当前位置: 仪器信息网 > 行业主题 > >

光热电站

仪器信息网光热电站专题为您整合光热电站相关的最新文章,在光热电站专题,您不仅可以免费浏览光热电站的资讯, 同时您还可以浏览光热电站的相关资料、解决方案,参与社区光热电站话题讨论。

光热电站相关的资讯

  • 国电龙源开建西藏最大太阳能光伏电站
    西藏最大的太阳能光伏发电站和一座新型的地热发电项目3月19日在羊八井镇开工建设。加之已经投产几十年的羊八井地热电站,这个高原小镇无疑成为了西藏"从上到下"开发新能源的示范地区。   据两个项目的投资建设方中国国电龙源电力集团股份有限公司相关负责人张曦介绍,新建的1万千瓦太阳能光伏发电项目将在一定程度上缓解藏中电网电力供需紧张局面。新型地热发电项目将克服传统地热发电中的技术缺陷,促进地热开发的可持续发展。   据建设方介绍,羊八井1万千瓦光伏项目将采用模块化建设,就近并网升压,估算投资为2.2亿元,施工总工期10个月。项目地址与羊八井地热电站变电站仅一墙之隔,产生的电能经高压输送至羊八井地热电站变电站,利用现有的输电线路并入藏中电网进行远距离输送。   项目建成后负责经营管理的龙源西藏新能源有限公司总经理张曦说,该项目25年寿命期内共产生约43000万度的电能,与火力发电相比,相当于累计节约标准煤约150500吨,减排40万吨二氧化碳、1850吨二氧化硫、120吨粉尘和40600吨灰渣。   西藏是中国太阳能资源最丰富的地区,全区大部分地区太阳能辐射年均达6000--8000兆焦耳/平方米,超过同纬度平原地区一倍左右。日照时数也是全国的高值中心,全年平均日照时数在3000小时左右,在发展太阳能发电方面具有绝对的资源优势。   对于同日开工的地热发电项目,张曦介绍说,项目采用了先进的双螺杆膨胀动力机,它可以将地热水全部引入到动力机膨胀做功,地热水在送入全流动力机前无需进行扩容和闪蒸等处理,能量的利用率有较大提高。   专家认为,双螺杆膨胀动力机技术与常规地热汽机相比,具有可靠、快装可移动性、操作安全、自洁除垢以及黑启动能力等多项优势,在西藏的地热开发中前景广阔。   羊八井镇是西藏新能源发展的一个缩影。目前西藏正在从天上的太阳能、风能,到地下的地热、沼气和生物质能等着手,全方位开发和利用新能源。   近年来沼气和生物质能等新能源也开始走进农牧民家庭。记者在日喀则地区的综夏村农民普琼家看到,因为沼气的使用,以前烟熏火燎的厨房已经不复存在。"以前家里烧牛粪,生火的时候烟气熏得眼睛都睁不开,现在用上了沼气,厨房里总是干干净净。"她说。   专家王海江说,西藏是常规能源短缺的地区,长期以来西藏城乡居民,特别是广大农牧民依靠木柴、牛羊粪、草皮和荆棘等作为燃料,这对脆弱的高原环境造成了严重破坏。如今各种新能源逐步走进百姓生活,能减少对传统能源的依赖,保护生态环境。   在未来几年内,西藏将通过太阳能和风能发电,解决约30万无电人口的用电问题。到"十一五"末,在适宜地区的59个县建设农村沼气20万户,力争到"十二五"时期在农村基本普及沼气。   此外,西藏还将实施薪柴替代能源发展战略,因地制宜地发展太阳能、风能、地热能和生物质能等薪柴的替代能源,最大限度地开发利用西藏优势资源,减少使用传统能源对环境的压力。
  • 西藏“双碳”战略机遇与可再生能源综合利用高端研讨会举办
    2023年5月28日至29日,由西藏自治区科学技术厅、上海市科学技术委员会、林芝市人民政府、西藏自治区科学技术协会和中国可再生能源学会综合系统专委会联合主办,西藏自治区能源研究示范中心、林芝市科学技术局、上海新能源科技成果转化与产业促进中心、珠江水利委员会珠江水利科学研究院和珠江流域水土保持监测中心站参与承办的第八届“阳光论坛”暨西藏“双碳”战略机遇于可再生能源综合利用高端研讨会在林芝成功举办。林芝市政府副市长段刚辉、上海市科学技术委员会二级巡视员郑广宏、西藏自治区能源局副局长王云波出席会议并进行了致辞,西藏自治区科学技术厅副厅长扎西达杰主持会议开幕式并发表了讲话。   “阳光论坛”由西藏自治区能源研究示范中心与上海新能源科技成果转化与产业促进中心共同发起,至今已成功举办七届。“阳光论坛”针对西藏地区的自然资源优势和上海地区的技术人才优势,注重专业性、交流性、实践性,为沪藏两地新能源科学研究者、产品生产者和应用推广者搭建了涵盖资源、技术、产业、学术等多方面的交流与对接平台。论坛结合西藏科技的实际和西藏清洁能源发展需求,发挥论坛在促进学术交流、科研合作、技术支撑、联合攻关、服务产业、技术示范、成果转化、提供决策、建言献策等方面的突出作用。   在全党上下积极开展学习贯彻习近平新时代中国特色社会主义思想主题教育之际,通过第八届“阳光论坛”会议的召开,积聚西藏清洁能源资源优势和内地人才科技资源优势,推动西藏清洁能源科技创新事业的发展,各参会单位坚持不懈用习近平新时代中国特色社会主义思想凝心铸魂,从而切实加强党的思想建设。   论坛以“双碳战略机遇与绿色清洁新能源”为主题,通过设定政策解读、院士主旨报告、行业发展对话及专家报告等会议环节,全面解读和探讨西藏“双碳”战略机遇与可再生能源综合利用专业知识。会议邀请了西藏自治区发展和改革委员会、西藏自治区水利厅、西藏自治区气象局、西藏自治区生态环境厅、西藏自治区人民政府国有资产管理委员会、西安交通大学、上海交通大学、西藏大学、国网西藏电力有限公司、华能西藏雅鲁藏布江水电开发投资有限公司、三峡集团西藏能源投资有限公司、大唐西藏能源开发有限公司、中国能源建设集团西北电力建设工程有限公司、西藏昂彼特堡能源科技有限公司等共计84家与会议主题相关的行政主管部门、科研院所、区内外高校及企业代表参会,参会人数突破130人,为历届之最。   水利水电规划设计总院新能源研究院副院长姜海和西藏自治区发展和改革委员会能源局清洁能源产业专项组办公室副主任德庆边旦分别就“可再生能源发展政策及未来发展形式”和“西藏清洁能源发展规划及政策”进行了政策解读,分析了国际新能源产业的发展态势及西藏地区新能源产业的发展规划及政策,参会嘉宾及代表对解读内容进行了热烈的提问和探讨。同时,特邀中共第十九届、第二十届中央候补委员、中国科学院院士何雅玲教授作了题为“碳中和愿景下的储能型光热电站规模化发展路径探讨与展望”的主旨报告,分析了储能型光热电站在“碳中和”愿景下的发展路径和未来的发展展望。中国工程院院士多吉老师委托西藏地勘局地热地质大队水工环勘查院副院长周鹏作了题为“西藏地热资源概况与地热产业发展思考”的主旨报告,分析了当前西藏地区地热资源的储备情况及西藏地热产业发展的思考。中国科学院院士谭天伟教授也对论坛会议的召开进行了视频祝贺。另外,会议还组织了西藏自治区科学技术厅、西藏自治区发展和改革委员会能源局代表,长三角太阳能光伏技术创新中心、华东理工大学、中国建筑西南设计研究院专家代表及西藏昂彼特堡能源科技有限公司企业代表举行了西藏自治区清洁能源发展对话,大家根据自身所处行业及工作岗位,积极探讨当前西藏地区新能源行业的发展现状及西藏地区可再生能源综合利用的前景规划。   西藏是青藏高原的主体,被誉为“地球第三极”“世界屋脊”,是全球气候调节器、亚洲水塔、物种基因库,是重要的国家生态安全屏障,在国家双碳目标下,在碳达峰关键期和窗口期的“十四五”期间,做好“碳达峰、碳中和”工作被列为开局起步的重要任务之一。此次论坛的举办也受到了多家行政主管部门、科研院所和区内外高校的高度重视及大力支持,通过第八届“阳光论坛”会议的召开,定将助力西藏加快推进以水、风、光为主的国家清洁能源基地建设。
  • 甘肃控制温室气体排放工作成效显著
    日前省生态环境厅召开新闻发布会,会议通报,近年来我省持续推进碳排放监管、减缓和适应气候变化、清洁生产审核评估等工作,全省控制温室气体排放工作取得积极成效。“十三五”期间,我省单位地区生产总值二氧化碳排放量(碳强度)累计下降35.44%,超额完成国家下达17%的目标任务,对照碳强度2030年较2005年下降65%的目标,截至2021年,我省碳强度已累计下降51.8%,高于全国水平1个百分点;全省持续强化碳排放监管,组织完成全省发电、石化等7大行业114家重点温室气体排放单位年度碳排放报告编制及核查工作。圆满完成了全国碳排放权交易市场第一个履约周期发电行业19家企业的配额发放和清缴工作,共清缴碳排放配额1.58亿吨,累计成交二氧化碳455万吨、成交额1.98亿元。张掖市完成国际市场核证碳减排标准(VCS)林业碳汇注册交易,35.1万亩造林碳汇收益400多万元;兰州市成功纳入国家首批气候投融资试点名单,2022年向生态环境部报送推介2批国家气候投融资重点项目21个、总投资995亿元。酒泉敦煌熔盐塔式光热电站和庆阳、定西2市3人入选生态环境部绿色低碳典型案例。
  • 大连化物所新型光热电探测器研究取得新进展
    p style=" text-align: justify "   近日,中国科学院大连化学物理研究所研究员姜鹏、中科院院士包信和团队在新型光热电探测器开发研究中取得新进展,相关成果发表在《自然-通讯》(Nature Communications)上。 /p p style=" text-align: justify "   光热电探测器是基于光热转换和热电转换两个基本能量转换过程的一种探测器。当光照射在热电材料的一端时,光能经过光热转换首先转化为热能,从而在热电材料两端建立温差(ΔT)。在温差的驱动下,载流子会向冷端扩散(即热电转换中的Seebeck效应),进而在材料两端建立电势差。光热电探测器具有自供电、非制冷、响应波长范围宽等优点,在光探测、红外热成像、温度监测等领域具有重要的应用前景。 /p p style=" text-align: justify "   光热电探测器的响应度正比于材料的Seebeck系数(S)和材料两端的ΔT。传统光热电探测器采用的是Seebeck系数较低(通常小于200μV/K)的传统热电材料,例如Bi2Te3、Sb2Te3等,为了提高响应度,通常需采用微加工工艺来构造阵列结构,这显著增加了制备工艺的复杂性,提高了产品成本。该研究团队突破传统热电材料体系的限制,采用了具有较高室温Seebeck系数(约1000μV/K)的钛酸锶(SrTiO3),同时借助SrTiO3在长波红外大气窗口(8~14μm)的声子吸收来增强光热转换效率。结合这两个优势,单个SrTiO3光热电元件在10μm波长附近的响应度可达1.2V/W。进一步研究表明,SrTiO3光热电探测器的响应波长可从深紫外延伸至远红外,可承受光功率密度可以达到103W/cm2。 /p p style=" text-align: justify "   该研究为开发新型高性能光热电探测器提供了全新的思路。另外,相比传统光热电探测器,SrTiO3光热电探测器价格便宜,环境友好,耐高温,器件性能优异且制备工艺简单,意味着SrTiO3光热电探测器具有广阔的实际应用价值。 /p p style=" text-align: justify "   以上研究工作得到国家重点研发计划、大连化物所创新基金等的资助。 /p p style=" text-align: center " img title=" W020190116663872266104.jpg" alt=" W020190116663872266104.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/681b15ba-eeb0-4d8f-94dc-0caddc8613a8.jpg" / /p p style=" text-align: center " 大连化物所新型光热电探测器研究取得新进展 /p p 附件: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" 10.1038@s41467-018-07860-0.pdf" href=" https://img1.17img.cn/17img/files/201901/attachment/727fe75d-5c96-42a6-b085-a04d5b9bff55.pdf" target=" _blank" textvalue=" Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector" Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector /a /p p style=" text-align: justify " & nbsp /p p /p
  • 大连化物所开发出柔性可穿戴长波红外光热电探测器
    近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作(Adv. M ater. ,2022;Adv. Mater .,2019;Nat. Commun. ,2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。相关研究成果以“Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911
  • 高精度光热电位分析仪开发及应用示范项目通过科技部中期验收
    2021年3月3日,由北京海光仪器有限公司牵头的国家重点研发计划重大科学仪器设备开发重点专项“高精度光热电位分析仪开发及应用示范”项目中期验收会在海光公司总部成功召开。本次验收会由中科院沈阳科学仪器股份有限公司雷震霖研究员担任专家组组长并主持会议。    会上,国家科学技术部高技术研究发展中心刘进长研究员为会议致辞,专家组听取了项目各课题负责人中期进度、财务使用等情况的汇报,审阅了《项目中期执行情况报告》的相关材料,现场考察了项目研发情况,对有关问题进行了质询,对经费管理进行详细解说,对后续的研究工作提出了学术性建议,督促项目及课题负责人进一步落实相关责任,推动项目的顺利实施和研发目标的实现。    本项目针对市场上各行业检验检测对高通量、全自动、高精度光热电位分析仪的需求,采用阵列 LED 光源、硅光电器件检测,动态扣除背景光干扰算法 开放式液接界技术、单螺旋结构外参比电极 热敏电阻和铂电阻同时测温,低温漂信号采集、放大和转换电路 差动螺旋传动技术、低阻尼精密多级角动量、单向控流技术,攻克明场光度测量、高分辨率温度测量、高精度馈液及多相电化学传感技术,研制出集光度、电位和温度三种测量方式为一体的多通道全自动电化学分析仪,满足各行业检验检测的更高需求,弥补国内在高精度光热电位分析仪领域的空白。  北京海光仪器有限公司、北京先驱威锋技术开发公司、中国科学院大连化学物理研究所、上海罗素科技有限公司、北京市理化分析测试中心、中国科学院青岛生物能源与过程研究所共6家项目合作单位共20余人参与了本次验收。
  • 海光牵头“高精度光热电位分析仪开发及应用示范”重大仪器专项启动会召开
