产品信息。
  • 新型光学设备开发成功 30秒内完成水质检测
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 英国伯明翰大学研究人员17日宣布,他们开发出一种新型光学设备,能够根据水中荧光特征在30秒内快速检测出水质是否达到可饮用的安全标准,有望用于灾区救援、污水处理等方面。 /p p style=" line-height: 1.75em "   据研究人员介绍,所有水体都会散发荧光,但人眼对特定波长的光线敏感度不够,因此这些荧光不易被肉眼察觉。此前一些研究显示,由于水中污染物会有各自不同的荧光特征,可通过分析水体荧光来识别水质污染情况。 /p p style=" line-height: 1.75em "   伯明翰大学团队开发的这种设备能探测特定波长的荧光,以此判断水中是否存在相应的微生物和有机碳。研究人员说,使用这种设备“扫描”水体,在短短30秒内就能完成检测。 /p p style=" line-height: 1.75em "   相比而言,传统的方法需要超过12小时才能完成水质检测,并且要使用成本相对较高的生化试剂,这无法满足灾区以及贫困地区快速寻找干净水源的需求。 /p p style=" line-height: 1.75em "   领导这个项目的伯明翰大学教授约翰· 布里奇曼说,这个新设备的操作非常简单,普通人也能很快学会使用,有利于未来在偏远地区普及。 /p p style=" line-height: 1.75em "   据介绍,研究团队已经与中国一家公司合作,利用这套新设备来协助广州一处污水处理厂提高污水处理效率。 /p p br/ /p
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 海洋光学新一代ACCUMAN为制药原辅料检测保驾护航
    全球安全、健康和环境科技的领军企业——海洋光学新一代便携式拉曼光谱仪ACCUMAN PR-500 荣耀上市,可以帮助制药企业以较低成本从容应对原辅料“证实”和“证伪”的鉴定。 ACCUMAN PR 500 中国国家食品药品监督管理局于2011年发布关于贯彻实施《药品生产质量管理规范(2010年修订)》(2010新GMP)的文件,要求各新建药品生产企业、药品生产企业新建(改、扩建)车间均应符合2010新GMP的要求,制定相应的操作规程,采取核对或检验等适当措施确认每一包装内的原辅料正确无误。传统的红外和湿法化学方法,需要对样品取样,前处理等,过程繁琐,耗时耗力,难以满足药典快检和全检的新要求。 ACCUMAN PR-500采用拉曼光谱快检技术,这一基于激光和光谱学的分析技术,被称为“分子指纹”,可以透过透明包装,直接在仓库,投料间等区域对原辅料进行无损检测。对于困扰红外的水溶液检测,也可以轻松应对。 ACCUMAN PR-500 操作界面截屏 要保证快速获得真实可靠的物质“指纹”信息,PR500采用了业内最优的光谱核心,信噪比最高,并具备极高的灵敏度。面对品类多样的原辅料,特别是有些结构相近的物质,例如相似的水合物或同分异构体,PR500提供更大的拉曼光谱范围(最高可达390cm-1)和更优的光谱分辨率 (最优可达4cm-1),能够轻松应对复杂样品。较之传统的手持快检设备,PR500操作端仅重330g,符合人体工学设计,可单手操作。高清多点触控屏,图谱清晰。可选中文系统,用户界面友好方便。 ACCUMAN PR-500手持端检验原料 此外,随着药品监管制度的进一步完善,对药厂的质量管理提出了更高的要求。GAMP 5 (良好自动化生产实践指南)是ISPE对于制药企业计算机系统验证重要的合规指南。新一代的ACCUMAN PR-500依照GAMP 5指导原则设计,遵从GxP计算机化系统监管的风险管理方法中关于计算机化系统用户需求规范附录D1和CFR Part 11,以符合GxP计算机系统要求。点击获得更多产品信息:http://www.oceanoptics.cn/product/accuman 关于海洋光学亚洲(Ocean Optics Asia)和豪迈(HALMA): 海洋光学(www.OceanOptics.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤和光学元件等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛。 海洋光学是英国豪迈(HALMA plc– www.halma.cn)的子公司。创立于1894年的豪迈是世界领先的安全、健康及环境技术集团,伦敦证券交易所的上市公司,在全球拥有 5000 多名员工,40 多家子公司。豪迈是伦敦证券交易所上市公司中唯一一家在过去30多年股息增长保持5%以上年增长的企业。豪迈目前在上海、北京、广州、成都和沈阳设有区域代表处,并且已在上海、北京、保定、深圳等地开设多家工厂和生产基地。
