当前位置: 仪器信息网 > 行业主题 > >

光伏电池

仪器信息网光伏电池专题为您整合光伏电池相关的最新文章,在光伏电池专题,您不仅可以免费浏览光伏电池的资讯, 同时您还可以浏览光伏电池的相关资料、解决方案,参与社区光伏电池话题讨论。

光伏电池相关的资讯

  • 光伏“新秀”钙钛矿电池崭露头角
    今年4月,七国集团气候、能源和环境部长会议发布《联合声明》称,将“推进钙钛矿太阳能电池等领域的技术革新”,钙钛矿太阳能电池这一能源领域的“新秀”引发强烈关注。钙钛矿太阳能电池图片来源:美国国家可再生能源实验室近日,《日本经济新闻》也集结部分专家,对太阳能、风能、核电、二氧化碳回收等5个领域备受瞩目的11项脱碳技术的普及程度进行了评估,结果发现,在即将实现商用的领域中,最引人关注的是下一代太阳能电池——钙钛矿电池,其可能成为能源行业的“游戏规则改变者”。专家指出,钙钛矿太阳能电池凭借高效率、低成本、低能耗、应用场景丰富等特点,在降低光伏成本革命中备受关注,但其耐用性和稳定性仍需进一步提高。下一代技术蓄势待发2013年,《科学》杂志评选十大突破,钙钛矿太阳能电池入选,被称为最有前景的下一代光伏技术。《日本经济新闻》在报道中指出,当前,钙钛矿电池主要有单结钙钛矿电池和叠层钙钛矿电池。叠层钙钛矿电池指钙钛矿层可堆叠在彼此之上,也可堆叠在传统晶硅太阳能电池之上,形成能吸收更宽太阳光谱的“串联”电池。据美国《华尔街日报》网站近日报道,单结钙钛矿电池的理论转换效率可达33%,而钙钛矿/硅串联电池的理论转化效率可达43%,都超过单晶硅电池29.4%的理论转换效率。今年6月,阿卜杜拉国王科技大学称,该校研制的钙钛矿/硅串联太阳能电池的转换效率高达33.7%,创下世界纪录。此外,钙钛矿电池还具有轻、薄、可弯曲等特点,可铺设在传统硅基电池无法覆盖的墙壁表面或列车车顶,操作工序十分简单,且价格几乎减半。东京大学教授濑川浩司的测算显示,到2030年日本钙钛矿电池覆盖的面积最大可达470平方公里,发电能力为600万千瓦,相当于6个核电站。法兰西岛光伏研究所项目总监格雷戈里马克表示,钙钛矿层比硅层薄很多,使用的材料减为约1/100。而且,这些材料可在较低的温度下加工,从而节省能源、减少排放。引国际投资热潮在全球脱碳浪潮下,硅基电池的性能正在接近其理论极限,钙钛矿太阳能技术已成为众多企业眼中的“香饽饽”。欧洲PEPPERONI项目于去年11月1日启动,旨在推进欧洲大陆的叠层太阳能光伏电池的制造和产能,重点关注钙钛矿/硅叠层电池,这一项目将持续4年,由“欧洲地平线”计划与瑞士教育、研究和创新秘书处共同资助。法国光伏组件商Voltec Solar和法兰西岛光伏研究所合作,计划到2030年建设一处规模达5吉瓦的钙钛矿/硅串联太阳能电池“超级工厂”。法兰西岛光伏研究所总经理罗杰德罗兹多夫斯基-施特雷尔表示,这是一场技术革命,与传统技术目前可实现的最佳效率相比,它不仅能够在光伏组件层面实现30%的效率,还能通过利用回收材料,减少能耗和材料消耗。Voltec Solar公司总经理卢卡斯韦斯则强调,串联技术将是未来十年的主导光伏技术。英国牛津光伏公司计划今年推出其商用钙钛矿/硅叠层电池,预计转换效率为27%。该公司也计划在德国柏林附近扩建其试点工厂,并在2030年左右将生产规模扩大到10吉瓦。耐用性和可靠性亟待完善据麻省理工学院(MIT)网站报道,虽然钙钛矿显示出巨大的前景,多家公司已经开始进行商业化生产,但耐用性仍然是其面临的最大障碍。硅太阳能电池板在使用25年后,仍能保持25%的功率输出,但钙钛矿电池下降得很快。不过,科学家们已经取得重大进展:钙钛矿太阳能电池的“寿命”从最初的几小时,增加到几周、几个月,最新“出炉”电池的使用寿命可长达几年。澳大利亚新南威尔士大学工程学教授马丁格林表示,钙钛矿制造商需要证明电池板的使用寿命为25—30年,这是行业标准。牛津光伏公司首席技术官克里斯凯斯称,该公司已将其钙钛矿/硅叠层电池设计为达到或超过25年的使用寿命。MIT光伏研究实验室负责人托尼奥博纳西西指出,钙钛矿的一个优点是它们在实验室中相对容易制造,其化学成分很容易组装,但材料在室温下容易结合在一起,也容易分开。为解决这一问题,有些研究人员使用各种保护材料来封装钙钛矿,使其免受空气和潮湿的影响。博纳西西参与的一项研究表明,一旦钙钛矿的使用寿命超过10年,加上其制造成本低廉,就能在很多大型公用事业场所替代硅基太阳能电池。
  • 化学所在高效室内光有机光伏电池研究方面取得进展
    有机光伏电池具有质量轻、柔性、吸收光谱可调等优势,在室内光应用中展现出巨大应用潜力。近几年,有机光伏电池在室内光下的光伏性能不断提高,但有机半导体材料较大的能量无序度将导致更宽的态密度分布,严重限制了器件在弱光环境下的开路电压和能量转换效率,使其在实际应用中面临严峻挑战。通过聚光技术,增大入射光通量可以有效抑制能量无序度对有机光伏电池室内光性能的影响,但有机光伏电池在聚光环境中的光伏性能和器件稳定性此前较少被报道。中国科学院化学研究所侯剑辉团队基于三种经典的活性层体系(PBDB-TF:Y6、PB2:FCC-Cl和PTB7-Th:PC71BM)深入研究了能量无序度对弱光环境下有机光伏电池性能的影响,以及聚光环境中有机光伏电池的光伏特性。他们证明了聚室内光可以有效抑制能量无序度的不利影响,同时提高器件的开路电压和填充因子,实现更高的光伏效率。其中,基于PB2:FCC-Cl的器件在500 lux光照下具有29.0%的光伏效率;当聚光至20000 lux时,该器件可实现33.0%的光伏效率,是所知相同条件下最高的室内光性能。同时,由于室内光的照明条件更加温和,所有器件在聚室内光下均表现出优异的稳定性。其中,PBDB-TF:Y6体系具有最稳定的形貌特征,其器件在聚室内光下的拟合T80寿命(效率衰减至初始值的80%需要的时间)超过30000小时。此外,基于聚光的方式,由刮涂法制备的0.25 cm2的器件相比500 lux下的10 cm2大面积器件可实现更高的光伏效率和输出功率。结合光波导聚光技术,研究人员证明了聚光有机光伏电池能够具备更低的制备难度和生产成本,在室内光应用中展现出巨大发展前景。相关成果近期发表在《焦耳》(Joule)上。聚室内光有机光伏电池兼具高性能、高稳定性、易加工性和低成本特点
  • ​紫外可见光谱法研究光伏电池
    近些年来,寻找环境问题解决方案日益成为全球亟待解决的主要难题。鉴于化石燃料资源正在迅速耗竭及其对环境造成严重破坏,发展替代性能源产品已经成为当务之急。太阳是清洁能源的一个丰富来源,可通过光伏系统,将太阳光转化为直流电能从而为我们所用。近年来各国都在积极推动可再生能源应用,因此,光伏产业发展十分迅速。今年是“十四五”开局之年,在国家政策的支持下,在“碳达峰”、“碳中和”的目标要求下,光伏行业将迎来更大的发展。光伏转换技术的发展和进步需要在化学、电子、机械和光学等方面对整个过程的各个阶段进行表征,大量的研究工作仍然在进行中。紫外/可见/近红外光谱仪在光学性质研究中有着重要的应用。配有150mm积分球的LAMBDA 1050+紫外/可见/近红外分光光度计使用LAMBDA 1050+紫外/可见/近红外分光光度和150mm积分球,可以测量样品在200~2500nm范围内的透过率、反射率和吸光度。积分球的内表面使用Spectralon高分子材料制成,其反射率接近100%。150mm积分球的窗口面积占内反射表面比值小于2.5%。窗口面积比例越低,测量结果的精密度越高。60mm积分球的窗口面积比大约为7%。透射率和反射率积分球测量:透射模式(上)和反射模式(下)积分球内部的检测器(可见光区域使用光电倍增管,近红外光区域使用PbS检测器)被Spectralon材料制成的挡板所保护,避免直接反射光线进入检测器,从而保证测试结果的准确度。在进行反射率测量时,可以打开镜面反射侧翼,将镜面反射光线排除,从而只测量漫反射光线。在进行透射率测量时,将正对入射光束的窗口上的标准盖板取走,可以排除直接透射光线,从而只测量漫透射光线。吸光度中心样品架附件;使用积分球测量吸收光谱使用中心样品架,将待测样品放置在积分球的中心位置,可以直接测量样品的吸光度。光伏电池的测量光伏电池是将光能转换为电能的半导体器件,第一阶段是吸收有效光谱范围内的光线。为了增加光电转换效率,需要对硅片表面进行处理,以增加光伏电池的吸光度。测量光伏电池的反射率、透过率和吸光度,可以评价其处理方式的效果。未处理的硅晶片、经过织构化处理的硅晶片、覆盖了抗反涂层的硅晶片以及光伏电池成品处理前和处理后硅晶片的透过率(左)和反射率(右)硅片的吸光度可通过如下公式获得:%吸光度=100%-%反射率-%透过率可见,经过处理的硅片吸光度更高,从而光能利用率更高。光伏电池的有效反射率是包含了AM1.5太阳辐射光谱权重的积分反射率,可以表示为:其中R(λ)是测量得到的百分比反射率,Sλ是太阳辐射光谱(以光子流表示)。有效反射率可以在光伏电池生产过程的任意环节进行测量,所得数值可以用于不同样品的相互比较。光伏电池对不同角度光线的透射率和反射率非常重要,后续文章会介绍相应分析方法,敬请期待。更多详情,请扫描二维码下载完整应用报告。
  • 精彩案例 | 钙钛矿太阳能电池应用于光伏屋顶和光伏幕墙
    3月22日,国家发改委发布关于印发《“十四五”现代能源体系规划》的通知,提到积极推动工业园区、经济开发区等屋顶光伏开发利用,推广光伏发电与建筑一体化应用。光伏发电与建筑一体化是少数同时符合“稳增长”和“减碳”的发展方向,未来有望受到政策支持,从而迎来快速发展。光伏屋顶和光伏幕墙是光伏建筑一体化两大细分方向。光伏屋顶是具有承重隔热防水功能、并叠加电池板形成的屋顶,并能有效提供工业厂房用电需求的绿色建筑类型。光伏幕墙则是将幕墙(比如石材幕墙、玻璃幕墙)和光伏发电功能相结合的幕墙,相较于屋顶,建筑幕墙表面积更大,能有效提高发电量。更适用于高楼大厦安装光伏发电的需求。接下来我们通过两个案例来更直观的了解:案例1. 广州美术馆,具有世界唯一的全建筑光伏组件发电幕墙项目,整体幕墙面积达到7万㎡。案例2. 北京世园会中国馆,整个光伏系统装机容量80kW,年发电量约8.3万度。显而易见,发电玻璃光伏幕墙的一项核心科技为太阳能电池。布劳恩一家位于波兰的客户-SAULE Technologies,其联合创始人兼首席技术官 Olga Malinkiewicz 发明了一种在柔性箔上印刷钙钛矿太阳能的方法并获得了专利。该项技术目前应用在光伏屋顶和光伏幕墙等方向。接下来我们通过视频来详细了解吧~自2014年SAULE Technologies公司成立以来,就一直在使用布劳恩手套箱研究开发钙钛矿太阳能电池。SAULE Technologies公司实验室布劳恩提供的稳定的水、氧含量 1ppm的惰性气体氛围支持着每一个需要惰性气体氛围的应用。在钙钛矿太阳能电池行业,我们不仅为行业用户提供手套箱,还可以根据客户具体需求开发出智能的交钥匙设备解决方案,提供用于惰性气体环境的镀膜、封装以及表征分析等一系列工艺设备。工欲善其事,必先利其器,如果您想了解更多产品详情,欢迎致电我们!