    p    strong 仪器信息网讯 /strong 2019年3月12日,由北京海光仪器有限公司(以下简称:海光仪器)牵头的国家重大科学仪器设备开发专项“高精度光热电位分析仪开发及应用示范”项目启动会在京召开。中国工程院院士、清华大学金国藩教授,科技部高技术中心“专项办”赵春洋博士,北京市科学技术委员会条财处李建玲调研员,北京科学仪器装备协作服务中心孙月琴主任,项目责任专家中国科学院沈阳科学仪器股份有限公司雷震霖研究员等有关领导、专家和项目合作单位成员代表40余人参加了本次启动会。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/0bcb911c-c21d-409b-a628-e92143064660.jpg" title=" 1_副本.jpg" alt=" 1_副本.jpg" / /p p style=" text-align: center " strong “高精度光热电位分析仪开发及应用示范”项目启动会 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/5358922b-5f23-4683-ae7e-9fae0eec72b9.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" text-align: center " strong 北京海光仪器有限公司总经理刘海涛致欢迎词 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/c86f7285-97c3-4032-b92d-58fba1e2f430.jpg" title=" 3_副本.jpg" alt=" 3_副本.jpg" / /p p style=" text-align: center " strong 科技部高技术中心“专项办”赵春洋博士做政策宣讲 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/2daddbf3-61cf-4315-9dbe-c43791a5f346.jpg" title=" 4_副本.jpg" alt=" 4_副本.jpg" / /p p style=" text-align: center " strong 北京市科学技术委员会条财处李建玲调研员发言 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/5d7c6222-6ea5-4fe2-a285-d69f4a80ce28.jpg" title=" 5_副本.jpg" alt=" 5_副本.jpg" / /p p style=" text-align: center " strong 北京科学仪器装备协作服务中心孙月琴主任发言 /strong /p p   刚刚闭幕的“两会”,高端科学仪器被“垄断”话题再次被代表们提及。以我国电化学分析市场为例,长期以来,我国高端电化学仪器及扫描电化学工作站几乎全部依赖进口,国家每年都要花费大笔经费购置此类进口仪器,相关的科学研究与源头创新也因此受限。因此,研制出能够满足环境、生命科学、食品安全等多领域用户需求的高精度分析仪器,已成为国产仪器厂商乃至用户单位重点专注的方向之一。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/e986292f-3c01-4c66-b612-add4ca3b9cc7.jpg" title=" 6_副本.jpg" alt=" 6_副本.jpg" / /p p style=" text-align: center " strong 项目责任专家雷震霖研究员进行技术管理规范讲解 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/7a2213ff-5834-4109-bd28-c85147f932a2.jpg" title=" 7_副本.jpg" alt=" 7_副本.jpg" / /p p style=" text-align: center " strong 项目负责人李明章副总经理汇报项目实施方案 /strong /p p   据项目负责人海光仪器副总经理李明章介绍,“高精度光热电位分析仪开发及应用示范”项目实施期为三年,由北京海光仪器有限公司牵头,北京先驱威锋技术开发公司、上海罗素科技有限公司、中国科学院大连化学物理研究所共同负责整机及关键部件开发,北京市理化分析测试中心、中国科学院青岛生物能源与过程研究所负责样机的应用示范。据了解,该项目以研发高精度光热电位分析仪为目标,实现光度法、热分析法与电位法综合分析及高精度、高通量滴定等功能。 /p p   会上,海光仪器总经理刘海涛宣读了“高精度光热电位分析仪开发及应用示范”项目“两组一委”(项目总体组、技术专家组和用户委员会)成员名单,并为专家组成员颁发聘书。其中,中国工程院院士、清华大学金国藩教授被聘请为技术专家组组长,北京市理化分析测试中心张经华研究员被聘请为用户委员会组长, “两组一委”将对项目实施过程中的技术开发、应用示范等环节提供咨询,并协助和促进项目承担单位对整个项目的精细化管理。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/ff6985f1-c5b6-4d07-8f95-205d808fb8af.jpg" title=" 8_副本.jpg" alt=" 8_副本.jpg" / /p p style=" text-align: center " strong 专家组组长金国藩院士发言 /strong /p p   专家组组长金国藩院士在会议中特别强调了项目组要重视仪器的可靠性和稳定性,这是国产仪器的一块“短板”,希望项目组在设计和实施过程中要充分予以重视。 /p p   责任专家及“两组一委”专家在认真听取了项目实施方案的汇报后,认为该项目实施方案总体目标清晰,内容详实,技术路线合理,考核指标可量化,进度安排合理可行,并在仪器的研制和项目的管理上提出许多有效建议。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/31a21e55-d365-4a33-bbbc-b03e7d37b798.jpg" title=" 9_副本.jpg" alt=" 9_副本.jpg" / /p p style=" text-align: center " strong 参会代表合影留念 /strong /p p br/ /p
  • ITER理事会第六届会议首次在中国举行
    6月16日,正值中国的端午节,素有“人间天堂”之称的古城苏州,不仅迎来了传统的龙舟赛,同时迎来了一批特殊的客人,即国际热核聚变实验堆(ITER)计划的理事会成员——ITER理事会第六届会议在这里举行。   “这是一次破例的会议。”科技部副部长曹健林说。   按相关协议规定,ITER理事会会议只在欧盟或日本举行,但这次通过中国政府的努力,理事会同意将会议在中国举行。会议主要讨论ITER建设中的2000多个相关技术标准,若各方达成共识,将发布一项公告。   有望将核聚变时间   提升到500秒   “建造于法国的ITER装置,仍为一个科学家探索自然的实验性装置。”中国国际核聚变能源计划执行中心副主任罗德隆介绍。   他说,ITER计划实施共需35年。其中,建设期为10年,运行期为20年,还有5年为退役期。   ITER组织总干事Kaname Ikeda介绍,这一计划主要是对核聚变技术进行实验验证,虽然理论上实现它已没有问题,但要进入工业化,必须进行技术认证。   据悉,在已有关于核聚变的所有实验中,由中国科学院合肥等离子所研制的EAST装置,是国际首个全超导托卡马克装置。其主要技术特点和指标:大型超导纵场磁体和大型极向场超导磁体,能产生大于100万安培的等离子体电流,持续时间达1000秒,在高功率加热下,温度将超过1亿摄氏度。   然而,曹健林特别强调,尽管中国的实验在某些指标上领先国际,但这并不能代表中国的整体技术都比其他国家先进。   Kaname Ikeda说,这是人类直接利用太阳能的第一步。作为聚变能实验堆,ITER要把上亿摄氏度、由氘氚组成的高温等离子体约束在体积达837立方米的“磁笼”中,产生50万千瓦的聚变功率,持续时间为500秒。这个50万千瓦的热功率,相当于一个小型热电站的水平,将是人类第一次在地球上获得持续、有大量核聚变反应的高温等离子体,产生接近电站规模的受控聚变能。   ITER的建设、运行和实验研究是人类发展聚变能的必要一步,有可能直接决定真正聚变示范电站(DEMO)的设计和建设,并从而促进商用聚变电站的更快实现。   知识产权:中国的收获   众所周知,ITER计划目前由中国、欧盟、印度、日本、韩国、俄罗斯和美国等7方实施。在总预算为100亿欧元的投资计划中,除欧盟出资45%以外,中国投资其中的10%。知识产权的保护和运用是ITER计划实施的核心内容之一,也是包括中国在内的所有成员方参加ITER项目的基本目标和最终结果之一。   罗德隆说,目前,中国已全面参与ITER计划所有管理与建设,在400多人的队伍中,20人持有中国护照,涉及每一个环节。   当记者问及ITER建成后中国的收获时,Kaname Ikeda说,中国享有全部知识产权,而7方之外的其他国家则没有这样的权利。这是谈判协议中,早已制定的“游戏规则”。他希望,未来中国能够完全独立建造自己的“太阳”。   据悉,ITER项目的核心知识产权规则,是《联合实施国际热核聚变实验堆计划建立国际聚变能组织的协定》的知识产权附件,总体的原则是尊重各成员方及国内实体的原有知识产权,共享ITER项目实施过程中新增的知识产权。ITER计划履行过程中,需严格遵守各项国际协议和国内法律法规。   其中,国际协议主要包括ITER框架下各成员方达成的协议、协定,即《联合实施国际热核聚变实验堆计划建立国际聚变能组织的协定》和《联合实施国际热核聚变实验堆计划国际聚变能组织特权和豁免协定》,这是ITER计划的法律性文件,规定了各成员方和ITER组织的基本权利义务。在中国,这是唯一一个通过全国人大常委会会议批准的国际合作协定。   ITER是中国长远能源发展战略   在会议开幕式上,科技部部长万钢发表讲话表示,ITER计划是世界上最大的国际大科学工程合作计划之一,参与的7方有33个国家,占全球60%的人口和80%的GDP,其成功实施是未来核聚变能源发展和应用的关键。   他指出,中国政府高度重视新能源的开发利用。ITER计划是目前我国以全权、平等伙伴身份参加的最大规模的国际大科学工程和研究合作项目 参加ITER计划是中国对世界核聚变能源发展的重大贡献,也是实现中国未来能源可持续发展的战略举措 参加ITER计划,彰显了中国对全球重大发展问题负责任的态度,表明了中国积极参与国际科技合作、充分利用国际科技资源促进自主创新的决心。中方将一如既往地支持ITER组织的工作,履行中方在ITER计划中的各项承诺和义务,与ITER组织和ITER计划其他各方一道,推动ITER计划的顺利发展。   据介绍,ITER计划第六届理事会将审核ITER计划的核心文件——ITER计划基准,并可能达成一致意见,作出相关决定。该基准作为ITER计划的纲领性文件体系,囊括了计划总进度、总费用、技术规格书和项目管理在内的几千个文件,是今后ITER计划执行的基础。参与ITER的7方都派出了高级代表团出席本届会议。各方理事会成员、政府代表、专家共约90人与会。   为配合ITER组织第六届理事会的召开,“ITER计划与核聚变科普展”于6月16~25日在苏州工业园区举办。
  • 中教金源助力----全光谱太阳能光热化学利用研究取得新进展
    北京中教金源科技有限公司是以实验仪器研发和生产的国家ji高新技术企业、中关村高新技术企业,与全国各高校研究所建立了长久紧密的合作关系。公司自成立以来,研究人员采用中教金源的仪器设备,在科研上取得了很大的进展!近期中国科学院工程热物理研究所应用中教金源的光催化系统在全光谱太阳能光热化学利用研究取得新进展,中教金源在此表示最热烈的祝贺! 以下内容摘自中国科学院工程热物理研究所科研进展版块 利用太阳能制取氢气、醇类、氨、烃类等燃料是可再生能源领域的重要研究方向,也是中科院“液态阳光”倡议的主要内容。光热复合催化是近年来新兴的太阳能-燃料转化方式,指热能、光能协同作用下的催化反应,其相对于热化学反应具有温度低的优势,相对于光化学反应具有速率加快的优点,近年来逐渐成为美国、日本、欧盟等国的研究热点。在当前的光热复合催化研究中,主要通过在非聚光的半导体光催化反应中引入电加热,观察反应路径、选择性和产率的变化规律。在分解CO2和水制碳氢燃料方面,相比于室温下的光催化反应,光热复合催化可提高20-40倍反应速率;相比于单纯太阳能热化学,可将反应温度从高于1200℃降低到200-400℃。然而,电加热的光催化反应仍存在以下问题:(1)非聚光太阳能反应器面积较大,电加热温度场与光场难以协同;(2)在太阳能聚光反应器上,输入的光能和热能均具有较高能流密度,常规光催化剂不能对其进行有效利用。  针对上述问题,工程热物理研究所分布式供能与可再生能源实验室设计提出了全光谱太阳能聚光光热复合催化反应器,如图1所示。与以往电加热光催化反应不同,该反应器直接通过氙灯模拟5-30倍聚焦太阳光,照射进反应器内的液固或气固反应床上。反应床内的纳米光热催化剂可将聚光太阳能同时、同地转化为光生载流子和热声子,促进了温度场和光场的协同,不需电加热维持反应温度。该反应器具有提升光热复合反应速率和太阳能-燃料效率的潜力。  在上述研究基础上,进一步合成了具有光热复合作用的等离激元金属负载TiO2纳米催化剂,并在15倍聚光比下开展了甲醇水重整制氢实验研究。负载等离激元金属的TiO2可利用280-780nm紫外-可见太阳光产生光生载流子。同时,红外波段太阳光可在TiO2中激发热声子,在催化剂表面产生80-100℃局域热能,活化反应物分子。实验结果显示,光热复合产氢速率1120mL gcat-1 h-1,相比于只利用紫外光的半导体光催化体系提高了50倍;同等催化剂用量下,与太阳能热化学体系的分解水产氢速率相近,而太阳聚光比有望降低20-30。经过50h重复实验,光热复合催化剂的微观形貌和催化活性保持稳定。  上述工作得到了国家自然科学基金和中国科学院前沿科学重点研究项目的支持,相关研究成果为基于太阳能燃料的可再生能源系统研发提供了一条新的途径。
  • 智能制造装备十二五发展路线图发布 精密仪器在列
    智能制造装备产业“十二五”发展路线图   智能制造装备是具有感知、决策、执行功能的各类制造装备的统称。作为高端装备制造业的重点发展方向和信息化与工业化深度融合的重要体现,大力培育和发展智能制造装备产业对于加快制造业转型升级,提升生产效率、技术水平和产品质量,降低能源资源消耗,实现制造过程的智能化和绿色化发展具有重要意义。   “十二五”期间,智能制造装备将面向国民经济重点产业的转型升级和战略性新兴产业培育发展的需求,以实现制造过程智能化为目标,以突破九大关键智能基础共性技术为支撑,以推进八项智能测控装置与部件的研发和产业化为核心,以提升八类重大智能制造装备集成创新能力为重点,促进在国民经济六大重点领域的示范应用推广。经过5~10年的努力,形成完整的智能制造装备产业体系,总体技术水平迈入国际先进行列,部分产品取得原始创新突破,基本满足国民经济重点领域和国防建设的需求。具体是:   一、九大关键智能基础共性技术   1.新型传感技术——高传感灵敏度、精度、可靠性和环境适应性的传感技术,采用新原理、新材料、新工艺的传感技术(如量子测量、纳米聚合物传感、光纤传感等),微弱传感信号提取与处理技术。   2.模块化、嵌入式控制系统设计技术——不同结构的模块化硬件设计技术,微内核操作系统和开放式系统软件技术、组态语言和人机界面技术,以及实现统一数据格式、统一编程环境的工程软件平台技术。   3.先进控制与优化技术——工业过程多层次性能评估技术、基于海量数据的建模技术、大规模高性能多目标优化技术,大型复杂装备系统仿真技术,高阶导数连续运动规划、电子传动等精密运动控制技术。   4.系统协同技术——大型制造工程项目复杂自动化系统整体方案设计技术以及安装调试技术,统一操作界面和工程工具的设计技术,统一事件序列和报警处理技术,一体化资产管理技术。   5.故障诊断与健康维护技术——在线或远程状态监测与故障诊断、自愈合调控与损伤智能识别以及健康维护技术,重大装备的寿命测试和剩余寿命预测技术,可靠性与寿命评估技术。   6.高可靠实时通信网络技术——嵌入式互联网技术,高可靠无线通信网络构建技术,工业通信网络信息安全技术和异构通信网络间信息无缝交换技术。   7.功能安全技术——智能装备硬件、软件的功能安全分析、设计、验证技术及方法,建立功能安全验证的测试平台,研究自动化控制系统整体功能安全评估技术。   8.特种工艺与精密制造技术——多维精密加工工艺,精密成型工艺,焊接、粘接、烧结等特殊连接工艺,微机电系统(MEMS)技术,精确可控热处理技术,精密锻造技术等。   9.识别技术——低成本、低功耗RFID芯片设计制造技术,超高频和微波天线设计技术,低温热压封装技术,超高频RFID核心模块设计制造技术,基于深度三位图像识别技术,物体缺陷识别技术。   二、八项核心智能测控装置与部件   1.新型传感器及其系统——新原理、新效应传感器,新材料传感器,微型化、智能化、低功耗传感器,集成化传感器(如单传感器阵列集成和多传感器集成)和无线传感器网络。   2.智能控制系统——现场总线分散型控制系统(FCS)、大规模联合网络控制系统、高端可编程控制系统(PLC)、面向装备的嵌入式控制系统、功能安全监控系统。   3.智能仪表——智能化温度、压力、流量、物位、热量、工业在线分析仪表、智能变频电动执行机构、智能阀门定位器和高可靠执行器。   