  • 以领先的光学检测技术为核心,匠岭半导体或完成新一轮融资
    企查查显示,1月21日,江苏匠岭半导体有限公司发生多项工商变更,新增投资人平潭冯源聚芯股权投资合伙企业(有限合伙)、中小企业发展基金(绍兴)股权投资合伙企业(有限合伙)。同时,注册资本由3181.35万元变更为3623.20万元。(来源:企查查)公开信息显示,匠岭半导体成立于2018年,以领先的光学检测技术为核心,主要从事半导体光学量测和检测设备的研发、制造和销售,主要产品涵盖半导体薄膜和光学线宽量测机台、半导体Micro-Bump三维检测机台和半导体宏观缺陷检测机台等。以客户技术需求为导向,匠岭半导体旨在为全球半导体上下游的芯片制造工厂提供一流的工艺检测机台和良率优化方案。
  • 上海交大发明纳米光学质谱仪检测人体癌细胞
    秤对人们来说并不陌生,而上海交大物理系朱卡的教授团队发明的“光秤”,有望通过对生物DNA分子的质量、染色体的质量等高精度光学测量,来检测人体内的癌细胞。   在量子信息和量子测量技术迅猛发展的今天,对量子奇异世界的探索已成为各国研究学者的不懈追求。朱卡的教授和李金金博士以量子光学和纳米材料为研究基础,在国际上首次提出了纳米光学质谱仪,也就是“光秤”,“这将为量子测量技术、纳米技术、生物医学技术的发展提供崭新的平台和新颖的思维方式。”   对这一研究成果,美国物理学会评价:“这项研究工作有望带领纳米科学进入一个崭新的测量领域。”国际公认的物理学界顶尖综述期刊《Physics Reports》也刊登了朱卡的教授团队该成果的长篇综述性论文。自1971年创刊以来,该期刊一共只发表了以中国大陆科研机构为唯一单位的综述性论文9篇,其中2000年以来共4篇,这也是上海交通大学首次以唯一单位在该期刊上发表论文。   朱卡的教授团队利用表面等离激元和纳米材料的耦合系统首次提出了用全光控制的方法测量微观粒子的质量。目前预测能精确地测出单个原子的质量。   怎样用光学的方法来测出一个原子的质量,据朱卡的教授介绍,把待测原子放在一个碳纳米管表面,然后用两束强弱不同的光同时照在碳纳米管上,此时探测弱光的吸收谱,就可以精确得到碳纳米管的振动频率。先后两次测量碳纳米管的振动频率,得到放入原子前后碳纳米管的振动频率的变化量,通过计算就能得到落入碳纳米管表面的单个原子的质量。   “其实这里并没有包含物理学上的什么新方面或新原理,但以前却从来没有人考虑过这样一个方案,”朱卡的教授说,“我们将碳纳米管、量子点和表面等离激元的复合系统等系统地组合起来研究,发明了第一个全光控制的高灵敏纳米光学质谱仪。”   朱卡的教授估算,通过全光控制的“光秤”,其灵敏度和精确度比传统的电学质谱仪高出了将近三个数量级。他表示,这项研究工作在现有电学质谱仪上做了很大的提升和改进,用全光学的方法代替了传统的电学测量。据介绍,目前正在进行的是通过“光秤”来对单个质子或中子进行测量的研究。朱卡的教授团队还希望把“光秤”应用到生物DNA分子的研究中,提出了一种癌细胞DNA分子的检测方法。据介绍,传统的癌变DNA分子的质量应与正常的DNA分子是不完全一样的。利用这一“光秤”同样可以检测到癌细胞的存在。因此,朱卡的教授预测其还可以用于临床医学。
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。 下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格) 作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。 两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。 该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 德国-巴西光学检测健康技术中心成立 科技创新是首要素
    ICORS 2016同期,德国巴西光子健康研讨会同期举办。期间,德国巴西光学检测健康技术研究中心正式成立。  据介绍,近年来光子技术持续为传染病诊断、癌症治疗等医疗健康问题提供可行的解决方案,体现了巨大的应用潜力。目前,全球的的医疗保障还面临不少挑战,而这些挑战可以通过生物光子技术的突破和发展来改变,为诊断和治疗提供新的有效的方法。  很长时间以来,巴西和德国有着成功的双边合作纪录,特别是在科学技术领域。“德国巴西战略伙伴关系行动计划”也特别强调将科技合作作为国家之间合作的重要支柱,而现在他们已经开始采取行动加强合作创新了,其中寻找机遇和挑战并在欧盟和巴西进行创新资金的投入就是一个起点。  鉴于此,主办方在ICORS 2016举办光学检测健康技术研讨会,汇集了巴西和德国多个主要的研究和创新组织,为全球卫生保健研究和开发提供一个专门的光子技术相关知识和经验的分享平台。