  • 化学所等在有机光伏电池稳定性研究方面取得进展
    有机光伏电池具有重量轻、柔性、易于制备透明/半透明器件等优点,在可穿戴电子设备、光伏建筑一体化等领域表现出广阔的应用前景。尽管有机光伏电池的能量转换效率在近年来取得了突飞猛进的发展,关于电池稳定性的研究进展却相对缓慢。   研究表明,空气中的水汽侵蚀会造成器件界面结构剥离,导致电池在长期工作条件下产生光伏效率衰减,严重降低电池的使用寿命。现有的封装技术不仅成本高昂,而且抵抗水分子扩散作用较差,阻碍了有机光伏技术的应用。   中国科学院化学研究所侯剑辉团队通过交联和非极性掺杂剂掺杂相结合的策略,设计开发了一种兼具高电导率和较强疏水性的阴极界面层c-NDI:PCy2,以此实现有机光伏电池稳定性的突破。他们合成了一种可交联的萘二亚胺类有机小分子NDI-A,通过热退火处理生成交联c-NDI-A薄膜,该薄膜对常用的极性和非极性溶剂均表现出很强的耐侵蚀性,为有机光伏电池的逐层溶液加工提供可行性。   此外,他们筛选出一种疏水性小分子二环己基(2',6'-二甲氧基-[1,1'-联苯]-2-基)-膦(PCy2)作为n型掺杂剂,用于提高交联薄膜的电导率,制备出兼具4.0 eV低功函数和6.5 × 10-3 S m-1高电导率的阴极界面层c-NDI:PCy2。基于c-NDI:PCy2的电池获得了17.7%的能量转换效率,同时表现出了极佳的抗水稳定性。   将未封装的电池直接浸入水中,在避光存储1000小时后或在持续光照4小时后均能够保持其初始光伏效率的70%;相比之下,基于传统氧化锌界面层的电池在相同条件下会发生能量转换效率的急剧衰减,甚至完全失去光伏性能。相关成果近期发表在Joule上。有机膦掺杂的交联阴极界面层提升有机光伏电池水下存储与工作稳定性
  • 产业化提速!钙钛矿光伏电池步入商业化关键节点
    日前,奥联电子发布公告称,子公司将设立合资公司投资建设钙钛矿太阳能电池生产线,50MW钙钛矿中试线将于2023年投产。今年以来,我国钙钛矿投资持续增长,相关支持政策陆续出台,钙钛矿电池产业化进程不断提速。  政策大力支持  12月9日,奥联电子发布公告称,全资子公司将设立合资公司投资建设钙钛矿太阳能电池生产线。按照规划,合资公司50MW钙钛矿中试线将于2023年投产,600MW钙钛矿装备和120MW钙钛矿电池组件生产线将于2024年投产,力争5年内形成8GW钙钛矿装备和2GW钙钛矿电池组件生产能力。  公开资料显示,钙钛矿是一种分子通式为ABX3的晶体材料,具有优异的光学和电学特性,光电转换效率高,是极具发展前景的下一代光电材料之一。业内人士表示,钙钛矿电池的光电转换效率持续提升,未来有望广泛应用于光伏建筑一体化(BIPV)和新能源汽车等领域。  平安证券研报显示,TOPCon、HJT、IBC等N型单晶硅电池产业化发展提速,但面临30%的光电转换效率上限。钙钛矿太阳能电池属于下一代高效薄膜太阳能电池,单结钙钛矿电池理论转换效率可达31%,晶硅/钙钛矿双结和三结叠层电池可以实现吸收光谱互补,理论转换效率分别可达40%和50%,大大超越晶硅电池的效率水平。  今年以来,相关政策陆续出台,为钙钛矿电池产业发展提供有力的支持。2022年6月,国家发展改革委、国家能源局等九部门联合印发的《“十四五”可再生能源发展规划》提出,掌握钙钛矿等新一代高效低成本光伏电池制备及产业化生产技术。8月18日,科技部等九部门联合印发的《科技支撑碳达峰碳中和实施方案(2022—2030年)》提出,重点研发高效稳定钙钛矿电池等技术。  市场前景广阔  机构看好钙钛矿电池产业长期发展前景。目前,钙钛矿电池仍处于发展前期。随着技术持续进步,稳定性和规模化制造以及相关测试技术将逐步完善,钙钛矿电池商业化应用将进一步成熟。  根据平安证券报告,钙钛矿电池具备转换效率高、材料成本低、结构简单、工艺流程短、生产耗能低等优势,长期发展优势显著。随着近期技术研发持续突破,商业化应用有望进一步成熟。  浙商证券研报称,钙钛矿太阳能电池是第三代高效薄膜电池的代表,钙钛矿具备质量轻、厚度小、柔性大、半透明等特性,未来将是BIPV等领域的明星材料。  银河证券相关报告认为,随着钙钛矿电池技术发展日益成熟,“十四五”期间我国钙钛矿电池在建及规划产能有望达到50GW-75GW,对应设备总投资175亿元至263亿元。  步入商业化关键节点  在良好的行业发展前景和利好政策带动下,今年以来,钙钛矿项目投资持续增长,产业化进程不断加速。  12月8日,无锡极电光能科技有限公司宣布,公司投资建设的150MW钙钛矿光伏生产线正式投产运行。据介绍,这是目前全球规模最大的钙钛矿光伏生产线。按照规划,公司总投资超30亿元的GW级钙钛矿光伏生产线及配套产线将于明年启动建设,预计2026年产能将达到6GW。  在此之前,宁德时代于10月份公布一批钙钛矿专利。据了解,宁德时代早在2020年即开始布局钙钛矿。在今年5月份的业绩说明会上,公司透露,钙钛矿光伏电池研究进展顺利,并进入中试线搭建阶段。  今年10月,金晶科技与杭州纤纳光电科技有限公司签订战略合作协议,拟在钙钛矿用TCO系列玻璃领域建立战略合作关系。今年年初,纤纳光电投资建设的100MW钙钛矿规模化产线建成投产,目前公司正在规划GW级生产线建设,有望2023年投产。  此外,宝馨科技此前表示,公司钙钛矿项目将于明年年中完成实验室建设,预计2024年进入中试阶段,5年内会完成钙钛矿异质结电池叠层量产的目标。  业内人士表示,目前钙钛矿电池已步入商业化的关键节点,亟待推进供应链企业的合作开发以及行业标准的建立。随着更多企业的加入,钙钛矿电池产业化进程有望进一步加速。为加速国内半导体材料及器件发展,促进国内半导体材料与器件领域的人员互动交流,推动我国半导体行业的高质量发展。仪器信息网联合电子工业出版社将于2022年12月20-22日举办第三届“半导体材料与器件研究及应用”主题网络研讨会。本次会议特别设置了光电材料、器件专场。参会方式本次会议免费参会,参会报名请点击会议官网:会议官网:https://insevent.instrument.com.cn/t/Mia (内容更新中)或扫描二维码报名
  • 光伏市场增速趋缓 薄膜电池前景黯淡
    随着硅原料价格的大幅下降,薄膜太阳能的低成本竞争优势已经很难再现。同时,光伏业产能转移也已经成为一个趋势,今年欧洲电池片企业大都关门转移到东南亚,明年很多组件部门也将关门。光伏制造将在中国进一步聚集,由目前占全球产能的1/2扩展到明年占全球约2/3。这是在8月30日普华永道“新能源产业的发展趋势与中国机遇”上海世博圆桌会议上透露出的信息。   明年光伏市场增速趋缓   近3个月以来,硅料价格已从50美元/公斤上涨到近80美元/公斤。业内人士分析认为,由于今年整个光伏行业的复苏,其产业链上的所有产品如太阳能电池硅片、电池片、组件等都呈现出供不应求的态势。   目前全球光伏消费市场主要取决于欧洲市场。2009年欧洲占全球光伏消费的73%,德国、西班牙仍然引领全球太阳能需求市场。不过,接下来的7个月德国将会连续2次降低补贴税率,这将在短期内直接影响市场的订单。   曹敏对中国证券报记者表示,今年公司的生产排期已经满负荷,全年订单已经饱满。不过,光伏行业的发展往往呈现出“脉冲式”发展,市场需求会受到市场环境、各国补贴政策、生产成本的影响。   曹敏进一步表示,目前光伏消费市场正在向全球扩散,预计今年欧洲消费占全球比重将减少至70%。光伏业需求还会持续增加,但不会是直线上升,预计明年全球市场增速会比今年有所放缓。   薄膜电池前景暗淡   目前薄膜太阳能电池转换率只有7%,而单晶行业平均达到17-17.5%,多晶达到17%,随着硅原料价格的大幅下降,薄膜太阳能原先的低成本竞争力已经很难再现。   无锡尚德在2008年金融危机之前是最高调要发展薄膜太阳能的企业。2007年5月,董事长施正荣宣布要投资3亿美元发展薄膜电池,并期待在今年能形成400兆瓦的规模。而在今年6月,无锡尚德在上海市闵行区投资28.6亿元建设的“千兆瓦级太阳能产业基地”项目正式启动时,施正荣对中国证券报记者表示,“近一年多晶硅价格大幅回归理性价位,薄膜电池经济性凸显不足,大规模生产计划将延期。”   晶龙实业集团副总经理曹敏对中国证券报记者表示,“现在太阳能晶硅光伏已经占主导地位,金融危机使得多晶硅价格从500美元/公斤,跌到50-60美元/公斤,造成薄膜低成本竞争优势不再。同时,光伏业产能转移也已经是一个趋势,今年欧洲电池片企业大都关门转移到了东南亚,明年很多组件部门也将关门。而目前中国光伏制造占全球1/2,明年将近一步集中到约占全球的2/3。”晶龙旗下拥有国内最大光伏企业之一的晶澳太阳能,预计今年产量将达1.35GW。   据中国证券报记者了解,作为全球两大薄膜电池设备生产之一的欧瑞康公司太阳能事业部中国区总经理孙海燕,在今年初也已经转投国内晶硅光伏产业一体化公司天合光能担任副总裁职务。
  • 美终裁中国产晶体硅光伏电池存在倾销和补贴
    华盛顿10月10日电 美国商务部10日作出终裁,认定中国向美国出口的晶体硅光伏电池及组件存在倾销和补贴行为,这基本为美国针对此类产品征收反倾销和反补贴关税(“双反”)扫清了道路。   美国商务部当天最终裁定,中国晶体硅光伏电池及组件的生产商或出口商在美国销售此类产品时存在倾销行为,倾销幅度为18.32%至249.96%。同时,还裁定中国输美的此类产品接受了14.78%至15.97%不等的补贴。   根据这一终裁结果,倾销幅度从今年5月份初裁的最低31.14%下调至18.32%,最高幅度不变 补贴幅度则大大高于初裁的2.9%至4.73%。   按照美方贸易救济程序,除美国商务部外,此案还需美国国际贸易委员会作出终裁。根据目前日程,美国国际贸易委员会定于今年11月23日左右作出终裁。如果美国国际贸易委员会也作出肯定性终裁,即认定从中国进口的此类产品给美国相关产业造成实质性损害或威胁,美国商务部将要求海关对相关产品征收“双反”关税。   根据美国商务部公布的数据,2011年美国从中国进口了价值约为31亿美元的晶体硅光伏电池及组件。   美国智库人士与相关行业协会多次警告,美国通过征收“双反”关税来保护本土企业,将付出沉重代价。美国廉价太阳能联合会估算,若美方对来自中国的光伏电池及组件征收100%的惩罚性关税,将在未来3年内损失5万个工作岗位。   这是今年以来美国对中国发起的又一项贸易救济行动,此前美国方面连续对中国产品发起“双反”和“337调查”。中国商务部多次表示,希望美国政府恪守反对贸易保护主义承诺,共同维护自由、开放、公正的国际贸易环境,以更加理性的方法妥善处理贸易摩擦。   美终裁对华光伏产品征34%-47%关税   《纽约时报》报道,美国商务部发布最终裁决,决定对大多数从中国进口的太阳能板和太阳能电池产品征收大约34%到接近47%的关税。   对大多数中国太阳能企业而言,这一惩罚比奥巴马政府今年早些时候的判决更为严苛。
  • 飞秒激发拉曼光谱帮助理解光伏电池发电机理