4.精密仪器——在线质谱/激光气体/紫外光谱/紫外荧光/近红外光谱分析系统、板材加工智能板形仪、高速自动化超声无损探伤检测仪、特种环境下蠕变疲劳性能检测设备等产品。   5.工业机器人与专用机器人——焊接、涂装、搬运、装配等工业机器人及安防、危险作业、救援等专用机器人。   6.精密传动装置——高速精密重载轴承,高速精密齿轮传动装置,高速精密链传动装置,高精度高可靠性制动装置,谐波减速器,大型电液动力换档变速器,高速、高刚度、大功率电主轴,直线电机、丝杠、导轨。   7.伺服控制机构——高性能变频调速装置、数位伺服控制系统、网络分布式伺服系统等产品,提升重点领域电气传动和执行的自动化水平,提高运行稳定性。   8.液气密元件及系统——高压大流量液压元件和液压系统、高转速大功率液力偶合器调速装置、智能润滑系统、智能化阀岛、智能定位气动执行系统、高性能密封装置。   三、八类重大智能制造成套装备   1.石油石化智能成套设备——集成开发具有在线检测、优化控制、功能安全等功能的百万吨级大型乙烯和千万吨级大型炼油装置、多联产煤化工装备、合成橡胶及塑料生产装置。   2.冶金智能成套设备——集成开发具有特种参数在线检测、自适应控制、高精度运动控制等功能的金属冶炼、短流程连铸连轧、精整等成套装备。   3.智能化成形和加工成套设备——集成开发基于机器人的自动化成形、加工、装配生产线及具有加工工艺参数自动检测、控制、优化功能的大型复合材料构件成形加工生产线。   4.自动化物流成套设备——集成开发基于计算智能与生产物流分层递阶设计、具有网络智能监控、动态优化、高效敏捷的智能制造物流设备。   5.建材制造成套设备——集成开发具有物料自动配送、设备状态远程跟踪和能耗优化控制功能的水泥成套设备、高端特种玻璃成套设备。   6.智能化食品制造生产线——集成开发具有在线成分检测、质量溯源、机电光液一体化控制等功能的食品加工成套装备。   7.智能化纺织成套装备——集成开发具有卷绕张力控制、半制品的单位重量、染化料的浓度、色差等物理、化学参数的检测仪器与控制设备,可实现物料自动配送和过程控制的化纤、纺纱、织造、染整、制成品等加工成套装备。   8.智能化印刷装备——集成开发具有墨色预置遥控、自动套准、在线检测、闭环自动跟踪调节等功能的数字化高速多色单张和卷筒料平版、凹版、柔版印刷装备、数字喷墨印刷设备、计算机直接制版设备(CTP)及高速多功能智能化印后加工装备。   四、六大重点应用示范推广领域   1.电力领域——重点推进在百万千瓦级火电机组中实现燃烧优化、设备预测维护功能,在百万千瓦级核电站实现安全控制和特种测量功能,在重型燃气轮机中实现快速启停和复合控制功能,3MW以上风电机组的主控功能,变桨控制功能,太阳能热电站实现追日控制功能,在智能电网中实现用电管理、用户互动、电能质量改进、设备智能维护功能。   2.节能环保领域——重点推进在固体废弃物智能化分选装备、智能化除尘装备、污水处理装备上推广应用,实现各种再生原料的高效智能化分选、除尘设备和污水处理装备的自动调节与高效、稳定,在地热发电装备中实现地热高效发电建模与控制功能。   3.农业装备领域——重点推进在大型拖拉机及联合整地、精密播种、精密施肥、精准植保等配套机具成套机组,谷物、棉花、油菜、甘蔗等联合收获机械,水稻高速插秧机等种植机械装备上的应用,实现故障及作业性能的实时诊断、检测和控制,实现作业过程的智能控制和管理。   4.资源开采领域——重点推进在煤炭综采设备、矿山机械上应用,实现综采工作面设备信息与环境信息的集成监控、安全环境预警、精确人员定位等功能,在天然气长距离集输设备中实现全线数据采集和监控、运行参数优化、管道泄漏检测定位、站场无人操作或无人值守以及中心远程遥控功能,在油田设备中实现井口关键参数检测、数据处理及集中监测功能。   5.国防军工领域——重点推进专用机器人、精密仪器仪表、新型传感器、智能工控机在航天、航空、舰船、兵器等国防军工领域的应用。   6.基础设施建设领域——重点推进在挖掘机、盾构机、起重机、装载机、叉车、混凝土机械等施工装备上应用,实现远程定位、监测、诊断、管理等智能功能,在机场和码头建设领域推广应用,实现机场行李和货物的自动装卸、输送、分拣、存取全过程的智能控制和管理,集装箱装卸的无人操作与数字化管理。
  • 国务院公布新核准投资项目 相关仪器需求受影响
    各省、自治区、直辖市人民政府,国务院各部委、各直属机构:   为进一步深化投资体制改革和行政审批制度改革,加大简政放权力度,切实转变政府投资管理职能,使市场在资源配置中起决定性作用,确立企业投资主体地位,更好发挥政府作用,加强和改进宏观调控,现发布《政府核准的投资项目目录(2013年本)》,并就有关事项通知如下:   一、企业投资建设本目录内的固定资产投资项目,须按照规定报送有关项目核准机关核准。企业投资建设本目录外的项目,实行备案管理。事业单位、社会团体等投资建设的项目,按照本目录执行。   二、法律、行政法规和国家制定的发展规划、产业政策、总量控制目标、技术政策、准入标准、用地政策、环保政策、信贷政策等是企业开展项目前期工作的重要依据,是项目核准机关和国土资源、环境保护、城乡规划、行业管理等部门以及金融机构对项目进行审查的依据。   对于钢铁、电解铝、水泥、平板玻璃、船舶等产能严重过剩行业的项目,国务院有关部门和地方政府要按照国务院关于化解产能严重过剩矛盾指导意见的要求,严格控制新增产能。   三、项目核准机关要改进完善管理办法,提高工作效能,认真履行核准职责,严格按照规定权限、程序和时限等要求进行审查。有关部门要密切配合,按照职责分工,相应改进管理办法,依法加强对投资活动的监管。对不符合法律法规规定以及未按规定权限和程序核准或者备案的项目,有关部门不得办理相关手续,金融机构不得提供信贷支持。   四、按照规定由国务院核准的项目,由发展改革委审核后报国务院核准。核报国务院核准的项目、国务院投资主管部门核准的项目,事前必须征求国务院行业管理部门的意见。由地方政府核准的项目,省级政府可以根据本地实际情况具体划分地方各级政府的核准权限。由省级政府核准的项目,核准权限不得下放。   五、法律、行政法规和国家有专门规定的,按照有关规定执行。   六、本目录自发布之日起执行,《政府核准的投资项目目录(2004年本)》即行废止。   国务院   2013年12月2日 政府核准的投资项目目录(2013年本)   一、农业水利   农业:涉及开荒的项目由省级政府核准。   水库:在跨界河流、跨省(区、市)河流上建设的项目由国务院投资主管部门核准,其余项目由地方政府核准。   其他水事工程:涉及跨界河流、跨省(区、市)水资源配置调整的项目由国务院投资主管部门核准,其余项目由地方政府核准。   二、能源   水电站:在主要河流上建设的项目由国务院投资主管部门核准,其余项目由地方政府核准。   抽水蓄能电站:由国务院行业管理部门核准。   火电站:分布式燃气发电项目由省级政府核准,其余项目由国务院投资主管部门核准。   热电站:燃煤背压热电项目由省级政府核准,其余燃煤热电项目由国务院投资主管部门核准 其余热电项目由地方政府核准。   风电站:由地方政府核准。   核电站:由国务院核准。   电网工程:跨境、跨省(区、市)± 400千伏及以上直流项目,跨境、跨省(区、市)500千伏、750千伏、1000千伏交流项目,由国务院投资主管部门核准 非跨境、跨省(区、市)± 400千伏及以上直流项目,非跨境、跨省(区、市)750千伏、1000千伏交流项目,由国务院行业管理部门核准 其余项目由地方政府核准。   煤矿:国家规划矿区内新增年生产能力120万吨及以上煤炭开发项目由国务院行业管理部门核准,国家规划矿区内的其余煤炭开发项目由省级政府核准 其余一般煤炭开发项目由地方政府核准。国家规定禁止新建的煤与瓦斯突出、高瓦斯和中小型煤炭开发项目,不得核准。   煤制燃料:年产超过20亿立方米的煤制天然气项目,年产超过100万吨的煤制油项目由国务院投资主管部门核准。   原油:油田开发项目由具有石油开采权的企业自行决定,报国务院行业管理部门备案。   天然气:气田开发项目由具有天然气开采权的企业自行决定,报国务院行业管理部门备案。   液化石油气接收、存储设施(不含油气田、炼油厂的配套项目):由省级政府核准。   进口液化天然气接收、储运设施:由国务院行业管理部门核准。   输油管网(不含油田集输管网):跨境、跨省(区、市)干线管网项目由国务院投资主管部门核准,其余项目由省级政府核准。   输气管网(不含油气田集输管网):跨境、跨省(区、市)干线管网项目由国务院投资主管部门核准,其余项目由省级政府核准。   炼油:新建炼油及扩建一次炼油项目由国务院投资主管部门核准。   变性燃料乙醇:由省级政府核准。   三、交通运输   新建(含增建)铁路:跨省(区、市)项目和国家铁路网中的干线项目由国务院投资主管部门核准,国家铁路网中的其余项目由中国铁路总公司自行决定并报国务院投资主管部门备案 其余地方铁路项目由省级政府按照国家批准的规划核准。   公路:国家高速公路网项目由国务院投资主管部门核准,国家高速公路网外的干线项目由省级政府核准 地方高速公路项目由省级政府按照国家批准的规划核准,其余项目由地方政府核准。   独立公路桥梁、隧道:跨境、跨重要海湾、跨大江大河(三级及以上通航段)的项目由国务院投资主管部门核准,其余项目由地方政府核准。   煤炭、矿石、油气专用泊位:在沿海(含长江南京及以下)新建港区和年吞吐能力1000万吨及以上项目由国务院投资主管部门核准,其余项目由省级政府核准。   集装箱专用码头:在沿海(含长江南京及以下)建设的项目由国务院投资主管部门核准,其余项目由省级政府核准。   内河航运:千吨级及以上通航建筑物项目由国务院投资主管部门核准,其余项目由地方政府核准。   民航:新建机场项目由国务院核准,扩建军民合用机场项目由国务院投资主管部门会商军队有关部门核准。   四、信息产业   电信:国际通信基础设施项目由国务院投资主管部门核准 国内干线传输网(含广播电视网)以及其他涉及信息安全的电信基础设施项目,由国务院行业管理部门核准。   五、原材料   稀土、铁矿、有色矿山开发:已查明资源储量5000万吨及以上规模的铁矿开发项目,由国务院投资主管部门核准 稀土矿山开发项目,由国务院行业管理部门核准 其余项目由省级政府核准。   钢铁:新增生产能力的炼铁、炼钢、热轧项目由国务院投资主管部门核准。   有色:新增生产能力的电解铝项目,新建氧化铝项目,由国务院投资主管部门核准。   石化:新建乙烯项目由国务院投资主管部门核准。   化工:年产超过50万吨的煤经甲醇制烯烃项目,年产超过100万吨的煤制甲醇项目,新建对二甲苯(PX)项目,由国务院投资主管部门核准 新建二苯基甲烷二异氰酸酯(MDI)项目由国务院行业管理部门核准。   化肥:钾矿肥、磷矿肥项目由省级政府核准。   水泥:由省级政府核准。   稀土:冶炼分离项目由国务院行业管理部门核准,稀土深加工项目由省级政府核准。   黄金:采选矿项目由省级政府核准。   六、机械制造   汽车:按照国务院批准的《汽车产业发展政策》执行。   船舶:新建10万吨级及以上造船设施(船台、船坞)项目由国务院投资主管部门核准。   七、轻工   烟草:卷烟、烟用二醋酸纤维素及丝束项目由国务院行业管理部门核准。   八、高新技术   民用航空航天:民用飞机(含直升机)制造、民用卫星制造、民用遥感卫星地面站建设项目,由国务院投资主管部门核准。   九、城建   城市快速轨道交通项目:由省级政府按照国家批准的规划核准。   城市供水:跨省(区、市)日调水50万吨及以上项目由国务院投资主管部门核准。   城市道路桥梁、隧道:跨重要海湾、跨大江大河(三级及以上通航段)的项目由国务院投资主管部门核准。   其他城建项目:由地方政府核准。   十、社会事业   主题公园:特大型项目由国务院核准,大型项目由国务院投资主管部门核准,中小型项目由省级政府核准。   旅游:国家级风景名胜区、国家自然保护区、全国重点文物保护单位区域内总投资5000万元及以上旅游开发和资源保护项目,世界自然和文化遗产保护区内总投资3000万元及以上项目,由省级政府核准。   其他社会事业项目:除国务院已明确改为备案管理的项目外,按照隶属关系由国务院行业管理部门、地方政府自行确定实行核准或者备案。   十一、金融   印钞、造币、钞票纸项目:由中国人民银行核准。   十二、外商投资   《外商投资产业指导目录》中有中方控股(含相对控股)要求的总投资(含增资)3亿美元及以上鼓励类项目,总投资(含增资)5000万美元及以上限制类(不含房地产)项目,由国务院投资主管部门核准。《外商投资产业指导目录》限制类中的房地产项目和总投资(含增资)小于5000万美元的其他限制类项目,由省级政府核准。《外商投资产业指导目录》中有中方控股(含相对控股)要求的总投资(含增资)小于3亿美元的鼓励类项目,由地方政府核准。   前款规定之外的属于本目录第一至十一条所列项目,按照本目录第一至十一条的规定核准。   外商投资企业的设立及变更事项,按现行有关规定由商务部和地方政府核准。   十三、境外投资   中方投资10亿美元及以上项目,涉及敏感国家和地区、敏感行业的项目,由国务院投资主管部门核准。   前款规定之外的中央管理企业投资项目和地方企业投资3亿美元及以上项目报国务院投资主管部门备案。   国内企业在境外投资开办企业(金融企业除外)事项,涉及敏感国家和地区、敏感行业的,由商务部核准 其他情形的,中央管理企业报商务部备案,地方企业报省级政府备案。
  • 深度︱光伏电站热成像检测解决方案
    从2004年的0.063GW到2014年的26.84GW,10年400多倍的增长速率让全球见证了光伏发电的中国速度。截至2015年底,我国光伏发电累计装机容量4318万千瓦,成为全球光伏发电装机容量最大的国家。然而,“前景向好、难题不断”。看似有强势吸引力的光伏电站建设企业,一面怀揣着坐拥高收益甚至完成平价上网终极使命的美好愿景,一面在动辄上百亿的投资资金面前备受折磨。这些问题的症结都指向同一个核心词汇——质量。案例一:2015年5月26日,位于美国亚利桑那州的苹果公司Mesa数据中心发生火灾,这让科技巨人最看中的“绿色面子工程”却被烧得满目疮痍。初步调查发现,起火点可能是苹果工厂屋顶大楼上的光伏组件。这些安装在苹果公司Mesa工厂屋顶上的光伏组件可向当地1.4万户家庭供应电力。不幸的是,这场大火让美国最为知名的光伏巨头FirstSolar公司“躺枪”,引起火灾的太阳能电池板,正是占据全球薄膜太阳能产销第一的FirstSolar公司。案例二:2015年6月26日,中山长虹项目一名施工人员在连接组件阵列时被直流电电死,据了解,是组串的端子没接汇流箱就放屋顶上了,广东这几天暴雨,端子进水,施工人员碰到后发生了该事故。这是一些令人触目惊心的事故,以上列举的只是光伏事故的冰山一角,近年来,仅国内电站产生问题的例子就达116个,而且,这个数字依然高企不下。哪些因素导致安全问题?光伏电站质量和安全问题依然层出不穷。那么,到底有哪些因素导致了“问题”的出现?我们的研究团队走访了大量的光伏电站,发现光伏电站主要面临的安全问题分为组件和逆变器两大部分。第一,组件的安全问题主要来自接线盒和热斑效应。不起眼的接线盒是引起很多组件自燃的“元凶”,接线盒市场较为混乱和无序。劣质连接器由于内部粗糙不平,接触点较少,使电阻过高引燃接线盒,进而烧毁组件背板引起组件碎裂。在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。第二,逆变器和运维漏洞百出。传统集中式方案,每个逆变器100多组串正负极并联在一起,当任意的组串正极和负极漏电,1000V的直流高压,触电将无可避免。传统电站采用熔丝设计增加了直流节点,电站即使使用熔丝,也不能有效地保护组件;而且在过载电流情况下,熔丝还会因熔断慢,发热高,引发着火风险。逆变器厂家很多、质量参差不齐,导致逆变器监测数据不准确,逆变器或者直流汇流箱数据采样精度不够,造成故障信息判断不准确、不及时,故障恢复时间长、损失大。国家发改委能源研究所研究员王斯成说:“电站在运行一段时间后存在着大量问题,而电站质量直接影响到电站的收益,这也是为什么目前银行对投资电站有顾虑的重要原因。然而目前电站开发商对这一问题却没有足够重视,这对行业来说是伤害。”