会议中,多位专家介绍了相关技术在健康诊断方面的研究和应用进展,比如表面增强拉曼散射在生物诊断方面的应用 拉曼光谱在口腔病理学方面的创新研究 无标记红外成像在癌症诊断方面的研究等。  在之前的采访过程中,仪器信息网编辑也了解到,目前拉曼在医学诊断方面的驱动力非常大,不仅包括通过拉曼光谱技术进行癌症的早期诊断,还有更加前沿的拉曼辅助手术技术等。而从本次ICORS 2016大会的报告内容和数量来看,拉曼亦将成为未来生物医学的主要检测手段,这一点非常明显。  目前,德国在这方面的研究比较多,我国相对来说还比较滞后,与会的中国代表纷纷表示,希望在中国也要抓住机会,重视拉曼光谱在医学领域的应用研究。据北京服装学院副教授龚龑老师反馈,目前其已经和首都医科大学、北大医学院等多家单位取得联系,在拉曼光谱仪器技术在生物医学成像及病理识别开发方面,开展全面的合作,希望得到有关部门的重视和支持。
  • 光学显微镜、电镜用于地震灾区石棉粉尘检测
    2013年4月20日上午八时零二分,四川省雅安市芦山县地区发生7.0级地震,地震造成重大人员伤亡和财产损失。地震发生后,科技部紧急研究部署四川雅安地震抗震救灾科技工作,并在科技部门户网站发布抗震救灾实用技术手册,供地震灾区选用。在抗震救灾实用技术手册中,发布了地震灾区石棉粉尘检测技术。具体信息如下:   灾后各灾区的损坏建筑的清理、拆除、重建工作非常繁重,在这个过程中,粉尘的污染是个十分重要的问题,特别是很多建筑使用了或多或少的石棉材料,由此产生的石棉粉尘会对人体健康造成危害。本手册内容为针对石棉粉尘的分析监测技术和使用了石棉材料的建筑物的拆解及石棉废弃物的安全处理处置操作技术,以备地震灾区在工作中参照采用。   地震灾区使用了石棉材料的建筑物的安全拆解及石棉废弃物的处理处置应遵循专人按章操作,严密防护,安全、妥善贮存运送,指定地点集中处置,在整个过程中均设立明显示警标志,确保在拆解、处理处置过程及处置后的环境安全的原则。在工作过程中,要针对工作现场及周边进行石棉纤维污染的监测,防止造成污染,确保人体健康。   石棉纤维的检测方法有多种,主要有光学显微镜法、电镜法、X-射线衍射法等。其中光学显微镜法原理简单、所使用光学显微镜较为常见。而电镜法则准确度比较高,可以检测出较为细小的石棉纤维颗粒。   一.固体样品的检测   可参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》的分析方法。主要方法如下:   1.样品的采集   固体材料中石棉检测工作的样品采集方法如下。   在材料的不同部位取下样品若干块,取样量约50-200克左右。   2.样品的预处理   1)被测样品中有机物质的去除。采用高温烘烤方法,在马弗炉中在400-500℃的温度下加热2小时左右,除去被测样品中的有机物质。   2)块状样品的粉碎。采用机械手段进行破碎和研墨至粉末状。(若使用破碎机,粉碎时间不要太长。不然会造成石棉纤维成为细小颗粒,无法辨别)   3)纤维束状和絮状样品。用剪子剪碎后,可用研钵稍做研磨,以使缠绕成团的纤维和过粗的纤维束可以分离舒展。或用镊子等工具从边缘剥离少许。   4)将粉碎或研磨好的样品进行充分的混匀待用。   3.样品的分析   采用光学显微镜法分析参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》。   采用扫描电镜检测参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。   二.空气样品中石棉纤维的检测   1.光学显微镜法   样品采集就是将含石棉尘的空气抽取通过采样滤膜,石棉尘于滤膜上透明固定后,在相衬显微镜下计数,根据所采气体体积计算出每立方厘米气体中的石棉尘的根数。   采样及测定方法参照HJ/T41-1999《固定污染源排气中石棉尘的测定-镜检法》。   2.扫描电镜法   样品采集及测定可参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。   样品采集时可使用适用于扫描电镜观测的0.2微米或者0.4微米孔径的核孔膜。采样流量5-10L/min.。采样时间根据粉尘污染情况确定,以不造成颗粒物重叠为宜。   参照ISO 14966-2002 标准,在2000倍下进行观察和计数,计数规则参照上述标准。   技术来源   单位名称: 国家环境分析测试中心   联系地址: 北京朝阳区育慧南路1号 邮编:100029   联系人: 董树屏   联系电话:13601358418   e-mail: yrhuang@cneac.com   石棉的定义及可能含有石棉材料的建筑材料   石棉定义:石棉主要有两类,一类指属于蛇纹岩类的纤维状矿物硅酸盐,即温石棉(白石棉) 另一类是指闪石类纤维状矿物硅酸盐,即阳起石、铁石棉(棕石棉、镁铁闪石-铁闪石)、直闪石、青石棉(蓝石棉)、和透闪石。   石棉粉尘是指环境中悬浮在空中的石棉微粒。直径小于3微米,长度与直径之比大于3,纤维测量长度大于5微米的石棉纤维对人体的危害最大。   我国建筑材料中使用的主要是温石棉。可能含有石棉材料的建筑材料包括:石棉水泥瓦,钢丝网石棉水泥波瓦,石棉水泥平板,TR建筑平板,石棉硅酸钙板,石棉水泥管,石棉纱、线,石棉绳,石棉布,石棉带,热绝缘石棉纸,衬垫石棉纸、板,保温石棉板,泡沫石棉,石棉衣著,石棉被等。在这些材料中水泥制品比较坚固稳定,而保温石棉板、绝缘材料、泡沫石棉的材料较为松散易碎,更易于进入空气中造成污染。