    Solarbe(索比)光伏太阳能网讯:不管你是否相信,我们并不完全了解太阳能电池的工作原理,特别是有机薄膜太阳能电池。但最近加拿大、伦敦和塞浦路斯的科学家使用激光器,将一些光线引入来帮助制造更高效的太阳能电池板。   本周早些时候,来自蒙特利尔科学与技术设施委员会、英国伦敦帝国学院和塞浦路斯大学大学的科学家在《自然传播》上发表的一份新报告中解释他们的发现:&ldquo 我们的发现对机制理解所有的太阳能转换系统方面的分子细节的发电机制非常重要。&rdquo 第一作者,蒙特利尔大学Francoise Provencher称:&ldquo 我们几十年来致力理解有机光伏分子的工作原理图这一' 圣杯' ,终于取得重大进展。&rdquo   &ldquo 我们用飞秒激发拉曼光谱,&rdquo 来自科学和技术中央激光设施理事会的Tony Park说,&ldquo 飞秒激发拉曼光谱技术是一种先进的超快激光技术,它提供了在极快的化学反应里,化学键是如何变化的细节。分子与激光脉冲相互作用时,激光提供了分子的振动信息。&rdquo   Experimental setup used to map defect densities in organic thin films. A pulsed laser beam is used to raster-scan the material of interest, which is assembled in a field-effect geometry, allowing changes in current flow to be detected. The yellow zones indicate sites at which the defect density is particularly high. (Credit: Christian Westermeier)   表征薄膜电池表面活性层结构   由此获得的信息显示了太阳能电池中的分子演化过程。他们发现了两项重点:快速分子重排和极少量分子松弛和重组。重排或响应速度非常快 - 仅300飞秒(femtosecond)。研究人员表示,一飞秒相对于一秒的概念,就象是一秒相对于370万年。   &ldquo 在这些设备中,光吸收加速了电子和带正电荷物质的形成。最终要提供电力,这两个相互吸引的粒子就必须分开,电子必须离开。如果电子不能足够快地移开,则正电荷和负电荷就会简单地再结合,结果是什么变化也没有。太阳能设备的整体效率就在于正负电荷重新组合和分离的比例。&rdquo 斯塞浦路斯大学的Sophia Hayes解释说。   &ldquo 我们的研究结果为未来理解生产高效太阳能电池的系统的差别,或者理解那些系统应该有高发电效率却并没有表现出来的原因,提供了可能的路径。更多更深入的了解什么可行,什么不可行,对将来设计更好的太阳能电池将明显有益,&ldquo 蒙特利尔大学卡洛斯· 席尔瓦,也是这项研究的资深作者进一步表示。   慕尼黑Ludwig Maximilian大学Bert Nicket领导的科学家团队首次成功地用激光激发材料对有机薄膜太阳能电池的活性层进行了功能表征,&ldquo 我们已开发出一种方法用激光对材料进行光栅扫描,聚焦的光束通过旋转衰减器调制成不同的方式。这样我们就能够直接映射分布在有机薄膜上的缺陷空间分布,这是以前从未实现过的,&ldquo Christian Westermeier解释说。   太阳能电池通过光子激发分子产生自由电子和正电空穴,来将光能转换成电能。电荷载流子被电极捕获的时间和电池的活性层详细结构有关。原子规则排列中的缺陷会捕获载流子,也减少可用电流。新的映射方法使研究人员能够检测到与激光激发缺陷局部相关的电流变化。   该研究显示,在并五苯有机半导体中,这些缺陷往往集中在一定位置上。选择并五苯来实验,因为它是目前可用于有机半导体生产的导电最好的材料,理解这些表层热电的特别之处非常有意义。是什么在这些地方产生了缺陷?可能是由于化学污染,或是分子的排列不规则?   飞秒激发拉曼光谱这种新技术,为理解有机薄膜发电的深层机理提供了新的途径。
  • 钙钛矿:从乌拉尔山脉里走出的一种新型光伏电池
    2013年,一种新型太阳能电池材料——钙钛矿突然成为人们关注的焦点。它具备高效率、低成本、制造工艺简单、光谱吸收范围广等优势,即使在弱光条件下也能保持光电转换率。用这种材料制成的电池被《科学》杂志评为2013年十大突破之一。所有光伏太阳能电池光电转换都依赖于半导体将光能转换为电能。自20世纪50年代以来硅一直是太阳能电池的主要半导体材料。但传统太阳能电池板制造过程中使用的大型硅晶体价格昂贵、制备步骤多,需消耗大量能源。在寻找硅的替代品过程中,科学家利用钙钛矿的可调性制造出了与硅性质类似的半导体。钙钛矿晶体可以分散到液体中,使用低成本的成熟技术旋涂,制得的薄膜光吸收层仅百纳米,比硅电池厚度小逾百倍。通过改变钙钛矿材料的化学组分,可以调节其吸收光的波长。调到不同波长的钙钛矿层甚至可以堆叠在彼此之上,也可以堆叠在传统的晶硅太阳能电池之上,形成了能够吸收更多太阳光谱的“串联”电池。如今,这种电池的转换效率从2009年的3.8%提高到25%以上,这种新兴的光伏技术引得资本争相入局,但大面积应用的效率、稳定性等难题仍有待解决。从实验室里走出的钙钛矿电池钙钛矿(Perovskite)已有180多年历史,最初它是指一种由无机物钛酸钙(CaTiO?)组成的矿物。1839年,在欧亚两洲的分界线乌拉尔山脉,柏林大学矿物学家古斯塔夫斯罗斯(Gustavus Rose)发现了这种天然矿物,他以俄罗斯贵族、矿物学家列夫佩洛夫斯基(Lev Perovski)的名字为这种物质命名。但在光伏领域,“钙钛矿”并非指一种特定材料,而是指具有ABX?结构的化合物家族,A位通常代表有机阳离子,B位为金属铅离子Pb2+,而X位为卤素阴离子。由这些化合物组成的材料家族被通称为“钙钛矿”材料。这是一种人工设计的材料,材料配方选择灵活,带隙可调。由于钙钛矿结构可以由大量不同的元素组合而成,利用这种灵活性,科学家可以设计钙钛矿晶体,使其具有各种各样光学和电学特性。时至今日,钙钛矿晶体已广泛用于超声波机、存储芯片以及太阳能电池中。最近10多年来,研究人员关注的焦点主要集中在卤化铅钙钛矿,世界各地的实验室都试图寻找在电池效率、成本和耐用性方面表现最佳的钙钛矿材料。2009年,日本科学家宫坂力(Tsutomu Miyasaka)及其同事首次选用有机-无机杂化的钙钛矿材料碘化铅甲胺(CH3NH3PbI3)和溴化铅甲胺(CH3NH3PbBr3)作为新型光敏化剂,取代染料敏化太阳能电池中的染料,制备出全球第一个具有光电转换效率的钙钛矿太阳能电池器件。虽然其转换效率仅有3.8%,有效面积0.24平方厘米,并只稳定了几分钟,但为钙钛矿太阳能电池的后续发展奠基了不可磨灭的研发基础。2011年,韩国成均馆大学朴南圭(Nam-Gyu Park)课题组通过技术改进将转化效率提高到6.5%,但仍采用液态电解质,导致材料不稳定,几分钟后效率便削减了80%。钙钛矿真正引起学界广泛关注是2012年。当时,朴南圭团队首次报告了效率接近10%的全固态有机-无机杂化钙钛矿太阳能电池,这被认为是钙钛矿太阳能电池发展历程中里程碑式的工作。也是这一年,英国的亨利斯奈斯(Henry Snaith)团队首次将氯元素引入钙钛矿中,并使用无机化合物氧化铝(Al?O?)替代无机化合物二氧化钛(TiO?),证明钙钛矿不仅可作为光吸收层,还可作为电子传输层,得到电池效率10.9%。2013年,斯奈斯等人采用共蒸发方法制备钙钛矿薄膜,形成了一种全新的平面异质结电池,效率达到15.4%,引起世界瞩目。有机-无机卤化铅钙钛矿也因此成为新兴的光伏材料。“2014年以前,大家研究的是有机-无机杂化的钙钛矿,里面既有机小分子,也有无机重金属,还有卤素。研究人员测试后发现这种材料在制备工艺上与有机光电半导体相似,但它的光电特性又像无机材料。”中国科学院上海光学精密机械研究所(下称上海光机所)薄膜光学实验室主任、研究员邵宇川向澎湃科技(www.thepaper.cn)介绍道,“当时,新一代光伏太阳能电池课题组的研究方向主要包括染料敏化太阳能电池、量子点太阳能电池、有机太阳能电池。这三种电池结构各不相同,神奇的是,把钙钛矿 ‘塞到’这三种电池中,不需要改变器件结构,电池都可以高效工作,钙钛矿研究领域一下子就火了。”钙钛矿的火热也让研究人员开始关注其本身的机理和光电特性,邵宇川介绍,到2016年,通过生长世界上第一个大尺寸钙钛矿单晶,科学家已能清楚表征钙钛矿材料本征的光电特性,人们可以根据不同的应用需求改变钙钛矿器件结构,提升效率和稳定性。一种“三明治”结构的新型光伏电池如果说,第一代太阳能电池的光电转换材料主要是硅这种间接带隙半导体,第二代太阳能电池的光电转换材料升级成砷化镓、碲化镉、铜铟镓硒等直接带隙半导体,那么第三代太阳能电池的光电转换材料就包括兼具高效率和低成本制备优势的钙钛矿。这种新型光伏电池与传统晶硅电池相比,不但具有弱光性能好、质量轻等特性,还可拓展应用于柔性光伏和半透明光伏领域。钙钛矿对光的吸收能力强,光谱吸收范围广,即使在室内等弱光条件下,钙钛矿仍能保持较高的光电转换效率,而传统晶硅电池由于其带隙较窄,弱光下的发电效率较低。钙钛矿电池能够承受宇宙射线辐射,因此临近空间(距地面20公里-100公里的空域)的平流层飞艇也可以使用这种电池。钙钛矿太阳能电池结构就像三明治,一般由透明导电电极、电子传输层、钙钛矿吸光层、空穴传输层、金属电极5部分组成。其中,位于中间的电子传输层、钙钛矿吸光层、空穴传输层是钙钛矿电池最基本的三个功能层。当太阳光照在钙钛矿电池上,太阳光光子能量大于带隙时,钙钛矿层吸收光子产生“电子—空穴对”。电子传输层将分离出来的电子传输到负极上;空穴传输层将与电子分离的空穴传输到正极上,进一步在外电路形成电荷定向移动,从而产生电流,光能转换为电能。按照电子传输层和空穴传输层的位置分布,钙钛矿太阳能电池器件结构可以分为正置结构(n-i-p,电子传输层-钙钛矿层-空穴传输层)和倒置结构(p-i-n,空穴传输层-钙钛矿层-电子传输层)。从研发和产业化的主流技术路线来看,目前钙钛矿电池主要有单结钙钛矿电池和叠层钙钛矿电池。其中,单结钙钛矿电池只有钙钛矿本身的“三明治”结构,而叠层钙钛矿电池又包括晶硅/钙钛矿叠层电池、全钙钛矿叠层电池、薄膜电池(如铜铟镓硒)/钙钛矿叠层电池等。钙钛矿电池上游核心设备供应商上海德沪涂膜设备有限公司董事长王锦山告诉澎湃科技(www.thepaper.cn),单结钙钛矿电池是所有钙钛矿电池产品形态的基础,理论转换效率可达33%,实验室最高认证效率目前为25.8%,“也有团队在研究晶硅和钙钛矿的叠层,理论上转换效率在40%左右,目前实验室最高已达33.2%。钙钛矿和钙钛矿的叠层研究也有人在做,理论转换效率可以做到50%以上。”南京大学现代工程与应用科学学院教授谭海仁及其创办的仁烁光能(苏州)有限公司正在从事钙钛矿和钙钛矿的叠层研究和产业化。根据公开资料,仁烁光能全钙钛矿叠层电池稳态光电转换效率达29.0%。今年2月,仁烁光能建设的全钙钛矿叠层光伏组件研发线投产,组件尺寸30*40c㎡,目前10MW(兆瓦)研发中试线已全线跑通,其投建的150MW量产线计划2023年底完成600mm*1200mm组件出片。“底下是硅电池,上面是钙钛矿电池,光打下去以后,短波长的光被钙钛矿吸收了,长波长的光被硅吸收了,所以晶硅钙钛矿叠层电池的转换效率非常高。”邵宇川表示,同样的,全钙钛矿叠层电池效率高,相比于晶硅电池更具有柔性特征,但工艺难度也更大。大面积应用的效率、稳定性、寿命三座大山近年来,钙钛矿太阳能电池研发和产业化取得了显著进展,光电转换效率从2009年的3.8%提高到今天的25%以上,寿命也从2012年的5分钟延长到如今1000小时以上,这种新兴的光伏技术引得资本争相入局。但在成为具有竞争力的商业技术之前,钙钛矿太阳能电池仍然存在诸多挑战,距离硅电池超过20年的使用寿命仍有差距。