FLIR的解决方案——红外热像仪质量保证流程对于太阳能电池板极具重要。电池板的正常运行是高效发电、长期使用寿命和高投资回报率的必要条件。为了确保正常运行,在生产过程中和电池板安装后,都需要一种快速、简易又可靠的太阳能电池板性能检查方法。FLIR 工程师说,使用热像仪进行太阳能电池板检查有着若干优势。异常现象能够清楚地显示在清晰的热图像上,并且与其他大部分方法不同的是,热像仪能够用于对已经安装好的太阳能电池板在运行期间进行检查,最后,热像仪还可在短时间内检查大片区域。在研发领域,热像仪已经是用于太阳能电池和电池板检查的成熟工具。对于这些复杂的测量,配备制冷式探测器的高性能热像仪通常用于受控实验室条件下。但热像仪的太阳能电池板检查用途并不仅限于研究领域。非制冷式热像仪目前正越来越多地应用于太阳能电池板安装前的质量管理,以及安装后的常规预测性维护检查。使用热像仪可以探测到潜在问题区域,并在问题或故障真正出现前予以修复。但并非每一种热像仪都适合太阳能电池检查,需要遵循一些规则和指导方针,以便实施有效检查,确保得出正确的结论。热像仪检查太阳能电池板规程在研制和生产阶段,太阳能电池是靠通电或使用闪光灯来激活。这确保了充分的热对比度,用于精确热成像测量。但这种方法不能用于实地检查太阳能电池板,因此操作员必须确保有足够的太阳能。为了在实地检查太阳能电池时获得充分的热对比度,需要500 W/m2以上的太阳辐照度。要获得最大值结果,建议准备好700 W/m2太阳辐照度。太阳辐照度以kW/m2为单位,描述了一个表面的瞬间入射能量,该能量可用日射强度计(用于测量全球太阳辐照度)或太阳热量计(用于测量直接太阳辐照度)进行测量。太阳辐照度主要取决于位置和局部天气。较低的室外温度也可提高热对比度。您需要哪一种类型的热像仪?用于预测性维护检查的便携式热像仪通常搭载有灵敏度为8–14μm波段的非制冷微量热型探测器。但在这个波段内是无法穿透玻璃的。从电池板正面检查太阳能电池时,热像仪探测到的是玻璃表面的热量分布,但只能间接探测玻璃下方电池的热量分布。因此太阳能电池板玻璃表面的可测量和可视温差比较微弱。为了使这些温差可见,用于检查的热像仪需要具备≤0.08K的热灵敏度。为了清晰显现热图像中的微弱温差,热像仪还应能够手动调节电平和跨度。自动模式(左图)和手动模式(右图)下带电平和跨度值的热图像。光伏组件一般安装在具有高度反射性的铝制框架上,这种框架在热图像上会显示为冷区,因为它能反射天空中散发的热辐射。在实践中,这意味着热像仪记录到的框架温度远低于0°C。由于热像仪的直方图均衡自动适配最大和最小测温值,许多细微的热异常不会立即显现。为了获得高对比度热图像,需要不断对电平和跨度进行手动调节。未经DDE处理的热图像(左图)和经过DDE处理的热图像(右图)。所谓的DDE(数字细节增强)功能提供了解决方式。DDE能够自动优化高动态范围场景下的图像对比度,热图像不再需要进行手动调节。因此具备DDE功能的热像仪非常适用于快速精确的太阳能电池板检查。实用功能热像仪的另一个实用功能是为热图像添加GPS数据标记。这可以帮助在大片区域,如太阳能电厂中轻松定位有问题的模块,并将热图像与设备进行关联,例如在报告中。 热像仪应该配备内置数码相机镜头,以便将相关可见光图像(数码照片)与相应的热图像一起保存。所谓的叠加模式可将热图像与可见光图像相互叠加,也颇为实用。声音和文本注释可连同热图像一起保存在热像仪中,有利于报告编写。热像仪放置:考虑热反射和辐射系数虽然玻璃在8–14μm波段的辐射系数为0.85–0.90,但玻璃表面的测温并不容易。玻璃热反射如同镜面反射,这意味着不同温度的周边物体在热图像上能够清晰呈现。在最糟糕的情形中,这会导致成像失实(假“热点”)和测量误差。热像检查中的建议视场角(绿色)和应避免的视场角(红色)。为了避免热像仪和操作员的玻璃热反射,热像仪不应垂直对准被检查的模块。但辐射系数在热像仪垂直时达到最大,热像检查中的建议视场角(绿色)和应避免的视场角(红色)。并随着热像仪角度的增加而减小。5–60°的视场角是一个较好的平衡点(0°为垂直)。为避免得出错误结论,检查太阳能电池板时,您需要以正确角度握持热像仪。使用KLIR P660红外热像仪从空中拍摄太阳能电厂获得的热图像。远距离检查测量期间并非总能轻易获得合适的视场角。在多数情况下,使用三脚架能够解决问题。在较为不利的条件下,可能需要使用移动作业平台或者甚至乘坐直升机飞到太阳能电池上方。在这种情况下,距离目标较远可能是一个优势,因为可以一次性检查一大片区域。为了保证热图像的质量,用于远距离检查的热像仪至少应具备320×240像素、最好是640×480像素的图像分辨率。热像仪还应配备有互换镜头,以便操作员能够更换长焦镜头,进行远距离检查,比如从直升机上。但是建议长焦镜头仅用于图像分辨率高的热像仪。使用长焦镜头进行远距离测量的低分辨率热像仪无法探测到指示太阳能电池板故障的细微热量细节。从不同视角进行检查使用FLIR P660红外热像仪拍摄的太阳能电池板背面热图像,它的对应可见图像如右图所示。在多数情况下,已安装的光伏组件也可用热像仪从组件后方进行检查。这种方式可以将太阳和云朵的干扰性热反射减至最小。此外,从组件后部获得的温度可能比较高,因为是直接测量电池,而不是透过玻璃表面进行测量。周围环境和测量条件应选择晴朗天气进行热像检查,因为云朵会降低太阳辐照度,并产生热反射干扰。但只要所用的热像仪足够灵敏,即便是在阴天也可以获得有用的图像。安静的环境也比较有利,因为太阳能电池板表面的任何气流都会造成传递性冷却,从而降低热梯度。空气温度越低,潜在热对比度就越高。建议在清晨进行热像检查。这幅热图像展示了大片高温区域。由于缺乏更多信息,无法看清这是热异常还是遮蔽/热反射。另一种提高热对比度的方法是断开电池负载,以断开电流,使热量仅仅依靠太阳辐照度产生。然后接上负载,在电池的发热阶段进行检查。 但在正常情况下,系统检查应在标准运行条件下,即负载状态下进行。取决于电池和问题或故障的类型,在无负载或短路条件下的测量结果可提供额外的信息。测量误差产生测量误差的主要原因是热像仪放置不当和周围环境与测量条件欠佳。典型的测量误差原因有:视场角过窄太阳辐照度随着时间推移而改变(例如由于云层变化所致)热反射(如太阳、云朵、周围更高的建筑、测量装备等)局部遮蔽(如周围建筑或其他构筑物的遮蔽)热图像提供的信息热图像提供的信息如果太阳能电池板的某些部位温度高于其他部位,温暖区域会清晰显现在热图像上。取决于形状和位置,这些热点和热区域能够指示出不同的故障。如果整个组件的温度都高于往常,这可能表明存在互连问题。如果单个电池或电池组显示为一个热点或温度较高的“拼接图案”,通常是旁路二极管故障、内部短路或电池错配所致。这些红点显示温度一直高于其他组件的组件,表明存在连接故障。在一个太阳能电池内的这个热点表明该电池内部存在物理损伤。遮蔽和电池裂缝在热图像上显示为热点或多边形斑块。电池或电池局部温度升高表明电池发生故障或存在遮蔽。应比较负载、无负载和短路条件下获得的热图像。将从模块正面和背面拍摄的热图像进行比较,也可以得到有价值的信息。常见模块故障列表当然,为了准确识别故障,出现异常的模块还应进行电学测试和目视检查。结论光伏系统热像检查可迅速定位电池和模块的潜在缺陷,并迅速探测出电气互连问题。检查是在正常运行条件下进行,不需要关闭系统。为了获得信息量较大的准确热图像,必须遵循某些条件和测量程序:应使用合适的热像仪和配件;需要充足的太阳辐照度(至少500W/m2,最好是700W/m2以上);视场角应在安全范围(5°至60°之间)避免遮蔽和热反射热像仪主要用于查找故障。对检测到的异常现象进行分类和评估需要对太阳能技术、被检查系统和附加的电气测量值有透彻的了解。适当的文件材料当然也必不可少,并应包含所有检查条件、附加测量值和其他相关信息。使用热像仪进行检测(先是用于安装期间的质量控制,紧接着是常规检查)可促进全面、简单地监控系统状态。这将有助于保持太阳能电池板的功能及延长其使用寿命。因此,使用热像仪检测太阳能电池板将显著提升运营公司的投资回报率。近日,菲力尔与北极星太阳能光伏网联合推出有关光伏电站热成像检测解决方案的专题,您可以点击“阅读原文”提前知晓更多信息,另外下期文章小编会为你带来国外光伏电站是如何应用红外热像仪的案例,敬请关注。
  • 光伏发电站运维“秘籍”:FLIR红外热像仪为各个环节保驾护航!
    随着各国政府对可再生能源的支持力度不断加大,以及光伏技术的持续进步和成本的降低,光伏发电在全球能源结构中的地位将越来越重要。为了提高光伏电站投资方的收益,要尽可能提高电站的发电量。一座光伏电站的发电量会受到很多因素影响,比如:光伏组件、逆变器、电缆的质量、组件安装朝向、倾角、灰尘阴影遮挡、光伏组件与逆变器配比系统方案、电网质量等。除了安装前需要注意的问题光伏电站的定期巡检同样很重要西班牙的Abertura光伏电站就安装了27台FLIR红外热像仪日夜保护着9公里长的周边区域同时工作人员也会手持热像仪对大片光伏电板进行巡检今天小菲就来给大家说下FLIR红外热像仪在光伏电站的应用一起来瞧瞧吧~光伏发电板出现热斑,缩短使用寿命光伏板热点可能源于阴影、污垢或微裂纹。当阳光照射到光伏发电板上时,它应该会转化为电能。但是,如果一个光伏发电板的电阻异常升高,面板的这一部分就会变热。使用FLIR E5拍摄到的热斑使用FLIR红外热像仪能及时检测到异常热点。热点会导致光伏发电板退化更快甚至可能起火。因此,工作人员要定期清洁光伏组件表面,确保其表面干净无故障,避免灰尘或污垢影响发电效率。检查输电组件,确保物尽其用影响光伏发电效率的还有电量运输问题,连接松动会导致腐蚀、能量损失和系统寿命缩短。因此要定期检查光伏组件、支架和连接线路,检查是否有损坏、松动或腐蚀的情况,及时维修或更换。特别是检查组件中的电池片,确保没有破损或裂纹。汇流箱红外图像还要对光伏发电站的逆变器、电气设备、光伏汇流箱、直流和交流配电柜等设备进行安全检测和温度监测,以保障光伏发电系统的安全有序运行。升压站隔离开关红外图像全新FLIR Ex Pro系列红外热像仪就非常适合光伏电站的检测,3.5英寸触摸屏搭配一键式电平/跨度区域调节功能,让问题区域更加明显。全新的屏幕注释功能让用户可以及时记录检测结果,避免后续遗忘。智能监测,降本增效光伏电站点多面广、量大分散。如果每天都人工巡查,可能面临着效率较低、运维环节复杂、运维数据采集难等问题。幸好正处数据时代背景之下,光伏电站可以选择FLIR A700固定安装式红外热像仪对光伏电站进行7*24小时的实时监控,这样就可以对电站所相关的各类数据进行实时采集、分析,及时对故障问题提供预警及警报。在整个环节中大幅提高了设备运行的保障度和人员的安全性。您还可以FLIR A700搭配载人飞机对光伏电站进行大面积、快速巡查,这种正在开发的高速检测方法每小时可覆盖2平方公里,使其能够在短短几个小时内获得大规模太阳能发电场的准确读数。高效率的检测,可以让电力公司节省了80%的成本!FLIR A700FLIR A700固定安装式红外热像仪具有精确检测和识别制造和工业等过程中热问题所需的强大监控能力。其能提供多视场角镜头选项、同时查看多个图像流、电动调焦控制,可选通过 Wi-Fi 传输压缩辐射测量图像流。A700机身小巧,符合GigE Vision和GenICam标准,能简化与现有监控系统的集成。光伏电站的发电量不仅取决于光伏电站自身的发电性能,也与后期运行维护密切相关,正确的运维不仅可以提高发电量,还可以提高设备和电站的使用寿命。
  • 朗铎科技出席2016年火力发电厂金属技术监督工作会暨电站锅炉压力容器检验工作会议
    朗铎科技出席2016年火力发电厂金属技术监督工作会暨电站锅炉压力容器检验工作会议 3月28日-29日,辽宁沈阳——2016年火力发电厂金属技术监督工作会议与电站锅炉压力容器检验工作会议同时召开。会议全面总结了2015年度火力发电厂金属技术监督工作,并部署2016年金属技术监督的重点工作。各有关发点企业生产部主管技术监督的主任、金属技术监督专责工程师、锅炉压力容器专责工程师等出席本次会议,朗铎科技受邀参加此次大会。 会议期间,相关技术人员就2014-2015年金属技术监督及锅炉压力容器安全技术监督相关标准规程修订情况进行了详细的介绍,对脱硝系统中压力容器定期检验及临氨(或尿素)设备金属部件技术监督工作进行探讨,各发电企业针对在金属技术监督和锅炉压力容器管理检验工作中遇到的问题及积累的经验进行了交流。 电力行业金属技术监督能够及时了解并掌握金属部件的质量状况,提高设备安全运行的可靠性,延长设备的使用寿命。朗铎科技区域销售经理毛宁就赛默飞世尔科技尼通手持式X荧光光谱仪在电力行业金属技术监督方面进行详细的介绍,并展示了赛默飞尼通手持式XRF XL3t 800及XL2 980。赛默飞尼通手持式XRF操作方便,不受现场环境影响,无需专业技术人员,无需样品前处理,只要将仪器测量窗口对准待分析的样品,按下测量按钮,仪器便会在数秒内分析得出材料牌号和元素含量,分析结果准确可靠。 本次会议的成功召开,充分结合辽宁省火力发电厂金属技术监督的实际情况,贯彻并落实了电站锅炉压力容器等热重设备的安全和节能管理的相关要求,保证发电设备的安全稳定运行。朗铎科技将继续为电力行业金属技术监督提供技术支持,保障电厂和电网安全运行。 关于朗铎科技 朗铎科技,全球科学服务领域的领导者-赛默飞世尔科技(Thermo Fisher Scientific,纽交所代码TMO,原美国热电公司)中国区域战略合作伙伴;是赛默飞世尔科技 (Thermo Fisher Scientific) 旗下尼通(Niton)的中国区授权经销商,同时也是尼通 (Niton)备件与服务市场的中国区授权服务商。目前公司主要产品包括尼通 (Niton)手持式X荧光光谱仪、ARL台式 X荧光光谱仪、X射线光电子能谱仪等。产品涉及矿产、冶金、铸造、金属加工、机械制造、航空航天、电力、石化、金属回收、环境土壤等众多行业。作为工业与实验室分析仪器系统解决方案服务商,我们致力于为中国客户提供全球高品质的分析仪器、专业的应用技术支持、优质的售后服务等系统解决方案。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com
  • 《青海省能源领域碳达峰实施方案》印发:将实现清洁能源装机占比91%左右