  • BCD光学检测发布瑞士BCD手表齿轮检测J1新品
    瑞士Optimes J1可靠、准确的旋转零件测量 J1 Optimes提供快速准确的解决方案,可自动测量旋转部件的所有外部尺寸。只需将工件放在2个支架上,它立刻开始测量。几秒钟后,软件将光学测量轴下的零件移动并读取所有预定义尺寸该设备旨在确保对外部干扰(振动,温度,光线等)具有非常高的不敏感性。该优点使得可以在生产机器附近和控制实验室中使用测量仪器。根据微机械的要求,测量的精确性和可重复性使Optimes J1完美地集成到您的质量控制过程中。测量的速度和简单性可确保大量节省时间。技术规格技术类型非接触式光学测量范围?3.7x 17 mm分辨率Y(直径)0.07μmX(长度)0.1μm精度直径测量0.5μm (2S)长度测量1.8μm (2S)光学传感器类型BCD USB3.0 LS2048光纤类型BCD bi-telecentric std。灯光类型LED原则透射光尺寸长x高x宽330x 460 x 250毫米重量仪器8 KG功率10瓦 J1夹具J1夹具在几秒钟内即可实现互换,标准夹具在测量范围内可以夹持任何零件。微型装置微型测量支架配有两个60微米厚的不锈钢V形支架。精细的设置可以非常精确地对齐零件下面的传感器.软件辅助工具和这个支架的结合保证了良好的测量精度。 吸入式装置吸力支架能够放置不能放置在测微保持架上的小尺寸零件。提供不同直径的可互换喷嘴,以与待测量零件相对应。微型泵安装在机器中,使系统完全自动。 定位钳夹持器允许拧紧各种类型的零件,如销、规、杆等。它还用于固定仪器的校准规。J1软件Optimes J1完全由一个软件驱动,该软件提供评级,文件管理,图形和统计分析以及测量报告创建等一系列功能。该软件允许导入和导出3D数字模型,从而提供与您的设计软件的完全互操作性。不同级别的用户访问保证了每个使用该仪器的人员的安全性和用户友好性。J1软件功能文章数据库3D尺寸标注工具(直径,长度,半径,角度)协助进行调整记忆批次和日期测量该工件的图形分析统计计算将数据导出到所有spc软件。创建和打印测量报告远程维护和支持创新点:专业手表齿轮检测设备,J1用于手表零部件的各尺寸测量,提供快速准确的测量方案,世界领先。
  • 两项天然气检测国家标准发布,涉及光学法、电化学法
    1月12日,从国家市场监督管理总局和国家标准化管理委员会获悉,西南油气田公司牵头起草的四项天然气国家标准正式发布,其中两项标准涉及微痕量物质检测。GB/T 43502.1-2023《天然气 颗粒物的测定 第1部分:用光学法测定粒径分布》提出了采用光学法测定颗粒物粒径的取样流程、仪器操作参数设置、数据重复性和复现性处理等规范性方法,适用于天然气长输管道中颗粒物样品的提取、制样和粒径的测定。促进GB/T 37124-2018《进入天然气长输管道的气体质量要求》在全国范围内的实施,为天然气气质监控和管道流动保障工作提供有力支撑。GB/T 43503-2023《天然气 氧气含量的测定 电化学法》描述了采用电化学法测定天然气中氧气含量的原理、试剂与材料、仪器、取样、测定步骤、数据处理、精密度及测定报告,适用于天然气中氧气含量的在线和离线测定,将为天然气产品质量的控制、天然气长输管道的安全运行提供有力保障。下一步,西南油气田公司将继续践行集团公司标准化战略,持续推动科技创新与标准深度融合发展,着力提升标准化质量和水平、优化完善天然气技术标准体系,加快推动天然气标准国际化进程,为集团公司建设基业长青世界一流综合性国际能源公司和高质量天然气工业体系建设作出新的更大贡献。
  • 海洋光学LIBS检测系统中标华东交大采购项目