中国科学院院士白春礼去年12月则表示,钙钛矿电池是电化学储能的新方向,但存在稳定性较差和大面积应用时的效率损失两个短板,成为当前研究热点之一。从事钙钛矿电池技术研发和商业化应用的深圳无限光能技术有限公司(下称“无限光能”)创始人兼CEO梁作对澎湃科技(www.thepaper.cn)表示,稳定性、效率衰减、寿命其实是一个概念,稳定性好意味着寿命长。在钙钛矿电池的生产中,镀膜、激光刻蚀、封装是三大核心工艺环节。镀膜阶段要制备均匀、无孔洞的钙钛矿层薄膜。在激光干刻阶段,通过多道激光刻蚀构建钙钛矿电池中的电路结构,把多个钙钛矿电池单元串联成组件。钙钛矿光伏材料怕水怕空气,而封装技术和钙钛矿电池寿命、稳定性紧密相关。王锦山介绍,镀膜阶段,钙钛矿层制备必须精确控制厚度和平整度,其中厚度为400纳米-800纳米,平整度偏差小于等于±5%,制备方法之一是使用真空蒸镀形成薄膜,其二也可以使用低成本的溶液法,通过狭缝涂布技术成膜、结晶,成膜和结晶的物理和化学一致性好坏决定了面板的发电效能。“变成晶体的过程不难,但在大尺寸上实现物理变化诱导的成核/结晶高度化学一致性比较难。如果解决了这个难题,就基本实现了大面积单结钙钛矿的产业化。”“从实验室的平方厘米小尺寸到产业化的大尺寸,钙钛矿成膜会出现不可避免的不同程度缺陷,导致致密性不高,导电传输效率降低,这是钙钛矿电池产业化的最大挑战。从寿命上来说,钙钛矿电池与晶硅电池有本质差别,要延长钙钛矿电池的寿命,封装技术是关键,要提高封装胶的阻隔效应,防止透水透气。”王锦山表示。而成本是一个综合性问题,与设备投入、电池寿命、光电转换效率、产能均相关。王锦山表示,尽管目前产业界已经建立了钙钛矿电池中试线,但仍处于试验和爬坡阶段,由于最终的技术路线尚未完全确定,技术也没有达到可以变成产品的程度,因此钙钛矿电池成本目前还只是从理论上计算。从设备投入成本来讲,溶液法这样的湿法方式比干法便宜30%-50%甚至更多,“相比干法成膜,湿法设备不需要使用耗能的真空泵,占地小,后期维护简单,也不需要金属/金属氧化物等昂贵靶材,从运营成本上来讲,湿法成膜更加经济。”“未来努力的方向包括提高钙钛矿电池的寿命、降低成本,注重环境友好性,防止铅泄漏。小面积钙钛矿电池效率已经做得非常好了,大面积的效率还要继续努力。”邵宇川认为,减少钙钛矿电池大面积应用时的效率损失,要从生产的均匀性、工艺的固化等方向努力。从成本上考虑,采用溶液法制备钙钛矿层价格便宜,但还存在均匀性问题,理论上可以解决,目前业内也在努力,通过组分、工艺、溶剂配比以及生产环境的调控,提高生产的稳定性。
  • 光伏太阳能电池-等离子表面处理和USC干式除尘的关键作用
    光伏电池又称太阳能电池,是一种直接将光能转化为电能的半导体薄片。*光伏电池(图源网络,侵删)其中,基板作为光伏电池的主要组成部分之一,其表面性能和洁净度直接关系到电池的光电转换效率和稳定性。光伏太阳能电池等离子处理、除尘解决方案在光伏电池制程中,等离子表面处理可用于玻璃基板表面活化,阳极表面改性,涂保护膜前处理等,在提高光伏元件表面亲水性、附着力等方面具有显著的优势。*光伏电池结构(图片来源:灼识咨询,侵删)同时,需要解决光伏电池制程中的尘埃污染问题。浮尘颗粒会附着在基材表面,不仅影响光电转换效率,还可能引发电池内部故障。*光伏电池工艺制程(资料来源:灼识咨询、中泰证券,侵删)因此,在光伏电池制程中,需要对光伏元件进行表面活化和除尘处理,增强基板表面附着力和洁净度,提升电池的稳定性。大气等离子应用案例通过等离子表面活化,可以提高玻璃基板表面亲水性,有效优化表面附着力,提升电池的稳定性和品质,从而改善器件的性能。等离子处理玻璃基板*光伏原片玻璃(图片来源:江西赣悦新材料,侵删)USC干式超声波除尘应用案例通过USC干式超声波除尘清洗机清除基板上的浮尘,可以提高光伏电池的性能和稳定性。除尘率可达97-99%光伏电池基板除尘光伏太阳能电池领域应用设备1、 大气等离子清洗机SPA-5800具有强大的数据处理功能,实现设备数字化控制,可对接客户产线,有效减低生产成本。✅ 支持数字通信接口和模拟通信接口✅ 搭载进口ARM芯片,实现功率自匹配✅ 具有十余种故障报警功能,故障率低2、 中频宽幅等离子清洗机适用于各种平面材料的清洗活化,可装配不同长度等离子枪头,可客制化流水线设备。✅ 等离子体均匀✅ 电源设计兼容性充足,输出功率范围大✅ 软件/硬件多重保护,安全可靠3、 在线式干式超声波除尘清洗机集除尘、除静电为一体的在线式除尘设备。配有真空吸附移动平台、内部洁净系统,不会对洁净室造成2次污染。✅ 非接触式除尘,产品无损伤✅ 闭环系统,不造成2次污染✅ 以空气作为除尘媒介物质,无需水、溶剂、干燥等过程4、 接触角测量仪SDC-200S光伏电池制备中对于基板表面的润湿性能具有一定的要求,SDC-200S具有全面、完整、精准的拟合测量法,可用于光伏电池基材表面润湿性能检测。✅ 变焦变倍镜头,成像清晰✅ 自动注液系统✅ 可自动生成报告
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)
  • 《光伏电池用背板》等206项电子行业标准计划项目公示
    根据工业和信息化部2010年标准化工作的总体安排,现将申请立项的《光伏电池用背板》等206项电子行业标准计划项目予以公示(见附件1),截止日期为11月10日。如对拟立项标准项目有不同意见,请在公示期间填写反馈意见表(见附件2)向我司反馈(邮件主题注明:行标拟立项公示反馈)。   地址:北京市西长安街13号工业和信息化部科技司   邮编:100804   联系电话:010-68205239、5240   电子邮件:KJBZ@miit.gov.cn   附件1:2010年电子行业标准项目计划表(征求意见稿).doc   附件2:行业标准立项反馈意见表
  • RESOLUTE绝对式光栅可以满足光伏太阳能电池板制造业的需要
    高效光伏太阳能电池(发电板)制造商面临的最大挑战是降低成本和提高电池效率。通过提高产量、减少加工精度的分散变化,并消除影响生产力提升的障碍来提高工厂自动化程度,是公认的实现电网价格持平等问题的关键。 与众多行业一样,选择合适的光栅(位置编码器)在光伏电池制造的高效工厂自动化中是很重要的环节。全球各地的太阳能电池板制造商一直在寻找一种有助于增加输出量、提高产量并尽量缩短停机时间的编码器。雷尼绍的RESOLUTE绝对式直线光栅和圆光栅可以满足这些要求,该光栅将真正的绝对式光栅反馈与高分辨率(1 nm)、高精度(± 1 µ m/m)、非接触光学系统等计量优点相结合,具有非常出色的可靠性和安全性。 RESOLUTE是绝对式光栅,这意味着它在通电后就能立即确定绝对位置,无需返回参考(基准)点,从而极大缩短开启时间并在出现任何运动前就实现对轴的完全控制。此项性能特征在机床断电又重新通电的情况下非常重要。它可以安全可靠地执行复杂的恢复路径,确保价格昂贵的产品和设备免于受损。 实际上,位置反馈的安全性是RESOLUTE系统的一项突出优点。光栅运行两种独立算法:一种用于确定绝对位置,另一种用于检查测量结果。这些内置位置检查算法可以独立校验位置,确保报告位置的保真度并可防止轴的非受控运动。因此大大降低了制造过程中电池或轴受损的几率。RESOLUTE已被世界领先的外科手术机器人公司采用,这足以说明该集成功能的有效性和可靠性! RESOLUTE以一种完全独特的方式工作,类似于一台超高速数码相机对由长的非重复条形码组成的栅尺进行拍照,从而为读数头提供绝对位置。RESOLUTE比市面上最快的数码相机的速度还要高1000倍。在图片中进行插补可达到1纳米的分辨率。另外,由于RESOLUTE在100 m/s时可达到1 nm的分辨率,所以光栅速度永远不会是一种限制,因此硅太阳能电池制造设备可更快速地运转,并且与使用传统光学编码器的设备相比,可实现更高的产量和效率。而且绝不仅仅是高速度&hellip &hellip 条形码含有大量的冗余,而读数头应用复杂的交互校验和误差修正。因此结果不会受到诸如硅尘、油和指纹等栅尺污染的影响。RESOLUTE所具备的抗污能力意味着,它可以在可能引起其它光学编码器丢数的环境中连续运转。 另外,RESOLUTE可以达到非常优异的运动控制性能,因而提高了精度和制造过程的产量,甚至领先于极为苛刻的精密激光加工技术。传统密封式绝对式光学编码器通常具有约± 200 nm的细分误差 (SDE)。这么明显的SDE会产生很差的速度控制性能,导致运动轴上出现振动;在这样的轴上移动易碎、昂贵的硅片有可能发生&ldquo 恐怖的故事&rdquo ,而且可能出现微裂纹,太阳能电池的相关性能也会降低。较差的SDE还可降低诸如缺陷检测等动态执行的扫描作业的生产效率。RESOLUTE凭借其新颖的检测方法打消了所有这些顾虑,这种方法的固有SDE非常低,不超过± 40 nm。多轴设备的制造商还可以通过使用RESOLUTE获益,因为它具有非常低的噪声(
  • 美国商务部发起针对中国晶体硅光伏电池的情势变更复审
    当地时间2022年3月23日,应SOURCE Global, PBC (SOURCE Global)的申请,美国商务部发起针对中国晶体硅光伏电池产品的情势变更复审(CCRs),以考虑是否撤销部分涉案产品现有的反倾销税令和反补贴税令。当地时间2012年12月7日,美国商务部发布公告,对进口自中国的晶体硅光伏电池发布反倾销和反补贴令。当地时间2020年12月4日,美国进口商SOURCE Global提交情势变更复审申请,要求撤销对某些离网小型便携式太阳能光伏电池的反倾销令和反补贴令。相关英文表述见下:SOURCE Global proposes that the Solar Cells Orders be revoked, in part, with respect to certain off-grid small portable CSPV panels as described below:(1). Off-grid CSPV panels in rigid form with a glass cover, with each of the following physical characteristics, whether or not assembled into a fully completed off-grid hydropanel whose function is conversion of water vapor into liquid water:(A) A total power output of no more than 80 watts per panel (B) A surface area of less than 5,000 square centimeters (cm^2) per panel (C) Do not include a built-in inverter (D) Do not have a frame around the edges of the panel (E) Include a clear glass back panel and(F) Must include a permanently connected wire that terminates in a two-port rectangular connector.