    近日,青海省发展改革委网站发布“关于印发《青海省能源领域碳达峰实施方案》的通知”,文件要求:到2025年,实现清洁能源装机容量达到8400万千瓦以上,清洁能源装机占比91%左右,清洁电力外送量超过512亿千瓦时;到2030年,清洁能源装机容量达到1.4亿千瓦以上,清洁能源装机占比达到全国领先水平。 青海省能源领域碳达峰实施方案   为深入贯彻落实党中央、国务院和省委、省政府关于碳达峰碳中和的重大战略决策和总体部署,扎实推进青海省能源领域碳达峰工作,根据《国家发展改革委 国家能源局关于印发〈推动能源绿色低碳转型 做好碳达峰工作的实施方案〉的通知》(发改能源〔2022〕280号)、《青海省碳达峰实施方案》(青政〔2022〕65号)等要求,结合我省实际,制定本实施方案。   一、总体要求   (一)指导思想   以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大精神,深入贯彻习近平生态文明思想和习近平总书记对青海工作系列重要指示精神,落实“四个革命、一个合作”能源安全新战略,立足新发展阶段,贯彻新发展理念,构建新发展格局,坚决落实省第十四次党代会决策部署,深入实施“一优两高”发展战略,以构建产业“四地”为主体的绿色低碳循环发展经济体系为重点,以打造国家清洁能源产业高地为抓手,以构建新型电力系统为突破口,加快清洁能源高比例、高质量、市场化、基地化、集约化发展,积极推动清洁能源开发利用,加快构建清洁低碳安全高效的现代能源体系,支撑全省碳达峰目标实现。   (二)基本原则   目标导向、统筹推进。强化顶层设计,贯彻我省碳达峰实施方案,将碳达峰碳中和目标任务落实到能源领域全过程。明确目标路径,合理把握行动节奏,科学安排重点任务,压实各方责任,有力有序推进实施。   绿色低碳、保障安全。立足“三个最大”省情定位,以绿色低碳发展为引领,坚持就地消纳与外送并举,充分挖掘清洁能源潜力。优化基础性、保障性支撑电源布局,强化多能融合的电力供应保障体系,打造安全可靠的新型电力系统。   创新驱动、转型升级。充分发挥科技创新对实现碳达峰碳中和目标的关键支撑作用,加强能源关键技术研发,促进科研成果转化。以能源电力低碳发展为重点,加快电能替代,减少煤炭等化石能源消耗,促进能源梯级综合利用。   开放合作、互利共赢。充分利用省内外要素资源,深化省际能源合作,不断扩大省外能源市场。积极引进先进技术和优秀人才,加强能源技术联合攻关,搭建能源开放共享平台,打造清洁能源合作新样板。   (三)总体目标   到2025年,国家清洁能源产业高地初具规模,清洁能源装机容量达到8400万千瓦以上,清洁能源装机占比91%左右,清洁电力外送量超过512亿千瓦时。打造以非化石能源为主的“多极支撑、多能互补”能源生产体系,建立安全高效的能源保障体系,探索构建新型电力系统。   到2030年,国家清洁能源产业高地基本建成,清洁能源装机容量达到1.4亿千瓦以上,清洁能源装机占比达到全国领先水平。能源绿色低碳技术创新能力显著增强,能源转型体制机制更加健全,清洁低碳安全高效的能源体系初步形成,如期实现碳达峰目标。   二、提升多极支撑清洁能源供给能力   (四)持续推进常规水电开发。科学有序推进黄河上游水能资源保护性开发,积极推进规划内大中型水电站有序建设,以及后续水电前期研究论证工作。全力推进玛尔挡、羊曲水电站建成投产,加快推进茨哈峡、尔多等水电站的前期工作。深化利用黄河上游水电,加快推进黄河上游已建水电站扩机改造。有序实施宁木特等黄河上游水电站开发建设规划。适时推进小水电退出工作,升级改造符合政策要求的水电机组,进一步提高水电站效率。   (五)集约化发展风电光伏。统筹推进风电、光伏发电规模化发展,采用多能互补开发模式,以沙漠、戈壁和荒漠化地区为重点,在符合国土空间规划、用途管制要求和气候可行性论证的基础上,谋划布局“三类一区”大基地,重点加快海南戈壁基地、柴达木沙漠基地建设,分阶段适时推进源网荷储一体化、光热一体化等市场化项目建设。因地制宜推广光伏治沙。   (六)因地制宜发展分布式新能源。加快分布式光伏在各领域应用,创新实施分布式光伏+工业、商业、校园、社区、交通等“光伏+”工程,积极推动光伏建筑一体化开发。重点在西宁、海东、海西等地利用大型工业园区、经济开发区、公共设施、居民住宅,推动分布式光伏等发电应用。积极发展分散式风电。   (七)稳妥发展光热发电。发挥光热发电灵活调节、电网支撑和促进新能源消纳的优势,推进光热发电多元化开发建设。创新技术发展模式,示范推进光热与光伏一体化友好型融合电站。加快建成多个十万千瓦级的光热发电项目,推动各类型光热发电关键部件、熔融盐等核心材料和系统集成技术开发,着力培育自主知识产权的光热发电核心技术和产业链优势。   (八)加快培育能源新品种。把握能源发展新方向,科学布局地热、氢能、核能等能源供给新品种,形成未来能源发展新支撑。加快泛共和盆地及周边地热资源勘查开发利用步伐,探索建设兆瓦级干热岩发电示范项目。创新氢能与光伏、储能等协同发展模式,在西宁、海西、海南等地区开展可再生能源制氢示范项目。积极推进青海核电场址普选、保护和初步可行性研究分析等前期工作。   三、加快推动清洁化供热   (九)提高燃煤供热清洁化水平。深度挖掘工业、电力等领域低品位余热资源,充分利用既有热电联产机组的供暖能力,有序推进燃煤热电联产项目建设。在西宁等人口集中区延伸集中供暖覆盖范围,逐步开展燃煤供暖锅炉环保达标改造或分散燃煤锅炉清洁化替代工作。   (十)提升可再生能源供热能力。采用电能替代方式进行清洁供暖改造,实施三江源地区清洁取暖工程,加快推进海西州、西宁市清洁取暖试点城市建设。因地制宜开展农牧区被动式太阳能暖房改造试点,建设分布式太阳能供热供暖系统,推广低温空气源热泵采暖,鼓励地热资源丰富地区开发水热型和干热岩型地热能供热项目。   四、提升新型电力系统资源配置能力   (十一)加快推进特高压外送通道建设。积极扩大绿色电力跨省跨区外送规模,支撑清洁能源基地建设,实现青海清洁能源在全国范围内优化配置,服务全国碳达峰目标实现。加快青豫特高压直流外送通道配套电源建设,实现满负荷送电。推进第二条特高压外送通道工程及配套电源建设,研究论证后续跨区特高压外送输电通道和配套清洁能源基地。   (十二)加快构建省内坚强骨干电网。重点围绕清洁能源基地开发和输送、负荷中心地区电力需求增长、省内大型清洁电源接入需求,建设各电压等级协调发展的坚强智能电网。加强750千伏骨干电网建设,提升东西部电网断面输电能力,满足海西、海南两大清洁能源基地互济需求。加强新能源汇集的330千伏输变电工程建设,为新能源大规模开发创造条件。优化调整330千伏电网结构,提高供电能力可靠性。   (十三)加强省际电网互联互通。发挥青海与周边省区之间资源互补、调节能力互补、系统特性互补的优势,加强省间电网互联,扩大资源优化配置范围。“十四五”期间,建成郭隆至武胜第三回750千伏线路。根据海西特高压外送通道构建方案和建设时序,适时推进羚羊至若羌双回750千伏线路,实现青海与新疆电网互联。   (十四)打造清洁低碳的新型配电系统。高起点高标准建设中心城市(区)配电网,供电质量达到国内先进水平,城镇地区适度超前建设配电网,支撑新型城镇化下的清洁用能需求。以清洁能源产业发展支撑乡村振兴,加快推进新一轮农村电网巩固提升,重点推进新型小镇、中心村电网和农业生产供电设施改造升级。实施涉藏地区电网延伸工程,采用微电网等方式,解决离网供电区供电问题。   五、提升多能互补储能调峰能力   (十五)发展优质调峰电源。持续推进实施新一轮抽水蓄能中长期规划,积极推动抽水蓄能电站建设。开工建设贵南哇让、同德、南山口等抽水蓄能电站,开展玛沁、龙羊峡储能(一期)等项目前期和研究论证工作,力争“十五五”建成投产一批抽水蓄能项目。开展太阳能热发电参与系统调峰的联调运行示范,提高电力系统安全稳定水平。建设一定规模的清洁高效煤电,有序推动煤电向基础保障性和系统调节性电源并重转型。发挥燃气电站深度应急调峰和快速启停等优势,结合天然气供应能力和电力系统发展需求,因地制宜合理布局一定规模的燃气电站。   (十六)推进新型储能设施建设。积极推广“新能源+储能”模式,合理布局一定规模电化学储能电站,推动电源侧、电网侧百万千瓦级化学储能示范基地建设,提升电力系统灵活性,提高电力系统安全稳定水平,实现电力系统中短周期储能调节。开展压缩空气储能等新型储能试点,探索发电企业、第三方储能运营企业联合投资电网侧共享储能运行模式,推进商业化发展。   (十七)提高能源需求侧响应能力。加强能源供需统筹协调,通过市场化手段,推动实施需求侧响应,引导电力用户及新能源汽车等需求侧资源自主响应调节,提高能源系统经济性和运行效率。加快推动工业领域负荷参与电力需求侧响应,加强蓄热电锅炉、5G基站以及盐湖化工、有色等高载能行业中间歇性负荷的需求侧管理。积极推进需求侧终端设备智能化改造和需求侧响应管理平台建设。探索电动汽车有序充放电运营模式,挖掘电动汽车等生产生活充放电设施在调峰方面的潜力,提升清洁能源本地消纳能力。   六、加强能源技术研发与创新   (十八)推进清洁能源技术创新。加快高效率低成本光伏电池技术研究,提高光伏转换效率。开展高海拔、低风速高原型风机研究,提升风电效率。促进新能源涉网性能改进升级,提高主动支撑能力和快速响应能力,具备参与系统高频、低频扰动快速调整能力,加强高比例清洁能源电力系统稳定性可靠性技术研究,支撑清洁能源高比例消纳和大规模外送。探索化石能源发电碳捕集、利用与封存技术研究,积极参与投入碳捕捉、储存以及利用(CCUS)项目。加强废弃光伏组件资源回收研究。   (十九)推动储能技术示范。围绕储能关键技术、关键材料,开展技术研发,建立储能相关标准体系。积极筹建先进储能技术国家重点实验室,谋划建立储能实证基地。开展光储一体化电站实证基地建设,建立具有光储融合发展综合效能评价方法和检测手段,逐步完善技术标准体系。开展储能并网性能研究,研究制定规模化储能集群智慧调控系统,支撑高比例清洁电力的安全可靠运行。   (二十)探索示范氢能绿色开发技术利用。开展可再生能源制氢技术研究,建立氢气储运网络,推进槽车、管道等运输方式试点,形成规模化绿色氢气供给能力。开展氢能绿色制取、安全储输、高效利用及氢电耦合技术研究,实现绿电制氢、储氢、运氢、氢能高效利用及氢电耦合系统安全运行技术的突破和创新。探索氢能多元化利用场景,推进氢能在盐湖化工、能源化工领域替代煤炭等化石能源的试点示范。在西宁、海东、海南等地区开展氢燃料电池公交车、物流配送车试点,配套建设加氢站和氢气储运等基础设施。   七、深入推进体制机制改革   (二十一)促进电力行业市场化体制机制建立。推动电力交易机构独立规范运行,优化调度交易机制。加快电力市场建设,完善市场运行规则,丰富市场交易品种,不断扩大交易规模和范围。探索后补贴时代适应新能源发展的市场模式,健全电力中长期交易市场、辅助服务市场、现货市场,推动电力市场规范运行。稳妥有序开展新一轮监管周期输配电价成本监审和输配电价核定工作,合理核定输配电价。完善差别电价、阶梯电价和惩罚性电价政策,建立峰谷电价动态调整机制,进一步扩大销售侧峰谷电价执行范围,积极探索多种清洁能源电力打捆后参与跨省区替代交易。鼓励清洁能源发电企业通过出售绿证等方式,助力完成消纳责任权重考核,实现清洁电力绿色价值。   (二十二)健全保障能源安全的风险管控机制。强化煤炭煤电兜底保障作用,建立健全以企业社会责任储备为主体、地方政府储备为补充,产品储备与产能储备有机结合的煤炭储备体系。提升电网负荷预测和管理调度水平,增强电力供应安全和应急保障能力。完善能源预警机制和应急预案,加强应急备用电源建设和能源气象保障服务,提升应对极端天气和突发情况的应急处置与事后快速恢复的能力。加强重要能源设施、能源网络安全防护,构建新型电力系统网络安全防护体系。   八、构建开放共享能源合作体系   (二十三)积极推进省际能源合作。充分利用对口帮扶政策优势,加强与长三角、京津冀等区域和对口援青省(市)的衔接,争取援青省份电力市场缺口。依托特高压直流外送通道,加强与其他省份合作,实现省际间资源优势互补,推动清洁能源在更大范围内消纳。建立与央企长效合作机制,充分发挥央企社会责任,推进清洁取暖等能源民生工程建设。   (二十四)深化国际开放交流。举办“一带一路”清洁能源发展论坛,建立国际合作机制,构建对外开放战略通道,搭建能源资源领域投资合作平台,培育“互联网+展会”新模式,推进清洁能源开发和碳达峰碳中和一致行动。对接有关国际化平台及国内高端论坛平台,谋划与能源基金会等国际相关机构开展常态化合作。推动光伏、熔融盐、储能等领域技术、装备和服务走出去,打造“一带一路”清洁能源建设合作新样板。   九、加强组织实施   (二十五)加强组织领导。各地区碳达峰碳中和工作领导小组统筹规划、组织协调本地能源领域碳达峰工作任务。健全部门、市州联动协调工作机制,各相关部门按照职责分工,定期对各市州和重点行业能源领域碳达峰工作进展进行调度,开展效果评估,督促各项目标任务落实落细。   (二十六)强化协调联动。坚持系统思维,增强能源领域与工业、建筑、交通等其他重点领域、重点行业的碳达峰实施方案之间的衔接,确保各领域、各行业碳达峰工作协调配套、协同推进,科学有序、按时保质完成能源领域碳达峰工作任务。   (二十七)加大资金支持。加大财政资金投入,统筹低碳领域建设资金,对可再生能源开发利用、资源节约和循环利用先进适用技术研发示范等给予支持。创新投融资政策,鼓励各银行业金融机构利用绿色发展基金、绿色保险、碳金融等金融工具和相关政策为能源低碳发展服务。   (二十八)夯实数字支撑。充分依托青海省能源大数据中心、青海省智慧双碳大数据中心等平台,实现全省能源领域碳排放数据汇集,为碳排放监测、碳减排分析、碳核查评估、碳峰值预测等提供有力支撑,构建具有创新、高效、开放的青海特色能源数字“双碳”服务支撑体系生态圈。
  • 2018北京中教金源隆重推出光热协同系列新产品
    CEL-OPTH-Ⅰ高温光热催化反应系统(光热协同) CEL-OPTH高温光热催化反应系统(光热协同),在光热协同的作用下,实现催化新材料的合成与光热催化活性的表征。系统由高温反应炉、石英反应管、法兰接头、氙灯光源、导光柱、滑动平台等部分组成,该系统的优势是在高温加热过程中,上方氙灯光源产生的光可通过导光柱由外向内导入石英反应管并照射到反应样品上,实现了光热催化协同作用。材料合成,高温加热(最高1000℃)的同时加入光源,提高催化剂材料的产率、改变材料的形貌特征、提高材料的各种催化性能。材料表征,评价光热协同情况下催化剂材料的活性。CEL-OPTH高温光热催化反应系统(光热协同),主要应用于半导体材料的合成烧结、催化剂材料的制备、材料的活性评价、光解水制氢、光解水制氧、二氧化碳还原、气相光催化、甲醛气体的光催化降解、VOCs、NOx、SOx、固氮等领域。CEL-OPTH高温光热催化反应系统的特点:高温光热催化反应系统实现高温过程中光催化反应体系,常温~1000℃(连续可调、程序升温);可以让紫外光、可见光、红外光等光源照射到催化剂材料的表面,实现光热协同;光热催化反应器采用高透光石英玻璃管,内含石英专用样品台;可以实现气氛保护、抽取真空、PECVD、多种气体流量控制等功能;系统采用滑动可平移的滑动结构,可以随时调整样品位置,实现快速加热或快速冷却;采取模块化设计,光源、高温反应炉、高温石英反应器、高真空、PECVD等,可根据情况任意更换。可根据用户需求,特殊定制,生产周期短、效率高。 光热协同系统技术参数 CEL-OPTH-Ⅰ高温光热催化反应系统(光热协同)序号技术参数1加热功率1.2KW(220V、50Hz)2炉体隔热风冷隔热3控温范围常温~1000℃(±1℃),最高1200℃;4加热/冷却加热≤30℃/min氙灯光源系统(含滤光片)
  • 国家太阳能光热利用产品质检中心通过论证
    日前,国家质检总局科技司委派调研组,对浙江省在海宁市申请筹建的“国家太阳能光热利用产品质量监督检验中心”进行了现场调研和论证。调研组认为,海宁中低温太阳能光热利用产品数量多,集中度高,块状产业特点突出,地方政府对国家质检中心筹建给予高度重视和大力支持,在海宁建立国家质检中心具有必要性和可行性。调研组要求按专家审查意见完善筹建任务书及其他相关材料,尽快上报国家质检总局批准筹建。   海宁及周边地区是我国太阳能光热利用产业三大集聚区之一,2010年海宁太阳能科技工业园被确定为浙江省循环经济试点基地。覆盖真空毛管、集热管、支架、水箱等各类配件到成品整机生产,形成了较完整的产业链。2012年被省商务厅命名为新能源科技兴贸创新基地。通过筹建国家质检中心, 努力打造集 “科研、检测、标准、培训、咨询”五位一体的太阳能光热利用产品公共服务平台,将更好地提升我省中低温太阳能光热利用产业技术水平,增强市场竞争力,满足产业创新发展的需求。
  • 维萨拉助力保护Eneco的关键电站变压器