    p   根据,江西中晟招标咨询有限公司关于华东交通大学太赫兹时域光谱系统等教学实验设备采购项目(招标编号:JXZS201601G001)电子化公开招标中标公告,海洋光学激光诱导击穿光谱检测系统MX2500+中标华东交通大学采购项目,中标金额59.8万元。 /p p   详细内容如下: /p p   江西中晟招标咨询有限公司受华东交通大学的委托,根据江西省政府采购工作领导小组办公室下达的赣购2015B007308001、赣购2015B007319001号采购计划,就其电气实验设备项目(招标编号:JXZS201601G001)采取电子化公开招标方式进行采购,采购活动于2016年02月05日在江西省南昌公共资源交易中心(南昌市红谷滩丰和大道1318号)四楼3号开标室举行。经评标委员会评定及采购人确认,中标结果如下: br/ /p table width=" 593" align=" center" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 73" p style=" text-align: center " 采购项目编号 /p /td td width=" 85" p style=" text-align: center " 项目内容名称 /p /td td width=" 85" p style=" text-align: center " 单位 /p /td td width=" 113" colspan=" 3" p style=" text-align: center " 数量 /p /td td width=" 236" colspan=" 3" p style=" text-align: center " 中标供应商名称 /p /td /tr tr td width=" 73" p style=" text-align: center " 赣购2015B007319001 /p /td td width=" 85" p style=" text-align: center " 太赫兹时域光谱系统 /p /td td width=" 85" p style=" text-align: center " 套 /p /td td width=" 113" colspan=" 3" p style=" text-align: center " 1 /p /td td width=" 236" rowspan=" 2" colspan=" 3" p style=" text-align: center " 江西精密科学仪器设备有限公司 /p /td /tr tr td width=" 73" p style=" text-align: center " 赣购2015B007308001 /p /td td width=" 85" p style=" text-align: center " 激光诱导击穿光谱检测系统 /p /td td width=" 85" p style=" text-align: center " 套 /p /td td width=" 113" colspan=" 3" p style=" text-align: center " 1 /p /td /tr tr td width=" 593" colspan=" 9" p style=" text-align: center " 货物清单 /p /td /tr tr td width=" 73" p style=" text-align: center " 序号 /p /td td width=" 85" p style=" text-align: center " 货物名称 /p /td td width=" 85" p style=" text-align: center " 型号及品牌 /p /td td width=" 47" p style=" text-align: center " 单位 /p /td td width=" 47" p style=" text-align: center " 数量 /p /td td width=" 66" colspan=" 2" p style=" text-align: center " 单价(元) /p /td td width=" 76" p style=" text-align: center " 总价(元) /p /td td width=" 113" p style=" text-align: center " 中标金额 /p /td /tr tr td width=" 73" p style=" text-align: center " 1 /p /td td width=" 85" p style=" text-align: center " 太赫兹时域光谱系统 /p /td td width=" 85" p style=" text-align: center " SPECIM & nbsp & nbsp 、N25E /p /td td width=" 47" p style=" text-align: center " 套 /p /td td width=" 47" p style=" text-align: center " 1 /p /td td width=" 66" colspan=" 2" p style=" text-align: center " 995000.00 /p /td td width=" 76" p style=" text-align: center " 