  • 加研制出全光谱太阳能电池
    据美国物理学家组织网6月27日(北京时间)报道,加拿大科学家表示,他们研发出了一款新式的全光谱太阳能电池,其不但可以吸收太阳发出的可见光,也可以吸收不可见光,从理论上讲,转化效率可高达42%,超过现有普通太阳能电池31%的理论转化率。研究发表在最新一期的《自然光子学》杂志上。   此款基于胶体量子点(CQD)的高效串接太阳能电池由加拿大首席纳米技术科学家、多伦多大学电子与计算机工程系教授泰德萨金特领导的科研团队研制而成。论文主要作者王希华(音译)表示,该太阳能电池由两个吸光层组成:一层被调制用于捕捉太阳发出的可见光 而另外一层则可以捕捉太阳发出的不可见光。   萨金特介绍说,为了做到这一点,该团队用纳米材料串联成一个名为分级重组层的设备,能往返运输可见光层和不可见光层之间的电子,有效地将捕捉可见光的吸光层和捕捉不可见光的吸光层结合在一起,这样,两个吸光层都不需要妥协。   该研究团队在使用CQD制造太阳能电池方面一马当先,CQD这种纳米材料很容易被调制来对特定波长的可见光和不可见光作出反应。新式串联CQD太阳能电池捕捉光波的波长范围比普通太阳能电池更加宽泛,因此,从理论上讲,其转化率可达42% 相比之下,最好的单结太阳能电池的最大转化率仅为31%,而一般位于屋顶或日常消费产品中的太阳能电池的转化率仅为18%。   研制高效的、成本合理的太阳能电池是全球共同面临的巨大挑战。萨金特说:“全球都需要转化效率超过10%的太阳能电池,并希望能显著降低现有光伏组件的零售价。最新进展提供了一条切实可行的道路,其能最大限度地捕捉太阳发出的各种光线,有望提高转化率并降低成本。”   萨金特希望,在5年内,将这款新的分级重组层太阳能电池整合入建筑材料、手机和汽车零件中。
  • ARCoptix小型傅里叶红外光谱仪助力硅太阳能电池检测
    ARCoptix小型傅里叶红外光谱仪助力硅太阳能电池检测硅太阳能电池我们使用ARCspectro FT interferometer在600-1300nm近红外区域测量硅太阳能电池的光谱响应。此光谱仪有两个光纤接口,一个接口用来连接光源(此处使用的是商用卤素光源),另一个接口用来连接调制光源的输出。光谱仪模块上的连接器允许将外部探测器(此处是硅太阳能电池)连接到内部放大器上。整个系统如下图1所示通过具有调制光束的光纤来照射太阳能电池,通过傅里叶变换从干涉图中提取光谱。光谱强度如下图2所示,其光谱强度不但与硅电池的相应有关,而且还与干涉光学固有光的传输和调制效率,以及光源的光谱强度有关。低的截止边(550nm)是由于光谱仪的光源造成的,而高的截止边(1300nm)是由于被测硅太阳能电池的带隙。 瑞士ARCoptix公司由四位工程专家于2005年创立,是一家专业的光学测量系统制造商。公司位于瑞士纳沙泰尔(Neuchâtel)),因为独特的地理优势与EPFL(瑞士洛桑联邦理工学院)、BFH(伯尔尼应用科学大学)以及当地钟表业建立了牢固的合作伙伴关系。得益于这些合作,ARCoptix拥有高科技制造和表征设施以及光学微技术领域的专业知识。上海昊量光电代理ARCoptix的产品型号有FT-IR Rocket傅里叶红外光谱仪、VIS-NIR/UV-VIS-NIR光纤光谱仪和FT-FC傅里叶红外光谱仪。 FT-IR Rocket傅里叶红外光谱仪 VIS-NIR/UV-VIS-NIR光纤光谱仪 FT-FC傅里叶红外光谱仪FT-IR Rocket傅里叶红外光谱仪具有高灵敏度、高分辨率。可选光谱范围有2-6µm,1.5-8.5µm,2-12µm。VIS-NIR / UV-VIS-NIR 光纤光谱仪可选的光谱范围有350-2600nm,200-2600nm。FT-FC傅里叶红外光谱仪可选的光谱范围有0.9-2.5µm,2-6µm,2-12µm和2-16µm。并且内部带有光源。是目前市场上最紧凑的光纤耦合傅里叶红外光谱仪。ARCoptix公司的傅里叶红外光谱仪的技术核心是双角立方干涉仪。如下图:两个角立方体与一个共同的摆动臂连在一起,摆动臂旋转以在干涉仪的两个臂中产生光程差。 这种类型的设计被称为永jiu对准干涉仪,众所周知,系统的对准对振动和温度漂移最有效。它永远不必重新调整。干涉仪的摆臂在无磨损挠性系统上旋转,使该机械系统非常坚固耐用。为了测量反射镜的运动,FT-FC将固态参考激光器耦合到干涉仪中。与经典 HeNe 激光器相比,ARCoptix使用的固态激光器更紧凑,使用寿命更长。它们因为温度引起的波长漂移特别小,当使用珀耳帖元件保持恒温时,它们的波长可以稳定在几个PPM,从而提供非常准确和可重复的波长标度。这对于确保日常工作一致性至关重要。 光源ARCoptix公司的傅里叶红外光谱仪非常紧凑,集成度非常高。具有体积小,性能强的独特优势。大小可以参考下图: 此外Aroptix S.A.推出了Gasex HD-05TM—一种OEM气体分光计,包括高稳定性真空密闭FTIR Rocket光谱仪,与具有铑涂层耐化学腐蚀光学元件的5m气室无缝匹配。 采用GASEX HD-05-12测量多种气体的谱线分布:物质含量检测能力:*LOD=limits of detection **使用短波截至6um探测器测量目前,昊量光电已经与华中科技大学、天津大学、南京理工大学等高校的老师达成过合作。老师们对此产品的反馈都很很不错。欢迎各位老师前来问询!关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • HORIBA应用科普 | 光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负极的研究
    作者:RenataLewandowska,MiyokoOkada,TomokoNumata翻译:文军锂离子电池成就的奇迹谈起新能源汽车,就不得不说美国的“特斯拉汽车公司”,目前其打造的纯电动车采用为先进的锂离子能量存储,理论上48万公里行驶后电池衰减比例仅有5%。而其所配备的能量再生制动系统则可在车子减速时为锂离子电池组充电,使得车子在行走途中就可获得能量的补给。特斯拉MODEL 3可以说锂电池技术的发展不仅将特斯拉的新能源汽车变成了现实,创造了奇迹,更成就了特斯拉汽车公司CEO埃隆马斯克成为继乔布斯外第二个全球科技狂人。2017年5月9日,《时代》杂志发布了2017年“科技领域有影响的20人”榜单,埃隆马斯克上榜。随着对动力需求的不断增长和日趋复杂化,如何提高锂离子电池的性能始终是锂电池领域各厂家致力于突破的一个非常重要的课题。令人欣喜的是,激光拉曼光谱技术被越来越多的研究人员用于该领域的探索和突破。这种非接触的快速分析技术,能够直接分析材料中的结构变化,而不对材料产生影响。拉曼光谱技术已经被用作锂电池在充放电循环过程中的实时的原位分析,从而实现标准分析,包括材料结构和电子属性、耐久性,以及自动质量控制测试等。此外,新的研究还表明:拉曼光谱可以用于研究这些电池生命周期的各个阶段,诸如复杂体系中的新材料的表征、故障分析等。因篇幅有限,今天,本文重点为您揭示显微拉曼光谱在锂电池充放电过程中对正材料和负材料是如何进行分析的。 ▎如何分析?锂离子电池充放电过程中,锂离子经由电解液在两电之间穿梭,会带来两个电材料的结构变化。理想状态之下,这些变化都是可逆的。但是在实际情况中,充放电过程会给电池的正负电造成某些不可逆转的变化。那么它们的变化是怎样的?让我们通过拉曼光谱的“正分析”与“负分析”一窥究竟吧。01正分析锂离子电池常用的正材料是层状的锂钴氧(LiCoO2,LCO)材料。在充放电过程中,锂离子在层状的氧化钴八面体结构中重复地进行着插入—脱出过程。研究表明,电池过放电会导致氧化钴层的不可逆转的分解,成为氧化钴(CoO)和氧化锂(Li2O);而电池过充电则会导致LiCoO2转变成二氧化钴(CoO2)。所有这些变化都可以利用拉曼光谱进行观察。如下图1所示,拉曼光谱特征峰(橙色)属于锂钴氧正,而拉曼光谱谱线(红色)显示出了属于二氧化钴(CoO2)的特征峰。图1.正材料中有无CoO2的光谱区别.下图2是经历了一次充放电循环过程后,正材料的拉曼成像结果,拉曼成像清楚显示出了二氧化钴(CoO2)的存在,佐证了电池发生过充。图2. 经历了一次充放电循环过程后的锂钴氧正材料的拉曼成像蓝色对应非晶态碳,橙色对应锂钴氧,红色点对应不同浓度二氧化钴除了上述佐证正材料过充现象的存在,研究人员还利用拉曼光谱去寻找和研究新的正材料,比如不同种类的锂-过渡金属混合氧化物,如Li(Ni, Mn, Co)O2,LiMn2O4,这是目前研究的热点材料。这些材料各自具有不同的拉曼光谱特征峰,如下图3所示,拉曼光谱可为新型电材料研究提供技术支持。图3. LiCoO2、Li(Ni, Mn, Co)O2,LiMn2O4,Li2TiO3的拉曼光谱图02负分析锂离子电池常用的负材料是石墨,经过反复充放电循环以后,石墨电会发生退化。在石墨的拉曼光谱中,D峰和G峰的相对强度ID/IG比值与石墨电结构的损坏有着密切的关系。随着石墨电结构的退化,D峰的强度不断增加。在下图4中我们可以看出相对强度的变化。图5的拉曼成像中,可以清楚地看到石墨电结构的变化。图4. 具有不同相对比值ID/IG的石墨正材料的拉曼光谱图5. 石墨负经历一个充放电循环之后的拉曼成像:蓝色区域对应于缺陷较少的石墨,深蓝色区域对应于缺陷较多的石墨,橙色区域对应于树脂粘结剂。 ▎总结和展望由于拉曼光谱能够应对锂离子电池各类研发的需求,并满足在线自动质量控制的要求,因而借助拉曼光谱的探索,锂离子电池必将能够发挥出更大的“能量”。如果您对本文案例感兴趣,欢迎您点击识别下方二维码索取详细文章。 在下一篇文章中,我们将为您介绍拉曼光谱在锂电池充放电过程中对电解液如何进行分析,带您了解该项技术的其他应用,欢迎您的关注。手机识别二维码 阅读原文后,小编欢迎您留言说说看,您身边的锂电池应用都有哪些?特斯拉你已经开起来了吗? ▎延伸阅读R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev., 110 (2010)1278–1319.V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, R. Kostecki, Journal of Power Sources, 195 (2010) 3655–3660.R. Kostecki, J. Lei, F. McLarnon, J. Shim, K. Striebel, J. Electrochem.Soc., 153 (2006) A669-A672.R. Kostecki, X. Zhang, P.N. Ross Jr., F. Kong, S. Sloop, J.B. Kerr, K.Striebel, E. Cairns, F. McLarnon, F., report LBNL-48359, DOI:10.2172/861953.Paul Scherrer Institute, http://www.psi.ch/lec/electrochemical-energy-storage.Berkley Energy Storage & Conversion for Transportation and Re-newablesProgram, http://bestar.lbl.gov/HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • 强大的光谱技术用于燃料电池关键催化剂研究