    传统上,变压器需要通过定期现场测试对其状况进行评估。然而,我们新推出的DGA(溶解气体分析仪)监测仪让这一测试程序再无必要。连续监测仪让工作人员高枕无忧,能够采取主动措施优化预防性维护,延长变压器使用寿命并降低成本高昂的意外停电风险。作为保障可靠电力输出和降低风险的举措的组成部分,荷兰Bio Golden Raand生物质发电厂安装了一台连续变压器监测仪。维萨拉MHT410可连续测量变压器油中的三个关键参数——水分、氢气和温度。这座由能源公司Eneco拥有和运营的发电厂主要为当地工业提供蒸汽和电能,其产能约为135兆瓦热能和49.9兆瓦电力。背 景变压器材料会随着时间推移发生劣化,这可能导致代价高昂的故障、维修和停机。但由于在变压器发生故障的演进过程中,溶解气体会蓄积在变压器油中,因此在执行预防性维护计划过程中需要对油进行常规检测。Eneco在变压器上安装气体监测仪的目的是为了获得连续数据,减少定期油采样和实验室分析需求。维萨拉MHT410变送器由Flux Transformer Services负责安装,Eneco项目经理和维护专家Laurens Freriksen表示:“我们在历时一年多的在线测量中获益匪浅,无论变压器负载情况如何,变压器油中的氢含量均非常低,这让我们特别放心。”Bio Golden Raand电站Bio Golden Raand电站使用来自无害B级废木材的生物质作为原料进行发电。工厂每年处理大约30万吨废木材,这些废木材主要通过船舶和卡车从荷兰及周边国家运抵代尔夫宰尔。变压器油发电机变压器通常采用灌注油的方式进行绝缘和冷却。举例来说,Bio Golden Raand的变压器内含有大约20吨油。在变压器故障(比如放电或热点)引起的热应力和电应力影响下,油分子发生分解,继而造成油质的劣化。变压器油的检测和监测传统上,每年需要采集一次或两次变压器油样本,并将样本送到实验室分析以确定气体含量。这种现场采样方法只能获得某一时刻溶解气体和油品质量的检测结果。因此,连续监测仪的主要优点在于能够揭示出发展趋势,让用户获得气体含量与变压器负载之间的关系。更重要的是,通过连续测量,DGA监测仪可以提供故障早期预警。溶解气体的水平和趋势可用于故障识别,而这些在DGA监测系统的CIGRE技术手册(编号783)中均有描述。该文档不但列出了不同类型的DGA监测仪,而且针对包括维萨拉OPT100在内的监测仪给出了有力的性能评估。除氢之外,MHT410还可测量作为故障关键指标的温度。此外,监测仪还可测量油中水分,水分会降低介电强度,加快纤维素(绝缘材料)分解,并增加高温条件下形成气泡的风险。Bio Golden Raand的DGA监测Laurens Freriksen在解释安装维萨拉MHT410背后的原因时指出:“电厂变压器是电网宝贵的资产之一,而我们的变压器已经使用了大约10年,并且还将继续使用。但由于没有冗余,因此密切监测变压器状况及性能对我们而言非常重要。”“我们之所以选择MHT410,是因为它让及早发现潜在问题成为可能,而这一降低风险的措施非常重要。及早发现故障就能及时采取纠正措施。”来自MHT410的数据持续不断输入Eneco的数字控制系统,而Laurens从笔记本电脑上就可以访问该系统。这意味着,他可以使用与MHT410测量相同的屏幕界面跟踪变压器负载状况。为快速简便安装而设计的MHT410维护和使用成本很低。这一点特别重要,因为与所保护的资产价值或与停电成本相比,DGA监测仪的成本低到可以忽略不计。总 结Eneco将安装维萨拉监测仪视为降低风险的必要措施,但正如Laurens所述:“能够持续掌握变压器的状况让人特别放心。然而,关键的优点还在于它为我们赢得了在油况劣化情况下制定有效策略的时间,这不但优化了变压器性能,而且还能延长其使用寿命。” 水分、氢气和温度变送器 MHT410用于电力变压器的可靠在线关键气体监测仪
  • 新搭档!FLIR E8配T640,保障变电站安全
    众所周知:电力设备的检测主要是为了“防患于未然”,主要是对当前设备前期的、潜伏性故障通过各种技术手段找出它的故障规律,以避免造成不必要的损失。绝缘子监测困难重重当变电站的绝缘子发生故障时,是很可能导致大面积停电,甚至影响输电系统中的多个组件,进而引发更严重和更难以处理的问题。由于绝缘子通常安装在高处且难以接近的位置,其潜在故障的检测就变得比较困难,进而故障诊断也成了一大挑战。很多时候,故障组件可能位于绝缘子内部,对其进行远距离准确测温就变得十分困难。红外热像仪组合效果强为了保证电力的可靠输送,同时降低成本,电力公司想要解决上述问题,使用红外热像仪是个不错的选择!组合使用红外热像仪进行定期温度监测有助于提前检测和诊断即将发生的故障。借助FLIR E8,能轻而易举地扫描温差和热点,定位故障大致区域;FLIR E8具有清晰的76,800(320×240)像素的红外分辨率,采用FLIR多波段动态成像(MSX® )图像增强技术,有助于发现隐藏的电气故障、机械问题和能量损耗源头。FLIR E8全自动、免调焦、经久耐用,即使在最恶劣的环境中,也能让您安心开展工作。再使用高性能红外热像仪——FLIR T640来诊断问题。红外热像仪FLIR T640的测温精度使得远距离检测轻微异常成为可能。FLIR T640拥有307,200(640×480)像素,提供MSX® 丰富细节和FLIR UltraMax® 增强分辨率,max2000℃的温度校准,具有快速诊断问题和立即开始维修所需的出色图像质量和清晰度。利用这款灵活可靠的红外热像仪保持设备安全运行,同时防止发生损失严重的停机事故。实时监控提效率定期红外检测,可以查找故障位置,诊断问题的严重程度,并在故障发生之前及时纠正。这有助于营造更安全的工作环境,提高整个系统的生产效率,也可通过避免停电意外,提高客户满意度。
  • 大连化物所开发出高性能光热转化石墨烯基复合相变材料
    近日,中国科学院大连化学物理研究所热化学研究组研究员史全团队通过合成策略开发出一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常较为复杂、耗时耗能,阻碍了其进一步的应用。基于此,科研人员通过简单直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还具有出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究成果以One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等的支持。  论文链接
  • 从“十三五”规划看仪器仪表的发展机遇
    3月17日中共中央发布了中华人民共和国国民经济和社会发展第十三个五年规划纲要,今天我们仪控工程网的小编梳理一下“十三五”期间仪器仪表未来五年的发展方向。  一、仪器仪表在能源行业的应用  能源行业是仪器仪表重要的应用行业,《十三五规划纲要》在第三十章建设现代能源体系中指出,深入推进能源革命,着力推动能源生产利用方式变革,优化能源供给结构,提高能源利用效率,建设清洁低碳、安全高效的现代能源体系,维护国家能源安全。同时,提出“十三五”期间能源领域八大重点工程。  未来五年您值得关注的能源行业有:  水电:统筹水电开发与生态保护,坚持生态优先,以重要的流城龙头水电站建设为重点,科学开发西南水电资源。  2.风电、光伏、光热:继续推进风电光伏发电发展,积极支持光热发电。  3.核电:以沿海核电带为重点,安全建设自主核电示范工程和项目。  4.生物质能、地热能、沿海潮汐能:加快发展生物质能、地热能,积极开发沿海潮汐能资源。  5.完善风能、太阳能、生物质发电扶持政策。  6.煤炭:大力推进煤炭清洁高效利用。限制东部,控制中部和东北,优化西部地区煤炭资源开发,推进大型煤炭基地绿色化开采和改造,鼓励采用新技术发展煤电。  7.油气:加强陆上和海上油气勘探开发,有序开放矿业权,积极开发天然气、煤层气、页岩油(气)。推进炼油产业转型升级,开展成品油质量升级行动计划,拓展生物燃料等新的清洁油品来源。  “十三五”期间这些工程与你相关  1.高效智能电力系统  加快建设抽水蓄能电站、龙头水电站、天然气调峰电站等优质调峰电源,推动储能电站,能效电厂示范工程建设,加强多种电源和储能设施集成互补,提高电力系统的调节能力及运行效率。  2.煤炭清洁高效利用  实施煤电节能减排升级与改造行动计划,对燃煤机组全面实施超低排放和节能改造,使所有现役电厂每千瓦时平均煤耗低于310克、新建电厂平均煤耗低于300克,鼓励用背压式热电机组解决供暖,发展热电冷多联供,提高煤炭用于发电消费比重。  3.可再生能源  以西南水电开发为重点,开工建设常规水电6000万千瓦,统筹受端市场和输电通道,有序优化建设“三北”、沿海风电和光伏项目。加快发展中东部及南方地区分散式风电、分布式光伏发电。实施光热发电示范工程。建设宁夏国家新能源综合示范区,积极推进青海、张家口等可再生能源示范区建设。  4.核电  建成三门、海阳AP1000项目。建设福建福清、广西防城港“华龙一号”示范工程。开工建设山东荣成CAP1400示范工程。开工建设一批沿海新的核电项目,加快建设田湾核电三期工程。积极开展内陆核电项目前期工作。加快论证并推动大型商用后处理厂建设。核电运行装机容量达到5800万千瓦,在建达到3000万千瓦以上。  5.非常规油气  建设沁水盆地、鄂尔多斯盆地东缘和贵州毕水兴等煤层气产业化基地。加快四川长宁—威远、重庆涪陵、云南昭通、陕西延安、贵州遵义—铜仁等页岩气勘查开发。推动致密油、油砂、深海石油勘探开发和油页岩气综合开发利用。推进天然气水合物资资源勘查与商业化试采。  6.能源输送通道  建设水电基地和大型煤电基地外送电通道,在大气污染防治行动12条输电通道基础上,重点新建西南、西北、东北等电力外送通道。加强西北、东北和西南陆路进口油气战略通道和配套干线管网建设。完善以西气东输、陕京线和川气东送为主的天然气骨干管网。  7.能源储备设施  建成国家石油储备二期工程,启动后续项目前期工作,加强成品油储备库建设,建设天然气储气库,提高储气规模和调峰应急能力。在缺煤地区和煤炭集散地建设中转储运设施,完善煤炭应急储备体系,扩大天然气铀储备规模。  8.能源关键技术装备  加快推进煤炭无人开采、深井灾害防治、非常规油气勘探开发、深海层常规油气开发、低阶煤中低温热解分质转化、700℃超超临界燃煤发电、第四代核电、海上风电、光热发电、大规模储能、地热能利用、智能电网等技术研发应用。提升第三代核电、百万千瓦级水电机组、高效锅炉和高效电机等装备制造能力。突破大功率电力电子器材、高温超导体材料等关键元器件和材料的制造及应用技术。  观点:  能源领域一直是仪器仪表重要的用户领域,从能源方面来看:  1.国家的能源支持方向有了大的调整,将以清洁能源作为主导发展方向。  2.国家未来五年的能源的发展逐渐将从粗放型的生产改变为精益生产,同时对仪器仪表及系统的要求也会相应提高。  3.随着国际原油价格不断下跌,空气、水资源污染日益严重,煤炭、石化行业转型升级是关键。煤炭限制开发、提倡开采油气,落后产能的煤电、炼油企业将逐渐进行新技术改造或者淘汰。  4.对于仪器仪表行业来讲,能源行业的转型升级,既是机遇又是挑战,不过技术和质量仍是不变的竞争力。  二、仪器仪表与“十三五”制造强国战略  仪器仪表是信息采集、测量、传输、控制的基础,是奠定工业基础,发展工业信息化、智能化的基石。“十三五发展规划纲要”中对工业基础、智能制造做出了引导思路。  这些政策与您有关  在《十三五规划纲要》“第二十二章实施制造强国战略”中,提出:  1.强化基础领域标准、计量、认证认可、检验检测体系建设。  2.实施高端装备创新发展工程,明显提升自主设计水平和系统集成能力。  3.实施智能制造工程,加快发展智能制造关键技术装备,强化智能制造标准、工业电子设备、核心支撑软件等基础。  4.加强工业互联网设施建设、技术验证和示范推广,推动“中国制造+互联网”取得实质性突破。  5.培育推广新型智能制造模式,推动生产方式向柔性、智能、精细化转变。  6.鼓励建立智能制造产业联盟。实施绿色制造工程,推进产品全生命周期绿色管理,构建绿色制造体系。  7.推动制造业由生产型向生产服务型转变,引导制造企业延伸服务链条、促进服务增值。推进制造业集聚区改造提升,建设一批新型工业化产业示范基地,培育若干先进制造业中心。  三、仪器仪表与全方位开放和“一带一路”  改革开放30多年以来,越来越多的国产仪器仪表随着国际项目走出国门,随着我国工程质量的提高,国产仪器仪表质量和技术的升级,国产仪表越来越受到更多国家的认知和欢迎。中国仪器仪表将在未来5年在国际舞台大放异彩。  1.全方位开放  完善对外开放区域布局。支持沿海地区全面参与全球经济合作和竞争,发挥环渤海、长三角、珠三角地区的对外开放门户作用。(如支持宁夏等内陆开放型经济试验区建设,支持中新(重庆)战略性互联互通示范项目。推进双边国际合作产业园建设。探索建立舟山自由贸易港区等。)  2.国际产能和装备制造合作  以钢铁、有色、建材、铁路、电力、化工、轻纺、汽车、通信、工程机械、航空航天、船舶和海洋工程等行业为重点,采用境外投资、工程承包、技术合作、装备出口等方式,开展国际产能和装备制造合作,推动装备、技术、标准、服务走出去。建立产能合作项目库,推动重大示范项目建设。引导企业集群式走出去,因地制宜建设境外产业集聚区。加快拓展多双边产能合作机制,积极与发达国家合作共同开拓第三方市场。建立企业、金融机构、地方政府、商协会等共同参与的统筹协调和对接机制。完善财税、金融、保险、投融资平台、风险评估等服务支撑体系。  3.“一带一路”建设  秉持亲诚惠容,坚持共商共建共享原则,开展与有关国家和地区多领域互利共赢的务实合作,打造陆海内外联动、东西双向开放的全面开放新格局。 推动与沿线国家发展规划、技术标准体系对接,,推进沿线国家间的运输便利化安排,开展沿线大通关合作。建立以企业为主体、以项目为基础、各类基金引导、企业和机构参与的多元化融资模式。(推动中蒙俄、中国-中亚-西亚、中国-中南半岛、新亚欧大陆桥、中巴、孟中印缅等国际经济合作走廊建设,推进与周边国家基础设施互联互通,共同构建连接亚洲各次区域以及亚欧非之间的基础设施网络。)  四、“十三五”期间仪器仪表企业该如何自我建设  1.支持企业瞄准国际同行业标杆全面提高产品技术、工艺装备、能效环保等水平,实现重点领域向中高端的群体性突破。  2.加强质量品牌建设实施质量强国战略,全面强化企业质量管理,开展质量品牌提升行动,解决一批影响产品质量提升的关键共性技术问题,加强商标品牌法律保护,打造一批有竞争力的知名品牌。  3.建立企业产品和服务标准自我声明公开和监督制度,支持企业提高质量在线检测控制和产品全生命周期质量追溯能力。  4.鼓励企业并购,形成以大企业集团为核心,集中度高、分工细化、协作高效的产业组织形态。  除此之外,建立商品质量惩罚性赔偿制度。国家还将完善质量监管体系,加强国家级检测与评定中心、检验检测认证公共服务平台建设,为仪器仪表的创新、发展注入了新的活力。
  • 港中大:全球首个双光梳光热光谱仪(DC-PTS)
    香港中文大学工程研究团队展示全球首个双光梳光热光谱仪(DC-PTS),这项光谱学研究证实相关技术能在一毫秒(千分之一秒)内完成多种气体测量,并有极高灵敏度,可检测低浓度气体。研究有助开辟更多气体传感技术的应用,包括有毒气体测量、连同新冠病毒生物标志物在内的呼气成分分析等。研究成果已刊登在学术期刊《自然通讯》。当两个具有相干性的频率梳(左上角)发出的光束同时通过载有气体样本的空心光纤时,每一对频率梳齿会在光纤中产生拍频信号,气体吸收会引起光热效应,改变气体折射率。图片来源:香港中文大学中大机械与自动化工程学系副教授任伟团队及其合作单位中国科学院长春光学精密机械与物理研究所,共同提出新型气体测量技术─双光梳光热光谱,将气体传感提升到新的层次。他们利用两组频率梳同时发射相近但不同频率的光束,当光束同时通过载有气体样本的空心光纤时,会造成一种名为“外差干涉”的光学现象,产生拍频信号,气体吸收会引起光热效应,从而改变气体折射率。团队利用仪器测量不同频率的折射率调变,藉此获得精确的光谱信息及得知气体样本的成分。目前, DC-PTS能同时检测多种气体,包括阿摩尼亚(氨)、二氧化碳、一氧化碳、硫化氢和碳氢化合物等。研究团队利用工业中常见的无色、易燃气体乙炔为例,显示DC-PTS于载有仅0.17微升气体样本的空心光纤中检测到浓度只有8.7ppm的乙炔,实现ppm级的气体探测灵敏度。相反,传统激光光谱仪通常只配备单频激光,所以每次只能测量一种气体,并需要大约 100000微升(100毫升)的气体样本及更长的测试时间以达到相约的检测灵敏度。人体呼气成分分析是DC-PTS技术其中一项极具潜力的应用例子,例如检测呼吸样本中与病毒感染相关的化合物。传统的光谱仪或质谱仪往往需要额外进行气体采样步骤,其分析时间亦较长;对比之下,DC-PTS可在宽光谱波段范围内提供更灵敏和更快的化学分析,能有助得出更精确的测试结果。任伟表示,这是全球首个DC-PTS研究,这项崭新的高精密光谱技术有助日后实现多达数十到数百种的气体测量,正积极研发DC-PTS在呼气成分分析的应用,特别是开发新冠病毒呼吸测试和化学分析仪,帮助解决当前的疫情和未来的公共卫生紧急情况。他补充指相关技术在其他范畴的气体检测亦具相当应用潜力,包括能源、环境和安全管理等领域。
  • 纳米金壳光热化疗结合治疗癌症获新进展