995000.00 /p /td td width=" 113" rowspan=" 2" p style=" text-align: center " ¥1593000.00元 br/ & nbsp & nbsp & nbsp 大写:壹佰伍拾玖万叁仟元整 /p /td /tr tr td width=" 73" p style=" text-align: center " 2 /p /td td width=" 85" p style=" text-align: center " 激光诱导击穿光谱检测系统 /p /td td width=" 85" p style=" text-align: center " 海洋光学、MX2500+ /p /td td width=" 47" p style=" text-align: center " 套 /p /td td width=" 47" p style=" text-align: center " 1 /p /td td width=" 66" colspan=" 2" p style=" text-align: center " 598000.00 /p /td td width=" 76" p style=" text-align: center " 598000.00 /p /td /tr tr td width=" 593" colspan=" 9" p style=" text-align: center " 质量保证:承诺对所投产品提供不少于12个月的质量保证期。 /p /td /tr tr td width=" 593" colspan=" 9" p style=" text-align: center " 评标委员会小组成员名单: & nbsp & nbsp 罗飞、包杰、胡秀娟、毛志峰、曾金根 /p /td /tr tr td width=" 593" colspan=" 9" p style=" text-align: center " 中标单位地址:南昌市东湖区湖滨东路55号金色水岸综合楼1407室 /p /td /tr /tbody /table
  • 蓝菲光学成功交付上海市质检院定制摄影镜头光谱透射率及色贡献指数检测系统
    2019年11月蓝菲光学成功交付上海质检定制摄影镜头光谱透射率及色贡献指数检测系统。光谱透射率及色贡献指数是衡量摄影镜头质量优劣的重要指标。摄影镜头的光谱透射比特性直接影响彩色摄影的色再现质量,ISO规定了以用对数透射比为基础的色贡献指数来描述照相镜头的色再现性(ISO 6728-1983)。我们知道照相镜头是由多片透镜组成的,其设计是由全世界多个厂商共同协作的,不同厂商根据其设计方案,则选用不同的透镜玻璃。照相机的色贡献指数是由整个镜头的综合光谱透过率决定的。从某种意义上讲,用于照相镜头的每一块透镜玻璃都应该测量其色贡献指数,并且测试值符合标准要求。上海市质量监督检验技术研究院,是国家市场监督管理总局批准设立的,经上海市人民政府依法设置的非营利性公益科研类政府实验室,是国家级产品质量监督检验研究院。是集产品质量检验检测、计量校准、体系与产品认证、标准化服务、培训与咨询为一体的全国最具有综合竞争力的检测院所之一。上海市质检院针对采购检测仪器具有很高的产品要求,在产品质量、性能、售后服务等一系列考察后,选定蓝菲光学定制生产镜头色贡献指数检测系统。蓝菲光学定制生产的镜头色贡献指数检测系统基于积分球的光谱透射率测试系统,来获取镜头的光谱透射比。待测镜头最大尺寸128mm(D)*366mm(L), 待测镜头重量5kg以内。镜头透过率范围一般在4%-98%。硬件系统由积分球,光谱仪,准直光源,夹具和暗室组成。系统符合JBT8248.1-1999 照相镜头光谱透射比的测量方法和JBT8251-1999 照相镜头的色贡献指数国标。蓝菲光学高漫反射涂料很受行业认可,该测试系统积分球内部使用Spectraflect® 涂料在紫外-可见光-近红外光谱区内漫反射率高达98%。积分球的开口处采用刀刃结构有助于收集大角度散射,挡板采用最小化设计,使得探测器能够最大程度地看到球内壁表面。探测器口位于球的顶部和底部,使用挡板遮挡防止样品和参考口光束直接照射。蓝菲光学的光谱仪光谱范围350-1100nm,该光谱仪内置的电制冷、薄型背照式CCD探测器可高效地抑制杂散光。所使用的准直光源均匀性>90%,光斑大小可调,配套软件显示光谱透射比和色贡献指数,光谱间隔为10nm,此外允许我们自定义光谱及对软件二次开发,方便实用。图1 上海质检定制摄影镜头光谱透射率及色贡献指数检测系统图图2 摄影镜头光谱透射率及色贡献指数检测系统软件界面蓝菲光学定制的摄影镜头光谱透射率及色贡献指数检测系统设计灵活,可依照标准定制,适用于各类镜头透过率和色贡献指数测试。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制