    英国利物浦大学(University of Liverpool)和西班牙阿利坎特大学(University of Alicante)的研究人员发现,领先燃料电池催化剂铂上存在低电位表面物质,这对发展氢燃料电池技术具有重要意义。利物浦大学斯蒂芬森可再生能源研究所(SIRE)的研究人员,利用高灵敏度光谱技术,探讨低配位Pt原子上OH物质(氢氧根负离子)的吸附性。这种光谱技术名为SHINERS,即壳层隔绝纳米粒子增强拉曼光谱技术。研究人员借助SHINERS方法证明,OH会在比以前认为的更多的负电位下被吸附。在交通运输领域,氢燃料电池正在引领下一场革命。在这些装置中,氢气中的储能与空气中的氧发生反应,从而产生电力,为电动汽车提供动力。氢燃料电池使用铂来催化其内部反应,包括氧还原反应和氢氧化反应。虽然市面上已有燃料电池驱动的汽车、客车和卡车,但所使用的铂成本较高,仍是这项技术的主要阻碍之一。在燃料电池中,要减少铂的使用量,甚至用成本更低和更有效的催化剂代替铂,需要从分子层面深入了解铂表面发生的反应。 到目前为止,人们一直认为,在发生反应的电位下,铂的表面比较“干净的”,没有其他物质。然而,这项研究表明,氢氧根负离子在极低的电位下被吸附在铂表面。对于理解氧还原反应的发生方式,以及寻找更有效的催化剂,这将产生重要影响。研究人员利用电化学技术和拉曼光谱,从而获得这些结果。电化学技术可以区分表面发生的不同过程。基于最近的发展,拉曼光谱首次可以检测吸附的氢氧根负离子。SIRE博士研究生Julia Fernández Vidal领导先进的拉曼测量。Julia表示:“通过系统的电化学和光谱研究,可以观察到OH吸附光谱信号。SHINERS是一种非常强大的技术,能够检测电极表面的分子单层。通过实验观察到这一点,非常令人兴奋。”
  • 南开刷新有机太阳能电池光电转化效率最高纪录
    p style=" text-align: justify " & nbsp & nbsp 南开大学化学学院陈永胜教授领衔的团队在有机太阳能电池领域研究中获突破性进展。他们设计和制备的具有高效、宽光谱吸收特性的叠层有机太阳能电池材料和器件,实现了17.3%的光电转化效率,刷新了目前文献报道的有机/高分子太阳能电池光电转化效率的世界最高纪录。这一最新成果让有机太阳能电池距离产业化更近一步。美国东部时间8月9日下午,介绍该研究的论文在线发表于国际顶级学术期刊《Science》上。 /p p /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/62f3136a-548f-4a98-8fae-d391287a7e56.jpg" title=" 1.jpg" / /p p style=" text-align: justify " 有机太阳能电池的柔性特征和本工作主要结果 /p p style=" text-align: justify " & nbsp & nbsp 有机太阳能电池是解决环境污染、能源危机的有效途径之一,其在质轻、柔软、半透明、可大面积低成本印刷、环境友好等方面都远远优于传统太阳能电池,被认为是具有重大产业前景的新一代绿色能源技术。然而,实现高效率的太阳能电能转化是有机太阳能电池研究的核心难题。而这一难题能否解决也直接决定着有机太阳能电池能否走出实验室、走进人类的实际生产生活。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/243c9699-f8c4-4bb5-89cc-a57b9b15c3bc.jpg" title=" 2.jpg" / /p p /p p style=" text-align: justify " & nbsp & nbsp 近年来,虽然有机太阳能电池研究获得了迅猛发展,实现了14%~15%的光电转化效率,但仍远远落后于其它主要以无机材料(如硅)为主的太阳能电池转化效率。“主要原因在于,有机高分子材料本身较低的载流子迁移率限制了活性层厚度,因此太阳光不能够获得充分和有效的利用。”陈永胜说。 /p p style=" text-align: justify " & nbsp & nbsp 据介绍,叠层太阳能电池不仅可以克服上述难题,还可以充分发挥有机和高分子材料结构和性质优良的可调性特征,通过叠层电池中前后电池里活性材料互补的光吸收,更有效地利用太阳光,从而实现更高的能量转换效率。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/54c72967-855b-4761-8dbd-15b23150ffa7.jpg" title=" 3.jpg" / /p p /p p style=" text-align: justify " & nbsp & nbsp 陈永胜教授团队与中科院国家纳米科学中心丁黎明教授、华南理工大学叶轩立教授研究团队合作,首先利用半经验模型,从理论上预测了有机太阳能电池实际可以达到的最高效率和理想活性层材料的参数要求。在此基础上,他们以在可见光区域和近红外区域具有良好互补吸收的PBDB-T:F-M和PTB7-Th:O6T-4F:PC71BM分别作为前电池和后电池的活性层材料,采用成本低廉、与工业化生产兼容的溶液加工方法,制备得到了高效的有机太阳能垫层器件,获得了17.3%的验证效率。 /p p style=" text-align: justify " & nbsp & nbsp 该团队研究人员介绍,依据该工作提出的模型和设计原理,结合有机高分子材料结构的多样性和可调性,通过对材料和器件的进一步优化,非常有望获得和无机材料类似的能量转化效率,从而为有机太阳能电池的产业化提供有力技术支撑。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/3a090dba-e3eb-4db6-9406-053ba9748a44.jpg" title=" 4.jpg" / /p p /p p style=" text-align: justify " & nbsp & nbsp “依据我们提出的半经验模型预测,有机太阳能电池(垫层)的最高转化效率理论上可以达到20%以上。本次工作中,我们同时也对电池的寿命进行了初步试验,发现166天实验后电池效率仅降低4%。未来,我们将继续设计新的材料,在进一步提高能量转化效率的同时,针对电池寿命问题进行系统的实验,争取让有机太阳能电池早日从实验室走向实际应用。”陈永胜说。 /p p style=" text-align: justify " & nbsp & nbsp 据了解,该研究得到了科技部、国家自然科学基金委、天津市科委和南开大学的项目支持。 /p p br/ /p
  • “光谱仪在能源、电池领域中的应用”在线讲座问题集锦(6)
    锂电池以其特有的性能优势已在便携式电子设备中得到了普遍应用,其中大容量的锂电池还被用于电动汽车,预计未来将成为其主要的动力电源之一。此外,它还可用于人造卫星、航空航天和储能等方面。 11月7日,HORIBA Scientific举办了光谱应用系列在线讲座(6)——“光谱仪在能源、电池领域中的应用”,涉及辉光光谱、拉曼光谱技术。至此,“2014探索In的光谱应用”系列活动圆满结束。本次活动涵盖了如今热门的6大应用领域及7种光谱技术,为参与者提供了一个绝好的学习光谱技术机会。现将本次讲座问题整理后供大家参考。课程一:辉光光谱Q:赵老师:请问可以分析粒径在几百纳米的粉末样品吗?A:辉光放电光谱仪可直接分析的样品呈固体块状/片状,不可以分析粉末样品。当然可以将粉末样品磨碎混合铜粉压片成均匀块体分析。Q:Lucy-SH:辉光放电光谱仪和椭圆偏振光谱仪有什么区别?A:辉光放电光谱仪是有损分析技术且专注于分析镀层元素随深度的分布,可获得镀层元素、界面污染、表面处理、层间扩散、镀层均一性,定量后还可获得镀层元素含量及镀层厚度;椭圆偏振光谱仪是无损分析技术,它专注于分析镀层样品的厚度、光学常数(n,k)、粗糙度、孔隙率、界面信息、组分、结晶度、梯度变化及各向异性等。Q:中南大学-材料院-张老师:磁控溅射后的样品可以做吗?样品要平整到什么程度?A:可以。样品仅需要看上去平整即可进行分析。Q:张老师:请简要介绍一下辉光放电谱仪与SIMS比较的优缺点?A:两种技术都为表面镀层分析技术。辉光放电光谱仪分析速度快(几分钟),可测试元素周期表中所有元素,操作简单、维护方便、价格便宜。SIMS分析速度慢(几个小时),可测试所有元素、同位素,分析化合物组分及分子结构,操作复杂含有超高真空设备、维护成本高、价格昂贵。联合使用可多方位表征样品。Q:哈尔滨工业大学-能源学院-张老师:经Ar粒子轰击过的样片,比如您粒子中的0.3nm的镀膜材料,是否测量完成就被破坏了?A:辉光放电光谱仪是一种有损分析,Ar等离子体的阳离子会持续轰击样品表面,将镀层元素剥蚀,终产生一个溅射坑。课程二:拉曼光谱Q:中科院生态中心-王老师:测量液体拉曼光谱,对装样品的玻璃器皿光面毛面状况有特别讲究吗?A:测量液体样品时根据样品量的多少可以选择不同的容器,当样品量少时,放在毛细管中即可(毛细管壁薄的情况下样品信号会相应更强)。通常使用的玻璃器皿都是光面的。如果液体挥发性不强,没有腐蚀性,也可以滴在硬币表面或者玻璃表面。这时毛面的玻璃由于利于散射,可以得到更强的信号。Q:清华大学-材料系-陈老师:锂电池的充放电中提到拉曼可以检测锂离子的扩散,拉曼也可以检测离子吗?A:可以。通常情况下拉曼光谱是不用于离子检测的。但当离子和其它物质发生作用时,可以通过其它物质信号的改变来反推离子的扩散或浓度情况。例如在锂电池中,通过对石墨D峰的检测可以对锂离子扩散进行相应判断。由于拉曼光谱可以对分子所处的微环境进行表征,在一定的实验设计下,它是可以对离子、pH值、温度等信息进行表征的。关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 手持材料分析光谱仪|怎么区分锂电池分类的成分
    近年来,随着全球新能源电动汽车的快速发展,锂电池的消耗量也迅速增加,镍、钴和稀有金属等原材料作为制造电池的常用材料,其需求量也骤然激增。面对与日俱增的需求和全球供应链的紧张,许多国家出现了原材料短缺的问题,废旧锂电池回收是获取原材料的重要来源之一。回收锂电池行业虽然热门,但是它的“水也很深",想要赚大钱不仅要有专业的回收设备,还要懂得行内话,了解锂电回收的“行话",还能让你判断对方在圈内的“道行"。手持材料分析光谱仪|怎么区分锂电池分类的成分-1、按正极材料分:“铁锂":即磷酸铁锂电池;“钴锂":即钴酸锂电池;“锰锂":即锰酸锂电池;“三元":即三元锂电池;手持材料分析光谱仪|怎么区分锂电池分类的成分-2、按产品形态分:“铝壳":即方形锂电池“钢壳":即圆柱锂电池;“聚合物/铝塑膜":即软包锂电池。手持材料分析光谱仪|怎么区分锂电池分类的成分-3、按用途分:消费类锂电池;动力锂电池;储能锂电池。可以为锂电回收行业提供系统的解决方案,为了帮助刚入行或者想要入行的客户快速了解锂电回收行业, 不同类型的锂电池价格可是天差地别,区分锂电池的种类,来给废料定价,是达到现场结算的基础;快速收货,以免上当,是回收的目的!千万别把铁锂的当成三元的带回家!手持光谱仪正极片及粉中镍(Ni)、钴(Co)、锰(Mn)等元素的成分检测;废旧电池负极材料铜箔中铜(Cu)含量的检测、电池金属外壳及粉料中成分检测;可以对大量废旧电池进行现场检测和快速分类;数秒便可判断出废旧电池的型号和成分含量;为购销双方在交易时,作出迅速判断提供必要的信息依据林巴斯合金分析仪是一种XRF光谱分析技术,可用于确定物质里的特定元素,同时将其量化。在这个飞速发展的时代,无论是什么行业,对于效率的要求就非常高了。  SciAps手持合金分析仪之所以被各个厂家和企业青睐,SciAps手持式合金分析仪设备耗电量低,适合野外检测,避测过程中电量不足导致实验中断的现象发生,弥补了大多数合金分析仪续航时间短这一共性缺陷。SciAps手持式合金分析仪重量仅有1.54公斤,这一特性也让它在野外检测工作中奠更受欢迎。