    纳米金壳偶联转铁蛋白分子携带药物靶向至肿瘤,光热疗与化疗结合杀死肿瘤细胞   实现恶性肿瘤安全有效治疗是目前生物医学界的重大挑战之一。中国科学院理化技术研究所纳米材料可控制备与应用研究室在唐芳琼研究员的带领下,近年来一直致力于设计发展新型纳米载体及其生物医学应用。   具有新结构和新性能的多功能纳米金壳是该团队一直致力发展的新型抗肿瘤纳米材料之一。该材料内层以结构独特的中空介孔夹心二氧化硅为核(Adv. Mater. 2009, 21, 3804-3807),其表面包覆金壳,纳米金壳以其物理化学性质——等离子体共振性质为基础,经近红外激光照射,可将近红外激光光能转化为热能,并配以夹心二氧化硅对多种化疗药物的装载控制缓释技术,高效低毒杀死肿瘤细胞。该成果于2011年初发表在国际化学界顶级刊物《德国应用化学》(Angew. Chem. Int. Ed. 2011, 50, 891–895)上。   为更好地提高该材料对恶性肿瘤的抑制率,同时针对目前近红外光热治疗癌症技术中照射时间长,照射强度大,需重复多次照射等问题,该研究室进一步发展了纳米金壳偶联主动靶向配体分子转铁蛋白新技术。纳米金壳经偶联靶向分子后,可在减少照射时间与频率、降低照射强度的条件下实现恶性肿瘤的有效抑制。荷乳腺癌裸鼠肿瘤模型注射该材料后,经单次近红外激光照射即可消除肿瘤。在这新的研究进展中,她们还首次系统对比研究了该新型多功能纳米金壳偶联主动靶向配体分子前后生物体内安全性和代谢情况,结果表明该材料生物相容性良好,并可从体内代谢。   近日,这一最新研究进展在国际材料界顶级刊物《先进材料》(Adv. Mater. DOI: 10.1002/adma.201103343)上发表。审稿人认为,“多功能金壳包覆夹心二氧化硅,能够将主动靶向、被动靶向、光热治疗与化疗结合协同治疗癌症,临床应用前景令人期待。”   该研究获得国家科技部“863”项目和国家自然科学基金项目的大力支持。
  • Nat. Commun. 双光梳光热光谱方法
    激光光谱气体传感技术在气候变暖、火星探测、海洋勘探、生物医疗等诸多领域具有举足轻重的地位,全球环境、生态以及能源问题的不断恶化,对光学气体传感的多物质、甚至未知成分的分析能力提出了更高要求。然而,由于缺少理想的相干光源,难以在宽光谱波段范围内快速准确地获取精细光谱信息。光学频率梳(Optical Frequency Comb,OFC)提供了一把测量频率和时间的标尺,从根本上解决了光频计量问题,极大促进了前沿基础物理研究领域的发展。OFC 在频域上表现为一系列相等频率间隔的梳状频谱线,与气体分子作用后进行频域解析,在获得宽光谱覆盖范围的同时亦可获得极高的光谱分辨率,为高精度光谱测量提供了新的技术手段。然而,这种技术往往依赖于高带宽光电探测器和复杂光谱解析技术,而且需要相当长的激光与气体相互作用路径来提高检测灵敏度,严重限制了光频梳光谱在气体传感领域的广泛应用。双光梳光热光谱为了突破该技术瓶颈,来自中国科学院长春光学精密机械与物理研究所的王强研究员团队和香港中文大学的任伟教授团队创造性地提出了双光梳光热光谱方法(DC-PTS),首次实现了基于光频梳的气体分子光热光谱测量。研究成果以 Dual-comb Photothermal Spectroscopy 为题发表在国际权威期刊 Nature Communications。其中,中科院长光所的王强研究员与香港中文大学的王震博士为该论文的共同第一作者,香港理工大学靳伟教授团队和暨南大学汪滢莹教授团队提供了关键的反谐振空芯光纤器件。图1:双光梳光热光谱方法概念图DC-PTS 的原理如图1所示,采用双光梳光源作为泵浦光源,用其中一列光脉冲在另一列光脉冲的持续时间内等时长移动,周期性调制光脉冲。在频域内,双光梳光源的每一对梳齿的外差拍频可对气体分子吸收实现特定频率的强度调制。由于强度调制引起的光热效应会周期性调制介质折射率,因此当双光梳通过气体介质并被吸收时,介质折射率携有一系列的调制频率。采用光学干涉测量折射率调制并进行傅里叶变换,即可得到对应的宽波段范围内的光谱信息。图2:乙炔气体宽波段双光梳光热光谱在原理验证实验中,研究人员采用电光调制器产生了具有天然内禀互相干的双光梳泵浦激光,用一根 7 cm的反谐振空芯光纤构建了全光纤 Fabry–Pérot 干涉仪,仅用 mW 量级的激光便可实现 kWcm⁻² 量级的泵浦光强。在空芯光纤 28 μm 的空间尺度内,该光梳可同时以上百个不同频率对气体折射率进行调制,对 0.17 μL 采样体积的气体实现了 ppm 级的探测灵敏度和超过 1 THz 谱宽的光热光谱测量(如图2所示)。研究人员所提出的双光梳光热光谱方法不仅具备单波长激光光谱测量的高选择性和快速响应特点,同时光频梳和光热光谱技术的融合使得同时具备宽光谱、高分辨率、极低耗气量和高灵敏度成为可能,为分子探测提供丰富的光谱信息,针对大气监测、深空探测、海洋科学、呼气诊断等不同领域对精密气体探测的需求提供多功能的光谱气体传感技术。前景展望随着光学微腔、量子级联激光器等先进光梳光源和中红外空芯光纤技术的迅速发展,双光梳光热光谱方法有望进一步拓展到气体分子的中红外指纹光谱带,同时结合光学腔增强、高性能相位解析技术,可以实现更强的气体分子探测能力和更小的集成尺寸,为基于激光光谱的前沿科学探索和工程应用研究提供前所未有的可能性。文章信息Wang, Q., Wang, Z., Zhang, H. et al. Dual-comb photothermal spectroscopy. Nat Commun 13, 2181 (2022). https://doi.org/10.1038/s41467-022-29865-6 该研究得到了国家自然科学基金委项目(62005267、51776179)等的支持。
  • 林赛斯(Linseis)参加第29届国际热电会议
    国际热电会议是一年一度的国际热电材料科学领域最高水平的,集中探讨和交流热电材料科学、器件与工业应用最新进展的国际性学术会议。 林赛斯(Linseis)作为世界知名的热分析仪器厂家,不会错过这次盛会, 欢迎广大用户和合作伙伴咨询、洽谈。 Linseis此次展出的仪器有:赛贝克系数测定仪、激光热导仪、差示扫描量热仪热膨胀仪、热机械分析仪、综合热分析仪等。
  • 科学家将拉曼效应用于光热显微镜,实现超灵敏振动光谱化学成像
    “我们开创了受激拉曼光热成像[1]这个全新的方向,这是化学成像领域的一个新突破,这项技术未来一定会发展成为能够被广泛应用的产品。”美国波士顿大学程继新教授如是说。图丨程继新(来源:程继新)在这次研究中,程继新团队利用一种新的物理机制,即受激拉曼本质上是一个化学键振动吸收过程,吸收的能量变成热形成焦点局部升温,升温改变焦点周围样品的折射率。由此,他们开发出受激拉曼光热(Stimulated Raman Photothermal,SRP)显微镜。该技术突破了此前受激拉曼散射(Stimulated Raman Scattering,SRS)成像的检测极限,将调制深度提高了 500 倍,极高的调制深度为更高灵敏度的检测奠定了基础。那么,与 SRS 相比,SRP 有哪些不同呢?具体来说,SRS 显微镜直接测量光被吸收后强度的变化,并提供光谱和空间信息;而 SRP 显微镜则是测量由样品热膨胀引起的光散射或由热透镜引起的折射,观察样品本身的温度、折射率等变化,进而提供光谱和空间信息。化学成像技术能够“追踪”细胞中的分子信息,但该领域最大的瓶颈之一是灵敏度。SRS 显微镜在揭示复杂系统中的分子结构、动力学和耦合方面显示出巨大的潜力。然而,由于其较小的调制深度和脉冲激光的散粒噪声,SRS 的灵敏度难以突破毫摩尔级,这导致其无法对低浓度分子的观察及对相关信息的追踪。此外,不可忽视的是,在使用 SRS 成像时,研究人员必须使用高倍物镜来收集信号。如果想得到高分辨成像,就必须将两个高倍物镜挤在一起,这在操作上带来极大的不便。而 SRP 的优势在于操作简单、方便,只需要低倍物镜就能够测量相关信号,且检测物镜和样品之间可以保持一定的距离。由于 SRP 显微镜非常灵敏,可以通过它观测不同的分子、不同的化学键,填补了该领域的数据空白。该技术有望应用于环境科学、材料科学、生命科学等领域,例如环境中微塑料检测、绘画作品成份分析、病毒单颗粒谱学、单细胞和生物组织成像等。一次“因祸得福”的聚会开启了一个新方向该技术背后的科研故事要从一次“因祸得福”的聚会说起。2021 年,在程继新 50 岁生日时,举办了一次课题组聚会,其中的主题之一是篮球比赛。组内成员博士研究生朱一凡在运动时不小心受伤了,因此需要在家休养 2 个月。于是,程教授交给他一个计算方面的任务:在受激拉曼散射成像时,聚焦焦点的温度变化具体是多少?根据朱一凡的模拟结果,在大概 10 微秒的时间里,相关温度上升了 2 至 3 摄氏度,这个结果很快引起了程教授的高度关注。“这个范围的瞬态温度变化不会损害细胞。于是,我们开始探索拉曼效应用于光热显微镜这个全新的方向。”程继新说。图丨SRP 显微镜设计(来源:Science Advances)从计算方面确定了温度升高的数据,那么,如何在实验上证实温度升高呢?研究人员想到,可以用对温度很敏感的荧光染料来做温度计。具体来说,把荧光染料加入样品,在受激拉曼激发的同时进行荧光测量。实验结果证明荧光强度呈下降趋势,以此在实验上确认了受激拉曼导致的温度升高(如下图)。图丨受激拉曼光热效应的理论模拟和实验观察(来源:Science Advances)但是,荧光测试是有标记的测量,而他们更想通过无标记(label-free)的方式测量光热信号。于是,研究人员用“第三束光”测折射率的变化,可以在纯液体中得到同样的信息,而且这种做法不受脉冲激光噪音的影响。最终,他们突破了此前 SRS 成像的检测极限,将调制深度提高 500 倍。组内成员博士研究生殷嘉泽以中红外光热显微镜(Mid-infrared photothermal microscopy)为主要研究方向,于 2021 年发展了一种新方法,用快速模数转换直接提取光热信号[2]。该方法同样适用于 SRP 显微镜,从而有效地提高了其检测灵敏度。图丨生物样品在水溶液环境中的 SRP 成像(来源:Science Advances)此外,组内成员博士研究生戈孝伟为本次开发 SRP 显微镜提供了 SRS 的实验基础。由此可见,研究是一个逐渐积累的过程,并需要团队成员发挥各自的优势,这充分体现了“众人能移万座山”的精神。图 丨相关论文(来源:Science Advances)近日,相关论文以《受激拉曼光热显微镜实现超灵敏化学成像》(Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging)为题发表在 Science Advances [1]。波士顿大学博士研究生朱一凡为该论文第一作者,程继新教授为论文通讯作者。16 年磨一剑1999 年,程继新在香港科技大学从事第一个博士后研究,他选择了一个技术较为成熟的研究方向——超快光谱学(ultrafast spectroscopy)。同年,诺贝尔化学奖颁予飞秒时间分辨的超快光谱学技术。2000 年,他加入国际单分子生物物理化学的奠基人之一、哈佛大学谢晓亮教授(现北京大学李兆基讲席教授)课题组,从事第二个博士后研究。在那里,程继新和其他同事开发了可实现高速振动光谱成像的相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)显微镜。2014 年,诺贝尔化学奖颁予超分辨率荧光显微技术。但是,荧光显微镜不能解决生物成像领域中所有的问题,例如,荧光染料标记会改变胆固醇、氨基酸等小分子的生物功能。因此,生命科学需要无荧光染料标记的分子成像技术。程继新表示,“选键成像很好地解决了分子选择性的问题,其不仅能看到各种分子,又不需要对分子进行荧光染料标记。”梦想很美好,现实却充满挑战。能不能通过发明新技术,去做荧光显微镜做不到事情?“继新”人如其名,从学生时代就喜欢啃“硬骨头”的他,继续探索。博士后研究工作结束后,程继新于 2003 年来到美国普渡大学任教,在那里,他将分子光谱学与生物医学工程融合,致力于化学成像这一新兴领域。2007 年,该课题组报道了一个有趣的发现:由于受激拉曼增益和损耗,一部分能量从光子转移到分子[3]。因为脉冲式的能量吸收可以产生声波,该发现促使其团队开发出受激拉曼光声显微镜(stimulated Raman photoacoustic microscope)。然而,由于当时的光声测量不是很灵敏,他们没测到受激拉曼光声信号。幸运的是,在一个意外的实验中,他们发现了基于泛频激发的光声信号[4],并开发了检测血管内壁胆固醇的振动光声内窥镜。图丨中红外光热选键成像的原理(左)及产品展示图(右)(来源:程继新)为寻找增强化学键成像信号的方法,他们再次调整研究方向。通过“thinking out of the Raman box”,开启了中红外高分辨光热成像这一全新的方向。由于分子振动吸收的能量在皮秒的时间尺度上全部转化为热能,程继新意识到,光热效应可以用来“看”细胞里的化学键。2016 年,他们报道了高灵敏度中红外光热显微镜 (Mid-infrared photothermal microscope),突破性地实现中红外超分辨三维动态成像。通过用可见光来测量光热效应,该技术能够以亚微米分辨率“看见”活细胞中的化学组分,首次使单细胞红外显微成像成为可能[5]。2017 年,程继新加入波士顿大学担任光学中心的 Moustakas 光学及光电子学讲席教授。他的团队致力于精准医学光子学技术的研发,研究覆盖了化学成像、神经调控、光学杀菌等三个方向。其课题组在全球首次通过光声信号来刺激、调节神经细胞(如下图)。最近,他们设计了一种用于无创神经刺激的高精度(0.1 毫米)光致超声器件,并在小鼠模型成功验证,第一次利用非遗传途径进行超高精度的无创神经调节[6]。此外,他们还发明了一种通过光解色素来杀死抗药性超级细菌的方法[7]。图丨光致超声神经刺激工作原理图和横向声场压强分布(来源:程继新)程继新认为,真正原创的工作不是被设计出来的,而是实现了从来没想过会发生的事情。“原创的科学是由直觉推动的,并得益于长期不懈的努力和积累,所谓的‘突破’其实是一个量变到质变的过程。”他总结道。不止于科学技术的创新,在推进技术产业化落地的过程中,更是让他感叹“应用范围超乎了最初的想象”。据悉,程继新拥有 30 多项国际专利,并作为联合创始人或科学顾问参与了多项技术的产业化。2015 年,基于分子振动光声技术,程教授和学生们共同创立了 Vibronix Inc.,该公司致力于振动成像技术研发和医疗设备创新,现位于苏州工业园区。2018 年,作为科学顾问参与建立了光热光谱公司(Photothermal Spectroscopy Corp.)。该公司位于美国加州,基于程教授的中红外光热成像专利开发了一款名为“海市蜃楼(mIRage)”的显微镜,寓意为“信号来自于折射率的变化”。据了解,该产品目前已销往世界各地百余实验室。2019 年,程继新联合创立了 Pulsethera 公司,旨在通过内源发色团的光解作用杀死超级细菌。2022 年,程继新成为法国巴黎 AXORUS 公司的科学顾问,该公司致力于光声神经刺激技术的医学转化。谈及技术的推进产业化落地的经验,程继新表示,在发展某项技术时,可能最开始只聚焦在生命科学领域的某个细分方向,但将技术真正发展为产品,其应用范围之广可能是当初没有想到的。他举例说道:“mIRage 现在被应用在半导体领域,用来检测芯片中的污染。芯片中的污染多数是有机物,因此能够通过化学键成像来检测芯片的质量,这完全超乎了我的想象。”图丨2023 年 8 月,程继新课题组的部分成员合影于首届化学成像 Gordon Research Conference(来源:程继新)回顾三十年的科研之路,程继新认为,最有回味的事情是每个阶段都有新惊喜。化学成像领域每经过大约 8 年就要进行一次技术革新,从 1999 年的 CARS 显微镜到 2008 年的 SRS 显微镜,到 2016 年的中红外高分辨光热成像,再到 2023 年的 SRP 技术。“几年前还觉得是天方夜谭的事情,都通过发明新的技术实现了,由此一步步将领域发展向前推进。”程继新说。下一步,该团队将继续发展无荧光标记的化学成像,进一步提升灵敏度,同时发展深组织的高分辨化学成像技术。他们希望,能够利用高能量的激光器将 SRP 的灵敏度提升到接近于荧光显微镜的微摩尔级别。同时,他们计划尽快将该技术发展为产品。据悉,美国加州的Photothermal Spectroscopy Corp.及中国苏州的威邦震电公司(Vibronix Inc.)正在推进相关的产业化进程。从 2007 年观测到受激拉曼过程的能量转移,到 2023 年报道 SRP 显微镜,对程继新来说,这是一次历经 16 年的科研旅程。在本次的 SRP 论文发表后,他在朋友圈这样写道:“科学很酷,生命短暂。我的下一个 16 年会是什么样呢?”