  • 锂电池材料粒度要求高 激光检测担主角
    p style=" text-indent: 2em " span style=" font-family:宋体" 锂电行业近年来正在快速增长,并对多类光学、物性检测领域的仪器设备有着强烈需求。对于锂电池的电池材料来说,粒度、细度的检测是重要的相关参数,因而对激光粒度仪仪器厂商,锂电行业就此成为了他们书写市场红利新篇章的重要笔墨。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/a0946e4d-f5d6-4005-b98d-768e0013fd6b.jpg" title=" 1.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 粒度和粒径分布影响着锂电池材料性能的方方面面,特别是在生产流程,粒度粒径的检测有助于试验阶段的通过 /span / span style=" font-family:宋体" 失败检测、过程控制、以及每个工厂的出货控制。对锂电池,特别是聚焦舆论大量视线的锂离子电池,在原材料管控阶段,主要有三类电池材料需要进行粒度检测——正极材料、负极材料和隔膜材料,所需的粒径检测范围在 /span 10nm span style=" font-family:宋体" 到 /span 5mm span style=" font-family:宋体" 之间。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体" 以锂离子电池的正极材料为例,粒径 /span D50 span style=" font-family:宋体" 是关键性的质量控制指标之一,无论是磷酸铁锂电极还是其他主流锂合金氧化物电极都不例外。 /span D50 span style=" font-family:宋体" 是表示粒径大小的典型值,其标准定义是累计分布百分数达到 /span 50% span style=" font-family:宋体" 时对应的粒径值,又名中值粒径、中位径。电池正极对原材料的粒径要求波动范围较大,一般在 /span 1-20 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间。具体指标主要受到材料种类和工艺要求的双重限制。负极材料的粒径对电池的初始放电容量和首次效率等参数有重要影响,还是以锂离子电池为例,其负极石墨材料的平均粒径较为集中地分布在 /span 16-18 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间时,最为合适。电池隔膜,介于正负极材料之间,也是电池结构重要的组成部分,其中需要添加氧化铝等阻燃材料,这些阻燃材料的粒径需求则呈现随着隔膜层厚度不断提升,粒径不断减小的趋势,目前甚至需要达到亚微米甚至纳米级的要求。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/9c1cbb85-5a43-475e-978d-bc165aef7207.jpg" title=" 2.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池结构示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 电池的工艺特性、充放电容量、体积能量密度等重要参数都会受到电池材料粒度的影响, /span span style=" font-family:宋体" 而在各种粒度检测方法中,激光粒度仪因具有操作简便、可测颗粒数、等效概念明确、速度快、准确性好等优点,受到锂电市场的青睐。在激光粒度仪的各类技术指标中,“分辨能力”对于电池材料的检测有着极为重要的意义。分辨能力是指激光粒度仪对样品中不同粒径之间的区分能力。这种能力对电池材料的检测非常重要,例如,过小颗粒的石墨粉中往往具有较多的菱方结构,用参有这种石墨材料的锂电池,储锂容量就会比较小,而分辨能力高的激光粒度仪,就能较容易地检测出石墨原材料中的菱方结构。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/f3d5ee0f-102d-47ac-9a4e-773ee5e791bc.jpg" title=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 激光粒度仪原理示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-size:14px font-family:宋体" 评估激光粒度仪分辨能力的方法有很多,最常见的就是测量在已知粒径的标准样品中加入少量比例已知的大 /span span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " / /span span style=" font-size:14px font-family:宋体" 小颗粒样品,看测试结果是否能满足真实的差异。目前在市场上,激光粒度仪的分辨能力往往从散射光能分布角度、信噪比光学电子设计、高精度的模数转换及反演计算水平等角度改进。而具有高品质高分辨率元器件、装配工艺及算法数控优化水平高的激光粒度仪,也越来越为锂电行业所重视。 /span /p
  • 北京卓立汉光推出太阳能薄膜电池专用测试系统
    随着地球能源的不断枯竭,太阳能越来越受到人类的重视,太阳能光伏电池的研究也得到了空前的发展,目前的太阳能光伏电池主要以晶体硅电池为主,但随着科学的进步,研究的不断深入,越来越多的高效节能电池被开发使用,其中以薄膜电池为翘楚。薄膜电池以其高效、低耗、大面积电池等特点广泛受到人们的关注。薄膜太阳能电池的形态各异,结构也是多种多样,这对研究薄膜电池带来了不小的麻烦。在制造过程中我们不仅要了解电池的转化效率等直观因素,为了更好的提高工艺制造出更高效的太阳能光伏电池,我们更要深入了解电池的内部光电转化过程及其影响因素。在众多因素当中IV特性曲线和量子效率曲线图无疑是重中之重。 图一:IV曲线图 图二:量子效率 量子效率:是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。研究量子效率对了解电池内部光电转化有着重要意义。 早在2009年期间我公司在中科院张建民老师的带领下就研发试制了国内首台一体化自动测试量子效率系统,:SCS100测试系统。产品一经推出就受到了国内外太阳能研究人士的青睐。随着在太阳能电池测试领域经验不断地积累,公司今年上半年又推出了全新一代产品,SCS10-FILM薄膜电池专用测试系统。 系统针对薄膜电池的特点,加入了单光源双路可调偏置光,最大输出能够达到一个太阳强度。为了适应薄膜电池的宽光谱,光谱测试范围覆盖了0.3~1.70μm光谱带,并编写了功能强大的测试软件,不仅实现了自动计算量子效率曲线,而且能够计算出电池的短路电流密度,更加方便了评估电池的整体效率。同时系统还实现了漫反射测试和量子效率测试同步测试的功能,更加准确的计算电池的内量子效率。 图三:系统整体图 先进的光源配置: 系统的测试光源由卤素灯和氙灯光源两种灯源构成,这样,补偿卤素灯在紫外区能量不足的问题,又能解决氙灯光源在近红外有很多尖锐波峰的问题,实现了整个测试范围内的光源光谱平滑,有效增加了洗系统的稳定性。 图四:普通卤素灯的光谱图 图五:普通氙灯的光谱图 独特的测试光路设计: 大部分的量子效率测试系统都受困于量子效率测试点和反射率测试点不能够实现位置的重复定位,导致两参数测试在不同位置,这对于均与性不是很高的样品或高精度测试的试验中影响很大,本系统通过独特的光纤输出反射聚焦结构实现了反射率和量子效率同时同地测量的方式,有效地解决了上述问题带来的烦恼。通过聚焦反射光路,系统更能够大大降低色差对测试过程中带来的影响。由于太阳能电池的光谱测试范围宽,如果采用传统的投射聚焦方式进行测试,当测试到红外区时,因不同波长折射率不同的缘故聚焦光斑开始扩散,而红外区有是不可见的,因为会对测试带来极大的不确定因素。 强大的偏置光配置: 为了提高太阳能电池的转化效率,我们可以扩展电池的光谱响应范围以接受更多的太阳能,从而提高转化率,因此多节电池孕育而生。然而测试多结电池要比普通电池复杂得多,我们不仅要考虑多结电池的最小限流问题,还要考虑电池的偏压测试问题,因此测试多结电池我们要配有功能强大的偏置光附件,既能够满足光谱范围的需求,又能够对光强的要求。我们设计的单光源双路可调偏置光正可满足多结电池的测试需求,偏置光不仅实现了两路光能够各自调节光强,同时根据测试电池的不同,可选配不同的滤光片。 功能全面高效的软件: 软件集量子效率测试、反射率测试、内量子效率测试三测试功能于一体,自动计算画图,强大的图表处理能力,方便用户修改、标记测试曲线。多种格式输出保证了用户处理数据的方便使用。一键式参数文件保存功能不仅方便存贮测试数据还能保留测试参数,方便分析实验。 图六:功能强大的图标管理功能 特点总结: 1、实现内外量子效率同步测试 2、双光源测试,契合IEC标准,提高测试准确性 3、双路可调偏置光,轻松实现三节电池测试 4、功能强大的测试软件
  • 便携式电池供电激光功率测量积分球助力激光企业发展
    某现场安装激光二极管的制造公司需要一种可靠的方法用于现场测量激光功率,而无需带回实验室进行测试。激光测量系统需要完全由电池供电,因为现场没有电源。Labsphere(蓝菲光学)根据客户要求提供一套独立的、便携式且耐用的激光功率测试系统。Labsphere (蓝菲光学)提供标准的激光二极管测量积分球; 然而,还需将新功能整合到系统中,使其能被带到现场测试。 由此产生的一个小而轻的积分球系统,能够在世界任何地方进行可靠的激光功率测量。1.5 英寸开口端,用于轻松安装激光二极管组件针孔滤光片后面的制冷型 InGaAs 探测器,用于在功率低至 200 μW 的情况下进行红外范围内的辐射测量两个 FC/PC 适配器,允许通过光纤连接额外的探测器Spectralon® 漫反射材料,在 UV-VIS-NIR 范围内提供近乎完美的朗伯反射,以优化测试结果的准确性为 TE 冷却器和充电装置供电的可充电电池组轻巧的手持式塑料支架可固定每个组件,并带有泡沫内衬派力肯手提箱,可确保安全运输特点电池组可为系统供电数小时,为一个项目中的多项测试提供充足的时间每个组件都包依附在安装板上,提供了极大的可移动性,而手提箱确保了产品运输过程中的安全性InGaAs 探测器在近红外范围内提供可靠的校准测量,附加的光纤适配器使系统能够灵活地在其他范围内或使用光谱仪执行附加测试Spectralon 极高的漫反射率,以及积分球内的挡板几何形状,很大限度地提高了光照射到探测器上的均匀性Labsphere(蓝菲光学) 的 HELIOSense 软件进行实时数据收集、存储和可视化,使测试变得简单易行。光谱响应