  • 赛默飞世尔科技:辐射环境监测培训
    2007年10月26日,上海辐射环境监测站(Shanghai EPA)、秦山核电站(Qinshan NPP)主要技术人员受邀来赛默飞世尔科技(Thermo Fisher Scientific)上海总部参加辐射环境监测技术培训会。此次培训会由赛默飞世尔科技技术专家Ling Z. Luo女士及环境仪器辐射部商务经理李大庆先生主讲,针对上海辐射环境监测站,秦山核电站购买的赛默飞世尔辐射监测仪器进行技术培训和讨论。参加培训的技术人员表示,通过此次培训,对辐射环境监测及仪器的使用及维护有了更深刻认识。 中国在未来的20年内将会成为核电市场中发展最迅速的国家,此次赛默飞世尔科技与秦山核电站签订的一百万美元的合同在中国核电发展史上是一个重大的里程碑,同时双方达成一致在该领域将继续加强合作。
  • 厦大科学家制备出新纳米材料 或可应用于癌症光热疗
    厦大科学家最近制备出一种新型的纳米材料——蓝色的钯纳米材料,它不仅具有很高的催化活性,而且或可成为癌症光热疗的“希望之星”。   日前,《自然-纳米技术》刊登了厦门大学化学化工学院郑南峰教授课题组的研究成果。该杂志被认为是英国《自然》杂志旗下报道纳米科学与技术相关研究最新成果的顶尖杂志。   钯是一种稀贵金属,在化学中主要用做催化剂,但是,高比表面积的钯纳米材料多为黑色,被科学家们通俗地称为“钯黑”。郑南峰教授课题组的研究成果却发现,通过形貌的精细调控,纳米钯可以展示出绚丽的蓝色。“钯蓝”不仅拥有“漂亮的外表”,更重要的是,它拥有独特的光学、催化等性能。   据介绍,厦大科学家制备的“钯蓝”的突出特点是“薄”——它由尺寸均一的六边形超薄钯纳米片组成,薄片的厚度仅为1.8纳米,边长可在20-200纳米间调控。郑南峰说,“这样超薄的结构特征不仅使‘钯蓝’具有高的比表面积,使催化性能更为优越,而且结合理论计算,我们还发现超薄结构是‘钯蓝’具有强近红外光吸收并呈现蓝色的主要原因。”   这样的发现使得课题组成员将之与当前用于肿瘤治疗的光热疗联系起来。经过一年多的反复实验,课题组发现,“钯蓝”的超薄厚度使其无法散射近红外光,所吸收的光被完全转化为热,导致周围环境快速升温,可直接应用于肿瘤的近红外光热疗。“同时,作为近红外光敏剂,‘钯蓝’的最大特点在于它的超高光热稳定性,这一特性是其他现有贵金属纳米近红外光敏剂所无法媲美的。”
  • 生物组织红外成像的全新手段——荧光引导光学光热红外显微光谱
    红外显微光谱法是非破坏性、结构敏感的检测方法,目前已在基于分子结构的单细胞领域的研究中发挥重大作用,诸如蛋白构象改变、氧化还原、脂质体的产生与降解等。但是受制于红外光谱仪本身的限制,对于生物组织样品来说制样非常困难,因此极大的限制了红外光谱在生物医学方面的应用。O-PTIR (Optical Photothermal Infrared) 光学光热红外光谱是一种快速简单的非接触式光学技术,通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,克服了传统IR衍射的极限,空间分辨率可达500 nm。近期,美国PSC公司又推出了非接触亚微米分辨荧光红外拉曼同步测量系统mIRage-LS,将O-PTIR技术与荧光(FL)进一步有机结合,利用落射荧光快速定位 O-PTIR 测量的区域,提供了对样品荧光标记区域以及邻近未标记组织的化学结构的快速光谱分析。图 1. FL-OPTIR 显微镜基本原理和观测方法这项全新的技术对样品要求非常低,而红外光谱的空间分辨率可达亚微米级别,为红外光谱在生物医学方面的应用提供了全新的视角。比如在阿尔茨海默病 (AD) 研究方面,AD的关键病理特征是淀粉样蛋白折叠,这些 β-折叠结构具有特定的振动特征,对于红外光谱来说十分敏感,但是受制于传统红外光谱仪本身的限制,在生物组织样品上直接测量非常困难。而非接触式的FL-PTIR技术却能够很好适用于这些样品,并且已经有多个小组通过实验证明了FL-PTIR能够应用于具有特殊化学敏感性的活细胞成像研究。Craig Prater等人通过这项技术成功实现了荧光定位下的OPTIR红外观测,并且完成了对组织中单个病理结构内的 β-折叠结构进行结构分析、在脑组织的特定细胞和培养的原代神经元分析。首先,作者使用了12个月周龄的 APP/PS1 转基因小鼠的大脑切片,用淀粉样蛋白特异性发光共轭聚电解质探针mytracker R(Ebba Biotech,Solna,Sweden)进行标记,并用OPTIR进行观测β 折叠结构的分布。相比于传统红外很难定位的问题,FL-OPTIR通过宽场荧光能够快速定位淀粉样蛋白斑块。并直接在脑组织中评估其在单个斑块中的结构。通过 k 均值聚类方法对其进行分析,清楚地显示了在 1630 cm–1处具有高振幅和低振幅的两组光谱的存在,并且具有 1630 cm–1高振幅的光谱清楚地与荧光信号共定位。光谱分析表明 Amytracker 没有对酰胺 I 和 II 区域有明显的吸收,因此表明 Amytracker 可用于 OPTIR 测量的荧光引导。图 2. FL-OPTIR 对脑组织中的淀粉样斑块进行成像荧光和红外图谱和热图的展示。 在第二个实验中,作者提供了一个概念性方法验证实验,证明 FL-OPTIR 可用于研究组织中的特定细胞类型,而这对传统红外显微光谱法来说十分具有挑战性。为此作者对脑组织中与淀粉样斑块相关的小胶质细胞进行成像,以评估它们的光谱特征,从而了解小胶质细胞是否可以将 Aβ 原纤维转化为单体的问题。这个实验使用 Aβ 特异性抗体 82E1 标记的 16 μm 组织切片,并用抗体 Iba1 对小胶质细胞进行了免疫标记。通过FL-OPTIR可以定位淀粉样斑块附近的小神经胶质细胞并测量 OPTIR 光谱。通过测量,发现 82E1 阳性小胶质细胞表现出β-折叠含量升高,表明小胶质细胞与 Aβ 原纤维相关。图 3. 脑组织中淀粉样斑块周围小胶质细胞的成像。 在第三个实验中,作者研究了 FL-OPTIR 在培养的原代神经元中 Aβ结构成像的适用性。与组织研究类似,淀粉样蛋白的结构异质性使得研究神经毒性与 Aβ 结构之间的关系仍具有挑战性。因此,为了直接评估神经元中的淀粉样蛋白结构,作者使用FL-OPTIR技术基于荧光信号引导的光谱测量,发现远端比近端神经突部分(分支后)相关的 Aβ 包含更多的 Aβ-聚集体, 作者认为这些神经元隔室可能本质上更容易结合 Aβ或者能够主动运输到远端。图 4. 初级神经元中 Aβ (1–42) 的结构成像。 总结:新型成像方法FL-OPTIR 结合了荧光成像和红外光谱来描述生物组织内的结构变化。能够针对复杂系统中的特定细胞、细胞器和分子进行分析和检测,解决了生物标本中红外光谱定位困难的问题。能够直接在组织中定位和分析淀粉样蛋白和相关的小胶质细胞,这可以解决局部环境在 AD 进展中的作用,帮助识别与淀粉样斑块相关的小胶质细胞,并在亚细胞水平上直接研究小胶质细胞中的纤维结构。为复杂样品中的蛋白质和细胞进行红外光谱分析提供了新的测量方法,为红外在生物领域的应用提供更加便捷实验途径。 作为美国PSC公司在中国的独家代理,Quantum Design中国于2020年将非接触亚微米分辨红外拉曼同步测量系统—mIRage系统引入国内,助力中国科研工作者取得一个又一个重大突破: 国内经典案例分享:南京大学环境学院借助mIRage建立了一种新型的塑料表面亚微米尺度化学变化表征方法。该工作发表在知名期刊Nature Nanotechnology上。 中国农业大学借助mIRage成功实现对玉米粉中痕量微塑料的原位可视化表征。该工作发表在Science of the Total Environment上。为满足国内日益增长的生物红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了荧光引导光学光热红外显微光谱,为您提供样品测试、样机体验等机会,期待与您的合作!
  • 亚微米光学光热红外技术O-PTIR——完美互补传统拉曼光谱技术
    拉曼光谱技术 近年来,拉曼光谱和成像技术, 得益于其相对于红外光谱技术优异的空间分辨率等优势,在研究样品的分子振动方向得到了广泛的应用,尤其是生物样品,因为水中的拉曼光谱背景信号更弱。相干拉曼散射显微技术(Coherent Raman scattering microscopy)近些年也得到了大力的发展,其基于相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering)或受激拉曼散射(stimulated Raman scattering),大大改善拉曼的成像速度。例如,蛋白质和脂肪在皮肤内的分布情况,可以通过两者在C-H伸缩振动区特征的拉曼谱带进行视频的高速成像来获得。然而拉曼光谱和成像技术也存在着自身的一些不足:(1)较低的拉曼散射截面,尤其是在指纹区,相对于红外技术弱5-10倍;(2)会受到荧光的干扰,由于拉曼信号偏弱,一些样品的荧光信号又宽又强,会一定程度上覆盖拉曼信号; 光学光热红外技术基于光学-光热红外技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage,使用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,当集成拉曼光谱仪,mIRage系统可以提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。mIRage光谱的显著优势:1. 和拉曼光谱一致的亚微米空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须复杂的样品制备;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索5. 可实现红外和拉曼光谱成像同步测量 单细胞光谱与成像——拉曼光谱技术 vs.光学光热红外技术 如上文所述,拉曼散射的横截面在指纹区相对于红外弱五到十倍,即相比于拉曼散射,红外吸收在指纹区域比在高波数C─H和O─H拉伸区有更大的横截面。以PMMA为例,C-H振动模式在3.39 μm的线性吸收系数为1396 cm−1,而在指纹区域,C=O拉伸振动模式在5.78 μm的线性吸收系数可达到7904 cm−1,约高6倍。PMMA的红外光谱和拉曼光谱的直接对比如下所示。指纹区域较大的红外吸收截面可以允许mIRage显微镜对单一病毒进行振动光谱的检测分析,而这对拉曼或相关拉曼光谱来说十分困难。在相同的激光功率和采集时间下,mIRage中红外显微镜比拉曼光谱具有更高的信噪比,进一步可以用于检测细菌对抗生素红霉素等药物的反应。综上所述,两种振动光谱技术并没有相互竞争,而是提供了互补的信息,现在越来越多的趋势倾向于同时获取拉曼光谱和红外光谱来全面研究样品的分子振动信息。参考文献:Bond-selective imaging by optically sensing the mid-infrared photothermal effect,Sci. Adv. 2021 7 : eabg1559.具体案例:1. 同位素标记的大肠杆菌单细菌细胞的mIRage显微红外谱图与成像近期,英国利物浦大学Roy Goodacre教授分享了关于同位素标记的细菌的振动光谱研究成果。该研究借助于单细胞亚微米分辨率红外拉曼同步测量系统mIRage,通过红外光谱和成像分析,来揭示细菌代谢的过程和机理,不仅包含细菌群落,还包含微生物之间的相互作用。由于传统显微红外光谱仪的空间分辨率较低,目前多数研究都集中在细胞群落的评估上,而该研究作为一个重大的突破,次使用亚微米光热红外光谱技术在单细胞水平上评估细菌对标记化合物的吞并行为过程。 参考文献:Imaging Isotopically Labeled Bacteria at the Single-Cell Level Using High-Resolution Optical Infrared Photothermal Spectroscopy,Anal. Chem. 2021, 93, 6,3082-3088. 2. mIRage显微红外谱与Raman光谱协同分析固定或活的单细胞英国曼彻斯特大学的Peter Gardner教授近期发表了他们关于活(和固定)细胞振动光谱分析的新研究结果。他们使用亚微米分辨的mIRage红外光谱及拉曼显微镜,并借助于两个激发源(QCL和OPO激光器),对细胞进行了宽光谱范围的覆盖,从而使所有与生物学相关的分子振动都能被检测到,且保持一致的亚微米的空间分辨率。此外,红外光谱采集与拉曼光谱有效的结合起来,在相同的激发位置,形成振动互补,得到一套完整的振动光谱信息。如下图所示,该红外和拉曼的组合方式可以用来分析液体环境中固定或活细胞的亚细胞结构,其中的蛋白质二次结构及富脂体均可以在亚微米尺度上被有效地识别出来。参考文献:Analysis of Fixed and Live Single Cells Using Optical Photothermal Infrared with Concomitant Raman Spectroscopy,Anal. Chem. 2021, 93, 8, 3938–3950. 3. 亚微米分辨红外拉曼同步测量系统mIRage用于微塑料鉴定等相关领域 美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage对聚乳酸(PLA)和聚羟基烷酸酯(PHA)的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。为探求界面处PHA/PLA组分的空间分布规律,同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)被用来分析羰基拉伸区域采集到的红外谱图。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。另外,作者还通过mIRage对该区域进行了同步红外和拉曼分析,两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。参考文献:Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045. 总结亚微米分辨红外拉曼同步测量系统mIRage作为一种新型的红外光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。先,mIRage可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),mIRage的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在mIRage方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制