  • 安东帕微波消解、微波合成与拉曼光谱联用技术助力保障电池安全
    “近日,一则“电动车骑行过程中爆炸起火”的新闻受到广大网友的关注。据钱江晚报报道:7月18日,浙江杭州两辆电动车路过玉皇山路时,其中一辆爆炸起火造成3人受伤。伤者家属称,两辆电动车上共骑载了一家3口,爆炸电动车骑载的是父女,后面单独骑一辆车的是妻子,当时他们到图书馆去买书,受伤的小女孩已经被医院下了3次病危通知书。 伤者家属称,小女孩可能需要终生插管。!新能源车安全吗?锂离子电池安全吗?随着越来越多‘锂电池爆炸’的新闻进入到人们的视线,在新能源汽车、电动车锂电化越来越普遍的当下,随之而来的担忧也与日俱增。那么重点来了引起电池不安全的因素有哪些呢?电池组件中的杂质会影响电化学稳定性,影响效率,甚至会导致电池短路从而引起火灾,所以必须准确测量电池组件中的杂质浓度;电极原材料的元素组成会影响最终电池产品的性能和安全性,因此在电池生产的开发和质量控制过程中,准确地确定电极原材料的元素组成至关重要;当然生产电池组件的原材料纯度也很重要,这意味着从源头杜绝杂质的引入。如何在研究和生产的过程中,确保锂离子电池的高品质?微波消解可有效检测电池组件中的杂质浓度电池组件中的杂质会影响电化学稳定性,影响效率,在最坏的情况下,会导致短路,并大大缩短电池寿命。我们通常采用ICP-OES/ICP-MS对锂离子电池中各种材料进行元素杂质污染分析,而这两种技术都需要充分消解的样品为前提。高温高压微波消解仪是制备这些不同样品的较佳工具。目前锂电材料杂质的引入分两种一种是正极材料,一种是负极材料,负极材料以碳材料为主。锂离子电池通常由锂化金属氧化物或磷酸盐作为正极(阴极)材料、碳质材料作为负极(阳极)材料和合适的电解质组成。此类物质由于样品基体比较复杂,因此需要高性能前处理微波消解仪设备进行制样。安东帕Multiwave 5000系列微波消解系统配备的转子:20SVT50,它在一次运行中最多可提供20个样品,具有无与伦比的效率与消解效果。20SVT50消解转子提供了卓越的智能控压SmartVent技术,该技术下的压力和温度限制更高,可达到并保持高达250℃的目标温度,以确保样品完全消化。安东帕Multiwave 5000锂电解决方案微波合成保证了电池原材料的安全性当用户需要开发一款新的电池材料时,如何高效安全地生产一款高性能的新型电池材料呢?如何保证电池材料的纯度,并从源头杜绝杂质的引入呢?在寻求用于电池阳极、阴极以及隔板的新型材料的过程中,微波合成系列产品开创了前所未有的反应条件,产生了新的结构。安东帕提供的微波合成解决方案可在高达 300℃ 和 80 bar 的微波反应器中安全地进行合成反应,满足用户的开发需要。微波合成与拉曼光谱强强联手,实现原位监测合成过程合成系统提供的高温、高压条件可以加快新分子的合成速度。而拉曼光谱是用于监测化学反应进程的有效工具。由于大部分的微波合成反应是在封闭且加压的容器里面进行,这无疑给监控反应进程增加了难度。拉曼光谱可以透过容器(如反应管)在线直接测量,无需进行取样及前处理,从而实现在微波反应中的过程监测,通过优化反应时间及条件来提高效率。安东帕微波合成-拉曼连用系统:Monowave 400R&Cora 5001安东帕致力于锂离子电池研究到生产环节的解决方案,帮助用户实现锂离子电池的更高品质。当然,除了上文提到的微波合成与消解系统,安东帕关于锂离子电池安全的解决方案还有许多,想要了解哪些方面,快给我们留言吧!
  • 我国学者在近红外吸光聚合物太阳电池领域取得重要进展
    p style=" text-align: justify "    /p p style=" text-align: center " img title=" tpxw2019-01-08-09.jpg" alt=" tpxw2019-01-08-09.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/8f85fe5b-35ad-4005-9e82-3608bdf73b66.jpg" / /p p style=" text-align: center "   图. 近红外吸光电子受体分子设计与合成、吸光和荧光谱图、叠层太阳能电池器件结构、能级和光伏特性曲线 /p p style=" text-indent: 2em " 在国家自然科学基金项目科学部前沿导向重点项目和国家优秀青年科学基金项目(项目编号:21722404,21734008)等资助下,我国学者在近红外吸光聚合物太阳电池研究中取得进展。研究成果以“Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells”(具有氟化骨架异构的近红外电子受体实现高效聚合物太阳电池)为题,于2018年11月06日发表在Advanced Materials(《先进材料》)上。 /p p style=" text-indent: 2em " 论文链接: a href=" https://doi.org/10.1002/adma.201803769" target=" _blank" https://doi.org/10.1002/adma.201803769 /a 。 /p p style=" text-align: justify "   聚合物太阳电池近年取得了不断突破,很大程度得益于新型有机半导体分子和聚合物的快速发展。有机分子和聚合物通过结构裁剪可大范围调制其光、电和薄膜性质,从而实现区别于传统无机太阳电池的多功能性的太阳电池器件,例如可见区透过,近红外区高光谱响应度的半透明器件和全光谱吸收的叠层器件等。其中,发展新型近红外吸光的有机半导体材料(带隙Eg& lt 1.4 eV)成为领域关注热点。 /p p style=" text-align: justify "   浙江大学高分子科学与工程学系的有机半导体实验室已发展一系列基于非稠合或稠合骨架的近红外电子受体分子。最近,该实验室的李昌治研究员和陈红征教授等设计发展了一类近红外电子受体分子,通过非对称桥连基团的区域异构化和调控氟原子取代数目,改善分子共轭结构和轨道能级,获得了性能优异的近红外电子受体分子并成功建构响应波长可达1000 nm光谱的高效率聚合物太阳电池。通过进一步与吸光带边800 nm的前电池搭配,制备得到高效率聚合物叠层太阳电池。该工作得到华南理工大学叶轩立教授和香港中文大学路新慧教授在光学模拟和薄膜形貌测试方面的支持。这一成果从分子骨架结构设计入手,通过探索理解其分子结构-薄膜特性-器件性能之间的构效关系,为发展近红外电子受体分子和近红外区高光谱响应度的聚合物太阳电池提供了新方法和新途径。 /p p style=" text-align: justify " 附件: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" chen2018.pdf" href=" https://img1.17img.cn/17img/files/201901/attachment/a4dc0b99-2bf7-4de1-8fa0-11d21bce1737.pdf" target=" _blank" textvalue=" Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells" Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells /a /p p & nbsp /p
  • 全球首款电池驱动式IP54防护标准的绝对激光跟踪仪推出
    Hexagon计量产业集团推出全球首款电池驱动式IP54防护标准的绝对激光跟踪仪     新型Leica绝对激光跟踪仪AT401集合多项全球首创技术特点:1. 全球首款可由电池驱动、实现无线操作的激光跟踪仪;2.全球第一款具备IP54防护标准(防尘,防水…)认证的激光跟踪仪;3.极致轻便小巧,在同类产品中重量最轻;4.高精度大量程;5.整合了能量锁 (PowerLock)和目标自动识别(ATR)等业内先进功能,使得三维激光跟踪仪的应用操作变得空前的简易。   2010年4月28日,Hexagon计量产业集团宣布了Leica绝对激光跟踪仪AT401正式面市的消息。这一全新的激光跟踪仪拥有先进的电源管理系统,含两块电池,且允许电池热切换,并可以通过以太网供电运行(PoE+) 集成的WiFi,使得AT401成为一台真正的无线移动式测量机。该系统经过IP54等级认证,不受液体、焊接飞溅物、灰尘干扰,甚至适应雨中操作。   AT401含控制系统在内总重仅为8 KG,高度仅为29 cm,极小的外形结构使得AT401可以在大多数国际航班上作为手提行李进行运输。新型Leica 绝对激光跟踪仪AT401树立了行业便携的新标准。   AT401在水平和垂直轴方向都能实现无级旋转,当快捷释放把手被移走时,AT401在垂直方向的全测量范围将达到+/- 145º ,测量范围高达320m。AT401中的绝对测距仪(ADM)在其全精度认定范围内的最大测量不确定度仅为10微米,并配备多项先进的Leica工业测量技术,如能量锁(PowerLock)光束恢复、目标自动识别(ATR)、免维护Piezo驱动和重力传感器的测量级别精度水准等。   Leica AT401绝对激光跟踪仪推动了激光跟踪仪在尺寸、重量、量程、精度和可操作性等多方面的进步,并为激光跟踪仪的精度设立了新标准。目前,激光跟踪仪已经广泛分布于航空航天、工程机械、风电、水电、船舶行业及关注大部件和远距离的科学研究中,而Leica AT401绝对激光跟踪仪的创新将会在此基础上大大拓展激光跟踪仪的应用范围。   关于Hexagon计量产业集团   Hexagon计量产业集团隶属于Hexagon AB集团,其麾下拥有全球领先的计量品牌,如Brown & Sharpe、CE Johansson、CimCore、CogniTens、DEA、Leica工业测量系统 (计量分部)、Leitz、m&h、Optiv、PC-DMIS、QUINDOS、ROMER、Sheffield、Standard Gage和TESA。Hexagon计量产业集团代表着无可匹敌的全球客户群,数以百万计的坐标测量机(CMMs)、便携式测量系统、在机测量系统、光学影像测量系统和手持式量具量仪,以及数以万计的计量软件许可。凭借精密的几何量测量技术,Hexagon计量产业集团帮助客户实现制造过程的全面控制,确保制造的产品能够精确的符合原始设计的需要。该集团为全球客户提供测量机、测量系统以及测量软件,并加之以完善的产品技术支持和售后增值服务。更多信息请登录www.hexagonmetrology.com.cn   海克斯康测量技术(青岛)有限公司   地址:青岛市株洲路188号 邮编:266101   电话:0532-8089 5188 传真:0532-80895030   网址:http://www.hexagonmetrology.com.cn   E-mail:info@chinabnsmc.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制